
30th Annual European
Symposium on Algorithms

ESA 2022, September 5–9, 2022, Berlin/Potsdam, Germany

Edited by

Shiri Chechik
Gonzalo Navarro
Eva Rotenberg
Grzegorz Herman

LIPIcs – Vo l . 244 – ESA 2022 www.dagstuh l .de/ l ip i c s



Editors

Shiri Chechik
Tel Aviv University, Israel
shiri.chechik@gmail.com

Gonzalo Navarro
University of Chile, Santiago, Chile
gnavarro@dcc.uchile.cl

Eva Rotenberg
Technical University of Denmark, Lyngby, Denmark
erot@dtu.dk

Grzegorz Herman
Jagiellonian University, Kraków, Poland
gherman@tcs.uj.edu.pl

ACM Classification 2012
Applied computing → Transportation; Computing methodologies → Linear algebra algorithms; Computing
methodologies → Shared memory algorithms; Human-centered computing → Graph drawings; Information
systems → Clustering; Information systems → Data structures; Mathematics of computing → Algebraic
topology; Mathematics of computing → Approximation algorithms; Mathematics of computing →
Combinatorial algorithms; Mathematics of computing → Combinatorial optimization; Mathematics of
computing → Combinatorics; Mathematics of computing → Discrete optimization; Mathematics of
computing → Graph algorithms; Mathematics of computing → Graph coloring; Mathematics of computing
→ Graph theory; Mathematics of computing → Network flows; Mathematics of computing → Paths
and connectivity problems; Mathematics of computing → Permutations and combinations; Mathematics
of computing → Probabilistic algorithms; Mathematics of computing → Random graphs; Mathematics
of computing → Trees; Networks → Network algorithms; Theory of computation → Algorithm design
techniques; Theory of Computation-Analysis of algorithms and problem complexity; Theory of computation
→ Approximation algorithms analysis; Theory of computation → Bloom filters and hashing; Theory
of computation → Branch-and-bound; Theory of computation → Communication complexity; Theory
of computation → Complexity theory and logic; Theory of computation → Computational geometry;
Theory of computation → Data compression; Theory of computation → Data structures design and
analysis; Theory of computation → Design and analysis of algorithms; Theory of computation → Dynamic
graph algorithms; Theory of computation → Dynamic programming; Theory of computation → Exact
and approximate computation of equilibria; Theory of computation → Facility location and clustering;
Theory of computation → Fixed parameter tractability; Theory of computation → Formal languages
and automata theory; Theory of computation → Graph algorithms analysis; Theory of computation →
Integer Programming; Theory of computation → K-server algorithms; Theory of computation → Linear
programming; Theory of computation → Network flows; Theory of computation → Online algorithms;
Theory of computation → Packing and covering problems; Theory of computation → Parallel algorithms;
Theory of computation → Parameterized complexity and exact algorithms; Theory of computation
→ Pattern matching; Theory of computation → Problems, reductions and completeness; Theory of
computation → Quantum computation theory; Theory of computation → Randomness, geometry and
discrete structures; Theory of computation → Random projections and metric embeddings; Theory
of computation → Rounding techniques; Theory of computation → Scheduling algorithms; Theory
of computation → Shared memory algorithms; Theory of computation → Shortest paths; Theory
of computation → Sketching and sampling; Theory of computation → Solution concepts in game
theory; Theory of computation → Sparsification and spanners; Theory of computation → Stochastic
approximation; Theory of computation → Stochastic control and optimization; Theory of computation →
Streaming, sublinear and near linear time algorithms; Theory of computation → Submodular optimization
and polymatroids; Theory of computation → W hierarchy

mailto:shiri.chechik@gmail.com
https://orcid.org/0000-0002-2286-741X
mailto:gnavarro@dcc.uchile.cl
https://orcid.org/0000-0001-5853-7909
mailto:erot@dtu.dk
https://orcid.org/0000-0001-6855-8316
mailto:gherman@tcs.uj.edu.pl


0:iii

ISBN 978-3-95977-247-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-247-1.

Publication date
September, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ESA.2022.0

ISBN 978-3-95977-247-1 ISSN 1868-8969 https://www.dagstuhl.de/lipics

ESA 2022

https://www.dagstuhl.de/dagpub/978-3-95977-247-1
https://www.dagstuhl.de/dagpub/978-3-95977-247-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ESA.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-247-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iv

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics






Contents

Preface
Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman . . . . . . . . . . 0:xiii

Program Committees
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xv–0:xvi

List of External Reviewers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xvii–0:xxi

Regular Papers

Enumerating Minimal Connected Dominating Sets
Faisal N. Abu-Khzam, Henning Fernau, Benjamin Gras, Mathieu Liedloff, and
Kevin Mann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:15

Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries
Raghavendra Addanki, Andrew McGregor, and Cameron Musco . . . . . . . . . . . . . . . . . . 2:1–2:16

Hardness of Token Swapping on Trees
Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch,
Zuzana Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein 3:1–3:15

Tight Bounds for Online Matching in Bounded-Degree Graphs with Vertex
Capacities

Susanne Albers and Sebastian Schubert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:16

TSP in a Simple Polygon
Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous . 5:1–5:14

Classical and Quantum Algorithms for Variants of Subset-Sum via Dynamic
Programming

Jonathan Allcock, Yassine Hamoudi, Antoine Joux, Felix Klingelhöfer, and
Miklos Santha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6:1–6:18

Techniques for Generalized Colorful k-Center Problems
Georg Anegg, Laura Vargas Koch, and Rico Zenklusen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:1–7:14

Simple Streaming Algorithms for Edge Coloring
Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh . . . . . . . . . . . . . 8:1–8:4

Computing Smallest Convex Intersecting Polygons
Antonios Antoniadis, Mark de Berg, Sándor Kisfaludi-Bak, and Antonis Skarlatos 9:1–9:13

The Price of Hierarchical Clustering
Anna Arutyunova and Heiko Röglin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:14

Bounding and Computing Obstacle Numbers of Graphs
Martin Balko, Steven Chaplick, Robert Ganian, Siddharth Gupta,
Michael Hoffmann, Pavel Valtr, and Alexander Wolff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:13

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:viii Contents

Computing NP-Hard Repetitiveness Measures via MAX-SAT
Hideo Bannai, Keisuke Goto, Masakazu Ishihata, Shunsuke Kanda,
Dominik Köppl, and Takaaki Nishimoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:16

Online Metric Allocation and Time-Varying Regularization
Nikhil Bansal and Christian Coester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:13

An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary
Dimensions

Florian Barth, Stefan Funke, and Claudius Proissl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:12

Galactic Token Sliding
Valentin Bartier, Nicolas Bousquet, and Amer E. Mouawad . . . . . . . . . . . . . . . . . . . . . . 15:1–15:14

When Are Cache-Oblivious Algorithms Cache Adaptive? A Case Study of Matrix
Multiplication and Sorting

Arghya Bhattacharya, Abiyaz Chowdhury, Helen Xu, Rathish Das,
Rezaul A. Chowdhury, Rob Johnson, Rishab Nithyanand, and Michael A. Bender 16:1–16:17

Simple Dynamic Spanners with Near-Optimal Recourse Against an Adaptive
Adversary

Sayan Bhattacharya, Thatchaphol Saranurak, and Pattara Sukprasert . . . . . . . . . . . . 17:1–17:19

Online Spanners in Metric Spaces
Sujoy Bhore, Arnold Filtser, Hadi Khodabandeh, and Csaba D. Tóth . . . . . . . . . . . . . 18:1–18:20

Sparse Temporal Spanners with Low Stretch
Davide Bilò, Gianlorenzo D’Angelo, Luciano Gualà, Stefano Leucci, and
Mirko Rossi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:1–19:16

Resource Sharing Revisited: Local Weak Duality and Optimal Convergence
Daniel Blankenburg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:14

On the External Validity of Average-Case Analyses of Graph Algorithms
Thomas Bläsius and Philipp Fischbeck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:14

On Polynomial Kernels for Traveling Salesperson Problem and Its Generalizations
Václav Blažej, Pratibha Choudhary, Dušan Knop, Šimon Schierreich,
Ondřej Suchý, and Tomáš Valla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22:1–22:16

Maximizing Sums of Non-Monotone Submodular and Linear Functions:
Understanding the Unconstrained Case

Kobi Bodek and Moran Feldman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:17

List Colouring Trees in Logarithmic Space
Hans L. Bodlaender, Carla Groenland, and Hugo Jacob . . . . . . . . . . . . . . . . . . . . . . . . . . 24:1–24:15

Dynamic Coloring of Unit Interval Graphs with Limited Recourse Budget
Bartłomiej Bosek and Anna Zych-Pawlewicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25:1–25:14

Polynomial Kernel for Immersion Hitting in Tournaments
Łukasz Bożyk and Michał Pilipczuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26:1–26:17

A Systematic Study of Isomorphism Invariants of Finite Groups via the
Weisfeiler-Leman Dimension

Jendrik Brachter and Pascal Schweitzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27:1–27:14



Contents 0:ix

Faster Approximate Covering of Subcurves Under the Fréchet Distance
Frederik Brüning, Jacobus Conradi, and Anne Driemel . . . . . . . . . . . . . . . . . . . . . . . . . . . 28:1–28:16

Efficient Fréchet Distance Queries for Segments
Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf,
Rodrigo I. Silveira, and Frank Staals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29:1–29:14

Search-Space Reduction via Essential Vertices
Benjamin Merlin Bumpus, Bart M. P. Jansen, and Jari J. H. de Kroon . . . . . . . . . 30:1–30:15

Width Helps and Hinders Splitting Flows
Manuel Cáceres, Massimo Cairo, Andreas Grigorjew, Shahbaz Khan,
Brendan Mumey, Romeo Rizzi, Alexandru I. Tomescu, and Lucia Williams . . . . . . 31:1–31:14

Counting Simplices in Hypergraph Streams
Amit Chakrabarti and Themistoklis Haris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32:1–32:19

Approximation Algorithms for Continuous Clustering and Facility Location
Problems

Deeparnab Chakrabarty, Maryam Negahbani, and Ankita Sarkar . . . . . . . . . . . . . . . . . . 33:1–33:15

Distinct Elements in Streams: An Algorithm for the (Text) Book
Sourav Chakraborty, N. V. Vinodchandran, and Kuldeep S. Meel . . . . . . . . . . . . . . . . . 34:1–34:6

Approximate Circular Pattern Matching
Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski,
Solon P. Pissis, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba . . . . . . . . . . . . . . 35:1–35:19

Multi-Dimensional Stable Roommates in 2-Dimensional Euclidean Space
Jiehua Chen and Sanjukta Roy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36:1–36:16

Spanner Approximations in Practice
Markus Chimani and Finn Stutzenstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37:1–37:15

Determinants from Homomorphisms
Radu Curticapean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38:1–38:7

Conditional Lower Bounds for Dynamic Geometric Measure Problems
Justin Dallant and John Iacono . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39:1–39:17

A Simpler QPTAS for Scheduling Jobs with Precedence Constraints
Syamantak Das and Andreas Wiese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40:1–40:11

A Polynomial-Time Algorithm for 1/3-Approximate Nash Equilibria in Bimatrix
Games

Argyrios Deligkas, Michail Fasoulakis, and Evangelos Markakis . . . . . . . . . . . . . . . . . . 41:1–41:14

Near Optimal Algorithm for Fault Tolerant Distance Oracle and Single Source
Replacement Path Problem

Dipan Dey and Manoj Gupta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42:1–42:18

Fast Computation of Zigzag Persistence
Tamal K. Dey and Tao Hou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43:1–43:15

Turbocharging Heuristics for Weak Coloring Numbers
Alexander Dobler, Manuel Sorge, and Anaïs Villedieu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44:1–44:18

ESA 2022



0:x Contents

A Local Search Algorithm for Large Maximum Weight Independent Set Problems
Yuanyuan Dong, Andrew V. Goldberg, Alexander Noe, Nikos Parotsidis,
Mauricio G.C. Resende, and Quico Spaen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45:1–45:16

SAT Backdoors: Depth Beats Size
Jan Dreier, Sebastian Ordyniak, and Stefan Szeider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46:1–46:18

Finding a Cluster in Incomplete Data
Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider 47:1–47:14

Lyndon Arrays Simplified
Jonas Ellert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48:1–48:14

Learning-Augmented Query Policies for Minimum Spanning Tree with Uncertainty
Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schlöter . . . . . 49:1–49:18

Faster Exponential-Time Approximation Algorithms Using Approximate
Monotone Local Search

Barış Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma 50:1–50:19

Intersection Searching Amid Tetrahedra in 4-Space and Efficient Continuous
Collision Detection

Esther Ezra and Micha Sharir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51:1–51:17

Submodular Maximization Subject to Matroid Intersection on the Fly
Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen . . . . . . . 52:1–52:14

There and Back Again: On Applying Data Reduction Rules by Undoing Others
Aleksander Figiel, Vincent Froese, André Nichterlein, and Rolf Niedermeier . . . . . . 53:1–53:15

Improved Search of Relevant Points for Nearest-Neighbor Classification
Alejandro Flores-Velazco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54:1–54:10

Longest Cycle Above Erdős–Gallai Bound
Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov . . . . . . . . . . 55:1–55:15

Improved Polynomial-Time Approximations for Clustering with Minimum Sum
of Radii or Diameters

Zachary Friggstad and Mahya Jamshidian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56:1–56:14

Simple Worst-Case Optimal Adaptive Prefix-Free Coding
Travis Gagie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57:1–57:5

Taming Graphs with No Large Creatures and Skinny Ladders
Jakub Gajarský, Lars Jaffke, Paloma T. Lima, Jana Novotná, Marcin Pilipczuk,
Paweł Rzążewski, and Uéverton S. Souza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58:1–58:8

Faster Path Queries in Colored Trees via Sparse Matrix Multiplication and
Min-Plus Product

Younan Gao and Meng He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59:1–59:15

Computing the 4-Edge-Connected Components of a Graph: An Experimental
Study

Loukas Georgiadis, Giuseppe F. Italiano, and Evangelos Kosinas . . . . . . . . . . . . . . . . . 60:1–60:16

Algorithmic Meta-Theorems for Combinatorial Reconfiguration Revisited
Tatsuya Gima, Takehiro Ito, Yasuaki Kobayashi, and Yota Otachi . . . . . . . . . . . . . . . . 61:1–61:15



Contents 0:xi

Efficient Recognition of Subgraphs of Planar Cubic Bridgeless Graphs
Miriam Goetze, Paul Jungeblut, and Torsten Ueckerdt . . . . . . . . . . . . . . . . . . . . . . . . . . . 62:1–62:14

Adaptive-Adversary-Robust Algorithms via Small Copy Tree Embeddings
Bernhard Haepler, D. Ellis Hershkowitz, and Goran Zuzic . . . . . . . . . . . . . . . . . . . . . . . 63:1–63:14

Hedonic Games and Treewidth Revisited
Tesshu Hanaka and Michael Lampis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64:1–64:16

Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs
Monika Henzinger, Ami Paz, and A. R. Sricharan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65:1–65:14

O(1) Steiner Point Removal in Series-Parallel Graphs
D. Ellis Hershkowitz and Jason Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66:1–66:17

Chromatic k-Nearest Neighbor Queries
Thijs van der Horst, Maarten Löffler, and Frank Staals . . . . . . . . . . . . . . . . . . . . . . . . . . 67:1–67:14

Maximum Weight b-Matchings in Random-Order Streams
Chien-Chung Huang and François Sellier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68:1–68:14

Embedding Phylogenetic Trees in Networks of Low Treewidth
Leo van Iersel, Mark Jones, and Mathias Weller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69:1–69:14

Vertex Sparsifiers for Hyperedge Connectivity
Han Jiang, Shang-En Huang, Thatchaphol Saranurak, and Tian Zhang . . . . . . . . . . . 70:1–70:13

Approximation Algorithms for Round-UFP and Round-SAP
Debajyoti Kar, Arindam Khan, and Andreas Wiese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71:1–71:19

Optimizing Safe Flow Decompositions in DAGs
Shahbaz Khan and Alexandru I. Tomescu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72:1–72:17

Scheduling Kernels via Configuration LP
Dušan Knop and Martin Koutecký . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73:1–73:15

Abstract Morphing Using the Hausdorff Distance and Voronoi Diagrams
Lex de Kogel, Marc van Kreveld, and Jordi L. Vermeulen . . . . . . . . . . . . . . . . . . . . . . . . 74:1–74:16

Average Sensitivity of the Knapsack Problem
Soh Kumabe and Yuichi Yoshida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75:1–75:14

Cardinality Estimation Using Gumbel Distribution
Aleksander Łukasiewicz and Przemysław Uznański . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76:1–76:13

(In-)Approximability Results for Interval, Resource Restricted, and Low Rank
Scheduling

Marten Maack, Simon Pukrop, and Anna Rodriguez Rasmussen . . . . . . . . . . . . . . . . . . 77:1–77:13

Localized Geometric Moves to Compute Hyperbolic Structures on Triangulated
3-Manifolds

Clément Maria and Owen Rouillé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78:1–78:13

Computing Treedepth in Polynomial Space and Linear FPT Time
Wojciech Nadara, Michał Pilipczuk, and Marcin Smulewicz . . . . . . . . . . . . . . . . . . . . . . . 79:1–79:14

The Pareto Cover Problem
Bento Natura, Meike Neuwohner, and Stefan Weltge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80:1–80:12

ESA 2022



0:xii Contents

A Unified Framework for Hopsets
Ofer Neiman and Idan Shabat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81:1–81:13

Data Structures for Node Connectivity Queries
Zeev Nutov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82:1–82:12

Improved Bounds for Online Balanced Graph Re-Partitioning
Rajmohan Rajaraman and Omer Wasim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83:1–83:15

An Empirical Evaluation of k-Means Coresets
Chris Schwiegelshohn and Omar Ali Sheikh-Omar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84:1–84:17

An Improved Algorithm for Finding the Shortest Synchronizing Words
Marek Szykuła and Adam Zyzik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85:1–85:15

Fast RSK Correspondence by Doubling Search
Alexander Tiskin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86:1–86:10

Insertion Time of Random Walk Cuckoo Hashing below the Peeling Threshold
Stefan Walzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87:1–87:11

ParGeo: A Library for Parallel Computational Geometry
Yiqiu Wang, Rahul Yesantharao, Shangdi Yu, Laxman Dhulipala,
Yan Gu, and Julian Shun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88:1–88:19

Combining Predicted and Live Traffic with Time-Dependent A* Potentials
Nils Werner and Tim Zeitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89:1–89:15

Approximating Dynamic Time Warping Distance
Between Run-Length Encoded Strings

Zoe Xi and William Kuszmaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90:1–90:19

Correlated Stochastic Knapsack with a Submodular Objective
Sheng Yang, Samir Khuller, Sunav Choudhary, Subrata Mitra, and Kanak Mahadik 91:1–91:14

Faster Algorithm for Unique (k, 2)-CSP
Or Zamir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92:1–92:13



Preface

This volume contains the extended abstracts selected for presentation at ESA 2022, the
30th European Symposium on Algorithms. The event was organized by the Hasso Plattner
Institute, Potsdam, Germany, as a part of ALGO 2022, on September 5–7, 2022.

The scope of ESA includes original, high-quality, theoretical and applied research on
algorithms and data structures. Since 2002, it has had two tracks: the Design and Analysis
Track (Track A), intended for papers on the design and mathematical analysis of algorithms,
and the Engineering and Applications Track (Track B), for submissions that also address
real-world applications, engineering, and experimental analysis of algorithms. A new track,
S for Simplicity, was added this year, inviting contributions that simplify algorithmic results.
We find that simpler algorithms are easier to implement, bridging the gap between theory
and practice, and we find that new simple or elegant proofs are easier to understand and to
teach, and may contain interesting new insights whose relevance only the future will reveal.

In response to the call for papers for ESA 2022, 300 papers were submitted, 214 for Track
A, 46 for Track B, and 40 for Track S. Paper selection was based on originality, technical
quality, exposition quality, and relevance. Each paper received at least three reviews. The
program committees selected 92 papers for inclusion in the program: 68 from Track A, 14
from Track B, and 10 for Track S, yielding an overall acceptance rate of about 30%. The
presentations of the accepted papers, together with two invited talks by Virginia Vassilevska
(MIT) and Simon Puglisi (U. Helsinki), promise to make up a very exciting program.

The European Association for Theoretical Computer Science (EATCS) sponsored best
paper and best student paper awards. A submission was eligible for the best student paper
award if all authors were doctoral, master, or bachelor students at the time of submission.
For track A, the best paper award was given to Stefan Walzer for the paper Insertion Time
of Random Walk Cuckoo Hashing below the Peeling Threshold, and the best student paper
award to Zoe Xi and William Kuszmaul for the paper Approximating Dynamic Time Warping
Distance Between Run-Length Encoded Strings. For track B, the best paper award was given
to Chris Schwiegelshohn and Omar Ali Sheikh-Omar for the paper An Empirical Evaluation
of k-Means Coresets, and the best student paper award to Tim Zeitz and Nils Werner for
the paper Combining Predicted and Live Traffic with Time-Dependent A* Potentials. The
best paper award for track S was given to Alejandro Flores-Velazco for the paper Improved
Search of Relevant Points for Nearest-Neighbor Classification—this was also the best student
paper for this track.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the program committees for their hard work, and the nearly 500
external reviewers who assisted the program committees in the evaluation process. Special
thanks go to the organizing committee, who helped us with the organization of the conference.

Information on past ESA symposia, including locations and proceedings, is maintained at
http://esa-symposium.org.
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Abstract

The question to enumerate all (inclusion-wise) minimal connected dominating sets in a graph of
order n in time significantly less than 2n is an open question that was asked in many places. We answer
this question affirmatively, by providing an enumeration algorithm that runs in time O(1.9896n),
using polynomial space only. The key to this result is the consideration of this enumeration problem
on 2-degenerate graphs, which is proven to be possible in time O(1.9767n). Apart from solving this
old open question, we also show new lower bound results. More precisely, we construct a family
of graphs of order n with Ω(1.4890n) many minimal connected dominating sets, while previous
examples achieved Ω(1.4422n). Our example happens to yield 4-degenerate graphs. Additionally,
we give lower bounds for the previously not considered classes of 2-degenerate and of 3-degenerate
graphs, which are Ω(1.3195n) and Ω(1.4723n), respectively.

We also address essential questions concerning output-sensitive enumeration. Namely, we
give reasons why our algorithm cannot be turned into an enumeration algorithm that guarantees
polynomial delay without much efforts. More precisely, we prove that it is NP-complete to decide,
given a graph G and a vertex set U , if there exists a minimal connected dominating set D with U ⊆ D,
even if G is known to be 2-degenerate. Our reduction also shows that even any subexponential delay
is not easy to achieve for enumerating minimal connected dominating sets. Another reduction shows
that no FPT-algorithms can be expected for this extension problem concerning minimal connected
dominating sets, parameterized by |U |. This also adds one more problem to the still rather few
natural parameterized problems that are complete for the class W[3]. We also relate our enumeration
problem to the famous open Hitting Set Transversal problem, which can be phrased in our
context as the question to enumerate all minimal dominating sets of a graph with polynomial delay
by showing that a polynomial-delay enumeration algorithm for minimal connected dominating sets
implies an affirmative algorithmic solution to the Hitting Set Transversal problem.
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1:2 Enumerating Minimal Connected Dominating Sets

1 Introduction

The enumeration of objects that satisfy a given property has applications in many scientific
domains including biology and artificial intelligence. Enumeration can also be used as part
of an exact algorithm, e.g., confer the algorithm by Lawler [27] to compute a coloring of an
input graph using a minimum number of colors. The dynamic programming scheme used by
this algorithm needs all the maximal independent sets of the input graph. It is worth noting
that the running time depends mainly on a bound on the number of maximal independent
sets as well as on the running time of an algorithm that would produce all these sets.

Clearly, the number of outputs of an enumeration algorithm can be exponential in the
size of the given input. It is the case for the number of maximal independent sets: there are
graphs with 3n/3 such sets [30], where n is the number of vertices in the graph. The running
time of enumeration algorithms can either be measured with respect to the size of the input
plus the size of the outputted set of objects, which is called output-sensitive analysis, or it
can be measured according to the size of the input only, being called input-sensitive analysis.
In the latter, the running time upper bound often implies an upper bound on the number of
enumerated objects, i.e., the maximum number of objects that can fulfill the given property.

Given a graph G = (V, E), the problem of computing a minimum dominating set asks
for a smallest-cardinality subset S ⊆ V such that each vertex not in S has at least one
neighbor in S. This well studied NP-hard problem attracted considerable attention for
decades. Several exponential-time algorithms have been designed to solve the problem
exactly, and the most recent are based on Measure-and-Conquer techniques to analyze their
running times [15,24,31]. The problem of enumerating all inclusion-minimal dominating sets
has also caught attention for general graphs as well as for special graph classes [10,16,19].

Many variants of the dominating set problem have also gained attention [22]. In particular,
the minimum connected dominating set problem requires that the graph induced by S is
connected. The problem has attracted great attention and various methods have been devised
to solve it exactly [3,14]. A more challenging question has been posed about the enumeration
of inclusion-minimal connected dominating sets. Already designing an algorithm faster than
poly(n)2n is known to be challenging, and this specific question has been asked several
times as an open problem [6, 13, 20]. A recent result by Lokshtanov et al. [29] shows that
minimal connected dominating sets can be enumerated in time 2(1−ϵ)n · nO(1), which broke
the 2n-barrier for the first time. It is worth noting that ϵ is a tiny constant, around 10−50,
and it has remained open whether an algorithm exists that can substantially break the
2n-barrier. The enumeration of minimal connected dominating sets also received notable
interest when the input is restricted to special graph classes [20,21,32,33,34].

On the other hand, the maximum number of minimal CDS in a graph was shown to
be in Ω(3 n

3 ) [20], which is obviously very low compared to the currently best upper bound.
This gap between upper and lower bounds is narrower when it comes to special graph
classes. On chordal graphs, for example, the upper bound has been recently improved
to O(1.4736n) [21]. Other improved lower/upper bounds have been obtained for AT-free,
strongly chordal, distance-hereditary graphs, and cographs in [20]. Further improved bounds
for split graphs, cobipartite and convex bipartite graphs have been obtained in [34] and [33].
Moreover, although the optimization problem seems simpler, the best-known exact algorithm
solves the problem in time O(1.8619n) [3]. This is already much larger than the best-known
lower bounds of 3(n−2)/3 [20] to enumerate all minimal connected dominated sets.

In this paper, we show that the enumeration of all inclusion-wise minimal connected
dominating sets can be achieved in time O(1.9896n). Surprisingly, achieving this improvement
was simply based on first considering the same enumeration on 2-degenerate graphs and
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proving it to be possible in time O(1.9767n). Achieving enumeration with polynomial delay
is believed to be hard, since it would also lead to the same for the enumeration of minimal
dominating sets, which has been open for several decades. We give further evidence of this
(possible) hardness by showing that extending a subset of vertices into a minimal connected
dominating set is NP-complete and also hard in a natural parameterized setting. Furthermore,
we narrow the gap between upper and lower bounds by showing that the maximum number of
minimal connected dominating sets in a graph is in Ω(1.4890n), thus improving the previous
lower bound of Ω(1.4422n). Our construction yields new lower bounds on several special
graph classes such as 3-degenerate planar bipartite graphs. For space restrictions, most
proofs are either omitted or reduced to proof sketches; full proofs can be found in the long
version of this paper [1].

2 Definitions, Preliminaries and Summary of Main Results

In this paper, we deal with undirected simple finite graphs that can be specified as G = (V, E),
where V is the finite vertex set and E ⊆

(
V
2
)

is the set of edges. The number of vertices |V |
is also called the order of graph G and is denoted by n. An edge {u, v} is usually written as
uv. Alternatively, E can be viewed as a symmetric binary relation, so that E∗ is then the
transitive closure of E, which is an equivalence relation whose equivalence classes are also
known as connected components. A graph is called connected if it has only one connected
component. A graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ E; G′ is a
partial graph of G if V = V ′. A set of vertices S induces the subgraph G[S] = (S, ES), where
ES = {uv ∈ E | u, v ∈ S}; S is called connected if G[S] is connected. For a vertex v ∈ V ,
NG(v) = {u ∈ V | uv ∈ E} is the open neighborhood of v, collecting the vertices adjacent
to v; its cardinality |NG(v)| is also called the degree of v, denoted as degG(v). We denote the
closed neighborhood of v by NG[v] = NG(v) ∪ {v}. We can extend set-valued functions to set
arguments; for instance, NG[S] =

⋃
v∈S NG[v] for a set of vertices S; S is a dominating set if

NG[S] = V . Whenever clear from context, we may drop the subscript G from our notation.
If X ⊆ V , we also write NX(v) instead of N(v) ∩ X and degX(v) for |N(v) ∩ X|. For brevity,
we write CDS for connected dominating set. Next, we collect some observations.

▶ Observation 1. If S is a CDS of a partial graph G′ of G, then S is a CDS of G.

Proof. We can think of G = (V, E) as being obtained from G′ by adding edges. Hence, if
NG′ [S] = V , then NG[S] = V . Moreover, adding edges cannot violate connectivity. ◀

▶ Corollary 2.1. Let S be a CDS both of G and of a partial graph G′ of G. If S is a minimal
CDS of G, then it is a minimal CDS of G′.

A graph G = (V, E) is d-degenerate if there exists an elimination ordering (v1, . . . , vn),
where V = {v1, . . . , vn}, such that, for all i = 1, . . . , n, degG[{vi,...,vn}](vi) ≤ d. In other
words, we can subsequently delete v1, v2, . . . from G, and at the time when vi is deleted,
it has degree bounded by d in the remaining graph. The decision problem Connected
Dominating Set Extension expects as inputs a graph G = (V, E) and a vertex set U , and
the question is if there exists a minimal CDS S that extends U , i.e., for which S ⊇ U holds.

In the next section, we develop a branching algorithm. It is classical to analyze its
running-time by solving recurrences of type T (µ(I)) =

∑t
i=1 T (µ(I) − ri). Here, µ(I) is a

measure on the size of the instance. The value t is the number of recursive calls (t is equal
to 1 for reduction rules) and each ri is (a lower bound on) the reduction of the measure
corresponding to the recursive call. We simply denote by (r1, r2, . . . , rt) the branching vector
of the recurrence. We refer to the book by Fomin and Kratsch for further details on this
standard analysis [17].
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As discussed in the introduction, we shall first prove that all minimal CDS can be
enumerated in time O(1.9767n) on 2-degenerate graphs. This result is the key to our
enumeration result for general graphs. This is why we will first present the corresponding
branching enumeration algorithm for 2-degenerate graphs in a simplified form and analyze it
with a rather simple measure in order to explain its main ingredients, and only thereafter,
we turn towards a refined analysis that finally leads to the claimed enumeration result on
general graphs. We shall prove that our input-sensitive enumeration algorithm cannot be
turned into an enumeration algorithm with polynomial delay by simply interleaving the
branching with tests for extendibility. For possible applications of such extension algorithms,
we refer to the discussions in [7].

3 A CDS enumeration algorithm for 2-degenerate graphs

We are going to present an algorithm that enumerates all inclusion-wise minimal connected
dominating sets (CDS) of a 2-degenerate graph G = (V, E). Based on G, in the course of
our algorithm, an instance is specified by I = (V ′; Od, On; S) , consisting of four vertex sets
that partition V . In the beginning, I = (V ; ∅; ∅; ∅). In general, V ′ collects the vertices not
yet decided by branching or reduction rules, O := Od ∪ On are the vertices that have been
decided not to be put into the solution, while S is the set of vertices decided to go into the
solution that is constructed by the branching algorithm. The set O is further refined into On,
the set of vertices that are not yet dominated, i.e., if x ∈ On, then degS(x) = 0, and Od,
the set of vertices that are already dominated, i.e., if x ∈ Od, then degS(x) > 0. Similarly,
we will sometimes refine V ′ = V ′

d ∪ V ′
n. Notice that also vertices known to be dominated

could be still put in the dominating set, either to dominate other vertices or for connectivity
purposes. In the leaves of the branching tree, only instances of the form (∅, Od, ∅, S) are of
interest. Yet, before outputting S as a solution, one has to check if S is connected and if it
does not contain a smaller CDS.

The algorithm actually starts by creating n different branches, in each a single vertex is
put in S as a starting point, so that S is never empty. More precisely, the nth branch would
decide not to put the previously considered n − 1 vertices into the solution but the nth one
is put into S. This binary branching avoids generating solutions twice. Also, it is trivial to
check in each branch if the selected vertex already dominates the whole graph, so that we
can henceforth assume that G cannot be dominated by a single vertex.

We denote by c the number of connected components of G[S]. Now, we are ready to
define the measure that we use to analyze the running time of our algorithm, following a
very simple version of the measure-and-conquer -paradigm, as explained in [15,17],

µ(I) = |V ′| + α · |On| + δ · c .

We decide that 0 < α, δ < 1, but we will determine the concrete values later as to
minimize the upper-bound on the running-time. At the beginning, V ′ = V , On = ∅ and
c = 0, so that then the measure equals |V |. At the end, V ′ = On = ∅ and the measure
equals δ if the solution is connected and is bigger than δ if the solution is not connected.

For the possible branchings, we only consider vertices in a partial graph G′ of G[V ′ ∪ On].
As G is 2-degenerate, G′ is also 2-degenerate, so that we can always find a vertex of degree
at most two in G′. Some of our branchings apply to vertices of arbitrary degree, though; in
such a situation, we denote the vertex that we branch on as x. If we branch on a small-degree
vertex (due to 2-degeneracy), this vertex is called u. Clearly, a binary branch that puts a
selected vertex either into S or into O is a complete case distinction.
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x

y

· · ·

(a) x ∈ V ′
d has neighbors in On.

xS1 S2

· · ·

(b) Vertices from two different connected components
S1, S2 of G[S] dominate x in G.

Figure 1 Simple branchings for dominated vertices: Rules 1 and 2.

We are now explaining the conventions that we follow in our illustrations of subgraphs
of G′. Vertices in V ′ are depicted by and more specifically by if in V ′

n or by if
in V ′

d . We use black squares to depict vertices which are already decided to belong to
the solution S. We use for vertices from On. So, circles are used for undecided vertices
(these vertices might still be added to S), whereas squares are used for vertices being already
decided (to belong to the solution or to be discarded). Vertices in V ′ ∪ O are depicted as
half-filled diamonds , and if the vertex is from V ′

n ∪ On, then we use an unfilled diamond
to represent it. A dashed line indicates an edge that may be present. It should be clear that
one could always move to the graph where vertices in S that belong to the same connected
component in G[S] are merged. In order to avoid drawing too many vertices from S in our
pictures, we assume these mergings to have been performed. Hence, when we draw two
vertices from S, they belong to different connected components.

In the following, the branching and reduction rules require to be executed in order, so
that our instance will (automatically) satisfy some structural properties when we apply one
of the later rules. We can separate our branching and reduction rules into three parts:

A first set of rules (Branching Rules 1, 2, 3, 4, Reduction Rules 1, 2, 3, 5) that deals with
vertices of arbitrary degree that are (possibly) dominated, but only in some special cases,
as detailed later. Those rules are applied first, so that whenever we apply a rule from
the next two sets, we know that any dominated vertex is dominated by vertices from
exactly one connected component of G[S] and none of the vertices in its neighborhood
are dominated. This means that the set of vertices V ′

d as well as the set of vertices On

forms an independent set in G′, a partial graph of G[V ′ ∪ On].
A second set of rules (Branching Rules 5, 6, Reduction Rule 4) that handles the cases
where the small-degree vertex that exists by the 2-degeneracy is undominated. If we
apply a rule from the third set, every undominated vertex is of degree at least 3.
The last set of rules (Branching Rules 7, 8, 9, 10) handles only the cases where the
small-degree vertex that exists by the 2-degeneracy is dominated.

Note that even inside those three sets, rules have to be executed in the given order.

▶ Branching Rule 1. Let x ∈ V ′
d with degOn

(x) ≥ 1 (Figure 1a). Then branch as follows.
(1) Put x in Od. (2) Put x in S and every vertex in NOn

(x) in Od.

▶ Lemma 3.1. The branching of rule 1 is a complete case distinction. Moreover, it leads to
a branching vector that is not worse than (1, 1 + α) .

Proof. As degS(x) ≥ 1, we find that, if x is not put into the solution, then it is put into Od,
which decreases the measure by 1 in the first component of the branching vector. If x is put
into the solution, then its neighbors are dominated and we decrease the measure by at least
1 + α in the second component of the branching vector, as degOn

(x) ≥ 1. ◀
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xyz

· · · · · ·

(a) A vertex from On in the second neigh-
borhood of x ∈ V ′

d gives still an advantage.

x ySx Sy

· · · · · ·

(b) NS(x) belongs to the same connected component Sx

of G[S], and so does NS(y) belong to Sy, but Sx ̸= Sy.

Figure 2 Branching Rules 3 and 4.

x

y

S

· · ·

· · ·

(a) x, y ∈ V ′
d are dominated by the

same connected component S in G[S].

x

y

(b) Two
neighbors
x, y ∈ On

get apart.

x

· · ·

(c) x ∈ V ′
n is

fully encircled
by O.

x

y

· · ·

(d) There is only one way
to dominate vertex x.

Figure 3 Illustrating Reduction Rules 1, 3, 4 and 5.

We will have similar lemmas for each of the branching rules; we will summarize them at
the end of this section instead of formulating them separately and point to the long version
of the paper.
▶ Branching Rule 2. Let x ∈ V ′

d such that x is adjacent to two different connected components
of G[S]; see Figure 1b. Then branch as follows. (1) Put x in Od. (2) Put x in S.

We are now presenting two branching rules that could be viewed as variations of the first
two; they always give worse branchings.
▶ Branching Rule 3. Let x ∈ V ′

d , y ∈ NV ′
n
(x), z ∈ NOn

(y) (Figure 2a). Then branch as follows.
(1) Put x in Od. (2) Put x in S, y in Od. (3) Put x, y in S and thus z ∈ Od.

▶ Branching Rule 4. Let x, y ∈ V ′
d , xy ∈ E, such that z ∈ {x, y} is adjacent to a connected

component Sz of G[S], with Sx ̸= Sy, see Figure 2b. Then branch as follows. (1) Put x

in Od. (2) Put x in S and y in Od. (3) Put x in S and y in S.
Notice that in the last branch, the number of connected components decreases.
▶ Reduction Rule 1. If x, y ∈ V ′

d and xy ∈ E, then delete the edge xy; see Figure 3a.

▶ Lemma 3.2. Reduction Rule 1 is sound and the measure does not change.

Proof. Let M be a minimal CDS of G such that M \ V ′ = S. Define e = xy and G̃ =
(V, E \ {e}). Now we want to show that M is also a minimal CDS in G̃. Since x and y are
already dominated by S, the deletion of the edge e would not affect domination, nor could x

ever be the private neighbor of y or vice versa. The connectivity is only important if x, y ∈ M .
Vertices x, y are dominated by the same connected component of S, as otherwise Branching
Rule 4 would have applied with priority. Hence, there exists a path p = (x, p1, . . . , pl, y),
with internal vertices in S. Let q = (q1, . . . , qk) be a path in G[M ] such that there exists an
i ∈ {1, . . . , k − 1} with qi = x and qi+1 = y. Then q̃ = (q1, . . . , qi, p1, . . . , pl, qi+1, . . . , qk) is a
walk in G̃[M ]. Thus, G̃[M ] is connected and M is a CDS of G̃. As G̃ is a partial graph, M

is also a minimal CDS of G̃ by Corollary 2.1. ◀
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u

v1 v2

(a) Branching if u ∈ V ′
n has two

neighbors in V ′ and none in On.

u

v1 v2

(b) A similar rule for u ∈ On.

u v

· · ·

(c) We branch on u and on v if
u ∈ S. Note: degV ′∪On

(v) ≥ 3
by Observation 2.

Figure 4 Branching Rules 5, 6 and 7.

We can formulate and prove similar lemmas for the following reduction rules, as well. We
will summarize this in one single lemma below instead.
▶ Reduction Rule 2. If x is an isolated vertex in G[V ′ ∪ On], do the following:

If x is dominated, put x into Od.
If x is not dominated, skip this branch. (This will always happen if x ∈ On.)

▶ Reduction Rule 3. Let x, y ∈ On be with xy ∈ E; see Figure 3b. We delete the edge xy.
▶ Reduction Rule 4. If x ∈ V ′

n obeys N(x) ∩ V ′ = ∅, then skip this branch (Figure 3c).
The next rule will even decrease the measure by at least 1 − δ.
▶ Reduction Rule 5. Let x ∈ V ′

n ∪ On, with NV ′(x) = {y}. Then, put y into S.
▶ Branching Rule 5. Let u ∈ V ′

n with degV ′(u) = 2, degOn
(u) = 0 and NV ′(u) = {v1, v2};

see Figure 4a. Then branch as follows. (1) Put u in Od, v1 in S. (2) Put u in Od, v1 in O,
v2 in S. (3) Put u in S, v1 in S. (4) Put u in S, v1 in Od, v2 in S.
More precisely, in the second branch, we put v1 into Od if v1v2 ∈ E or if v1 was already
dominated and we put v1 into On, otherwise. The same is done in the Branching Rules 6, 7,
8, 9 and 10, as it can be decided whether the vertex goes into On or into Od.
▶ Branching Rule 6. Let u ∈ On with NV ′(u) = {v1, v2} (Figure 4a). Then branch as follows.
(1) Put v1 in S, and thus u in Od. (2) Put v1 in O, v2 in S, and thus u in Od.

▶ Observation 2. For each rule below, as it is applied in particular after Branching Rule 5
and Reduction Rule 5, we observe: for any vertex v ∈ V ′

n ∪ On, we have degV ′∪On
(v) ≥ 3.

▶ Branching Rule 7. Let u ∈ V ′
d with NV ′

n
(u) = {v} and degOn

(v) = 0; see Figure 4c. Then
branch as follows. (1) Put u in Od. (2) Put u in S and v in Od and thus all the vertices of
NV ′(v) \ {u} in O. (3) Put u in S and v in S.
▶ Branching Rule 8. Let u ∈ V ′

d , with NV ′(u) = {v1, v2} and degOn
(u) = 0 (Figure 5a). If

NV ′(v1) ∩ NV ′(v2) contains a vertex y ∈ V ′ different from u, then branch as follows. (1) Put
u in Od. (2) Put u in S, v1 in S. (3) Put u in S, v1 in Od, v2 in S. (4) Put u in S, v1 in Od,
v2 in Od and thus y in O.

▶ Branching Rule 9. Let u ∈ V ′
d , NV ′

n
(u) = {v1, v2}, NV ′

d
(u) = NOn

(u) = ∅ and NV ′(v1) \
{u, v2} = {y}; see Figure 5b. Then branch as follows. (1) Put u in Od. (2) Put u in S, v1
in S. (3) Put u in S, v1 in Od, v2 in S. (4) Put u in S, v1 in Od, v2 in Od and y in O.
(5) Put u in S, v1 in Od, v2 in Od and y in S and thus the vertices of NV ′(v2) \ {u, v1} in O.

▶ Branching Rule 10. (Figure 5c) Let u ∈ V ′
d , NV ′

n
(u) = {v1, v2}, NV ′

d
(u) = NOn

(u) = ∅,
such that |NV ′(v1) \ {u, v2}| ≥ 2, as well as |NV ′(v2) \ {u, v1}| ≥ 2. Then branch as follows.
(1) Put u in Od. (2) Put u in S, v1 in S. (3) Put u in S, v1 in Od, v2 in S. (4) Put u in S,
v1 in Od, v2 in Od and all of NV ′(v1) \ {u, v2} in O. (5) Put u in S, v1 in Od, v2 in Od and
all of NV ′(v2) \ {u, v1} in O.
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u

v1 v2

y
· · · · · ·

(a) Possibly adjacent v1, v2
have ≥ 2 common neighbors.

u

v1 v2

y · · ·

(b) v1 of adjacent v1, v2 has
only one more V ′-neighbor: y.

u

v1 v2

· · ·· · ·

(c) When v1, v2 have ≥ 2 “outside
neighbors” each for better branching.

Figure 5 Branching Rules 8, 9 and 10.

The next and final rule will never be applied when this algorithm is applied to a
2−degenerate graph. It rather prepares the ground for the general case. However, with our
current measure, this would yield an O(2n) algorithm in the general case. With a modified
measure, as described in the next section, we will achieve a better running time.

▶ Branching Rule 11. Let x ∈ V ′
d . Then we branch as follows. (1) Put x in Od. (2) Put x

in S and thus the vertices of NV ′(x) in V ′
d .

▶ Lemma 3.3. Each of the mentioned branching rules covers all cases in their described
respective situation. The branching will lead to a branching vector as listed in Table 1.

▶ Lemma 3.4. The mentioned reduction rules are sound and their application never increases
the measure.

A case analysis shows the correctness of our algorithm in the following sense:

▶ Lemma 3.5. The Reduction and Branching Rules cover all possible cases.

Proof. As explained below, Branching Rule 11 serves as a final catch-all. For the 2-degenerate
case, we should focus on all other rules and prove that they cover all cases. This means that
we have to show that the proposed algorithm will resolve each 2-degenerate graph completely.
Our rule priorities might remove vertices of arbitrary degree from the graph G′ that is a
partial graph of the graph G[V ′ ∪ On]. This way, we again arrive at a 2-degenerate graph.
Yet, what is important for dealing with 2-degenerate graphs is to consider all cases of a
vertex u of degree at most 2. The degree conditions in the following case distinction refer
to G′. Degree-0 vertices are treated with Reduction Rule 2. We now discuss vertices u of
degrees one or two. There are two different cases: either u is in V ′

n ∪ On, or u ∈ V ′
d .

Case 1: u is not dominated by S. Now we discuss its degree in G′, either it is 1 or it is 2.
Case 1.1: deg(u) = 1 and we denote by v the neighbor in G′ of u. If v ∈ On, then either u is

in On and then satisfies the conditions of Reduction Rule 3, or it is in Vn and thus satisfies
the conditions of Reduction Rule 4. If v /∈ On, v satisfies the conditions of Reduction
Rule 5.

Case 1.2: deg(u) = 2. Now we discuss the number of neighbors of u in On. If both neighbors
are in On, Reduction Rule 4 applies if u ∈ V ′

n and Reduction Rule 3 applies otherwise. If
only one neighbor of u is in On, then this means that if u ∈ On Reduction Rule 3 applies,
and otherwise Reduction Rule 5 applies. If none of the neighbors are in On, then either
u ∈ V ′

n and then Branching Rule 5 applies, or otherwise u ∈ On and thus Branching
Rule 6 applies.

Case 2: u is dominated by S.
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Table 1 Collection of all branching vectors for the 2-degenerate case; the branching numbers are
displayed for the different cases with α = 0.106 and δ = 0.106.

Branching Rule # Branching vector Branching number
1 (1, 1 + α) always better than 3
2 (1, 1 + δ) always better than 4
3 (1, 2, 2 + α) < 1.9766
4 (1, 2, 2 + δ) < 1.9766
5 (2 − δ, 3 − δ − α, 2 − δ, 3 − δ) < 1.8269
6 (1 + α − δ, 2 − δ) < 1.6420
7 (1, 4 − 2α, 2) < 1.7691
8 (1, 2, 3, 4 − α) < 1.9333
9 (1, 2, 3, 4 − α, 5 − δ − α) < 1.9767
10 (1, 2, 3, 5 − 2α, 5 − 2α) < 1.9420
11 (β, 3 − 2β) where β = 1 = 2 not for 2-degenerate graphs

Case 2.1: deg(u) = 1. We denote by v the neighbor in G′ of u. If v is dominated by S then
Reduction Rule 1 applies. If v is not dominated by S, then either it has no neighbors
in On and then Branching Rule 7 applies, or it has at least one neighbor in On and
Branching Rule 3 applies.

Case 2.2: deg(u) = 2. We denote {v1, v2} = NV ′(u). If either v1 or v2 is dominated, then
Reduction Rule 1 applies. If both of them are not dominated by S, either they have at
least one neighbor in On and then Branching Rule 3 applies or they do not have any
neighbor in On. So we know that degV ′(v1) ≥ 3, and degV ′(v2) ≥ 3, otherwise we could
apply one of the rules of the previous case to v1 or v2. Now, either v1 and v2 have a
common neighbor outside of u and Branching Rule 8 applies, or they do not and then
either at least one of them has exactly one neighbor that is not u or v1 (or v2, respectively)
and Branching Rule 9 applies, or they both have at least two neighbors outside of u, v1
and v2, so that Branching Rule 10 applies.

We finally have to prove the correctness of the algorithm for a general graph. If any
vertex satisfies the conditions of any Branching or Reduction Rule apart from Branching
Rule 11, then we apply such a rule, otherwise no such rule applies, which means that the
minimum degree of G′[V ′ ∪ On] is 3. If at least one vertex is in Vd, then we can apply
Branching Rule 11. Assume it is not the case, that means Vd is empty, so every vertex of
V ′ ∪ On is not dominated (and it is not empty, otherwise the algorithm would have ended).
Since in the beginning, S was not empty, S is never empty. Moreover, at any point in the
algorithm, N(S) = Vd ∪ Od. So in our case, we have N(S) = Od. This means that S is not a
dominating set (there are vertices in Vn ∪ On) and S cannot have any neighbor added, so
there is no CDS M ⊂ V such that M \ V ′ = S. This branch has to be discarded. ◀

▶ Theorem 3.6. Connected Dominating Set Enumeration can be solved in time
O(1.9767n) on 2-degenerate graphs of order n, using polynomial space only. The claimed
branching number is attained by setting α = 0.106 and δ = 0.106; see Table 1.

▶ Corollary 3.7. 2-degenerate graphs have no more than O(1.9767n) minimal CDS.

▶ Remark 3.8. We could deduce a corresponding CDS enumeration result for subcubic graphs,
as they can be dealt with as 2-degenerate graphs after the initial branching. There is a clear
indication that the bound that we derive in this way is not tight. Namely, Kangas et al.
have shown in [25] that there are no more than 1.9351n many connected sets of vertices in a
subcubic graph of order n.
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4 Getting β into the game: the general case

As indicated above, we are now refining the previous analysis by splitting the set of vertices
of the currently considered graph further. More precisely, the set of vertices V ′ that have not
been decided to come into or to be out of the solution S is split into the set of vertices V ′

n

that is still undominated and the set V ′
d of vertices that is already dominated. From the

viewpoint of the original graph, the neighbors of the solution set S are therefore partitioned
into the sets V ′

d and Od. However, observe that although we do not consider Od anymore in
the present graph, we do care about V ′

d , since V ′
d-vertices can still be either placed into S or

into Od by future branching or reduction rules. This is also reflected in the measure of the
instance I, which is now defined as:

µ(I) = |V ′
n| + α · |On| + β · |V ′

d | + δ · c

We set α = 0.110901, β = 0.984405 and δ = 0.143516. We are next working through
the branching rules one by one, as in particular the branching vectors will now split off into
different cases, as in our preliminary analysis, we only took care of the worst cases, not
differentiating between V ′

n or V ′
d (which was summarized under the set name V ′ before).

For the convenience of the reader, we repeat the formulation of the branching rules in the
following, adapting the notations.

We start with a table stating the branching vectors according to this new measure for
some branching rules for which it is straightforward. Branching Rule 3 and Branching Rule 4
are the tight cases in our Measure-and-Conquer analysis.

Rule Branching vector Br. number Rule Branching vector Br. number
# 1 (β, β + α) < 1.9489 # 2 (β, β + δ) < 1.9297
# 3 (β, β + 1, β + 1 + α) < 1.9896 # 4 (β, 2β, 2β + δ) < 1.9896

Branching Rule 5 Let u ∈ V ′
n with degV ′(u) = 2, degOn

(u) = 0 and NV ′(u) = {v1, v2}. The
branching vector is different when v1, v2 ∈ V ′

d or v1, v2 ∈ V ′
n. We will assume v1v2 /∈ E, as

this is always the worst case. A similar analysis applies to Branching Rule 6.

Condition Branching vector for # 5 Br. number Br. vector for # 6 Br. number
v1, v2 ∈ V ′

n (2 − δ, 3 − δ − α, 2 − δ, 3 − δ) < 1.8463 (1 + α − δ, 2 − δ) < 1.6635
v1 ∈ V ′

n, v2 ∈ V ′
d (2 − δ, 2 − α + β, 2 − δ, 2 + β) < 1.8236 (1 + α, 1 + β) < 1.5855

v1, v2 ∈ V ′
d (1 + β, 1 + 2β, 1 + β, 1 + 2β) < 1.7785 (β + α, 2β + α) < 1.5817

Branching Rule 7 We look at u ∈ V ′
d , {v} = V ′

n ∩ N(u) and the neighbors of v; we know that
N(v) contains at least u, v1, v2 /∈ O; differentiating between vi ∈ V ′

n or vi ∈ V ′
d (as before),

we arrive at three cases never leading to a branching number worse than 1.78.
Branching Rule 8 Let u ∈ V ′

d be with degV ′∪On
(u) = 2, such that v1, v2 ∈ NV ′

n
(u) and

NV ′(v1) ∩ NV ′(v2) contains a vertex y ∈ V ′ different from u. We differentiate y ∈ V ′
n or

y ∈ V ′
d and arrive at a branching number not worse than 1.9403.

Branching Rule 9 Let u ∈ V ′
d be with degV ′∪On

(u) = 2, such that v1, v2 ∈ NV ′
n
(u) and

NV ′(v1) \ {u, v2} = {y}. We distinguish y ∈ V ′
n and y ∈ V ′

d ; the first case leads to another
tight-case branching for our algorithm. In the last branch of each vector, min(β, 1 − α)
corresponds to whether z ∈ N(v2) \ {u, v1} belongs to V ′

d or to V ′
n.

Condition Branching vector Branching number
y ∈ V ′

n (β, 1 + β, 2 + β, 3 + β − α, 3 + β − δ + min(β, 1 − α)) < 1.9896
y ∈ V ′

d (β, 1 + β, 2 + β, 2 + 2β, 2 + 2β + min(β, 1 − α)) < 1.9813
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Branching Rule 10 Let u ∈ V ′
d , NV ′

n
(u) = {v1, v2}, NV ′

d
(u) = NOn(u) = ∅. We further

assume that |NV ′(v1) \ {u, v2}| ≥ 2, as well as |NV ′(v2) \ {u, v1}| ≥ 2. The only thing to
discuss here is whether the vertices of NV ′(v1) \ {u, v2} NV ′(v2) \ {u, v1} are in V ′

n or V ′
d .

This leads to nine subcases, which never produce a branching vector worse than 1.9453.
Branching Rule 11 When this branching rule applies, the sets in which the different vertices
reside are all already known: as it is applied after Branching Rule 1 and Branching Rule 4,
all the neighbors of x ∈ V ′

d are in V ′
n, moreover, degV ′

n
(x) = degV ′∪On

(x) ≥ 3, as it is applied
after every other rule. The branching vector (β, 3 − 2β) gives a branching number < 1.9896,
which is the last tight-case branching.

▶ Theorem 4.1. Connected Dominating Set Enumeration can be solved in time
O(1.9896n) on graphs of order n, using polynomial space only.

▶ Corollary 4.2. There are no more than O(1.9896n) many minimal connected dominating
sets in a graph of order n.

5 Achieving polynomial delay is not easy

How could we achieve polynomial delay for enumeration problems? If Connected Domi-
nating Set Extension would be solvable in polynomial time, then we might cut search
tree branches whenever it is clear that no solution is to be expected beyond a certain node
of the search tree, as we can associate to such a node also a set of vertices U that is decided
to go into the solution. For example, it has been recently exemplified with the enumeration
problem of minimal Roman dominating functions in [2] that a polynomial-time algorithm
for the corresponding extension problem can be adapted so that polynomial delay can be
achieved for this type of enumeration problem. However, we can show that Connected
Dominating Set Extension is NP-complete by a reduction from 3-Sat. This means that
new ideas would be needed for showing polynomial delay for enumerating minimal connected
dominating sets.

▶ Theorem 5.1. The Connected Dominating Set Extension problem is NP-complete,
even when restricted to 2-degenerate graphs.

Due to the parsimonious nature of the reduction, we can also conclude the following
result.

▶ Corollary 5.2. Assuming that the Exponential Time Hypothesis1 holds, there is no algorithm
that solves the Connected Dominating Set Extension problem in time O(2o(n)) on
(2-degenerate) graphs of order n.

Hence, even any subexponential delay seems to be hard to achieve.
Furthermore, the Connected Dominating Set Extension with the standard parame-

terization |U |, where U is the given subset of V , is even W[3]-hard on split graphs. To show
this, we need the W[3]-completeness of Hitting Set Extension [4, 5, 7] with standard
parameterization; in this problem, the input consists of a hypergraph (X, S), with S ⊆ 2X ,
and a set U ⊆ X, and the question if there exists a minimal hitting set H (this means that
H ∩ S ̸= ∅ for all S ∈ S) that extends U , i.e., U ⊆ H.

▶ Theorem 5.3. Connected Dominating Set Extension (with standard parameteriza-
tion) is W[3]-hard, even on split graphs.

1 For a discussion of this hypothesis, we refer to [23,28].

ESA 2022



1:12 Enumerating Minimal Connected Dominating Sets

On split graphs, we can also prove W[3]-completeness of Connected Dominating Set
Extension. Few natural parameterized problems are known to be W[3]-complete [4, 5, 7, 8].
There is yet another stroke against hopes for obtaining a polynomial-delay enumeration
algorithm for minimal CDS. Namely, we could see the reduction presented for Theorem 5.3
also as a reduction that proves the following statement, which connects our enumeration
problem to Hitting Set Transversal, a problem notoriously open for decades.

▶ Theorem 5.4. If there was an algorithm for enumerating minimal CDS with polynomial
delay in split graphs, then there would be an algorithm for enumerating minimal hitting sets
in hypergraphs with polynomial delay.

6 Lower bounds

Several attempts to construct lower bound examples are known from the literature, leading
to 3(n−2)/3 ∈ Ω(1.4422n) many minimal connected dominating sets in n-vertex graphs [20,33].
We now present an improved lower bound on the maximum number of minimal connected
dominating sets in a graph. Given arbitrary positive integers k, t, we construct a graph Gk

t

of order n = k(2t + 1) + 1 as follows. The main building blocks of Gk
t consist of k copies

of a base-graph Gt, of order 2t − 1. The vertex set of Gt consists of three layers. The first
one is a set X = {x1, . . . , xt} that induces a clique. The second one is an independent set
Y = {y1, . . . , yt}, while the third layer consists of a singleton {z}. Each vertex xi ∈ X has
exactly t − 1 neighbors in Y : N(xi) = {yj ∈ Y : i ̸= j}. Hence, X ∪ Y induces a copy of Kt,t

minus a perfect matching. Finally the vertex z is adjacent to all vertices in Y . Figure 6a
shows the graph Gt for t = 4. To finally construct the graph Gk

t , we introduce a final vertex s

that is connected to all vertices of each set X of each copy of the base-graph.

▶ Lemma 6.1. For each t > 0, the graph Gt has exactly t3+t2

2 − t minimal connected
dominating sets that have non-empty intersection with the set X.

Proof. The set X cannot have more than two vertices in common with any minimal CDS,
since any two elements of X dominate X ∪ Y . Any minimal CDS that contains exactly one
vertex xi of X must contain the vertex z, to dominate yi, and one of the t − 1 neighbors
of xi (to be connected). There are t(t − 1) sets of this type. Moreover, each pair of elements
of X dominates Y . So a minimal CDS can be formed by (any) two elements of X and any of
the elements of Y (to dominate z). There are t t(t−1)

2 such sets. ◀

The hub-vertex s in Gk
t must be in any CDS, being a cut-vertex. Therefore, there is no

need for the set X in Gt to induce a clique, being always dominated by s. In other words,
the counting used in the proof above still holds if each copy of Gt is replaced by Gt − E(X)
in Gk

t . Here, E(X) denotes the set of edges in Gt[X]. Figure 6b shows G3
3 without the edges

between pairs of element of X in each copy of G3. With the help of Lemma 6.1, we can show:

▶ Theorem 6.2. The maximum number of minimal CDS in a connected graph of order n is
in Ω(1.4890n); an example family of graphs is (Gk

4).

Proof. By Lemma 6.1, each copy of the graph Gt has t3+t2

2 − t minimal CDS. There are k

such graphs in Gk
t , in addition to the vertex s that connects them all. Every minimal CDS

must contain s and at least one element from N(s) in each Gt. Therefore, the total number
of minimal CDS in Gk

t is ( t3+t2

2 − t)k = ( t3+t2

2 − t)
n−1
2t+1 . The claimed lower bound is achieved

when t = 4, which gives a total of 36 n−1
9 ∈ Ω(1.4890n). ◀
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z

y1 y2 y3 y3

x1 x2 x3 x4

(a) The graph G4.

z1

y12 y13 y11

x11 x12 x13

z2

y22 y23 y21

x21 x22 x23

z3

y32 y33 y31

x31 x32 x33

s

(b) The graph G3
3.

Figure 6 How our lower bound examples are composed.

We note that Gk
t is a t-degenerate graph that is also bipartite (since the set X in each

copy of Gt can be an independent set). Furthermore, Gk
3 is planar, as intentionally drawn in

Figure 6b. Our general formula (Lemma 6.1) yields that Gk
3 has 15n/7 = Ω(1.4723n) minimal

CDS, improving on the previously mentioned construction for 3-degenerate graphs in [33].

▶ Corollary 6.3. The maximum number of minimal connected dominating sets in a 3-
degenerate bipartite planar graph of order n is in Ω(1.4723n).

Finally, Gk
2 is a 2-degenerate graph of order n with 4n/5 = Ω(1.3195n) many minimal

CDS, incidentally matching the best known lower bound in cobipartite graphs [9].

7 Conclusions and Open Problems

In our paper, we focused on developing an input-sensitive enumeration algorithm for minimal
CDS. We achieved some notable progress both on the running time for such enumeration
algorithms and with respect to the lower bound examples. However, the gap between lower
and upper bound is still quite big, and the natural question to ask here is to bring lower and
upper bounds closer; in an optimal setting, both would match. We are working on a further
refined version that will bring down the upper bound a bit, but not decisively. This question
of non-matching upper and lower bounds is also open for most special graph classes.

One particular such graph class that is studied in this paper is the class of 2-degenerate
graphs. We like to suggest to study this graph class also for other enumeration problems,
or, more generally, for problems that involve a measure-and-conquer analysis of branching
algorithms, because this was the key to break the 2n-barrier significantly for enumerating
minimal CDS with measure-and-conquer, something that seemed to be impossible with other
more standard approaches, like putting weights to low-degree vertices.

As we also proved that the extension problem associated to CDS is computationally
intractable even on 2-degenerate graphs, it is not that straightforward to analyze our
enumeration algorithm with the eyes of output-sensitive analysis. Conversely, should it be
possible to find an efficient algorithm for an extension problem, also on special graph classes,
then usually polynomial-delay algorithms can be shown; as a recent example in the realm of
domination problems, we refer to the enumeration of minimal Roman dominating functions
described in [2]. So, in the context of our problem, we can ask: Can we achieve polynomial
delay for any enumeration algorithm for minimal CDS? Can we combine this analysis with
a good input-sensitive enumeration approach? Notice that the corresponding questions for
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1:14 Enumerating Minimal Connected Dominating Sets

enumerating minimal dominating sets are an open question for decades. This is also known
as the Hitting Set Transversal problem; see [11, 12, 18, 26]. We therefore also presented
relations between polynomial-delay enumeration of minimal dominating sets and that of
minimal CDS, again explaining the difficulty of the latter question. Finally, we also briefly
discussed the possibility of subexponential delay. We propose to discuss this question further
also for other enumeration problems when polynomial delay is not achievable, as it might
well be a practical solution to know that the delay time is substantially smaller than the
time needed to enumerate all solutions, but not polynomial time.

We also discussed parameterized complexity aspects of Connected Dominating Set
Extension, leaving W[3]-membership an an open question in the general case.
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2:2 Non-Adaptive Edge Counting and Sampling via BIS Queries

1 Introduction

In this work, we study sublinear query algorithms for estimating the number of edges in a
simple, unweighted graph G = (V, E), and for sampling uniformly random edges. Access to
G is via a Bipartite Independent Set (BIS) oracle [10]. A query to this oracle takes as input
two disjoint subsets L, R ⊆ V and returns

BIS(L, R) =
{

‘1’ if there is no edge between L and R

‘0’ otherwise.

Local Query Models. Prior work on sublinear query graph algorithms has largely focused
on local queries, in particular, (i) vertex degree queries (ii) neighbor queries (output the ith

neighbor of a vertex) and (iii) edge existence queries [31, 33, 48]. In the literature, the first
two types of queries form the adjacency list query model, while all three types of queries
form the adjacency matrix query model. Under these models, a variety of graph estimation
problems have been well studied, including edge counting and sampling [30, 33, 48, 51],
subgraph counting [5, 17, 29], vertex cover [11, 43], and beyond [45].

For a graph with n nodes and m edges, given access only to degree queries, Feige [31]
presented an algorithm for estimating m up to (2± ϵ) relative error with query complexity
O(
√

n · poly(1/ϵ, log n)). This work also showed that any (2− o(1))-approximation algorithm
requires Ω(n) queries. In the adjacency list query model, Goldreich and Ron [33] gave a
(1± ϵ)-approximation algorithm, with query complexity O(n/

√
m ·poly(1/ϵ, log n)). Recently,

Eden and Rosenbaum [30] gave algorithms for near-uniform edge sampling with the same
query complexity, and showed that this complexity is nearly tight.

Global Query Models. Motivated by the desire to obtain more query efficient algorithms,
Beame et al. [10] studied edge estimation using global queries that can make use of inform-
ation across the graph, including the BIS queries that we will focus on, and the related
Independent Set (IS) queries, which were initially introduced in the literature on query
efficient graph recovery [1, 6]. An IS query answers whether or not there exist any edges in
the induced subgraph on a subset of nodes S ⊆ V . We refer the reader to the exposition
in [10], which discusses applications of these global query models in group testing [22, 27],
computational geometry [7, 18, 32], fine-grained complexity [25, 26], and decision versus
counting complexity [26, 46, 49, 50].

In the IS query model, [10, 23] give a O(min{
√

m, n/
√

m} · poly(log n, 1/ϵ)) query al-
gorithm for (1±ϵ) approximate edge counting. In the BIS model, numerous authors [10, 26, 14]
achieve (1± ϵ)-approximation for edge counting and near-uniform edge sampling using just
poly(1/ϵ, log n) queries. This can be exponentially smaller than the query complexities in
the IS and local queries models.

Extending the BIS query model to hypergraphs, Dell et al. [26] introduce the coloured
independence oracle which detects the presence of a size k hyperedge. They give algorithms
for hyperedge estimation and sampling using this generalized oracle. Many other variants
of global queries have been studied including Linear, OR and Cut queries [8, 20, 47].
These queries have been applied to solving maximum matching [38, 42], minimum cut [47],
triangle estimation [12, 13, 26], connectivity [8], hitting sets [15], weighted edge estimation [16],
problems related to linear algebra [44], quantum algorithms [40], and full graph recovery [1, 6].

The Role of Adaptivity. Notably, for both local and global queries, most sublinear time
graph algorithms are adaptive, i.e., a query may depend on the answers to previous queries. In
many cases, it is desirable for queries to be non-adaptive. This allows them to be completed
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independently, and might allow for the resulting algorithm to be easily implemented in
massively parallel computation frameworks [37]. Non-adaptive algorithms also lead naturally
to single-pass, rather than multi-pass, streaming algorithms. In fact, the BIS query model
can be seen as a very restricted subset of the more general Linear query model, in which
each query outputs the inner product of the edge indicator vector with a query vector.
This model has long been studied in the graph-streaming literature [4, 39], in part due
to its usefulness in giving single-pass algorithms. However, it has remained open whether
non-adaptive algorithms can be given in more restricted global query models.

For these reasons, Assadi et al. [8] and Chakrabarti and Stoeckl [20] have recently sought
to reduce query adaptivity under a variety of global query models, including Linear, OR,
Cut and BIS queries. These works study the single element recovery problem, which is a
weaker variant of uniform edge sampling, requiring that the algorithm return a single edge
in G. Assadi et al. also study the problem of checking connectivity, presenting a BIS query
algorithm making Õ(n) queries and using three rounds of adaptivity. They give a two-round
algorithm in the stronger OR query model, and show that even in this model, there is no
non-adaptive algorithm for connectivity making o(n2) queries.

We note that reducing query adaptivity is also a well-studied direction in the closely
related literature on group testing [28, 34]. IS and BIS oracles can be thought of as tests if
there is a single element in a group of edges, where that group is required to be all edges
incident on one node set (IS) or between two disjoint sets (BIS). Attempts to minimize
query adaptivity have also been made for sparse recovery [35, 36, 41], submodular function
maximization [9, 21], property testing [19] and multi-armed bandit learning [3].

1.1 Our Contributions
Our main result is the first non-adaptive algorithm for edge estimation up to (1± ϵ) relative
error, using poly(1/ϵ, log n) BIS queries. Formally, we show:

▶ Theorem 1 (Theorem 6 restated). Given a graph G with n nodes and m edges, there is an
algorithm that makes O(ϵ−5 log5 n log5(log n) log(ϵ−1 log n)) non-adaptive BIS queries to G

and returns an estimate m̂ satisfying: m(1−ϵ) ≤ m̂ ≤ m(1+ϵ), with probability at least 3/5.1

Prior methods for (1± ϵ) error edge estimation using BIS queries are based on a binary
search style approach [10, 26, 14], which is inherently adaptive, and leads to algorithms
requiring Ω(log2 n) rounds of adaptivity. Beame et al. [10] present a non-adaptive algorithm
giving a O(log2 n) approximation factor for bipartite graphs, using O(log3 n) queries. This
algorithm can be extended to general graphs, via a simple reduction, described in Section 3.3.
However, no non-adaptive results for general graphs achieving 1±ϵ relative error for arbitrary
ϵ > 0 were previously known. Even with adaptivity, the best known algorithm due to [14] has
a query complexity of O(ϵ−2 log11 n). The non-adaptive result of Theorem 1 improves upon
this prior work significantly, whenever ϵ is constant with respect to n. Our second result
builds on our edge estimation approach, giving the first non-adaptive BIS query algorithm
that returns a near-uniformly sampled edge. Formally:

▶ Theorem 2 (Theorem 7 restated). Given a graph G with n nodes, m edges,
and edge set E, there is an algorithm that makes O(ϵ−4 log6 n log(ϵ−1 log n) +
ϵ−6 log5 n log6(log n) log(ϵ−1 log n)) non-adaptive BIS queries which, with probability at least
1−ϵ, outputs an edge from a probability distribution P satisfying (1−ϵ)/m ≤ P (e) ≤ (1+ϵ)/m

for every e ∈ E.

1 Note that the success probability can be boosted in the standard way, by running multiple independent
instantiations of the algorithm and taking their median estimate.
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2:4 Non-Adaptive Edge Counting and Sampling via BIS Queries

Prior results for near-uniform edge sampling required Ω(log3 n) rounds of adaptivity [14, 26].
Additionally, even ignoring adaptivity, our result improves on the best known query complexity
of O(ϵ−2 log14 n), due to [14], for large enough ϵ, including when ϵ is a constant.

By combining Theorem 2 with prior work on sublinear query graph connectivity, via edge
sampling, we obtain a connectivity algorithm using two rounds for adaptivity:

▶ Theorem 3 (Theorem 8 restated). Given a graph G with n nodes, there is a 2-round
adaptive algorithm that determines if G is connected with probability at least 1− 1/n using
O(n log8 n log(log n)) BIS queries.

Theorem 3 improves on a three-round algorithm of Assadi et al. [8] and is tight in terms
of adaptivity: even in the stronger OR query model (which allows checking the presence
of an edge within an arbitrary subset of node pairs) no non-adaptive algorithm can make
o(n2) queries. Assadi et al. gave a two-round algorithm in this stronger OR query model.
Thus, Theorem 3 closes the gap between BIS queries and OR queries for the connectivity
problem. We note that there is a separation from the even stronger Linear query model,
where non-adaptive algorithms for connectivity and cut approximation are well-known [4].
Understanding if there remain natural separations between the BIS and OR query models in
terms of adaptivity would be very interesting.

2 Technical Overview

In this section, we present an overview of three main results: our non-adaptive BIS query
algorithm for edge estimation (Theorem 1) and near-uniform edge sampling (Theorem 2),
along with our 2-round algorithm for connectivity (Theorem 3).

2.1 Edge Estimation

A simple idea to estimate the number of edges in a graph via BIS queries is to sample small
random subsets of nodes and run BIS queries to check the presence of edges between them.
The fraction of these queries that return ‘1’ (i.e., indicating the presence of no edge) can
then be used to estimate the total number of edges in the graph. In particular, for a graph
containing m edges, if the random subsets of nodes have O(n/

√
m) nodes in them, then we

expect a ‘1’ answer with constant probability. Beame et al. [10] describe a non-adaptive
algorithm along these lines, which gives a O(log2 n) approximation using O(log3 n) queries.
Unfortunately, going beyond this coarse approximation is difficult: many dependencies due to
common neighbors arise and this increases the variance of the estimators. Beame et al. handle
the issue by using the coarse estimates to subdivide the graph into smaller sub-graphs, until
these divided graphs only contain poly log n edges, at which point all their edges can be
discovered with few queries. This strategy yields a (1 ± ϵ) approximation, however, it is
inherently adaptive.

Our non-adaptive algorithm takes a different approach. Let d(v) denote the degree of
a node v. Suppose we could sample each node with probability pv ≈ d(v) · ϵ−2/m and
compute the degree of the sampled nodes. Letting m̂ =

∑
v I[v sampled] · d(v)/pv, be the

appropriately weighted average of the sampled degrees, it is straightforward to show that
E[m̂] =

∑
v d(v) = 2m. Further, via a standard Bernstein bound, m̂/2 gives a (1± ϵ) relative

error approximation to m with high probability. The challenge is showing that this type of
approach can be approximated in the BIS query model.
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Subsampling Nodes. The first idea, drawn from work on streaming algorithms, is to
subsample the nodes of G at different rates of the form 1/γj where γ > 1 is constant
and j ∈ {0, 1, · · · , O(log n)}. At each rate, we “recover” any sampled nodes (along with a
corresponding degree estimate) whose degree is roughly d(v) ≈ ϵ2m/γj . In this way, each
node will be recovered with probability roughly 1/γj ≈ d(v) · ϵ−2/m, as desired. We describe
this subsampling procedure in Section 3.3, as part of our main algorithm Edge-Estimator
(Algorithm 3).

Recovering Heavy Nodes. The next challenge is to show that we can actually recover the
appropriate nodes and degree estimates at each sampling rate. If we can approximate the
degree of all nodes sampled at rate 1/γj up to additive error O

(
ϵ3 ·m/γj

)
, we will obtain a

(1 ± ϵ) relative error approximation to the degree of any node we hope to recover at that
sampling rate, i.e., any node with degree roughly ϵ2m/γj . Using these approximations, we
can determine which nodes should be recovered at that rate, and form our edge estimate.

Degree Estimation via Neighborhood Size Estimation. To achieve such an additive
error approximation, we use ideas from the sparse recovery and streaming literature. In
particular, we implement an approach reminiscent of the Count-Min sketch algorithm [24].
The approach is described in detail in Section 3.2, where we present Algorithm Estimate-
Degree (Algorithm 2). First observe that when sampling at rate 1/γj , conditioned on any
node v being included in the sample, the expected total degree of the sampled nodes other
than v is O(m/γj). If we further subdivide these nodes into Õ(1/ϵ3) random groups, the
expected total degree of all nodes other than v in any group is Õ

(
ϵ3 ·m/γj

)
.

Now, if v is placed in group S, we can approximately upper bound its degree by the total
neighborhood size of S. This upper bound holds approximately as long as v does not have
too many neighbors in S, which it won’t with good probability. The neighborhood size of
S is in turn upper bounded by the degree of v plus the total degree of other nodes in S,
and thus by d(v) + Õ

(
ϵ3 ·m/γj

)
in expectation. So, in expectation, this approach gives

an additive Õ
(
ϵ3 ·m/γj

)
error approximation to the degree of each sampled node v, with

constant probability. Repeating this procedure O(log n) times, and, as in the Count-Min
sketch, taking the minimum degree estimate for each node sampled at rate 1/γj , gives us
high probability approximation for such nodes.

Neighborhood Size Estimation. The final step is to implement an algorithm that can
estimate the neighborhood size of the random subset of nodes S, to be used in our degree
estimation procedure. We do this in Section 3.1, where we present Algorithm Neighborhood-
Size (Algorithm 1). This algorithm takes as input two disjoint subsets L, R and returns a
(1± ϵ)-approximation for the size of the neighborhood of L in R. We highlight that this may
be very different than the number of edges connecting L to R – the neighborhood size is the
number of nodes in R with at least one edge to L. This difference is critical in removing
the correlations discussed previously due to common neighbors. Such correlations lead to
the adaptive nature of prior algorithms [10, 26]. To estimate the size of the neighborhood
of L in R, we sample the nodes in R at different rates and ask BIS queries on L and the
sampled subset of R. Intuitively, when the sampling rate is the inverse of the size of the
neighborhood, we will observe a ‘1’ response with constant probability. We can detect this
and thus estimate the neighborhood size.
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2:6 Non-Adaptive Edge Counting and Sampling via BIS Queries

Non-adaptivity. The approach described above is inherently non-adaptive. All random
sampling of nodes and random subsets can be formed ahead of time, independently of any
query responses. The only catch is that to determine which nodes should be recovered at each
sampling rate, i.e., those nodes with degree d(v) ≈ ϵ−2 ·m/γj , we need a coarse estimate to
the edge count m in the first place. Fortunately, we can bootstrap such an estimate starting
with a coarse O(log2 n)-relative error approximate estimation, due to Beame et al. [10]. We
then refine this estimate iteratively using Algorithm Refine-Estimate (Algorithm 4). Each
refinement improves the approximation factor by ϵ, and after O(log1/ϵ log n), refinements
our estimate will result in a (1± ϵ)-approximation factor. The key observation here is that
each refine step does not require any additional BIS queries. Thus, our algorithm remains
non-adaptive.

2.2 Uniform Edge Sampling and Connectivity
In the full version [2], we prove Theorem 2 by designing and analyzing a non-adaptive
algorithm for returning a near-uniform sample among the edges of the graph. Our approach
builds heavily on our edge estimation algorithm. If we knew the degree d(v) of all ver-
tices, then to sample a uniform edge, we could sample a vertex v ∈ V with probability
d(v)/

∑
w∈V d(w) = d(v)

2m and return a uniform neighbor among the neighbors of v. We can
observe that the probability that an edge (v, u) is sampled is d(v)

2m ·
1

d(v) + d(u)
2m ·

1
d(u) = 1

m .
I.e., this approach yields a uniformly random edge sample.

Node Sampling. We implement the above approach approximately using BIS queries.
First, observe that recovered vertices in our edge estimation algorithm are sampled with
probabilities roughly proportional to their degrees. We argue that we can select a random
vertex from this set, which overall is equal to any vertex v with probability approximately
d(v)
2m . To do so, we leverage our degree estimates, and the fact that our edge count estimator,

which is the sum of scaled degrees of recovered vertices, is well-concentrated.

Random Neighbor Sampling. It remains to show how to return a uniformly random
neighbor of the sampled vertex. Similar to our edge estimation procedure, we design an
algorithm which takes as input two disjoint subsets L, R and returns a uniform neighbor of
L in R. To do so, we demonstrate an equivalence between the substantially more powerful
OR queries and BIS queries in this specific setting, and argue that an existing algorithm for
OR queries can be extended to return a uniform neighbor using BIS queries. An OR query
takes as input a subset of pairs of vertices and returns ‘1’ iff there is an edge in the subset
queried. Building on this, in the full version [2], we present Algorithm Uniform-Neighbor
that takes as input the subset of nodes sampled at any rate 1/γj as in our edge estimation
algorithm, and approximately returns a uniform neighbor for every vertex v sampled in this
set. Similar to Estimate-Degree (Algorithm 2), we construct Õ(1/ϵ4) random partitions
of the sampled nodes. For every vertex v in a random subset S, we return a uniform neighbor
(obtained using the idea just described) of the partition of S, as the neighbor of v. If v has
large degree compared to the total degree of nodes in S, which it will if it is meant to be
recovered at that sampling rate, this output will most likely be a neighbor of v, and will be
close to a uniformly random one.

A Two-Round Algorithm for Connectivity. Our non-adaptive edge sampling algorithm
(Theorem 2) directly yields a two-round algorithm for graph connectivity (Theorem 3),
improving on a prior three-round algorithm of [8]. In particular, the algorithm of [8] selects
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O(log2 n) random neighbors per vertex, and contracts the connected components of this
random graph into supernodes. This random sampling step can be performed using one
round of Õ(n) BIS queries. They prove that in the contracted graph on the supernodes, there
are at most O(n log n) edges. Using this fact, they then show how to identify whether all the
supernodes are connected using Õ(n) BIS queries and two additional rounds of adaptivity.

We follow the same basic approach: using a first round of Õ(n) queries to randomly sample
O(log2 n) neighbors per vertex and contract the graph into supernodes. Once this is done,
we observe that we have BIS query access to the contracted graph simply by always grouping
together the set of nodes in each supernode. So, we can directly apply the non-adaptive
sampling algorithm of Theorem 2 to sample edges from the contracted graph. By a coupon
collecting argument, drawing O(n log2 n) near-uniform edge samples (with replacement) from
the contracted graph suffices to recover all O(n log n) edges in the graph, and thus determine
connectivity of the contracted graph, and, in turn, the original graph.

2.3 Notation
Let G(V, E) denote an undirected graph on vertex set V with edges E ⊆ V ×V . Let |V | = n

be the number of nodes and |E| = m be the number of edges . For any set of nodes S ⊆ V ,
let E[S] ⊆ E denote the edges in the induced subgraph on S. For any two disjoint sets of
nodes L, R ⊆ V , let E[L, R] = {(u, v) ∈ E | u ∈ L, v ∈ R} denote the edges between them.
For any v ∈ V , let Γ(v) = {u | (u, v) ∈ E for some v ∈ V } be its set of neighbours. Let
d(v) = |Γ(v)| be its degree. For S ⊆ V , let Γ(S) =

⋃
u∈S Γ(u) and let d(S) =

∑
u∈S d(u).

3 Non-adaptive algorithm for edge estimation

In this section, we present our non-adaptive algorithm for edge estimation using BIS queries.
In Section 3.1, we describe an algorithm that takes as input two disjoint subsets L, R and
returns an estimate of the size of the neighborhood |Γ(L) ∩ R|. Next, in Section 3.2, we
use this algorithm to give additive error approximations of degrees of all the vertices in a
given subset. Finally, in Section 3.3, using the approximate degree estimates, we construct a
(1±ϵ)-approximate estimator for m by sampling nodes with probabilities roughly proportional
to their degrees. Missing details are included in the full version [2].

3.1 Estimating the size of neighborhood
Neighborhood-Size (Algorithm 1) takes as input two disjoint subsets L, R ⊆ V and
returns a (1± ϵ)-approximation of the size of neighborhood of L in R, i.e., |Γ(L) ∩R| using
poly(1/ϵ, log n) BIS queries. We overview the analysis of this algorithm here.

The main idea is to sample subsets of vertices in R (denoted R̂1, R̂2, . . .) with exponentially
decreasing probability values 1/2, 1/4, 1/8, . . .. When the sampling rate 1/2i falls below
1/|Γ(L) ∩R|, we expect L to no longer have any neighbors in R̂i with good probability. In
particular, we can return the inverse of the smallest probability 1/2i for which BIS(L, R̂i) =
‘1’, as a coarse estimate for |Γ(L) ∩R|.

To boost the accuracy of this estimate, we repeat the process T = O(ϵ−2 log(δ−1 · log n))
times, and at each sampling rate count the number of times the BIS query BIS(L, R̂i) returns
‘1’. This count is denoted count(i) in Algorithm 1, and its expectation can be written in
closed form as E[count(i)] = T · (1− 1/2i)|Γ(L)∩R|. Suppose 2̂i ≤ |Γ(L) ∩ R| < 2̂i+1, then,
E[count(̂i)] = Θ(T ). Via a standard Chernoff bound, it will be approximated to (1 ± ϵ)
error with high probability by count(̂i). Thus, we can compute an accurate estimate of the
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neighborhood size by inverting our estimate of E[count(̂i)], as log
(1−1/2̂i)

(count(̂i)/T ). We

identify the appropriate î in line 12 of Algorithm 1, and compute the corresponding estimate
in lines 13-14. There is one edge case handled in line 13: if |Γ(L)∩R| = 1 we will have î = 0,
and count(̂i) = 0. The final error bound for Algorithm 1 is stated below.

▶ Lemma 4. Algorithm 1 uses O(ϵ−2log n log(δ−1 · log n)) BIS queries and returns an
estimate ηest(L) of |Γ(L) ∩R| such that with probability at least 1− δ,

(1− ϵ) · |Γ(L) ∩R| ≤ ηest(L) ≤ (1 + ϵ) · |Γ(L) ∩R|.

Algorithm 1 Neighborhood-Size: Estimating the neighborhood size of L in R.

Input: L, R ⊆ V , approximation error ϵ, failure probability δ.
Output: ηest(L) as an estimate of |Γ(L) ∩R|.

1: Initialize ηest(L)← 0.
2: for i = 0, 1, . . . log2 n do
3: count(i)← 0.
4: for t = 1, 2, . . . T = 2e8 ln(log n/δ) · ϵ−2 do
5: R̂t

i ← {u ∈ R | u is included independently with probability 1/2i}.
6: count(i) = count(i) + BIS(L, R̂t

i)
7: end for
8: end for
9: if count(0) = T then

10: return ηest(L) = 0.
11: else
12: Set î← max

{
i | count(i)

T
< (1−ϵ)

2e2

}
.

13: if î = 0 then return ηest(L) = 1.
14: else return ηest(L) = log

(1−1/2̂i)
(count(̂i)/T ).

15: end if
16: end if

3.2 Finding good approximation for degrees of vertices
We now describe how to use Neighborhood-Size (Algorithm 1) to estimate the degrees of
all vertices in a given subset S ⊆ V up to additive error depending on the total degree of S.
Our approach is inspired by the Count-Min sketch algorithm [24]. We randomly partition S

into subsets S1, S2, . . . , Sλ where λ = O(ϵ−3 log2 n). The choice of the parameter λ is based
on the analysis in Section 3.3. For each Si, we estimate the size of the neighborhood of Si in
V \ Si using Neighborhood-Size. We then return this neighborhood size estimate as the
degree estimate for all vertices in Si. For v ∈ Si, |Γ(Si)∩V \Si| is nearly an overestimate for
d(v), as long as v has few neighbors in Si, which it will with high probability. Additionally,
it is not too large an overestimate – we can observe that |Γ(Si) ∩ V \ Si| − d(v) ≤ d(Si \ v).
I.e., the error in the overestimate is at most the total degree of the other nodes in Si. In
expectation, this error is at most d(S)

λ = O
(

d(S) · ϵ3

log2 n

)
due to our random choice of Si.

As in the Count-Min sketch algorithm, to obtain high probability estimates, we repeat the
process T = O(log n) times and assign the minimum among the neighborhood estimates as
the degree estimate of d(v). The full approach is given in Algorithm 2 (Estimate-Degree)
and the error bound in Lemma 5 below. We set the failure probability, δ = O(ϵ3/ log4 n),
for each of the calls to Neighborhood-Size, to ensure that the total failure probability
of Algorithm 2 is at most O(1/ log n). As we make at most T · λ calls to the Algorithm
Neighborhood-Size, the total BIS queries used is O(log n · ϵ−3 log2 n · ϵ−2 log n log(log4 n ·
log n)) = O(ϵ−5 log4 n log(log n)). Formally, we have:
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▶ Lemma 5. For any S ⊆ V , Algorithm 2 uses O(ϵ−5 log4 n log(log n)) BIS queries and with
probability 1−O(1/ log n), returns degree estimates d̂(v) for every v ∈ S satisfying:

d(v)(1− ϵ) ≤ d̂(v) ≤ d(v) + ϵ3

log2 n
· d(S).

Algorithm 2 Estimate-Degree: Obtain additive approximate degree estimates.

Input: S is a subset of V , ϵ is approximation error.
Output: Degree estimates of vertices in S.

1: Initialize d̂(v)← n for every v ∈ S.
2: for t in {1, 2, . . . , O(log n)} do
3: Form a random partition of S into St,1, St,2, . . . St,λ where λ = O(ϵ−3 log2 n).
4: for every set St,a where a ∈ [λ] do
5: ηest(St,a)← Neighborhood-Size(St,a, V \ St,a, ϵ/3, δ), where δ = O(ϵ3/ log4 n).
6: For all v ∈ St,a, set d̂(v)← min{d̂(v), ηest(St,a)}.
7: end for
8: end for
9: return d̂(v) for every v ∈ S.

3.3 Edge Estimation
In this section, we describe the algorithm Edge-Estimator (Algorithm 3) that obtains a
(1± ϵ)-approximation for the number of edges m. Missing details are presented in the full
version [2].

Our Approach. A naive strategy to estimate the number of edges m is to sample Õ(ϵ−2)
nodes uniformly, and estimate m as n/2 times the average degree of the sampled nodes.
However, the variance of such an estimator depends on the maximum degree, which could be
as high as n. To fix this issue, we would like to sample vertices with probabilities proportional
to their degrees. In particular, we sample vertices at different rates 1/γj , where γ > 1 is a
constant and j ∈ {0, 1, · · · , log n}. We use the term jth level to refer to the sampling rate 1/γj .
Our estimator is given by: m̂ =

∑
v I[v sampled] · d(v)/pv, be the appropriately weighted

average of the sampled degrees. It is straightforward to show that E[m̂] =
∑

v d(v) = 2m

and as argued in section 1, it is also concentrated around 2m with high probability. It is easy
to observe that when a vertex v is sampled at rate Õ(ϵ−2d(v)/m), its contribution to m̂ is
Õ(ϵ2m). In other words, we need to detect the event that d(v) ≈ ϵ2m/γj , for some sampling
level j. If we identify Õ(ϵ−2) such vertices, m̂ will be an accurate estimate of the total edges,
after appropriate scaling. However, there are three main challenges in implementing this
approach which we detail below.

Approximate degrees. Algorithm Estimate-Degree returns degree estimates with an
additive approximation error of O(ϵ3 log−2 n · d(Sj)) at sampling level j. Õ

(
ϵ3m/γj

)
at

sampling level j. It is easy to see that E[d(Sj)] = O(m/γj). From Markov’s inequality
and union bound, we have that: d(Sj) = O(m log n/γj) for all j ∈ [L] with probability at
least 3/4. Therefore, the additive approximation error term is Õ(ϵ3 ·m/γj). To include the
contribution of a vertex v in the estimator, we must ensure that this error term is small in a
relative sense – i.e., at most O(ϵ · d(v)). This holds whenever d(v) = Ω̃(ϵ2m/γj). Observe
that this corresponds to the threshold we mentioned earlier. Therefore, our goal is to identify
all vertices at every level j that pass the threshold of Ω̃(ϵ2m/γj). When that happens, we say
that the vertex v has been recovered at level j and can be safely included in our estimator.
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Knowledge of m. As we do not know the value of m, we start with an O(log2 n)-relative
error approximate estimate, obtained using the Algorithm CoarseEstimator in Beame
et al. [10], as follows: Given a partition L, R ⊆ V , Algorithm CoarseEstimator returns
an approximate estimate for the number of edges between L and R, given by: m(L,R)

8 log n ≤
m̄(L, R) ≤ 8 log n ·m(L, R), where m(L, R) = |E[L, R]|. However, using a simple reduction,
we can convert this estimate into an O(log2 n)-relative error approximation for total edges in
the graph G. First, we partition the graph uniformly into two sets of vertices L and R. We set
our estimate for edges as: m̄ = O(log n) · m̄(L, R). From Lemma 3.2 in [10], m(L, R) = Θ(m)
when m ≥ 2, with constant probability. So, our initial estimate for refinement, m̄, satisfies:
m ≤ m̄ ≤ O(log2 n) ·m.

We repeatedly refine the approximate estimate using Algorithm Refine-Estimate,
until we get a (1 ± ϵ)-relative error approximation of m. Each refinement improves the
approximation factor from the previous stage by a multiplicative factor of ϵ. We note
that each refinement does not require any additional BIS queries and uses the available
approximate degree estimates.

Boundary Vertices. We partition the space of possible degrees, i.e., [0, n) into geometrically
decreasing partitions, called levels. Each level is represented by an integer in [0, L]. We
recover a vertex at a particular level j ∈ [0, L], if it is sampled with probability corresponding
to the level, i.e., γ−j and it passes the threshold mentioned earlier. It is possible that some
vertices have degrees close to the threshold values at each sampling level. We denote the set
of such vertices as Vboundary ⊆ V . For such boundary vertices, as we use approximate degree
estimates, they might be recovered at a level different from their true levels (defined with
respect to exact degrees). Such a scenario could potentially affect the contribution of the
recovered vertex in our estimator by an additional multiplicative factor dependent on γ and
the difference between recovered level and true level. As a result, our estimator might not be
a (1± ϵ)-relative error approximation anymore. We get around this limitation by dividing
the region between any two consecutive levels into B = O(1/ϵ) buckets, where ϵ denotes the
approximation parameter, and shifting the boundaries of all the levels by a random shift
selected uniformly from the first B buckets. We account for this by changing the sampling
rates to γ−µ(j) where µ(j) encodes the random shift. We set the parameter corresponding to
the sampling probability, γ = 1/(1− ϵ).

With the random shift of the level boundaries, we ensure that every vertex will lie close to
the boundary with probability at most ϵ. Moreover, we argue that every boundary vertex is
recovered at its true level or level adjacent to its true level. Therefore, the total contribution
of Vboundary to our edge estimator is O(ϵm).

Random Boundary Shift. The region between two consecutive levels is divided into B

buckets with the boundaries of buckets proportional to the values given by:
{[1/γB , 1/γB−1), · · · , [1/γ2, 1/γ), [1/γ, 1)}. We select a random integer offset for shifting
our levels, denoted by s, which is selected uniformly at random from [0, B). Now, the level
boundaries are located at values proportional to γ−µ(j) where µ(j) = j ·B− s and 0 ≤ j ≤ L.
Observe that the number of sampling levels is given by L = 2

B · logγ n + 1 ≤ log n + 1.
Combining everything, the exact level boundaries are dependent on the estimate m̄ and
given by O

(
m̄

γµ(j) · ϵ2

log n

)
, for every j ∈ [0, L].
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3.3.1 Overview of Algorithm Edge-Estimator
In Algorithm Edge-Estimator, we construct sets V = S0 ⊇ S1 ⊇ · · · ⊇ SL where a set Sj

(for all j ≥ 2) is obtained by sampling vertices in Sj−1 with probability 1/γB . The set S1 is
obtained by sampling vertices in V with probability 1/γ−s+B . Our sampling scheme results
in each vertex being included in a set Sj with probability 1/γµ(j). As described previously,
with constant probability, d(Sj) = O(m log n/γµ(j)), for all j. Using Algorithm 2, we obtain
approximate degree estimates of vertices in Sj for every sampling level j ≤ L with an
approximation error of O

(
ϵ3/ log2 n · d(Sj)

)
= O

(
mϵ3/γµ(j) log n

)
. In order that this error

is small, we need to recover vertices v ∈ Sj with high degree, such that d(v) = Ω̃( m
γµ(j) · ϵ2

log n ).
As we do not know m, we bootstrap it with a O(log2 n)-relative error approximate estimate
due to [10], denoted by m̄0. We repeatedly refine the estimate T = 2 log1/ϵ log n times, using
Refine-Estimate (Algorithm 4), where the estimate m̄t−1 is used to construct an improved
estimate m̄t. We return the estimate m̄T as our final estimate for m. The constants used
c1, c2 satisfy c1 ≤ c2/10 and c2 ≥ 50.

Algorithm 3 Edge-Estimator: Non-adaptive algorithm for estimating edges.

Input: V set of n vertices and ϵ > 0 error parameter.
Output: Estimate m̂ of number of edges in G.

1: Scale ϵ← ϵ
600 log1/ϵ log n and initialize γ ← 1/(1− ϵ) and B ← 2/ϵ.

2: Let s be an integer selected uniformly at random from the interval [0, B).
3: Let µ(j)← −s + j ·B for every integer j in the interval

[
0, 2

B · logγ n + 1
]

.

4: Initialize S0 ← V and construct S1 by sampling vertices in S0 with probability 1/γµ(1).
5: Construct S2 ⊇ . . . ⊇ SL for L = 2

B · logγ n where each Sj is obtained by sampling
vertices in Sj−1 ∀j ≥ 2, independently with probability 1/γB .

6: for j = 0, 1, . . . L do
7: Run Estimate-Degree (Sj) to obtain the estimates d̂j(v) for all v ∈ Sj satisfying:

(1− ϵ)d(v) ≤ d̂j(v) ≤ d(v) + c1ϵ3 ·m
log n · γµ(j) .

8: end for
9: Construct a random partition L, R of V . Let m̄0 be the O(log n)-approximate estimate

from the Algorithm CoarseEstimator in Beame et al. [10] on the partition L, R.
10: Set m̄0 ← max{2, O(log n) · m̄0}, so that we have m ≤ m̄0 ≤ O(log2 n) ·m.

11: for t = 1, 2, · · · , T = 2 log1/ϵ log n do
12: m̄t is assigned the output of Refine-Estimate that takes as input approximate

degree values d̂j(v) ∀v ∈ Sj ∀j ∈ [L], the previous estimate m̄t−1 and the iteration t.
13: end for
14: return m̂← m̄T .

3.3.2 Overview of Algorithm Refine-Estimate

Suppose we are given an initial estimate m̄ satisfying m ≤ m̄ ≤ (1 + α)m for some unknown
approximation factor α satisfying ϵ ≤ α ≤ O(log2 n). We set the threshold value for recovering
a vertex at a level j as m̄

γµ(j) · c2ϵ2

log n where c2 is a constant. So, when a vertex v, that hasn’t
been recovered at a smaller level yet, with degree estimate d̂j(v) (obtained from Algorithm 3)
satisfies d̂j(v) ≥ m̄

γµ(j) · c2ϵ2

log n , we set the level of recovery ℓ̂(v) = j and recovered flag r(v) = 1.
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From construction, we can observe that once a vertex is recovered at a particular level it
is not available to be recovered at higher level later. Our estimator is the summation of
terms γµ(ℓ̂(v)) · d̂(v) for every v satisfying r(v) = 1. We normalize m̂ by adding an additional
term of (ϵ log log n)tm̄0 in iteration t, to ensure that after every call to Refine-Estimate
(Algorithm 4), the estimate returned m̂, satisfies: m ≤ m̂ ≤ m(1 + ϵ · log log n ·α) (see the full
version for additional details [2]). After T = 2 log1/ϵ log n iterations of Refine-Estimate,
we return the estimate m̄T as our final estimate in Edge-Estimator (Algorithm 3).

Algorithm 4 Refine-Estimate: Refines the current estimate of number of edges.

Input: m̄ satisfying m ≤ m̄ ≤ m(1+α), approximate degree values d̂j(v) ∀v ∈ Sj ∀j ∈ [L]
obtained using Algorithm 3, m̄0, and iteration t.
Output: Estimate m̂ satisfying m ≤ m̂ ≤ m(1 + ϵ ·α · log log n) of number of edges in G.

1: Initialize m̂← 0.
2: Initialize r(v)← 0 for all v (indicator if v has been recovered yet).
3: for j = 0, 1, . . . L do
4: for v ∈ Sj do
5: if r(v) = 0 and d̂j(v) ≥ m̄

γµ(j) · c2ϵ2

log n then
6: m̂← m̂ + γµ(j) · d̂j(v).
7: ℓ̂(v)← j and r(v)← 1. ▷ Used in the analysis.
8: end if
9: end for

10: end for
11: if t < T = 2 log1/ϵ log n then
12: m̂ = m̂/2 + (ϵ log log n)t

m̄0. ▷ We normalize m̂ so that we have m̂ ≥ m.
13: else
14: m̂ = m̂/2.
15: end if
16: return m̂.

3.3.3 Final Guarantees of Edge-Estimator

Using Bernstein’s inequality, we argue that in iteration t, we can improve the approximation
factor of the previous estimate m̄t−1 by a multiplicative factor of ϵ in the new estimate
m̄t. After T = O(log1/ϵ log n) iterations, the edge estimate will be a (1 ± ϵ)-relative error
approximation satisfying:

▶ Theorem 6. Given a graph G with n nodes and m edges, there is an algorithm that
makes O(ϵ−5 log5 n log5(log n) log(ϵ−1 log n)) non-adaptive BIS queries to G and returns an
estimate m̂ satisfying: m(1− ϵ) ≤ m̂ ≤ m(1 + ϵ), with probability at least 3/5.

4 Uniform Edge Sampling

In this section, we give brief overview of an algorithm that returns a near-uniformly sampled
edge from the graph using poly(log n, 1/ϵ) BIS queries. We present the complete details in
the full version [2]. Our algorithm extends Edge-Estimator (Alg. 3) and is based on the
following idea. Suppose we know the degrees of all the vertices. In order to sample a uniform
edge, we can sample a vertex v with probability d(v)/

∑
w∈V d(w) = d(v)/2m and return

a uniform neighbor among the neighbors of v. The probability that an edge e = (v, u) is
sampled is d(v)/2m · 1/d(v) + d(u)/2m · 1/d(u) = 1/m.
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In order to return a uniform edge, using the above approach, to our setting, there are two
challenges. First, we do not know the degrees (or approximate degrees) of all the vertices.
This is because the set of recovered vertices in Refine-Estimate (Alg. 4) at a particular
level j, i.e., r(v) = 1, is a subset of the sampled vertices Sj . Only the recovered vertices
at any particular level have accurate degree estimates, i.e., d̂j(v) ≈ (1 ± ϵ)d(v). Secondly,
vertices are recovered at different levels and are therefore sampled with different probabilities.
In order to return a uniform edge using the previously discussed idea, we must return a
single vertex among the set of recovered vertices with probability dependent on the sampling
probability at which the vertex was recovered, and it’s approximate degree.

We address these two challenges, by suitably modifying Edge-Estimator (Alg. 3) and
returning a vertex v, among the recovered vertices, with probability proportional to γ ℓ̂(v) ·
d̂

ℓ̂(v)(v) where ℓ̂(v) is the level at which it is recovered, and d̂
ℓ̂(v)(v) is the degree estimate at

the level of recovery. From Section 3.3, we know that our estimator:
∑

v is recovered γ ℓ̂(v) · d̂(v),
is concentrated around 2m (Theorem 6). Combining all the above, we obtain the following
result about sampling an edge:

▶ Theorem 7. Given a graph G with n nodes, m edges, and edge set E, there is an algorithm
that makes O(ϵ−4 log6 n log(ϵ−1 log n)+ϵ−6 log5 n log6(log n) log(ϵ−1 log n)) non-adaptive BIS
queries which, with probability at least 1− ϵ, outputs an edge from a probability distribution
P satisfying (1− ϵ)/m ≤ P (e) ≤ (1 + ϵ)/m for every e ∈ E.

Graph Connectivity. Using the non-adaptive uniform sampling algorithm, we obtain a
2-round adaptive algorithm for determining graph connectivity, by building upon the work
of [8]. See Section 2.2 for an outline of this result. Details are deferred to the full version [2].

▶ Theorem 8. Given a graph G with n nodes, there is a 2-round adaptive algorithm that
determines if G is connected with probability at least 1− 1/n using O(n log8 n log log n) BIS
queries.

5 Conclusion and Open Questions

In this paper, we presented the first (1± ϵ) relative error non-adaptive algorithms for edge
estimation and sampling using BIS queries. It would be interesting to investigate if better
dependencies on ϵ than given by our algorithms can be obtained. Further, using Independent
Set (IS) queries, adaptive algorithms for edge estimation with optimal query complexity
O(min{

√
m, n/

√
m} · poly(log n, 1/ϵ)) were obtained only recently [10, 23]. It would be

interesting to see if we can extend our techniques to study non-adaptive algorithms for edge
estimation using IS queries or in the standard adjacency list query model, studied in the
sublinear time graph algorithms literature.
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Abstract
Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a
given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest
possible sequence of swaps, each of which exchanges the tokens at the two endpoints of an edge of
the graph. In parallel token swapping, the goal is to use the fewest rounds, each of which consists
of one or more swaps on the edges of a matching. We prove that both of these problems remain
NP-hard when the graph is restricted to be a tree.

These token swapping problems have been studied by disparate groups of researchers in discrete
mathematics, theoretical computer science, robot motion planning, game theory, and engineering.
Previous work establishes NP-completeness on general graphs (for both problems), constant-factor
approximation algorithms, and some poly-time exact algorithms for simple graph classes such as
cliques, stars, paths, and cycles. Sequential and parallel token swapping on trees were first studied
over thirty years ago (as “sorting with a transposition tree”) and over twenty-five years ago (as
“routing permutations via matchings”), yet their complexities were previously unknown.

We also show limitations on approximation of sequential token swapping on trees: we identify a
broad class of algorithms that encompass all three known polynomial-time algorithms that achieve
the best known approximation factor (which is 2) and show that no such algorithm can achieve an
approximation factor less than 2.
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1 Introduction

Imagine n distinctly labeled tokens placed without collisions on the n vertices of a graph G.
For example, these n tokens might represent (densely packed) movable agents – robots,
people, packages, shipping containers, data packets, etc. – while the n vertices represent
possible agent locations. Now suppose we want to move the tokens/agents around, for example,
to bring certain shipping containers to the loading side of a cargo ship. In particular, we
can suppose every token has a given start vertex and destination vertex, and the goal is to
move every token to its desired destination. Because every vertex has a token (agents are
densely packed), a natural reconfiguration operation is to swap two adjacent tokens/agents,
that is, to exchange the tokens on the two endpoints of a given edge in G. In this paper, we
study token reconfiguration by swaps from a given start configuration to a given destination
configuration with two natural objective functions:
1. (Sequential) Token Swapping (a.k.a. “sorting with a transposition graph” [2]): Min-

imize the number of swaps, i.e., the total work required to reconfigure.
2. Parallel Token Swapping (a.k.a. “routing permutations via matchings” [3]): Minimize

the number of rounds of simultaneous swaps (where the edges defining the swaps form
a matching, so avoid conflicting shared endpoints), i.e., the total execution time or
makespan required to reconfigure.

These reconfiguration problems can be cast in terms of the symmetric group. Each
possible reconfiguration step – swapping along one edge in the sequential problem, or
swapping along every edge of a matching in the parallel problem – is a particular permutation
on the n tokens (an element of the symmetric group Sn). Assuming the graph is connected,
these permutations generate Sn, defining a Cayley graph C [9] where each node π in C

corresponds to a permutation π of the tokens (a collision-free placement of the tokens) and
an undirected edge connects two nodes π1, π2 in C if there is a reconfiguration step (swapping
an edge or matching in G) that transforms between the two corresponding permutations
π1, π2. Minimizing the number of reconfiguration steps between two configurations of the
tokens (sequential/parallel token swapping) is equivalent to finding the shortest path in the
Cayley graph between two given nodes corresponding to two given permutations in Sn. In
fact, sequential token swapping was first studied by Cayley in 1849 [8] who (before inventing
the Cayley graph) solved the problem on a clique, i.e., without any constraint on which
tokens can be swapped.

Since its introduction, token swapping has been studied by many researchers in many
disparate fields, from discrete mathematics [8, 25, 27, 29, 24, 28, 21] and theoretical computer
science [17, 20, 13, 30, 32, 4, 23, 7, 31, 11, 18, 10, 6] to more applied fields including network
engineering as mentioned earlier [2], robot motion planning [12, 26], and game theory [16].
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What is the complexity of token swapping? In general, it is PSPACE-complete to find a
shortest path between two given nodes in a Cayley graph defined by given generators [17]. But
when the generators include transpositions (single-swap permutations) as in both sequential
and parallel token swapping, O(n2) swaps always suffice [30], so the token-swapping problems
are in NP. Both sequential token swapping [23] and parallel token swapping [5, 18] are known
to be NP-complete on a general graph.

Sequential token swapping on general graphs is also known to be APX-hard [23], and
even W[1]-hard with respect to the number of swaps [7]. For the special case of graphs with
constant treewidth and constant diameter, sequential token swapping is also known to be
NP-hard [7]. Additionally, for the special case of trees, but for the variant where the tokens
have “weights” and “colors” sequential token swapping is known to be NP-hard [6]. From
the algorithms side, there is a 4-approximation for sequential token swapping in general
graphs [23]. Polynomial-time exact algorithms are known for a number of special classes of
graphs including cliques [8], paths [20], cycles [17], stars [25, 24], brooms [28, 18, 6], complete
bipartite graphs [30], and complete split graphs [32]. The problem is also known to be fixed
parameter tractable (where the parameter is the number of swaps) on nowhere dense graphs,
which includes planar graphs and graphs of bounded treewidth [7]. See also the surveys by
Kim [19] and Biniaz et al. [6].

In this paper, we study the special case when the underlying graph is a tree. Sequential
token swapping on a tree was first studied over thirty years ago, even before the problem was
studied on general graphs. Akers and Krishnamurthy [2] studied the problem in the context
of interconnection networks. Specifically, they proposed connecting processors together
in a network defined by a Cayley graph, in particular a Cayley graph of transpositions
corresponding to edges of a tree (what they call a transposition tree), so the shortest-path
problem naturally arises when routing network messages. They gave an algorithm for finding
short (but not necessarily shortest) paths in the resulting Cayley graphs, and characterized
the diameter of the Cayley graph (and thus found optimal paths in the worst case over
possible start/destination pairs of vertices) when the tree is a star. Follow-up work along
this line attains tighter upper bounds on the diameter of the Cayley graph in this situation
when the graph is a tree [27, 13, 21, 11] and develops exponential algorithms to compute the
exact diameter of the Cayley graph of a transposition tree [10], though the complexity of the
latter problem remains open.

Sequential token swapping on a tree is the related problem of computing the shortest-
path distance between two given nodes in the Cayley graph of a transposition tree. For
sequential token swapping on a tree, the literature exhibits a curious phenomenon whereby
there are three 2-approximation algorithms that were all developed independently and all
use completely different techniques. These algorithms are by Akers and Krishnamurthy [2]
in 1989, Vaughan and Portier [29] in 1995, and Yamanaka et al. [30] in 2015. No better
approximation factor than 2 is known.

Parallel token swapping was also introduced in the context of network routing: in 1994,
Alon, Chung, and Graham [3] called the problem “routing permutations via matchings”.
They focused on worst-case bounds for a given graph (the diameter of the Cayley graph);
in particular, they proved that any n-vertex tree (and thus any n-vertex connected graph)
admits a solution with less than 3n rounds, a bound later improved to 3

2 n + O(log n) [33].
Like sequential token swapping, computing the exact diameter of the Cayley graph of a given
tree remains open.

Parallel token swapping on a tree is the related problem of computing the shortest-path
distance between two given nodes in such a Cayley graph. Parallel token swapping is known
to be NP-complete in bipartite maximum-degree-3 graphs, NP-complete even when restricted
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to just three rounds, but polynomial-time when restricted to one or two rounds, but NP-
complete again for “colored” tokens restricted to two rounds [5, 18]. Two approximation
results are known: an additive approximation for paths which uses only one extra round [18],
and a multiplicative O(1)-approximation for the n × n grid graph [12].1 For other special
graph classes, there are tighter worst-case bounds on the diameter of the Cayley graph
[3, 22, 5].

1.1 Our Results
There have been many attempts to understand token swapping on a tree, but all have fallen
short of determining its actual complexity. To summarize the previously stated results for
sequential token swapping on a tree, there are three known 2-approximation algorithms, and
no better approximation known. There are also exact algorithms for several special cases of
trees, with the most general case being a broom (a path attached to a star). From the hardness
side, attempts to prove that the problem is NP-complete have led to NP-completeness proofs
for more general cases. In particular, token swapping on graphs of constant treewidth and
diameter is NP-hard [7], and the “weighted, colored” variant of token swapping on trees is
NP-hard [6]. This leads to our first main question:

Question: Is sequential token swapping on a tree NP-complete?

This question has been implicit since sequential token swapping on a tree was first studied
over 30 years ago, and the question has been explicitly stated by Biniaz et al. [6] and by
Bonnet et al. [7] who conjectured that the answer is yes.

We resolve this question in the affirmative by providing a proof that sequential token
swapping on a tree is NP-complete.

Next, we turn to the approximability of token swapping on a tree. The fact that there
were three independently discovered 2-approximation algorithms, and nothing better is
known, suggests that perhaps there is some barrier at approximation factor 2. This leads to
our second main question:

Question: Is there an inherent barrier to obtaining a (2 − ε)-approximation for
sequential token swapping on trees?

We address this question by showing that there is indeed a restriction on the types of
algorithms that can achieve approximation factor better than 2. To motivate the class of
algorithms we rule out, it helps to examine known algorithms. Specifically, it was previously
known that neither Akers and Krishnamurthy’s “happy swap” algorithm [2] nor Yamanaka
et al.’s cycle algorithm [30] can possibly achieve an approximation ratio better than 2 [6].
These two algorithms share a natural property: every token t always remains within distance
1 of the shortest path from t’s start vertex to t’s destination vertex. A natural question is,
can a better-than-2 approximation be achieved if one allows tokens to deviate from their
shortest paths more, say to distance 10 or 100?

Motivated by this question, we define an ℓ-straying algorithm as an algorithm that never
moves a token a distance more than ℓ from its shortest path. We prove a surprisingly strong
limitation on ℓ-straying algorithms: any less-than-2-approximation algorithm for sequential

1 The results of [12] are phrased in terms of motion planning for robots, and in terms of a model where
an arbitrary disjoint collection of cycles can rotate one step in a round. However, the techniques quickly
reduce to the model of swapping disjoint pairs of robots, so they apply to parallel motion planning as
well. They show that there is always a solution within a constant factor of the obvious lower bound on
the number of rounds: the maximum distance between any token’s start and destination.
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token swapping on trees must in general bring a token arbitrarily far – an Ω(n1−ε) distance
away – from its shortest path. That is, no ℓ-straying algorithm for ℓ = o(n1−ε) can achieve
better than a 2-approximation.

The other known 2-approximation algorithm (besides [2] and [30]), is the Vaughan-Portier
algorithm [29], which in fact does move tokens arbitrarily far from their shortest paths. That
is, our result on ℓ-straying algorithms does not imply a limitation on the Vaughan-Portier
algorithm. To address this, we also obtain the first proof that the Vaughan-Portier algorithm
[29] is no better than a 2-approximation; the best previous lower bound for its approximation
factor was 4

3 [6]. Thus, none of the known algorithms or even their generalizations can
improve upon the approximation factor of 2.

For parallel token swapping on a tree, less is known than for the sequential version. In
particular, there is no known approximation algorithm nor is there any known hardness for
tree-like graphs. Thus, the complexity of this problem is completely unclear. This leads to
our third main question:

Question: What is the complexity of parallel token swapping on a tree?

We address this question by showing that parallel token swapping on a tree is NP-hard.
In summary, our results are as follows:

1. Sequential token swapping is NP-complete on trees.
2. Parallel token swapping is NP-complete on trees, even on subdivided stars.
3. Limitations on known techniques for approximating sequential token swapping on trees:

a) No ℓ-straying algorithm for any ℓ = O(n1−ε) can achieve better than a 2-approximation.
b) The Vaughan-Portier algorithm does not achieve better than a 2-approximation.

1.2 Our Techniques
NP-hardness of sequential token swapping on trees

Our NP-hardness proof for sequential token swapping on trees is our most technical and
conceptually difficult result. Prior work has built towards this result by providing NP-
hardness for generalizations of the problem, but there appear to be barriers against extending
these techniques. In the following, we briefly review this prior work and compare it to our
own.

Token swapping on trees is known to be NP-hard for the variant where tokens have
weights as well as “colors” [6]. However, the use of weights and colors appears to be crucial
to the reduction. Token swapping is also known to be NP-hard on graphs with treewidth
2 and diameter 6 [7]. In particular, the graph in this construction is almost a tree in the
sense that if you remove a single vertex the remaining graph is a forest. However, this single
vertex has very high degree and is crucial to the construction. Given the apparent barriers
against extending these known approaches to token swapping on trees, we take a completely
different approach.

We reduce from the permutation generation problem in Garey and Johnson [14, MS6]
(also called the “word problem for products of symmetric groups” (WPPSG) in [15]). In
comparison, the above prior work [6, 7] reduces from the vertex cover problem, and the
3-dimensional matching problem, respectively. We observe that the permutation generation
problem has a similar feel to token swapping, as it can be recast in terms of a token-swapping
reachability problem as follows:
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Star Subsequence Token-Swapping Reachability (Star STS): Given a star
graph with center vertex 0 and leaves 1, 2, . . . , m, where vertex i initially has a token i;
given a target permutation π of the tokens; and given a sequence of swaps s1, s2, . . . , sn,
where sj ∈ {1, . . . , m} indicates a swap on edge (0, sj), is there a subsequence of the
given swaps that realizes π?

As a first step towards reducing from Star STS to token swapping on trees, we reduce to
weighted token swapping on trees, where each token has a non-negative integer weight, and
the cost of a swap is the sum of the weights of the two tokens being swapped. Our reduction
contains only tokens of weight 0 or 1. That is, the tokens of weight 0 are free to move, while
the tokens of weight 1 cost to move. Our reduction from Star STS to 0/1-weighted token
swapping on trees is quite simple. It is presented in Section 2.

The situation becomes much more complicated when we extend this result from the
0/1-weighted setting to the unweighted setting. Now, we need to simulate the weight-0
tokens using unweighted tokens. This introduces several complications.

First, we will describe why weight-0 tokens are integral to our reduction from Star STS
to 0/1-weighted token swapping on trees. The Star STS problem asks whether there exists a
subsequence of swaps that realizes the target permutation π. This subsequence could contain
any number of swaps. In our reduction to 0/1-weighted token swapping, the swaps from this
subsequence are represented using tokens of weight 0. This way, if there is a solution to the
Star STS instance, then the cost of the 0/1-weighted token swapping is the same regardless
of how many swaps occurred in the solution to the Star STS instance. This introduces a
challenge for unweighted token swapping for the following reason. For 0/1 weighted token
swapping, we prove a statement of the form “if the token swapping cost is exactly K then
there is a solution to the Star STS instance”, while for unweighted token swapping, we prove
a statement of the form “if the token swapping cost is within a particular range then there is
a solution to the Star STS instance”. The second statement is much more difficult to prove
because we need to argue that the additional swaps in this range do not allow the tokens to
move around in a clever way to admit a solution even when there is no Star STS solution. In
fact, as we discuss next, natural modifications of the weighted construction do admit such
clever ways to create counterexamples.

The most basic first attempt to remove the weights from the weighted construction is
simply to replace all weight-0 tokens with unweighted tokens. This construction admits
a straightforward counterexample due to the increased cost of swapping these formerly
weight-0 tokens. Thus, we would like to make the contribution of the formerly weight-0
tokens negligible in comparison to the weight-1 tokens. A natural attempt is to replace each
weight-1 token with a long path of tokens. However, as it turns out, there is a surprising and
subtle counterexample to this strategy. To overcome this counterexample, we introduce a set
of “padding tokens” throughout the graph whose role is to block any deviant movement of
the original tokens.

The resulting proof is very involved. To give a sense of the complexity, our 0/1-weighted
hardness proof fits in just a couple of pages, while our unweighted proof spans around thirty
pages. Our unweighted proof is presented in Section 3.

NP-hardness of parallel token swapping on trees

We prove that parallel token swapping on trees is NP-hard, even when restricted to subdivided
stars. This result is presented in the extended version of this paper [1]. As for sequential
token swapping, we reduce from the Star STS problem.
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Our construction is reminiscent of our construction for sequential token swapping, although
the details differ significantly. In particular, we use the single high-degree vertex in the
subdivided star as a bottleneck to limit the available parallelism. We develop “enforcement”
tokens that need to swap through the high-degree vertex to force congestion at specific times.
This proof’s complexity is between the weighted and unweighted sequential hardness proofs.

Limitations on known techniques for approximation algorithms

To prove that neither an ℓ-straying algorithm nor the Vaughan-Portier algorithm can achieve
better than a 2-approximation, we use a problem instance that has been previously used to
prove that Akers and Krishnamurthy’s and Yamanaka et al.’s algorithms cannot achieve an
approximation ratio better than 2 [6]. To prove our results, we show that while there exists a
solution to the instance with K swaps (for some K), (1) every ℓ-straying algorithm performs
2K swaps, and (2) the Vaughan-Portier algorithm performs 2K swaps. The existence of
a solution with K swaps was already shown by [6], so it remains to show that the above
algorithms require 2K swaps.

We emphasize that the proofs in [6] for Akers and Krishnamurthy’s and Yamanaka et
al.’s algorithms, as well as our proof for the Vaughan-Portier algorithm, are for specific
algorithms, while our proof for ℓ-straying algorithms shows limitations against a very wide
class of possible algorithms. Thus, our proof for ℓ-straying algorithms requires much more
general reasoning about how tokens can possibly move around the graph.

2 Weighted sequential token swapping on trees is NP-hard

In this section, we prove that weighted token swapping on a tree is NP-hard, even when the
token weights are in {0, 1}. Our purpose is to introduce the general idea that is used in our
main NP-completeness proof for the unweighted case given in Section 3.

We first precisely define the decision problem weighted sequential token swapping
on trees [6], abbreviated in this section to weighted token swapping. The input consists
of: a tree on n vertices with distinct initial positions (vertices) and distinct target positions
for the n tokens; non-negative integer weights on the tokens; and a maximum cost K. The
cost of a swap is the sum of the weights of the two tokens involved. The decision problem
asks whether there is a sequence of swaps that moves all the tokens to their target positions
and such that the sum of the costs of the swaps is at most K.

It is not clear whether the weighted token swapping problem lies in NP; however, it is in
NP if K is given in unary.2

We prove that weighted token swapping is NP-hard when K is given in unary. The
reduction uses Star STS. In order to distinguish tokens and vertices in the original star from
those in the tree that we construct, we will call the tokens of the Star STS instance items
and we will call the leaves slots. Then the instance of Star STS consists of: a star with center
0 and slots 1, . . . , m, each of which initially has an item of its same label; a permutation π

of the items; and a sequence s1, . . . , sn of slots that specify the allowed swaps. Figure 1(a)
shows an example input for m = 4 slots, 5 items and a sequence of length n = 7.

▶ Theorem 1. Weighted token swapping on trees is NP-hard.

2 Consider a minimum length swap sequence of weight at most K. The number of swaps involving a
nonzero weight token is at most K. Because the sequence has minimum length, it can be shown that
no two zero-weight tokens swap more than once. Thus the sequence has length at most K + n2 and
provides a polynomial-size certificate, showing that the problem is in NP.
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0[3]

1[0] 2[2] 3[4] 4[1]

  s1, s2, s3, s4, s5, s6, s7  =

   1,  3,  4,  1,  2,  1,  2

(a) (b)

0[3]

1[0]

x1[y7]

y1[x6]

y5[x7]

y2[x2]

y3[x3]

y4[x4] y6[x1]

y7[x5]

2[2]

3[4]

4[1]

x2[y6]x3[y5]x4[y4]x5[y3]x6[y2]x7[y1]

Figure 1 (a) An instance of Star STS with m = 4 slots and a sequence of length n = 7; notation
a[b] indicates that token a is initially at this vertex and token b should move to this vertex. This
instance has no solution because item 4 should move to slot 3, which is possible only if slot 3 appears
after slot 4 in the sequence. (b) The corresponding instance of weighted token swapping with the
ordering gadget on the left and m = 4 slot gadgets attached to the root, each with a nook vertex
shown in red. After swapping item token 0 at the root with token y1 in the first (bottom) slot
gadget there is an opportunity to swap tokens 0 and 1 for free along the nook edge of the first slot
gadget, before moving y1 to its target position at the end of the ordering gadget and moving x1 to
its target position at the end of the first slot gadget.

Proof. Suppose we are given an instance of Star STS as described above. We may assume
without loss of generality that every slot appears in the sequence (otherwise remove that slot
from the problem) and that no slot appears twice in a row in the sequence.

Construct a tree with a root, an ordering gadget which is a path of length n attached
to the root, and m slot gadgets attached to the root. Slot gadgets are defined below. See
Figure 1(b) where the ordering gadget of length n = 7 appears on the left and there are
m = 4 slot gadgets attached to the root. We picture the tree with the root in the middle,
and use directions left/right as in the figure.

Let ni be the number of occurrences of slot i in the input sequence. Observe that∑m
i=1 ni = n. Slot gadget i consists of a path of ni vertices, plus an extra leaf attached

to the leftmost vertex of the path. This extra leaf is called the nook of the slot gadget.
The m nooks and the root are in one-to-one correspondence with the slots and the center of
the original star (respectively), and we place item tokens at these vertices whose names,
initial positions, and final positions correspond exactly to those of the items of the input
star. These item tokens are given a weight of 0.

There are 2n additional non-item tokens x1, . . . , xn and y1, . . . , yn. These all have
weight 1. The xj ’s are initially placed along the ordering gadget path, in order, with x1
at the right and xn at the left. The ordering path is also the target position of the yj ’s in
reverse order with y1 at the left and yn at the right.

Suppose slot i appears in the sequence as sj1 , sj2 , . . . , sjni
with indices in order j1 < j2 <

· · · < jni
. Then tokens yj1 , yj2 , . . . , yjni

are initially placed along the path of slot gadget i,
in order with smallest index at the left. The path of slot gadget i is also the target position
of the tokens xj1 , xj2 , . . . , xjni

in reverse order with smallest index at the right.

Consider, for each non-item token xj or yj , the distance from its initial location to its
target location. This is a lower bound on the cost of moving that token. We set the max
cost K to the sum of these lower bounds. This guarantees that every xj or yj only travels
along its shortest path. Observe that this reduction takes polynomial time. We now prove
that a YES instance of Star STS maps to a YES instance of token swapping and vice versa.
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YES instance of Star STS. Suppose the Star STS instance has a solution. The “intended”
solution to the token swapping instance implements each sj for j = 1, . . . , n as follows.
Suppose sj = i. By induction on j, we claim that token yj will be in the leftmost vertex of
slot gadget i when it is time to implement sj . Swap token yj with the item token t currently
at the root. Then item token t has the opportunity to swap for free with the item token
in nook i. We perform this free swap if and only if swap sj was performed in the solution
to Star STS. Next, swap tokens yj and xj – we claim by induction that xj will be in the
rightmost vertex of the ordering gadget. Finally, move token yj to its target position in the
ordering gadget, and move xj to its target position in slot gadget i. It is straightforward to
verify the induction assumptions. Every xj and yj moves along its shortest path so the cost
of the solution is equal to the specified bound K.

YES instance of weighted token swapping. Suppose the weighted token swapping instance
has a solution with at most K swaps. Because K is the sum of the distances of the non-item
tokens from their target positions, each xj and yj can only move along the shortest path
to its target position. Token xj must move into the root before xj+1, otherwise they would
need to swap before that, which means moving xj the wrong way along the ordering gadget
path. Similarly, yj must move into the root before yj+1, otherwise they need to swap after
that, which means moving yj+1 the wrong way.

Furthermore, xj must move into the root before yj+1 otherwise the ordering gadget would
contain xj , . . . , xn, and y1, . . . , yj , a total of n + 1 tokens, which is more tokens than there
are vertices in the ordering gadget.

We also claim yj must move into the root before xj+1. The nooks can only contain item
tokens, since no xj or yj can move into a nook. This accounts for every item token except for
one “free” item token. Now suppose xj+1 moves into the root before yj . Then the ordering
gadget contains xj+2, . . . , xn, and y1, . . . , yj−1, a total of n − 2 tokens. Even if the free item
token is in the ordering gadget, there are not enough tokens to fill the ordering gadget.

Thus the xj ’s and yj ’s must use the root in order, first x1 and y1 in some order, then x2
and y2 in some order, etc. Finally, we examine the swaps of item tokens. A swap between
two item tokens can only occur when the free item token is at the parent of a nook. Suppose
this happens in slot gadget i. Then some token yj must have left the slot gadget, and the
corresponding token xj has not yet entered the slot gadget, which means that neither of the
tokens yj+1 or xj+1 has moved into the root. This implies that any swap of item tokens is
associated with a unique sj = i, and such swaps must occur in order of j, 1 ≤ j ≤ n. Thus
the swaps of item tokens can be mimicked by swaps in the original Star STS sequence, and
the Star STS instance has a solution. ◀

3 Sequential token swapping on trees is NP-complete

Recall that the token swapping problem is a decision problem: given a tree with initial and
target positions of the tokens, and given a non-negative integer K, can the tokens be moved
from their initial to their target positions with at most K swaps. Membership in NP is
easy to show: any problem instance can always be solved with a quadratic number of swaps
by repeatedly choosing a leaf and swapping its target token to it. Thus, a certificate can
simply be the list of swaps to execute. Here we give an overview of the construction for the
unweighted case; however, most of the proof is left to the full version [1].
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3.1 Overview
We reduce from Star STS and follow the same reduction plan as for the weighted case,
building a tree with an ordering gadget and m slot gadgets, each with a nook for an item
token. However, there are several challenges. First of all, the swaps with item tokens are no
longer free, so we need to take their number into account. Secondly, we cannot know the
number of item token swaps precisely since it will depend on the number of swaps (between
0 and n) required by the original Star STS instance. Our plan is to make this “slack” n very
small compared to the total number of swaps needed for the constructed token swapping
instance. To do this, we will make the total number of swaps very big by replacing each of the
non-item tokens xj and yj by a long path of non-item tokens called a “segment.” This raises
further difficulties, because nothing forces the tokens in one segment to stay together, which
means that they can sneak around and occupy nooks, freeing item tokens to swap amongst
themselves in unanticipated ways. To remedy this we add further “padding segments” to the
construction. The construction details are given in Section 3.2.

Proving that our unweighted construction is correct is much more involved than in the
weighted case. There are two parts to the proof.

Part 1: YES instance of Star STS → YES instance of token swapping. In the
full version [1] we show that if there is a solution to an instance of Star STS then the
constructed token swapping instance can be solved with at most K swaps (where K will
be specified in the construction). This solution uses exactly H = K − n swaps to get the
non-item tokens to their target positions, and uses between 0 and n additional swaps to
get the item tokens to their target positions. Note that H counts swaps of both item and
non-item tokens and is more than just the cost of moving each non-item token along its
shortest path.

Part 2: YES instance of token swapping → YES instance of Star STS. In the full
version [1] we show that if the constructed token swapping instance can be solved with at
most K swaps then the original Star STS instance has a solution. We show that H swaps
are needed to get the non-item tokens to their destinations. We then show that with only
n remaining swaps, the motion of item tokens is so constrained that they must behave
“as intended” and therefore correspond to swaps in the original Star STS instance.

3.2 Construction of token swapping instance
Suppose we have an instance of Star STS where the star has center 0 and leaves 1, . . . , m

and each vertex has a token of its same label. We have a permutation π of the tokens with
π(0) = 0 and a sequence s1, . . . , sn with sj ∈ {1, . . . , m} that specifies the allowed swaps. As
in the weighted case in Section 2, we will refer to the tokens of the Star STS instance as
items and the leaves as slots. We assume without loss of generality that every slot appears
in the sequence (otherwise remove that slot from the problem) and that no slot appears
twice in a row in the sequence.

Construct a tree as in the weighted case except that each individual xj and yj is replaced
by a sequence of k vertices (and tokens) with k = (mn)c for a large constant c, to be set
later. Each such sequence of length k is called a big segment. Refer to Figure 2 where
the tree is drawn with the root in the middle, the ordering gadget to the left, and the slot
gadgets to the right. We will refer to left and right as in the figure. The target ordering of
tokens within a big segment behaves as though the segment just slides along the shortest
path to its target, i.e., the left to right order of tokens in a segment is the same in the initial
and the final configurations.
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Figure 2 (a) An instance of Star STS with m = 4 slots and a sequence of length n = 5. (b) The
corresponding instance of token swapping with the initial token positions. The root has item token 0
(coloured red). The ordering gadget lies to the left of the root. There are 4 slot gadgets to the right
of the root. A long oval indicates a big segment of length k, and a short oval indicates a padding
segment of length k′ = k/n8. Each nook vertex (coloured red) is attached to the kth vertex from the
root along the slot gadget path. Item tokens are coloured red; non-slot tokens are in the segment
ovals coloured gray; and slot tokens are in the segment ovals coloured white. (c) The target token
positions. In the first round of the “intended” solution, big segments y1 and x1 first change places.
As y1 moves left, item token 0 moves to nook parent 1 where it may swap with item token 1. As x1

moves right, the item token moves back to the root. Then segment y1 moves to the far left of the
ordering gadget and x1 moves to the far right of the first slot gadget. Next, padding segments p3,1

and q3,1 change places across the root and move to their target locations; then p2,1 and q2,1; then
p4,1 and q4,1; and finally p1,1 and q1,1. Note the ordering q3,1, q2,1, q4,1, q1,1 of padding segments
that lie to the right of y1 in the final configuration – q1,1 is last because s1 = 1 and q3,1 is first
because s2 = 3.

The nook vertex in each slot gadget is attached to the vertex at distance k from the root
in the slot gadget, and this vertex is called the nook parent. The edge between the nook
vertex and the nook parent is called the nook edge, see Figure 2. In the “intended” solution,
the big segments leave the slot gadgets and enter the ordering gadget in the order y1, . . . , yn.

Although we will not give details, the construction so far allows “cheating” via interference
between slot gadgets. To prevent this, we add a total of 2nm padding segments each of
length k′ = k/n8. The intuition is in the “intended” solution, after yj enters the ordering
gadget, one padding segment from each slot gadget will enter the ordering gadget, and
then yj+1 will do so. We now give the details of the padding segments in the initial/final
configurations of the slot/ordering gadgets. In the initial configuration there are nm padding
segments qi,j , i = 1, . . . , m, j = 1, . . . , n in the slot gadgets, and nm padding segments
pi,j , i = 1, . . . , m, j = 1, . . . , n in the ordering gadget. In the final configuration, the qi,j ’s
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are in the ordering gadget and the pi,j ’s are in the slot gadgets. In the initial configuration,
slot gadget i, i = 1, . . . , m, contains n padding segments qi,j , j = 1, . . . , n. They appear in
order from left to right with big segments mixed among them. Specifically, if yj′ is a big
segment in slot gadget i then yj′ appears just before qi,j′ . In the final configuration of the
ordering gadget there are m padding segments after each of the n big segments. The padding
segments after yj are qi,j , i = 1, . . . , m. They appear in a particular left-to-right order: qsj ,j

is last, qsj+1,j is first, and the others appear in order of index i. Within one padding segment,
the left-to-right ordering of tokens is the same in the initial and final configurations.

The initial configuration of the ordering gadget is obtained from the final configuration by:
reversing (from left to right) the pattern of big segments and padding segments; changing y’s
to x’s, and changing q’s to p’s. Similarly, the final configuration of slot gadget i is obtained
from the initial configuration of slot gadget i in the same way.

Let A be the set of non-item tokens, and for any token t, let dt be the distance between
t’s initial and target positions. To complete the reduction, we will set H to be 1

2
∑

t∈A(dt +1)
and set the bound K to be H + n. The decision question is whether this token swapping
instance can be solved with at most K swaps. The reduction takes polynomial time.

The remainder of the proof can be found in the full version [1].

4 Known techniques preclude approximation factors less than 2

Previous results about sequential token swapping on trees include three different polynomial
time 2-approximation algorithms and some lower bounds on approximation factors. The
three algorithms all have the property that if a token at a leaf is at its destination (i.e., it is
a “happy leaf token”) then the algorithm will not move it. Biniaz et al. [6] proved that any
algorithm with this property has a (worst case) approximation factor at least 4

3 . They also
proved via ad-hoc arguments that the approximation factor is exactly 2 for two of the known
2-approximation algorithms (the “Happy Swap Algorithm” and the “Cycle Algorithm”). For
the third 2-approximation algorithm, the Vaughan-Portier algorithm, they could not prove a
lower bound better than 4

3 .
We prove that the Vaughan-Portier algorithm has approximation factor exactly 2. We also

extend the approximation lower bounds of Biniaz et al. by proving that the approximation
factor is at least 2 for a larger family of algorithms. We formalize this family as follows. For
token t let Pt be the path from t’s initial position to its final position. A sequence of token
swaps is ℓ-straying if at all intermediate points along the sequence, every token t is within
distance ℓ of the last vertex of Pt that it has reached up to this point. A token swapping
algorithm is ℓ-straying if it produces ℓ-straying sequences.

Both approximation lower bounds will be proved for the same family of trees that was
used by Biniaz et al. [6]. For any k and any odd b we define a tree Tk,b together with initial
and final positions of tokens. The tree Tk,b has b paths of length k attached to a central
vertex c, and a set L of k leaves also attached to c. See Figure 3. The tokens at c and L are
happy – they are at their final positions. The tokens in branch i, 0 ≤ i ≤ b − 1, have their
final positions in branch i + 1, addition modulo b, with the initial and final positions equally
far from the center c.

Biniaz et al. [6] proved that the optimum number of swaps for Tk,b is at most (b +
1)(

(
k+1

2
)

+ 2k). The solution repeatedly exchanges the tokens in branch i, 0 ≤ i ≤ b − 1,
modulo b, with the tokens at L. The first exchange moves the tokens initially at L into
branch 0, and the (b + 1)st exchange moves those tokens back to L. In the full version [1] we
prove that for Tk,b the approximation factor is not better than 2 for ℓ-straying algorithms
and for the Vaughan-Portier algorithm.
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Figure 3 Tree Tk,b with b = 3 branches each of length k = 4, and with k = 4 leaves attached to
the center node. The dashed arrows go from a token’s initial to final position. The figure is from [6].

5 Open Problems

Many interesting related problems remain open. For sequential token swapping on trees,
where is the divide between NP-complete and polynomial-time? Our reduction’s tree is a
subdivided star (as for parallel token swapping) with the addition of one extra leaf (the nook)
per path. By contrast, there is a polynomial-time algorithm for the case of a broom (a star
with only one edge subdivided) [28, 18, 6]. What about a star with two subdivided edges?

For parallel token swapping, even the case of a single long path is open. Kawahara et
al. [18] gave an additive approximation algorithm that uses at most one extra round. Is there
an optimal algorithm, or is parallel token swapping NP-hard on paths?

There are also open problems in approximation algorithms. In parallel token swapping,
we know that there is no PTAS [18]. Is there an O(1)-approximation for trees or general
graphs? For sequential token swapping, there is a 4-approximation algorithm [23]. Is 4 a
lower bound on the approximation factor of this algorithm? Is 4-approximation the best
possible for general graphs?

Although this paper focused on the best reconfiguration sequence, much research is
devoted to understanding the worst-case behavior for a given graph; is it NP-hard to
determine the diameter of the Cayley graph, i.e., the maximum number of reconfiguration
steps that can be required for any pair of token configurations? This problem is open for
both sequential token swapping (implicit in [10]) and parallel token swapping [3].
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Abstract
We study the b-matching problem in bipartite graphs G = (S, R, E). Each vertex s ∈ S is a server
with individual capacity bs. The vertices r ∈ R are requests that arrive online and must be assigned
instantly to an eligible server. The goal is to maximize the size of the constructed matching. We
assume that G is a (k, d)-graph [19], where k specifies a lower bound on the degree of each server
and d is an upper bound on the degree of each request. This setting models matching problems in
timely applications.

We present tight upper and lower bounds on the performance of deterministic online algorithms.
In particular, we develop a new online algorithm via a primal-dual analysis. The optimal competitive
ratio tends to 1, for arbitrary k ≥ d, as the server capacities increase. Hence, nearly optimal solutions
can be computed online. Our results also hold for the vertex-weighted problem extension, and thus
for AdWords and auction problems in which each bidder issues individual, equally valued bids.

Our bounds improve the previous best competitive ratios. The asymptotic competitiveness of 1
is a significant improvement over the previous factor of 1 − 1/ek/d, for the interesting range where
k/d ≥ 1 is small. Recall that 1 − 1/e ≈ 0.63. Matching problems that admit a competitive ratio
arbitrarily close to 1 are rare. Prior results rely on randomization or probabilistic input models.
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1 Introduction

Maximum matching is a fundamental problem in computer science. In a seminal paper Karp,
Vazirani and Vazirani [15] introduced online matching in bipartite graphs G = (S ∪R, E).
The vertices of S are known in advance, while the vertices of R (requests) arrive one by
one and must be matched immediately to an eligible partner. The b-matching problem
is a generalization where the vertices of S (servers) have capacities and may be matched
multiple times, see e.g. [14]. Online bipartite matching and capacitated extensions have
received tremendous research interest over the past 30 years. In this paper we study the
b-matching problem in bounded-degree graphs, defined in [19]. We assume that there is a
lower bound on the degree of each server s ∈ S, meaning that there is a certain demand for
each server. Furthermore we assume that there is an upper bound on the degree of each
r ∈ R, i.e. each request can only be assigned to a subset of the servers. This setting models
matching problems in many timely applications, as we will describe below.
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More formally, we investigate the following problem. Again, let G = (S ∪ R, E) be a
bipartite graph, where the vertices of S are servers and the vertices of R are requests. The
set S is known in advance. Each server s ∈ S has an individual capacity bs ∈ N, indicating
that the server can be matched with up to bs requests. The vertices of R arrive online, one
by one. Whenever a new request r ∈ R arrives, its incident edges are revealed. The request
has to be matched immediately and irrevocably to an eligible server, provided that there
is one. The goal is to maximize the number of matching edges. We will also examine the
vertex-weighted problem extension, where additionally each server s ∈ S has a weight ws

and the value of every matching edge incident to s is multiplied by ws. Now the goal is to
maximize the total weight of the constructed matching.

We assume that G is a (k, d)-graph, defined by Naor and Wajc [19], where k and d are
positive integers. Each server s ∈ S has a degree d(s) ≥ k · bs. Each request r ∈ R has a
degree d(r) ≤ d. Naor and Wajc [19] defined these graphs for the general AdWords problem.
Note that the inequality d(s) ≥ k · bs expresses a degree bound in terms of the server capacity.
This is essential. As we shall see, the performance of algorithms depends on the degrees
d(s) as a function of bs. A degree bound independent of bs is vacuous for larger bs. Also, a
company operating a high-capacity server expects the server to be attractive and a potential
host for a large number of requests. Otherwise it might be beneficial to reduce the server
capacity.

The best results will be obtained if k ≥ d. In this case the average demand for each server
slot is high, compared to the number of servers a request can be assigned to. This setting
is also very relevant in applications. We will assume that d ≥ 2. If d = 1, any Greedy
algorithm constructs an optimal matching. We remark that (k, d)-graphs are loosely related
to d-regular graphs in which each vertex has a degree of exactly d and a capacity of 1. This
graph class has been studied extensively in computer science and discrete mathematics, see
e.g. [5, 6, 7, 10, 20].

The b-matching problem in (k, d)-graphs models many problems in modern applications,
cf. [4, 12, 19]. The following description also addresses the degree constraints.

Video content delivery, web hosting, remote data storage: Consider a collection of servers
in a video content delivery network, a web hosting provider, or a remote data storage service.
A sequence of clients arrives, each with a request that videos be streamed, web pages be
hosted, or data be stored. Based on the servers’ geographic distribution, average performance,
technology used or pricing policies, each request can only be hosted at a small subset of the
servers or server locations. Each server has a large capacity and is well suited to service a
huge number of requests in the arriving client sequence.

Job scheduling: Consider a collection of compute servers, each with certain capabilities,
located for instance in a data center. Over a time horizon jobs arrive, requesting service.
Based on computing demands, expected response time, hardware and software requirements,
each job can only be executed on a subset of the servers. During the given time horizon,
each server can process a large number of jobs and is a suitable platform to execute very
many of the incoming jobs.

AdWords and ad auctions: Consider a search engine company or digital advertising
platform. There is a set of advertisers, each with a daily budget, who wish to link their ads
to users of the search engine/digital platform and issue respective bids. The users arrive
online and must be allocated instantly to the advertisers. Based on his search keywords,
browsing history and possible profile, each user is interesting to a small set of advertisers.
Each advertiser has a decent budget and targets a large population of the users. Obviously,
in this application the advertisers correspond to the servers and the users are the incoming
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requests. The b-matching problem models the basic setting where the bids of all advertisers
are either 0 or 1. The vertex-weighted extension captures the scenario where all the bids of
an advertiser s ∈ S have a value of 0 or ws. These base cases are also studied in recent work
by Vazirani [21].

We analyze the performance of online algorithms using competitive analysis. Given
an input graph G, let Alg(G) denote the size (or weight) of the matching constructed by
an online algorithm Alg. Let Opt(G) be the corresponding value of an optimal offline
algorithm Opt. Algorithm Alg is c-competitive if Alg(G) ≥ c ·Opt(G) holds, for all G. In
our analyses we will focus on bipartite (k, d)-graphs G.

Related work. As mentioned above, Karp et al. [15] introduced online matching in bipartite
graphs, in which every vertex has a capacity of 1. The best competitive ratio of deterministic
online algorithms is equal to 1/2. Karp et al. proposed a randomized Ranking algorithm
that achieves an optimal competitive ratio of 1 − 1/e ≈ 0.63. Aggarwal et al. [1] defined
online vertex-weighted bipartite matching and devised a (1− 1/e)-competitive algorithm.

Kalyanasundaram and Pruhs [14] investigated the b-matching problem if all servers have
equal capacity, i.e. bs = b for all s ∈ S. They presented a deterministic Balance algorithm
that matches a new request to an adjacent server whose current load is smallest. Balance
achieves an optimal competitive ratio of 1− 1/(1 + 1/b)b. As b grows, the latter expression
tends from below to 1− 1/e. Grove et al. [12] and Chaudhuri et al. [4] studied b-matchings
with a different objective. At any time an algorithm must maintain a matching between the
requests that have arrived so far and the servers. The goal is to minimize the total number
of switches, reassigning requests to different servers.

The AdWords problem was formally defined by Mehta et al. [18]. They presented a
deterministic online algorithm that achieves a competitive ratio of 1−1/e, under the small-bids
assumption where the bids are small compared to the advertisers’ budgets. No randomized
algorithm can obtain a better competitive factor. Buchbinder et al. [3] examined a setting
where the degree of each incoming user is upper bounded by d and gave an algorithm with
a competitive ratio of nearly 1 − (1 − 1/d)d. Azar et al. [2] showed that this ratio is best
possible, also for randomized algorithms. The expression 1− (1 − 1/d)d is always greater
than 1− 1/e but approaches the latter value as d increases.

The class of (k, d)-graphs was defined by Naor and Wajc [19], who studied online bipartite
matching and the AdWords problem. They proposed an algorithm HighDegree that
matches a new request to an available neighbor of highest current degree. Naor and Wajc
proved that HighDegree and generalizations attain a competitive factor of 1− (1− 1/d)k.
This ratio holds for online bipartite matching and the vertex-weighted extension, where all
vertices have a capacity of 1. Furthermore, it holds for AdWords with equal bids per bidder.
For AdWords with arbitrary bids, the ratio is (1−Rmax)(1− (1− 1/d)k), where Rmax is the
maximum ratio between the bid of any bidder and its total budget. Naor and Wajc showed
that no deterministic online algorithm for bipartite matching can achieve a competitive ratio
greater than 1 − (1 − 1/d)k if k ≥ d. For the general AdWords problem, they proved an
upper bound of (1−Rmax)(1− (1− 1/d)k/Rmax) if k ≥ d. For increasing k/d, the expression
1− (1− 1/d)k tends to 1. For k ≈ d increasing, it approaches again 1− 1/e.

Cohen and Wajc [5] studied online bipartite matching in d-regular graphs and developed
a randomized algorithm with a competitive ratio of 1−O(

√
log d/d), which tends to 1 as d

increases.
Online bipartite matching and the AdWords problem have also been examined in stochastic

input models. A random permutation of the vertices of R may arrive. Alternatively, the
vertices of R are drawn i.i.d. from a known or unknown distribution. For online bipartite
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matching, the best online algorithms currently known achieve competitive ratios of 0.696
and 0.706 [13, 16]. The best possible performance ratios are upper bounded by 0.823 [17],
and hence bounded away from 1. For AdWords, (1− ε)-competitive algorithms are known,
based on the small-bids assumption [8, 9].

Our contributions. We present a comprehensive study of the b-matching problem in (k, d)-
graphs. Specifically, we develop tight lower and upper bounds on the performance of
deterministic online algorithms. The optimal competitive ratio tends to 1, for any choice of
k and d with k ≥ d, as the server capacities increase.

First, in Section 2 we investigate the setting that all servers have the same capacity, i.e.
bs = b for all s ∈ S. We develop an optimal online algorithm WeightedAssignment via a
primal-dual analysis. The resulting strategy is simple. Associated with each server of current
load l and current degree δ is a value V (l, δ). An incoming request is assigned to an eligible
server for which the increment V (l, δ + 1) − V (l, δ) is maximized. The values V (l, δ) can
be calculated in a preprocessing step and retrieved by table lookup when the requests of R

are served. The best values V (l, δ), for variable l and δ, are determined using recurrence
relations. Solving them is non-trivial because two parameters are involved.

We prove that WeightedAssignment achieves a competitive ratio of c∗, where

c∗ = 1− 1
b

(
b∑

i=1
i

(
kb

b− i

)
1

(d− 1)b−i

)(
1− 1

d

)kb

.

This is a slightly complex expression, but it is exact in all terms. In Section 3 we prove that
no deterministic online algorithm can attain a competitive ratio greater than c∗, for any
choices of k and d that fulfill k ≥ d.

In Section 4 we consider two generalizations. We assume that each server s ∈ S has an
individual capacity bs and adapt WeightedAssignment. As for the competitive factor, in
c∗ the capacity b has to be replaced by bmin := mins∈S bs. The resulting competitiveness is
again optimal for k ≥ d. Furthermore, we study the vertex-weighted problem extension and
again adjust our algorithm. The competitive ratios are identical to those in the unweighted
setting, for uniform and variable server capacities. Our results also hold for the AdWords
problem where bidders issue individual, equally valued bids.

In Section 5 we analyze the optimal competitive ratio c∗. We prove that it tends to 1,
for any k ≥ d, as b increases. Furthermore, we show that it is strictly increasing in b. The
analyses are involved and make non-trivial use of Gauss hypergeometric functions.

A strength of our results is that the optimal competitiveness tends to 1, for increasing
server capacities. Hence almost optimal solutions can be computed online. For the AdWords
problem, high server capacities correspond to the small-bids assumption. Remarkably, in
this setting near-optimal ad allocations can be computed based on structural properties of
the input graph if bidders issue individual, equally valued bids. Recall that, without degree
bounds, the competitive ratio for the b-matching problem tends from below to 1− 1/e ≈ 0.63.
The competitiveness of c∗ improves upon the previous best ratio of 1− (1− 1/d)k [19]. The
ratio c∗ is equal to 1− (1− 1/d)k for b = 1 and strictly increasing in b, for any k ≥ d. Our
asymptotic competitiveness of 1 is a significant improvement over 1− (1−1/d)k ≈ 1−1/ek/d,
for the interesting range of small k/d ≥ 1. For k < d, 1− (1− 1/d)k and c∗ can become small.
The algorithms are still 1

2 -competitive since they match requests whenever possible. We are
aware of only two other online matching problems that admit competitive ratios arbitrarily
close to 1. As mentioned above, a randomized algorithm is known for online matching in
d-regular unit-capacity graphs [5]. For the general AdWords problem, respective algorithms
exist if the input R is generated according to probability distributions [8, 9].
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2 An optimal online algorithm

In this section we study the setting that all servers have a uniform capacity of b. We develop
our algorithm WeightedAssignment. While serving requests, the algorithm maintains a
value V (ls, δs), for each server s with load ls and current degree δs. At any point in time
during the execution of the online algorithm, the load of a server s denotes the amount of
matched edges incident to s, while the current degree indicates the total number of edges
incident to s. In order to construct the function V and for the purpose of analysis, we
formulate WeightedAssignment as a primal-dual algorithm. The primal and dual linear
programs of the b-matching problem are given below. The primal variables m(s, r) indicate
if an edge {s, r} ∈ E belongs to the matching. We have dual variables x(s) and y(r).

In the pseudocode of WeightedAssignment, also stated below, Line 7 is the actual
matching step. A new request r is assigned to a neighboring server s for which the difference
V (ls, δs + 1) − V (ls, δs) is maximized. N(r) is the set of adjacent servers with remaining
capacity. All other instructions essentially update primal and dual variables so that a primal
and a dual solution are constructed in parallel.

Observe that no dual variable y(r) of any request r is ever increased by WeightedAs-
signment. The dual variable x(s) of a server s can be increased in Lines 9 and 11. It is
increased if s is matched to a neighboring request r and, importantly, x(s) is also increased
if this r is assigned to a different server.

P: max
∑

{s,r}∈E

m(s, r) D: min
∑
s∈S

b · x(s) +
∑
r∈R

y(r)

s.t.
∑

r:{s,r}∈E

m(s, r) ≤ b, (∀s ∈ S) s.t. x(s) + y(r) ≥ 1, (∀{s, r} ∈ E)

∑
s:{s,r}∈E

m(s, r) ≤ 1, (∀r ∈ R) x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R)

m(s, r) ≥ 0, (∀{s, r} ∈ E)

Algorithm 1 WeightedAssignment.

1 Initialize x(s) = 0, y(r) = 0 and m(s, r) = 0, ∀s ∈ S and ∀r ∈ R;
2 while a new request r ∈ R arrives do
3 Let N(r) denote the set of neighbors s of r with remaining capacity;
4 if N(r) = ∅ then
5 Do not match r;
6 else
7 Match r to arg max {V (ls, δs + 1)− V (ls, δs) : s ∈ N(r)};
8 Update m(s, r)← 1;
9 Set x(s)← V (ls + 1, δs + 1);

10 forall s′ ̸= s ∈ N(r) do
11 Set x(s′)← V (ls′ , δs′ + 1);
12 end
13 end
14 end

In the analysis, we will see how the function V has to be defined so that Weighted-
Assignment achieves the desired competitive ratio c∗. Note that we always construct a
feasible dual solution if x(s) = 1 holds, for all servers s ∈ S, by the end of the algorithm.
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Here lies a crucial idea of the algorithm and the construction of V . We demand V (b, δ) = 1,
for all δ ≥ b, and V (l, δ) = 1 if δ ≥ kb, for all 0 ≤ l ≤ b. Also, V (0, 0) = 0. These constraints
have two important implications.
1. The dual variable x(s) of a server s with load ls and degree δs is always equal to V (ls, δs):

Consider an incoming request r that is a neighbor of s. While ls < b, it holds N(r) ̸= ∅
and r is matched to some server. Lines 9 and 11 correctly update x(s) with respect to
the new load and degree values. If ls = b, then inductively by the first constraint x(s) = 1
and no update is necessary.

2. The constructed dual solution is feasible: Implication 1 and the second constraint ensure
that x(s) = 1 holds for all s ∈ S by the end of the algorithm, since every server s has a
degree of at least kb.

Let P and D denote the value of the primal and dual solution constructed by the algorithm,
respectively. We denote a change in the value of the primal and dual solution by ∆P and ∆D,
respectively. It holds that the size of the matching constructed by WeightedAssignment is
exactly |Alg| = P . Moreover, by weak duality, we get that the size of the optimum matching
is |Opt| ≤ D. Hence, if we were able to bound ∆D ≤ ∆P/c at every step, we would obtain
a competitive ratio of c.

|Alg|
|Opt| ≥

P

D
≥ P

1
c · P

= c .

Recall that the value of the dual solution is only increased if a request r is matched to a
server s. Then, the value of the primal solution is increased by 1, while the value of the dual
solution is increased by

∆D = b ·
(

V (ls + 1, δs + 1)− V (ls, δs) +
∑

s′∈N(r)\{s}

V (ls′ , δs′ + 1)− V (ls′ , δs′)
)

.

The algorithm chooses s such that V (ls, δs + 1)− V (ls, δs) ≥ V (ls′ , δs′ + 1)− V (ls′ , δs′) holds
for all s′ ∈ N(r). Furthermore, |N(r)| ≤ d implies that we can bound this increase by

∆D ≤ b ·
(

V (ls + 1, δs + 1)− V (ls, δs) + (d− 1) ·
(
V (ls, δs + 1)− V (ls, δs)

))
.

This means, that we need to determine the biggest possible constant c∗ ∈ (0, 1] such that

b ·
(

V (l + 1, δ + 1)− V (l, δ) + (d− 1) ·
(
V (l, δ + 1)− V (l, δ)

))
≤ 1

c∗ (1)

holds for all 0 ≤ l < b and all δ ≥ l, while still satisfying our constraints that V (b, ·) = 1 and
V (·, δ′) = 1 for δ′ ≥ kb. For this, we define

p(l, δ) := V (l + 1, δ + 1)− V (l, δ) and q(l, δ) := V (l, δ + 1)− V (l, δ) .

In other words, the dual variable x(s) of a server s with load l and current degree δ is increased
by p(l, δ), when a request is assigned to s, and increased by q(l, δ), when a neighboring
request is assigned to a different server. Our constraints immediately give p(l, δ) = q(l, δ) = 0,
if l = b or δ ≥ kb. Hence, we will focus on the case 0 ≤ l < b and l ≤ δ < kb in the following.
Rewriting and rearranging inequality (1) in terms of p and q yields

q(l, δ) ≤ 1
d− 1

(
1

b · c
− p(l, δ)

)
.
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We treat the values p(i, i), for 0 ≤ i < b− 1, as the variables of our optimization, since every
other p and q value can then be computed based on these choices. To get comfortable with
the recursions and ideas in the latter part of this section, we do the following warm-up, where
we consider V (b− 1, δ). It holds

V (b− 1, δ) =
b−2∑
i=0

p(i, i) +
δ−1∑

j=b−1
q(b− 1, j) .

Our first constraint V (b, δ) = 1, for all δ ≥ b, implies that p(b− 1, δ) = 1− V (b− 1, δ).
We do not want to waste any potential increases in our dual variables, since we want to
maximize c. Thus, we will choose the maximum possible value for q(b− 1, δ), which is

q(b− 1, δ) = 1
d− 1

(
1

b · c
− p(b− 1, δ)

)
= 1

d− 1

(
1

b · c
− 1 + V (b− 1, δ)

)
.

It follows that

V (b− 1, δ + 1) = V (b− 1, δ) + q(b− 1, δ) = d

d− 1V (b− 1, δ) + 1
d− 1

(
1

b · c
− 1
)

, (2)

for all b− 1 ≤ δ < kb and with V (b− 1, b− 1) =
∑b−2

i=0 p(i, i). To ease notation in the future,
we further define Pi :=

∑i−1
j=0 p(j, j), for all 0 ≤ i ≤ b− 1, so that we get Pi = V (i, i). Note

that P0 = 0. Solving the recurrence relation (2) yields

V (b− 1, δ) =
(

d

d− 1

)δ−(b−1)
Pb−1 + 1

d− 1

(
1

b · c
− 1
)
·

δ−(b−1)−1∑
i=0

(
d

d− 1

)i

=
(

d

d− 1

)δ−(b−1)
Pb−1 + 1

d− 1

(
1

b · c
− 1
)
·

(
d

d−1

)δ−(b−1)
− 1(

d
d−1

)
− 1

=
(

d

d− 1

)δ−(b−1)(
Pb−1 + 1

b · c
− 1
)

+ 1− 1
b · c

.

The following lemma generalizes the computation above to all other load levels.

▶ Lemma 1. For all l, 0 ≤ l ≤ b, and for all δ, l ≤ δ ≤ kb, it holds that

V (l, δ) =
b−1∑
i=l

(−1)i−l 1
(d− 1)i−l

(
δ − l

i− l

)(
d

d− 1

)δ−i(
Pi + b− i

b · c
− 1
)

+ 1− b− l

b · c
. (3)

Proof. By induction over l, starting with l = b and going down to l = 0. The induction base
l = b is true, because we have V (b, δ) = 1. Thus, we focus on the induction step l + 1⇝ l.
Similar arguments as before yield for l ≤ δ < kb

q(l, δ) = 1
d− 1

(
1

b · c
− p(l, δ)

)
= 1

d− 1

(
1

b · c
− V (l + 1, δ + 1) + V (l, δ)

)
.

We can now define the recurrence relation for V (l, δ)

V (l, δ + 1) = V (l, δ) + q(l, δ) = d

d− 1V (l, δ) + 1
d− 1

(
1

b · c
− V (l + 1, δ + 1)

)
,
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with V (l, l) = Pl. Solving this recurrence yields

V (l, δ) =
(

d

d− 1

)δ−l

Pl + 1
d− 1

1
b · c

δ−l−1∑
i=0

(
d

d− 1

)i

− 1
d− 1

δ−l−1∑
i=0

(
d

d− 1

)i

V (l + 1, δ − i) .

(4)

In the next step, we will need the following fact [11].

▶ Fact 2. For n, k ∈ N0, it holds that

n∑
i=0

(
i

k

)
=
(

n + 1
k + 1

)
.

Next, we apply the induction hypothesis to determine V (l, δ). For clarity, we focus on
the last sum of equality (4) first

δ−l−1∑
i=0

(
d

d− 1

)i

V (l + 1, δ − i) IH=
δ−l−1∑

i=0

(
d

d− 1

)i
 b−1∑

j=l+1
(−1)j−(l+1) 1

(d− 1)j−(l+1)

·
(

δ − i− (l + 1)
j − (l + 1)

)(
d

d− 1

)δ−i−j (
Pj + b− j

b · c
− 1
)

+ 1− b− (l + 1)
b · c

]

=
b−1∑

j=l+1

[
(−1)j−(l+1) 1

(d− 1)j−(l+1)

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)

·
δ−l−1∑

i=0

(
δ − i− (l + 1)

j − (l + 1)

)]
+
(

1− b− (l + 1)
b · c

) δ−l−1∑
i=0

(
d

d− 1

)i

=
b−1∑

j=l+1
(−1)j−(l+1) 1

(d− 1)j−(l+1)

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
) δ−l−1∑

i=0

(
i

j − (l + 1)

)

+
(

1− b− (l + 1)
b · c

)
(d− 1)

((
d

d− 1

)δ−l

− 1
)

=
b−1∑

j=l+1
(−1)j−(l+1) 1

(d− 1)j−(l+1)

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)(

δ − l

j − l

)

+
(

1− b− (l + 1)
b · c

)
(d− 1)

((
d

d− 1

)δ−l

− 1
)

,

where we used Fact 2 in the last step. Now, we can finish the induction step by plugging this
into (4)
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V (l, δ) =
(

d

d− 1

)δ−l

Pl + 1
b · c

((
d

d− 1

)δ−l

− 1
)

+
b−1∑

j=l+1
(−1)j−l 1

(d− 1)j−l

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)(

δ − l

j − l

)

−
(

1− b− (l + 1)
b · c

)((
d

d− 1

)δ−l

− 1
)

=
(

d

d− 1

)δ−l (
Pl + 1

b · c
+ b− (l + 1)

b · c
− 1
)

+ 1− 1
b · c
− b− (l + 1)

b · c

+
b−1∑

j=l+1
(−1)j−l 1

(d− 1)j−l

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)(

δ − l

j − l

)

=
b−1∑
j=l

(−1)j−l 1
(d− 1)j−l

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)(

δ − l

j − l

)
+ 1− b− l

b · c
. ◀

So far, we have only leveraged our constraint V (b, ·) = 1. With our description of V (l, δ),
for all 0 ≤ l ≤ b and l ≤ δ ≤ kb, we can also leverage V (·, kb) = 1 to determine Pi, for all
0 ≤ i ≤ b− 1. For this, we will need the following technical lemma. The proof is given in the
full version of the paper.

▶ Lemma 3. For k, n, m ∈ N, with m ≥ n ≥ k, it holds that

n−k∑
i=1

(−1)i

(
m

i

)(
m− i

n− k − i

)
= −

(
m

n− k

)
.

▶ Lemma 4. For all l, 0 ≤ l ≤ b− 1, it holds that

(
d

d− 1

)kb−l (
Pl + b− l

b · c
− 1
)

= 1
b · c

(
b−l∑
i=1

i

(
kb− l

b− l − i

)
1

(d− 1)b−l−i

)
. (5)

Proof. By induction over l from l = b− 1 down to l = 0. We start with the induction base
l = b− 1. Our second constrain yields V (b− 1, kb) = 1. It then follows from Lemma 1 that

V (b− 1, kb) =
(

d

d− 1

)kb−(b−1)(
Pb−1 + 1

b · c
− 1
)

+ 1− 1
b · c

def.= 1 ,

which immediately finishes the induction base, since the right-hand side of (5) is simply
1/(b · c).

We can now move on to the induction step ∀i > l⇝ l. We use V (l, kb) = 1 and rearrange
with the help of Lemma 1(

d

d− 1

)kb−l (
Pl + b− l

b · c
− 1
)

= b− l

b · c

−
b−1∑

i=l+1
(−1)i−l 1

(d− 1)i−l

(
kb− l

i− l

)(
d

d− 1

)kb−i(
Pi + b− i

b · c
− 1
)

.

(6)
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It is now possible to apply the induction hypothesis. For clarity, we focus on the second line
of (6)

b−1∑
i=l+1

(−1)i−l 1
(d− 1)i−l

(
kb− l

i− l

)
1

b · c

b−i∑
j=1

j

(
kb− i

b− i− j

)
1

(d− 1)b−i−j


= 1

b · c

b−l−1∑
a=1

(−1)a

b−(l+a)∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

a

)(
kb− (l + a)

b− (l + a)− j

) ,

where we substituted a := i− l. Next, we carefully swap these nested sums. For this, observe
that, for a fixed value j, we have exactly b− l − j addends, more precisely, one addend for
each 1 ≤ a ≤ b− l − j

1
b · c

b−l−1∑
a=1

(−1)a

b−(l+a)∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

a

)(
kb− l − a

b− l − a− j

)
= 1

b · c

b−l−1∑
j=1

j
1

(d− 1)b−l−j

b−l−j∑
a=1

(−1)a

(
kb− l

a

)(
kb− l − a

b− l − a− j

)
= − 1

b · c

b−l−1∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

b− l − j

) ,

where we applied Lemma 3 with k = j, n = b− l and m = kb− l in the last step. Plugging
this back into (6) gives

(
d

d− 1

)kb−l (
Pl + b− l

b · c
− 1
)

= b− l

b · c
+ 1

b · c

b−l−1∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

b− l − j

)
= 1

b · c

 b−l∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

b− l − j

) . ◀

With the help of Lemma 4, we can finally determine the resulting constant c∗. For l = 0,
we have P0 = 0, and thus(

d

d− 1

)kb( 1
c∗ − 1

)
= 1

b · c∗

(
b∑

i=1
i

(
kb

b− i

)
1

(d− 1)b−i

)
,

where solving for c∗ yields

c∗ = 1− 1
b

(
b∑

i=1
i

(
kb

b− i

)
1

(d− 1)b−i

)(
1− 1

d

)kb

.

▶ Theorem 5. WeightedAssignment achieves a competitive ratio of c∗ for the online
b-matching problem with uniform server capacities on (k, d)-graphs.

Lemma 1, together with Lemma 4 and c∗, specifies the function V . Its values can be
calculated in a preprocessing step and accessed by table lookup when WeightedAssignment
serves requests. The parameters k and d must be known. In an application, they can be
learned over time. Alternatively, one can work with conservative estimates. Figure 1 shows
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0 1 2 3 4 5 6 7 8

0

1

2

3

4

l

δ

0 16 37 63 93 125 157 189 221

48 59 75 97 125 157 189 221

101 107 117 133 157 189 221

159 161 165 173 189 221

221 221 221 221 221

16 21 26 30 32 32 32 32

48 43 38 34 32 32 32 32

11 16 22 28 32 32 32

53 48 42 36 32 32 32

6 10 16 24 32 32

58 54 48 40 32 32

2 4 8 16 32

62 60 56 48 32

Figure 1 The function V for k = d = 2 and b = 4. All values are multiplied by 221.

the function V for a small example with k = d = 2 and b = 4. In this case, we have
c∗ = 221/256 and 1/(bc∗) = 64/221. The arrows depict the possible increases in V for every
l, 0 ≤ l < b, and δ, l ≤ δ < kb, i.e. horizontal arrows denote the q(l, δ) values and diagonal
arrows the p(l, δ) values. All actual values are multiplied by 221 in order to eliminate fractions.
Observe that p(l, δ) + (d− 1)q(l, δ) = 1/(bc∗) holds for all l and δ. This is what allows us to
bound the total increase in the dual solution by 1/c∗, if we always pick the neighboring server
s that maximizes q(ls, δs). For the matching decisions, WeightedAssignment only uses
the horizontal arrows. Notice that WeightedAssignment is different from a Balance
algorithm that breaks ties by HighDegree, or from a HighDegree algorithm that breaks
ties by Balance. For example, WeightedAssignment prefers a server with load 1 and
degree 5 to a server with load 0 and degree 1, whom it then prefers to a server with load 3
and degree 6.

3 Upper bounds

We will show that WeightedAssignment is optimal for (k, d)-graphs with k ≥ d, i.e. no
deterministic online algorithm can achieve a competitive ratio better than c∗. We start by
proving this for the online b-matching problem with uniform server capacities, and later
extend it to the more general problems.

First, we show that any (k, d)-graph with uniform server capacities b has a perfect b-
matching, i.e. a matching where every server s ∈ S is matched exactly b times, if k ≥ d.
This generalizes Lemma 6.1 in [19], which states this for b = 1. The proof is given in the full
version of this paper.

▶ Lemma 6. Every (k, d)-graph G = (S ∪R, E), where k ≥ d, with uniform server capacities
b has a perfect b-matching.

We move on to describing the adversary input. We start by following the construction
of the previously known upper bound detailed in [19]. There are N = dkb servers, and the
requests arrive in kb rounds. Let Si denote the set of unmatched servers at the beginning
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of round i, 0 ≤ i < kb. It will hold that every server in Si has a current degree of i and
that |Si| = N(1 − 1/d)i. Note that this number is always a multiple of d, by choice of N .
During round i, |Si|/d requests are introduced, such that every request is adjacent to exactly
d distinct servers in Si and every server in Si gains one new neighboring request. If the
online algorithm decides not to match an introduced request, we consider it matched to an
arbitrary neighbor. This will only improve the performance of said algorithm. This means
that a (1− 1/d) fraction of the servers in Si are still unmatched after round i, explaining the
previously mentioned |Si| = N(1− 1/d)i. Thus, there are N · (1− 1/d)kb servers with degree
kb and load 0 after round kb− 1, irrespective of what choices the algorithm makes. In a final
round, further requests are introduced to all matched servers arbitrarily, such that we get a
valid (k, d)-graph. The online algorithm will have matched at most bN ·

(
1− (1− 1/d)kb

)
requests, while Lemma 6 implies that an optimal offline algorithm matches bN requests.
This yields the previously known upper bound of

(
1− (1− 1/d)kb

)
.

However, it seems suboptimal to introduce requests arbitrarily after the initial kb rounds.
In fact, we will show that we can further limit the number of requests matched by the online
algorithm if we introduce the requests more carefully. Note that all the servers that are
matched during round i of the previous input are similar in the sense that they all have
degree i and load 1. We will apply the ideas above recursively to the sets of matched servers
of all rounds. More precisely, let T denote the set of matched server during some round. Say
all servers in T have load l, 0 ≤ l < b, and degree δ, l ≤ δ < kb. We then schedule kb − δ

rounds for T using the same construction as above. Let Tj denote the set of servers that still
have load l at the beginning of round j, 0 ≤ j < kb− δ. It will now hold that every server in
Tj has a current degree of δ + j and that |Ti| = |T |(1− 1/d)i. We have to make sure that all
the possible values of |Ti| are multiples of d. This is done by increasing the initial number
of servers N adequately. After these kb− δ round, we have |T | · (1− 1/d)kb−δ servers with
degree kb and load l. This process is repeated for all the sets of matched servers until we
eventually obtain a valid (k, d)-graph, in which every server has degree kb.

For this, we formally define a function F , where F (x, l, δ) denotes how many units of
capacity we can force a deterministic online algorithm to leave empty when starting with
x servers that all have load l and degree δ. This allows us to upper bound the number of
matched requests by bN − F (N, 0, 0), yielding the following upper bound

c ≤ bN − F (N, 0, 0)
bN

= 1− F (N, 0, 0)
bN

. (7)

We cannot create any empty spots on full servers, so we have F (x, b, δ) = 0, for all
b ≤ δ ≤ kb. Once a server has kb adjacent requests, we have satisfied the (k, d)-graph
property locally, so we do not need to introduce any more adjacent requests for this server.
This is captured by F (x, l, kb) = x · (b− l), for all 0 ≤ l ≤ b. For all other combinations of l

and δ, it is possible to define F recursively. Recall that we introduce kb− δ rounds when
starting with x servers all with load l and degree δ. During each of these rounds, exactly
a 1/d fraction of the servers that still had load l at the start of the round are discarded.
Moreover, every server gets exactly one new neighbor during each round until they are
matched. This implies

F (x, l, δ) = x ·
(

1− 1
d

)kb−δ

(b− l) +
kb−δ∑
i=1

F

(
x · 1

d

(
1− 1

d

)i−1
, l + 1, δ + i

)
, (8)

for all 0 ≤ l < b and l ≤ δ < kb. The following lemma solves this recurrence, which we can
then apply in (7) to obtain the theorem.



S. Albers and S. Schubert 4:13

▶ Lemma 7. For all l, 0 ≤ l ≤ b, and all δ, l ≤ δ ≤ kb, it holds that

F (x, l, δ) = x

(
1− 1

d

)kb−δ
(

b−l∑
i=1

i

(
kb− δ

b− l − i

)
1

(d− 1)b−l−i

)
. (9)

Proof. By induction over l, starting with l = b and going down to l = 0. The induction
base is satisfied as we get the empty sum in (9), making the whole expression zero. In the
induction step l + 1⇝ l, we can apply our induction hypothesis to F in (8).

kb−δ∑
i=1

F

(
x · 1

d

(
1− 1

d

)i−1
, l + 1, δ + i

)

IH=
kb−δ∑
i=1

x
1
d

(
1− 1

d

)i−1(
1− 1

d

)kb−(δ+i)
b−(l+1)∑

j=1
j

(
kb− δ − i

b− (l + 1)− j

)
1

(d− 1)b−(l+1)−j


= x

1
d

(
1− 1

d

)kb−δ−1
b−(l+1)∑

j=1
j

1
(d− 1)b−(l+1)−j

kb−δ∑
i=1

(
kb− δ − i

b− (l + 1)− j

)
= x

(
1− 1

d

)kb−δ 1
d− 1

b−(l+1)∑
j=1

j
1

(d− 1)b−l−j−1

kb−δ−1∑
i=0

(
i

b− l − j − 1

)
= x

(
1− 1

d

)kb−δ
b−(l+1)∑

j=1
j

1
(d− 1)b−l−j

(
kb− δ

b− l − j

) ,

where we used Fact 2 in the last step. Finally, we can plug this result back into (8) to obtain

F (x, l, δ) = x ·
(

1− 1
d

)kb−δ

(b− l) +
kb−δ∑
i=1

F

(
x · 1

d

(
1− 1

d

)i−1
, l + 1, δ + i

)

= x ·
(

1− 1
d

)kb−δ
(b− l) +

b−(l+1)∑
j=1

j
1

(d− 1)b−l−j

(
kb− δ

b− l − j

)
= x ·

(
1− 1

d

)kb−δ
b−l∑

j=1
j

1
(d− 1)b−l−j

(
kb− δ

b− l − j

) . ◀

▶ Theorem 8. No deterministic online algorithm for the b-matching problem with uniform
server capacities b can achieve a competitiveness better than c∗ on (k, d)-graphs with k ≥ d.

We extend this upper bound to the more general case with variable server capacities, which
we will examine in the next section. Let bmin = mins∈S bs. The optimal competitiveness is
then

c∗
min = 1− 1

bmin

(
bmin∑
i=1

i

(
kbmin

bmin − i

)
1

(d− 1)bmin−i

)(
1− 1

d

)kbmin

.

▶ Corollary 9. No deterministic online algorithm for the b-matching problem with variable
server capacities can achieve a competitive ratio better than c∗

min on (k, d)-graphs with k ≥ d.

The proof is detailed in the full version of this paper. Obviously, Theorem 8 and Corollary 9
also hold for the more general vertex-weighted b-matching problem, addressed in the next
section.
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4 Variable server capacities and vertex weights

We detail the necessary changes to WeightedAssignment such that it can handle variable
server capacities as well as vertex weights, while still achieving the optimal competitive ratio.

4.1 Variable server capacities

Recall that every server s ∈ S now has a server capacity bs, and thus a degree of at least
d(s) ≥ k · bs. This changes the objective function of the dual linear program to∑

s∈S

bs · x(s) +
∑
r∈R

y(r) .

We handle this by computing the function Vs for every server individually, for its capacity bs.
This means that we construct Vs according to Section 2, such that

bs ·
(

Vs(l + 1, δ + 1)− Vs(l, δ) + (d− 1) ·
(
Vs(l, δ + 1)− Vs(l, δ)

))
≤ 1

c∗
s

, (10)

where c∗
s is equal to c∗, but b is replaced by bs. Moreover, we have Vs(bs, ·) = 1 and

Vs(·, δ′) = 1 if δ′ ≥ kbs, meaning that we again construct a feasible dual solution. However,
we still have to adapt the decision criterion of WeightedAssignment. We change Line 7
in Algorithm 1 to

Match r to arg max
{

bs ·
(
Vs(ls, δs + 1)− Vs(ls, δs)

)
: s ∈ N(r)

}
.

This allows us to upper bound the total increase in the dual solution when the adapted
strategy, called WeightedAssignment(VC), assigns a request r to a server s by

∆D = bs ·
(

Vs(ls + 1, δs + 1)− Vs(ls, δs)
)

+
∑

s′∈N(r)\{s}

bs′ ·
(

Vs′(ls′ , δs′ + 1)− Vs′(ls′ , δs′)
)

≤ bs ·
(

Vs(ls + 1, δs + 1)− Vs(ls, δs) + (d− 1) ·
(
Vs(ls, δs + 1)− Vs(ls, δs)

))
≤ 1

c∗
s

.

Thus, WeightedAssignment(VC) achieves a competitive ratio of mins∈S c∗
s . In Section 5

we will show that c∗ is monotonically increasing in b for k ≥ d, meaning that mins∈S c∗
s = c∗

min,
cf. Section 3.

▶ Theorem 10. WeightedAssignment(VC) achieves a competitive ratio of mins∈S c∗
s the

b-matching problem with variable server capacities on (k, d)-graphs. The ratio equals c∗
min

and is optimal for k ≥ d.

4.2 Vertex weights

At last, we consider the vertex-weighted extension of the online b-matching problem. Every
server s ∈ S now has a weight ws assigned to it, and the value of every matching edge
incident to s is multiplied by ws. This problem is modelled by the following linear programs.
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Primal: max
∑

{s,r}∈E

ws ·m(s, r)

s.t.
∑

r:{s,r}∈E

ws ·m(s, r) ≤ ws · bs, (∀s ∈ S)

∑
s:{s,r}∈E

m(s, r) ≤ 1, (∀r ∈ R)

m(s, r) ≥ 0, (∀{s, r} ∈ E) .

Dual: min
∑
s∈S

ws · bs · x(s) +
∑
r∈R

y(r)

s.t. ws · x(s) + y(r) ≥ ws, (∀{s, r} ∈ E)
x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R) .

Observe that x(s) = 1, for all s ∈ S, by the end of the algorithm still implies dual feasibility.
Hence, we do not need to change the construction of Vs, and still obtain a feasible dual
solution. All we need to do is to change the decision criterion of WeightedAssignment(VC)
once more to

Match r to arg max
{

ws · bs ·
(
Vs(ls, δs + 1)− Vs(ls, δs)

)
: s ∈ N(r)

}
.

Whenever the resulting algorithm WeightedAssignment(VW) assigns a request r to a
server s, we increase the primal solution by ws, while we can upper bound the increase in
the dual solution by

∆D ≤ wsbs ·
(

Vs(ls + 1, δs + 1)− Vs(ls, δs) + (d− 1)
(
Vs(ls, δs + 1)− Vs(ls, δs)

))
≤ ws

c∗
s

.

This again yields a competitiveness of mins∈S c∗
s.

▶ Theorem 11. WeightedAssignment(VW) achieves a competitive ratio of mins∈S c∗
s

for the vertex-weighted b-matching problem with variable server capacities on (k, d)-graphs.
The ratio equals c∗

min and is optimal for k ≥ d.

5 Analysis of the competitive ratio

▶ Theorem 12. If k ≥ d ≥ 2, the competitive ratio c∗ converges to one as b tends to infinity,
that is limb→∞ c∗ = 1.

▶ Theorem 13. If k ≥ d ≥ 2, the competitive ratio c∗ is strictly increasing in b, for b ≥ 1.

The proofs of these two theorems are given in the full version of the paper. Theorem 12
is shown with the help of Gaussian hypergeometric functions. They allow us to upper bound
c∗ with a closed expression. The convergence of this expression can then be shown with
the help of Stirling’s approximation. Since this does not prove monotonicity, we consider
the fraction of c∗ with b + 1 over c∗ with b in the proof of Theorem 13. We show that this
fraction is lower bounded by 1, again with the help of hypergeometric functions.
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Abstract
We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call
tsp in a simple polygon, we wish to compute a shortest tour that visits a given set S of n sites
inside a simple polygon P with m edges while staying inside the polygon. This natural problem
has, to the best of our knowledge, not been studied so far from a theoretical perspective. It can
be solved exactly in poly(n, m) + 2O(

√
n log n) time, using an algorithm by Marx, Pilipczuk, and

Pilipczuk (FOCS 2018) for subset tsp as a subroutine. We present a much simpler algorithm that
solves tsp in a simple polygon directly and that has the same running time.
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1 Introduction

The Traveling Salesman Problem, or tsp for short, is a classic algorithmic problem.
Given an edge-weighted graph, the goal is to compute a tour – a cycle that visits each node
exactly once – of minimum total weight. The problem has been studied widely; in fact,
tsp is probably one of the most intensely studied problems in optimization and computer
science. There are even several books devoted to tsp [2, 9, 15, 29]. Important special cases
of tsp are metric tsp and Euclidean tsp. In metric tsp, the edge weights in the input
graph form a metric and, in particular, satisfy the triangle inequality. The algorithm by
Christofides [8] gives a (3/2)-approximation for this version of the problem. A special case of
metric tsp is Euclidean tsp. Here the input is a set S of n points in Rd and the goal
is to visit all points with a tour of minimum total Euclidean length. Due to its natural
setting, Euclidean tsp is among the most studied versions of tsp. Euclidean tsp is
np-hard [12, 27] but, unlike metric tsp, it admits a PTAS as was shown in the celebrated
papers of Arora [3] and (for 2D) Mitchell [26]. A PTAS with a better running time was later
presented by Rao and Smith [28]. Recently, Kisfaludi-Bak et al. [20] presented a PTAS with
2O(1/εd−1)n log n running time, which they proved to be optimal under Gap-ETH. There are
also PTASs for tsp in planar graphs [4, 21] and in spaces of constant doubling dimension [5]
– as Trevisan [33] proved, the restriction to bounded dimension is necessary for a PTAS, even
in Euclidean spaces – and in spaces of so-called bounded global growth [7].

Our focus is on exact algorithms for tsp. The general tsp problem can be solved exactly
in O(2nn2) time using dynamic programming, as was shown independently by Held and
Karp [16] and Bellman [6]. There is no subexponential algorithm – that is, no algorithm

© Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.y.alkema@tue.nl
mailto:M.T.d.Berg@tue.nl
https://orcid.org/0000-0001-5770-3784
mailto:M.Monemizadeh@tue.nl
mailto:l.theocharous@tue.nl
https://doi.org/10.4230/LIPIcs.ESA.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 TSP in a Simple Polygon

with 2o(n) running time – for the general problem, under the Exponential-Time Hypothesis
(ETH) [10, Theorem 14.6]. This lower bound even holds for metric tsp. On the other hand,
Euclidean tsp can be solved in subexponential time. Already in the early 1990s, Kann [18]
and Hwang, Chang and Lee [17] gave 2O(

√
n log n) algorithms for the planar version of the

problem.1 This was generalized by Smith and Wormald [31], who presented an 2O(n1−1/d log n)

algorithm for Euclidean tsp in Rd; here and in the sequel we consider the dimension d to
be a fixed constant. For a long time it was open if Euclidean tsp in Rd admits an exact
algorithm with a running time 2O(n1−1/d). Recently, the question was settled by De Berg et
al. [11], who presented such an algorithm and showed that no 2o(n1−1/d) algorithm exists
unless ETH fails. There is also an exact algorithm for tsp in hyperbolic spaces of Gaussian
curvature −1, which runs in quasi-polynomial time if the minimum distance between any
two points is at least some fixed constant α > 0 [19]. Finally, Klein and Marx [22] presented
an algorithm for subset tsp on planar graphs with integer edge weights, where the goal
is to computes a shortest tour visiting a given subset of the vertices. Their algorithm
runs in time poly(|V |) · 2O(

√
n log n) + W ), where |V | is the total number of vertices, n is

the number of vertices to be visited, and W is the maximum edge weight. This was later
improved by Marx, Pilipczuk, and Piliczuk [24] who presented an algorithm with running
time poly(|V |) · 2O(

√
n log n) that does not need the weights to be bounded or integral.

A natural generalization of Euclidean tsp is to consider a salesman who is moving
among a set of obstacles in the plane, or some higher-dimensional space. We call this problem
tsp with obstacles. As far as we know, and to our surprise, tsp with obstacles seems
not to have been studied at all from a theoretical perspective, although it has appeared in a
behavioural study where subjects were tested on finding the optimal tour [30]. (There is also
a paper describing a genetic algorithm for tsp in the presence of obstacles [13], although
the setting is slightly different.) A somewhat related problem is where one is given two
simple disjoint polygons, and the salesman must visit all vertices of the polygons without
crossing the boundary of the polygons. This problem is markedly different from tsp with
obstacles, however. In particular, it is not a generalization of Euclidean tsp, and it has
been shown by Abrahamson and Shokoufandeh [1] to be solvable in polynomial time.

The fact that tsp with obstacles has not been studied is remarkable, since motion-
planning and shortest-path problems are among the most widely studied problems in
computational geometry. It is beyond the scope of our paper to give an overview of this area,
so we just mention one result that we will need. Guibas and Hershberger [14] show how to
construct, for a simple polygon P with m vertices and a source point s, a shortest-path map
in O(m) time. The shortest-path map allows us to compute, for a point set S of n points in
P and a given source point s ∈ S, the shortest-path tree rooted at s and going to all other
points in S, in O(m + n log m) time. If we do this for all points from S as source point, we
obtain all shortest paths (and all distances) between the points in S in O(nm + n2 log n)
time.

tsp with obstacles can be solved by computing a shortest path between each pair of
points in S, and then running the Bellman-Held-Karp algorithm [6, 16] using the computed
pairwise distances, but this leads to an exponential running time. In the plane a much
faster algorithm can be obtained if one uses an algorithm for subset tsp as a subroutine,
as follows. First, compute all pairwise shortest paths. Next, turn this collection of paths

1 Comparing the exact lengths of two given tours in the plane is in fact non-trivial, as it involves comparing
sums of square roots. To focus on the combinatorial complexity of the problem, such algebraic issues
are typically ignored by working in the real-RAM model, which we do as well.
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in the plane into a weighted planar graph by inserting a vertex at every intersection point
between two paths, where the weight of an edge in the graph is the shortest-path distance
between its endpoints. Note that some pairs of path may overlap instead of intersect; in that
case, insert a vertex at the two outermost points where they overlap. The resulting graph
has O(n4) vertices – the points in S plus the intersection points – of which n nodes must be
visited. Solving subset tsp using the algorithm of Marx, Pilipczuk, and Piliczuk [24] leads
to an algorithm with poly(n, m) + O(n2) · 2O(

√
n log n) = poly(n, m) + 2O(

√
n log n) running

time, where m is the total number of edges of the obstacles.

Our contribution. We are interested in the variant of tsp with obstacles where the
salesman is moving inside a simple polygon P with m edges in total, which contains the
set S of points to be visited. In other words, there is a single obstacle which is the region
outside the polygon. We call this variant tsp in a simple polygon. From now on, we refer
to the points in S as sites, to distinguish them from arbitrary points in P .

As mentioned, tsp with obstacles in the plane can be solved in subexponential time
using the algorithm of Marx, Pilipczuk, and Piliczuk for subset tsp as a subroutine. Hence,
tsp in a simple polygon can be solved in poly(n, m)+2O(

√
n log n) time. Unfortunately, the

algorithm of Marx, Pilipczuk, and Piliczuk for subset tsp is complicated: the description
of the algorithm and its correctness proof take 27 pages in total [23]. Here we only count the
overview of the algorithm (Section 2, comprising 7 pages) and the detailed description of the
algorithm and proof of correctness (Section 5, comprising 20 pages), and not the description
of some of the tools being used (Sections 3 and 4, comprising 2.5 pages).

We present a much simpler algorithm with the same running time, based on the elegant
algorithm by Hwang, Chang and Lee [17] for Euclidean tsp in the plane. We also
prove several basic properties of optimal solutions for tsp with obstacles, which are of
independent interest.

2 Notation and basic properties

In this section we introduce the notation and terminology used throughout paper, and we
prove several basic properties of optimal tsp tours in a simple polygon.

Let P be a simple polygon, which is the region in which the salesman can move. We
consider P to be a closed set, so that shortest paths are well defined. Let S = {s1, . . . , sn} ⊂ P

denote the set of sites to be visited by the salesman. We say that a vertex v of P is reflex if
the angle between the two edges incident to v, measured inside P , is more than 180 degrees.

Whenever we speak of a path, we mean a path that stays in P , unless stated otherwise.
We denote the length of the line segment pq connecting points p and q by |pq|. Similarly,
we denote the (Euclidean) length of a path π by |π|. For two points p, q ∈ P we use π(p, q)
to denote the (unique) shortest path between them, that is, the path from p to q that has
minimum length while staying inside P . Finally, for a path π and two points a, b ∈ π, the
subpath of π between a and b is denoted by π[a, b].

Consider a polygonal path π (that is, a path consisting of straight-line segments) and let
v be a reflex vertex of P . We say that π bends around v if v coincides with an interior vertex
(not an endpoint) of π and π is locally shortest at v. In other words, if e1, e2 are the two
edges of π meeting at v, then the two edges of P meeting at v lie in the convex wedge defined
by e1 and e2. Observe that a shortest path π inside P must bend around a reflex vertex of P

at each of the path’s interior vertices. The next lemma shows that in a simple polygon, local
optimality implies global optimality. It is folklore, but for completeness we give a proof.
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s1
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π1

π2
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Figure 1 (i) Illustration for the proof of Lemma 1. (ii) An optimal tour may pass through the
same site twice, and can contain (partially) overlapping line segments. (iii) Crossing and non-crossing
paths. Note: paths in parts (ii) and (iii) are shown slightly displaced where they overlap.

▶ Lemma 1. Let p, q be two points inside a simple polygon P and let π be a path between p

and q such that every interior vertex of π bends around a reflex vertex of P . Then, π is the
shortest path from p to q in P .

Proof. Let v1, . . . , vk be the interior vertices of π, so π = (p, v1, ..., vk, q). We will prove the
lemma by induction on k. For k = 0 the lemma trivially holds, so assume k > 0.

Consider the ray from p through v1, and let z be the first point where the ray hits ∂P

after v1. Then the segment v1z splits P into two parts. Let P1 be the part that contains p,
and let P2 be the other part. We claim that q ∈ P2. Indeed, if this was not the case then
π must cross v1z at some point y. Consider the region R ⊂ P enclosed by v1y and π[v1, y];
see Fig. 1(i). (Our assumptions do not immediately rule out that π intersects itself, so R

need not be simple. But this does not invalidate the coming argument.) Since P is simple,
R cannot contain any part of ∂P . Let vi denote a vertex of π on π[v1, y] that has maximal
distance from v1y. Then the angle between the two edges of π incident to vi has to be convex
when measured inside R, otherwise vi cannot be a vertex of maximal distance from v1y. By
assumption, π has to bend around a vertex of P at vi, but this cannot happen since R ⊂ P .
Hence, q ∈ P2, as claimed.

We now observe that the shortest path from p to any point in P2 passes through v1.
Moreover, by the induction hypothesis we know that the path (v1, ..., vk, q) is the shortest
path from v1 to q. We conclude that π is the shortest path from p to q in P . ◀

It is well known that optimal tours for Euclidean tsp in R2 are non-self-intersecting, that
is, if sisj and skst are non-consecutive edges in an optimal tour then sisj and skst do not
intersect (except when all sites are collinear). This is no longer true for tsp in a simple
polygon: two paths π(si, sj) and π(sk, st) that are part of an optimal tour can meet in one
or more points, and sites may be visited more than once; see Fig. 1(ii). However, we can still
formulate a non-crossing property for tsp with obstacles, as shown next.

Let π1 = π(p1, q1) and π2 = π(p2, q2) be two shortest paths in P . Observe that their
intersection π1 ∩ π2, may contain at most one connected component, due to the uniqueness
of shortest paths. Let γ denote this component. We give an arbitrary orientation to the path
π1. We say that π1 and π2 are crossing when π2 lies on opposite sides of π1 just before γ and
just after γ, relative to the chosen orientation of π1; otherwise π1 and π2 are non-crossing.
See Fig. 1(iii) for an example.

We now state the main result of this section.

▶ Theorem 2. Let P be a simple polygon and let S be a set of n sites in P . Then there is
an optimal tour Topt through S such that
1. Topt passes at most twice through any point of P , and
2. any two paths of Topt are non-crossing.
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Figure 2 Illustrations for the proof of Theorem 2.

▶ Remark 3. A site si may lie on the shortest path between two other sites sj , sk, in which
case Topt may use π(sj , sk) plus two shortest paths with si as endpoint; see site s3 in Fig. 1(ii).
This does not contradict Property 1 of the theorem: Topt still passes through si only twice.

Proof.
Proof of part 1. We first observe the following. Let r be a point through which Topt passes
at least twice. Give Topt an arbitrary orientation, and suppose Topt first arrives at r along
a segment e1 and later along a segment e2 that is not collinear with e1. Then r must be a
reflex vertex of P , and P must, locally at r, lie in the convex wedge defined by e1 and e2;
otherwise we could shortcut Topt at r as shown in Fig. 2(i).

Now suppose Topt passes at least three times through some point r. Then there are
at least three segments e1, e2, e3 through which Topt arrives at r. If two of these segments
overlap then we can shortcut Topt, which is a contradiction. Otherwise at least two of the
three wedges defined by e1, e2, e3 have an opening angle less than 180 degrees. The point r

can be a reflex vertex of R, but locally at r, the polygon P can lie in only one of these two
wedges; see Fig. 2(ii). Hence, we can shortcut at the other wedge, which is a contradiction.

Proof of part 2. Number the sites in order along Topt so that Topt =
⋃n

ℓ=1 πℓ, where we
define πℓ := π(sℓ, sℓ+1) and sn+1 := s1. Suppose there are two paths πi and πj that cross
each other. Notice that the paths π(si, sj) and π(si+1, sj+1) do not cross each other; see
Fig. 1, where the two crossing paths shown at the top can be “uncrossed”, resulting in the
non-crossing paths shown at the bottom. Let Γ1 be the part of Topt from si+1 to sj and
let Γ2 be the part of Topt from sj+1 to si. Then T ∗

opt := Γ1 ∪ π(si+1, sj+1) ∪ Γ2 ∪ π(si, sj),
where the direction of Γ1 is reversed, is a tour of the same length as Topt. Moreover, T ∗

opt
has fewer crossings; this is true because uncrossing πi and πj cannot generate new crossings
by part 1 of the theorem. Hence, we can repeat the process until we are left with an optimal
tour without any crossings. ◀

3 A subexponential algorithm for TSP IN A SIMPLE POLYGON

In this section we give a subexponential algorithm for tsp in a simple polygon, based on
the work by Hwang et al. [17]. The algorithm of Hwang et al. solves a problem that is slightly
more general than tsp, so that it can be used in a recursive algorithm. In a recent paper,
De Berg et al. [11] define the same generalized problem, but with a different terminology
that will be more convenient for us. In what follows we will mostly use their terminology
to define the problem, which De Berg et al. call Euclidean path cover. (Hwang et al.
called it Generalised Euclidean tsp).

Let S′ ⊂ S be a subset of n of the sites of the initial set of sites, let B ⊂ S′ be a set of
boundary sites, and let M be a perfect matching on B. We say that a collection of paths2

P = {π1, π2, ..., π|B|/2} realizes M on S′ if (i) for each pair (si, sj) ∈ M there is a path

2 Note that we are now temporarily back in the standard Euclidean tsp setting. Thus the paths
mentioned here are not shortest paths between sites, but paths in the complete graph on the sites. In
the current setting, the edges of these paths are straight-line segments between the corresponding sites;
when we go back to tsp in a simple polygon, they will be shortest paths between sites.
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solution for S obtained
from combining solutions
for S1 and S2

subproblem for S with two
pairs of boundary points (open
cicles and open squares); a
guess for the separator (in
red); and a guess how each
path crosses the separator (in-
dicated with the grey curves)

subproblem for the sites
outside the separator (S1)

subproblem for the sites
inside the separator (S2)

solution for S1

solution for S2

Figure 3 An example of how the algorithm works. After trying all possible separators and all
possible ways the paths cross the separator, we will have found the optimal solution.

πij ∈ P with si and sj as endpoints, and (ii) the paths together visit each site in S′ exactly
once. The goal of Euclidean path cover is to find a collection of paths of minimum
total length that realizes M on S′. Note that we can solve Euclidean tsp by solving n− 1
instances of Euclidean path cover on S′, namely for B = {s1, si} where i ∈ {2, . . . , n},
and taking the best solution found. Next we describe how an instance of Euclidean path
cover can be solved using the triangulation approach. For simplicity, and with a slight
abuse of notation, we will denote the set of sites that need to be visited by S (rather than S′).

The triangulation approach. Hwang et al. solve Euclidean path cover with a separator-
based divide-and-conquer algorithm, which we will refer to as the triangulation approach. It
works as follows. We start by creating Q, a set of three points defining an arbitrarily large
triangle containing all the points in S. Suppose we have a maximal triangulation T of S ∪Q

that uses all segments from each path in an optimal solution Popt. Since T is a maximal
planar graph, Miller’s separator theorem [25] implies that there exists a simple cycle C in T
of at most 2

√
2(n + 3) points from S ∪Q such that at most 2(n + 3)/3 sites are inside C,

and at most 2(n + 3)/3 sites are outside C. The idea is to use the separator C to split the
problem into two subproblems: one inside C and one outside C, and glue the solutions to
these subproblems together to get the solution to the original problem. However, we have
to make sure that the solutions inside and outside match with each other. To ensure this,
we guess all possible ways in which Popt can cross C, and handle each of them separately.
Since the triangulation uses all segments from each path in Popt, no edge in Popt crosses an
edge in C. Hence, Popt only goes from inside C to outside C via nodes of C. Thus guessing
where Popt crosses C amounts to guessing for each path in Popt at which nodes of C it crosses
C (as well as the order of these crossing nodes). Each guess will lead to different pairs of
subproblems to be solved inside and outside the separator. The optimal solution will then
be the best solution over all guesses. See Fig. 3 for an example.

Above we assumed that we had a triangulation T of S ∪Q that uses all segments from
each path in Popt. But we do not know Popt, since Popt is what we want to compute. We
therefore try all possible simple cycles C of at most 2

√
2(n + 3) sites, and for each of them

compute an optimal solution under the assumption that the solution does not use any edge
that intersects an edge in the cycle. One of these guesses must correspond to the separator for
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the (unknown) triangulation T . Algorithm 1 gives a high-level description of the algorithm.
Next we show how to apply the algorithm to tsp in a simple polygon, and fill in the
details for the various steps.

Algorithm 1 Triangulation-Approach(S, B, M).
Input: set S of n sites; set B ⊆ S of boundary points; perfect matching M on B

Output: A solution for Euclidean path cover for the instance (S, B, M)
1: if |S| is a sufficiently small constant then
2: Compute an optimal solution Popt by brute-force
3: else
4: Generate all candidate separators C for S, as explained in the text
5: for each candidate separator C do
6: Generate all pairs of subproblems (S1, B1, M1), (S2, B2, M2) for C,

as explained in the text. Recursively solve each pair of subproblems, and let
Popt(S1, B1, M1, S2, B2, M2) be the solution obtained by concatenating
the solutions to the subproblems.

7: Popt ← best of all solutions Popt(S1, B1, M1, S2, B2, M2) from the previous step
8: return Popt

3.1 Applying the triangulation approach to TSP IN A SIMPLE POLYGON

We now return to tsp in a simple polygon. As above, we will solve a path-cover
problem, which we call Generalized Euclidean path cover. This problem is the same
as Euclidean path cover, except that the edges used by the paths, which used to be
straight-line segment connecting sites, are now going to be shortest paths connecting sites.

To apply the triangulation approach in our new setting, we need a maximal triangulation of
an optimal solution Popt to the given instance of the Generalized Euclidean path cover.
The existence of such a maximal triangulation implies that there is a small separator by
Miller’s separator theorem, which we can then guess. There exists of course a triangulation of
Popt if we are allowed to use all internal vertices of these paths as vertices in the triangulation:
we just need to construct a so-called constrained triangulation on the set of all sites and
internal shortest-path vertices, which uses the given segments on the paths. But the number
of nodes of such a triangulation would not only depend on the number of sites, but also on
the total complexity of the shortest paths, which depends on the complexity of the polygon P .
The key idea to overcome this, is to work with a triangulation whose nodes are the sites in S

and whose edges are shortest paths. Next, we show that such a triangulation always exists,
and show how to create a maximal triangulation from this triangulation. After that we will
describe the various steps of the algorithm in more detail, and we will prove its correctness
and analyze its running time.

Triangulating Popt. Recall that a set X ⊆ P is called geodesically convex if for any two
points p, q ∈ X the shortest path π(p, q) in P is contained in X. The relative convex hull [32]
of a set S of sites inside a simple polygon P , denoted by rch(S), is defined as the intersection
of all geodesically convex sets containing S. Intuitively, rch(S) is obtained by placing a
rubber band on ∂P , and then releasing the band so that it “snaps” around S, without crossing
over any site and while staying inside P . The boundary of rch(S) consists of shortest paths
connecting points of S; see Fig. 4(i) for an illustration.
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5:8 TSP in a Simple Polygon

Let E(S) := {π(si, sj) : si, sj ∈ S and i ≠ j} to be the set of all shortest paths between
the sites in S. We now define an sp-triangulation (see Figure 4(ii)) of S to be a collection
Tsp(S) ⊂ E(S) of pairwise non-crossing shortest paths between the sites in S such that
Tsp(S) includes the shortest paths that form ∂rch, and
each face in the subdivision of rch(S) defined by Tsp(S) (after moving pieces of the paths
slightly apart where they overlap) is bounded by exactly three paths.

▶ Lemma 4. For any set S of sites inside a simple polygon P , and any given collection
E∗ ⊂ E(S) of pairwise non-crossing paths, there exists an sp-triangulation Tsp(S) that
includes the paths from E∗.

Proof. Consider the subdivision of rch(S) induced by (the boundary of rch(S) and) the
prescribed shortest paths in E∗. We will show how to triangulate each face F in this
subdivision using paths from E(S).

The face F has an outer boundary and it contains zero or more additional shortest
paths. Let Eout(F ) denote the shortest paths forming the outer boundary, let Ein(F ) denote
the remaining shortest paths, and let E(F ) := Eout(F ) ∪ Ein(F ). Let Sout(F ) denote the
sites from S on the outer boundary of F , let Sin(F ) denote the remaining sites, and let
S(F ) = Sout(F ) ∪ Sin(F ). If Sin(F ) = ∅ and |Sout(F )| = 3 then F is already a triangle and
we are done. Otherwise we will argue that there exist two sites si, sj ∈ S(F ) such that

the shortest path π(si, sj) lies inside F

π(si, sj) is not yet present in E(F ) and
π(si, sj) does not cross any shortest path in E(F )

These properties imply that we can add π(si, sj) to E(F ). This either splits F into two
faces, or it adds a path to Ein(F ). In both cases we can continue recursively on the resulting
face(s), until every face is a triangle. It remains to argue the existence of the pair si, sj . We
consider two cases:
Case I: Sin(F ) = ∅ and all sites from Sout(F ) are convex vertices of F .
Then take two sites si, sj ∈ S(F ) that are not already connected by a shortest path in
Eout(F ). Such a pair exists because |Sout(F )| > 3. Consider the shortest path π from si to
sj that is restricted to lie inside F . All interior vertices of π must bend around reflex vertices
of F . Since all vertices from Sout(F ) are convex, these reflex vertices are not sites but reflex
vertices of P . By Lemma 1, π must also be the shortest path in P between p and q and so
π ∈ E(S). Since π stays inside F , it does not cross any other shortest path.
Case II: Sin(F ) ̸= ∅ or Sout(F ) contains a site that is a reflex vertex of F .
We start by identifying a “reflex” site, from which we will then be able to add a path.

▷ Claim. There is a site si ∈ S(F ) with the following property: there is a line ℓ through si

such that all paths from E(F ) that have si as an endpoint lie to the same side of ℓ, locally
near si. (In other words, the edges of these paths that have si as an endpoint all lie to the
same side of ℓ).

(i) (ii) (iii)

Figure 4 (i) The relative convex hull of a set of points. (ii) An sp-triangulation. (iii) The
corresponding maximal triangulation. Note: paths are shown slightly displaced where they overlap.



H. Alkema, M. de Berg, M. Monemizadeh, and L. Theocharous 5:9

(i)

`

si

F1

F2

si`1
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Figure 5 Illustrations for the proof of Lemma 4. (i) An example with three faces inside rch(S).
The red face is already a triangle. The yellow face falls into Case 1 and can be triangulated by
adding the purple path. The blue face falls into Case 2 of the proof. (ii) The ray from si hits a
shortest path that has sk as an endpoint in F1(si). The purple path is the shortest path from si

to sk inside F1(si), and therefore π(si, sj) is added to the triangulation.

Proof. First suppose that Sin(F ) = ∅. Then Sout(F ) contains a site si that is a reflex vertex
of F and, hence, has the required property. (Note that, except for the two paths on the outer
boundary of F meeting at si, the site si has no other incident paths, since Sin(F ) = ∅.)

Now suppose Sin(F ) ̸= ∅. Consider a connected component C in Ein(F ). (Or more
precisely, a connected component of the set

⋃
Ein(F ) ⊂ R2.) Then C may contain at most

one site from Sout(F ) – indeed, if it would contain two such sites then it would split F and
some paths in the component would be part of the outer boundary of F , a contradiction.
Now see Eout(F ) as a simple polygon and consider the relative convex hull of C ∩ S(F )
within this simple polygon. Then choose si to be any vertex of rch(C ∩ (S(F )) that is a
site from Sin(F ). Then there is a line ℓ through si such that the path edges incident to si lie
to the same side of ℓ, namely a line ℓ that is (locally) tangent to rch(C ∩ S(F )). ◁

Consider the site si and the line ℓ provided by the above claim. Let ℓ1 ⊂ ℓ denote the
maximal subsegment of ℓ containing si and lying inside F . The segment ℓ1 splits F in two
pieces, F1 and F2. Let F2 denote the piece containing the edges incident to si and let F1
denote the other piece. We claim that F2 must contain all sites sk already connected to si,
that is, all sites sk ∈ S(F ) such that π(si, sk) ∈ E(F ). Indeed, if some neighbor sk of si

was in F1 then π(si, sk) would intersect ℓ1 at some point s and therefore we would be able
to shorten π(si, sk) by using the straight segment sis as a shortcut. Now, ℓ1 together with
the paths in Ein(F ) induces a subdivision of F into planar regions. Denote by F1(si) the
region in this subdivision within F1 that contains si on its boundary; see Fig. 5(ii), where
this region is shown in purple.

Now shoot a ray from si into F1(si), and let π denote the first path from E(F ) hit by this
ray. At least one of the two endpoints of π must be in F1(si), otherwise π would intersect ℓ1
twice, contradicting that π is is a shortest path. Let sk be this endpoint. Consider the
shortest path γ from si to sk, restricted to lie in F1(si). Then γ has to bend around vertices
of F1(si), which are either reflex vertices of P or sites in S(F ). Let sj be the first vertex on
γ that is a site; such a vertex exists, since the endpoint sk of γ is a site. Then all interior
vertices of γ[si, sj ], the subpath of γ from si to sj , bend around reflex vertices of P . By
Lemma 1, the subpath γ[si, sj ] is a shortest path in P . Hence, we have found a shortest
π(si, sj) that we can add to E(F ). ◀
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5:10 TSP in a Simple Polygon

Note that Tsp(S), when viewed as a graph, may not be maximally planar. The reason is that
the face outside rch(S) is not necessarily a triangle. However, we can easily turn Tsp(S)
into a maximally planar graph, as follows. Let s1, ..., sr be the sites on ∂rch(S), in the same
order as they are encountered while following ∂rch(S) clockwise. For every pair (s1, si) with
3 ⩽ i ⩽ r − 1, we add the path from s1 to si that follows ∂rch clockwise, as an edge to
our triangulation. We denote this set of “outside edges” by E(S); see the purple paths in
Figure 4(iii) for an example. By adding these edges to Tsp(S), we triangulate the outer face
and thus obtain a maximally planar graph, which we denote by Gsp(S).

Now that we have established the existence of a suitable triangulation, we can explain
how to implement the various steps in Algorithm 1.

Preprocessing. As a preprocessing step we compute the shortest path π(si, sj) for each pair
si, sj ∈ S, which also gives us all pairwise distances. We then check for each pair of shortest
paths whether they cross or not, so that later on in the algorithm we have this information
readily available. Clearly, the preprocessing can be done in poly(n, m) time. As it turns
out, Algorithm 1 will not need the actual shortest paths or other geometric information –
knowing pairwise distances (for solving the constant-size subproblems at the base of the
recursion) and whether or not pairs of shortest paths cross (for larger subproblems) is all
that is needed.

Generating all candidate separators. Miller’s theorem [25] guarantees that Gsp(S) has a
simple-cycle separator of at most 2

√
2n nodes. The edges in this separator are edges in

Gsp(S), which correspond to paths in E(S) ∪ E(S). Note that for every pair of sites, there
are at most two different paths in E(S)∪E(S). We now generate our collection of candidate
separators as follows:

1: for every circular sequence s1, s2, . . . , st, s1 of at most 2
√

2n sites from S do
2: for every choice of paths from E(S) ∪ E(S) to connect consecutive sites do
3: Check if the paths used in the resulting cycle C are pairwise non-crossing and if

the number of sites inside and outside C is at most 2n/3. If so, add C to the
collection of cycles.

Clearly, the collection of generated separators is guaranteed to contain the separator that
would result from applying Miller’s theorem to Gsp(S). The total number of candidate
separators is nO(

√
n) (for choosing the circular sequence) times 2O(

√
n) (for choosing the paths

to connect consecutive sites), so nO(
√

n) · 2O(
√

n) = 2O(
√

n log n) in total.
Note that for each candidate separator C we need to check if it is simple, that is, if

its paths are pairwise non-crossing. With the pre-computed information, this can be done
in O(|C|2) = O(n) time. Note that the paths from E(S) do not cross any other path by
definition, so these paths need not be checked.

If C is simple, we need to determine which sites are inside C and which are outside C. In
fact, what is “inside” and what is “outside” is not important, we just need to partition the
set of sites (that are not on the separator) into two subsets: the sites on one side of C and
the sites on the other side of C. We can do that as follows.

Take any site si that is not on the separator C, and consider another site sj (that is not
on C either). We can decide if sj is on the same side of C as si by counting how often π(si, sj)
crosses C: site sj is on the same side if and only if π(si, sj) crosses C an even number of times.
Because we determined in the preprocessing step for each pair of shortest paths whether they
cross or not, we can do this counting in O(

√
n) time in total. The separator may also use

paths from E(S) and these paths depend on the subproblem being solved. Hence, they have
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not been considered in the preprocessing step. However, such paths cannot cross π(si, sj)
by definition, so they can be ignored. This also means that we do not have to compute the
paths in E(S) explicitly. We conclude that, for each candidate separator C, we can partition
the sites not on C into subsets on either side of the separator in O(n

√
n) time.

Hence, in total we spend O(n
√

n) · 2O(
√

n log n) = 2O(
√

n log n) time to generate all possible
separators and their corresponding partitions.

▶ Lemma 5. The number of separators generated in Step 4 of Algorithm 1 is 2O(
√

n log n),
and they can be generated in the same amount of time. This includes determining for each
candidate C a partitioning of S \ C into sites on one side of C and on the other side of C.

Generating the subproblems for a given separator C. This can be done as in the algorithms
of Hwang et al. [17] and De Berg et al. [11]; see Fig. 3. For completeness we give a sketch.

Consider the set C \B, which contains the sites from C that are not boundary sites. The
path ξij ∈ Popt corresponding to a pair (si, sj) ∈ M may or may not visit sites of C \ B.
To generate our subproblems, we need to guess for every pair (si, sj) ∈M , which points of
C \B are visited by ξij and in which order. (A site from C \B should be used by at most
one path ξij .) Given such a guess, we can generate the corresponding subproblems, one for
each side, as follows. Let sk1 , sk2 , . . . , skt

be the ordered sequence of sites from C \B that is
our guess for where ξij crosses C. Define ξ′

ij := si, sk1 , sk2 , . . . , skt , sj . Then every pair of
consecutive sites of ξ′

ij becomes a pair in the matching of one of the subproblems; which
subproblem depends on which side we have guessed the corresponding part of ξij to be on.
After doing this for all ξij corresponding to a pair in M , we have the matchings M1 and
M2 of our subproblems. The sets of sites S1 and S2 for the recursive calls are generated as
follows. First we add the sites inside C to S1 and the sites outside C to S2. Then we add
the sites of M1 to S1, and the sites of M2 to S2. Note that causes some sites to appear in
both subproblems. Finally, the remaining sites on C are all added to S1. In other words, we
consider all points on C to be on the same side of C. See Fig. 3 for an example.

The total number of subproblems generated for a given separator C is nO(
√

n) = 2O(
√

n log n),
since we have to guess for each separator node by which (if any) of the paths it is used and
then choose an ordering for the crossings.

A proof of correctness. Next we prove that this gives an optimal solution.

▶ Lemma 6. Let si be such that there is an optimal solution Topt with non-crossing shortest
paths that uses the path π(s1, si). Then Triangulation-approach(S, B, M) with B = {s1, si}
computes an optimal solution for tsp in a simple polygon. Moreover, all other calls report
valid solutions.

Proof. We first argue that each reported solution is valid, by showing that any recursive
call gives a valid solution of Euclidean path cover. This is trivially true for the base
case in the algorithm. The way in which the subproblems are generated and their solutions
are combined, ensures that when the solutions to the subproblems are valid (which we can
assume by induction) then the combined solution is valid. (Note: the generation of the
subproblems and how they are combined is based on the original triangulation approach by
Hwang et al. [17], so this part in fact follows from the correctness of their algorithm.)

Now consider a call Triangulation-approach(S, B, M). Let Popt(S, B, M) be an optimal
solution to the subproblem. We will prove that if the parameters S, B, M are consistent with
Topt – that is, Popt(S, B, M) is a subset of the global Topt – then the algorithm computes
an optimal solution to the subproblem. Since the initial call with B = {s1, si} is consistent
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5:12 TSP in a Simple Polygon

with Topt by definition, this will prove the lemma. Note that if Popt(S, B, M) ⊂ Topt, then
Popt(S, B, M) consists of non-crossing paths. Lemma 4 then implies that there exists an
sp-triangulation Tsp(S) that includes the edges from Popt(S, B, M). This can be extended
to a maximally planar graph Gsp(S), which has separator of size at most 2

√
2n. As argued

earlier, this separator will be one of the generated candidate separators, and the way in
which Popt(S, B, M) crosses it will be corresponds to one of the generated subproblems.
The parameters Sin, Bin, Min and Sout, Bout, Mout of these subproblems are thus consistent
with Topt, and so we can assume by induction that they are solved optimally, thus leading to
an optimal solution for the call to Triangulation-approach(S, B, M). ◀

Putting it all together. Lemma 6 gives the correctness of our algorithm so it remains
to analyze the running time. The preprocessing takes poly(n, m) time. The running time
of Triangulation-approach satisfies the recurrence T (n) = 2O(

√
n log n) + 2O(

√
n log n) · T ( 2n

3 +
O(
√

n)), which solves to T (n) = 2O(
√

n log n). This leads to our final theorem.

▶ Theorem 7. tsp in a simple polygon for a set S of n sites in a polygon P with m

edges can be solved in poly(n, m) + 2O(
√

n log n) time.

4 Conclusion

We introduced tsp in a simple polygon, a natural variant of tsp that seems not to have
been studied at all so far. The problem can be solved in poly(n, m)+2O(

√
n log n) time using a

complicated algorithm of Marx, Pilipczuk, and Pilipczuk [24] as a subroutine. We presented
a much simpler algorithm with the same running time. Our work raises several questions:

It was recently shown that Euclidean tsp in R2 can be solved in 2O(
√

n) time [11]. Can
we also get rid of the log-factor in the exponent for tsp in a simple polygon?
Can our approach be extended to polygons with holes? A major obstacle is that in
this case a triangulation using shortest paths not always exists. We have been able to
generalize our approach, by working with a suitable collection of paths between every
pair of sites, but this significantly complicates matters, thus defeating the purpose.
Can ideas from our approach be used to get a simplified solution to the more general
subset tsp problem for planar graphs?
What about tsp with obstacles in higher dimensions? Here neither our approach nor
the approach by Marx, Pilipczuk, and Pilipczuk can be used.
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Abstract
Subset-Sum is an NP-complete problem where one must decide if a multiset of n integers contains
a subset whose elements sum to a target value m. The best known classical and quantum algorithms
run in time Õ(2n/2) and Õ(2n/3), respectively, based on the well-known meet-in-the-middle technique.
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to Subset-Sum and a number of variants, including Equal-Sums (where one seeks two disjoint
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Given any modulus p, our data structure can be constructed in time O(np), after which queries
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finding algorithm, extending the quantum claw finding algorithm to the multiple solutions case, to
give an O(20.504n) quantum algorithm for Shifted-Sums. This provides a notable improvement on
the best known O(20.773n) classical running time established by Mucha et al. [27]. We also study
Pigeonhole Equal-Sums, a variant of Equal-Sums where the existence of a solution is guaranteed
by the pigeonhole principle. For this problem we give faster classical and quantum algorithms with
running time Õ(2n/2) and Õ(22n/5), respectively.
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6:2 Classical and Quantum Algorithms for Variants of Subset-Sum

1 Introduction

Subset-Sum is the problem of deciding whether a given multiset of n integers has a subset
whose elements sum to a target integer m.

▶ Problem 1 (Subset-Sum). Given a multiset {a1, . . . , an} of positive integers and a target
integer m, find a subset S ⊆ [n] such that

∑
i∈S ai = m.

It is often useful to express Subset-Sum using inner product notation. We set ā =
(a1, . . . , an) ∈ Nn, where the elements are taken in arbitrary order, and the task is to find
ē ∈ {0, 1}n such that ā · ē =

∑n
i=1 aiei = m. The problem is famously NP-complete, and

featured on Karp’s list of 21 NP-complete problems [23] in 1972 (under the name of knapsack).
It can be solved classically in time Õ(2n/2) via the meet-in-the-middle technique [19]. Whether
this problem can be solved in time Õ(2(1/2−δ)n), for some δ > 0, is an important open question,
but we know that the Exponential Time Hypothesis implies that Subset-Sum cannot be
computed in time mo(1)2o(n) [13, 21]. Subset-Sum can also be solved in pseudopolynomial
time, for instance in O(nm) by a textbook dynamic programming approach, which was
improved to a highly elegant Õ(n + m) randomized algorithm by Bringmann [12]. However,
assuming the Strong Exponential Time Hypothesis (SETH), it can be shown that for all ϵ > 0,

there exists δ > 0, such that Subset-Sum cannot be computed in time O(m1−ϵ2nδ) [2]. On
a quantum computer, meet-in-the-middle can be combined with Quantum Search to solve
Subset-Sum in time Õ(2n/3).

1.1 Some Variants of Subset-Sum
Subset-Sum has several close relatives we will be concerned with in this paper.

▶ Problem 2 (Equal-Sums [32]). Given a set {a1, . . . , an} of positive integers, find two
distinct subsets S1, S2 ⊆ [n] such that

∑
i∈S1

ai =
∑

i∈S2
ai. In inner product notation we

are looking for a nonzero vector ē ∈ {−1, 0, 1}n such that ā · ē = 0.

The folklore classical algorithm [31] for Equal-Sums runs in time Õ(3n/2) ≤ O(20.793n),
and is also based on a meet-in-the-middle approach. In the classical case we arbitrarily
partition the input into two sets of the same size, giving rise to vectors ā1, ā2 ∈ Nn/2. Then
we compute and sort the possible 3n/2 values ā1 · ē, for ē ∈ {−1, 0, 1}n/2. Finally we compute
the possible 3n/2 values of the form ā2 · ē and, for each value, check via binary search if it
has a collision (i.e. an item of the same value) in the first set of values. In the quantum
case we use a different balancing, dividing the input into a set of size n/3 and a set of size
2n/3, and then use Quantum Search over the larger set to find a collision. This folklore
quantum algorithm has running time Õ(3n/3) ≤ O(20.529n). The classical running time of
Equal-Sums was reduced in a recent work by Mucha et al. [27] to O(20.773n), and it is an
open problem whether this can be further improved.

A natural generalization of Subset-Sum is to allow each item in the input set to be used
more than once in the summation, where the maximum number of times each item can be
used is specified as part of the input to the problem. This is the analog of bounded knapsack,
a well studied problem in the literature (see for example [24]). In particular, we will study
the case when every item can be used at most twice.

▶ Problem 3 (2-Subset-Sum). Given a multiset {a1, . . . , an} of positive integers and a
target integer 0 < m < 2

∑n
i=1 ai, find a vector ē ∈ {0, 1, 2}n such that ā · ē = m.



J. Allcock, Y. Hamoudi, A. Joux, F. Klingelhöfer, and M. Santha 6:3

There is a natural variant of Subset-Sum that generalizes both Equal-Sums and
2-Subset-Sum. We call this variant Shifted-Sums, whose investigation is the main subject
of this paper.

▶ Problem 4 (Shifted-Sums). Given a multiset {a1, . . . , an} of positive integers and a shift
0 ≤ s <

∑n
i=1 ai, find two distinct subsets S1, S2 ⊆ [n] such that

∑
i∈S1

ai = s +
∑

i∈S2
ai.

The condition S1 ̸= S2 is necessary in the case s = 0 to exclude the trivial solutions
S1 = S2. The problem Equal-Sums is a special case of Shifted-Sums in this case, and
it is easy to show (see the full version of the paper [3]) that 2-Subset-Sum can also be
reduced to Shifted-Sums without increasing the size of the input. This means that any
algorithm for Shifted-Sums automatically gives rise to an algorithm of the same complexity
for Equal-Sums and 2-Subset-Sum, and therefore we focus on constructing a quantum
algorithm for Shifted-Sums.

We additionally study the following variant of Equal-Sums where, by the pigeonhole
principle, a solution is guaranteed to exist. This search problem is total in the sense that
its decision version is trivial because the answer is always “yes”. Such problems belong
to the complexity class TFNP [26] consisting of NP-search problems with total relations.
Problems in TFNP cannot be NP-hard unless NP equals co-NP. More precisely, the following
problem belongs to the Polynomial Pigeonhole Principle complexity class PPP, defined by
Papadimitriou [28], where the totality of the problem is syntactically guaranteed by the
pigeonhole principle.

▶ Problem 5 (Pigeonhole Equal-Sums). Given a set {a1, . . . , an} of positive integers such
that

∑n
i=1 ai < 2n − 1, find two distinct subsets S1, S2 ⊆ [n] such that

∑
i∈S1

ai =
∑

i∈S2
ai.

There are 2n subsets S ⊆ [n]. Since they all verify 0 ≤
∑

i∈S ai ≤ 2n − 2 there must exist
two distinct subsets S1, S2 that sum to the same value, according to the pigeonhole principle.

1.2 Our Contributions and Techniques
We give new classical and quantum algorithms for Subset-Sum and several closely related
problems. Our main contribution is a quantum algorithm for Shifted-Sums (and for its
special cases of Equal-Sums and 2-Subset-Sum) that improves on the currently best known
O(20.773n) classical algorithm [27] and on the folklore O(20.529n) quantum meet-in-the-middle
algorithm. We also initiate the study of the Pigeonhole Equal-Sums problem in the
classical and quantum settings, where we obtain better complexities than what is known for
the general Equal-Sums problem.

▶ Theorem (Theorem 18 (Restated)). There is a quantum algorithm for Shifted-Sums that
runs in time O(20.504n).

▶ Theorem (Theorems 25, 26 (Restated)). There are classical and quantum algorithms for
Pigeonhole Equal-Sums that run in time Õ(2n/2) and Õ(22n/5), respectively.

In the full version of the paper [3], we give new Õ(2n/2) and Õ(2n/3) classical and
quantum algorithms for Subset-Sum, not based on the seminal meet-in-the-middle approach
of Horowitz and Sahni [19]. We also describe partial results and potential directions for
future work on modular versions of the problems studied in this paper.

At a high level, all of our algorithms use a representation technique approach. While this
technique was originally designed to solve Subset-Sum when the instances are drawn from
some specific distribution [20], here we follow the path of Mucha et al. [27] and use it in a
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worst case analysis. Among our new algorithms, the quantization of this technique for the
Shifted-Sums problem is the most challenging and requires using several quantum tools.
We will therefore explain first, via this algorithm, the difficulties we had to address and the
methods we used to tackle them.

Shifted-Sums. The representation technique approach for Shifted-Sums consists first of
selecting a random prime p ∈ {2bn, . . . , 2bn+1}, where b ∈ (0, 1) is some appropriate constant,
and a random integer k ∈ {0, . . . , p− 1}. Then we consider the random bin Tp,k, defined as
Tp,k =

{
S ⊆ {1, . . . , n} :

∑
i∈S ai ≡ k (mod p)

}
, and we search that bin and Tp,(k−s) mod p

for a colliding solution (i.e. (S1, S2) ∈ Tp,k×Tp,(k−s) mod p such that
∑

i∈S1
ai = s+

∑
i∈S2

ai).
The choice of the bin size (which, on average, is roughly 2(1−b)n) should balance two opposing
requirements: the bins should be sufficiently large to contain a solution and also sufficiently
small to keep the cost of collision search low.

To satisfy the above two requirements, our algorithm uses the concept of a maximum
solution. This is the maximum of |S1|+ |S2|, when S1, S2 are disjoint and form a solution.
Let this maximum solution size be ℓn, for some ℓ ∈ (0, 1). The algorithm consists of two
different procedures, designed to handle different maximum solution sizes. For ℓ close to 0
or close to 1, the quantization of the meet-in-the-middle method adapted to solutions of
size ℓn is used because it performs better. In this case, the quantization does not present
any particular difficulties: it is a straightforward application of Quantum Search with the
appropriate balancing. We therefore focus the discussion on the representation technique
procedure used for values of ℓ away from 0 or 1. When S1, S2 form a maximum solution of
size ℓn then, for every X ⊆ S1 ∪ S2, the pairs S1 ∪X, S2 ∪X also form a solution, and all
these solutions have different values (see Lemma 20). This makes it possible to bound from
below, not only the number of solutions, but also the number of solution values by 2(1−ℓ)n,
which makes the use of the representation technique successful.

The most immediate way to quantize the procedure is to replace classical collision finding
by the quantum element distinctness algorithm of Ambainis [4]. However, in a straightforward
application of this algorithm we face a difficulty. For concreteness, we explain this when
ℓ = 3/5. In that case, by the above, the total number of solutions with different values is at
least 22n/5. This is handy for applying quantum element distinctness: we can select a random
prime p ∈ {22n/5, . . . , 22n/5+1} and expect to have a solution in the random bin Tp,k with
reasonable probability. The expected size |Tp,k| of the bin is about 23n/5, and therefore the
running time of Ambainis’ algorithm should be of the order of |Tp,k|2/3 which is also about
22n/5. However, the quantum element distinctness algorithm requires us to perform queries
to Tp,k. That is, for some indexing Tp,k = {S1, . . . , S|Tp,k|} of the elements of Tp,k, we need
to implement the oracle OTp,k

|I⟩|0⟩ = |I⟩|SI⟩, where 1 ≤ I ≤ |Tp,k|. In other words, given
1 ≤ I ≤ |Tp,k|, we have to be able to find the Ith element in Tp,k (for some ordering of that
set). In the usual description of the element distinctness algorithm there is a simple way to do
that (for example, the set over which the algorithm is run is just a set of consecutive integers).
However, finding a simple bijection among the first |Tp,k| integers and Tp,k is not a trivial
task. Unlike in the classical case, explicitly enumerating Tp,k is not an option because this
would take too long, requiring about 23n/5 time steps. Instead, we use dynamic programming
to compute the table tp[i, j] =

∣∣{S ⊆ {1, . . . , i} :
∑

s∈S as ≡ j (mod p)
}∣∣. Computing the

cardinality of the bins is cheaper than computing their contents, and can be done in time
O(np) = Õ(22n/5). Crucially, once the table is constructed, one can deduce the paths through
it that led to tp[n, k] = |Tp,k|, in order to find each element of Tp,k in time O(n). More
precisely, we define a strict total order ≺ over P([n]) and prove:
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▶ Theorem (Theorem 11 (Restated)). Let Tp,k be enumerated as Tp,k = {S1, . . . , S|Tp,k|}
where S1 ≺ · · · ≺ S|Tp,k|. Given any integer I ∈ {1, . . . , |Tp,k|} and random access to the
elements of the table tp, the set SI can be computed in time O(n).

This novel data structure will be used in our algorithms for Subset-Sum (see the full
version [3]), Shifted-Sums and Pigeonhole Equal-Sums. We now describe the additional
quantum tools we use for Shifted-Sums. The algorithm randomly chooses a bin size of
about 2(1−b)n where b is defined differently depending on whether ℓ is above or below 3/5,
as different tools are required in these two regions. When ℓ ≤ 3/5, with high probability a
random bin contains multiple solutions from which we can profit. To that end, we construct
a quantum algorithm for finding a pair marked by a binary relation R(x, y) := 1f(x)=g(y)
that tests if two values f(x) and g(y) are equal. Our algorithm generalizes the element
distinctness [4] and claw finding [30] algorithms to the case of multiple marked pairs. Using
an appropriate variant of the birthday paradox (see Lemma 5) we prove:

▶ Theorem (Theorem 6 (Quantum Pair Finding - Restated)). Consider two sets of N ≤M

elements, respectively, and an evaluation function on each set. Suppose that there are K

disjoint pairs in the product of the two sets such that in each pair the elements evaluate to
the same value. There is a quantum algorithm that finds such a pair in time Õ

(
(NM/K)1/3)

if N ≤M ≤ KN2 and Õ
(
(M/K)1/2)

if M ≥ KN2.

The best complexity when ℓ ≤ 3/5 is then obtained by choosing the bin size parameter b

as a function of ℓ, which balances the cost of the construction of the dynamic programming
table and the Quantum Pair Finding. When ℓ > 3/5, choosing a bin size 2(1−b)n, for b ≤ 1−ℓ,
guarantees that a random bin contains at least one solution with high probability. However,
a better running time at first seems to be achievable by the following argument: Choose
b > 1 − ℓ, for which there is exponentially small probability that a random bin contains
a solution, and use amplitude amplification to boost the success probability. Balancing
again the dynamic programming and Quantum Pair Finding costs would then give an
optimal bin size of 23n/5, independent of ℓ. However, this argument contains a subtlety.
Standard amplitude amplification requires that the random bins Tp,k simultaneously satisfy
two conditions: beside containing a solution, they should also have sizes close to the expected
size of about 2(1−b)n. But there is no guarantee that these two events coincide, and a priori
it could be that the exponentially small fraction of Tp,k containing a solution also happen to
have sizes that far exceed the expectation. Fortunately, by carefully bounding the expectation
of the product of bin sizes, we can use the Variable-Time Amplitude Amplification algorithm
of Ambainis [5], and achieve the same running time as given by the above argument. We
believe that this a nice and natural application of this method. The running time of our
algorithm for Shifted-Sums, as a function of ℓ, is shown in Fig. 1.

Pigeonhole Equal-Sums. This problem can be solved by any (classical or quantum) al-
gorithm which solves the general Equal-Sums (or Shifted-Sums) problem. However, one
can make use of the explicit promise of a1 + · · ·+ an < 2n − 1 to design faster algorithms
than provided for by the general case when ℓ > 3/5. Indeed, by the pigeonhole principle,
for any value of p, if a bin Tp,k has size larger than 2n/p then it must contain a solution
(see Lemma 24). Moreover, there must exist at least one such oversized bin. The array tp

can now be constructed both for locating the index k of one oversized bin and searching for
a solution in it. We thus obtain a classical algorithm running in time Õ(p + 2n/p), and a
quantum algorithm running in time Õ(p + (2n/p)2/3). These two quantities are minimized
by deterministically choosing p = 2n/2 and p = 22n/5 respectively (see Section 5).
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6:6 Classical and Quantum Algorithms for Variants of Subset-Sum

Figure 1 Running time exponent γ(ℓ) of the quantum Shifted-Sums algorithm, as a function
of the maximum solution ratio ℓ (see Theorem 18). The maximum value of γ(ℓ) is ≈ 0.504 which
occurs at ℓ = ℓ2 ≈ 0.809. For reference, the curve (h(ℓ) + ℓ)/3 corresponding to Theorem 23 is
plotted for all values of ℓ, as is the value of 0.529 corresponding to the exponent of the folklore
(quantized) meet-in-the-middle algorithm, as applied to Shifted-Sums.

1.3 Related Works

The closest work to our contribution is the paper of Mucha et al. [27] solving Equal-Sums
classically in time O(20.773n). Their algorithm and ours use the same two basic procedures,
based respectively on the meet-in-the-middle method and the representation technique. Let
us point out some of the differences. Unlike our algorithm which is based around the concept
of the size of a maximum solution, the classical algorithm is analyzed as function of a
minimum size solution, defined as |S1|+ |S2|, where this sum is minimized over all solutions.
The use the classical algorithm makes from a minimum solution S1, S2 of size ℓn is that when
ℓ > 1/2 the number of solution values can be bounded from below by 2(1−ℓ)n. However, this
does not hold for 2-Subset-Sum when ℓn is the size of a minimum solution, but is valid for
both Equal-Sums and 2-Subset-Sum when it is the size of a maximum solution. Another
difference with [27] is that their classical representation technique algorithm always samples p

from the same set {2(1−ℓ)n, . . . , 2(1−ℓ)n+1}, while we randomly choose p ∈ {2bn, . . . , 2bn+1}
where b is defined differently depending on in which of two distinct regions ℓ lies. This makes
it possible to use different quantum techniques in these two regions.

The representation technique was designed by Howgrave-Graham and Joux [20] to solve
random Subset-Sum instances under some hypotheses (heuristics) about how such instances
behave during the run of the algorithm. The idea is to decompose a single solution to the
initial problem into many distinct decompositions of a sum of half-solutions. To compensate
for this blow-up, an additional linear constraint is added to select approximately one of these
decompositions. Under some rather strong assumptions, which are satisfied for a large fraction
of randomly chosen instances, [20] can solve Subset-Sum instances in time O(20.337n). Since
then, several variants of this classical method have been proposed [8, 15, 10, 14], while others
have investigated quantum algorithms based on the representation technique. Bernstein
et al. [9] improved on [20] using quantum walks, and their algorithm (again under some
hypotheses) runs in time O(20.242n). Further quantum improvements were made in this
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context by [18] and [10]. However, we emphasize that the algorithms in all these papers work
for random inputs generated from some distributions. The paper [27] gave the first classical
algorithm based on the representation technique that works for worst case inputs and with
proven bounds. To our knowledge, for worst case inputs with provable guarantees, the first
quantum algorithm based on the representation technique is given in our work.

Dynamic programming is notoriously hard to quantize, with a key obstacle being the
intrinsically sequential way in which the solution to a large problem is constructed from the
solutions to smaller subproblems. Certain basic dynamic programming algorithms can be
trivially accelerated by Quantum Search or Minimum Finding (see, e.g. [1]) but beyond that
few other quantum improvements are known. One notable exception is the work of Ambainis
et al. [6] who gave faster quantum algorithms for several NP-hard problems for which the
best classical algorithms use dynamic programming. Their algorithms precompute solutions
for smaller instances via dynamic programming and then use non-trivial Quantum Search
recursively on the rest of the problem. In our work, the dynamic programming subroutine
that we use is classical (although for Shifted-Sums it is performed in superposition) and
the sequential nature of the process is therefore not an issue. Rather than using quantum
computing to accelerate classical dynamic programming, we instead use dynamic programming
to enable fast queries, required for Quantum Search and Pair Finding, to be performed on
complicated sets.

The class PPP is arguably less studied than other syntactically definable subclasses of
TFNP, such as PLS (Polynomial Local Search) and PPA (Polynomial Parity Argument),
and it is not known whether Pigeonhole Equal-Sums is complete in PPP. In fact, the
first compete problem for the class was only identified relatively recently [29]. Our results
for Pigeonhole Equal-Sums suggest that the problem is indeed simpler to solve than
Equal-Sums. In spirit, a similar result was obtained in [7] where it was shown that, for an
optimization problem closely related to Equal-Sums, better approximation schemes can be
obtained for instances with guaranteed solutions.

1.4 Structure of the Paper
In Section 2.1, we define the notations and provide some basic facts. The quantum com-
putational model and the algorithmic primitives used in the paper, such as our Quantum
Pair Finding algorithm, are given in Section 2.2. In Section 3.1, we introduce the dynamic
programming data structure and show how it can be used to implement fast subset-sum
queries. The properties of this data structure needed for our work are proved in Section 3.2.
The main application to the Shifted-Sums problem is described in Section 4. Finally, we
study the pigeonhole variant of Equal-Sums in Section 5.

2 Preliminaries

2.1 Notations and Basic Facts
We use the Õ(x) and Ω̃(x) notations to hide factors that are polylogarithmic in the argument x.
For integers 0 ≤ m < n, we denote by [m . . n] the set {m, m + 1, . . . n}, and by [n] the
set [1 . . n]. For sets S, S′ ⊆ [n] we denote by S̄ the set [n] \ S, and by S∆S′ the symmetric
difference of S and S′. Given a multiset A = {a1, . . . , an} and subset S ⊆ [n] we denote
ΣA(S) :=

∑
i∈S ai. When the set A is clear from the context, we will omit the subscript

and simply denote the subset sum by Σ(S). The power set of [n] will be denoted by
P([n]) := {S : S ⊆ [n]}. For arbitrary integers a and b and a modulus p we say that a is
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6:8 Classical and Quantum Algorithms for Variants of Subset-Sum

congruent to b modulo p, and we write a ≡ b (mod p) or a ≡p b if a− b is divisible by p. By
a mod p we denote the unique integer in {0, . . . , p − 1} which is congruent to a modulo p.
The binary entropy function will be denoted by h(x) = −x log2(x)− (1− x) log2(1− x).

▶ Fact 1 ([16], page 530). For every constant ℓ ∈ (0, 1) and for every large enough integer
n, the following bounds hold: 2nh(ℓ)√

8nℓ(1−ℓ)
≤

(
n
ℓn

)
< 2nh(ℓ)√

2πnℓ(1−ℓ)
.

▶ Fact 2. Let b > 0 be a constant, n a large enough integer and a1 ̸= a2 two integers. Then,
for a random prime p ∈ [2bn . . 2bn+1] we have Prp[a1 ≡p a2] ≤ log(|a1−a2|)

2bn .

Proof. The number of primes that belong to the interval [2bn . . 2bn+1] is at least 2bn/bn for
n large enough (see [17, p.371]). Moreover, there are at most log(|a1−a2|)

bn prime numbers
larger than 2bn that divide a1 − a2. The result follows by a union bound. ◀

2.2 Quantum Algorithms
Quantum Computational Model. Similar to previous works on quantum element distinct-
ness [4], quantum dynamic programming [6] and quantum subset sum algorithms [9], in
our quantum algorithm running time analysis we assume the standard circuit model (where
computational time corresponds to the number of single and two qubit gates) augmented
with random access to quantum memory. That is, coherent access to any element of an
m-qubit array can be performed in time polylogarithmic in m. Note that fully quantum
memory is required in Algorithm 2 for Shifted-Sums since multiple bins Tp,k must be
computed and stored in superposition.

Algorithmic primitives. We use the following generalization of Grover’s search to the case
of an unknown number of solutions.

▶ Fact 3 (Quantum Search, Theorem 3 in [11]). Consider a function f : [N ] → {0, 1}
with an unknown number K = |f−1(1)| of marked items. Suppose that f can be evaluated
in time τ . Then, the Quantum Search algorithm finds a marked item in f in expected
time Õ(

√
N/K · τ).

Given a classical subroutine with stopping time τ that returns a marked item with
probability ρ, we can convert it into a constant success probability algorithm with expected
running time O(E[τ ]/ρ) by repeating it O(1/ρ) times. Ambainis proved a similar result for
the case of quantum subroutines, with a dependence on the second moment of the stopping
time τ , and a Grover-like speed-up for the dependence on ρ.

▶ Fact 4 (Variable-Time Amplitude Amplification, Theorem 2 in [5]). Let A be a
quantum algorithm which looks for a marked element in some set. Let τ be the random
variable corresponding to the stopping time of the algorithm, and let ρ be its success probability.
Then the Variable-Time Amplitude Amplification algorithm finds a marked element in the
above set with constant success probability in maximum time Õ(

√
E[τ2]/ρ).

The next result is a variant of the Birthday paradox over a product space [N ] × [M ],
where at least K disjoint pairs are marked by some binary relation R. Two pairs (x, y) and
(x′, y′) are said to be disjoint if x ̸= x′ and y ̸= y′. The disjointness assumption is made to
simplify the analysis and will be satisfied in our applications.
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▶ Lemma 5 (Variant of the Birthday paradox). Consider three integers 1 ≤ K ≤ N ≤
M . Let R : [N ]× [M ]→ {0, 1} be a binary relation such that there exist at least K mutually
disjoint pairs (x1, y1), . . . , (xK , yK) ∈ [N ]× [M ] with R(xk, yk) = 1 for all k ∈ [K]. Given
an integer r ≤ O(

√
NM/K), define ϵ(r) to be the probability of obtaining both elements

from at least one marked pair when r numbers from [N ] and r numbers from [M ] are chosen
independently and uniformly at random. Then, ϵ(r) ≥ Ω

(
r2K
NM

)
.

Proof. Fix any K disjoint marked pairs (x1, y1), . . . , (xK , yK). Let X1, . . . , Xr (resp. Y1, . . . ,

Yr) be r independent and uniformly distributed random variables over [N ] (resp. [M ]). For
any indices i, j, let Zi,j denote the binary random variable that takes value 1 if {Xi, Xj}
is one of the K fixed pairs, and set Z =

∑
i,j Zi,j . By definition, we have ϵ(r) ≥ Pr[Z ̸= 0].

We lower bound this quantity by using the inclusion-exclusion principle,

ϵ(r) ≥
∑
i,j

Pr(Zi,j = 1)− 1
2

∑
(i,j)̸=(k,ℓ)

Pr(Zi,j = 1 ∧ Zk,ℓ = 1).

The first term on the right-hand side is equal to
∑

i,j Pr(Zi,j = 1) = r2K
NM . For the second

term, the analysis depends on whether the indices i, k and j, ℓ are distinct or not. If they are
distinct then Pr(Zi,j = 1∧Zk,ℓ = 1) = K2

(NM)2 since Zi,j and Zk,ℓ are independent. Otherwise,
suppose for instance that i = k. Since the K fixed pairs are disjoint, we have Pr(Zi,j =
1 ∧ Zi,ℓ = 1) = Pr(Zi,j = 1 ∧ Yj = Yℓ) = K

NM2 . Finally, there are 4
(

r
2
)2 ways of choosing

the indices i, j, k, ℓ when i ̸= k and j ̸= ℓ, and 4r
(

r
2
)

ways when i = k or j = ℓ. By putting
everything together we obtain that, ϵ(r) ≥ r2K

NM − 2
(

r
2
)2 K2

(NM)2 − 2r
(

r
2
)

K
NM2 ≥ Ω

(
r2K
NM

)
. ◀

We use the above result to construct a quantum algorithm for finding a marked pair
when the relation R(x, y) is determined by checking if two underlying values f(x) and g(y)
are equal or not. Our analysis essentially generalizes the quantum element distinctness [4]
and claw finding [30] algorithms to the case of K > 1.

▶ Theorem 6 (Quantum Pair Finding). There is a bounded-error quantum algorithm
with the following properties. Consider four integers 1 ≤ K ≤ N ≤M ≤ R with R ≤ NO(1).
Let f : [N ] → [R] and g : [M ] → [R] be two functions that can be evaluated in time τ .
Define R : [N ]× [M ]→ {0, 1} to be any of the two following binary relations:
1. R(x, y) = 1 if and only if f(x) = g(y).
2. R(x, y) = 1 if and only if f(x) = g(y) and x ̸= y.
Suppose that there exist at least K mutually disjoint pairs (x, y) ∈ [N ] × [M ] such that
R(x, y) = 1. Then, the algorithm returns one such pair in time Õ

(
(NM/K)1/3 · τ

)
if

N ≤M ≤ KN2 and Õ
(
(M/K)1/2 · τ

)
if M ≥ KN2.

Proof. If N ≤ M ≤ KN2 the algorithm consists of running a quantum walk over the
product Johnson graph J(N, r) × J(M, r) with r = (NM/K)1/3. This walk has spectral
gap δ = Ω(1/r) and the fraction ϵ of vertices containing both elements from at least one
marked pair satisfies ϵ ≥ Ω

(
r2K
NM

)
by Lemma 5. Using the MNRS framework [25], the query

complexity of finding one marked pair is then O(S + 1√
ϵ
( U√

δ
+ C)), where the setup cost

is S = r, the update cost is U = O(1), and the checking cost is C = 0. This leads to a
query complexity of O

(
r + 1/

√
ϵδ

)
= O((NM/K)1/3). By a simple adaptation of the data

structures described in [4, Section 6.2] or [22, Section 3.3.4], this can be converted to a similar
upper bound on the time complexity with a multiplicative overhead of τ .

If M ≥ KN2, the algorithm instead stores all pairs {(x, f(x))}x∈[N ] in a table – sorted
according to the value of the first coordinate – and then runs the Quantum Search algorithm
on the function F : [M ]→ {0, 1} where F (x′) = 1 if there exists x ∈ [N ] such thatR(x, y) = 1.
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There are at least K marked items and F can be evaluated in time O(τ + log N) using the
sorted table. Thus, the running time is Õ(N · τ + (M/K)1/2 · (τ + log N)) = Õ((M/K)1/2)
by Fact 3. ◀

3 Dynamic Programming Data Structure

3.1 Construction of the Data Structure
Here we introduce our dynamic programming data structure, and show how it can be used
to implement low cost subset-sum queries to the elements of the set Tp,k defined as follows.

▶ Definition 7. Let A = {a1, . . . , an} be a multiset of n integers. For integers p ≥ 2 and
k ∈ {0, 1, . . . , p − 1}, define the set Tp,k by Tp,k = {S ⊆ [n] : ΣA(S) ≡ k (mod p)}, and
denote the cardinality of Tp,k by tp,k := |Tp,k|.

Our main tool is the table tp, defined below, constructed by dynamic programming. As
tp,k = tp[n, k], once the table is constructed, the size tp,k of Tp,k can be read off the last row.

▶ Lemma 8. Let n, p be non-negative integers. In time O(np), the (n + 1) × p table
tp[i, j] = |{S ⊆ {1, . . . , i} : Σ(S) ≡ j (mod p)}| can be constructed by dynamic programming,
where i ∈ [0 . . n] and j ∈ [0 . . p− 1].

Proof. To compute the elements of the table, observe that tp[0, 0] = 1 and tp[0, j] = 0 for
j > 0. The remaining elements can be deduced from the relation tp[i, j] = tp[i− 1, j] + tp[i−
1, (j − ai) mod p]. The ith row of tp can thus be deduced from the (i− 1)th row and ai in
time O(p) and the computation of all rows can be completed in time O(np). ◀

We now show how to use the table tp to quickly query any element of Tp,k. To do so, we
first define an ordering of the elements of Tp,k.

▶ Definition 9. Let ≺ be the relation over P([n]) defined as follows: for all S1, S2 ⊆ [n],
S1 ≺ S2 if and only if max{i : i ∈ S1∆S2} ∈ S2.

▶ Lemma 10. The relation ≺ is a strict total order.

Proof. For every subset S ⊆ [n], we define χ(S) =
∑

i∈S 2i. Then, S1 ≺ S2 if and only if
χ(S1) < χ(S2). Since < is a total order over the integers, so is ≺ over P([n]). ◀

Using the above relation, we now show that the query function f : [1 . . tp,k] → Tp,k,
defined by f(I) = SI , can be computed in time O(n).

▶ Theorem 11. Let Tp,k be enumerated as Tp,k = {S1, . . . , Stp,k
} where S1 ≺ · · · ≺ Stp,k

.
Given any integer I ∈ [1 . . tp,k] and random access to the elements of the table tp, the set SI

can be computed in time O(n).

Proof. Algorithm 1 gives a process which starts from tp[n, k] (i.e. the total number of subsets
S ⊆ [n] that sum to k modulo p) and an empty set Z, and constructs SI by going backwards
(i = n, . . . , 1) through the rows of tp. At the i-th step we examine tp[i − 1, j] and decide
whether to include i in Z or not. If we do include i then we examine another element in that
row to decide a new value of I, and we also reset j.

The algorithm consists of n iterations, each of which can be performed in constant time
assuming random access to the elements of tp, and therefore the running time is O(n). What
is left to prove is that the output of the algorithm is indeed SI .
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Algorithm 1 Fast Subset-Sum oracle.

Input: Table tp, integers k ∈ [0 . . p− 1] and I ∈ [1 . . tp,k].
Output: The Ith subset Z ⊆ [n] (according to ≺) such that Σ(Z) ≡ k (mod p).

1 Set j = k and Z = ∅.
2 for i = n, . . . , 1 do
3 if I ≤ tp[i− 1, j] then
4 Do nothing.
5 else
6 Update Z = Z ∪ {i}, I = I − tp[i− 1, j] and j = j − ai mod p.

7 Return Z.

Here, we provide a high level explanation of why the algorithm works, and defer a
formal proof to the full version of the paper [3]. The total ordering defined by ≺ implies
that Tp,k can be written as the disjoint union of two sets, Tp,k = {S1, . . . , Stp[n−1,k]} ∪
{Stp[n−1,k]+1, . . . , Stp[n,k]}, where n is not contained in any Si in the first (left) set, and
is contained in every Si of the second (right) set. Thus, we add n to the working set
Z only if I > tp[n − 1, k]. If this is the case, SI is the I − tp[n − 1, k]-th element of
the right set. We note that removing n from each Si in the right set gives the next bin
defined over a smaller universe of size n− 1, {S ⊆ [n− 1] : Σ(S) ≡ k − an (mod p)} which
has tp[n−1, (k−an) mod p] elements. Therefore, by updating n← n−1, I ← I− tp[n−1, k]
and k ← (k− an) mod p we can repeat the process to determine whether to add n− 1 to the
working set, and so on, until we reach the value 1. ◀

▶ Corollary 12 (Enumerating solutions to Subset-Sum via dynamic programming). Let
A = {a1, . . . , an} and Tp,k = {S ⊆ [n] : ΣA(S) ≡ k (mod p)}. For any c ≤ |Tp,k|, it is
possible to find c elements of Tp,k in time Õ(p + c).

Proof. By Lemma 8 the table tp[i, j] can be constructed in time O(np). Thereafter, by
Theorem 11 each set SI for I ∈ [1 . . tp,k] can be computed in time O(n). ◀

An alternative method for enumerating solutions was previously known:

▶ Fact 13 (Enumerating solutions to Subset-Sum [8]). Let A = {a1, . . . , an} where ai = 2O(n)

for all i. Let p = 2O(n), 0 ≤ k ≤ p− 1, and Tp,k = {S ⊆ [n] : ΣA(S) ≡ k (mod p)}. Then,
for any c ≤ |Tp,k|, it is possible to find c elements of Tp,k in time Õ(2n/2 + c).

In comparison with Fact 13, enumerating solutions via dynamic programming is advant-
ageous when p < 2n/2.

3.2 Statistics about Random Bins
We describe some statistics about the distribution of the sets Tp,k (Definition 7) when
b ∈ (0, 1) is a constant, p is a random integer in [2bn . . 2bn+1], and k is a random integer
in [0 . . p − 1]. Therefore, in this section, we stress out that Tp,k is a random bin and its
cardinality tp,k is a random integer.

▶ Lemma 14. The expected bin size can be upper bounded as Ep,k[tp,k] ≤ 2(1−b)n.

Proof. The expected size of Tp,k is at most Ep,k[tp,k] ≤ 2(1−b)n since {Tp,k : 0 ≤ k < p} is a
partition of P([n]) with p ≥ 2bn. ◀
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This result is extended to an upper-bound on the second moment of tp,k, under the
assumption that the input does not contain too many solution pairs. This bound is needed
to analyze the complexity of the Variable-Time Amplitude Amplification algorithm.

▶ Lemma 15. Fix any integer s ≥ 0 and any real b ∈ [0, 1]. If there are at most 2(2−b)n pairs
(S1, S2) ∈ P([n])2 such that Σ(S1) = Σ(S2) + s, then the expected product of the sizes of two
bins at distance s mod p from each other is at most Ep,k[tp,ktp,(k−s) mod p] ≤ Õ(22(1−b)n).

Proof. The expectation of tp,ktp,(k−s) mod p is equal to the expected number of pairs (S1, S2)
such that Σ(S1) and Σ(S2) + s are congruent to k modulo p, that is Ep,k[tp,ktp,(k−s) mod p] =
Ep,k

[∑
S1,S2

1Σ(S1)≡pΣ(S2)+s≡pk

]
. Since k is uniformly distributed in [0 . . p− 1], this is equal

to
∑

S1,S2
Ep[ 1

p1Σ(S1)≡pΣ(S2)+s] ≤ 2−bn
∑

S1,S2
Prp[Σ(S1) ≡p Σ(S2) + s], using that p ≥ 2bn.

It decomposes as 2−bn
(∑

Σ(S1)=s+Σ(S2) 1 +
∑

Σ(S1)̸=s+Σ(S2) Prp[Σ(S1) ≡p Σ(S2) + s]
)
, where

the first inner term is at most 2(2−b)n by assumption, and the second term is at most 22nn2−bn

by Fact 2. Thus, E[tp,ktp,(k−s) mod p] ≤ O
(
2−bn

(
2(2−b)n + 22nn2−bn

))
≤ Õ(22(1−b)n). ◀

Finally, we provide a lower bound on the number of distinct subset sum values that get
hashed to the random bin Tp,k.

▶ Lemma 16. Let V be any subset of the image set {v ∈ N : ∃S ⊆ [n], Σ(S) = v}. Let vp,k

denote the number of values v ∈ V such that v ≡ k (mod p). Suppose that |V | ≥ 2(1−ℓ)n for
some ℓ ∈ [0, 1]. Then,{

Prp,k[vp,k ≥ 2(1−ℓ−b)n−2] = Ω(1/n), when ℓ ≤ 1− b,

Prp,k[vp,k ≥ 1] = Ω
(
min

(
1/n, 2(1−ℓ−b)n

))
, when ℓ > 1− b.

Proof. The expected size of Vp,k is at least Ep,k[vp,k] ≥ |V |/p ≥ |V |2−bn−1 since {Vp,k :
0 ≤ k < p} is a partition of V . Similarly to Lemma 15, the second moment satisfies that
Ep,k[v2

p,k] ≤ O
(
2−bn(|V |+ |V |2n2−bn)

)
by using Fact 2. If ℓ ≤ 1− b we can further simplify

this bound into Ep,k[v2
p,k] ≤ O

(
2−bn|V |

)
since |V | ≥ 2(1−ℓ)n by assumption. Finally, the

result is obtained by applying the Paley–Zygmund inequality Pr[vp,k ≥ E[vp,k]/2] ≥ E[vp,k]2

4E[v2
p,k

]

and the fact that Pr[vp,k ≥ 1] = Pr[vp,k > 0] since vp,k is an integer. ◀

4 Shifted-Sums

Our approach for solving Shifted-Sums relies on two different quantum algorithms. In
Section 4.1, we present the first algorithm (based on the representation technique), which is
more involved. The description of the second algorithm (based on meet-in-the-middle) is
given in Section 4.2. The running time of both algorithms, expressed in Theorems 21 and 23,
are functions of the size of a maximum solution of the input.

▶ Definition 17 (Maximum solution). We say that two disjoint subsets S1, S2 ⊆ [n] that form a
solution to an instance of Shifted-Sums are a maximum solution if the size |S1|+ |S2| = ℓn

is largest among all such solutions. We call ℓ ∈ (0, 1) the maximum solution ratio.

By choosing the faster of these two algorithms for each ℓ ∈ {1/n, 2/n, . . . , (n − 1)/n}
until a solution has been found (or it can be concluded that no solution exists), we obtain an
overall quantum algorithm for Shifted-Sums the following performance:
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▶ Theorem 18 (Shifted-Sums, quantum). There is a quantum algorithm which, given an
instance of Shifted-Sums with maximum solution ratio ℓ ∈ (0, 1), outputs a solution with
at least inverse polynomial probability in time Õ(2γ(ℓ)n) where

γ(ℓ) =


(1 + ℓ)/4 if ℓ1 ≤ ℓ ≤ 3/5, (Theorem 21)

ℓ/2 + 1/10 if 3/5 < ℓ < ℓ2, (Theorem 21)

(h(ℓ) + ℓ)/3 otherwise (Theorem 23)

and ℓ1 ≈ 0.190 and ℓ2 ≈ 0.809 are solutions to the equations (h(ℓ) + ℓ)/3 = (1 + ℓ)/4 and
(h(ℓ) + ℓ)/3 = ℓ/2 + 1/10 respectively. In particular, the worst case complexity is O(20.504n).

Since a potential solution can be verified in polynomial time in n, in what follows we
describe our algorithms on yes instances with maximum solution ratio ℓ. As presented, the
algorithms find a solution with inverse polynomial probability in n, which can be amplified
to constant probability in polynomial time.

4.1 Representation Technique Algorithm

Our representation technique based algorithm is given in Algorithm 2, and uses the dynamic
programming table of Section 3. Before constructing that table, we first check whether the
input contains many solution pairs (in which case a simple quantum search is sufficient).
Depending on the value of the maximum solution ratio ℓ, we may also need to apply Variable-
Time Amplitude Amplification (Fact 4) on top of Quantum Pair Finding (Theorem 6).

Algorithm 2 Quantum representation technique for Shifted-Sums.

Input: Instance (a, s) of Shifted-Sums with
∑n

i=1 ai < 24n and maximum solution
ratio ℓ.

Output: Two subsets S1, S2 ⊆ [n].
1 Set b = (1 + ℓ)/4 if ℓ ≤ 3/5 and b = 2/5 if ℓ > 3/5.
2 Run the Quantum Search algorithm (Fact 3) over the set of pairs (S1, S2) ∈ P([n])2,

where a pair is marked if Σ(S1) = Σ(S2) + s and S1 ̸= S2. Stop it and proceed to
step 3 if the running time exceeds Õ(2bn/2), otherwise output the pair it found
within the allotted time.

3 If ℓ > 3/5 then run Variable-Time Amplitude Amplification (Fact 4) on steps 4 - 6,
otherwise run them once:

4 Choose a random prime p ∈ [2bn . . 2bn+1] and a random integer k ∈ [0 . . p− 1].
5 Construct the table tp[i, j] for i = 0, . . . , n and j = 0, . . . , p− 1 (see Section 3).
6 Run the quantum Pair Finding algorithm (Theorem 6) to find if there exists two

sets S1 ∈ Tp,k and S2 ∈ Tp,(k−s) mod p such that Σ(S1) = Σ(S2) + s and S1 ̸= S2.
If so, output the pair (S1, S2) it found.

Note that ‘run Variable-Time Amplitude Amplification on steps 4 - 6’ means that one
should apply the procedure implicit in Fact 4 to the algorithm A defined by the following
process (i) create a uniform superposition over all primes p ∈ [2bn . . 2bn+1] and, for each p,
all k ∈ [0 . . p− 1]. (ii) For each p, coherently construct the table tp. (iii) Run Quantum Pair
Finding coherently on each pair of sets Tp,k, Tp,(k−s) mod p, marking the (p, k) tuple if a pair
is found.

ESA 2022
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The analysis of Algorithm 2 relies on the random bins statistics presented in Section 3.2.
We first define the collision values set which contains the values of all the possible solution
pairs.

▶ Definition 19 (Collision Values set). Given an instance (a, s) to the Shifted-Sums
problem, the collision values set is the set V = {v ∈ N : ∃S1 ̸= S2, v = Σ(S1) = Σ(S2) + s}.

We show that the collision values set V is of size at least 2(1−ℓ)n when the maximum
solution ratio is ℓ. Thus, by Lemma 16, we can lower bound the number of values in V that
get hashed to a random bin Tp,k.

▶ Lemma 20. If the maximum solution ratio is ℓ then |V | ≥ 2(1−ℓ)n.

Proof. Let S1, S2 ⊆ {1, . . . , n} be a maximum solution of size |S1|+ |S2| = ℓn. Then for any
S ⊆ [n] \ (S1 ∪ S2) the sets S1 ∪ S and S2 ∪ S form a solution, and for S ̸= S′, the values
Σ(S1 ∪ S) and Σ(S1 ∪ S′) must be distinct. If this were not the case then S1 ∪ (S \ S′) and
S2 ∪ (S′ \ S) would form a disjoint solution of size larger than ℓ. ◀

We now prove the correctness of Algorithm 2.

▶ Theorem 21 (Shifted-Sums, representation). Given an instance of Shifted-Sums with∑n
i=1 ai < 24n and maximum solution ratio ℓ ∈ (0, 1), Algorithm 2 finds a solution with

inverse polynomial probability in time Õ(2(1+ℓ)n/4) if ℓ ≤ 3/5, and Õ(2(ℓ/2+1/10)n) if ℓ > 3/5.

Proof. Step 2 of Algorithm 2 handles the case where the total number of solution pairs
exceeds 2(2−b)n. In this situation, the Quantum Search algorithm can find a solution pair in
time Õ(

√
22n/2(2−b)n) = Õ(2bn/2), which is smaller than the complexity given in Theorem 21.

Analysis when ℓ ≤ 3/5. In this case the algorithm executes steps 4 - 6 only once. From
Lemma 8, the table tp can be constructed in time O(n2bn), after which each query to the
elements of Tp,k can be performed in time O(n) (Theorem 11). By Lemma 16, the number
of disjoint solution pairs contained in Tp,k × Tp,(k−s) mod p is at least vp,k ≥ 2(1−ℓ−b)n−2 with
probability Ω(1/n). By Lemma 14 and Markov’s inequality, the sizes of Tp,k and Tp,(k−s) mod p

are at most tp,k, tp,(k−s) mod p ≤ n22(1−b)n with probability at least 1 − 1/n2. Thus, with
probability Ω(1/n) we can assume that both of these events occur. If this is the case, then the
time to execute step 6 of the algorithm is Õ

((
tp,ktp,(k−s) mod p/vp,k

)1/3
)

= Õ(2(1+ℓ−b)n/3)
since the first complexity given in Theorem 6 is the largest one for our choice of parameters.
This is at most Õ(2(1+ℓ)n/4) when b = (1 + ℓ)/4.

Analysis when ℓ > 3/5. We assume that the total number of solution pairs is at most
2(2−b)n (otherwise we would have found a collision at step 2 with high probability). Given p

and k, the base algorithm (steps 4 - 6) succeeds if there is a solution in Tp,k × Tp,(k−s) mod p,
i.e. vp,k ≥ 1. Therefore by Lemmas 20 and 16, we have for its success probability ρ =
Ω(min(1/n, 2(1−ℓ−b)n)). We claim that E[τ2] = Õ(22bn) where τ is the stopping time of
the base algorithm. Constructing the table tp takes time Õ(p), and by summing the two
complexities given in Theorem 6 the Quantum Pair Finding algorithm takes time at most
Õ

(
(tp,ktp,(k−s) mod p)1/3 +

√
max(tp,k, tp,(k−s) mod p)

)
. Therefore we have E[τ2] = Õ(Ep,k[(p+

(tp,ktp,(k−s) mod p)1/3 +
√

max(tp,k, tp,(k−s) mod p))2]) ≤ Õ(Ep,k[p2] +Ep,k[t2/3
p,k t

2/3
p,(k−s) mod p] +

Ep,k[tp,k]) ≤ Õ(Ep,k

[
p2]

+Ep,k[tp,ktp,(k−s) mod p]2/3 +Ep,k[tp,k]) ≤ Õ(22bn) + Õ(24(1−b)n/3) +
2(1−b)n, where the second inequality uses that the moment function is non-decreasing and
the last inequality uses Lemmas 14 and 15. Since b = 2/5 we obtain that E[τ2] ≤ Õ(22bn).
Finally, by Fact 4, the overall time of steps 3 - 6 is Õ(

√
E[τ2]/ρ) = Õ(2bn/2(1−ℓ−b)n/2) =

Õ(2( ℓ
2 + 1

10 )n). ◀
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4.2 Quantum Meet-in-the-Middle Algorithm

We describe the second quantum algorithm for solving Shifted-Sums based on the meet-in-
the-middle technique combined with Quantum Search. We first state a lemma that if we
randomly partition the input into two sets of relative sizes 1:2, then with at least inverse
polynomial probability a maximum solution will be distributed in the same proportion
between the two sets.

▶ Lemma 22. Let S1, S2 be a maximum solution of ratio ℓ. Then with at least inverse
polynomial probability the random partition X1 ∪ X2 satisfies |(S1 ∪ S2) ∩ X1| = ℓn/3,
|(S1 ∪ S2) ∩X2| = 2ℓn/3.

Proof. There are
(

n
n/3

)
ways to partition [n] into two subsets X1 and X2 of respective sizes n/3

and 2n/3. Of these, there are
(

ℓn
ℓn/3

)
·
(n−ℓn

n−ℓn
3

)
partitions such that |(S1∪S2)∩X1| = ℓn/3, |(S1∪

S2)∩X2| = 2ℓn/3. The probability that |(S1 ∪ S2)∩X1| = ℓn/3, |(S1 ∪ S2)∩X2| = 2ℓn/3 is

thus
( ℓn

ℓn/3)·( n−ℓn
n−ℓn

3
)

( n
n/3)

. Fact 1 gives that this quantity is at least Ω
(
n−1/2)

. ◀

We use the above result in the design of Algorithm 3, which is analyzed in the next theorem.
We observe that the obtained time complexity is at most Õ(3n/3) and it is maximized at
ℓ = 2/3.

Algorithm 3 Quantum meet-in-the-middle technique for Shifted-Sums.

Input: Instance (a, s) of Shifted-Sums with maximum solution ratio ℓ.
Output: Two subsets S1, S2 ⊆ [n].

1 Randomly split [n] into disjoint subsets X1 ∪X2 such that |X1| = n/3, |X2| = 2n/3.

2 Classically compute and sort V1 = {Σ(S11)− Σ(S21) : S11, S21 ⊆ X1 and
S11 ∩ S21 = ∅ and |S11|+ |S21| = ℓn/3}.

3 Apply Quantum Search (Fact 3) over the set V2 = {Σ(S12)− Σ(S22) : S12, S22 ⊆
X2 and S12 ∩ S22 = ∅ and |S12|+ |S22| = 2ℓn/3}, where an element v2 ∈ V2 is
marked if there exists v1 ∈ V1 such that v1 + v2 = s. For a marked v2, output
S1 = S11 ∪ S12 and S2 = S21 ∪ S22.

▶ Theorem 23 (Shifted-Sums, meet-in-the-middle). Given an instance of Shifted-Sums
with maximum solution ratio ℓ ∈ (0, 1), Algorithm 3 finds a solution with at least inverse
polynomial probability in time Õ(2n(h(ℓ)+ℓ)/3).

Proof. There are
(

n/3
ℓn/3

)
2ℓn/3 different ways to select two sets S11, S21 ⊆ X1 such that

S11∩S21 = ∅, |S11|+ |S21| = ℓn/3. Computing and sorting V1 thus takes time Õ(
(

n/3
ℓn/3

)
2ℓn/3).

In the next step of the algorithm, Quantum Search is performed over all
( 2n/3

2ℓn/3
)
22ℓn/3 sets

S12, S22 ⊆ X2 such that S12 ∩ S22 = ∅, |S12|+ |S22| = 2ℓn/3. We mark an element v2 ∈ V2
if there exists v1 ∈ V1 such that v1 + v2 = s. Since V1 is sorted this check can be done in
time polylog(|V1|). The total time required is therefore Õ

((
n/3
ℓn/3

)
2ℓn/3 +

√( 2n/3
2ℓn/3

)
22ℓn/3

)
=

Õ
(

2ℓn/3
((

n/3
ℓn/3

)
+

√( 2n/3
2ℓn/3

)))
= Õ(2 n

3 (h(ℓ)+ℓ)). By Lemma 22, when the instance has a
maximum solution of size ℓn, the set V2 has a marked element with at least inverse polynomial
probability, and in that case a solution is found. ◀
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5 Pigeonhole Equal-Sums

We give classical and quantum algorithms for the Pigeonhole Equal-Sums problem,
based on dynamic programming and which run in time Õ(2n/2) and Õ(22n/5), respectively.
In contrast with our quantum algorithm for Shifted-Sums which made use of a random
prime modulus, in the case of Pigeonhole Equal-Sums we can deterministically choose a
modulus p, and the pigeonhole principle guarantees a collision in at least one bin.

▶ Lemma 24. There is a classical deterministic algorithm such that, given an instance
of Pigeonhole Equal-Sums and a modulus p that divides 2n, it finds in time Õ(p) an
integer k such that there exists two distinct subsets S1, S2 with Σ(S1) ≡ Σ(S2) ≡ k (mod p).

Proof. Denote by 0, 1, . . . p− 1 the congruence classes modulo p. Each of these classes
contains exactly 2n/p numbers between 0 and 2n − 2, except the last class p− 1 that has
only 2n/p− 1 numbers. Since all 2n subsets S ⊆ [n] have a sum Σ(S) between 0 and 2n − 2
there are two possible cases:

either there is some class k such that Σ(S) ∈ k for strictly more than 2n/p subsets S,
or there are 2n/p subsets S such that Σ(S) ∈ p− 1.

Denote by k a class that verifies one of these two points. By definition, there are strictly
more subsets S such that Σ(S) ∈ k than the number of elements between 0 and 2n − 2 that
belong to k. However, for all S ⊆ [n], we have Σ(S) ≤ 2n − 2. Thus, there must be two
subsets S1 ̸= S2 such that Σ(S1), Σ(S2) ∈ k and Σ(S1) = Σ(S2).

From Lemma 8, the table tp[i, j] = |{S ⊆ {1, . . . , i} : Σ(S) ≡ j (mod p)}| can be con-
structed in time Õ(p). From the table, we can read off a value k that satisfies the above
condition. ◀

▶ Theorem 25 (Pigeonhole Equal-Sums, classical). There is a classical deterministic
algorithm for the Pigeonhole Equal-Sums problem that runs in time Õ(2n/2).

Proof. Choose p = 2n/2. By Lemma 24, in time Õ(2n/2) we can find k such that there exists
S1 ≠ S2 satisfying Σ(S1) ≡ Σ(S2) ≡ k (mod 2n/2). Once we know a bin that contains a
collision, by Corollary 12, we can enumerate in time Õ(2n/2) a sufficient number of subsets
in that bin to locate a collision. ◀

▶ Theorem 26 (Pigeonhole Equal-Sums, quantum). There is a quantum algorithm for
the Pigeonhole Equal-Sums problem that runs in time Õ(22n/5).

Proof. We set p = 22n/5 and, by Lemma 24, in time Õ(22n/5) we can identify k such that
there exists S1 ̸= S2 satisfying Σ(S1) ≡ Σ(S2) ≡ k (mod 22n/5). By Theorem 11, each query
to Tp,k = {S ⊆ [n] : Σ(S) ≡ k (mod p)} can be made in time O(n). We use Ambainis’
element distinctness algorithm [4] on these elements to find a collision. We do not want to
run it on an unnecessarily large set. Therefore, if tp,k > 23n/5+1 then we run it only on the
first 23n/5+1 elements of Tp,k, according to the ordering defined by ≺. A collision is then
found in time Õ

(
(23n/5)2/3)

= Õ(22n/5). The overall running time of the algorithm is thus
Õ(22n/5). ◀

In the full version [3], we give an Õ(2n/2) classical deterministic algorithm for the following
modular version of Pigeonhole Equal-Sums. We also ask the open question of finding a
faster quantum algorithm.

▶ Problem 6 (Pigeonhole Modular Equal-Sums). Given a set {a1, . . . , an} of positive
integers and a modulus q such that q ≤ 2n − 1, find two distinct subsets S1, S2 ⊆ [n] such
that

∑
i∈S1

ai ≡
∑

i∈S2
ai (mod q).
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Abstract
Fair clustering enjoyed a surge of interest recently. One appealing way of integrating fairness aspects
into classical clustering problems is by introducing multiple covering constraints. This is a natural
generalization of the robust (or outlier) setting, which has been studied extensively and is amenable
to a variety of classic algorithmic techniques. In contrast, for the case of multiple covering constraints
(the so-called colorful setting), specialized techniques have only been developed recently for k-Center
clustering variants, which is also the focus of this paper.

While prior techniques assume covering constraints on the clients, they do not address additional
constraints on the facilities, which has been extensively studied in non-colorful settings. In this
paper, we present a quite versatile framework to deal with various constraints on the facilities in the
colorful setting, by combining ideas from the iterative greedy procedure for Colorful k-Center by
Inamdar and Varadarajan with new ingredients. To exemplify our framework, we show how it leads,
for a constant number γ of colors, to the first constant-factor approximations for both Colorful
Matroid Supplier with respect to a linear matroid and Colorful Knapsack Supplier. In both cases,
we readily get an O(2γ)-approximation.

Moreover, for Colorful Knapsack Supplier, we show that it is possible to obtain constant
approximation guarantees that are independent of the number of colors γ, as long as γ = O(1),
which is needed to obtain a polynomial running time. More precisely, we obtain a 7-approximation
by extending a technique recently introduced by Jia, Sheth, and Svensson for Colorful k-Center.
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1 Introduction

As more and more decisions are automated, there has been an increasing interest in incorporat-
ing fairness aspects in algorithms by design. This applies in particular to clustering problems,
where considerable attention has recently been dedicated to developing and studying various
models of fair clustering, see, e.g., [8], [3], and [2].
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7:2 Techniques for Generalized Colorful k-Center Problems

In this paper, we focus on the so-called colorful setting, which was introduced in [3].
In colorful clustering, each client is a member of certain subgroups and every clustering is
required to cover at least a given number of clients of each subgroup. This may be considered
under various clustering objectives (like k-median and k-mean), though only the k-center
case has been studied so far.

Colorful clustering is an appealing notion as it is a natural generalization of the robust
(or outlier) setting, where there is only a single group which every client belongs to. Various
clustering problems have been studied in depth in the robust setting, see, e.g., [5], [9], and [2].

While the robust setting is amenable to a variety of well-known and basic algorithmic
techniques, the only constant-factor approximations for the colorful setting, which imposes
multiple covering constraints leading to more balanced clusterings, are based on significantly
more sophisticated techniques, tailored specifically to those settings. More precisely, three
distinct techniques have been successful at achieving constant-factor approximations in
the context of colorful k-center clustering, namely the combinatorial approach of [11], the
round-or-cut-based approach of [1], and the iterative greedy reductions of [10].

However, these approaches do not immediately generalize to variants with constraints on
the facilities, even for the common Matroid Center or Knapsack Center clustering variants.
On the other hand, techniques for the Knapsack and Matroid k-Center problems in the
robust setting (see [5] and [9]) do not easily extend to multiple covering constraints.

Thus, prior to this work, no approaches have been known that lead to constant-factor
approximations for colorful variants of otherwise well-studied k-center problems like Matroid
Center or Knapsack Center. Filling this gap is the goal of this paper.

1.1 Our contributions
Our main contribution is a partitioning procedure which leads to a general reduction of
colorful k-center clustering problems with constraints on the facilities to a significantly
simpler multi-dimensional covering problem (see Theorem 3). This reduction comes at the
cost of a constant factor depending on the number of colors.

It is inspired by recent insights of [10] on decoupling multiple covering constraints and
iteratively applying a greedy partitioning procedure of [6]. By taking into account multiple
colors at the same time, our framework gives an improved way of dealing with multiple
covering constraints while also becoming more versatile. Our framework also extends and
simplifies ideas of the approximation algorithm for Robust Matroid Center of [7].

We start by introducing the γ-Colorful F-Supplier problem, which formalizes colorful
k-center problems with (down-closed) constraints on the facilities.

▶ Definition 1 (γ-Colorful F -Supplier problem). Let (C ∪̇ F, d) be a finite metric space on a
set of clients C and facilities F , let F ⊆ 2F be a down-closed family of subsets of F , and let
γ ∈ Z≥0. Moreover, we are given for each ℓ ∈ [γ]:

a unary encoded weight/color function wℓ : C → Z≥0, and
a covering requirement mℓ ∈ Z≥0.

The γ-Colorful F-Supplier problem asks to find the smallest radius r together with a set
S ⊆ F such that wℓ(BC(S, r)) ≥ mℓ for all ℓ ∈ [γ].1

1 We use the common notation w(T ) :=
∑

t∈T
w(t) for functions w : U → R≥0 and T ⊆ U , as well as

B(q, r) := {v ∈ C ∪ F | d(q, v) ≤ r} for the ball of radius r around point q. Moreover, we use the
shorthand BU (V, r) :=

{
U ∩

⋃
v∈V

B(v, r)
}

for sets U, V ⊆ C ∪ F .
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We note that it is also common to define colorful k-center versions in an unweighted way
(thus not using weight functions wℓ) by assigning to each client a subset of the γ many colors
and requiring that, for each color, mℓ many clients of that color are covered. The definition
we use clearly captures this case (and can easily be seen to be equivalent). This connection
also explains why the weights wℓ are assumed to be given in unary encoding.

Following common terminology in the literature, when F is the family of independent
sets of a matroid or feasible sets with respect to a knapsack constraint, we call the problem
γ-Colorful Matroid Supplier and γ-Colorful Knapsack Supplier, respectively.

Our main contribution is a general reduction of γ-Colorful F-Supplier to an auxiliary
problem, which we call F-Cover-Promise (F -CP). F -CP, which is formally defined below,
is a multi-dimensional cover problem with the added promise that highly structured solutions
exist. The promise is key, as the problem without the promise can be thought of as a
multi-dimensional max-cover problem.

▶ Definition 2 (F-Cover-Promise (F -CP)). In the F-Cover-Promise problem (F -CP),
we are given a set family H ⊆ 2U over a finite universe U , a family F ⊆ 2H of feasible
subsets of H, and γ many unary encoded weight functions w1, . . . , wγ : U → R≥0 each with a
requirement mℓ (for ℓ ∈ [γ]). The task is to find a feasible family of sets S ∈ F such that

wℓ

( ⋃
H∈S

H

)
≥ mℓ ∀ ℓ ∈ [γ] .

The promise is that there exists a family S ⊆ F and a way to pick for each H ∈ S a single
representative uH ∈ H such that

wℓ ({uH : H ∈ S}) ≥ mℓ ∀ ℓ ∈ [γ] .

In words, the promise is that there is a solution that picks a family of sets and the requirements
can be fulfilled by only using a single representative uH in each set. However, the solution we
are allowed to build is such that the weight of all elements covered by our sets are counted
instead of just a single representative per set.

We are now ready to state our main reduction theorem, which, as we discuss later, readily
leads, for a constant number of colors γ, to the first constant-factor approximations for
γ-Colorful Matroid Supplier for linear matroids and γ-Colorful Knapsack Supplier. Our
reduction to F -CP comes at the cost of an O(2γ)-factor in the approximation guarantee.

▶ Theorem 3. For any family of down-closed set systems, we have that if F -CP can be
solved efficiently for any F in that family, then there is an O(2γ)-approximation algorithm
for γ-Colorful F-Supplier for any F in the family.2

While the dependence of the approximation factor on γ may be undesirable, the algorithmic
barriers for prior approaches remain even when γ = 2 and, for hardness reasons, we do not
expect approximation algorithms to exist at all when γ grows too quickly. In particular, [1]
showed that even a simple version of colorful clustering, where any k centers can be chosen,
does not admit an O(1)-approximation algorithm when γ = ω(log |C ∪̇ F |) under the
Exponential Time Hypothesis. Thus, in what follows, we restrict ourselves to γ = O(1).

2 When talking about the same set system F both in the context of F-CP and γ-Colorful F-Supplier, we
consider F to be the same set system in both settings even if the ground sets are different, as long as
there is a one-to-one relation between the ground sets mapping sets of one system to sets of the other
one and vice versa.
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7:4 Techniques for Generalized Colorful k-Center Problems

We now discuss implications of Theorem 3 to γ-Colorful Matroid Supplier for linear
matroids and γ-Colorful Knapsack Supplier. When F is the family of independent sets of
a linear matroid, we show how F -CP can be solved with techniques relying on an efficient
randomized procedure for the Exact Weight Basis (XWB) problem for linear matroids.3
Linear matroids include as special cases many other well-known matroid classes, including
uniform matroids, and more generally partition and laminar matroids, graphic matroids,
transversal matroids, gammoids, and regular matroids.

▶ Theorem 4. For γ = O(1) and F being the independent sets of a linear matroid, F -CP can
be solved efficiently by a randomized algorithm. Hence (by Theorem 3), there is a randomized
O(2γ)-approximation algorithm for γ-Colorful Matroid Supplier for linear matroids.

The restriction to linear matroids and the fact that the algorithm is randomized are not
artifacts of our framework. Indeed, by an observation in [11], rephrased for matroids below,
we do not only have that XWB implies results for γ-Colorful Matroid Supplier (which will
follow from our reduction), but also a reverse implication. More precisely, even for 2-Colorful
Matroid Supplier, deciding whether there is a solution of radius zero requires being able to
solve XWB on that matroid. However, it is unknown whether XWB can be solved efficiently
on general matroids, and the only technique known for XWB on linear matroids is inherently
randomized [4]. (Derandomization is a long-standing open question in this context.)

▶ Lemma 5 (based on [11]). If there is an efficient algorithm for deciding whether 2-Colorful
Matroid Supplier with respect to a given class of matroids admits a solution of radius zero,
then XWB can be solved efficiently on the same class of matroids.

Note that if we cannot decide the existence of a radius zero solution, then no approximation
algorithm with any finite approximation guarantee can exist.

For the case where F are the feasible sets for a knapsack problem, one can use standard
dynamic programming techniques to see that F -CP can be solved efficiently, which readily
leads to a O(2γ)-approximation for γ-Colorful Knapsack Supplier.

Whereas our reduction given by Theorem 3 is broadly applicable and readily leads to
first constant-factor approximations for γ-Colorful F-Supplier problems, it remains open
whether and in which settings a dependence of the approximation factor on the number of
colors is necessary. We make first progress toward this question for γ-Colorful Knapsack
Supplier, where we show how techniques from [11] can be modified and extended to give a
7-approximation (independent of the number of colors).

▶ Theorem 6. For γ = O(1), there is a 7-approximation algorithm for γ-Colorful Knapsack
Supplier.

Our technical contribution here lies in handling the knapsack constraint in this approach
– modifying the algorithm of [11] to the supplier setting and to weighted instances is straight-
forward. In fact, their algorithm can be seen to give a 3-approximation even for γ-Colorful
k-Supplier, which is tight in light of a hardness result in [6], namely that it is NP-hard
to approximate Robust k-center with forbidden centers to within 3− ϵ. This remains the
strongest hardness result even for γ-Colorful F -Supplier problems.

3 In XWB, one is given a matroid on a ground set with unary encoded weights and a target weight; the
goal is to find a basis of the matroid of weight equal to the target weight. The technique in [4] to solve
XWB for linear matroids needs an explicit linear representation of the linear matroid. We make the
common assumption that this is the case whenever we make a statement about linear matroids.
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1.2 Organization of this paper
Our main reduction, Theorem 3, is based on what we call (L, r)-partitions, which is a way
to judiciously partition the clients into parts that we want to cover together. We introduce
(L, r)-partitions in Section 2 and show how the existence of certain strong (L, r)-partitions
implies Theorem 3. In Section 3, we show how our reduction framework can be used to obtain
first constant-factor approximations for γ-Colorful Matroid Supplier for linear matroids
(thus showing Theorem 4) and γ-Colorful Knapsack Supplier. Finally, in Section 4 we prove
existence of strong (L, r)-partitions. The proof of Lemma 5 as well as our 7-approximation
for γ-Colorful Knapsack Supplier, i.e., the proof of Theorem 6, can be found in the extended
version of this paper.

2 Reducing to F-CP through (L, r)-partitions

Consider a γ-Colorful F -Supplier problem on a metric space (X = (C ∪̇ F ), d) with weights
wℓ : C → Z≥0 for ℓ ∈ [γ] and covering requirements mℓ ∈ Z≥0 for ℓ ∈ [γ]. An (L, r)-partition
is a partition of the clients into parts of small diameter each of which we consider in our
analysis to be either fully covered or not covered at all. The key property of an (L, r)-partition
is that, if our instance admits a radius-r solution, then there is a radius-(L + 1)r solution
where we allow each center to cover only a single part of the partition. It is the existence of
such highly structured solutions that we exploit to design O(1)-approximation algorithms.

A crucial property of (L, r)-partitions is that they neither depend on F nor the covering
requirements mℓ, but only on the metric space and the weight functions, which we call a
γ-colorful space for convenience.

▶ Definition 7 (γ-colorful space (X, d, w)). A γ-colorful space (X = C ∪̇ F, d, w) consists of
1. a metric space (X, d), and
2. color functions wℓ : C → R≥0 for ℓ ∈ [γ].

We assume for convenience that the supports of the color functions, i.e., supp(wℓ) for
ℓ ∈ [γ], are pairwise disjoint. One can reduce to this case without loss of generality by
co-locating copies of clients. We are now ready to formally define the notion of (L, r)-partition.

▶ Definition 8 ((L, r)-partition). Let (X = C ∪̇ F, d, w) be a γ-colorful space and r, L ∈ R≥0.
A partition P ⊆ 2C is an (L, r)-partition if
1. diam(A) := maxu,v∈A d(u, v) ≤ L · r ∀A ∈ P, and
2. for any Z ⊆ F , there exists a subfamily A ⊆ P and injection h : A → Z such that

a. d(A, h(A)) ≤ r,4 and
b. wℓ

(⋃
A∈A A

)
≥ wℓ (BC(Z, r)) ∀ℓ ∈ [γ].

To connect (L, r)-partitions to colorful clustering problems, think of Z ∈ F as centers of
a γ-Colorful F-Supplier problem that satisfy the covering requirements with radius r. The
definition of an (L, r)-partition P then implies that there is a subset A ⊆ P of the parts
such that (i) for each A ∈ A there exists an element h(A) ∈ Z such that any client in A

has distance at most (L + 1) · r from h(A), which follows from property 1 and 2a of the
definition, and (ii) the clients in A cover as much as BC(Z, r) in each color. Thus, the set of
facilities h(A) satisfies the covering requirements with respect to the radius (L + 1) · r, and,

4 For any set V ⊆ F ∪̇ C and x ∈ F ∪̇ C, we use the shorthand d(V, x) := min{d(v, x) : v ∈ V }.
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7:6 Techniques for Generalized Colorful k-Center Problems
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Figure 1 Illustration of an (L, r)-partition of a 1-colorful space (where all points have unit weight).
For Z = {zi | i ∈ [4]}, the mapping h maps Ai to zi for i ∈ [4]. Note that ∪i∈[4]Ai contains at
least as many points than ∪i∈[4]B(r, zi) and that d(zi, Ai) ≤ r for i ∈ [4]. Furthermore, the largest
distance between any two points in a set Ai is bounded by Lr.

furthermore, h(A) is feasible because h(A) ⊆ Z and F is down-closed. In short, h(A) is an
(L + 1)-approximate solution to the γ-Colorful F-Supplier problem. Hence, to obtain an
(L + 1)-approximation, the problem reduces to deciding which of the parts of P to cover. A
key simplification we gain from this connection is that the client sets in P are non-overlapping
because P is a partition, which we will heavily exploit later to design our algorithms.

The key structural result of our work is to show that (L, r)-partitions with constant L

(for a fixed γ) exist and can also be constructed efficiently, which is summarized below.

▶ Lemma 9. For every γ-colorful space (X, d, w) and r ∈ R≥0, one can construct in
polynomial time a (10(2γ − 1), r)-partition.5

We defer the proof of Lemma 9 to Section 4, and first show how it implies our main
reduction theorem, Theorem 3, and how this reduction readily leads to O(1)-approximations
for γ-Colorful Matroid Supplier for linear matroids and γ-Colorful Knapsack Supplier.

Proof of Theorem 3. Consider an instance of the γ-Colorful F-Supplier Problem on a γ-
colorful space (X, d, w). We can guess the radius r of an optimal solution to the problem.
This can be achieved by considering all pairwise distances between facilities F and clients C,
repeating the steps below for each guess and only considering the best output (and discarding
outputs where the procedure fails). Hence, assume that r is the optimal radius from now on.

By Lemma 9, we can efficiently construct an (L, r)-partition P of (X, d, w) for L =
10(2γ − 1) = O(2γ). Consider the F -CP instance with universe U := P, family of sets

H := {Hf : f ∈ F} , where
Hf := {A ∈ P with d(A, f) ≤ r} ∀ f ∈ F .

5 As we highlight later, a more careful analysis of our approach allows for a slight improvement in the
constant factor, leading to the construction of (8 · 2γ − 10, r)-partitions. However, in the interest of
simplicity, we present a simpler analysis that shows the bound claimed in the lemma.
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The family of feasible subsets of H is the same as F when identifying Hf with the element f .
To make this relation explicit, if we denote by FH the family of feasible subsets, then some
subset of H, say {Hf : f ∈ I} where I ⊆ F , is in FH if and only if I ∈ F . Moreover, the
weights and coverage thresholds are inherited from those of the given γ-Colorful F -Supplier
problem; formally, for ℓ ∈ [γ], the ℓ-th weight of A ∈ U is given by wℓ(A).

To make sure that this indeed leads to an F-CP problem, we have to verify that the
promise holds. Thus, let Z ⊆ F be a solution to the given γ-Colorful F-Supplier problem
for radius r, which exists because we assume that r was guessed correctly. As P is an
(L, r)-partition of (X, d, w), there is a subfamily A ⊆ P and injection h : A → Z satisfying
property 2 of Definition 8. We claim that a solution fulfilling the promise is given by choosing

S = {Hf : f ∈ h(A)} ∈ FH ,

and setting as representative element uHf
∈ Hf the element uHf

= Af , where Af = h−1(f).
Note that because h(A) ⊆ Z ∈ F and F is down-closed, we indeed have S ∈ FH. Furthermore,
because the injection h satisfies d(Af , h(Af )) ≤ r, we have uHf

∈ Hf , as desired. Moreover,∑
f∈h(A)

wℓ

(
uHf

)
=

∑
f∈h(A)

wℓ (Af ) =
∑
A∈A

wℓ(A) ≥ wℓ(BC(Z, r)) ≥ mℓ ∀ℓ ∈ [γ] ,

where the first inequality follows because A fulfills the second property of Definition 8, and
the last inequality is a consequence of Z being centers that are a radius-r solution to the
given γ-Colorful F -Supplier problem. Hence, the promised solution exists.

Thus, we can compute an F -CP solution SH ⊆ FH, which can be written as SH :=
{Hf : f ∈ S} for some S ∈ F . We claim that S is a solution to the given γ-Colorful
F-Supplier problem with radius (L + 1) · r, which finishes the proof. This follows from the
fact that SH is an F -CP solution, and that, for any f ∈ F , each client in

⋃
A∈Hf

A has
distance at most (L + 1) · r from f because P is an (L, r)-partition. Hence, the clustering
solution with centers S and radius (L + 1) · r covers all clients in⋃

f∈S

⋃
A∈Hf

A ,

and the wℓ-weight (for any ℓ ∈ [γ]) that it covers is at least

wℓ

⋃
f∈S

⋃
A∈Hf

A

 =
∑

A∈
⋃

f∈S
Hf

wℓ(A) ≥ mℓ ,

where the equality uses that the ground set U = P consists of sets A that are disjoint, and
the inequality holds because SH = {Hf : f ∈ S} is a solution to F -CP. Thus, all coverage
requirements are fulfilled by the clustering with centers S and radius (L+1) ·r, as desired. ◀

3 Applications of our reduction framework

We now discuss implications of our reduction framework, Theorem 3, to γ-Colorful Matroid
Supplier for linear matroids and γ-Colorful Knapsack Supplier.

3.1 γ-Colorful Matroid Supplier
To apply our reduction framework to γ-Colorful Matroid Supplier for linear matroids, we
have to solve F -CP when F are the independent sets of a linear matroid. We show how this
problem can be reduced to XWB in a suitably defined matroid. More precisely, we use a

ESA 2022



7:8 Techniques for Generalized Colorful k-Center Problems

reduction to the Exact Weight Independent Set (XWI) problem for matroids. This problem
is identical to XWB except that an independent set with the desired target weight needs to
be returned, instead of a basis. However, XWI easily reduces to XWB on linear matroids, by
adding zero weight copies of the elements.

This reduction relies on Rado matroids, which is a way to construct a matroid from another
one (see, e.g., [13, Section 8.2]).6 It relies on the notation of a system of representatives,
where, for a finite universe U and a set system S ⊆ 2U , a system of representatives of S is any
set {uH}H∈S with uH ∈ H for H ∈ S. In words, a system of representatives is obtained by
replacing each set in S by an element in that set (its representative). (Note that an element
can be chosen more than once as a representative, but, as defined above, only appears once
in the system of representatives.)

▶ Definition 10 (Rado matroid). Let U be a finite universe, H ⊆ 2U be some set system, and
let M = (H, I) be a matroid. The Rado matroid (U , I) induced by (U ,H, M) is a matroid on
the ground set U with independent sets

{U ⊆ U : U is a system of representatives for some I ∈ I} .

A proof that a Rado matroid is indeed a matroid can be found, e.g., in [13, Section 8.2]. We
will reduce F -CP to XWI on a Rado matroid obtained from a linear matroid. For this, we
need that also the Rado matroid we obtain is linear and, moreover, that an explicit linear
representation of it can be found efficiently, which is the case due to a result from [12].

▶ Lemma 11 (see Theorem 3 of [12]). For a set family H ⊆ 2U and a linear matroid
M = (H, I), the Rado matroid M = (U , I) induced by (U ,H, M) is a linear matroid.
Moreover, given a linear representation of M , one can find a linear representation of M in
time polynomial in |H|, |U|, and the size of the linear representation of M .

We are now ready to show that F -CP can be solved efficiently for linear matroids, which
implies Theorem 4.

▶ Lemma 12. F -CP can be solved efficiently when F is the family of independent sets of a
linear matroid.

Proof. We recall that we are given an F -CP instance, which defines a set system H ⊆ 2U

over a finite universe U , and a family F ⊆ 2H such that M = (H,F) is a linear matroid. Let
M = (U , I) be the Rado matroid induced by (U ,H, M). M is a linear matroid by Lemma 11
and we can obtain a linear representation of M in polynomial time. The promise of F -CP
implies the existence of an independent set T of M satisfying the covering requirements, i.e.,

wℓ(T ) ≥ mℓ ∀ℓ ∈ [γ] . (1)

To solve F -CP, we guess, for each color ℓ ∈ [γ], the weight λℓ := wℓ(T ) that T covers.
Note that λℓ is at most Wℓ := wℓ(U), which, due to the unary encoding of wℓ, is polynomially
bounded in the input. Hence, the guessing of the λℓ, for ℓ ∈ [γ], can be performed in time∏

ℓ∈[γ] Wℓ, which is polynomially bounded because γ = O(1).
We now determine an independent set T̃ in M with wℓ(T̃ ) = wℓ(T ) for each ℓ ∈ [γ]. This

can be achieved by encoding all ℓ many (unary encoded) weight functions wℓ for ℓ ∈ [γ] into a
single one w and then solving an appropriate XWI problem with respect to w. More precisely,

6 This construction of Rado matroids is also called the induction of a matroid by a bipartite graph.
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for an element u ∈ U , we obtain a new single weight w(u) whose first ⌈log2(|W1|+ 1)⌉ bits
represent the weight w1(u), the next ⌈log2(|W2| + 1)⌉ bits the weight w2(u), and so on.
Because γ = O(1) and all wℓ have unary encoding, this leads to combined weights w whose
unary encoding is polynomially bounded. Analogously, we encode the guessed weights λℓ

for ℓ ∈ [γ] into a single one λ. We now solve XWI on M with weights w and target weight
λ. As M is linear, this is possible by a randomized algorithm in time pseudo-polynomial in
the total weight [4]. Moreover, because the weights are unary encoded in our setting, this
implies a polynomial running time as desired.

Let T̃ be a solution of this XWI problem, which must exist for the correct guess of the λℓ

because of the promised solution T . T̃ being independent in M implies that it is a system of
representatives for some independent set S ∈ F of M . Such a set S can be found through
matroid intersection. More precisely, it is known that the minimal (inclusion-wise) sets
I ⊆ H such that T̃ is a system of representatives for I form the basis of a matroid M̃ , for
which an efficient independence oracle can be obtained. (See [13, Section 7.3].) Hence, the
desired set S can be obtained by finding a basis of M̃ that is independent in M , which can be
computed through matroid intersection algorithms. The set S is the solution of F -CP that
we return. Because T̃ ⊆

⋃
H∈S H , the set S fulfills the covering requirements due to (1). ◀

3.2 γ-Colorful Knapsack Supplier
To showcase the versatility of our reduction, we now show how it implies an O(2γ)-
approximation for γ-Colorful Knapsack Supplier, by discussing an efficient way to solve F -CP
when F are the feasible solutions to a knapsack constraint. Even though there is a stronger
(and more sophisticated) approximation result for this problem (as stated in Theorem 6), this
application is a nice example of how one can readily obtain constant-factor approximations
through our reduction technique combined with known methods; in this case, by solving
F -CP through a standard dynamic programming approach.

▶ Lemma 13. Let F be the feasible sets of a knapsack constraint, i.e., F = {S ⊆ H : κ(S) ≤
K} for some κ : H → R≥0 and budget K ∈ R≥0. Then F -CP can be solved efficiently.

Proof. Recall that the F -CP problem to be solved defines a family H ⊆ 2U over a finite
universe U , and a family F ⊆ 2H, which is defined by a knapsack constraint, i.e., F = {S ⊆
H : κ(S) ≤ K}. We define the following weight function on U :

η(u) := min{κ(H) : H ∈ H with u ∈ H} .

In words, η(u) corresponds to the cost of the cheapest set in H that covers u. Consider the
following binary program, which can be solved efficiently by standard dynamic programming
techniques due to the unary encoding of the weights wℓ for ℓ ∈ [γ] (see, e.g., [1] for details):

min
∑
u∈U

η(u) · z(u)∑
u∈U

wℓ(u) · z(u) ≥ mℓ ∀ℓ ∈ [γ]

z ∈ {0, 1}U .

We compute an optimal solution z∗ to the above binary program. Let Q := {u ∈
U : z∗(u) = 1}. For each u ∈ Q, let Hu ∈ H be a set of minimum cost that contains
u; hence, κ(Hu) = η(u). We claim that {Hu : u ∈ Q} is a solution to F -CP. Because
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z∗ fulfills the constraints of the binary program, we have that {Hu : u ∈ Q} fulfills the
covering requirements. It remains to show that it fulfills the knapsack constraint, i.e., its
cost is at most K. This reduces to show that the optimal value of the binary program is
at most K. We claim that this holds because of the promise of F -CP. Indeed, the promise
guarantees that there is S ⊆ F and a system of representatives uH for H ∈ S such that
wℓ({uH : H ∈ S}) ≥ mℓ for ℓ ∈ [γ]. Hence, setting zuH

= 1 for all H ∈ S, and setting
all other coordinates of z ∈ {0, 1}U to zero, is a solution to the binary program which has
objective value at most κ(S) ≤ K. ◀

4 Existence and construction of strong (L, r)-partitions

We now prove our key structural result, Lemma 9, which guarantees the existence and
efficient constructability of (O(2γ), r)-partitions for γ-colorful spaces. Our proof proceeds
by induction on γ. The base case, i.e., γ = 0, holds because the family {{c} : c ∈ C}
is a (0, r)-grouping on every 0-colorful space (C ∪̇ F, d, w). The key step is extending an
(L, r)-partition of a (γ − 1)-colorful space to a suitable partition of a γ-colorful space.

To this end, we extend ideas on the greedy algorithm of [6], which was originally introduced
to deal with a single color k-center problem. More precisely, to augment a partition of a
(γ − 1)-colorful space, we apply a greedy subroutine on the points of color γ. A careful
construction and analysis (which takes into account the earlier colors) then shows that this
yields a (2L + 10, r)-partition of the γ-colorful space. Our refined charging scheme improves
on a decoupled analysis of [10] (which gives an O(5γ) approximation algorithm for γ-Colorful
k-Center).

The lemma below formalizes the induction step.

▶ Lemma 14. Given a (L, r)-partition for a (γ − 1)-colorful space, then one can efficiently
construct a (2L + 10, r)-partition for any γ-colorful space obtained by adding one color to the
(γ − 1)-colorful space.

Proof. Let (C ∪̇ F, d, w) be a γ-colorful space, and let ŵ = (w1, . . . , wγ−1) be the first γ − 1
colors. (Hence, we omitted the last color.) Let Cγ := supp(wγ) and C<γ := C \ Cγ , and let
P be a (L, r)-partition of the (γ − 1)-colorful space (C<γ ∪̇ F, d, ŵ). Note that we assumed
that the supports of the weights wℓ are disjoint. Hence, wℓ(Cγ) = 0 for ℓ ∈ [γ− 1]. Moreover,
without loss of generality, we assume that for every client c ∈ C, there is a facility f ∈ F with
d(f, c) ≤ r. All clients not fulfilling this condition can be deleted from the instance without
changing the statement as they can never be covered by any radius-r solution. Indeed, a
partition of the clients of this purged instance can simply be extended to a partition of all
clients by adding the deleted clients as singleton sets to the partition.

We now prove that Algorithm 1 returns an (L, r)-partition P of (C ∪̇ F, d, w), where
L := 2L + 10. Algorithm 1 goes through all facilities in a well-chosen order and iteratively
builds new parts consisting of parts in P together with a subset of Cγ . (See Figure 2 for an
illustration of this procedure.)

First, observe that P is a partition. It clearly covers all clients as no client is farther than
distance r away from its nearest facility, and we consider all facilities. Moreover, the sets in
P are disjoint by construction. Now, observe that any Ai ∈ P has small diameter, because

diam
(
Ai

)
≤ 2 ·max

c∈Ai

d (gi, c) ≤ 10r + 2Lr ,

where the second inequality holds because d(gi, c) ≤ 5r + Lr for any c ∈ Ai due to the
following. Consider c ∈ Ai. If c ∈ Cγ , then we even have d(gi, c) ≤ 3r. Otherwise, let



G. Anegg, L. Vargas Koch, and R. Zenklusen 7:11

Algorithm 1 GreedyPartitioning(C, F, d, P, wγ).

for i = 1 to |F | do
gi = argmax

f∈F \{g1,...,gi−1}
wγ

(
BC(f, r) \

⋃i−1
t=1 At

)
;

Ai ←

BCγ
(gi, 3r) ∪

⋃
A∈P with

d(gi,A)≤5r

A

 \ i−1⋃
t=1

At;

end
return P :=

{
Ai : i ∈ [|F |]

}
;

g1

g2

g4

z2

A2

A3

A4

z4

A1

A1

A2

A4

A4

z1

g3

z3

A3

Figure 2 Visualization of an (L, r)-partition and of Algorithm 2. The black polygons depict an
(L, r)-partition P of the clients C<γ . The blue polygons shows how the clients C<γ are partitioned
by P. Moreover, the blue 3r-balls around gi illustrate which clients of Cγ get assigned to the part
Ai ∈ P. The dashed circles have radius r and 3r respectively, while the dotted circles have radius
5r. We assume Z = {zi | i ∈ [4]} is given and we construct the respective A and h, given A and
h. We have A = {Ai | i ∈ [4]} (the orange areas) and A = {Ai | i ∈ [3]}. Moreover h(Ai) = zi for
i ∈ [4] (depicted by an orange arrow), while h(Ai) = zi for i ∈ [3].

A ∈ P be the set in the partition P containing c. Note that c ∈ Ai implies A ⊆ Ai. Hence,
d(gi, c) ≤ d(gi, A) + max{d(b, c) : b ∈ A} ≤ 5r + Lr, where we use d(gi, A) ≤ 5r, because
A ⊆ Ai, and diam(A) ≤ Lr, which holds because P is an (L, r)-partition. Thus, property 1
of the definition of an (2L + 10, r)-partition (Definition 8) is fulfilled for P.

It remains to show that property 2 holds for a given selection Z. To this end, we
use that P is an (L, r)-partition, which implies that there is a subfamily A ⊆ P and a
corresponding injection h : A → Z fulfilling property 2 of Definition 8 for the (γ − 1)-colorful
space (C<γ ∪̇ F, d, ŵ). In the following we construct A ⊆ P and h : A → Z such that
property 2 of Definition 8 is satisfied for A and h. At the same time when constructing A,
we employ a careful charging argument that makes sure that wγ

(⋃
A∈A A

)
≥ wγ(BC(Z, r)),

i.e., that the constructed A covers at least as much as Z of color γ. For the remaining colors,
we show that the new selection A includes all of A; formally, we show that for each A ∈ A,
there is an A ∈ A such that A ⊆ A. This, as well as d(A, h(A)) ≤ r for all A ∈ P and
injectivity of h, are proved later.
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7:12 Techniques for Generalized Colorful k-Center Problems

For i ∈ [|F |], we define

Ui := C \
i−1⋃
t=1

At

to be the clients that are “uncovered” at step i. By the way Algorithm 1 selects gi in each
iteration i ∈ [|F |], we have

wγ (BC (gi, r) ∩ Ui) ≥ wγ (BC(f, r) ∩ Ui) ∀i ∈ [|F |] and f ∈ F ,

which we call the greediness property.
We now describe the construction of A and the charging scheme in detail. We successively

add sets Ai ∈ P to A, where the sets Ai are considered in increasing order of their index.
When adding a set Ai to A, we also perform two further steps: (i) we identify an element
f ∈ Z and set h(Ai) = f , and (ii) we mark f as assigned to make sure that we never assign it
again in the future (as h needs to be an injection). For convenience, for i ∈ [|F |] and f ∈ Z,
we write Assign(i, f) for performing these steps, i.e., adding Ai to A, setting h(Ai) to f ,
and marking f as assigned.

The charging argument charges the coverage of color γ of BC(Z, r) against the γ-coverage
in
⋃

A∈A A. Whenever we charge a set Q ⊆ BC(Z, r) against some subset W ⊆
⋃

A∈A A, we
make sure that wγ(Q) ≤ wγ(W ). Algorithm 2 shows our procedure to construct both A and
the desired injection h : A → Z together with the charging argument. (See also Figure 2.)

Algorithm 2 Construction of A and injection h : A → Z together with charging argument.

Mark all facilities in Z as unassigned.
for i = 1 to |F | do

Rule 1 If there is an unassigned f ∈ Z with BC(f, r) ∩BC(gi, r) ∩ Ui ̸= ∅:
Assign(i, f).

Rule 2 Else if there is an unassigned f ∈ Z with BC(f, r)∩BC(gi, 3r)∩Ui ≠ ∅:
Assign(i, f) and charge BC(f, r) ∩ Ui against BC(gi, r) ∩ Ui.

Rule 3 Else if there is an A ∈ A such that A ⊆ Ai:
Assign(i, h(A)) and charge BC(h(A), r) ∩ Ui against BC(gi, r) ∩ Ui.

If Assign was called, charge against themselves all points in Ai that have not
been charged yet.

end

We start by showing that h is an injection. Suppose f is assigned using Rule 1 or 2. Then
f was not assigned so far as we only assign unassigned facilities. Now suppose h(A) = h(Ai)
is assigned using Rule 3. We claim that h(A) is not assigned so far. Assume by the sake of
deriving a contradiction that it was assigned in a previous iteration j < i. It cannot have
been assigned by Rule 3, since h is injective. So assume it is was assigned by Rule 1 or 2.
Hence, gj satisfies BC(gj , 3r)∩BC(h(A), r)∩Ui ̸= ∅. This implies that d(gj , h(A)) ≤ 4r and
thus A ⊆ Aj , which contradicts A ⊆ Ai.

Moreover, Ai fulfills property 2a of a (2L + 10, r)-partition because of the following. Let
f ∈ Z and Ai := h

−1(f), and we have to show that d(Ai, f) ≤ r. Because h(Ai) = f , we
called at some point during Algorithm 2 the procedure Assign(i, f). In both Rule 1 and
Rule 2 we have BC(f, r) ∩ BC(gi, 3r) ∩ Ui ≠ ∅, which implies that Ai contains a client in
BC(f, r), as desired. If Assign(i, f) was called in Rule 3, then we have h−1(f) ⊆ Ai, which
implies d(Ai, f) ≤ d(h−1(f), f) ≤ r by the fact hat P is an (L, r)-partition.
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It remains to show that A fulfills property 2b of an (2L+10, r)-partition. We first consider
the last color (color γ) and show wγ(

⋃
A∈A A) ≥ wγ(BC(Z, r)). To this end, observe that the

charging indeed charges clients in BC(Z, r) against clients in
⋃

A∈A A. We allow for charging
a client in BC(Z, r) against more than one client in

⋃
A∈A A. However, no client in

⋃
A∈A A

gets charged against more than once because in iteration i we only charge against clients in
Ai, and the sets A = {A1, . . . , A|F |} form a partition of C. Also note that we always charge
clients of BC(Z, r) against clients of

⋃
A∈A A of at least the same wγ-weight. This is true

whenever charging happens in Rule 2 or Rule 3, because of the greediness property, and
holds trivially for all other charging operations, which only charge clients against themselves.
To conclude that wγ(

⋃
A∈A A) ≥ wγ(BC(Z, r)), it remains to observe that all of BC(Z, r)

gets charged against something.
To this end, fix a facility f ∈ Z. Consider an iteration j of Algorithm 2 such that

BC(gj , 3r)∩Uj intersects BC(f, r). We claim that for each such iteration, either Assign(j, f)
is called, or BC(f, r) ∩ BC(gj , 3r) ∩ Uj is charged. To prove the claim, suppose f is not
assigned in iteration j. By Algorithm 2, either Rule 1 or Rule 2 must have applied in this
iteration j, as f satisfies the condition of Rule 2. Thus Assign was called on j and all points
in Aj have been charged. Now suppose the first case applies, i.e., Assign(j, f) is called for
some j. Then all of BC(f, r) ∩ Uj is charged (and BC(f, r) \ Uj is already charged by the
second case). If the first case never applies, then all of BC(f, r) is charged by the second
case since U|F | is empty. Hence, all of BC(f, r) is charged, as desired.

To see that property 2b of Definition 8 is fulfilled also for all colors ℓ ∈ [γ − 1], observe
that Rule 3 makes sure that any component that was in A will still be selected in A. Thus,
wℓ(A) ≥ wℓ(BC(Z, r)) for all colors ℓ ∈ [γ].

It remains to show that d(Ai, h(Ai)) ≤ r. If Rule 1 or Rule 2 is applied, this is satisfied
as there is a client c ∈ BC(gi, 3r) ∩ BC(h(Ai), r) ∩ Ui; because c ∈ Ai by construction,
we have d(h(Ai), Ai) ≤ d(h(Ai), c) ≤ r. If Rule 3 is applied for A ⊆ Ai, we also have
d(h(Ai), Ai) ≤ d(h(Ai), A) = d(h(A), A) ≤ r, where the last inequality follows from P being
an (L, r)-partition. ◀

Lemma 9 now follows readily from Lemma 14.

Proof of Lemma 9. The proof follows by induction on γ. For the induction start, consider
γ = 0. The set {{c} : c ∈ C} is a (0, r)-partition on every 0-colorful space (C ∪̇ F, d, w).
The induction step is given by Lemma 14. Note that 2

(
10(2γ−1 − 1)

)
+ 10 = 10(2γ −

1). The running time is clearly O(poly(|X|, γ)) as every step in the induction takes time
O(poly(|X|, γ)).7 ◀
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Abstract
We revisit the classical edge coloring problem for general graphs in the streaming model. In this
model, the input graph is presented as a stream of edges, and the algorithm must report colors
assigned to the edges in a streaming fashion, using a memory of size O(n polylog n) on graphs of up
to O(n2) edges. In ESA 2019 and SOSA 2021, two elegant randomized algorithms were presented for
this problem in the adversarial edge arrival model, where the latest one colors any input graph using
O(∆2/s) colors with high probability in Õ(ns) space. In this short note, we propose two extremely
simple streaming algorithms that achieve the same color and space bounds deterministically. Besides
being surprisingly simple, our algorithms do not use randomness at all, and are very simple to
analyze.
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1 Introduction

An edge coloring of a graph G is an assignment of colors to the edges such that no two
adjacent edges receive the same color. The chromatic index of a graph G is the smallest
number of colors required to properly color edges of G. Although determining the chromatic
index is NP-hard [10], a classic theorem by Vizing states that any graph can be colored with
at most ∆ + 1 colors, where ∆ is the maximum degree of the graph. On the other hand, ∆
colors are always required to properly color edges of a graph.

In this short note, we revisit the edge coloring problem in the streaming model, where
edges of the input graph are presented to the algorithm one at a time in an adversarially
chosen order. In this model, the memory available to the algorithm is less than the input
size, and hence, we cannot store all the edges of the graph. We consider one-pass algorithms
in which the amount of available space is O(n polylog n), which is also known as the semi-
streaming model [9]. Moreover, since output in the edge coloring problem is as large as the
input, we cannot wait to report the output after the whole stream is processed. Instead, we
need to report colors of the edges in a streaming fashion, a typical approach usually referred
to as W-streaming in the literature [8].

The edge coloring problem has been studied in various models of computation. In the
offline model, there are polynomial-time algorithms that compute (∆ + 1)-edge colorings for
general graphs [1, 11]. In the online model, Bar-Noy et al. [3] were the first to show that no
algorithm can do better than the greedy algorithm, which uses at most 2∆ − 1 colors, no
matter if the input graph is revealed edge by edge or vertex by vertex. However, their lower
bound only holds when ∆ = O(log n). Therefore, research has been shifted towards online
edge coloring of higher-degree graphs, i.e., when ∆ = ω(log n). In particular, Cohen et al. [7]
achieved the first positive result by giving an algorithm that uses (1 + o(1))∆ colors for
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8:2 Simple Streaming Algorithms for Edge Coloring

Table 1 Summary of streaming algorithms for edge coloring in the adversarial edge arrival model.
Here, s = o(∆) is a space parameter.

Algorithm Type # Colors Space Ref

Behnezhad et al. randomized O(∆2) (w.h.p.) Õ(n) [4]
Charikar and Liu randomized (1 + o(1))∆2/s (w.h.p.) Õ(ns) [6]
This work deterministic (1 + o(1))∆2/s O(ns) [here]

bipartite graphs in the adversarial vertex arrival setting. In the same setting, Saberi and
Wajc [12] have recently presented a (1.9 + o(1))∆ algorithm for general graphs. In the
random-order edge arrival, where edges of the graph are presented in a uniformly random
order, the best current algorithm uses (1 + o(1))∆ colors due to Bhattacharia et al. [5],
improving upon the previous 1.26∆ algorithm of Bahmani et al. [2].

In the streaming model, existing results in the online model cannot be typically applied
due to memory restriction. Behnezhad et al. [4] were the first to provide O(n polylog n)-space
streaming algorithms for the edge coloring problem. They proposed an algorithm reporting
a 2e∆-coloring in the random edge arrival case, and another O(∆2) algorithm, when edges
arrive in an arbitrary (adversarial) order. Charikar and Liu [6] improved these results
by presenting an algorithm that uses (1 + o(1))∆ colors on random streams, and another
algorithm in the adversarial edge arrival case that uses O(∆2/s) colors with high probability
in Õ(ns) space.

In this work, we focus on the adversarial edge arrival model, where edges of the input
graph are revealed in an arbitrary order. In this setting, the algorithm of Behnezhad et al. [4]
randomly decomposes the input graph into O(log n) bipartite subgraphs, and uses a distinct
palette of colors for each subgraph. In particular, for each vertex v and each bipartite
subgraph i, a counter Cv,i is stored to denote the degree of v in the subgraph i. For each
incoming edge (u, v) belonging to subgraph i, the color (Cu,i, Cv,i, i) is assigned to that edge,
and both Cu,i and Cv,i are incremented by one. Behnezhad et al. showed that with high
probability, the number of colors used this way is O(∆2). Charikar and Liu [6] used a similar
technique, but modified the way each edge is randomly assigned to bipartite subgraphs. They
showed that their new algorithm uses O(∆2/s) colors with high probability, when available
space is Õ(ns).

In this short note, we propose two simple deterministic algorithms for the edge coloring
problem in the adversarial arrival streams. Besides being extremely simple, our algorithms
achieve the current state-of-the-art bounds on the space and number of colors, without using
randomization. More precisely, our algorithms use (1 + o(1))∆2/s colors in the worst case
using O(ns) space, where s = o(∆)1. To our knowledge, these are the first deterministic
algorithms for the problem in the adversarial edge arrival streams. A summary of the results
for edge coloring in the adversarial edge arrival model is presented in Table 1.

2 A Simple Greedy Algorithm

Our first algorithm uses a simple greedy approach to color edges of the input graph in an
online manner. The algorithm simply colors each edge arrived with the first available color,
and continues coloring until the memory is full. At that point, the algorithm deletes the most

1 Note that when s = Ω(∆), an O(ns) space is enough to store the entire graph.
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frequently used color and discards all edges which use that color to free up some memory.
The pseudocode of the algorithm is presented in Algorithm 1. Throughout the algorithm,
we say that a color c is available for coloring an edge e, if no other edge incident to either
endpoint of e has already received color c. Note that during the course of the algorithm, a
deleted color will never be used again.

Algorithm 1 A Simple Greedy Algorithm.
start with a color palette of size 1
for each edge e in the stream do

if no color is available in the palette to color e then
add a new color to the palette

end
color e with an available color in the palette
if the memory capacity is hit then

delete the most frequently used color c from the palette
remove all edges colored with c from memory

end
end

▶ Theorem 1. Algorithm 1 colors any input graph with (1 + o(1))∆2/s colors in O(ns) space.

Proof. It is easy to see that the algorithm reports a proper coloring. Consider two edges e1
and e2 incident to a vertex v, where e1 arrives earlier than e2 in the stream. Upon arrival
of e2, if e1 is still in memory, then its color will not be considered for coloring e2 by the
algorithm. On the other hand, if e1 is not in memory, then its color has been permanently
deleted from the palette, and hence will not be considered for coloring e2 again.

To bound the number of colors used by the algorithm, first note that at any point of
time during the execution of the algorithm, the color palette has size at most 2∆ − 1. This
is because for any edge e = (u, v) in the stream, at most 2(∆ − 1) = 2∆ − 2 distinct colors
are used by the edges incident to either u or v, as both endpoints have degree at most ∆. As
such, a color palette of size 2∆ − 1 has at least one color available for coloring e, and hence,
no new color is added to such palette by the algorithm. Therefore, for a memory of size
ns, whenever the memory capacity is hit, the most popular color deleted by the algorithm
has frequency at least ns/2∆. Thus, the total number of colors deleted during the course of
the algorithm is at most |E|/(ns/2∆), which is upper bounded by ∆2/s, since |E| ≤ n∆/2.
Therefore, the total number of colors used by the algorithm is at most (2∆ − 1) + ∆2/s

which is (1 + o(1))∆2/s, for s = o(∆). ◀

3 A Simple Buffering Algorithm

Algorithm 1 colors each arrived edge instantly in an online manner. In the streaming model,
however, we can use our limited space to “buffer” a chunk of input stream before processing
it and producing output. Using this buffering technique, we can achieve an even simpler
algorithm. The idea behind our second algorithm is to simply buffer every chunk of O(ns)
edges and color it using a distinct palette of ∆ + 1 colors. We can use any offline ∆ + 1
coloring algorithm to color each chunk of the input. The pseudocode of our algorithm is
presented in Algorithm 2.

▶ Theorem 2. Algorithm 2 colors any input graph with (1 + o(1))∆2/s colors in O(ns) space.
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Algorithm 2 A Simple Buffering Algorithm.
partition the stream into chunks of size ns

for each chunk of edges do
color the chunk using a distinct palette of ∆ + 1 colors

end

Proof. As a new palette is used for coloring each chunk, it is clear that the algorithm reports
a proper edge coloring. To analyze the number of colors, we observe that the number of
chunks is |E|/ns. Therefore, the total number of colors used is

|E|
ns

(∆ + 1) ≤ n∆
2ns

(∆ + 1) =
(

1
2 + o(1)

)
∆2/s,

where the above inequality holds because |E| ≤ n∆/2. ◀

▶ Remark. Algorithm 2 can be easily modified to work online by just replacing the offline
∆ + 1 coloring algorithm with an online 2∆ − 1 greedy one. The resulting algorithm uses
(1 + o(1))∆2/s colors in the worst case.
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where the polygon includes its interior. We study the problem of computing the minimum-perimeter
intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects.
We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex
polygons in the plane of total complexity n.

Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter inter-
secting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far,
polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon
of lines or of disjoint segments.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases convex hull, imprecise points, computational geometry

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.9

Related Version Full Version: https://arxiv.org/abs/2208.07567

Funding Mark de Berg is supported by the Dutch Research Council (NWO) through Gravitation-
grant NETWORKS-024.002.003.
Antonis Skarlatos: Part of the work was done during an internship at the Max Planck Institute for
Informatics in Saarbrücken, Germany.

1 Introduction

Convex hulls are among the most fundamental objects studied in computational geometry.
In fact, the problem of designing efficient algorithms to compute the convex hull of a planar
point set O – the smallest convex set containing O – is one of the problems that started
the field [5, 11]. Since the early days, the problem has been studied extensively, resulting in
practical and provably efficient algorithms, in the plane as well as in higher dimensions; see
the survey by Seidel [13, Chapter 26] for an overview.

A natural generalization is to consider convex hulls for a collection O of geometric objects
(instead of points) in R2. Note that the convex hull of a set of polygonal objects is the same
as the convex hull of the vertices of the objects. Hence, such convex hulls can be computed
using algorithms for computing the convex hull of a point set. A different generalization,
which leads to more challenging algorithmic questions, is to consider the smallest convex set
that intersects all objects in O. Thus, instead of requiring the convex set to fully contain
each object from O, we only require that it has a non-empty intersection with each object.

Notice that in case of points, the “smallest” set is well-defined: if convex sets C1 and C2
both contain a point set O, then C1 ∩ C2 also contains O. Hence, the convex hull of a point
set O can be defined as the intersection of all convex sets containing O. When O consists of
objects, however, this is no longer true, and the term “smallest” is ambiguous. In the present
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paper we consider two variants: given a set O of possibly intersecting convex polygons in
R2 of total complexity n, find a convex set of minimum perimeter that intersects all objects
in O, or a convex set of minimum area that intersects all objects in O.

Observe that a minimum-perimeter connected intersecting set C for O must be a convex
polygon. To see this, observe that for any object o ∈ O we can select a point po ∈ o∩C, and
take the convex hull of these points; the result is a feasible convex polygon whose perimeter
is no longer than that of C. Thus the convexity of the solution could be omitted from the
problem statement. This contrasts with the minimum-area problem, where there is always
an intersecting polygon of zero area, namely, a tree. The convexity requirement is therefore
essential in the problem statement. Note that it is still true that the minimum-area convex
intersecting set is a polygon: given a convex solution, we can again take the convex hull of
the points po and get a feasible solution whose area is not greater than the area of the initial
convex solution. We also remark that the two problems typically have different optima. If O
consists of the three edges of an equilateral triangle, then the minimum-area solution is a
line segment (that is, a degenerate polygon of zero area), whereas the minimum-perimeter
solution is the triangle whose vertices are the midpoints of the edges.

The problem of computing minimum-area or minimum-perimeter convex intersecting
polygons, as well as several related problems, have already been studied. Dumitrescu and
Jiang [4] considered the minimum-perimeter intersecting polygon problem. They gave a
constant-factor approximation algorithm as well as a PTAS for the case when the objects
in O are segments or convex polygons. They achieved a running time of nO(1)/ε+2O(1/ε2/3)n.
They also prove that computing a minimum-perimeter intersecting polygon for a set O of
non-convex polygons (or polygonal chains) is NP-hard. For convex input objects, however,
the hardness proof fails. Hence, Dumitrescu and Jiang ask the following question.

Question 1. Is the problem of computing a minimum-perimeter intersecting polygon
of a set of segments NP-hard?

In case of disjoint segments, a minimum-perimeter intersecting polygon can be found in
polynomial time [6, 7], but for intersecting segments the question is still open.

The problem of computing smallest intersecting polygons for a set O of objects has also
been studied in works on imprecise points. Now the input is a set of points, but the the exact
locations of the points are unknown. Instead, for each point one is given a region where the
point can lie. One can then ask questions such as: what is the largest possible convex hull
of the imprecise points? And what is the smallest possible convex hull? If we consider the
objects in our input set O as the regions for the imprecise points, then the latter question
is exactly the same as our problem of finding smallest intersecting convex sets. In this
setup both the minimum-perimeter and minimum-area problem have been considered, for
sets O consisting of convex regions of total complexity n. There are exact polynomial-time
algorithms for minimum (and maximum) perimeter and area, for the special case where O
consists of horizontal line segments or axis-parallel squares [10]. Surprisingly, some of these
problems are NP-hard, such as the maximum-area/perimeter problems for segments. This
gave rise to the study of approximation algorithms and approximation schemes [9].

In some cases, the minimum-perimeter problem can be phrased as a travelling salesman
problem with neighborhoods (TSPN). Here the goal is to find the shortest closed curve
intersecting all objects from the given set O. In general, an optimal TSPN tour need not be
convex, but one can show that in the case of lines or rays, an optimal tour is always convex:
if a convex polygon intersects a line (or a ray) then its boundary intersects the line (resp. the
ray). Therefore, computing a minimum-perimeter intersecting polygon of lines (or rays) is
the same problem as TSPN with line neighborhoods (resp. ray neighborhoods). TSPN of
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lines in R2 admits a polynomial-time algorithm [2]. In higher dimensions, TSPN has a PTAS
for hyperplane neighborhoods [1], but notice that this is not the natural generalization of the
minimum-intersecting polygon problem. Tan [12] proposed an exact algorithm for TSPN of
rays in R2, but there seems to be an error in the argument; see the full version for details. At
the time of writing this article, we believe that a polynomial-time algorithm for TSPN of rays
is not known, but there is a constant-factor approximation algorithm due to Dumitrescu [3],
as well as a PTAS [4].

Our results. In order to resolve Question 1, we first need to establish a good structural
understanding and a dynamic programming algorithm. It turns out that the algorithm can
also be used for approximation. We give dynamic-programming-based approximation schemes
for the minimum-perimeter and minimum-area convex intersecting polygon problems. Our
first algorithm is a fully polynomial time approximation scheme (FPTAS) for the minimum-
perimeter problem of arbitrary convex objects of total complexity n.

▶ Theorem 1. Let O be a set of convex polygons of total complexity n in R2 and let opt
be the minimum perimeter of an intersecting convex polygon for O. For any given ε > 0,
we can compute an intersecting polygon for O whose perimeter is at most (1 + ε) · opt, in
O(n2.373/ε+ n/ε8) time.

This is a vast improvement over the PTAS given by Dumitrescu and Jiang [4], as the
dependence on 1/ε is only polynomial in our algorithm. Our approximation algorithms work
in a word-RAM model, where input polygons are defined by the coordinates of their vertices,
and where each coordinate is a word of O(log n) bits.

We also get a similar approximation scheme for the minimum area problem, albeit with
a slower running time. Here we rely more strongly on the fact that the objects of O are
convex polygons, and an extension to (for example) disks is an interesting open question.
The full version details how the minimum-perimeter FPTAS needs to be adapted to the
minimum-area setting.

▶ Theorem 2. Let O be a set of convex polygons of total complexity n in R2 and let opt
be the minimum area of an intersecting convex polygon for O. For any given ε > 0, we
can compute a convex intersecting polygon for O whose area is at most (1 + ε) · opt, in
O(n17 log(1/ε) + n11/ε24) time.

We remark that both Theorem 1 and Theorem 2 work if the input has polytopes instead of
polygons, that is, when each object is the intersection of some half-planes.

While the dynamic programming algorithm developed above is crucial to get an exact
algorithm, we are still several steps from being able to resolve Question 1. The main challenge
here is that the vertices of the optimum intersecting polygon can be located at arbitrary
boundary points in O, and there is no known way to discretize the problem. We introduce
a subroutine that uses an algorithm of Dror et al. [2] to compute parts of the minimum-
perimeter intersecting polygon that contain no vertices of input objects. We are able to
achieve a polynomial-time algorithm (on a real-RAM machine) for the minimum perimeter
intersecting polygon problem only when the objects are line segments.

▶ Theorem 3. Let O be a set of n line segments in the plane. Then we can compute a
minimum-perimeter intersecting polygon for O in O(n9 log n) time.

If P ̸= NP, then this gives a direct negative answer to Question 1. The theorem also extends
to the case of rays (this is the scenario studied by Tan [12]; see the discussion in the full
version.
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Our techniques. Our approximation algorithms both compute an approximate solution
whose vertices are from some fine grid. To determine a suitable grid resolution, we need to
be able to compute lower bounds on opt, which is non-trivial. It is also non-trivial to know
where to place the grid, such that it is guaranteed to contain an approximate solution. The
problem is that our lower bound gives us the location of a solution that is a constant-factor
approximation, but this can be far from the location of a (1 + ε)-approximation. Hence, for
the minimum-area problem we generate a collection of grids, one of which is guaranteed to
contain a (1+ε)-approximate solution. Finally, we face some further difficulties since a square
grid may be insufficient: the optimum intersecting polygon may be extremely (exponentially)
thin and long, and of area close to zero. In such cases there is no square grid of polynomial
size that would contain a good solution. These problems are resolved in Section 2.

Section 3 presents our dynamic programming algorithm for minimum perimeter. In the
dynamic programming the main technical difficulty lies in the fact that it is not clear what
subset of objects should be visited in each subproblem. A portion of the optimum’s boundary
could in principle be tasked with intersecting an arbitrary subset of O, while some of the
objects in O need not be intersected by the optimum boundary and will simply be covered by
the interior of the optimum intersecting polygon: a naïve approach therefore would not yield
a polynomial-time algorithm. Our carefully designed subproblems have a clear corresponding
set of objects to “visit”, using orderings of certain tangents of input objects for this purpose.
The minimum area problem uses a similar dynamic program, see the full version for its
details.

Finally, in order to present our exact algorithm in Section 4, we need to modify our
dynamic program to deal with subproblems where the vertices of a convex chain do not come
from a discretized set. In such cases, we have to find the order in which the objects of O
are visited by the chain. We are able to prove a specific ordering only in the case when the
objects are line segments. The order then allows us to invoke the algorithm of Dror et al. [2]
in a black-box manner.

2 Locating an optimal solution

The algorithms to be presented in subsequent sections need to approximately know the size
and location of a smallest intersecting polygon. We use an algorithm from [4] to locate the
minimum-perimeter intersecting polygon. With respect to the minimum-area intersecting
polygon we prove that either there is a solution with a constant number of vertices (that
can be computed with a different algorithm), or it is sufficient to consider polygons whose
vertices are from a grid which comes from a polynomial collection of different grids.

Locating the minimum-perimeter optimum. For the minimum-perimeter intersecting
polygon of a set O of convex objects, Dumitrescu and Jiang [4] present an algorithm A1 that,
for a given ε1 > 0, outputs a rectangle R intersecting all input objects O and with perimeter
at most 4

π (1+ε1)opt. At a high level, A1 guesses an orientation of the rectangle among ⌈ π
4ε1

⌉
many discrete orientations and then uses a linear program to identify the smallest perimeter
rectangle of that orientation that intersects O. In [4] it is described how Algorithm A1 is
used to locate an optimal solution if the input objects are convex polygons. In particular,
for any ε > 0 running A1 with ε1 = ε

2+ε gives a rectangle R. Let σ be the square that is
concentric and parallel to R and has a side length of 3 · per(R). Then the following holds.

▶ Lemma 4 (Lemma 3 in [4]). Suppose that per(R) ≥ (1 + ε)opt. Then there is an optimum
polygon Copt that is covered by σ.



A. Antoniadis, M. de Berg, S. Kisfaludi-Bak, and A. Skarlatos 9:5

vCopt

Copt
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Q
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Figure 1 (i) If v and adjacent sides of Copt are disjoint from X, then we can slide v without
increasing the area of Copt. (ii) The points of Q (green) and their circumscribed ellipse E.

Algorithm A1 needs to solve O(1/ε) many linear programs with O(n) variables and O(n)
constraints each. Thus R and σ can be found in O(TLP(n)/ε) time, where O(TLP(n) is the
running time of an LP solver with O(n) variables and O(n) constraints. The state-of-the-art
LP solver by Jiang et al. [8] achieves a running time better than O(n2.373). Lemma 4 directly
implies that if per(R) ≥ (1 + ε)per(Copt), then

diam(Copt) ≤ diam(σ) = 3
√

2per(R) ≤ 3
√

2 4
π

(1 + ε)per(Copt) = O(diam(Copt)). (1)

The shape and location of the minimum-area optimum. For the rest of this section, let
X denote the set of vertices in the planar arrangement given by O.

▶ Lemma 5. Let Copt be a minimum-area intersecting polygon for the input O that has the
minimum number of vertices, and among such polygons has the maximum number of points
from X on its boundary. Then for any vertex v of Copt that is not in X, the relative interior
of at least one side of Copt adjacent to v contains a point of X.

Proof. Suppose for a contradiction that v ̸∈ X and that the relative interior of the sides in
Copt adjacent to v are disjoint from X. Observe that v must be on the boundary of an input
object, so it is in the relative interior of an edge e of an input object, see Fig. 1(i). Then there
exists a vector parallel to e along which we can move v while fixing its neighboring vertices
in Copt, without increasing the area of Copt. This movement can be continued until we hit a
point in X, or the angle of the polygon becomes π at v1 or v2. As a result, we end up with a
feasible polygon S whose area is no greater than that of Copt, and it has one less vertex or
at least one more point of X on its boundary. This contradicts the properties of Copt. ◀

The following lemma is more involved. Its full proof can be found in the full version.

▶ Lemma 6. For any given set of input polygons O and 0 < ε < 1 there is an intersecting
polygon C of area (1 + ε)opt which either has at most 8 vertices, or its vertices are in a
rectangular grid G of size O(1/ε3) ×O(1/ε3) where G belongs to a collection G of grids that
can be generated in polynomial time.

Proof sketch. Let Q = X ∩ ∂Copt. By Lemma 5 we can show that |Q| ⩾ ⌈|V (Copt)|/2⌉, so
if |V | ⩾ 9, then |Q| ⩾ 4. We guess the circumscribed ellipse of Q, and use an affinity on the
entire instance and Copt which transforms the ellipse into a circle E. Wlog. we assume that
E is the unit circle centered at the origin. It is known that the disk with boundary 1

2E is
covered by conv(Q) and thus by Copt.

Consider the division of ∂Copt defined by the points of Q. A section of ∂Copt between
two consecutive points of Q is a spike if it has a vertex v ∈ V (Copt) that is at distance
Ω(1/ε) from the origin. One can show that if such a spike exists, then area(Copt) is Ω(1/ε).
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On the other hand, we can show that Copt cannot have more than 2 spikes. We then claim
that if Copt has a spike, then there is a polygon on at most 8 vertices that has area at most
(1 + ε)area(Copt). This is because Copt can be covered by the intersection of the “cones”
defined by the spike(s), which defines a polygon C. We can show that the extra area in the
intersection of the (at most two) spike cones is O(1), thus area(C) ⩽ (1 + ε)area(Copt), and
C has at most 8 vertices, as desired.

If Copt has no spikes, then all of its vertices are within distance O(1/ε) from the origin.
We define a fine grid G (that depends on the guessed ellipse E) in the radius O(1/ε) square
around the origin, and use standard arguments to show that the minimum area intersecting
polygon whose vertices are from G has area at most (1 + ε)opt. We can therefore return all
the grids G for each guess of the circumscribed ellipse of Q. ◀

3 An FPTAS for the minimum-perimeter problem of convex objects in
the plane

Let O be a set of n convex objects in the plane for which we want to compute a minimum-
perimeter convex intersecting polygon. We assume that O cannot be be stabbed by a single
point – this is easy to test without increasing the total running time. Since a minimum-
perimeter intersecting polygon is necessarily convex, we will from now on drop the adjective
“convex” from our terminology. We do this even when referring to convex intersecting
polygons that are not necessarily of minimum perimeter.

In the previous section we have seen that for any ε > 0, we can find a feasible rectangle
R and a square σ with the following property: Either per(R) ≤ (1 + ε)opt, or Copt ⊆ σ with
diam(Copt) = Ω(1)diam(σ). Next we describe an algorithm that, given a parameter ε > 0
and a corresponding square σ, outputs an intersecting polygon C∗ ⊆ σ for O such that if
per(R) ≥ (1 + ε)per(Copt) then per(C∗) ⩽ (1 + ε)opt, where opt = per(Copt) (cf. Lemma 4
and Equation 1). Finally, we output either R or C∗, whichever has smaller perimeter.

Our algorithm starts by partitioning σ into a regular grid G(σ) of O(1/ε2) cells of edge
length at most (ε/8) · opt. We say that a convex polygon is a grid polygon if its vertices are
grid points from G(σ). The following observation is standard, but a full proof can be found
in the full version.

▶ Observation 7. Suppose σcontains an optimal solution Copt. Let C(σ) be a minimum-
perimeter grid polygon that is an intersecting polygon for O. Then per(C(σ)) ⩽ (1 + ε) · opt.

Next we describe an algorithm to compute a minimum-perimeter grid polygon C(σ) that
is an intersecting polygon for O.

First, we “guess” the lexicographically smallest vertex vbot of C(σ), see Figure 2(i). We
can guess vbot in O(1/ε2) different ways. For each possible guess we will find the best solution
(if it exists), and then we report the best solution found over all guesses.

Now consider a fixed guess for the lexicographically smallest vertex vbot of C(σ). With a
slight abuse of notation we will use C(σ) to denote a minimum-perimeter grid polygon that
is an intersecting polygon of O and that has vbot as lexicographically smallest vertex. (If
the polygon C(σ) does not exist, the algorithm described below will detect this.) We will
compute C(σ) by dynamic programming.

The vertices of C(σ) are grid points in the region h+ \ρ0, where h+ is the closed half-plane
above the horizontal line through vbot and ρ0 is the horizontal ray emanating from vbot and
pointing to the left. Let V be the set of such grid points, excluding vbot. We first order the
points from V in angular order around vbot. More precisely, for a point v ∈ V , let ϕ(v) denote
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ρ∗(w)
ρ∗(w)

vbot
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w

ρ∗(w)

v w

vbot vbot

v

w

(i) (ii)

Figure 2 (i) The wedge defined by ρ0 and ρ(w) is shown in light grey. Objects in O(v, w) are red,
objects in O \ O(v, w) are blue. (ii) The partial solution C(Γ) must be contained in the red region,
while C \ C(Γ) must lie in the blue region. There are four situations, depending on whether the
angle between ρ0 and ρ(w) is acute or not, and whether the line containing vw intersects ρ0 or not.

the angle over which we have to rotate ρ0 in clockwise direction until we hit v. For two points
v, w ∈ V , we write v ≺ w if ϕ(v) < ϕ(w). Let V + := V ∪ {vbot, vbot}, where vbot is a copy
of vbot, and define vbot ≺ v and v ≺ vbot for all v ∈ V . The copy vbot serves to distinguish
the start and the end vertex of the clockwise circular sequence of vertices of C(σ). Note that
if vbot, v1, . . . , vk, vbot denotes this circular sequence then vbot ≺ v1 ≺ · · · ≺ vk ≺ vbot (since
C(σ) will never have two vertices that make the same angle with vbot).

We now describe our dynamic-programming algorithm. Consider a polyline from vbot
to some point v ∈ V . We say that this polyline is a convex chain if, together with the line
segment vvbot, it forms a convex polygon. We denote the convex polygon induced by such a
chain Γ by C(Γ). The problem we now wish to solve is as follows:

Compute a minimum-length convex chain Γ∗ from vbot to vbot such that C(Γ∗) is an
intersecting polygon for O.

Our dynamic-programming algorithm uses the partial order ≺ defined above. We now want
to define a subproblem for each point v ∈ V +, which is to find the “best” chain Γv ending
at v. For this to work, we need to know which objects from O should be covered by the
partial solution C(Γv). This is difficult, however, because objects that intersect the ray from
vbot and going through v could either be intersected by C(Γv) or by the part of the solution
that comes after v. To overcome this problem we let the subproblems be defined by the
last edge on the chain, instead of by the last vertex. This way we can decide which objects
should be covered by a partial solution, as explained next.

Consider a convex chain from vbot to a point w ∈ V + whose last edge is vw. Let ρ(w)
be the ray emanating from vbot in the direction of w, and let ρ∗(w) be the part of the ray
starting at w. For w = vbot we define ρ(w) to be the horizontal ray emanating from vbot and
going to the right, and we define ρ∗(w) = ρ(w). For an object oi ∈ O that intersects ρ∗(w),
let ℓw(oi) be a line that is tangent to oi at the first intersection point of ρ∗(w) with oi. We
now define the set O(v, w) to be the subset of objects oi ∈ O such that one of the following
conditions is satisfied; see also Figure 2(i).

(i) oi intersects the wedge defined by ρ0 and ρ(w), but not ρ(w) itself; or
(ii) oi intersects vbotw; or
(iii) oi intersects ρ∗(w) but not vbotw, and the tangent line ℓw(oi) intersects the half-line

containing vw and ending at w.
The next lemma shows that we can use the sets O(v, w) to define our subproblems.

▶ Lemma 8. Let C be any convex polygon that is an intersecting polygon for O and that has
vbot as lexicographically smallest vertex and vw as one of its edges. Let Γw be the part of ∂C
from vbot to w in clockwise direction. Then all objects in O(v, w) intersect C(Γw) and all
objects in O \ O(v, w) intersect C \ C(Γw).
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9:8 Computing Smallest Convex Intersecting Polygons

We can now state our dynamic program. To this end we define, for two points v, w ∈ V +

with v ≺ w, a table entry A[v, w] as follows.

A[v, w] := the minimum length of a convex chain Γ from vbot to w whose last edge is vw and
such that all objects in O(v, w) intersect C(Γ),

where the minimum is ∞ if no such chain exists. Lemma 8 implies the following.

▶ Observation 9. Let Γ∗ be a shortest convex chain from vbot to vbot such that C(Γ∗) is an
intersecting polygon for O. Then length(Γ∗) = min{A[v, vbot] : v ∈ V and O(v, vbot) = O}.

Hence, if we can compute all table entries A[v, w] then we have indeed solved our problem.
(The lemma only tells us something about the value of an optimal solution, but given the
table entries A[v, w] we can compute the solution itself in a standard way.)

The entries A[v, w] can be computed using the following lemma. Define ∆(vbot, v, w) to
be the triangle with vertices vbot, v, w.

▶ Lemma 10. Let v, w ∈ V + with v ≺ w. Let V (v, w) be the set of all points u ∈ V ∪ {vbot}
with u ≺ v such that u lies below the line ℓ(v, w) through v and w and such that all objects
in O(v, w) \ O(u, v) intersect ∆(vbot, v, w). Then

A[v, w] =


|vbotw| if v = vbot and all objects in O(v, w) intersect vbotw

∞ if v = vbot and not all objects in O(v, w) intersect vbotw

|vw| + min
u∈V (v,w)

A[u, v] otherwise

Putting everything together, we can finish the proof of Theorem 1.

Proof of Theorem 1. We first use algorithm A1 from [4] to compute the rectangle R and
the square σ, which as discussed can be done in O(n2.373/ε) time. For a square σ we guess
the vertex vbot in O(1/ε2) different ways.

For each guess we run the dynamic-programming algorithm described above. There
are O(1/ε4) entries A[u, v] in the dynamic-programming table. The most time-consuming
computation of a table entry is in the third case of Lemma 10. Here we need to compute
the set O(v, w), which can be done in O(n) time by checking every oi ∈ O. For each of
the O(1/ε2) points with u ≺ v such that u lies below the line ℓ(v, w) we then check in
O(n) time if all objects in O(v, w) \ O(u, v) intersect ∆(vbot, v, w), so that we can compute
A[v, w]. Hence, computing A[v, w] takes O(n/ε2) time, which implies that the whole dynamic
program needs O(n/ε6) time.

Thus the algorithm takes O(n2.373/ε) +O(1/ε2) ·O(n/ε6) = O(n2.373/ε+n/ε8) time. ◀

▶ Remark 11. Although Theorem 1 is stated only for the case where O is a set of convex
polygons, it is not too hard to extend it to other convex objects, for example disks: one
just needs to replace the approximate rectangle-finding linear program of Dumitrescu and
Jiang [4] with some other polynomial-time algorithm to find an (approximate) minimum
perimeter intersecting rectangle in each of the O(1/ε) orientations.
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Copt

(i) (ii)

u v

Figure 3 (i) Subroutine I computes a minimum perimeter intersecting polygon whose vertices are
not segment endpoints. (ii) Subroutine II computes a polygon with fixed edge uv for some (sub)set
of segments. With the exception of u and v, the polygon’s vertices are not allowed to be segment
endpoints.

4 An exact algorithm for the minimum-perimeter intersecting polygon
of segments

We describe an exact algorithm to compute a minimum-perimeter intersecting object for a
set O of line segments1 in the plane. Consider an optimal solution Copt, and let Y be the set
of all endpoints of the segments in O. The exact algorithm is based on two subroutines for
the following two problems. As before, whenever we talk about intersecting polygons, we
implicitly require them to be convex. Figure 3 illustrates the polygons computed by these
subroutines.

Subroutine I : If O admits a minimum-perimeter intersecting polygon with none of
its vertices being in Y , then compute such a polygon. Otherwise compute a feasible
intersecting polygon, or report +∞.
Subroutine II : Given two points u, v ∈ R2 and a subset O′ ⊆ O, decide if O′ admits a
minimum-perimeter intersecting polygon that has uv as one of its edges and none of whose
other vertices belongs to Y and, if so, compute a minimum-perimeter such intersecting
polygon. If no such minimum-perimeter intersecting polygon exists, report +∞. Note
that we allow u = v, in which case the edge uv degenerates to a point.

In the full version we show:

▶ Theorem 12. There exist exact algorithms for Subroutine I and Subroutine II that run in
time O(n6 log n) and O(n3 log n), respectively.

Setting the stage for the dynamic program

With Subroutine I available, it remains to find the minimum-perimeter intersecting polygon
that has at least one vertex from Y . To this end we will develop an algorithm that, for a
given point pbot ∈ Y , finds a minimum-perimeter convex intersecting polygon that has pbot
as a vertex (if it exists). We will run this algorithm for each choice of pbot ∈ Y .

Let pbot ∈ Y be given, and assume that O admits an intersecting polygon that has pbot
as a vertex (this can be tested in O(n log n) time). In contrast to Section 3, pbot need not
be the lexicographically smallest point and our algorithm therefore relies on guessing the

1 Although we describe our algorithm for non-degenerate segments, all our arguments also work if some
(or all) of the segments are in fact lines, rays, or even points.
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(i)

pbotρ0

C+
opt

C−
opt

ψj

oi

ψ(oi)

(ii)

w

ψw(oi)

oi

ρ0

ρ(w)

pbot

Figure 4 (i) The grey double wedge indicates the region containing the tangent at pbot. (Note
that then there must be more segments than the blue and red segments that are shown. In particular,
there must be segments parallel to the lines delimiting the double wedge.) The blue segments are
in O(ρ0)+ so they must be intersected by C+

opt, while the red segment is in O(ρ0)− and must be
intersected by C−

opt. (ii) The definition of ψw(oi).

orientation of a line tangent to Copt at pbot. More specifically, we are able to find a set
Ψ = {ψ1, ψ2, . . . , }, of O(n) possible angles with ψj < ψj+1 for all 0 ≤ j ≤ |Ψ| (where we set
ψ0 := 0 and ψ|Ψ|+1 = π) and reduce the problem to:

Given a point pbot and value j with 0 ⩽ j ⩽ |Ψ|, find a minimum-perimeter intersecting
polygon Copt for O such that
pbot is a vertex of Copt,
the horizontal ray ρ0 going from pbot to the left does not intersect Copt,
Copt has a tangent line ℓ at pbot such that the clockwise angle from ρ0 to ℓ lies in
the range [ψj , ψj+1].

In the above, each angle ψj corresponds to the angle over which we have to rotate ρ0
clockwise so that it becomes parallel with some segment oj ∈ O. An extensive description of
this reduction can be found in the full version.

The dynamic program

We will now develop our dynamic program for the problem that we just stated, for a given
point pbot ∈ Y , a ray ρ0, and range [ψj , ψj+1]; see Figure 4(i).

Let O(ρ0) ⊆ O denote the set of segments that intersect the ray ρ0, and let ℓ0 be the
line containing ρ0. The line ℓ0 may split the optimal solution Copt into two parts: a part
C+

opt above ℓ0 and a part C−
opt below ℓ0. Let ψ(oi) denote the angle over which we have to

rotate ρ0 in clockwise direction until it becomes parallel to oi. Since we have fixed the range
of the tangent at pbot to lie in the range [ψj , ψj+1], we can split O(ρ0) into two subsets,
O(ρ0)+ := {oi ∈ O(ρ0) : ψ(oi) ⩾ ψj+1} and O(ρ0)− := {oi ∈ O(ρ0) : ψ(oi) ⩽ ψj}.

Note that O(ρ0) = O(ρ0)+ ∪ O(ρ0)−, because ψj and ψj+1 are consecutive angles in Ψ.
Because the orientation of the tangent at pbot lies in the range [ψj , ψj+1], we know that the
segments in O(ρ0)+ must be intersected by C+

opt, while the segments in O(ρ0)− must be
intersected by C−

opt; see Figure 4(i). Intuitively, the segments in O(ρ0)+ must be intersected
by “the initial part” of Copt, while the segments in O(ρ0)− are intersected by “the later part”.
We will use this when we define the subproblems in our dynamic program.

In Section 3 we defined subproblems for pairs of grid points v, w. The goal of such a
subproblem was to find the minimum-length convex chain Γ such that C(Γ) intersects a
certain subset O(v, w) and whose last edge is vw. The fact that we knew the last edge vw was
crucial to define the set O(v, w), since the slope of vw determined which objects should be
intersected by C(Γ). In the current setting this does not work: we could define a subproblem
for pairs v, w ∈ Y , but “consecutive” vertices v, w from Y along Γ are now connected by a
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polyline Zvw whose inner vertices are disjoint from Y . The difficulty is that the polyline
Zvw depends on the segments that need to be intersected by C(Γ). Hence, there is a cyclic
dependency between the set of segments to be intersected by C(Γ) (which depends on the
slope of zw, where z is the vertex of Zvw preceding w) and the vertex z (which depends on
the segments that need to be intersected by C(Γ)). We overcome this problem as follows.

Similarly to the previous section, we call a polyline Γ from pbot to some point v ∈ Y a
convex chain if, together with the line segment vpbot, it forms a convex polygon. We denote
this polygon by C(Γ). Consider a convex chain Γw ending in a point w ∈ Y . Let ρ(w) denote
the ray from pbot through w and let ρ∗(w) be the part of this ray starting at w. Let O(w) be
the set of input segments that intersect ρ∗(w). Of those segments, C(Γw) must intersect the
ones such that the line ℓ(oi) containing2 the segment oi intersects the half-line containing zw
and ending at w, where z is the (unknown) vertex preceding w. For a segment oi ∈ O(w),
let ψw(oi) be the angle over which we have to rotate ρ(w) in clockwise direction to make
it parallel to oi; see Figure 4(ii). Let Ψ(w) = {ψ1, ψ2, . . .}, for all 1 ⩽ j < |Ψ(w)|, be the
sorted set of (distinct) angles ψw(oi) defined by the segments in O(w). For an index j with
1 ⩽ j ⩽ |Ψ(w)|, define O(w, j) := {oi ∈ O(w) : ψw(oi) ⩽ ψj}, and define O(w, 0) = ∅. We
call O(w, j) a prefix set. The key observation is that C(Γw) must intersect the segments
from some prefix set O(w, j), where j depends on the unknown vertex z preceding w. So our
dynamic program will try all possible prefix sets O(w, j), and make sure that subproblems
are combined in a consistent manner.

We now have everything in place to describe our dynamic-programming table. It consists
of entries A[w, j], where w ranges over all points in Y , and j ranges over all values for
which O(w, j) is defined. For convenience add two special entries, A[pbot, 0] and A[pbot, 0];
the former will serve as the base case, and the latter will contain (the value of) the final
solution. Note that these are the only ones for pbot and pbot, and that we have at most
|Y | ·n = O(n2) entries. We define the set O∗(w, j) of segments to be covered in a subproblem.

For a point w ∈ Y , the set O∗(w, j) consists of the segments oi ∈ O that satisfy one
of the following conditions:

(i) oi intersects the clockwise wedge from ρ0 to ρ(w) – note that this wedge need
not be convex – but not ρ(w) itself, and oi ̸∈ O−(ρ0); or

(ii) oi intersects pbotw; or
(iii) oi ∈ O(w, j).
Furthermore, O∗(pbot, 0) := ∅ and O∗(pbot, 0) := O.

We would like now to define A[w, j] to be the minimum length of a convex chain Γ from
pbot to w such that all objects in O∗(w, j) intersect C(Γ). There is, however, a technicality
to address: the minimum-perimeter polygon that intersects all segments from O need not
be convex when we require it to have pbot as a vertex. Such a non-convex polygon cannot
be the final solution – if the optimum for a given choice of pbot is non-convex, then pbot
was not the correct choice – but it makes a clean definition of our subproblems awkward.
Therefore, instead of first defining the subproblems and then giving the recursive formula, we
will immediately give the recursive formula and then prove that it computes what we want.

For two points v, w ∈ Y + (where Y + = Y ∪ {pbot}) with v ≺ w and a set O′ ⊆ O, let
L(v, w,O′) be the minimum length of a convex chain Γ from v to w such that the convex
polygon defined by Γ and vw is an intersecting set for O′ and all inner vertices of Γ are
disjoint from Y . Recall that we can compute L(v, w,O′) using subroutine II. As before, let
∆(pbot, v, w) denote the triangle with vertices pbot, v, w.

2 Since the input objects are now segments, the tangent line ℓw(oi) is just the line containing oi.
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9:12 Computing Smallest Convex Intersecting Polygons

▶ Definition 13. Let w ∈ Y + and j be a value for which O[w, j] is defined. Thus 0 ⩽ j ⩽
|Ψ(w)|, where we set |Ψ(w)| := 0 for w ∈ {pbot, pbot}. For v ≺ w and 0 ⩽ j′ ⩽ |Ψ(v)|, let

O∗(w, j, v, j′) := O∗(w, j) \
(

O∗(v, j′) ∪ {oi ∈ O : oi intersects ∆(pbot, v, w)}
)

and define

A[w, j] :=


0 if w = pbot

min
v≺w

0⩽j′⩽|Ψ(v)|

L(v, w,O∗(w, j, v, j′)) +A[v, j′] otherwise.

The next lemma implies that the table entry A[pbot, 0] defined by this recursive formula gives
us what we want. Part (a) implies that A[pbot, 0] will never return a value that is too small,
while part (b) implies that for the correct choice of pbot and range of orientations for the
tangent to Copt at pbot, the entry A[pbot, 0] gives us (the value of) the optimal solution.

▶ Lemma 14. Consider the table entry A[pbot, 0] defined by Definition 13 for a given point
pbot and range [ψi, ψi+1].
(a) There exists a convex intersecting polygon for O of perimeter at most A[pbot, 0].
(b) If pbot is a vertex of the minimum-perimeter convex intersecting polygon Copt for O,

and ρ0 does not intersect Copt, and there is a tangent line ℓ at pbot whose orientation is
in the range [ψi, ψi+1], then per(Copt) = A[pbot, 0].

Putting everything together

Lemma 14 implies that after solving the dynamic programs for all choices of pbot and the
range [ψi, ψi+1], we have found the minimum perimeter intersecting set for O. (Computing
the intersecting set itself, using the relevant dynamic-program table, is then routine.) This
leads to the proof of Theorem 3.

Proof of Theorem 3. The number of dynamic programs solved is O(|Y | · n) = O(n2). The
dynamic-programming tables have O(n2) entries. Computing an entry takes O(|Y | · n) =
O(n2) calls to Subroutine II, at O(n3 log n) time each. The dynamic programs thus take
O(n2) · O(n2) · O(n2) · O(n3 log n) = O(n9 log n) time. If the optimal solution does not go
through any point of Y , then by Theorem 12 it will be found in O(n6 log n) time. The
optimum of these two algorithms is the global optimum. ◀

5 Conclusion

We gave fully polynomial time approximation schemes for the minimum perimeter and
minimum area convex intersecting polygon problems for convex polygons. Additionally, we
developed a polynomial-time algorithm for the minimum perimeter problem of segments.

It is likely that the running times of our algorithms can be improved further. One could
also try to generalize the set of objects, for example, adapting the minimum area algorithm
to arbitrary convex objects. We propose the following open questions for further study.

Is there a polynomial-time exact algorithm for the minimum area convex intersecting
polygon of segments?
Is there a polynomial-time exact algorithm for minimum perimeter or minimum area
convex intersecting polygon of convex polygons, or are these problems NP-hard?
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Is there a polynomial-time approximation scheme for the minimum volume or minimum
surface area convex intersecting polytope of convex polytopes in R3? Can we at least
approximate the diameter of the optimum solution to these problems?

It would be especially interesting to see an NP-hardness proof for minimum volume or surface
area convex intersecting set of convex objects in higher dimensions.
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Abstract
Hierarchical Clustering is a popular tool for understanding the hereditary properties of a data set.
Such a clustering is actually a sequence of clusterings that starts with the trivial clustering in which
every data point forms its own cluster and then successively merges two existing clusters until all
points are in the same cluster. A hierarchical clustering achieves an approximation factor of α if the
costs of each k-clustering in the hierarchy are at most α times the costs of an optimal k-clustering.
We study as cost functions the maximum (discrete) radius of any cluster (k-center problem) and the
maximum diameter of any cluster (k-diameter problem).

In general, the optimal clusterings do not form a hierarchy and hence an approximation factor
of 1 cannot be achieved. We call the smallest approximation factor that can be achieved for any
instance the price of hierarchy. For the k-diameter problem we improve the upper bound on the price
of hierarchy to 3 + 2

√
2 ≈ 5.83. Moreover we significantly improve the lower bounds for k-center

and k-diameter, proving a price of hierarchy of exactly 4 and 3 + 2
√

2, respectively.
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1 Introduction

Clustering is an ubiquitous task in data analysis and machine learning. In a typical clustering
problem, the goal is to partition a set of objects into different clusters such that only similar
objects belong to the same cluster. There are numerous ways how clustering can be modeled
formally and many different models have been studied in the literature in the last decades.
In many theoretical models, one assumes that the data comes from a metric space and that
the desired number of clusters is given. Then the goal is to optimize some objective function
like k-center, k-median, or k-means. In most cases the resulting optimization problems are
NP-hard and hence approximation algorithms have been studied extensively.

One aspect of real-world clustering problems that is not captured by these models is
that it is often already a non-trivial task to determine for a given data set the right or most
reasonable number of clusters. One particularly appealing way to take this into account
is hierarchical clustering. A hierarchical clustering of a data set is actually a sequence of
clusterings, one for each possible number of clusters. It starts with the trivial clustering
in which every data point forms its own cluster and then successively merges two existing
clusters until all points are in the same cluster. This way for every possible number of clusters,
a clustering is obtained. These clusterings help to understand the hereditary properties of
the data and they provide information at different levels of granularity.
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While hierarchical clustering is successfully used in many applications, it is not as well
understood from a theoretical point of view as the models in which the number of clusters
is given as part of the input. One reason for this is that it is not obvious how the quality
of a hierarchical clustering should be measured. A possibility that has been explored in
the literature is to define the quality of a hierarchical clustering based on its worst level.
To be precise, let (X , d) be a metric space and P ⊂ X a set of n points. Furthermore let
H = (Hn, . . . , H1) be a hierarchical clustering of P , where Hk denotes a k-clustering, i.e., a
clustering with at most k non-empty clusters. Then Hk−1 arises from Hk by merging some
of the existing clusters. We assume that some objective function like k-center, k-median,
or k-means is selected and denote by cost(Hk) the objective value of Hk with respect to
the selected objective function. Furthermore, let Ok denote an optimal k-clustering and
let cost(Ok) denote its objective value. Then we say that H achieves an approximation
factor of α ≥ 1 if cost(Hk) ≤ α · cost(Ok) for every k, assuming that cost is an objective
that is to be minimized. In this work we consider the radius objective, which is well-known
from the k-center problem. Here the cost is defined as the maximum radius of a cluster.
Furthermore we consider the diameter objective, where the cost is defined as the maximum
distance between any two points lying in the same cluster.

An α-approximation for small α yields a strong guarantee for the hierarchical clustering on
every level. However, in general there do not exist optimal clusterings On, . . . , O1 that form a
hierarchy. So even with unlimited computational resources, a 1-approximation usually cannot
be achieved. In the literature different algorithms for computing hierarchical clusterings
with respect to different objective functions have been developed and analyzed. Dasgupta
and Long [13] and Charikar et al. [8] initiated this line of research and presented both
independently from each other an algorithm that computes efficiently an 8-approximate
hierarchical clustering with respect to the radius and diameter objective. That is, for every
level k, the maximal radius or diameter of any cluster in the k-clustering computed by their
algorithms is at most 8 times the maximal radius or diameter in an optimal k-clustering.
Inspired by [13], Plaxton [21] proposed a constant-factor approximation for the k-median
and k-means objective. Later a general framework that also leads constant approximation
guarantees for many objective functions including in particular k-median and k-means has
been proposed by Lin et al. [19].

Despite these articles and other related work, which we discuss below in detail, many
questions in the area of hierarchical clustering are not yet resolved. We find it particularly
intriguing to find out which approximation factors can be achieved for different objectives.
This question comes in two flavors depending on the computational resources available. Of
course it is interesting to study which approximation factors can and cannot be achieved in
polynomial time, assuming P ̸= NP. Since in general there do not exist hierarchical clusterings
that are optimal on each level, it is also interesting to study which approximation factors can
and cannot be achieved in general without the restriction to polynomial-time algorithms.

For an objective function like radius or diameter we define its price of hierarchy as the
smallest α such that for any instance there exists an α-approximate hierarchical clustering.
Hence, the price of hierarchy is a measure for how much quality one has to sacrifice for the
hierarchical structure of the clusterings.

Our main results are tight bounds for the price of hierarchy for the radius, discrete
radius and diameter objective. Here the difference between radius and discrete radius lies
in the choice of centers. For the radius objective we allow to choose the center of a cluster
C ⊂ P from the whole metric space X , while for the discrete radius objective the center
must be contained in C itself. We will see that this has an impact on the price of hierarchy.
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For all three objectives the algorithms in [13, 8] compute an 8-approximate hierarchical
clustering in polynomial time. Until recently this was also the best known upper bound for
the price of hierarchy in the literature for hierarchical radius and diameter. For discrete
radius, Großwendt [17] shows an upper bound for the price of hierarchy of 4. The best
known lower bounds are 2, proven by Das and Kenyon-Mathieu [11] for diameter and by
Großwendt [17] for (discrete) radius. We improve the framework in [19] for radius and
diameter and show an upper bound on the price of hierarchy of 3 + 2

√
2 ≈ 5.83. The upper

bound of 3 + 2
√

2 for the radius was also recently proved by Bock [5] in independent work.
However our main contribution lies in the design of clustering instances to prove a lower
bound of 4 for discrete radius and 3 + 2

√
2 for radius and diameter.

Related work. Gonzales [14] presents a simple and elegant incremental algorithm for k-center.
The algorithm exhibits the following nice property: given a set P which has to be clustered,
it returns an ordering of the points, such that the first k points constitute the centers of the
k-center solution, and this solution is a 2-approximation for every 1 ≤ k ≤ |P|. However the
resulting clusterings are usually not hierarchically compatible. Dasgupta and Long [13] use
the ordering computed by Gonzales’ algorithm to compute a hierarchical clustering. The
authors present an 8-approximation for the objective functions (discrete) radius and diameter.
In an independent work Charikar et al. [8] also present an 8-approximation for the three
objectives which outputs the same clustering as the algorithm in [13] under some reasonable
conditions [11]. In a recent work, Mondal [20] gives a 6-approximation for hierarchical
(discrete) radius. In the full version of this paper [4] we present an instance where this
algorithm computes only a 7-approximation contradicting the claimed guarantee.

Plaxton [21] shows that a similar approach as in [13] yields a hierarchical clustering
with constant approximation guarantee for the k-median and k-means objectives. Later a
general framework for a variety of incremental and hierarchical problems was introduced by
Lin et al. [19]. Their framework can be applied to compute hierarchical clusterings for any
cost function which satisfies a certain nesting property, especially those of k-median and
k-means. This yields a 20.71α-approximation for k-median and a 576β-approximation for
k-means. Here α = 2.675 and β = 6.357 are the currently best approximation guarantees for
k-median [6] and k-means [2]. The algorithms presented in [8, 13, 19, 21] run in polynomial
time. Unless P=NP there is no polynomial-time α-approximation for α < 2 for hierarchical
(discrete) radius and diameter. For (discrete) radius this is an immediate consequence of
the reduction from dominating set presented by [18]. A similar reduction from clique cover
yields the statement for hierarchical diameter.

However even without time constraints it is not clear what approximation guarantee can
be achieved for hierarchical clustering. It is easy to find examples, where the approximation
guarantee of any hierarchical clustering for all three objectives is greater than one. Das
and Kenyon-Mathieu [11] and Großwendt [17] present instances for diameter and (discrete)
radius, where no hierarchical clustering has an approximation guarantee smaller than 2. On
the other hand Großwendt [17] proves an upper bound of 4 on the approximation guarantee
of hierarchical discrete radius by using the framework of Lin et al. [19]. In recent independent
work Bock [5] improved the bound for hierarchical radius to 3 + 2

√
2. While his approach is

inspired by Dasgupta and Long [13], the resulting algorithm is similar to the algorithm we
present in this paper as an improvement of [19].

Aside from the theoretical results, there also exist greedy heuristics, which are more
commonly used in applications. One very simple bottom up, also called agglomerative,
algorithm is the following: starting from the clustering where every point is separate, it

ESA 2022
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merges in every step the two clusters whose merge results in the smallest increase of the
cost function. For (discrete) radius and diameter this algorithm is known as complete
linkage and for the k-means cost this is Ward’s method [23]. Ackermann et al. [1] analyze
the approximation guarantee of complete linkage in the Euclidean space. They show an
approximation guarantee of O(log(k)) for all three objectives assuming the dimension of the
Euclidean space to be constant. This was later improved by Großwendt and Röglin [15] to
O(1). In arbitrary metric spaces complete linkage does not perform well. There Arutyunova
et al. [3] prove a lower bound of Ω(k) for all three objectives. For Ward’s method Großwendt
et al. [16] show an approximation guarantee of 2 under the strong assumption that the
optimal clusters are well separated.

Recently other cost functions for hierarchical clustering were proposed, which do not
compare to the optimal clustering on every level. Dasgupta [12] defines a new cost function
for similarity measures and presents an O(α log(n))-approximation for the respective problem.
This was later improved to O(α) independently by Charikar and Chatziafratis [7] and
Cohen-Addad et al. [9]. Here α is the approximation guarantee of sparsest cut. However
Cohen-Addad et al. [9] prove that every hierarchical clustering is an O(1)-approximation to
the corresponding cost function for dissimilarity measures when the dissimilarity measure is
a metric. A cost function more suitable for Euclidean spaces was developed by Wang and
Moseley [22]. They prove that a randomly generated hierarchical clustering performs poorly
for this cost function and show that bisecting k-means computes an O(1)-approximation.

Our results. We define the price of hierarchy ρcost with respect to an objective function
cost as the smallest number such that for every clustering instance there exists a hierarchical
clustering which is a ρcost-approximation with respect to cost. Observe that the results [8, 11,
13, 17] imply that the price of hierarchy for radius and diameter is between 2 and 8 and for
discrete radius between 2 and 4. We close these gaps and prove that the price of hierarchy for
radius and diameter is exactly 3+2

√
2 and for discrete radius exactly 4. Notice that this does

not imply the existence of polynomial-time algorithms with approximation guarantee ρcost.
Especially our algorithm which computes a 3 + 2

√
2-approximation for radius and diameter

does not run in polynomial time. This is also the case for the 3 + 2
√

2-approximation for
radius presented by Bock [5] in independent work. Our upper bound of 3 + 2

√
2 can be

achieved by a small improvement in the framework of Lin et al. [19]. However our most
technically demanding contribution is the design of a clustering instance for every ϵ > 0
such that every hierarchical clustering has approximation guarantee at least 3 + 2

√
2 − ϵ for

radius and diameter and 4 − ϵ for discrete radius. It requires a careful analysis of all possible
hierarchical clusterings, which is highly non-trivial for complex clustering instances.

2 Preliminaries

A clustering instance (X , P, d) consists of a metric space (X , d) and a finite subset P ⊂ X .
For a set (or cluster) C ⊂ P we denote by

diam(C) = max
p,q∈C

d(p, q)

the diameter of C. By rad(C, c) = maxp∈C d(c, p) we denote the radius of C with respect to
a center c ∈ X . This is the largest distance between c and a point in C. The radius of C is
defined as the smallest radius of C with respect to a center c ∈ X , i.e.,

rad(C) = min
c∈X

rad(C, c)
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while the discrete radius of C is defined as the smallest radius of C with respect to a center
c ∈ C, i.e.,

drad(C) = min
c∈C

rad(C, c).

A k-clustering of P is a partition of P into at most k non-empty subsets. We consider
three closely related clustering problems.

The k-diameter problem asks to minimize diam(Ck) = maxC∈Ck
diam(C), i.e., the max-

imum diameter of a k-clustering Ck. In the k-center problem we want to minimize the
maximum radius rad(Ck) = maxC∈Ck

rad(C), and in the discrete k-center problem we want
to minimize the maximum discrete radius drad(Ck) = maxC∈Ck

drad(C).

▶ Definition 1. Given an instance (X , P, d), let n = |P|. We call two clusterings C and C′ of
P with |C| ≥ |C′| hierarchically compatible if for all C ∈ C there exists C ′ ∈ C′ with C ⊂ C ′.
A hierarchical clustering of P is a sequence of clusterings H = (Hn, . . . , H1), such that
1. Hi is an i-clustering of P
2. for 1 < i ≤ n the two clusterings Hi−1 and Hi are hierarchically compatible.
For cost ∈ {diam, rad, drad} let Oi denote the optimal i-clustering with respect to cost. We
say that H is an α-approximation with respect to cost if for all i = 1, . . . , n we have

cost(Hi) ≤ α · cost(Oi).

Since optimal clusterings are generally not hierarchically compatible, there is usually no
hierarchical clustering with approximation guarantee α = 1. We have to accept that the
restriction on hierarchically compatible clusterings comes with an unavoidable increase in
the cost compared to an optimal solution.

▶ Definition 2. For cost ∈ {diam, rad, drad} the price of hierarchy ρcost ≥ 1 is defined as
follows.
1. For every instance (X , P, d), there exists a hierarchical clustering H of P that is a

ρcost-approximation with respect to cost.
2. For any α < ρcost there exists an instance (X , P, d), such that there is no hierarchical

clustering of P that is an α-approximation with respect to cost.
Thus ρcost is the smallest possible number such that for every clustering instance there is a
hierarchical clustering with approximation guarantee ρcost.

3 An Upper Bound on the Price of Hierarchy

It is already known that the framework of Lin et al. [19] yields an upper bound of 4 on the
price of hierarchy for the discrete radius [17]. This framework also yields upper bounds for
the price of hierarchy for radius and diameter, which are not tight, however. We present an
improved version that yields the following better upper bound on the price of hierarchy for
radius and diameter.

▶ Theorem 3. For cost ∈ {diam, rad} we have ρcost ≤ 3 + 2
√

2 ≈ 5.828.

For the details we refer to the full version [4].

ESA 2022



10:6 The Price of Hierarchical Clustering

4 A Lower Bound on the Price of Hierarchy

The most challenging contributions of this article are matching lower bounds on the price of
hierarchy for diameter, radius, and discrete radius.

▶ Theorem 4. For cost ∈ {diam, rad} we have ρcost ≥ 3 + 2
√

2 and for cost = drad we have
ρcost ≥ 4.

There is already existing work in this area by Das and Kenyon-Mathieu [11] for the
diameter and Großwendt [17] for the radius. Both show a lower bound of 2 for the respective
objective. To improve upon these results we have to construct much more complex instances
which differ significantly from those in [11, 17].

For every ϵ > 0 we will construct a clustering instance (X , P, d) such that for any
hierarchical clustering H = (H|P|, . . . , H1) of P there is 1 ≤ i ≤ |P| such that cost(Hi) ≥
α·cost(Oi), where Oi is an optimal i-clustering of P with respect to cost and α = (3+2

√
2−ϵ)

for cost ∈ {diam, rad} and α = 4 − ϵ for cost = drad.
The proof is divided in three parts. First we introduce the clustering instance (X , P, d)

and determine its optimal clusterings. In the second part we develop the notion of a bad
cluster. We prove that any hierarchical clustering contains such bad clusters and develop
a lower bound on their cost. In the third part we compare the lower bound to the cost of
optimal clusterings and prove Theorem 4.

4.1 Definition of the Clustering Instance

For n ∈ N we denote by [n] the set of numbers from 1 to n.
Let k ∈ N and Γ = k + 1. For 0 ≤ ℓ ≤ k we define point sets Qℓ and Pℓ recursively as

follows:
1. For ℓ = 0 let P0 = Q0 = [1] and denote by N0 the cardinality of P0.
2. For ℓ > 0 let Qℓ = [Γ · Nℓ−1]Nℓ−1 and Pℓ =

∏ℓ
i=0 Qi. Furthermore set Nℓ = |Pℓ|.

Moreover let ϕℓ : Pℓ →
[
Nℓ] be a bijection for 0 ≤ ℓ ≤ k.

We refer to a point X ∈ Pk as a matrix with k + 1 rows and Nℓ−1 entries in the ℓ-th row.
Thus we write

X = (x01 | . . . | xℓ1, . . . , xℓNℓ−1 | . . . | xk1, . . . , xkNk−1).

Let Xℓ = (xℓ1, . . . , xℓNℓ−1) ∈ Qℓ for 0 ≤ ℓ ≤ k. For a shorter representation we can replace
the ℓ-th row directly by Xℓ and for 0 ≤ i ≤ j ≤ k we can replace the i-th up to j-th row by
X[i:j] = (Xi | . . . | Xj).

Let X ∈ Pk and 1 ≤ ℓ ≤ k. Notice that X[0:ℓ−1] ∈ Pℓ−1 and let m = ϕℓ−1(X[0:ℓ−1]), we
define

AX
ℓ = {(X[0:ℓ−1] | xℓ1, . . . , xℓm−1, ⋆, xℓm+1, . . . , xℓNℓ−1 | X[ℓ+1:k]) | ⋆ ∈ [Γ · Nℓ−1]}.

Thus all coordinates of points in AX
ℓ are fixed and agree with those of X except one which is

variable. Here X[0:ℓ−1] serves as prefix which indicates through ϕℓ−1 which coordinate of Xℓ

can be changed.
We define Aℓ = {AX

ℓ | X ∈ Pk} as the set containing all subsets of this form. It is clear
that Aℓ is a partition of Pk and that it contains only sets of size Γ · Nℓ−1. Furthermore we
set A0 = {{X} | X ∈ Pk}.
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▶ Example 5. If we perform the first three steps of the construction, we get Q0 = [1], Q1 =
[Γ], Q2 = [Γ2]Γ and

P1 = {(1 | x11) | x11 ∈ [Γ]},

P2 = {(1 | x11 | x21, . . . , x2Γ) | x11 ∈ [Γ], x2i ∈ [Γ2] for 1 ≤ i ≤ Γ}.

Since ϕ0 is a map between two sets of cardinality one, this map is always unique. Now
suppose that we picked ϕ1 such that ϕ1((1 | x11)) = x11 for all (1 | x11) ∈ P1. Then the
partition A1 consists of the sets

{(1 | ⋆ | x21, . . . , x2Γ) | ⋆ ∈ [Γ]}

with x2i ∈ [Γ2] for all 1 ≤ i ≤ Γ. The partition A2 consists of the sets

{(1 | x11 | x21, . . . , x2x11−1, ⋆, x2x11+1, . . . , x2Γ) | ⋆ ∈ [Γ2]}

with x11 ∈ [Γ] and x2i ∈ [Γ2] for all 1 ≤ i ≤ Γ with i ̸= x11. ⌟

Now let G = (V, E, w) denote the weighted hyper-graph with V = Pk and E =
⋃k

i=1 Ai.
The weight of a hyper-edge e ∈ E is set to ℓ iff e ∈ Aℓ. For 0 ≤ ℓ ≤ k, the sub-graph
Gℓ = (Vℓ, Eℓ, wℓ) is given by Vℓ = Pk, Eℓ =

⋃ℓ
i=0 Ai and wℓ = w|Eℓ

.
We extend G to a hyper-graph H = (V ′, E′, w′) as follows. Let V ′ = V ∪

⋃k
i=0{vA | A ∈

Ai} and E′ = E ∪
⋃k

i=0{{v, vA} | A ∈ Ai, v ∈ A}. Thus H contains one vertex for every
A ∈

⋃k
i=0 Ai and this vertex is connected by edges to every vertex v ∈ A. For e ∈ E we set

w′(e) = w(e) and for e = {v, vA} for some A ∈ Aℓ and v ∈ A we set w′(e) = ℓ/2.
The clustering instance (X , P, d) is given by X = V ′, P = V , and d as the shortest path

metric on H . Observe that the extension of G to H is only necessary for the lower bound for
the radius but not for the diameter and the discrete radius. This is because the additional
points V ′ \ V do not belong to P and are hence irrelevant for the clustering instance for the
diameter and discrete radius. In the lower bound for the radius they will be used as centers,
however.

▶ Example 6. For k = 2 we obtain Γ = 3 and P = P2. Suppose that we again picked ϕ1
such that ϕ1((1 | x11)) = x11 for all (1 | x11) ∈ P1. By the above definition the shortest path
between the two points X = (1 | 1 | 1, 1, 1), Y = (1 | 1 | 2, 2, 1) ∈ P2 in G is of the form

X = (1 | 1 | 1, 1, 1), (1 | 1 | 2, 1, 1), (1 | 2 | 2, 1, 1), (1 | 2 | 2, 2, 1), (1 | 1 | 2, 2, 1) = Y.

Thus the distance is given by d(X, Y ) = 2 + 1 + 2 + 1 = 6. ⌟

▶ Lemma 7. Let p, q ∈ V , then d(p, q) is the length of a shortest path between p and q in G.

Proof. By definition d(p, q) is the length of a shortest path between p and q in H. Suppose
the shortest path contains a vertex vA for some A ∈

⋃k
i=0 Ai with v ∈ A as predecessor and

w ∈ A as ancestor. Since v and w are connected in H by the hyper-edge A we can delete vA

from the path and the length of the path does not change. The resulting path is also a path
in G, so d(p, q) is also the length of a shortest path between p and q in G. ◀

Next we state some structural properties of the graph G and the clustering instance
(X , P, d). To establish a lower bound on the approximation factor of a hierarchical clustering
we first focus on the optimal clusterings of the instance (X , P, d). One can already guess that
Aℓ is an optimal clustering with Nk

ΓNℓ−1
clusters with respect to cost ∈ {diam, rad, drad} and

we will prove this in this section. First we need the following statement about the connected
components of Gℓ.
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y`s → z`s y`s′ → z`s′
V Y
`−1

V Y ′

`−1 V Y ′′

`−1

V Z
`−1

Figure 1 Here we see the construction of the path. It corresponds to changing the coordinates of
Y successively until they match Z. We use an edge in Aℓ to change yls to zls, next we change yls′

to zls′ and proceed like this until we obtain Z. The respective edges are then connected to a path
from V X

ℓ−1 to V Z
ℓ−1.

▶ Lemma 8. The vertex set of every connected component in Gℓ has cardinality Nℓ and is
of the form V X

ℓ = {(X ′ | X) | X ′ ∈ Pℓ} for a given X = (Xℓ+1 | . . . | Xk) ∈
∏k

i=ℓ+1 Qi.

Proof. Notice that |V X
ℓ | = Nℓ and that {V X

ℓ | X ∈
∏k

i=ℓ+1 Qi} is a partition of V .
Furthermore since Eℓ =

⋃ℓ
i=0 Ai any edge e ∈ Eℓ is either completely contained in or

disjoint to V X
ℓ .

It is left to show that V X
ℓ is connected. We prove this via induction over ℓ. For ℓ = 0

this is clear because |V X
0 | = 1. For ℓ > 0 let Y = (Yℓ | X), Z = (Zℓ | X) ∈

∏k
i=ℓ Qi. By the

induction hypothesis we know that the sets V Y
ℓ−1, V Z

ℓ−1 are connected. To prove that V X
ℓ is

connected it is sufficient to show that there is a path from a point in V Y
ℓ−1 to a point in V Z

ℓ−1.
We show this claim by induction over the number m of coordinates in which Y and Z differ.
For m = 0 there is nothing to show. If m > 0 pick 1 ≤ s ≤ Nℓ−1 such that yℓs ̸= zℓs and let
P = ϕ−1

ℓ−1(s) ∈
∏ℓ−1

i=0 Qi. Consider the point (P | Yℓ | X) which is contained in V Y
ℓ−1 . This

point is also contained in the set

{(P | yℓ1, . . . , yℓs−1, ⋆, yℓs+1, . . . , yℓNℓ−1 | X) | ⋆ ∈ [Γ · Nℓ−1]} ∈ Eℓ.

Thus there is an edge in Gℓ connecting a point in V Y
ℓ−1 to a point in V Y ′

ℓ−1 with Y ′ =
(yℓ1, . . . , yℓs−1, zℓs, yℓs+1, . . . , yNℓ−1 | X). Now Y ′ and Z differ in m − 1 coordinates, thus
there is a path between two points in V Y ′

ℓ−1 and V Z
ℓ−1 by induction hypothesis. If we combine

this with the induction hypothesis that V Y ′

ℓ−1 is connected this yields the claim (see Figure 1
for an illustration). ◀

▶ Lemma 9. Any clustering of (X , P, d) with less than Nk

Nℓ−1
clusters costs at least ℓ if

cost ∈ {diam, drad} and ℓ/2 if cost = rad.

Proof. The shortest path in G between any two points which lie in different connected
components of Gℓ−1 must contain an edge of weight ≥ ℓ. Thus any set of points M ⊂ V

which is disconnected in Gℓ−1 has diameter ≥ ℓ. Remember that the discrete radius of M is
given by drad(M) = minc∈M maxp∈M d(p, c). For every possible choice of c ∈ M there exists
a point p ∈ M which is not in the same connected component of Gℓ−1 as c, thus d(c, p) ≥ ℓ

and therefore drad(M) ≥ ℓ and rad(M) ≥ diam(M)/2 ≥ ℓ/2.
We conclude that if cost ∈ {diam, drad} any cluster of cost smaller than ℓ is contained in

one of the sets V X
ℓ−1 for some X ∈

∏k
i=ℓ Qi by Lemma 8 and any clustering with less than∣∣ ∏k

i=ℓ Qi

∣∣ clusters costs at least ℓ. By the same argument if cost = rad any cluster of cost
smaller than ℓ/2 is contained in one of the sets V X

ℓ−1 for some X ∈
∏k

i=ℓ Qi by Lemma 8 and
any clustering with less than

∣∣ ∏k
i=ℓ Qi

∣∣ clusters costs at least ℓ/2. Since
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∣∣∣ k∏
i=ℓ

Qi

∣∣∣ =
∣∣ ∏k

i=0 Qi

∣∣∣∣ ∏ℓ−1
i=0 Qi

∣∣ = Nk

Nℓ−1

this proves the lemma. ◀

▶ Corollary 10. For 1 ≤ ℓ ≤ k and cost ∈ {diam, rad, drad} the clustering Aℓ is an optimal
Nk

ΓNℓ−1
-clustering for the instance (X , P, d). Furthermore diam(Aℓ) = drad(Aℓ) = ℓ and

rad(Aℓ) = ℓ/2.

4.2 Characterization of Hierarchical Clusterings
Let from now on H = (HNk

, . . . , H1) denote a hierarchical clustering of (X , P, d). We
introduce the notion of bad clusters in H Nk

ΓNℓ−1
which are clusters whose cost increases

repeatedly, as we will see later. In this section we prove the existence of such clusters in H

and we give a lower bound on their cost.

▶ Definition 11. We call all clusters C ∈ HNk
bad at time 0 and denote by Ker0(C) = C

the kernel of C at time 0 and set Bad(0) = HNk
.

For 1 ≤ ℓ ≤ k we say that a cluster C ∈ H Nk
ΓNℓ−1

is anchored at ℓ ≤ ℓ′ ≤ k if the set⋃
D∈Bad(ℓ−1) : D⊂C Kerℓ−1(D) is

1. connected in Gℓ′ ,
2. disconnected in Gℓ′−1.

We call C bad at time ℓ if C is anchored at some ℓ′ ≥ ℓ. We denote by Bad(ℓ) ⊂ H Nk
ΓNℓ−1

the
set of all bad clusters at time ℓ. If C is bad we define the kernel of C as the union of all
kernels of bad clusters at time ℓ − 1 contained in C, i.e.,

Kerℓ(C) =
⋃

D∈Bad(ℓ−1) : D⊂C

Kerℓ−1(D).

All clusters in H Nk
ΓNℓ−1

\Bad(ℓ) are called good.

The example in Figure 2 shows that a bad cluster at time ℓ can contain clusters which are
good at time ℓ − 1. However we are only interested in points that are contained exclusively
in bad clusters at any time t < ℓ. The set Kerℓ(C) contains exactly such points.

We will use two crucial properties to prove the final lower bound on the approximation
factor of any hierarchical clustering H of (X , P, d). We first observe that bad clusters exist
in H for every time-step 1 ≤ ℓ ≤ k and second that these clusters have a large cost compared
to the optimal clustering.

▶ Lemma 12. For all 0 ≤ ℓ ≤ k we have
∑

C∈Bad(ℓ) |Kerℓ(C)| ≥ Γ−ℓ
Γ Nk.

An immediate consequence of Lemma 12 is the existence of bad clusters at time ℓ for
any 0 ≤ ℓ ≤ k. To prove that their (discrete) radius and diameter is indeed large we need a
lower bound on the distance between two points X, Y ∈ P that lie in different connected
components of Gj−1 for some 1 ≤ j ≤ k.

Suppose that the points X and Y only differ in one coordinate, i.e., there is a 1 ≤ s ≤ Nj−1
such that xjs ̸= yjs, while X and Y agree in all other coordinates. There is only one edge
in Gj connecting V

X[j:k]
j−1 with V

Y[j:k]
j−1 . Let P = ϕ−1

j−1(s), then this edge connects the points
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Figure 2 An illustration of the evolution of good and bad clusters: In the example, we see five
clusters at time ℓ − 1. The clusters A, B, D, E are assumed to be bad, with their kernels depicted
in dark gray, while C is assumed to be a good cluster. At time ℓ, clusters A, B and C are merged.
The resulting cluster is bad because the kernels of A and B lie in different connected components of
Gℓ−1. Clusters D and E are still present at time ℓ, but now D is a good cluster since its kernel is
completely contained in V Z

ℓ−1, while E is still bad, since its kernel is disconnected in Gℓ−1.

xjs → yjs

V
X[j:k]

j−1 V
Y[j:k]

j−1

j

(P | X[j:k]) (P | Y[j:k])X Y

Figure 3 A shortest path between X and Y . It consists of two shortest paths inside the connected
components of Gj−1 and the unique edge of weight j between these components.

(P | X[j:k]) and (P | Y[j:k]). If we connect X to (P | X[j:k]) and (P | Y[j:k]) to Y via a
shortest path, this results in a path from X to Y , see Figure 3. We show that this path is
indeed a shortest path between X and Y and generalize this to arbitrary X and Y which
are disconnected in Gj−1.

▶ Lemma 13. Let X, Y ∈ P be two points and suppose there is 1 ≤ j ≤ k and 1 ≤ s ≤ Nj−1
such that xjs ̸= yjs. Let P = ϕ−1

j−1(s) ∈
∏j−1

i=0 Qi. Then

d(X, Y ) ≥ d
(
X, (P | X[j:k])

)
+ j + d

(
Y, (P | Y[j:k])

)
.

We now define the so called anchor set Ancℓ(C) of a bad cluster C at time ℓ. If C is
anchored at ℓ′ then Ancℓ(C) is the union of ℓ′ and the anchor set of some bad cluster D ⊂ C

at time ℓ − 1. If we choose D appropriately the sum of anchors in Ancℓ(C) is a lower bound
on the discrete radius of C, as we show later. It is clear that ℓ′ itself is a lower bound on
the discrete radius since Kerℓ(C) is disconnected in Gℓ′−1 by definition. If we additionally
assume that the discrete radius of D is large, e.g., lower bounded by the sum of anchors in
Ancℓ−1(D), then it is reasonable to assume that the discrete radius of C is lower bounded by
some function in ℓ′ and the sum of anchors in Ancℓ−1(D). First we give a formal definition
of Ancℓ(C) and how to choose D.

▶ Definition 14. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ which is anchored at ℓ′ ≥ ℓ.
If ℓ = 1 we define the anchor set of C as Anc1(C) = {ℓ′} and set prev(C) = {X} for some
X ∈ C.

For ℓ > 1 we distinguish two cases.
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Case 1: C contains a bad cluster D which is bad at time ℓ − 1 and anchored at ℓ′. We then
set Ancℓ(C) = Ancℓ−1(D) and prev(C) = D.

Case 2: C does not contain such a cluster. Then let D ⊂ C be a bad cluster at time ℓ − 1
minimizing∑

a∈Ancℓ−1(D)

a

among all clusters D′ ∈ Bad(ℓ − 1) with D′ ⊂ C. We set Ancℓ(C) = Ancℓ−1(D) ∪ {ℓ′}
and prev(C) = D.

Observe that in Case 2 of the previous definition, the bad cluster D must be anchored at
some ℓD < ℓ′.

With the help of Lemma 13 we are able to show how the discrete radius and diameter of
a bad cluster, depends on the sum of anchors.

▶ Lemma 15. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ anchored at ℓ′. Then for any
point Z ∈ P there is X ∈ Kerℓ(C) such that

d(Z, X) ≥
∑

a∈Ancℓ(C)

a.

▶ Lemma 16. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ anchored at ℓ′. Then there
are two points X, Y ∈ Kerℓ(C) such that

d(X, Y ) ≥ ℓ′ + 2
∑

a∈Ancℓ(C)\{ℓ′}

a.

4.3 Comparison to Optimal Clusterings
Our initial motivation was to construct an instance where any hierarchical clustering has a
high approximation ratio. If we consider an arbitrary time 1 ≤ ℓ ≤ k then the hierarchical
clustering H on (X , P, d) may be even optimal at time ℓ. Thus the bounds which we develop
in Lemma 15 and Lemma 16 on the discrete radius and diameter of bad clusters are useless
without linking the cost of a bad cluster at time ℓ to the cost of bad clusters at other time
steps. Therefore we construct a sequence of clusters C1 ⊂ C2 . . . ⊂ Ck where Ci is a bad
cluster at time i such that Anc1(C1) ⊂ Anc2(C2) ⊂ . . . ⊂ Anck(Ck). We then show with the
help of Lemma 15 and Lemma 16 that at least one of these clusters has a high discrete radius
and diameter compared to the optimal cost.

▶ Lemma 17. Let Ck be a bad cluster at time k. For 1 ≤ i ≤ k−1 we define Ci = prev(Ci+1).
For all 1 ≤ i ≤ k − 1 cluster Ci is bad at time i and one of the following two cases occurs:
1. Anci(Ci) = Anci+1(Ci+1),
2. Anci+1(Ci+1)\{ℓ} = Anci(Ci), where ℓ = max Anci+1(Ci+1).

Proof. For i = k cluster Ck is bad at time k by assumption. If Ci+1 is a bad cluster at time
i + 1 then Ci = prev(Ci+1) is a bad cluster at time i, by definition of prev.

Let Ci be anchored at ℓ′ ≥ i and Ci+1 be anchored at ℓ ≥ i + 1. Since Ci is a bad cluster
at time i with Ci ⊂ Ci+1 we have by definition of Keri+1(Ci+1) that Keri(Ci) ⊂ Keri+1(Ci+1)
and thus ℓ′ ≤ ℓ. If ℓ′ = ℓ we obtain by Definition 14, that Anci(Ci) = Anci+1(Ci+1), so the
lemma holds in this case.

If ℓ′ < ℓ we know by Definition 14 that Anci(Ci) = Anci+1(Ci+1)\{ℓ}. So the lemma also
holds in this case. ◀
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▶ Corollary 18. Let Ck be a bad cluster at time k. For 1 ≤ i ≤ k−1 we define Ci = prev(Ci+1).
Let Anck(Ck) = {ℓ1, . . . , ℓs} such that ℓt−1 < ℓt for all 2 ≤ t ≤ s and let ℓ0 = 0. Then for
any 1 ≤ t ≤ s and for any i with ℓt−1 < i ≤ ℓt, we have {ℓ1, . . . , ℓt} ⊂ Anci(Ci).

Proof. We prove this via induction over i, starting from i = k in decreasing order. There is
nothing to show for i = k. For i < k we distinguish two cases. If Anc(Ci) = Anci+1(Ci+1),
the lemma follows from the induction hypothesis.

Otherwise remember that Anci(Ci) ⊂ Anck(Ck) and ℓt−1 < i. Since max Anci(Ci) ≥ i we
obtain that max Anci(Ci) ∈ {ℓt, . . . , ℓs} and therefore ℓt ≤ max Anci(Ci).

By Lemma 17 we know that Anci(Ci) = Anci+1(Ci+1)\{ℓ}, where ℓ = max Anci+1(Ci+1).
Thus ℓt ≤ max Anci(Ci) < max Anci+1(Ci+1) = ℓ and by induction hypothesis we obtain

{ℓ1, . . . , ℓt} ⊂ Anci+1(Ci+1)\{ℓ} = Anci(Ci). ◀

Before we are able to prove the theorem we need some final lemma.

▶ Lemma 19. For every ϵ > 0 there exists k ∈ N such that for every s ∈ N any sequence of
s + 1 numbers (ℓ0, . . . , ℓs) ∈ Rs+1

≥0 with ℓ0 = 0 and ℓs = k satisfies the following.
1. There exists 1 ≤ t ≤ s such that for α1 = 4 − ϵ and ∆1 = 1 we have

ℓt + ∆1
∑t−1

i=0 ℓi

ℓt−1 + 1 > α1.

2. There exists 1 ≤ t ≤ s such that for α2 = 3 + 2
√

2 − ϵ and ∆2 = 2 we have

ℓt + ∆2
∑t−1

i=0 ℓi

ℓt−1 + 1 > α2.

▶ Theorem 4. For cost ∈ {diam, rad} we have ρcost ≥ 3 + 2
√

2 and for cost = drad we have
ρcost ≥ 4.

Proof. Let ϵ > 0 and k be the respective number from Lemma 19. We claim that the
approximation factor of any hierarchical clustering H = (HNk

, . . . , H1) on the instance
(X , P, d) is larger than 3 + 2

√
2 − ϵ if cost ∈ {diam, rad} and larger than 4 − ϵ if cost = drad.

First we use Lemma 12 to observe that there is a cluster Ck ∈ H Nk
ΓNk−1

that is bad at time

k. For 1 ≤ i ≤ k − 1 we define Ci = prev(Ci+1). Let Anck(Ck) = {ℓ1, . . . , ℓs} with ℓt−1 < ℓt

for 2 ≤ t ≤ s and let ℓ0 = 0. We know by Corollary 18, that for any 1 ≤ t ≤ s and for
i = ℓt−1 +1 we have {ℓ1, . . . , ℓt} ⊂ Anci(Ci). Let ℓ′ = max Anci(Ci), we obtain by Lemma 16
and Lemma 15 that

diam(Ci) ≥ ℓ′ + 2
∑

a∈Anci(Ci)\{ℓ′}

a ≥ ℓt + 2
t−1∑
u=1

ℓu,

rad(Ci) ≥ diam(Ci)
2 ≥

ℓt + 2
∑t−1

u=1 ℓu

2 ,

drad(Ci) ≥
∑

a∈Anci(Ci)

a ≥
t∑

u=1
ℓu.

Remember that by Corollary 10 Ai is an optimal Nk

ΓNi−1
-clustering with cost(Ai) = i if

cost ∈ {diam, drad} and cost(Ai) = i/2 if cost = rad. We obtain
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rad(Ci)
rad(Ai)

= 2rad(Ci)
2rad(Ai)

≥ diam(Ci)
diam(Ai)

≥
ℓt + 2

∑t−1
u=1 ℓu

ℓt−1 + 1
drad(Ci)
drad(Ai)

≥
∑t

u=1 ℓu

ℓt−1 + 1

which are lower bounds on the approximation factor of H .
We apply Lemma 19 on (ℓ0, . . . , ℓs) to observe that there is 1 ≤ t′ ≤ s such that

ℓt′ + 2
∑t′−1

u=1 ℓu

ℓt′−1 + 1 > 3 + 2
√

2 − ϵ

and an 1 ≤ t′′ ≤ s such that∑t′′

u=1 ℓu

ℓt′′−1 + 1 > 4 − ϵ.

This proves the theorem. ◀

5 Conclusions and Open Problems

We have proved tight bounds for the price of hierarchy with respect to the diameter and
(discrete) radius. It would be interesting to also obtain a better understanding of the price
of hierarchy for other important objective functions like k-median and k-means. The best
known upper bound is 16 for k-median [10] and 32 for k-means [17] but no non-trivial lower
bounds are known. Closing this gap also for these objectives is a challenging problem for
further research.

Another natural question is which approximation factors can be achieved by polynomial-
time algorithms. The algorithm we used in this article to prove the upper bounds is not a
polynomial-time algorithm because it assumes that for each level k an optimal k-clustering is
given. The approximation factors worsen if only approximately optimal clusterings are used
instead. It is known that 8-approximate hierarchical clusterings can be computed efficiently
with respect to the diameter and (discrete) radius [13]. It is not clear whether or not it is
NP-hard to obtain better hierarchical clusterings. The only NP-hardness results come from
the problems with given k. Since computing a (2 − ϵ)-approximation for k-clustering with
respect to the diameter and (discrete) radius is NP-hard, this is also true for the hierarchical
versions. However, this is obsolete due to our lower bound, which shows that in general there
does not even exist a (2 − ϵ)-approximate hierarchical clustering.
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Abstract
An obstacle representation of a graph G consists of a set of pairwise disjoint simply-connected closed
regions and a one-to-one mapping of the vertices of G to points such that two vertices are adjacent
in G if and only if the line segment connecting the two corresponding points does not intersect
any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle
representation of the graph in the plane such that all obstacles are simple polygons.

It is known that the obstacle number of each n-vertex graph is O(n log n) [Balko, Cibulka, and
Valtr, 2018] and that there are n-vertex graphs whose obstacle number is Ω(n/(log log n)2) [Dujmović
and Morin, 2015]. We improve this lower bound to Ω(n/ log log n) for simple polygons and to Ω(n)
for convex polygons. To obtain these stronger bounds, we improve known estimates on the number
of n-vertex graphs with bounded obstacle number, solving a conjecture by Dujmović and Morin. We
also show that if the drawing of some n-vertex graph is given as part of the input, then for some
drawings Ω(n2) obstacles are required to turn them into an obstacle representation of the graph.
Our bounds are asymptotically tight in several instances.

We complement these combinatorial bounds by two complexity results. First, we show that
computing the obstacle number of a graph G is fixed-parameter tractable in the vertex cover number
of G. Second, we show that, given a graph G and a simple polygon P , it is NP-hard to decide
whether G admits an obstacle representation using P as the only obstacle.
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1 Introduction

An obstacle is a simple polygon in the plane. For a set S of points in the plane and a set O of
obstacles, the visibility graph of S with respect to O is the graph with vertex set S where two
vertices s and t are adjacent if and only if the line segment st does not intersect any obstacle
in O. For convenience, we identify vertices with the points representing them and edges with
the corresponding line segments. An obstacle representation of a graph G consists of a set O
of pairwise disjoint obstacles and a bijective mapping between the vertex set of G and a
point set S ⊆ R2 \

⋃
O such that the visibility graph of S with respect to O is isomorphic

to G. We consider finite point sets and finite collections of obstacles. All obstacles are closed.
For simplicity, we consider point sets to be in general position, that is, no three points lie on
a common line.

Given a straight-line drawing D of a graph G, we define the obstacle number of D, obs(D),
to be the smallest number of obstacles that are needed in order to turn D into an obstacle
representation of G. Since every non-edge of G (that is, every pair of non-adjacent vertices)
must be blocked by an obstacle and no edge of G may intersect an obstacle, obs(D) is the
cardinality of the smallest set of faces of D whose union is intersected by every non-edge
of G. For a graph G, the obstacle number of G, obs(G), is the smallest value of obs(D),
where D ranges over all straight-line drawings of G. For a positive integer n, let obs(n) be
the maximum value of obs(G), where G is any n-vertex graph. The convex obstacle number
obsc(·) is defined analogously, except that here all obstacles are convex polygons.

For positive integers h and n, let f(h, n) be the number of graphs on n vertices that have
obstacle number at most h. Similarly, we denote the number of graphs on n vertices that
have convex obstacle number at most h by fc(h, n).

Alpert, Koch, and Laison [2] introduced the obstacle number and the convex obstacle
number. Using Ramsey theory, they proved that for every positive integer k, there is a
(huge) complete k-partite graph with convex obstacle number k. They also showed that
obs(n) ∈ Ω(

√
log n/ log log n). This lower bound was subsequently improved to Ω(n/ log n)

by Mukkamala, Pach, and Pálvölgyi [18] and to Ω(n/(log log n)2) by Dujmović and Morin [8],
who conjectured the following.

▶ Conjecture 1 ([8]). For all positive integers n and h, we have f(h, n) ∈ 2g(n)·o(h), where
g(n) ∈ O(n log2 n).

On the other hand, we trivially have obs(n) ≤ obsc(n) ≤
(

n
2
)

as one can block each
non-edge of an n-vertex graph with a single obstacle. Balko, Cibulka, and Valtr [4] improved
this upper bound to obs(n) ≤ obsc(n) ≤ n⌈log n⌉−n+1, refuting a conjecture by Mukkamala,
Pach, and Pálvölgyi [18] stating that obs(n) is around n2. For every graph G with chromatic
number χ, Balko, Cibulka, and Valtr [4] showed that obsc(G) ≤ (n − 1)(⌈log χ⌉ + 1), which
is in O(n) if the chromatic number is bounded by a constant.

Alpert, Koch, and Laison [2] differentiated between an outside obstacle, which lies in (or
simply is) the outer face of the visibility drawing, and inside obstacles, which lie in (or are)
inner faces of the drawing. They proved that every outerplanar graph has an outside-obstacle
representation, that is, a representation with a single outside obstacle. Later, Chaplick,
Lipp, Park, and Wolff [6] showed that the class of graphs that admit a representation with a
single inside obstacle is incomparable with the class of graphs that have an outside-obstacle
representation. They found the smallest graph with obstacle number 2; it has eight vertices
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and is co-bipartite. They also showed that the following sandwich version of the outside-
obstacle representation problem is NP-hard: Given two graphs G and H with V (G) = V (H)
and E(G) ⊆ E(H), is there a graph K with V (K) = V (G) and E(G) ⊆ E(K) ⊆ E(H) that
admits an outside-obstacle representation? Analogous hardness results hold with respect to
inside and general obstacles. Every partial 2-tree has an outside-obstacle representation [10].
For (partial) outerpaths, cactus graphs, and grids, it is possible to construct outside-obstacle
representations where the vertices are those of a regular polygon [10].

For planar graphs, Johnson and Sarıöz [16] investigated a variant of the problem where
the visibility graph G is required to be plane and a plane drawing D of G is given. They
showed that computing obs(D) is NP-hard (by reduction from planar vertex cover) and
that there is a solution-value-preserving reduction to maximum-degree-3 planar vertex cover.
For computing obs(D), this reduction yields a polynomial-time approximation scheme and
a fixed-parameter algorithm with respect to obs(D). Gimbel, de Mendez, and Valtr [13]
showed that, for some planar graphs, there is a large discrepancy between this planar setting
and the usual obstacle number.

A related problem deals with point visibility graphs, where the points are not only the
vertices of the graph but also the obstacles. Recognizing point visibility graphs is contained
in ∃R [12] and is ∃R-hard [5], and thus ∃R-complete.

Our Contribution. Our results span three areas. First, we improve existing bounds on the
(convex and general) obstacle number (see Section 2), on the functions f(n, h) and fc(n, h)
(see Section 3), and on the obstacle number of drawings (see Section 4). Second, we provide
an algorithmic result: computing the obstacle number of a given graph is fixed-parameter
tractable with respect to the vertex cover number of the graph (see Section 5). Third, we
show that, given a graph G and a simple polygon P , it is NP-hard to decide whether G

admits an obstacle representation using P as the only obstacle (see Section 6). The omitted
proofs are available in the full version of this paper [3]. We now describe our results in more
detail.

First, we prove the currently strongest lower bound on the obstacle number of n-vertex
graphs, improving the estimate of obs(n) ∈ Ω(n/(log log n)2) by Dujmović and Morin [8].

▶ Theorem 2. There is a constant β > 0 such that, for every n ∈ N, there exists a graph on
n vertices with obstacle number at least βn/ log log n, that is, obs(n) ∈ Ω(n/ log log n).

This lower bound is quite close to the currently best upper bound obs(n) ∈ O(n log n) by
Balko, Cibulka, and Valtr [4]. In fact, Alpert, Koch, and Laison [2] asked whether the obstacle
number of any graph with n vertices is bounded from above by a linear function of n. This is
supported by a result of Balko, Cibulka, and Valtr [4] who proved obs(G) ≤ obsc(G) ∈ O(n)
for every graph G with n vertices and with constant chromatic number. We remark that we
are not aware of any argument that would give a strengthening of Theorem 2 to graphs with
constant chromatic number.

Next, we show that a linear lower bound holds for convex obstacles.

▶ Theorem 3. There is a constant γ > 0 such that, for every n ∈ N, there exists a (bipartite)
graph on n vertices with convex obstacle number at least γn, that is, obsc(n) ∈ Ω(n).

The previously best known bound on the convex obstacle number was obsc(G) ∈
Ω(n/(log log n)2) [8]. Recall that the upper bound proved by Balko, Cibulka, and Valtr [4]
actually holds for the convex obstacle number as well and gives obsc(n) ∈ O(n log n). Fur-
thermore, the linear lower bound on obsc(n) from Theorem 3 works for n-vertex graphs with
bounded chromatic number, asymptotically matching the linear upper bound on the obstacle
number of such graphs proved by Balko, Cibulka, and Valtr [4]; see the remark in Section 2.
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The proofs of Theorems 2 and 3 are both based on counting arguments that use the upper
bounds on f(h, n) and fc(h, n). To obtain the stronger estimates on obs(n) and obsc(n),
we improve the currently best bounds f(h, n) ∈ 2O(hn log2 n) and fc(h, n) ∈ 2O(hn log n) by
Mukkamala, Pach, and Pálvölgyi [18] as follows.

▶ Theorem 4. For all positive integers h and n, we have f(h, n) ∈ 2O(hn log n).

▶ Theorem 5. For all positive integers h and n, we have fc(h, n) ∈ 2O(n(h+log n)).

The upper bound in Theorem 5 is asymptotically tight for h < n as Balko, Cibulka,
and Valtr [4] proved that for every pair of integers n and h satisfying 0 < h < n we
have fc(h, n) ∈ 2Ω(hn). Their result is stated for f(h, n), but it is proved using convex
obstacles only. This matches our bound for h ∈ Ω(log n). Moreover, they showed that
fc(1, n) ∈ 2Ω(n log n), which again matches the bound in Theorem 5.

Since trivially h ≤
(

n
2
)

≤ n2, we get log h ≤ 2 log n, and thus the bound in Theorem 4
can be rewritten as f(h, n) ≤ 2g(n)·(h/ log n) ≤ 2g(n)·(2h/ log h) ∈ 2g(n)·o(h), where g(n) ∈
O(n log2 n). Therefore, we get the following corollary, confirming Conjecture 1.

▶ Corollary 6. For all positive integers h and n, we have f(h, n) ∈ 2g(n)·(2h/ log h), where
g(n) ∈ O(n log2 n).

It is natural to ask about estimates on obstacle numbers of fixed drawings, that is,
considering the problem of estimating obs(D). The parameter obs(D) has been considered
in the literature; e.g., by Johnson and Sarıöz [16]. Here, we provide a quadratic lower bound
on maxD obs(D) where the maximum ranges over all drawings of graphs on n vertices.

▶ Theorem 7. There is a constant δ > 0 such that, for every n, there exists a graph G on n

vertices and a drawing D of G such that obs(D) ≥ δ · n2.

The bound from Theorem 7 is asymptotically tight as we trivially have obs(D) ≤
obsc(D) ≤

(
n
2
)

for every drawing D of an n-vertex graph. This also asymptotically settles
the problem of estimating the convex obstacle number of drawings.

Next, we turn our attention to algorithms for computing the obstacle number. We
establish fixed-parameter tractability for the problem when parameterized by the size of a
minimum vertex cover of the input graph G, called the vertex cover number of G.

▶ Theorem 8. Given a graph G and an integer h, the problem of recognizing whether G

admits an obstacle representation with h obstacles is fixed-parameter tractable parameterized
by the vertex cover number of G.

The proof of Theorem 8 is surprisingly non-trivial. On a high level, it uses Ramsey
techniques to identify, in a sufficiently large graph G, a set of vertices outside a minimum
vertex cover which not only have the same neighborhood, but also have certain geometric
properties in a hypothetical solution S. We then use a combination of topological and
combinatorial arguments to show that S can be adapted to an equivalent solution for a
graph G′ whose size is bounded by the vertex cover number of G – i.e., a kernel [7].

While the complexity of deciding whether a given graph has obstacle number 1 is still open,
the sandwich version of the problem [6] and the version for planar visibility drawings [16]
have been shown NP-hard. We conclude with a simple new NP-hardness result.

▶ Theorem 9. Given a graph G and a simple polygon P , it is NP-hard to decide whether G

admits an obstacle representation using P as (outside-) obstacle.
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2 Improved Lower Bounds on Obstacle Numbers

We start with the estimate obs(n) ∈ Ω(n/ log log n) from Theorem 2. The proof is based on
Theorem 4 (cf. Section 3) and the following result by Dujmović and Morin [8], which shows
that an upper bound for f(h, n) translates into a lower bound for obs(n).

▶ Theorem 10 ([8]). For every k ∈ N, let H(k) = max{h : f(h, k) ≤ 2k2/4}. Then, for any
constant c > 0, there exist n-vertex graphs with obstacle number at least Ω

(
nH(c log n)

c log n

)
.

Proof of Theorem 2. By Theorem 4, we have f(h, k) ∈ 2O(hk log k) for every positive integer
k and thus H(k) ∈ Ω(k/ log k). Plugging this estimate with k ∈ Ω(log n) into Theorem 10,
we get the lower bound obs(n) ∈ Ω(n/ log log n). ◀

It remains to prove the lower bound obsc(n) ∈ Ω(n) from Theorem 3.

Proof of Theorem 3. By Theorem 5, we have fc(h, n) ≤ 2βn(h+log n) for some constant
β > 0. Since the number of graphs with n vertices is 2(n

2), we see that if 2(n
2) > 2βn(h+log n),

then there is an n-vertex graph with convex obstacle number larger than h. The inequality(
n
2
)

> βn(h + log n) is satisfied for h <
(

n
2
)
/(βn) − log n ∈ Θ(n). Thus, obsc(n) ∈ Ω(n). ◀

▶ Remark. Observe that the proof of Theorem 3 also works if we restrict ourselves to bipartite
graphs, as the number of bipartite graphs on n vertices is at least 2n2/4. Thus, the convex
obstacle number of an n-vertex graph with constant chromatic number can be linear in n,
which asymptotically matches the linear upper bound proved by Balko, Cibulka, and Valtr [4].

3 On the Number of Graphs with Bounded Obstacle Number

In this section we outline the proofs for Theorems 4 and 5, which provide improved upper
bounds on the number of n-vertex graphs with (convex) obstacle number at most h.

3.1 Sketch of the Proof of Theorem 4
We prove that the number f(h, n) of n-vertex graphs with obstacle number at most h is
bounded from above by 2O(hn log n). We follow the approach of Mukkamala, Pach, and
Pálvölgyi [18] and encode the obstacle representations using point set order types for the
vertices of the graph and the obstacles. They used a bound of O(n log n) for the number of
vertices of a single obstacle. We show that this bound can be reduced to O(n). As a result,
the upper bound on f(h, n) improves by a factor of Θ(log n) in the exponent.

An obstacle representation (D, O) of a graph G is minimal if it uses the minimum
number |O| of obstacles and there is no obstacle representation (D′, O′) of G with |O| = |O′|
such that the total number of vertices in O′ is strictly smaller than in O. Consider a graph G

that admits an obstacle representation using at most h obstacles and an obstacle O ∈ O.
If O is a triangle, it contributes three vertices to our linear bound, which is fine. So suppose
that O has four or more vertices. We want to charge the “excess” vertices to some vertex
of G such that every vertex of G pays for at most a constant number of obstacle vertices.

A vertex v of a simple polygon P is convex if the internal angle of P at v is less than π;
otherwise v is a reflex vertex of P . Let v be a convex vertex of an obstacle O from O and let
e1 and e2 be the two edges of O adjacent to v. If the interior of the triangle that is spanned
by e1 and e2 does not contain any vertex of D or O, we call the vertex v blocking.
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(a) (b)

t
w

u′
O

u

v

γut,z,w

u

z
t w

γut,z,w

z

Figure 1 (a) An illustration of the polygonal chain γu
t,z,w used in the definition of responsibility.

(b) An example where u is responsible for t and w but not for v. The vertex u′ is responsible for v.

If v is blocking, then there is a non-edge e of G that crosses e1 and e2, since otherwise we
could reduce the number of obstacle vertices by removing the triangle spanned by e1 and e2
from O. If e has no other intersections with the obstacles, we say that e forces v. Then each
convex vertex of O is forced by at least one non-edge of G. Let uu′ be an edge that forces v

and let z be a crossing of uu′ with an edge of O incident to v. We say that u is responsible
for v unless there are non-edges of G incident to u and forcing two other vertices t and w

of O that span a polygonal chain γu
t,z,w formed by the part of the boundary of O between t

and w such that γu
t,z,w intersects the ray −→uz at some point different from z; see Fig. 1.

With this definition of responsibility, we can show that every blocking vertex v of O has
at least one vertex of G that is responsible for v and that each vertex of G is responsible for
at most two blocking vertices of O. It then follows from a simple double-counting argument
that O has at most 2n blocking vertices. A similar argument based on a different notion
of responsibility is used to show that O contains at most 2rO non-blocking convex vertices
where rO is the number of reflex vertices of O. Accounting for the reflex vertices is more
challenging, but we can show that each reflex vertex of an obstacle can be charged to a
vertex of G, so that there are no more than 2n + 5 reflex vertices overall. Let s denote the
total number of obstacle vertices, and let r =

∑
O∈O rO denote the total number of reflex

vertices. Then s ≤ r +
∑

O∈O(2rO + 2n) ≤ 3r + |O| · 2n ≤ (2h + 6)n + 15.
First, it is not difficult to show that we can restrict ourselves without loss of generality to

connected graphs. To bound the number g(h, n) of connected n-vertex graphs with obstacle
number at most h, we use a combinatorial description of point sets using order types. The
order type of a set P of points in the plane in general position is a mapping χ that assigns
χ(a, b, c) ∈ {+1, −1} to each ordered triple (a, b, c) of points from P , indicating whether
a, b, c make a left turn (+1) or a right turn (−1). The order type captures which pairs of
line segments spanned by P cross. Hence, for the purposes of plane straight-line embeddings
of graphs, two point sets with the same order type are equivalent. The following classical
result by Goodman and Pollack [14, 15] gives an estimate on the number of order types.

▶ Theorem 11 ([14, 15]). The number of order types on n labeled points in R2 is at most(
n
2

)4(1+o(1))n ∈ 2O(n log n).

We encode G by the order type of all n + s vertices. By Theorem 11, the number of such
order types is at most 2α(n+s) log (n+s) for some α > 0. Since s ≤ 2hn + 6n + 15 and h ≤

(
n
2
)
,

we obtain g(h, n) ∈ 2α(n+2hn+6n+15) log (n+2hn+6n+15) ⊆ 2O(hn log n).

3.2 Sketch of the Proof of Theorem 5
We show that the number of graphs on n vertices that have convex obstacle number at
most h is bounded from above by 2O(n(h+log n)). That is, we prove fc(h, n) ∈ 2O(n(h+log n)).
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To this end, we give an efficient encoding for an obstacle representation (D, O) of an
n-vertex graph G = (V, E) that uses at most h convex obstacles. The first part of the
encoding is formed by the order type of V . Then, it remains to encode the obstacles and their
interaction with the line segments between points from V . To do that, we use so-called radial
systems. The clockwise radial system R of V assigns to each vertex v ∈ V the clockwise
cyclic ordering R(v) of the n − 1 rays in D that start from v and pass through a vertex
from V \ {v}. The order type of V uniquely determines the radial system R of V . Essentially,
this also holds in the other direction: There are at most n−1 order types that are compatible
with a given radial system [1].

For a vertex v ∈ V and an obstacle O ∈ O, let IO(v) be the subsequence of rays in R(v)
that intersect O. We say that a subset I of R(v) is an interval if there are no four consecutive
elements a, b, c, d in the radial order R(v) such that a, c ∈ I and b, d /∈ I. Since O is connected,
each set IO(v) forms an interval in R(v), the blocking interval of the pair (v, O). By the
following lemma the blocking intervals suffice to determine which edges are blocked.

▶ Lemma 12. For two vertices u, v ∈ V , the pair {u, v} is a non-edge of G if and only if
there is an obstacle O ∈ O such that u ∈ IO(v) and v ∈ IO(u).

Thus it suffices to encode all blocking intervals. In the following we describe how to
obtain an encoding of size 2O(hn), which together with the order type of V yields the
claimed bound on fc(h, n). In order to describe our approach it is more convenient to
move to the dual setting, using the standard projective duality transformation that maps
a point p = (px, py) ∈ R2 to the line p∗ = {(x, y) ∈ R2 : y = pxx − py}, and that maps a
non-vertical line ℓ = {(x, y) ∈ R2 : y = mx + b} to the point ℓ∗ = (m, −b). This map is
an involution, that is, (p∗)∗ = p and (ℓ∗)∗ = ℓ. Moreover, it preserves incidences, that is,
p ∈ ℓ ⇐⇒ ℓ∗ ∈ p∗, and is order-preserving as a point p lies above ℓ ⇐⇒ ℓ∗ lies above p∗.

Consider the arrangement A of the n lines dual to the points in V . The combinatorial
structure of A, that is, the sequences of intersections with other lines along each line, can be
obtained from the radial system of V ; see [20]. (To identify the vertical direction and the
x-order of the vertices, we add a special point very high above all other points.) Let O ∈ O
be an obstacle. Define a map τ that assigns to each x ∈ R the upper tangent of slope x to O,
that is, the line τ(x) of slope x that is tangent to O and such that O lies below τ(x); see
Fig. 2. Now, consider the dual τ∗ of τ , defined by τ∗(x) = (τ(x))∗. Note that, by definition,
every line τ(x) passes through a vertex of the upper envelope O+ of the convex hull of O.
Consequently, each point τ∗(x) lies on a line that is dual to a vertex of O+. In other words,
τ∗ is a piece-wise linear function that is composed of line segments along the lines dual to
the vertices of O+. The order of these line segments from left to right corresponds to primal
tangents of increasing slope and, therefore, to the order of the corresponding vertices of O+

from right to left. As primal x-coordinates correspond to dual slopes, the slopes of the line
segments along τ∗ monotonically decrease from left to right, and so τ∗ is concave.

The primal line of a point in v∗ ∩ τ∗, for some v ∈ V , passes through v and is an upper
tangent to O. So such an intersection corresponds to an endpoint of the blocking interval
IO(v). In order to obtain all endpoints of the blocking intervals, we also consider the lower
tangents to O in an analogous manner. The corresponding function β∗ is convex and consists
of segments along lines dual to the vertices of the lower convex hull of O, from left to right.

It remains to compactly encode the intersections of τ∗ with A. To do so, we apply a
result by Knuth [17]; see also the description by Felsner and Valtr [9]. A set A′ of biinfinite
curves in R2 forms an arrangement of pseudolines if each pair of curves from A′ intersects in
a unique point, which corresponds to a proper, transversal crossing. A curve α is a pseudoline
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τ∗

O

`1

`2

`∗2

`∗1

β∗

A

V

Figure 2 An example of a vertex set V with its dual line arrangement A. Points and lines of the
same color are dual to each other. The curve τ∗ for the upper envelope O+ of the obstacle O is
denoted black and the curve β∗ for the lower envelope O− of the obstacle O is denoted gray.

τ∗τ∗

A A′

Figure 3 Splitting the n lines of A into two parts so that τ∗ is a pseudoline with respect to the
resulting arrangement A′ of at most 2n pseudolines.

with respect to A′ if α intersects each curve in A′ at most once. Let γ be a curve that
intersects each curve from A′ in a finite number of points. The cutpath of γ in A′ is the
sequence of intersections of γ with the pseudolines from A′ along γ.

▶ Theorem 13 ([17]). If α is a pseudoline with respect to an arrangement A′ of n pseudolines,
then there are at most O(3n) cutpaths of α in A′.

Using Theorem 13, we can now estimate the number of cutpaths of τ∗ with respect to A.

▶ Lemma 14. There are at most O(9n) cutpaths of τ∗ in A.

Proof. If τ∗ was a pseudoline with respect to A, then we were done by Theorem 13. However,
τ∗ is not a pseudoline with respect to A in general because a vertex v ∈ V can have two
tangents to O+, in which case τ∗ intersects v∗ twice. Therefore, we split the lines of A that
correspond to vertices vertically above O into two parts, by removing the part of each line in
a close neighborhood of its leftmost intersection with τ∗. Then both parts have only one
intersection with τ∗. Each of the two stubs can be extended by following τ∗ and crossing
whatever needs to be crossed so that both together with all other split curves, the remaining
lines from A, and τ∗ form a pseudoline arrangement A′ of at most 2n + 1 pseudolines; see
Fig. 3. Then, by Theorem 13, there are at most O(32n) = O(9n) cutpaths of τ∗ in A′. ◀

To summarize, we encode the obstacle representation (D, O) of G by first encoding the
order type of V . By Theorem 11, there are at most 2O(n log n) choices for the order type of
a set of n points. The order type of V determines the arrangement A of n lines that are
dual to the points from V . By Lemma 12, it suffices to encode the endpoints of the blocking



M. Balko, S. Chaplick, R. Ganian, S. Gupta, M. Hoffmann, P. Valtr, and A. Wolff 11:9

intervals IO(v) for every v ∈ V and O ∈ O, which are defined using the radial system of V

that is also determined by the order type of V . For each obstacle O ∈ O, the endpoints of
all the intervals IV (O) are determined by the cutpath of the curve τ∗ in A constructed for
the upper tangents of O and the analogous curve β∗ constructed for the lower tangents of O.
By Lemma 14, there are at most O(9n) cutpaths of τ∗ in A and the same estimate holds
for β∗. This gives at most O((9n)2) = O(81n) possible ways how to encode a single obstacle.
Altogether, we thus obtain fc(h, n) ∈ 2O(n log n) · O(81hn) ⊆ 2O(n log n+hn).

4 A Lower Bound on the Obstacle Number of Drawings

Here, we prove Theorem 7 by showing that there is a constant δ > 0 such that, for every n,
there exists a graph G on n vertices and a drawing D of G such that obs(D) ≥ δ · n2. The
proof is constructive. We first assume that n is even.

A set of points in the plane is a cup if all its points lie on the graph of a convex function.
Similarly, a set of points is a cap if all its points lie on the graph of a concave function. For
an integer k ≥ 3, a convex polygon P is k-cap free if no k vertices of P form a cap of size k.
Note that P is k-cap free if and only if it is bounded from above by at most k − 1 segments
(edges of P ). We use e(P ) to denote the leftmost edge bounding P from above; see Fig. 4(a).

(a) (b) (c)

a

b

c

e(P )

P F

p1 p2

p3

p4

p5

q1 q2

q3

q4

p1 p2

p3

p4

D′
5

D

Figure 4 (a) A 4-cap free polygon P that is not 3-cap free. (b) An example of the drawing D′
m

for m = 5. If the point pm is chosen sufficiently high above Cm−1, then each line segment pipm with
i < m is very close to the vertical line containing pi and thus all faces of D′

m will be 4-cap free. (c)
An example of a part of the drawing D with an example of a face F of D. The line segments that
are not in D′

m are drawn grey and the non-edge from X is dotted. For better readability of the
picture, edges piqj , i ̸= j, are not drawn.

Let m = n/2. First, we inductively construct a set Cm of m points p1, . . . , pm in the
plane that form a cup and have x-coordinates x(pi) = i. We let C1 = {(1, 0)} and C2 =
{(1, 0), (2, 0)}. Now, assume that we have already constructed a set Cm−1 = {p1, . . . , pm−1}
for some m ≥ 3. Let D′

m−1 be the drawing of the complete graph with vertices p1, . . . , pm−1.
We choose a sufficiently large number ym, and we let pm be the point (m, ym) and Cm =
Cm−1 ∪ {pm}. We also let D′

m be the drawing of the complete graph with vertices p1, . . . , pm.
The number ym is chosen large enough so that the following three conditions are satisfied:
1. for every i = 1, . . . , m − 1, every intersection point of two line segments spanned by points

of Cm−1 lies on the left side of the line pipm if and only if it lies to the left of the vertical
line x = i containing the point pi,
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2. if F is a 4-cap free face of D′
m that is not 3-cap free, then there is no point pi below the

(relative) interior of e(F ),
3. no crossing of two edges of D′

m lies on the vertical line containing some point pi.

Note that choosing the point pm is possible as choosing a sufficiently large y-coordinate ym

of pm ensures that for each i, all the intersections of the line segments pipm with line segments
of D′

m−1 lie very close to the vertical line x = i containing the point pi. Furthermore, the
construction implies that no line segment of D′

m is vertical and that no point is an interior
point of more than two line segments of D′

m. The drawing D′
m also satisfies the next claim.

▷ Claim 15. Each inner face of D′
m is a 4-cap free convex polygon.

For some (small) ε > 0 and every i ∈ {1, . . . , m}, where m = n/2, we let qi be the point
(i, yi − ε). That is, qi is a point slightly below pi. We choose ε sufficiently small so that
decreasing ε to any smaller positive real number does not change the combinatorial structure
of the intersections of the line segments spanned by the n points p1, . . . , pm, q1, . . . , qm. We
let D = Dn be the drawing with n vertices p1, . . . , pm, q1, . . . , qm containing all the line
segments between two vertices, except the line segments qiqj where i and j are both even.

We have to show that at least quadratically many obstacles are needed to block all non-
edges of G in D. Let X be the set of line segments qiqj where both i and j are even. Note that
each line segment from X corresponds to a non-edge of G and that |X| =

(⌊n/4⌋
2

)
≥ n2/40

for a sufficiently large n. The proof of the following claim is based on Claim 15.

▷ Claim 16. Every face of D is intersected by at most two line segments from X.

Now, let O be a set of obstacles such that D and O form an obstacle representation of G.
Then each non-edge of G corresponds to a line segment from X that is intersected by some
obstacle from O. Each obstacle O from O lies in some face FO of D as it cannot intersect an
edge of G. Thus, O can intersect only line segments from X that intersect FO. It follows
from Claim 16 that each obstacle from O intersects at most two line segments from X. Since
|X| ≥ n2/40, we obtain |O| ≥ |X|/2 ≥ n2/80. Consequently, obs(D) ≥ n2/80, which finishes
the proof for n even. If n is odd, we use the above construction for n − 1 and add an isolated
vertex to it.

5 Obstacle Number is FPT Parameterized by Vertex Cover Number

As our first step towards a fixed-parameter algorithm, we need to establish a bound on the
obstacle number of every graph with bounded vertex cover number.

▶ Lemma 17. Let G be a graph with vertex cover number k. Then G admits an obstacle
representation with 1 +

(
k
2
)

+ k · 2k obstacles.

Proof Sketch. We construct an obstacle representation for G as follows. We place the
vertices in the vertex cover X somewhere in a central area, and dedicate at most

(
k
2
)

obstacles
to handle the visibilities between these. Next, we partition the vertices outside of X into
at most 2k equivalence classes called types based on the following equivalence: two vertices
a, b ̸∈ X have the same type if and only if they have the same neighborhood. We place these
vertices on a line ℓ sufficiently far from the other vertices, and group them by type. We then
use a single obstacle to block the pairwise visibilities of vertices on ℓ, and at most k · 2k

obstacles to block visibilities between each type and each vertex in X where necessary. ◀

Our proof will also rely on a Ramsey-type argument based on the following formulation
of Ramsey’s theorem [19]:
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▶ Theorem 18 ([19]). There exists a function Ram : N2 → N with the following property.
For each pair of integers q, s and each clique H of size at least Ram(q, s) such that each edge
has a single label (color) out of a set of q possible labels, it holds that H must contain a
subclique K of size at least s such that every edge in K has the same label.

We can now proceed towards a proof of Theorem 8, which establishes the fixed-parameter
tractability of computing the obstacle number with respect to the vertex cover number.

Proof Sketch for Theorem 8. Let X be a computed vertex cover of size at most k in the
input graph G. If h > 1 +

(
k
2
)

+ k · 2k we immediately output “Yes” by Lemma 17, and so
for the rest of the proof, we proceed assuming that h ≤ 1 +

(
k
2
)

+ k · 2k. We also note that if
G contains only types of size bounded by a fixed, sufficiently large function of k (which we
will hereinafter denote typesize(k)), then the instance can be solved by brute force. Hence,
we assume that G contains at least one type T with more than typesize(k) vertices.

Our proof strategy will be to show that under these conditions, G is a Yes-instance (i.e.,
admits a representation with at most h obstacles) if and only if the graph G′′ obtained
by deleting an arbitrary vertex from T is a Yes-instance; in other words, that we may
prune a vertex from T . This claim would immediately yield fixed-parameter tractability
of the problem: one could iterate the procedure of computing a vertex cover for the input
graph, checking whether the types are sufficiently large, and based on that check one either
brute-forces the problem or restarts on a graph that contains one fewer vertex (notice that
the number of restarts is upper-bounded by n).

As a first step, let us consider a hypothetical “optimal” solution S for (G, h), i.e., S is an
obstacle representation of G with the minimum number of obstacles. It is easy to observe
that simply using the same placement of obstacles for the graph G′′ obtained by removing
a single vertex from T yields a desired solution S′ for (G′′, h). It is the converse direction
that is the difficult one: for that, it suffices to establish the equivalent claim that the graph
G′ obtained by adding a vertex to T admits an obstacle representation S′ with the same
number of obstacles as S.

Given S, we will now consider an auxiliary edge-labeled clique H whose vertices are
precisely the vertices in T , which can be assumed to be ordered by ≺ in an arbitrary but
fixed way. For each pair of vertices a, b ∈ T where a ≺ b, the a-b edge in H is labeled by the
first obstacle encountered when traversing the line segment ab. Crucially, by Theorem 18
and the selection of typesize(k) ≥ Ram(h, 10k3 · 2k), H must contain a subclique K of size
at least cliquesize(k) = 10k3 · 2k such that each edge in K has the same label, say p.

Intuitively, our aim in the rest of the proof will be to show that the obstacle p can be
“safely” extended towards some vertex z in K, where by safely we mean that it neither
intersects another obstacle nor blocks the visibility of an edge; this extension will either
happen directly from S, or from a slightly altered version of S. Once we create such an
extension, it will be rather straightforward to show that p can be shaped into a tiny “comb-
like” slot for a new vertex z′ next to z which will have the same visibilities (and hence
neighborhood) as z, which means we have constructed a solution S′ for G′ as desired.

To this end, we show that almost all vertices in K must be placed in a system of crevices
formed by p (these can be imagined as “openings” in p, each containing a specific crevice
vertex from K; see Fig. 5). By a sequence of claims, we can then restrict our attention to a
still sufficiently large subsystem of these crevices which are good, meaning that they contain
no obstacle other than p, no vertex from the vertex cover, and where visibilities between
pairs of vertices outside the crevice would not be obstructed by extending p towards the
crevice vertex. However, other vertices may still be present in good crevices, and so such an
extension could still obstruct the visibility of vertices inside the crevice.
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vi

vi+1

vi−1

p

x

Figure 5 The crevices of obstacle p are the light blue regions containing the vertices
. . . , vi−1, vi, vi+1, . . . of K.

To deal with this final issue and extend p to a crevice vertex as required to conclude the
proof, we will seek out a crevice which is not just good but also perfect, meaning that it
contains no vertex other than the crevice vertex. While S itself need not contain a perfect
crevice, in the last part of the proof we use a swapping argument on S to argue the existence
of an equivalent solution which is guaranteed to contain one. ◀

6 NP-Hardness of Deciding Whether a Given Obstacle is Enough

In this section, we investigate the complexity of the obstacle representation problem for the
case that a single (outside) obstacle is given.

▶ Theorem 9. Given a graph G and a simple polygon P , it is NP-hard to decide whether G

admits an obstacle representation using P as (outside-) obstacle.

Proof Sketch. We reduce from 3-Partition, which is NP-hard [11]. An instance of 3-
Partition is a multiset S of 3m positive integers a1, . . . , a3m, and the question is whether S

can be partitioned into m groups of cardinality 3 such that the numbers in each group
sum up to the same value B, which is (

∑3m
i=1 ai)/m. The problem remains NP-hard if B is

polynomial in m and if, for each i ∈ [3m], it holds that ai ∈ (B/4, B/2).
Given a multiset S, we construct a graph G and a simple polygon P with the property

that the vertices of G can be placed in P such that their visibility graph with respect to P is
isomorphic to G if and only if S is a yes-instance of 3-Partition.

Let G be a clique with vertices v1, . . . , v3m where, for i ∈ [3m], clique vertex vi is connected
to ai leaves ℓi,1, . . . , ℓi,ai

. The polygon P (see Fig. 6) is an orthogonal polygon with m groups
of B bays (red in Fig. 6) that are separated from each other by corridors (of height B/4 and
width 4B; light blue in Fig. 6). Each bay is a unit square; any two consecutive bays are one
unit apart. The height of P (including the bays) is B/2 + 1. Note that the sizes of G and P

are polynomial in m. ◀

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
. . .

. . .

v1 v2 v4 v5 v6

a1 leaves a2 a3
︸ ︷︷ ︸

a4
︸ ︷︷ ︸

a6
︸ ︷︷ ︸

a5

. . .

. . .
P

G
K3m

︸ ︷︷ ︸ ︸ ︷︷ ︸
B bays B bays

v3

2B − 1 2B − 14B

B/4
B/2

Figure 6 Idea of the reduction from 3-Partition. The drawing is not to scale.
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Abstract
Repetitiveness measures reveal profound characteristics of datasets, and give rise to compressed data
structures and algorithms working in compressed space. Alas, the computation of some of these
measures is NP-hard, and straight-forward computation is infeasible for datasets of even small sizes.
Three such measures are the smallest size of a string attractor, the smallest size of a bidirectional
macro scheme, and the smallest size of a straight-line program. While a vast variety of imple-
mentations for heuristically computing approximations exist, exact computation of these measures
has received little to no attention. In this paper, we present MAX-SAT formulations that provide
the first non-trivial implementations for exact computation of smallest string attractors, smallest
bidirectional macro schemes, and smallest straight-line programs. Computational experiments show
that our implementations work for texts of length up to a few hundred for straight-line programs
and bidirectional macro schemes, and texts even over a million for string attractors.
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1 Introduction

Text compression is a fundamental topic in computer science with countless practical ap-
plications. Dictionary compression is a type of text compression where the original input
is transformed into a sequence of elements taken from a dictionary, where the dictionary
is usually constructed in some way from the input. Due to the advent of highly repetitive
datasets such as multiple genome sequences from the same species or versioned document col-
lections (e.g., Wikipedia, GitHub), dictionary compression methods have recently (re)gained
massive attention since they can better capture more widespread repetitions in such data
compared to statistical compression methods [30], and further allow space-efficient full-text
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indices to be built [31]. Some well known methods that fall in this category are Lempel–Ziv
76/77 factorization based methods [20,23,43], grammar-based compression such as LZ78 [44],
Re-Pair [22], SEQUITUR [34], LCA [38], LZD [11], and methods involving bidirectional
referencing, such as the run-length encoded Burrows–Wheeler transform (RLBWT) [25], and
more recently, lcpcomp [10], plcpcomp [9], lexcomp [32], a method by Russo et al. [36], and
LZRR [35].

A vital issue in evaluating and comparing these various methods is to understand how well
they can compress a given input compared to the “optimum”. While the theoretically smallest
representation (aka Kolmogorov complexity) is incomputable [24], Kempa and Prezza [16]
regarded the output sizes of these methods as repetitiveness measures and characterized
them with respect to the new notion of string attractors. Namely, they showed that for any
input text, the size of the smallest string attractor is a lower bound for the output sizes of
all known dictionary compressors. Since then, relations between these various repetitiveness
measures have been heavily investigated [2, 4, 14,17,19,30,32].

In this paper, we consider three such repetitiveness measures: the size γ of the smallest
string attractor, the size g of the smallest straight-line program (SLP) [13], and the size b of
the smallest bidirectional macro scheme (BMS) [42], all of which are known to be NP-hard
to compute [16, 39, 42]. Thus, any efficient dictionary compression algorithm can (most
likely) merely compute approximations of γ, b, or g. Although for any text, the relation
δ ≤ γ ≤ b ≤ z ≤ g is known, where δ [19] and z [23] are repetitiveness measures known to
be computable in linear time (cf. [7, Lemma 5.7] for δ and [8] for z), the gap between the
measures can be quite large; string families giving a logarithmic factor gap are known for
each pair of measures [2, 30]. Since the sizes of some recent data structures such as [7,33],
depend on these repetitiveness measures, their exact sizes are crucial knowledge.

While there exist a vast variety of approximation algorithms for computing smallest BMSs
and grammars as mentioned above, development of exact algorithms have received very
little to almost no attention. For string attractors, the results of Kempa et al. [15] imply a
straightforward O(n2n) time algorithm. For the smallest grammar, Casel et al. [6, Theorem 13]
show an O∗(3n)1 time algorithm. However, we are unaware of any non-trivial implementations
or empirical evaluations for computing these measures. In fact, the only publicly available
implementation we could find was a straight-forward Python script to compute γ by Michael
S. Branicky [12].

The main contribution of this paper is to present MAX-SAT formulations [3] for com-
puting the smallest string attractor, BMS, and SLP, thereby providing the first non-trivial
implementation for exact computation of the measures γ, b, and g. The rationale for this
approach is that although MAX-SAT is NP-hard, there are highly optimized solvers whose
performance has made incredible progress in recent years. These solvers can cope with very
large instances and can be leveraged, provided that suitable encodings can be designed [18].
While straight-forward (non-MAX-SAT) implementations become infeasible even for very
small text lengths (e.g. 40), computational experiments show that our implementations work
for texts of length up to a few hundred for b, g, and even more than 1 million for γ. Since our
addressed problems are all NP-hard, there is perhaps little hope for our implementations to
obtain exact solutions for larger but practically interesting datasets. Nevertheless, we believe
they can make significant impact as a tool for analyzing these repetitiveness measures. We
stress that our solutions not only report the sizes γ, b and g, but also give valid instances
having exactly these sizes (e.g., an SLP that has size g). It may therefore be possible to

1 The abstract of [6] mentions O(3n) while the statement of the theorem is O∗(3n).
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improve compression heuristics by studying some of these optimal instances on smaller
input strings. As an example application, we analyzed the recently introduced notion of
sensitivity [1] of γ by conducting an exhaustive computation of γ for strings up to certain
lengths. From these computations, we were able to discover a family of strings that exhibit a
multiplicative sensitivity of 2.5, improving the previously known lower bound of 2.0 [1].

Related Work
The exact values for γ, b, and g have been characterized only for a few families of strings. For
standard Sturmian words, γ = 2 [26] and b = O(1) since the RLBWT has constant size [27]
and can be regarded as a BMS. For the nth Thue–Morse word, γ = 4 for n ≥ 4 [21], and
b = n + 2 for n ≥ 2 [2]. For the nth Fibonacci word, g = n [28]. The smallest attractor sizes
of automatic sequences have also been studied [40].

2 Preliminaries

Let Σ be a set of σ symbols called the alphabet, and let Σ∗ denote the set of strings over Σ.
Given a string T , if T = xyz for strings x, y, z, then x, y, z are respectively called a prefix,
substring, and suffix of T . They are called proper if they are not equal to T . The length of T is
denoted by |T |. For any i ∈ [1, |T |], let T [i] denote the ith symbol of T , i.e., T = T [1] · · · T [|T |].
For any 1 ≤ i ≤ j ≤ |T |, let T [i..j] = T [i] · · · T [j] and T [i..j) = T [i] · · · T [j − 1].

For the rest of this paper, we fix a string T , and let n := |T | denote its length. Further,
we assume that each symbol of Σ appears in T . Let occ(P ) = {i | T [i..i + |P | − 1] = P, 1 ≤
i ≤ n − |P | + 1} be the set of starting positions of all occurrences of a substring P in T , and
let cover(P ) = {i + k − 1 | i ∈ occ(P ), 1 ≤ k ≤ |P |} be the set of all text positions covered
by all occurrences of P in T .

A set of positions Γ ⊆ [1, n] is a string attractor [16] of T if every substring P of T has
an occurrence in T that contains an element of Γ, that is, Γ ∩ cover(P ) ̸= ∅. We denote the
size of the smallest string attractor of T by γ. For example, [1, n] is a trivial string attractor.
{1, 2, 3} is a (smallest) string attractor of T = banana. (See also Figure 2)

A straight-line program (SLP) [13] is a grammar in Chomsky normal form whose language
consists solely of T . In other words, (1) each production rule is of the form X → XℓXr or
X → c, where Xℓ, Xr are non-terminals and c ∈ Σ, (2) there is exactly one such production
rule for any given non-terminal symbol X, and (3) there is a start symbol whose iterative
expansion finally leads to T . The size of an SLP is the number of its production rules, or
equivalently (assuming that each non-terminal is used at least once), the number of distinct
non-terminals. We denote the size of the smallest SLP that produces T by g. For example, the
set of production rules {X9 → X6X8, X8 → X7X7, X7 → X1X3, X6 → X4X5, X5 → X3X3,
X4 → X3X1, X3 → X1X2, X2 → b, X1 → a} is an SLP of size 9 for T = abaababaabaab.
See also Figure 3.

A bidirectional macro scheme (BMS) [42] of size m representing T , is a factorization
T = F1, · · · , Fm, where each factor (or phrase) is a single symbol (which we call a ground
phrase), or, is encoded as a pair of integers (i, j) indicating that it references (i.e., is a copy of)
substring T [i..j]. A BMS is said to be valid, if T can be reconstructed from the representation
of such a factorization, i.e., the implied references of each symbol in a non-ground phrase is
acyclic, and eventually leads to a ground phrase. We denote the size of the smallest valid
BMS that represents T by b. Figure 1 shows a valid BMS (7, 8), (4, 5), a, b, (5, 7) representing
the string abaaababa. For example, the a at position 9 references position 7, which in turn
references position 5, a ground phrase.
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Figure 1 A bidirectional macro scheme (BMS) of T = abaaababa. The figure depicts the BMS
(7, 8), (4, 5), a, b, (5, 7). The reference of each non-ground phrase is visualized by an arrow. The
phrase references imply a reference for each symbol in non-ground phrases.

The satisfiability (SAT) problem asks for an assignment of variables that satisfies a given
Boolean formula [3, 18]. The input formula is usually given in conjunctive normal form
(CNF), which consists of a conjunction of clauses, and each clause is a disjunction of literals.
A literal is a Boolean variable or its negation. In this form, the given formula is satisfied if
and only if all the clauses (which we will sometimes call constraints) are satisfied. The size
of a CNF is the sum of the literals in all clauses.

A maximum satisfiability (MAX-SAT) problem is an extension of SAT, where two types
of clauses, hard and soft, are considered [3]. A solution to a MAX-SAT instance is a truth
assignment of the variables such that the number of satisfied soft clauses is maximized under
the restriction that all hard clauses must be satisfied.

We will use 1 to denote true, and 0 to denote false. Furthermore, for a set {vi}k
i=1 of

Boolean variables, cardinality constraints of the form
∑k

i=1 vi ≤ 1 are known as atmost-one
constraints. Although a straightforward encoding has size Θ(k2), O(k) size encodings are
known [41]. Constraints of the form

∑k
i=1 vi = 1 can be encoded using a combination of an

atmost-one constraint and a simple disjunction of all the variables (i.e., atleast-one) and thus
can also be encoded in O(k) size.

3 Reductions to MAX-SAT

In what follows, we present our encodings for the aforementioned problems. Common to
all encodings is the idea that we have a Boolean variable pi for each text position i ∈ [1, n],
which counts, when set to true, an element of a string attractor, a non-terminal (actually,
to be precise, a factor in a grammar parsing) of an SLP, or a phrase of a BMS. Since our
goal is to have as few pi’s set to true as possible, our soft clauses have the form Di = ¬pi for
i ∈ [1, n]. Consequently, all our encodings have the same number of soft clauses, and only
differ in how the hard clauses are defined.

3.1 Smallest String Attractor as MAX-SAT
We start with a simple encoding based on the definition of string attractors. Subsequently,
we utilize an observation similar to but slightly more generalized than that made in [15], in
order to reduce the size of hard clauses.

3.1.1 Simple Encoding
Our idea is to design a CNF so that a MAX-SAT solution will encode a string attractor Γ,
where pi = 1 if and only if position i is an element of Γ (i.e., Γ = {i | 1 ≤ i ≤ n, pi = 1}).
Let ST denote the set of all non-empty substrings of T , i.e., ST = {T [i..j] | 1 ≤ i ≤ j ≤ n}.
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For each substring S of ST , we define a hard clause CS =
∨

i∈cover(S) pi. (See Figure 2 for
an example.) By the definition of cover(S), the set Γ corresponding to any truth assignment
for pi will be a string attractor if and only if all hard clauses CS are satisfied. Since our soft
clauses have the form Di = ¬pi for i ∈ [1, n], the soft clauses ensure that the MAX-SAT
solution minimizes the number of pi’s being true. Thus, we can obtain the smallest string
attractor by solving the MAX-SAT on CS and Di.

Each hard clause CS has size |cover(S)| = O(n). Since there are O(n2) substrings, the
number of hard clauses is O(n2). Hence, the total size of the CNF is O(n3). In the next
subsection, we reduce the size to O(n2).

1 2 3 4 5 6

b a n a n a

● ● ●
●・● ・
● ・● ・ ・
● ・ ・ ・
● ・ ・ ・ ・

●
● ・
● ・ ・
● ・ ・ ・
● ・ ・ ・ ・
● ・ ・ ・ ・ ・

● ●
● ・● ・
● ・ ・
● ・ ・ ・

T =
cover(a) =

cover(an) =
cover(ana) =

cover(anan) =
cover(anana) =

cover(b) =
cover(ba) =

cover(ban) =
cover(bana) =

cover(banan) =
cover(banana) =

cover(n) =
cover(na) =

cover(nan) =
cover(nana) =

Figure 2 String T = banana and the positions that each distinct substring of T covers. We list
all distinct substrings of T on the left hand side, and show on the right hand side their covers. A
dot at position k in the row for substring S indicates that k is included in cover(S) (i.e. is covered
by S), and a large dot indicates k ∈ occ(S). Underlined substrings are minimal substrings of T . For
example, cover(an) = {2, 3, 4, 5}. The clause defined for an in our encoding is Can = p2 ∨ p3 ∨ p4 ∨ p5.

3.1.2 Reducing CNF Clauses via Minimal Substrings

We can reduce the number of hard clauses in our CNF by considering only members of ST

that are minimal substrings2. A substring S of string T is called a minimal substring of T

if all proper substrings of S occur more often than S in T (i.e., |occ(S[i..j])| > |occ(S)| for
every proper substring S[i..j] of S). By the definition of minimal substrings, the following
lemma holds.

▶ Lemma 1. For every non-minimal substring S of T , there is a minimal substring Smin of
S with cover(Smin) ⊆ cover(S).

2 Kempa et al. [15] use a similar idea when reducing the problem to set cover. Their formulation can
be regarded as considering only right-minimal substrings (i.e., |occ(S[1..|S| − 1])| > |occ(S)|), while we
consider a potentially smaller subset requiring both right-minimality and left-minimality. For texts in
the Calgary corpus, we observed that the difference between minimal and right-minimal substrings can
result in a difference as large as 50 times in their total lengths (progp and trans), i.e., the total size of
hard clauses.

ESA 2022



12:6 Computing NP-Hard Repetitiveness Measures via MAX-SAT

Proof. Because S is not minimal, it has substrings that have the same number of occurrences
as S. Let Smin = S[e..e+|Smin|−1] be one of these substrings that is minimal, for some e. Then
by definition, for each occurrence imin ∈ occ(Smin) of Smin, there exists an occurrence i ∈ occ(S)
of S such that i = imin − e + 1. {imin, imin + 1, . . . , imin + |Smin| − 1} ⊆ {i, i + 1, . . . , i + |S| − 1},
and hence, cover(Smin) ⊆ cover(S). ◀

In the example T = banana, |occ(nan)| < |occ(na)|, |occ(an)|, |occ(a)|, |occ(n)|, and thus,
substring nan is a minimal substring of T . Furthermore, nan is a substring of nana, and
|occ(nana)| = |occ(nan)|. Thus, cover(nan) ⊆ cover(nana) by Lemma 1. (See also Figure 2)

Lemma 1 ensures that if an assignment of variables satisfies the hard clauses CS for
all minimal substrings S of T , then the assignment satisfies the hard clauses CS for all
substrings S of T . With this observation we can conclude that we can omit the hard clauses
for all substrings S of T that are not minimal.

The number m of minimal substrings is O(n) because minimal substrings correspond to
minimal strings, defined by Blumer et al. [5] based on an equivalence relation over substrings
of T , and their number is known to be O(n) (Lemma 3 in [29]). Hence, the total size of the
CNF is reduced to O(mn) ⊆ O(n2).

In particular, the size of the CNF is o(n2) if m = o(n). We can show that there exists
a family of strings {Td}d∈I for a non-finite set of natural numbers I with |Td| = d2 having
o(d2) minimal substrings (hence, for n = d2, m = o(n)). To this end, let Td be the string
S1S2 · · · Sd of length n = d2 over the alphabet Σ = {a, $1, $2, . . . , $d}, where Si = ad−1$i,
and ad−1 is the repetition of character a with length d − 1. Then m = 2

√
n − 1 because the

minimal substrings of Td are a1, a2, . . ., a
√

n−1, $1, $2, . . ., $√n.

3.2 Smallest Straight-Line Program as MAX-SAT
To encode a grammar in SAT, we utilize a notion called grammar parsing introduced by
Rytter [37]. Given an SLP G that produces T , the parse tree of T with respect to G is a
derivation tree of T , where internal nodes are non-terminal symbols that derive two non-
terminal symbols, and leaves are non-terminal symbols that derive a single terminal symbol.
The partial parse tree of T with respect to G is the tree obtained by pruning the parse tree
of T with respect to G so that any internal node is always a first occurrence in a left to right
pre-order traversal of the parse tree, i.e., the non-terminal symbol of an internal node is not
used in the partial parse tree for any corresponding substring to its left. In other words,
if a non-terminal symbol X that derives two non-terminal symbols is a leaf of the partial
parse tree, the existence of a unique internal node having the same non-terminal symbol
X corresponding to a substring to its left is implied. We will say that the leaf references
the internal node. The grammar parsing of T with respect to G, is the factorization of T

consisting of substrings corresponding to the leaves of the partial parse tree of T with respect
to G. See Figure 3 for an example.

The size of the grammar parsing is equal to the number of leaves in the partial parse
tree. It is easy to see that by definition, the internal nodes in the partial parse tree are
distinct, consisting of (all) non-terminal symbols that derive two non-terminal symbols.
There are σ more non-terminal symbols that derive a single terminal symbol. Therefore,
(# of internal nodes) + σ is the size of the SLP. Since the partial parse tree is a full binary
tree, (# of internal nodes) = (# of leaves) − 1, and thus the size of the SLP is equal to
(size of the grammar parsing) + σ − 1. As σ is independent of the choice of the SLP for T ,
minimizing the size of the grammar parsing is equivalent to minimizing the SLP.

Our formulation is based on the following lemma.
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Figure 3 The partial parse tree and the grammar parsing of an SLP for the string T =
abaababaabaab. Each internal node is a unique non-terminal symbol. The grammar parsing
represented by the rectangles partitioning T is a, b, a, ab, ab, a, ab, aab of size 8. The size of the SLP
is 8 + |{a, b}| − 1 = 9.

▶ Lemma 2. A factorization T = F1 · · · Fm for T is the grammar parsing of an SLP for
T if and only if (i) for each factor Fk longer than 1, there exist ik < jk < k such that:
Fk = Fik

· · · Fjk
and (ii) for any pair of factors Fx = Fix · · · Fjx and Fy = Fiy · · · Fjy longer

than 1, (i.e., (x, y) ∈ {(x′, y′) | 1 ≤ x′, y′ ≤ m, |Fx′ | > 1, |Fy′ | > 1}), the intervals [ix..jx]
and [iy..jy] are either disjoint or one is a sub-interval of the other.

Proof. (⇒) Suppose F1 · · · Fm is the grammar parsing of some SLP for T . Then, any Fk

longer than 1 has an implied corresponding internal node to the left in the partial parse tree.
Since an internal node derives at least two leaves, it derives Fik

· · · Fjk
corresponding to the

interval [ik..jk] of the factorization for some ik < jk < k. Furthermore, since all of these
intervals are derived from internal nodes of a tree, they must respect the tree structure, i.e.,
any two of them must be disjoint or contained in one another.
(⇐) Suppose we are given a factorization T = F1 · · · Fm of T , as well as for each Fk, a
corresponding interval [ik..jk] of the factorization satisfying the conditions of the lemma.
Since, for any pair of factors Fx = Fix

· · · Fjx
and Fy = Fiy

· · · Fjy
, the intervals [ix..jx] and

[iy..jy] are disjoint or contained in one another, we can construct a tree with the internal
nodes corresponding to the intervals and the leaves corresponding to the factors of the
factorization, where a node is a descendant of another if and only if it is a sub-interval.
Although such a tree can be multi-ary in general, we can add internal nodes and transform it
into a full binary tree while preserving ancestor/descendant relations of nodes/leaves in the
original tree (note that the resulting tree may not be determined uniquely, but its size will
always be the same). We assign to each internal node a distinct non-terminal symbol. To
each leaf corresponding to a factor Fk longer than 1, we assign the same non-terminal symbol
that we assigned to the internal node corresponding to Fik

· · · Fjk
. Finally, we assign each leaf

corresponding to a factor of length 1 a non-terminal symbol that derives the corresponding
terminal symbol. The resulting tree is a partial parse tree for an SLP of size m + σ − 1 for T

with F1 · · · Fm as its grammar parsing. ◀
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We define Boolean variables as follows to encode Lemma 2.
fi,ℓ for i ∈ [1, n], ℓ ∈ [1, n + 1 − i]: fi,ℓ = 1 if and only if T [i..i + ℓ) is a factor of the
grammar parsing.
pi for i ∈ [1, n + 1]: For i ̸= n + 1, pi = 1 if and only if i is a starting position of a factor
of the grammar parsing. pn+1 is for technical reasons. We set p1 = pn+1 = 1.
ref i′←i,ℓ for i, ℓ, i′ ∈ [1, n], s.t. ℓ ≥ 2, i′ ≤ i − ℓ and T [i′..i′+ ℓ) = T [i..i + ℓ): ref i′←i,ℓ = 1
if and only if T [i..i + ℓ) is a factor of the grammar parsing, and the implied internal node
of the partial parse tree corresponds to T [i′..i′ + ℓ).
qi′,ℓ for i′ ∈ [1, n − 1], ℓ ∈ [2, n + 1 − i′] s.t. T [i′..i′ + ℓ) has an occurrence in T [i′ + ℓ..n]:
qi′,ℓ = 1 if and only if T [i′..i′ + ℓ) corresponds to an internal node of the partial parse
tree that is referenced by at least one factor of the grammar parsing.

We next define constraints that the above variables must satisfy.
First, since each factor of the grammar parsing is disjoint and the concatenation of all

factors must be equal to T , the truth values of fi,ℓ must uniquely define the truth values for
pi and vice versa. This can be encoded as

∀i ∈ [1, n], ℓ ∈ [1, n + 1 − i] : fi,ℓ ⇐⇒ pi ∧ (¬pi+1) · · · (¬pi+ℓ−1) ∧ pi+ℓ (1)

For all i and ℓ ≥ 2 such that T [i..i + ℓ) is the first occurrence of a substring S = T [i..i + ℓ)
of T , T [i..i + ℓ) cannot be a factor of a grammar parsing. Thus, we require:

∀i ∈ [1, n − 1], ℓ ∈ [2, n − i + 1] s.t. T [i..i + ℓ) does not occur in T [1..i) : ¬fi,ℓ (2)

If T [i..i + ℓ) is not the first occurrence of S, T [i..i + ℓ) can be a factor. If T [i..i + ℓ) is a factor
of the grammar parsing of length at least 2, then, there must exist at least one i′ ≤ i − ℓ

such that T [i′..i′ + ℓ) = S and T [i′..i′ + ℓ) corresponds to an internal node of the partial
parse tree. This can be encoded as

∀i ∈ [1, n], ℓ ∈ [2, n + 1 − i] s.t. T [i..i + ℓ) occurs in T [1..i) :

fi,ℓ =⇒
∨

i′∈{k|T [k..k+ℓ)=T [i..i+ℓ),k∈[1,i−ℓ)}

ref i′←i,ℓ. (3)

Furthermore, for any i, ℓ, a factor T [i..i + ℓ) references at most one position, i.e.,

∀i ∈ [1, n], ℓ ∈ [2, n + 1 − i] :
∑

i′∈{k|T [k..k+ℓ)=T [i..i+ℓ),k∈[1,i−ℓ)}

ref i′←i,ℓ ≤ 1. (4)

On the other hand, ref i′←i,ℓ = 1 implies that T [i..i + ℓ) is a factor of the grammar parsing.
Therefore,

∀i ∈ [1, n], ℓ ∈ [2, n + 1 − i], i′ ∈ {k | T [k..k + ℓ) = T [i..i + ℓ), k ∈ [1, i − ℓ)} :
ref i′←i,ℓ =⇒ fi,ℓ (5)

By definition, it holds that

∀i′ ∈ [1, n − 1], ℓ ∈ [2, n + 1 − i′] s.t. T [i′..i′ + ℓ) has an occurrence in T [i′ + ℓ..n] :

qi′,ℓ ⇐⇒
∨

1≤i′+ℓ≤i≤n

ref i′←i,ℓ (6)
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Next, as shown in Lemma 2, we require that the implied internal node that is referenced by
some factor must be an interval of size at least 2 of the factorization. We encode this as:

∀i′ ∈ [1, n − 1], ℓ ∈ [2, n + 1 − i′] s.t. T [i′..i′ + ℓ) has an occurrence in T [i′ + ℓ..n] :
qi′,ℓ =⇒ ¬fi′,ℓ ∧ pi′ ∧ pi′+ℓ (7)

Also, for any two such implied internal nodes T [i1..i1 + ℓ1) and T [i2..i2 + ℓ2), they must
either be disjoint, or one is a sub-interval of the other. In other words, it cannot be that a
proper prefix interval of one is a proper suffix interval of the other, i.e.,

∀i1, i2, ℓ1, ℓ2 s.t. i1 < i2 < i1 + ℓ1 < i2 + ℓ2 s.t.
T [ik..ik + ℓ) has an occurrence in T [ik + ℓ..n] for k ∈ {1, 2} :
¬qi1,ℓ1 ∨ ¬qi2,ℓ2 (8)

In total, we have O(n3) Boolean variables dominated by ref i′←i,ℓ. The size of each clause
is at most O(n). The total size of the resulting CNF is O(n4), dominated by Constraint (8)
where there are O(n4) clauses of O(1) size each.

Correctness of the Encoding

We now prove the correctness of our formulation. From Lemma 2, if we are given some SLP
producing T , it is clear that the above Boolean variables corresponding to its partial parse
tree, referencing structure, and grammar parsing will satisfy all of the constraints.

Next, suppose we are given T and a truth assignment satisfying the above constraints.
Starting from the truth assignments of pi and Constraint (1), we can obtain a factorization
of T where we regard T [i..i + ℓ) as a factor if and only if fi,ℓ = 1. For any i ∈ [1, n] and
ℓ ∈ [2, n − i + 1], Constraint (2) ensures that T [i..i + ℓ) having an occurrence in T [1..i) is
a necessary condition for fi,ℓ = 1. If fi,ℓ = 1, Constraint (3) implies that there is some
i′ ∈ [1..i − ℓ) such that T [i′..i′ + ℓ) = T [i..i + ℓ) and ref i′←i,ℓ = 1. From Constraint (4),
we know that there is exactly one such i′. On the other hand, Constraint (5) ensures that
ref i′←i,ℓ = 0 for all i′ when fi,ℓ = 0. Thus, for each fi,ℓ = 1 with ℓ > 1 there exists exactly
one i′ such that ref i′←i,ℓ = 1, and all other ref ·←·,· are 0. From Constraint (6), it holds
that qi′,ℓ = 1 if and only if there is at least one i, ℓ with ref i′←i,ℓ = 1 and thus fi,ℓ = 1. If
qi′,ℓ = 1, from Constraint (7), we have fi′,ℓ = 0, pi′ = pi′+ℓ = 1, implying that T [i′..i′ + ℓ) is
not a factor, but is a concatenation of two or more factors. Constraint (8) requires that all
such T [i′..i′ + ℓ) are either disjoint or that one is a sub-interval of the other.

Thus, from the above arguments, we can see that for the factorization defined by the pi’s,
we can associate for each factor, a subinterval of the factorization that satisfies the conditions
of Lemma 2, thus implying that the factorization is a grammar parsing of some SLP.

3.3 Smallest Bidirectional Macro Scheme to MAX-SAT
For our SLP encoding, we used the fact that only the leftmost occurrences of the non-terminals
are internal nodes – we modeled every later occurrence as a leaf referring to this leftmost
occurrence. We could therefore evade the problem of constructing reference cycles since all
references point in the same direction. However, in a bidirectional scheme, the references can
point in either direction, and the difficulty in defining the encoding is how to ensure that no
cycles are introduced in the referencing.

Here, we present a solution that again works with a tree structure, but this time we
have multiple trees – a forest that represents the references. In detail, we follow Dinklage
et al. [9, Definition 6], who represented a bidirectional macro scheme by a reference forest,
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1 2 3 4 5 6 7 8 9

depth

Figure 4 Reference forest of the BMS of Figure 1. The forest consists of two trees. The root of
each tree corresponds to one of the two ground phrases of the BMS. For instance, to decode T [1],
we first need to decode T [7] (the parent of T [7]), which has the tree root T [5] as its parent. Hence,
the number of ancestors of a node T [i] is the number of references we need to traverse to obtain a
ground phrase storing the character of T [i].

where a text position i has text position j as its parent if the phrase covering T [i] has a
reference stating that T [i] is copied from T [j]. Figure 4 visualizes such a forest. The roots of
this reference forest are the positions of the ground phrases.

In order to find a BMS, we go in the inverse direction, and first encode a reference forest
from which we subsequently derive a BMS. Since a forest has no cycles, we can use the
edges of the forest to define a valid BMS, where each factor has length one (each factor is
represented by a node in the reference forest). The final step is to glue together adjacent
positions that have adjacent references into larger factors to obtain BMSs with fewer factors.

We start with the encoding for our reference forest. The nodes of the forest coincide with
the text positions, and are therefore enumerated from 1 to n. Since a text position i can
reference text position j only when T [i] = T [j], it makes sense to restrict j to belong to the
set Mi := {j ∈ [1, n] | T [i] = T [j], i ̸= j}. In that case, we say that j is the parent of i. We
make use of the following variables.

rooti for i ∈ [1, n] : rooti = 1 if and only if node i is the root of a tree. All roots are at
depth 0.
dref d,i→j for d ∈ [1, n − 1], i ∈ [1, n], j ∈ Mi : dref d,i→j = 1 if and only if node i at depth
d has a parent node j at depth d − 1.

To obtain a valid reference forest, we define the following constraints. First, each node is
a root node or has a parent.

∀i ∈ [1, n] : rooti +
∑

d∈[1,n],j∈Mi

dref d,i→j = 1 (9)

According to Constraint (9), a node i at depth d ≥ 2 must have exactly one parent j,
and j must also have a parent node k (since d ≥ 2). To enforce acyclicity, we additionally
want that k is exactly two levels above of i.
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∀d ∈ [2, n], ∀i ∈ [1, n], ∀j ∈ Mi : dref d,i→j =⇒
∑

k∈Mj

dref d−1,j→k = 1 (10)

Next, to translate our reference forest to a BMS, we additionally introduce the following
Boolean variables.

ref i→j for i ∈ [1, n], j ∈ Mi: ref i→j = 1 if and only if position i references position j.
pi for i ∈ [1, n] : pi = 1 if and only if position i is a beginning of a phrase. Note that
p1 = 1.

The connection between the variables of the reference forest and our BMS is as follows.
For each position i ∈ [1, n], i can reference at most one position j ∈ Mi, i.e.,

∀i ∈ [1, n] :
∑

j∈Mi

ref i→j ≤ 1 (11)

A position i references j if, on any depth d of the reference forest, there is an edge from i to
its parent j modeled by dref d,i→j .

∀d ∈ [1, n], ∀i ∈ [1, n], ∀j ∈ Mi : dref d,i→j =⇒ ref i→j (12)

Finally, the roots in our reference forest model the ground phrases of the BMS. The roots
therefore cannot have a reference, but instead introduce a factor (of length one).

∀i ∈ [1, n] : rooti =⇒ pi. Additionally, ∀j ∈ Mi : rooti =⇒ ¬ref i→j (13)

Remembering that the phrases are determined by the variables pi’s witnessing their
starting positions, it is left to model the constraints for the truth assignment of the pi’s. For
that, let us conceptually fix a text position i for which we assume that it references text
position j. We consider two cases where T [i − 1] and T [i] cannot be in the same phrase. The
first case is when i or j are at the start of the text or j − 1 ̸∈ Mi−1:

∀i ∈ [1, n], j ∈ Mi s.t. i = 1 or j = 1 or T [i − 1] ̸= T [j − 1] : ref i→j =⇒ pi (14)

The second case is when j − 1 ∈ Mi−1 but the position i − 1 does not reference position j − 1
(it may reference a different position, or it could be a ground phrase):

∀i ∈ [2, n], ∀j ∈ Mi s.t. j > 1 and T [i − 1] = T [j − 1],
¬ref i−1→j−1 ∧ ref i→j =⇒ pi (15)

In total, we have O(n3) Boolean variables, dominated by dref d,i→j . The size of the
largest clause is O(n2) due to Constraint (9). The total size of the resulting CNF is O(n4),
dominated by Constraint (10) where there are O(n3) clauses of O(n) size each.

Correctness of the Encoding

It is easy to see that any valid BMS satisfies the above constraints. We now show that any
solution that satisfies the hard clauses yields a valid BMS. The truth assignments for all
pi define a factorization of T . We claim that each position is either a ground phrase, or is
assigned exactly one reference consistent with the factorization forming a valid BMS, i.e.,
the references are acyclic, and, adjacent positions in the same non-ground phrase will refer
to adjacent positions thus allowing the phrase to be encoded with the pair of references at
both ends of the phrase.
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Suppose pi = 1. If rooti = 1, then Constraint (9) ensures that all dref ·,i→· = 0 and
Constraint (13) ensures that all ref i→· = 0, i.e., i does not have a reference. Note that,
pi+1 = 0 implies ref i→j for some j (shown in the next paragraph), so pi+1 = 1 must hold.
Thus, position i is properly factorized as a ground phrase. If rooti = 0, then Constraint (9)
ensures that there exist unique d, j such that dref d,i→j = 1. Furthermore, Constraint (12)
ensures that ref i→j = 1.

Next, consider the case for pi = 0 (which implies i > 2). From Constraint (13) we
have rooti = 0, and from Constraint (15) we have ∀j > 1 ∈ Mi s.t. T [i − 1] = T [j − 1],
ref i→j =⇒ ref i−1→j−1. Since rooti = 0, Constraint (9) ensures that there exists unique d, j

such that dref d,i→j = 1. Furthermore, Constraint (12) ensures that ref i→j = 1. Note that
due to Constraint (14), neither j = 1 nor T [i − 1] ̸= T [j − 1] is possible, since this would
imply pi = 1, contradicting the assumption that pi = 0. Thus j > 1 and T [i − 1] = T [j − 1],
and thus we have ref i−1→j−1 = 1.

The uniqueness of the reference j for each position i of a non-ground phrase is ensured by
Constraint (11). Thus, we have that references in adjacent positions in the same non-ground
phrase point to adjacent positions. Since the acyclicity of the references are ensured by
Constraint (10), we have a valid BMS.

4 Computational Experiments

We have implemented our encodings in PySAT (https://pysathq.github.io/) written in
the Python language3. As datasets we used the files trans, news, E.coli, and progc from
the Canterbury and Calgary corpus (https://corpus.canterbury.ac.nz/).

Here, we evaluated the sum of the literals in all hard clauses, i.e., the size of the encoded
CNF, and the execution time of the SAT solver for computing a solution. In Figure 5, we
evaluated our approach on different prefix lengths of the chosen datasets, starting from a
prefix of 10 characters up to a prefix with 3000 characters. We aborted an execution after
reaching one hour of computation or after exceeding 16 GB of RAM, and hence the lines for
computing b and g prematurely end due to these limits on all datasets. Our experiments ran
on an Ubuntu 20.04 machine with an AMD Ryzen Threadripper 3990X CPU.

As expected, the size of the encoded CNF correlates with the execution time in all
instances. We can see that the encoding for γ needs the least number of literals, and is
consequently not only the fastest, but also uses the least amount of memory, allowing us to
compute γ for moderately large texts. This is followed by g, and lastly by b. Although the
size of the CNF for b is smaller than for g in most cases, clauses formed by Constraint (9)
for computing b can become quite large, making the computation cumbersome.

5 Application: Sensitivity of γ

Akagi et al. [1] introduced and studied the notion of sensitivity of a repetitiveness measure.
Given a repetitiveness measure C (such as γ) for a string T , the sensitivity of C measures
how much C can increase when a single character edit operation is performed on T . The
authors studied an additive and a multiplicative sensitivity measure. The latter, denoted
MSop, is defined as:

MSop(C, n) := max
T∈Σn,T ′∈Σ∗

{
C(T ′)
C(T )

∣∣∣∣ edop(T, T ′) = 1
}

,

3 As far as we are aware of, this implementation is single threaded.

https://pysathq.github.io/
https://corpus.canterbury.ac.nz/
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Figure 5 Evaluation of our encoded CNFs. The first row shows the
running time of PySAT on our CNF instance in seconds. We omit the time
needed to specify the CNFs, which is negligible for larger instances. The
second row plots the size of the respective CNF. All axes are in logscale.

γ b g

i.e., the maximum multiplicative increase over all strings with the same length n, where
edop(T, T ′) = 1 means that T ′ can be built from T by inserting a character into T , or
deleting/replacing a character of T . Parameterizing γ with the input string T , for C(T ) =
γ(T ), Akagi et al. showed 2 ≤ MSop(γ, n) ∈ O(log n).

To improve the lower bound, we conducted exhaustive search for short binary strings
when inserting a unique character. This search led us to the string family {Tk}k≥2 with
Tk := abbbaaabk, with which we can improve the lower bound of 2 to 5/2. For that, let
us consider γ(Tk) and its size after an insertion of a new character c. First, we observe
that γ(Tk) = γ(abbbaaabk) = 2. This is because a smallest string attractor is given by
Γ(T2) = {4, 7} and Γ(Tk) = {5, 8} for k ≥ 3 (the characters at the positions in Γ(Tk) are
underlined). Now let T ′k denote Tk after inserting the character c at text position 9. For
k ≥ 5, it holds that T ′k has a string attractor of size 5, i.e., γ(T ′k′) = γ(abbbaaabcbk′) = 5 for
k′ ≥ 4. A minimal string attractor is given by Γ(T ′k′) = {1, 4, 6, 9, 10}. We cannot remove a
position from Γ(T ′k′) since abb, ba, aab, c, and bk′ are five substrings of T ′k′ having exactly
one occurrence in T ′k′ , and all of them are non-overlapping. Since a string attractor has to be
in the cover set of all substrings, we need a string attractor with at least five text positions.
Consequently, MSop(γ, n) ≥ 2.5 for any n ≥ 13 with the insertion or replacement operation.

The availability of computer-aided search facilitated the discovery of strings having certain
string attractors.
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Abstract
We introduce a general online allocation problem that connects several of the most fundamental
problems in online optimization. Let 𝑀 be an 𝑛-point metric space. Consider a resource that can be
allocated in arbitrary fractions to the points of 𝑀. At each time 𝑡, a convex monotone cost function
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𝑥𝑟𝑡 is the fraction of the resource at 𝑟𝑡 at the end of time 𝑡. For example, when the cost functions are
𝑐𝑡 (𝑥) = 𝛼𝑥, this is equivalent to randomized MTS, and when the cost functions are 𝑐𝑡 (𝑥) = ∞· 𝟙𝑥<1/𝑘 ,
this is equivalent to fractional 𝑘-server.

Because of an inherent scale-freeness property of the problem, existing techniques for MTS
and 𝑘-server fail to achieve similar guarantees for metric allocation. To handle this, we consider a
generalization of the online multiplicative update method where we decouple the rate at which a
variable is updated from its value, resulting in interesting new dynamics. We use this to give an
𝑂 (log 𝑛)-competitive algorithm for weighted star metrics. We then show how this corresponds to an
extension of the online mirror descent framework to a setting where the regularizer is time-varying.
Using this perspective, we further refine the guarantees of our algorithm.
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1 Introduction

We introduce a natural online problem that generalizes and is closely related to several
fundamental and well-studied problems in online computation such as Metrical Task Systems
(MTS), the 𝑘-server problem and convex body chasing. We call this the metric allocation
problem (MAP) and it is defined as follows.

There is an underlying metric space 𝑀 on 𝑛 points with distances 𝑑 (𝑖, 𝑗) between points
𝑖 and 𝑗 . An algorithm maintains an allocation of a resource to the points of 𝑀, represented
by a vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) in the simplex Δ = {𝑥 ∈ R𝑀+ | ∑𝑖∈𝑀 𝑥𝑖 = 1}, where 𝑥𝑖 denotes the
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amount of resource at point 𝑖. At each time step 𝑡, tasks arrive at the points of 𝑀. The task
at 𝑖 ∈ 𝑀 is specified by a non-increasing and convex cost function 𝑐𝑡 ,𝑖 : [0, 1] → R+, which
describes the cost of completing the task as function of resource available at 𝑖.1 Given the
tasks at time 𝑡, the algorithm can modify its previous allocation 𝑥(𝑡 − 1) ∈ Δ to 𝑥(𝑡) ∈ Δ.
It then incurs a service cost 𝑐𝑡 (𝑥(𝑡)) =

∑
𝑖∈𝑀 𝑐𝑡 ,𝑖 (𝑥𝑖 (𝑡)) and a movement cost of modifying

𝑥(𝑡 − 1) to 𝑥(𝑡) according to the distances in 𝑀 (i.e., sending an 𝜖 amount of resource from 𝑖

to 𝑗 incurs cost 𝜖 · 𝑑 (𝑖, 𝑗)).
The problem is already very interesting when 𝑀 is a uniform metric. In particular,

this case already goes beyond the reach of existing techniques and highlights a key issue
of scale-freeness (details in Section 1.2), which seems closely related to current barriers for
improving bounds for 𝑘-server. For this reason, we will mostly focus on uniform metrics and,
more generally, on weighted star metrics. Later, we also describe some results for non-convex
cost functions on general metrics.

Besides the connections to other classical problems, that we describe below, MAP also
has a natural motivation on its own. For example, the resource may represent workers that
can be allocated to various locations. At step 𝑡, one could transfer extra workers to locations
with high cost to execute tasks more efficiently. This also motivates our assumption on
the cost functions being non-increasing (having more resources can only help) and convex
(adding extra resources has diminishing returns). If 𝑀 is a uniform or weighted star metric,
this means there is a central depot that workers must return to between switching tasks.

Connections. MAP generalizes several fundamental and well-studied problems in online
computation. We describe these next, as they play a key role in our discussion below.

Metrical Task Systems. Here, there is a metric space (𝑀, 𝑑) on 𝑛 points, and the
algorithm resides at some point in 𝑀 at any time. At time 𝑡, a cost vector 𝛼𝑡 ∈ R𝑀+
arrives. The algorithm can then move from its old location 𝑖𝑡−1 ∈ 𝑀 to a new 𝑖𝑡 ∈ 𝑀,
paying movement cost 𝑑 (𝑖𝑡−1, 𝑖𝑡 ) and service cost 𝛼𝑡 ,𝑖𝑡 .

The state of a randomized algorithm for MTS is given by a probability distribution
𝑥(𝑡) = (𝑥1 (𝑡), . . . , 𝑥𝑛 (𝑡)) on the 𝑛 points. Its expected service cost at time 𝑡 is given
by

∑
𝑖 𝛼𝑡 ,𝑖 · 𝑥𝑖 (𝑡) and its expected movement cost is measured just like in MAP. Thus,

randomized MTS is the special case of MAP with cost functions of the form 𝑐𝑡 ,𝑖 (𝑥𝑖) = 𝛼𝑡 ,𝑖𝑥𝑖,
i.e., linear and increasing. (We show in the full version that MAP with non-decreasing
cost functions is equivalent to MAP with non-increasing cost functions.)
𝒌-server. Here, there is a metric space (𝑀, 𝑑) and 𝑘 servers that reside at points of 𝑀.
At time 𝑡, some point 𝑟𝑡 is requested, which must be served by moving a server to 𝑟𝑡 .
The goal is to minimize the total movement cost. The fractional 𝑘-server problem is the
relaxation2 of the randomized 𝑘-server problem where points can have a fractional server
mass. A request at 𝑟𝑡 is served by having a server mass of at least 1 at 𝑟𝑡 .

Observe that fractional 𝑘-server is the special case of MAP with cost functions 𝑐𝑡 ,𝑖 = 0
for 𝑖 ≠ 𝑟𝑡 and 𝑐𝑡 ,𝑟𝑡 (𝑥𝑟𝑡 ) = ∞ if 𝑥𝑟𝑡 < 1/𝑘 and 0 if 𝑥𝑟𝑡 ≥ 1/𝑘, by viewing 𝑘𝑥𝑖 (𝑡) as the
fractional server mass at location 𝑖 at time 𝑡. Also notice that these 𝑐𝑡 ,𝑖 are convex
and non-increasing. If 𝑀 is a uniform metric (or weighted star), this is equivalent to
randomized (weighted) paging.

1 Wlog, we can assume that a task appears at only one point 𝑟𝑡 at time 𝑡, i.e., 𝑐𝑡,𝑖 = 0 for 𝑖 ≠ 𝑟𝑡 . See
Section 2.

2 All known randomized 𝑘-server algorithms with poly-logarithmic competitive ratios use this relaxation.
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Convex function chasing. Here, the request at time 𝑡 is a convex function 𝑓𝑡 : R𝑛 →
R+ ∪ {∞}. The algorithm maintains a point in R𝑛, and given 𝑓𝑡 it can move from its old
position 𝑥(𝑡 − 1) ∈ R𝑛 to a new 𝑥(𝑡) ∈ R𝑛, incurring cost ∥𝑥(𝑡) − 𝑥(𝑡 − 1)∥ + 𝑓𝑡 (𝑥(𝑡)).

MAP is a special case of convex function chasing where the norm ∥ · ∥ is induced
by a metric, cost functions are supported on the unit simplex and have separable form
(i.e., 𝑓𝑡 (𝑥) =

∑𝑛
𝑖=1 𝑓𝑡𝑖 (𝑥𝑖) with 𝑓𝑡𝑖 monotone).

The convex function chasing problem has seen tremendous progress recently, with the first
competitive algorithm for arbitrary dimension given in [14], and 𝑂 (𝑛)-competitive algorithms
shown in [27, 1]; this implies a trivial 𝑂 (𝑛) upper bound for MAP with convex cost functions.

In recent years there has also been remarkable progress on obtaining polylogarithmic-
competitive algorithms for special cases of MAP such as MTS [8, 26, 6, 7, 22, 3, 11, 19, 21]
and the 𝑘-server problem [20, 4, 5, 2, 12, 25, 16, 24]. However, these solutions are based
on rather ad hoc and problem-specific formulations (e.g., considering anti-server mass for
𝑘-server vs. server mass for MTS). Due to these inconsistencies, it is also still open, for
example, whether for 𝑘-server one can achieve the same competitive ratios as for MTS.3

One of our key goals for studying MAP is to develop a systematic and unified approach
for understanding a wide class of online problems.4

Our contribution. Below we list the results we obtain for MAP, and the new algorithmic
design and analysis techniques that we develop. We give more details in Section 1.3.

We give a tight 𝑂 (log 𝑛)-competitive algorithm for uniform metrics.
This result already requires new algorithmic techniques to handle a scale-freeness property
of the problem. In particular, our algorithm differs from classical multiplicative update
algorithms by decoupling the rate at which a variable is updated from its value.
The analysis also requires new ideas including a scale-mismatch potential function to
handle the differences in the algorithm’s perceived scale from the true scale.
Next, we generalize the 𝑂 (log 𝑛) bound above to weighted stars, and also refine this
guarantee to be (1 + 𝜖)-competitive with respect to the service cost.
To achieve the refinement, we extend the online mirror descent framework pioneered by
Bubeck et al. [12, 11] to a setting with a time-varying regularizer.
The time-varying nature of the regularizer causes various complications for Bregman
divergence based analysis techniques of prior works, and handling them requires several
modifications.
For the generalization of MAP where cost functions can be non-convex, we show an Ω(𝑛)
lower bound for arbitrary metrics. We give a matching 𝑂 (𝑛) upper bound on tree metrics.
This implies an 𝑂 (𝑛2) deterministic and 𝑂 (𝑛 log 𝑛) randomized bound on general metrics.
The 𝑂 (𝑛) upper bound is also based on the mirror descent framework, but in contrast to
all prior works in this framework, we do not use an entropic regularizer, but work with a
simple weighted ℓ2

2-regularizer instead.

3 This contrasts with the deterministic setting, where the competitive ratio of MTS (which is 2𝑛 − 1) is
known to be achievable for 𝑘-server (where 2𝑘 − 1 ≤ 2𝑛 − 1 is known). Indeed, this is achieved by the
same algorithm for both problems (the work function algorithm; see the book [9] for details) rather
than by problem-specific algorithms as in the randomized setting.

4 𝑘-server on an 𝑛-point metric is also a special case of MTS on a 𝑁 =
(𝑛
𝑘

)
point metric. But as the

competitive ratio of MTS depends on 𝑁 , this does not give any interesting bounds for 𝑘-server. In
contrast, MAP generalizes both fractional 𝑘-server and randomized MTS in the same metric space.
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We next discuss the relevance of allocation problems on star metrics and associated
refined guarantees, and then describe the issue of scale-freeness that arises in MAP.

1.1 Allocation problems on star metrics and refined guarantees
Certain special cases of allocation problems on star metrics have been studied previously,
either implicitly or explicitly, as they capture a lot of the difficulty of general metrics. This
idea already goes back to Bartal et al. [7]; roughly, one can approximate a general metric
space by a hierarchically-separated tree (HST), and recursively run the star algorithm at the
internal nodes of the HST to decide how to much server mass to allocate to each child subtree.
In this way, known algorithms for MTS on general metrics [7, 22, 11, 19] are obtained by
using an algorithm for stars as central building blocks.

For 𝑘-server, a certain allocation problem on weighted stars was studied in [4] as a first
step towards obtaining polylog(𝑛, 𝑘)-competitive algorithms for 𝑘-server on general metrics.
This allocation problem corresponds to the special case of MAP where the convex functions
𝑐𝑡 ,𝑖 are piece-wise linear determined by values 𝑐𝑡 ,𝑖 ( 𝑗) at 𝑗 = 0, 1/𝑘, 2/𝑘, . . . , 1. In subsequent
work [2], this step was completed to obtain the first polylog(𝑛, 𝑘)-competitive algorithm for
𝑘-server on general metrics.

Refined guarantees. We say that an algorithm has 𝛼-competitive service cost and 𝛽-
competitive movement cost if, up to some fixed additive constant, its service cost is at most
𝛼 times the total (movement plus service) offline cost and its movement cost is at most 𝛽
times the total offline cost.

For 𝑘-server and MTS, polylog-competitive algorithms on general metrics rely on star
algorithms with (1 + 𝜖)-competitive service cost and poly(log 𝑛, 1/𝜖)-competitive movement
cost, for 𝜖 ≈ 1/log 𝑛. The reason is that when the algorithm for stars is used recursively to
obtain an algorithm on HSTs, then roughly, the service cost guarantee multiplies across levels
and the movement cost guarantee increases additively. See, e.g., [7, 2] for more details.

The algorithm for the special case of MAP considered in [4] has (1+ 𝜖)-competitive service
cost and 𝑂 (log 𝑘/𝜖)-competitive movement cost. However, the general cost functions that
we consider for MAP (in this paper) correspond to this problem as 𝑘 → ∞; for this case, the
𝑂 (log 𝑘/𝜖) bound of [4] becomes unbounded and does not give anything useful.

1.2 Scale-freeness
The reason for the failure of the algorithm in [4] when 𝑘 → ∞ is not just technical, but
an inherent one: roughly, for general cost functions, it is unclear how to do multiplicative
updates, as there is no inherent notion of scale in the resulting problem. We elaborate on
this issue now, as handling this scale-freeness is one of the key conceptual and technical
contribution of this paper.

Multiplicative updates. A key underlying idea, sometimes used implicitly, for achieving
poly-logarithmic guarantees for 𝑘-server, MTS and various other problems (e.g., those based
on the online primal dual-framework [18, 17]) is that of multiplicative updates.

Let us see how this works for 𝑘-server and MTS on a star metric. For 𝑘-server, if a
point 𝑟 is requested, the fractional server amount 𝑧𝑖 at other points 𝑖 is decreased at rate
proportional to 1− 𝑧𝑖 + 𝛿 (i.e., the amount of server already missing at 𝑖 plus a small constant
𝛿). On the other hand for MTS, if a cost is incurred at point 𝑟, then the other points are
increased at rate proportional to 𝑥𝑖 + 𝛿.
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Multiplicative update for MAP? As MAP generalizes these problems, clearly we also need
to do some kind of multiplicative update. However, after some thought one soon realizes
that completely unclear is “multiplicative update with respect to what?”.

In particular, if we model 𝑘-server as MAP (as described above), then the update rule
above becomes 𝑥′

𝑖
∝ (1/𝑘 − 𝑥𝑖) + 𝛿. This is natural as 1/𝑘 is a fixed parameter with a special

meaning as 𝑐𝑡 (𝑥) = ∞ for 𝑥𝑟𝑡 < 1/𝑘 and 0 otherwise. On the other hand, for MTS the reason
why 𝑥′

𝑖
∝ (𝑥𝑖 + 𝛿) is natural is that the 𝑐𝑡 ,𝑖 always have 𝑥-intercept at 0. In contrast, cost

functions in MAP are lacking such an intrinsic scale.
We give a more concrete and instructive example to show the difficulty due to this lack

of scale.

Example. We saw above how to model 𝑘-server via MAP by interpreting 𝑧𝑖 := 𝑘𝑥𝑖 as
the amount of server mass at 𝑖, and a request to point 𝑖 corresponds to the cost function
𝑐𝑡 (𝑥) = ∞ · 𝟙{𝑥𝑖<1/𝑘} . However, this correspondence between the server mass 𝑧𝑖 and the
variable 𝑥𝑖 is quite arbitrary.

A different way of modeling 𝑘-server via MAP is to choose any offset vector 𝑎 ∈ [0, 1]𝑛
with 𝑠 := 1 − ∑

𝑖 𝑎𝑖 > 0, and interpret 𝑧𝑖 := 𝑘 · (𝑥𝑖 − 𝑎𝑖)/𝑠 as the server mass at 𝑖. Then,
a request to page 𝑖 corresponds to the cost function 𝑐𝑡 (𝑥) = ∞ · 𝟙{𝑥𝑖<𝑎𝑖+𝑠/𝑘} , and we can
additionally intersperse cost functions 𝑐𝑡 (𝑥) = ∞ · 𝟙{𝑥 𝑗<𝑎 𝑗 } for each 𝑗 to ensure that 𝑧 𝑗 ≥ 0.
In other words, an adversary can simulate a 𝑘-server request sequence in various regions of
the simplex and at different scales.

Active region and active scale. Thus, the challenge for an algorithm is to find out the
“active region” and “active scale”. Since the adversary can keep changing this region and scale
arbitrarily over time, any online algorithm for MAP needs to learn this region dynamically
and determine how to do multiplicative updates with respect to the scale and offset of the
current region.

At a higher level, the difficulty of learning an “active region” also relates to the difficulty
in obtaining a polylog(𝑘)-competitive algorithm for 𝑘-server on general metrics, which seems
to require learning a region of poly(𝑘) many points where the adversary is currently playing
its strategy. A step in this direction was made recently in [12].

1.3 Results and techniques
We will first show the following tight bound for uniform metrics.

▶ Theorem 1. There is an 𝑂 (log 𝑛)-competitive algorithm for MAP on uniform metrics.

This bound is the best possible, due to the Ω(log 𝑛) lower bound for the special case
of randomized MTS [10]. Our algorithm is deterministic as randomization does not help
for MAP.5 The proof of Theorem 1 also extends to weighted stars (and we give a stronger
result in Theorem 2 below). However, to introduce the key ideas in a modular way and avoid
notational overhead, we focus on uniform metrics first.

To show Theorem 1, a key new idea is to handle the scale-freeness of MAP by decoupling
the position 𝑥𝑖 and its rate of change 𝑥′

𝑖
by using separate rate variables 𝜌𝑖 for 𝑥′

𝑖
. The update

of 𝜌𝑖 is driven by trying to learn the active region and scale (details in Section 3).

5 Any randomized algorithm for MAP can be derandomized by tracking its expected location. As cost
functions are convex, this can only decrease the algorithm’s cost.
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Remark. Theorem 1 has an interesting consequence for the natural case of convex function
chasing described above (with separable cost functions supported on the simplex and ∥ · ∥ =
∥ · ∥1). The competitive ratio of 𝑂 (log 𝑛) improves exponentially on the 𝑂 (𝑛) bound that
follows from [1, 27] and breaks the Ω(

√
𝑛) lower bound that holds for the general case [23, 13].

The following theorem refines the previous guarantee via an improved algorithm for
weighted stars.

▶ Theorem 2. For any 𝜖 > 0, there exists an algorithm for MAP on weighted stars with
(1 + 𝜖)-competitive service cost and 𝑂

( 1
𝜖
+ log 𝑛

)
-competitive movement cost.

As explained above, a possible application of such refined guarantees is an extension to
general metrics.

Time-varying regularization. To achieve the (1 + 𝜖)-competitive service cost, we extend
the powerful framework of regularization and online mirror descent to a setting where the
regularizer is time-varying. This contrasts with previous works in this framework [15, 12,
11, 16, 19], which all used a static regularizer. Also as discussed in Section 1.1, a possible
application of such refined guarantees is an extension to general metrics.

A time-varying regularizer is necessary as the regularizer must adapt to the current scale
and region over time. This leads to substantial complications in the analysis. In particular,
the default potential function for mirror descent analyses – the Bregman divergence – is not
well-behaved when the offline algorithm moves (actually, it is not even well-defined), and
changes of the regularizer lead to uncontrollable changes of the potential. We show how to
adapt the Bregman divergence in several ways to obtain a modified potential function that
has all the desired properties necessary to carry out the analysis.

Non-convex costs and arbitrary metric spaces. We also consider the version of MAP where
the cost functions can be non-convex. Here, the competitive ratio must be exponentially
worse.

▶ Theorem 3. On any 𝑛-point metric space, any deterministic algorithm for MAP with
non-convex cost functions has competitive ratio at least Ω(𝑛).

On tree metrics, we provide a matching upper bound:

▶ Theorem 4. There is an 𝑂 (𝑛)-competitive deterministic algorithm for MAP on tree metrics,
even if the cost functions are non-convex.

By known tree embedding techniques, this implies the following result for general metrics:

▶ Corollary 5. There is an 𝑂 (𝑛2)-competitive deterministic and 𝑂 (𝑛 log 𝑛)-competitive ran-
domized algorithm for MAP on arbitrary metric spaces, even for non-convex cost functions.

ℓ2
2-regularization. Our algorithm achieving the tight guarantee on trees is also based on

mirror descent, but again with a crucial difference to previous mirror-descent based online
algorithms in the literature. While previous algorithms all used some version of an entropic
regularizer, our regularizer is a weighted ℓ2

2 -norm. Here, again, the Bregman divergence is
not suitable as a potential function, but the issues are more fundamentally rooted in the
non-convex structure of cost functions, and addressing them with changes to the Bregman
divergence seems unlikely to work. Instead, our analysis uses two different potential functions,
one of which resembles ideas of “weighted depth potentials” used in [12, 11] and the other
one is a kind of “one-sided matching”.
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1.4 Organization
In Section 2, we define an equivalent version of MAP that will be easier to work with. We
will give a first algorithm for uniform metrics in Section 3, where we also describe the ideas
to overcome scale-freeness. In Section 4, we discuss a modified algorithm for weighted stars
via mirror descent with a time-varying regularizer. However due to space constraints, most
of the details are only given in the full version. Our upper and lower bounds for non-convex
cost functions on general metrics are proved in the full version, which includes in particular
the algorithm based on ℓ2

2 -regularization.

2 Preliminaries

For 𝑎 ∈ R, we write [𝑎]+ := max{𝑎, 0}. A metric space 𝑀 is called a weighted star if there are
weights 𝑤𝑖 > 0 for 𝑖 ∈ 𝑀 and the distance between two points 𝑖 ≠ 𝑗 is given by 𝑑 (𝑖, 𝑗) = 𝑤𝑖+𝑤 𝑗 .

Continuous-time model and simplified cost functions. It will be more convenient to work
with the following continuous-time version of MAP. Instead of cost functions being revealed
at discrete times 𝑡 = 1, 2, . . . , we think of cost functions 𝑐𝑡 arriving continuously over time,
and that 𝑐𝑡 changes only finitely many times. At any time 𝑡 ∈ [0,∞), the algorithm maintains
a point 𝑥(𝑡) ∈ Δ, where Δ := {𝑥 ∈ R𝑀+ :

∑
𝑖∈𝑀 𝑥𝑖 = 1}, and the dynamics of the algorithm is

specified by the derivative 𝑥′ (𝑡) at each time 𝑡. The movement cost and the service cost are
given by

∫ ∞
0 ∥𝑥′ (𝑡)∥𝑑𝑡 and

∫ ∞
0 𝑐𝑡 (𝑥(𝑡))𝑑𝑡 respectively, where the norm ∥·∥ is induced by the

metric.6 On a weighted star metric, the norm ∥·∥ is given by ∥𝑧∥ :=
∑
𝑖 𝑤𝑖 |𝑧𝑖 |.

Further, we assume that 𝑐𝑡 ,𝑖 is non-zero for only a single location 𝑟𝑡 ∈ 𝑀 at any time, and
𝑐𝑡 ,𝑖 is linear with slope −1 and truncated at 0 (see Figure 1(a)). Formally, 𝑐𝑡 (𝑥) = [𝑠𝑡 − 𝑥𝑟𝑡 ]+
for some 𝑠𝑡 ∈ [0, 1] and 𝑟𝑡 ∈ 𝑀. A useful consequence of this view is that if the service cost
𝑐𝑡 (𝑥(𝑡)) incurred by the online algorithm is 𝛼𝑡 , then the (one-dimensional) cost function 𝑐𝑡 ,𝑟𝑡
intercepts the 𝑥-axis (becomes 0) at the point 𝑥𝑟𝑡 (𝑡) + 𝛼𝑡 . The cost of an offline algorithm
at 𝑦 ∈ Δ is then given by [𝛼𝑡 + 𝑥𝑟𝑡 (𝑡) − 𝑦𝑟𝑡 ]+. For a cost function 𝑐𝑡 of this form, we will say
that 𝑥(𝑡) is charged cost 𝛼𝑡 at 𝑟𝑡 .

To simplify the description and analysis of our algorithms, we will further allow them to
decrease 𝑥𝑖 to a negative value. In the full version, we show that these assumptions are all
without loss of generality.

3 A first algorithm for uniform metrics

We describe here an 𝑂 (log 𝑛)-competitive algorithm for MAP on uniform metrics, proving
Theorem 1. Although the algorithm also extends to weighted stars, we assume in this section
that all weights are 1 to avoid technicalities and focus on the key ideas.

3.1 Overview
Before we state the formal algorithm, we first give an overview and intuition behind the
ideas needed to handle the difficulties due to scale-freeness.

Fix a time 𝑡, and let 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) denote the online and offline position and
suppose a cost of 𝛼 = 𝛼𝑡 is received (charged) at point 𝑟 = 𝑟𝑡 . We drop 𝑡 from now for
notational ease, as everything is a function of 𝑡. Clearly, an algorithm that wishes to be

6 In general, ∥𝑧 ∥ = min 𝑓

∑
𝑖, 𝑗∈𝑀 𝑓 (𝑖, 𝑗 )𝑑 (𝑖, 𝑗 ), where the minimum is taken over all flows 𝑓 : 𝑀 ×𝑀 → R+

satisfying 𝑧𝑖 =
∑

𝑗∈𝑀 ( 𝑓 ( 𝑗 , 𝑖) − 𝑓 (𝑖, 𝑗 ) ) for all 𝑖 ∈ 𝑀.

ESA 2022



13:8 Online Metric Allocation and Time-Varying Regularization

competitive must necessarily increase 𝑥𝑟 (otherwise the offline algorithm can move to some 𝑦
with 𝑦𝑟 > 𝑥𝑟 and keep giving such cost functions forever). So, the key question is how to
decrease other coordinates 𝑥𝑖 for 𝑖 ≠ 𝑟 to offset the increase of 𝑥𝑟 (and maintain

∑
𝑖 𝑥𝑖 = 1).

Separate rate variables and how to update them. As discussed in Section 1.2, due to
scale-freeness, the rate of update of 𝑥𝑖, denoted 𝑥′

𝑖
, cannot simply be some function of 𝑥𝑖,

as in standard multiplicative update algorithms. So we maintain separate rate variables 𝜌𝑖
(decoupled from 𝑥𝑖) that specify the rate at which to reduce 𝑥𝑖, i.e., 𝑥′

𝑖
= −𝜌𝑖 (plus a small

additive term and suitably normalized, but we ignore this technicality for now). Now the
key issue becomes how to update these 𝜌𝑖 variables themselves?

Consider the following two scenarios, which suggest two conflicting updates to 𝜌𝑟 , de-
pending upon the offline location 𝑦𝑟 .

(i) 𝑥𝑟 < 𝑦𝑟 . Here, the adversary can make us incur the service cost while possibly not
paying anything itself. However this is not problematic, as we will increase 𝑥𝑟 and hence get
closer to 𝑦𝑟 . Also, decreasing 𝜌𝑟 is good as it will prevent us in future from decreasing 𝑥𝑟
again too fast and move away from 𝑦𝑟 when requests arrive at locations 𝑖 ≠ 𝑟.

(ii) 𝑦𝑟 < 𝑥𝑟 . Here, increasing 𝑥𝑟 is fine, as even though we are moving away from 𝑦𝑟 , the
offline algorithm is paying a higher service cost than online. However, decreasing 𝜌𝑟 is very
bad, as this makes it much harder for online to catch up with the offline position 𝑦𝑟 later.

To summarize, in case (i), we should decrease 𝜌𝑖 and in case (ii), we should leave it
unchanged or increase it. However, the algorithm does not know the offline location 𝑦𝑟 , and
hence which option to choose.

(a) Linear Cost Function (b) yr < xr; adversary prefers (c) yr > xr: adversary prefers

{ { {α
α

α

with slope -1 large α small α

xr xr xryr yr

Figure 1 Illustration of cost functions.

Indirectly estimating 𝒚𝒓 . We note that even though the algorithm does not know 𝑦𝑟 , it
can reasonably estimate whether 𝑦𝑟 < 𝑥𝑟 or not, by looking at the structure of requests from
the adversary’s point of view. Suppose 𝑦𝑟 < 𝑥𝑟 (see Figure 1(b)). In this case, the adversary
will want to give us requests with large 𝛼; because for small 𝛼, the offline algorithm pays
much higher cost in proportion to that of online; indeed, as 𝛼 gets larger, the ratio between
the offline to online service cost tends to 1. On the other hand, if 𝑦𝑟 > 𝑥𝑟 (see Figure 1(c)),
the adversary will tend to give requests so that 𝑥𝑟 + 𝛼 ≤ 𝑦𝑟 (so offline incurs no service cost
at all), and hence keep 𝛼 small.

A problem however is that even though the online algorithm sees 𝛼 when the request
arrives, whether this 𝛼 is large or small has no intrinsic meaning as this depends on the
current scale at which the adversary is giving the instance. The final piece to make this idea
work is that the algorithm will also try to learn the scale at which the adversary is playing
its strategy. We describe this next.
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A region estimate. At each time 𝑡, and for each point 𝑖, we maintain a real number 𝑏𝑖 ≥ 0
where 𝑏𝑖 ≥ 𝑥𝑖. Intuitively, we can view 𝑏𝑖 as an (online) estimate of the “region” where the
adversary is playing the strategy, and we set the rate variable 𝜌𝑖 = 𝑏𝑖 − 𝑥𝑖. The observations
above now suggest the following algorithm. For an incoming request at point 𝑟,

(i) if 𝑥𝑟 + 𝛼 ≤ 𝑏𝑟 (this corresponds to small 𝛼 in the discussion above, which suggested
that 𝑦𝑟 > 𝑥𝑟) the algorithm increases 𝑥𝑟 and decreases 𝑏𝑟 at roughly the same rate (and
hence decreases 𝜌𝑟 = 𝑏𝑟 − 𝑥𝑟 at roughly twice the rate), and

(ii) if 𝑥𝑟 + 𝛼 > 𝑏𝑟 (this corresponds to 𝛼 being large, which suggested that 𝑦𝑟 < 𝑥𝑟),
the algorithm increases both 𝑏𝑟 and 𝑥𝑟 at roughly the same rate (and 𝜌𝑟 only increases
slowly). Note that even though the location 𝑟 is incurring a service cost, we do not necessarily
decrease 𝜌𝑟 .

Figure 2 Illustration of the update rule for 𝜌𝑟 . If 𝛼 > 𝜌𝑟 (left), then 𝑥𝑟 and 𝑏𝑟 increase and 𝜌𝑟

changes slowly. If 𝛼 < 𝜌𝑟 (right), then 𝑥𝑟 and 𝑏𝑟 move towards each other and 𝜌𝑟 decreases.

For other points 𝑖 ≠ 𝑟, 𝑏𝑖 stays fixed. So as 𝑥𝑖 decreases, this corresponds to increasing
the rate 𝜌𝑖. This step is analogous to multiplicative updates, but where the update rate is
given by distance of 𝑥𝑖 from 𝑏𝑖, where 𝑏𝑖 itself might change over time. We also call 𝑏𝑖 the
“baseline”.

A complication (in the analysis) will be that the 𝑏𝑖 themselves are only estimates and
could be wrong. E.g., even if 𝑏𝑖 is accurate at some given time, the offline algorithm can
move 𝑦𝑖 somewhere far at the next step, and start issuing requests in that region. The
current 𝑏𝑖 would be completely off now and the algorithm may make wrong moves. What
will help here in the analysis is that the algorithm is quickly trying learn the new 𝑏𝑖.

3.2 Formal description of the algorithm
At any instantaneous time 𝑡, the algorithm maintains a point 𝑥(𝑡) ∈ Δ. In addition, it also
maintains a point 𝑏(𝑡) ∈ R𝑀 , where 𝑏𝑖 (𝑡) ≥ 𝑥𝑖 (𝑡) for all 𝑖 ∈ 𝑀. Let 𝜌𝑖 (𝑡) = 𝑏𝑖 (𝑡) − 𝑥𝑖 (𝑡), for
each 𝑖 ∈ 𝑀. We specify the formal algorithm by describing how it updates the points 𝑥(𝑡)
and 𝑏(𝑡) in response to a cost function 𝑐𝑡 . Again, we drop 𝑡 from the notation hereafter.

Suppose the cost function at a given time charges cost 𝛼 at point 𝑟. Then, we increase 𝑥𝑟
at rate 𝛼 and simultaneously decrease all 𝑥𝑖 (including 𝑥𝑟 ) at rate

−𝛼 · 𝜌𝑖 + 𝛿𝑆2𝑆 ,

where 𝛿 = 1/𝑛 and 𝑆 :=
∑
𝑖 𝜌𝑖. Intuitively, one can think of 𝑆 as the current scale of the

problem (which is changing over time).
Then the overall update of 𝑥 can be summarized as

𝑥′𝑖 = 𝛼

(
𝟙𝑖=𝑟 −

𝜌𝑖 + 𝛿𝑆
2𝑆

)
for all 𝑖 ∈ 𝑀. (1)
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The baseline vector 𝑏 is updated as follows:
(i) For 𝑖 ≠ 𝑟, 𝑏𝑖 stays fixed.
(ii) For 𝑖 = 𝑟, if 𝑥𝑟 + 𝛼 > 𝑏𝑟 (or equivalently 𝛼 > 𝜌𝑟 ), then 𝑏′𝑟 = 𝛼.
(iii) For 𝑖 = 𝑟, if 𝑥𝑟 + 𝛼 ≤ 𝑏𝑟 (or equivalently 𝛼 ≤ 𝜌𝑟 ), then 𝑏′𝑟 = −𝛼. 7

See Figure 2 for an illustration. Notice that the update rules for 𝑥′
𝑖

and 𝑏′
𝑖

also ensure
that 𝑏𝑖 ≥ 𝑥𝑖. Finally, using that 𝜌𝑖 = 𝑏𝑖 − 𝑥𝑖 and writing compactly, this gives the following
update rule for 𝜌𝑖.

𝜌′𝑖 = 𝛼

(
𝜌𝑖 + 𝛿𝑆

2𝑆 − 2 · 𝟙𝑖=𝑟 and 𝜌𝑟>𝛼

)
. (2)

This completes the description of the algorithm.

Feasibility. Notice that
∑
𝑖 (𝜌𝑖 + 𝛿𝑆)/(2𝑆) = 1 and hence

∑
𝑖 𝑥

′
𝑖
= 0 and the update for 𝑥

maintains that
∑
𝑖 𝑥𝑖 = 1. In the algorithm description above, we do not explicitly enforce

that 𝑥𝑖 ≥ 0. As we show in the full version, allowing the online algorithm to decrease 𝑥𝑖
to negative values is without loss of generality. It is possible to enforce this directly in the
algorithm, but this would make the notation more cumbersome.

3.3 Analysis sketch
Due to space constraints, and because our proof of Theorem 2 yields a stronger result anyway,
we only provide a brief sketch of the analysis of our algorithm here. It is based on potential
functions. Specifically, we define a (bounded) potential Θ that is a function of the online and
offline states, and show that at any time 𝑡 it satisfies

On′ + Θ′ ≤ 𝑂 (log 𝑛) · Off′, (3)

where On′ (resp. Off′) denote the change in cost of the online (resp. offline) algorithm, and
Θ′ is the change in the potential. The potential function Θ consists of two parts defined as

(Primary potential) 𝑃 :=
∑︁

𝑖 : 𝑥𝑖≥𝑦𝑖
(𝑏𝑖 − 𝑦𝑖) log (1 + 𝛿) (𝑏𝑖 − 𝑦𝑖)

𝜌𝑖 + 𝛿(𝑏𝑖 − 𝑦𝑖)

(Scale-mismatch potential) 𝑄 :=
∑︁
𝑖

[𝜌𝑖 + 2(𝑥𝑖 − 𝑦𝑖)]+ ,

where 𝑦 ∈ Δ is the position of the offline algorithm. The overall potential is given by

Θ = 12𝑃 + 6𝑄.

One can verify, by taking derivative with respect to 𝑦𝑖 and using 𝛿 = 1/𝑛 and 𝜌𝑖 = 𝑏𝑖 − 𝑥𝑖 ≥ 0,
that Θ is 𝑂 (log 𝑛)-Lipschitz in 𝑦𝑖. Thus, the potential increases by at most 𝑂 (log 𝑛) times
the offline movement cost when 𝑦 changes. It therefore suffices to show (3) for the case that
𝑦 stays fixed and only the online algorithm moves (i.e., while 𝑥, 𝜌 and 𝑏 are changing).

Recall that 𝑆 =
∑
𝑖 𝜌𝑖 is the algorithm’s estimate of the current “scale”, and define

𝐿 :=
∑
𝑖 |𝑥𝑖 − 𝑦𝑖 |, which we may think of as the true scale of the error between the online

position 𝑥 and the (unknown) offline position 𝑦. If the current estimate of the scale is
accurate, one would expect 𝑆 ≈ 𝐿, but in general this need not be true. In the full version,
we prove the following two lemmas:

7 Strictly speaking, if 𝑥𝑟 + 𝛼 = 𝑏𝑟 both rules (ii) and (iii) apply simultaneously and 𝑏𝑟 stays fixed.
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▶ Lemma 6 (Change of the primary potential). When 𝑦 is fixed and the online algorithm
moves, the change of 𝑃 is bounded by

𝑃′ ≤ 𝑂 (log 𝑛) [𝛼 + 𝑥𝑟 − 𝑦𝑟 ]+ − (𝛼/2) min {𝐿/2𝑆 , 1} .

▶ Lemma 7 (Change of the scale-mismatch potential). When 𝑦 is fixed and the online algorithm
moves, the change of 𝑄 is bounded by

𝑄′ ≤ 2𝛼 · 𝟙𝑦𝑟 ≤𝑥𝑟+𝛼/2 − (𝛼/2) [1 − 𝐿/𝑆]+ .

Note that the offline algorithm incurs service cost at rate [𝛼 + 𝑥𝑟 − 𝑦𝑟 ]+, and the online
algorithm incurs both service and movement cost at rate 𝑂 (𝛼). In the bound on 𝑃′ in Lemma
6, the positive term can be charged against the offline service cost. If 𝑆 = 𝑂 (𝐿), then the
negative term can be used to pay for the online cost. However, if 𝑆 ≫ 𝐿, then the negative
term may be negligibly small. Intuitively, this corresponds to the case that the algorithm’s
estimate of the scale is far off from the true scale, and this possibility is the reason why we
need the scale-mismatch potential.

If 𝑦𝑟 ≤ 𝑥𝑟 + 𝛼/2, the offline service cost is at least 𝛼/2, so the positive part in the change
of 𝑄 is at most 4 times the offline service cost. The negative part in Lemma 7 pays for the
online cost if 𝑆 ≫ 𝐿, which is precisely the case not covered by the primary potential. So,

Θ′ = 12𝑃′ + 6𝑄′ ≤ 𝑂 (log 𝑛) · Off′ − 3𝛼 (min {𝐿/𝑆, 2} + [1 − 𝐿/𝑆]+)
≤ 𝑂 (log 𝑛) · Off′ − 3𝛼,

which yields the desired inequality (3) because the online service cost is 𝛼 and online movement
cost is at most 2𝛼.

4 Time-varying regularization and refined guarantees on weighted
stars

We now turn to an improved algorithm for weighted stars, achieving the refined guarantees
of Theorem 2 that the service cost is (1 + 𝜖)-competitive. To do so, we first reinterpret our
previous algorithm through the lens of mirror descent.

4.1 Online mirror descent
The online mirror descent framework has been useful to derive optimally competitive al-
gorithms for problems where the state of an algorithm can be described by a point in a
convex body (e.g., set cover, 𝑘-server, MTS [15, 12, 11, 16, 19]). That is, the algorithm can
be described by a path 𝑥 : [0,∞) → 𝐾 for a convex body 𝐾 ⊂ R𝑛, such that 𝑥(𝑡) describes
the state of the algorithm at time 𝑡 (in our case, 𝐾 = Δ is the simplex). In the framework,
the dynamics of an algorithm 𝑥 is specified by a differential equation of the form

∇2Φ(𝑥(𝑡)) · 𝑥′ (𝑡) = 𝑓 (𝑡) − 𝜆(𝑡) (4)

where Φ : 𝐾 → R is a suitable convex function called the regularizer, ∇2Φ(𝑥(𝑡)) is its Hessian
at 𝑥(𝑡), 𝑓 : [0,∞) → R𝑛 is called a control function, and 𝜆(𝑡) is an element of the normal
cone of 𝐾 at 𝑥(𝑡), given by

𝑁𝐾 (𝑥(𝑡)) := {𝜆 ∈ R𝑛 : ⟨𝜆, 𝑦 − 𝑥(𝑡)⟩ ≤ 0, ∀𝑦 ∈ 𝐾}.
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Under suitable conditions (which are all satisfied here), the path 𝑥 is uniquely defined by (4)
and absolutely continuous in 𝑡 [12]. The equation (4) is easiest to read if we imagine that
∇2Φ(𝑥(𝑡)) were the identity matrix. Then (4) says that 𝑥 tries to move in direction 𝑓 (𝑡),
and the normal cone element 𝜆 ensures that 𝑥(𝑡) does not leave the body 𝐾. The case when
∇2Φ(𝑥(𝑡)) is different from the identity matrix corresponds to imposing a different (e.g., non-
Euclidean) geometry on 𝐾. When Φ is fixed, the framework allows a black-box way to prove 1-
competitive service cost using the Bregman divergence 𝐷Φ (𝑦∥𝑥) := Φ(𝑦)−Φ(𝑥)+⟨∇Φ(𝑥), 𝑥−𝑦⟩
as a potential function.

We show in the full version that the dynamics (1) of 𝑥 defined in the previous section is
precisely equivalent to equation (4) when choosing the time-varying regularizer

Φ𝑡 (𝑥) :=
∑︁
𝑖

(𝑏𝑖 (𝑡) − 𝑥𝑖 + 𝛿𝑆(𝑡)) log
(
𝑏𝑖 (𝑡) − 𝑥𝑖
𝑆(𝑡) + 𝛿

)
(5)

for 𝑆(𝑡) :=
∑
𝑖 𝑏𝑖 (𝑡) − 1, and the control function

𝑓 (𝑡) := 𝛼𝑡

𝑏𝑟𝑡 (𝑡) − 𝑥𝑟𝑡 (𝑡) + 𝛿𝑆(𝑡)
𝑒𝑟𝑡 ,

where 𝑒𝑟𝑡 denotes the 0-1-vector with a 1 only in the 𝑟𝑡 -coordinate, and 𝛼𝑡 is the cost charged
at 𝑟𝑡 at time 𝑡.

To achieve the refined guarantees, we replace 𝛼𝑡 by 𝑏𝑟𝑡 (𝑡) − 𝑥𝑟𝑡 (𝑡) in the control function,
and use a very similar regularizer that incorporates a scaling factor and the weights of the
star. The most subtle parts in the proof of Theorem 2 are the way the baseline vector 𝑏𝑖 is
updated (which differs from how it was done in the previous section) and several modifications
to the Bregman divergence in order to handle the time-varying nature of Φ𝑡 . Due to space
constraints, we defer all details to the full version.
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Abstract
Graphs with multiple edge costs arise naturally in the route planning domain when apart from
travel time other criteria like fuel consumption or positive height difference are also objectives to
be minimized. In such a scenario, this paper investigates the number of extreme shortest paths
between a given source-target pair s, t. We show that for a fixed but arbitrary number of cost types
d ≥ 1 the number of extreme shortest paths is in nO(logd−1 n) in graphs G with n nodes. This is a
generalization of known upper bounds for d = 2 and d = 3.
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1 Introduction

Given a finite set of points P ⊂ Rd, what is the number of vertices (or extreme points)
of the convex hull of P? This is a frequently asked question, for instance, in the area of
Multi-objective Linear Programming [3] or in probability theory [4]. In this work, we examine
this question for the case when P is the set of cost vectors of paths in a graph G (V, E) with
multiple edge costs.

Multi-objective path computation has obvious applications in the transportation domain,
where the cost values (also called metrics) might correspond to quantities like travel time,
fuel consumption, or positive height difference.

Figure 1 shows example cost vectors with two metrics. The red points are non-dominated
(or Pareto-optimal) and, thus, may be the solution to constrained minimization problems.
However, optimizing over all non-dominated cost vectors often turns out to be too expensive
as, for instance, in the constrained shortest path problem [12, 14]. A typical strategy in such
cases is to restrict the set of possible solutions to the non-dominated extreme points of the
convex hull (circled in blue). The extreme points have the property that for any convex
combination of the metrics there is at least one extreme point optimal for it. Therefore,
extreme points are interesting on their own and one can hope that restricting the search to
extreme points will lead to a good approximation of the optimal solution.
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Let Pst be the set of cost vectors of all simple paths from a node s to a node t in a
graph G. While it is easy to see that the number of non-dominated points in Pst can be
exponential in the size of G, there is little known about the complexity of the extreme
points in Pst. In this work we tackle the problem of counting the extreme points in Pst,
which we call extreme shortest paths. We show that the number of extreme shortest paths
in Pst is in nO(logd−1 n), where n is the number of nodes in G and d is the fixed number of
metrics. Thus, complexity-wise there is indeed a considerable gap between extreme points
and non-dominated points in Pst.

There are multiple ways to model multi-objective shortest path problems. A well
established one is the parametric shortest path problem, which is typically formulated for the
two-metric case. We have decided to use the variant developed in the context of personalized
route planning [10, 8] as it fits very well to practical application scenarios. Complexity-wise
there is no difference between these two models.

cost1

cost2

1

1

5

5

Figure 1 Paths in cost space (black and red dots); Pareto-optimal paths (red); (lower left part of)
the boundary of the convex hull of all Pareto-optimal paths in green; extreme shortest paths/extreme
points of the CH circled in blue; shortest (but not extreme) path dot-circled in blue.

Related Work
For the comparison with related work let us first define the well-studied parametric shortest
path problem as in [9]. Given an acyclic, directed graph G (V, E) the weights we of the edges
e ∈ E are linear functions of the form

we (λ) := aeλ + be.

The cost of a path p is then given by C (p, λ) :=
∑

e∈p we (λ). Clearly, if we compute the
shortest path from a node s ∈ V to a node t ∈ V for different values of λ, we may get
different paths. Let Πst bet the set of all paths from s to t. Then

C (λ) := min
p∈Πst

C (p, λ)
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is the shortest path cost function, which is a concave, piece-wise linear function. The maximum
possible number of pieces of C (λ) with respect to the size of G is called the parametric
shortest path complexity. Complexity-wise, counting the pieces of C (λ) is equivalent to
counting extreme shortest paths from s to t. Therefore, all results regarding the parametric
shortest path complexity are closely related to our work.

For the two-metric case, it is well known that the number of pieces in C (λ) is upper
bounded by nO(log n), where n is the number of nodes in G [11]. This upper bound is tight
[5, 6, 15], even for planar graphs [9].

Gajjar and Radhakrishnan [9] extend the parametric shortest path problem to three
dimensions by setting

we (λ := (λ1, λ2, λ3)) := aeλ1 + beλ2 + ceλ3.

They show that in this case the number of extreme shortest paths is in n(log n)2+O(log n).
We are not aware of any results regarding the parametric shortest path complexity beyond

three dimensions. Parts of our way (especially Section 3.2) to prove the general upper bound
are inspired by the proof for three dimensions in [9].

Both, Pareto-optimal paths as well as extreme shortest paths have been instrumented
to create alternative route recommendations. The former approach, pursued e.g. in [7, 13],
unfortunately only seems to be viable on rather small graphs due to the too rapidly growing
number of Pareto-optimal paths. Restricting to extreme shortest paths, though, as in [8],
has been shown to be feasible in different practical application scenarios [2, 1].

2 Preliminaries

In this section, we introduce the notions used in Section 3 and show some basic, well known
properties.

For a set f ⊆ Rd, we define its dimension dim (f) to be the maximum number of affinely
independent points in f minus one. For a finite set P ⊂ Rd we denote the number of elements
in P with |P |.

▶ Definition 1. The d-metric preference space Pd is defined as follows.

Pd := {(α1, α2, . . . , αd) ∈ Rd
≥0 |

d∑
i=1

αi = 1}

Note that the d-metric preference space is a (d − 1)-dimensional simplex in d dimensions.
Given a finite set of points P ⊂ Rd with v ∈ P , let fP (v) ⊆ Pd be the set of preferences for
which αvT is minimal, where αvT is the dot product of the (row) vectors α, v. Or more
formally,

fP (v) := {α ∈ Pd | α (v − v′)T ≤ 0 ∀v′ ∈ P}. (1)

▶ Definition 2. Given a finite set of points P ⊂ Rd, a subset P ′ ⊆ P is a preference cover
(PC) of P if and only if⋃

v∈P ′

fP (v) = Pd. (2)

The following lemma states that there is a special, minimal PC for each finite point set P .
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▶ Lemma 3. Given a finite set of points P ⊂ Rd and let X := {v ∈ P | dim (fP (v)) = d−1},
then X is a PC of P and it holds

|X| = min
P ′ is PC of P

|P ′|.

Proof. Let M := minP ′ is PC of P |P ′|. As the number of points in P is finite and because
the inequality in (1) is not strict, it holds⋃

v∈X

fP (v) = Pd.

Thus, X is a PC of P and |X| ≥ M. Moreover, for each v ∈ X one can find an α ∈ Pd with

αvT < αv′T ∀v′ ∈ P \ {v}.

It follows that |X| ≤ M and, thus, |X| = M. ◀

The following definition is motivated by Lemma 3.

▶ Definition 4. Given a finite set of points P ⊂ Rd, we call the subset

M (P ) := {v ∈ P | dim (fP (v)) = d − 1}

minimum preference cover (MPC) of P .

▶ Definition 5. Given a finite set of points P ⊂ Rd, the d-metric preference space subdivision
(PSS) Sd (P ) (or simply S (P )) is the arrangement induced by the set {fP (v) | v ∈ P}. We
write fr

P ∈ Sd (P ) for an r-dimensional facet of Sd (P ).

Figure 2 shows an example 3-metric PSS. The following lemma motivates the term
subdivision.

▶ Lemma 6. Given a finite set of points P ⊂ Rd with d > 1, for any two v, v′ ∈ M (P ) we
have dim (fP (v) ∩ fP (v′)) < d − 1. Furthermore, for any v ∈ P there is a v′ ∈ M (P ) with
fP (v) ⊆ fP (v′).

Proof. Given two points v, v′ ∈ M (P ), let H be the hyperplane described by α (v − v′)T =
0, α ∈ Rd. For the first part of the lemma we have to show that dim (H ∩ Pd) ≤ d − 2. This
is the case if Pd ⊈ H. The vector v − v′ must have at least one positive and one negative
entry (otherwise, one vector would dominate the other). Thus, H cannot be parallel to∑

i≤d αi = 1 and Pd ⊈ H follows.
Now we come to the second part of the lemma. If dim (fP (v)) = d − 1, then v ∈ M (P )

and we are finished. Thus, we may assume that 0 < dim (fP (v)) < d − 1. From Lemma 3
we know that

fP (v) = {α ∈ Rd | α (v − v′)T ≤ 0 ∀ v′ ∈ M (P )}.

Therefore, if dim (fP (v)) < d − 1, there must be a point v′ ∈ M (P ) and a hyperplane H ′

described by α (v − v′)T = 0 with fP (v) ⊆ H ′. It follows that fP (v) ⊆ fP (v′). ◀

In fact, a PSS looks similar to a Voronoi diagram.

▶ Definition 7. Given a finite set of points P ⊂ Rd, then φr
d (P ) is the number of r-

dimensional facets in the PSS S (P ).
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Figure 2 Example 3-metric preference space subdivision S3.

Throughout this work, we assume that a graph G (V, E) with directed edges, without
multi-edges and with n nodes is given. A path π := u1e1u2e2 . . . elul+1 in G is an alternating
sequence of nodes and edges that starts and ends with a node. Furthermore, for each edge
ei ∈ π it holds ei = (ui, ui+1). We say that a path π is simple if it contains each node u ∈ V

at most once.
A d-metric (or d-dimensional) cost function c : E → Rd

≥0 maps edges to (non-negative)
cost vectors. We extend c to paths π as follows.

c (π) :=
∑
e∈π

c (e)

We define Cd to be the set of all d-metric cost functions of E.
Let Π be a set of paths (or: path set) in G and c a cost function for E. Then we define

the point set P (Π, c) as follows.

P (Π, c) := {c (π) | π ∈ Π}

With Πst (l) we denote all simple paths from s ∈ V to t ∈ V (with s and t being arbitrary
but fixed nodes) with at most ⌈l⌉ edges (l is a real number as we need to divide it by two in
a recursion later on). We call Πst (l) a complete path set.

▶ Definition 8. Given a path set Π, we define φr
d (Π) with 1 ≤ r ≤ d − 1 as

φr
d (Π) := max

c∈Cd

φr
d (P (Π, c)) .

Note that, by Lemma 6, it holds φd−1
d (Π) = maxc∈Cd

|M (P (Π, c)) |.

▶ Definition 9. Given a path set Π and a cost function c ∈ Cd, an element v ∈ P (Π, c) =: P

is an extreme shortest path with respect to Π and c if and only if v ∈ M (P ). Furthermore,
for a preference α ∈ Pd we call a cost vector v ∈ M (P ) α-shortest path with respect to P if
and only if α ∈ fP (v).

There are a few possibly confusing things to clarify here. First, we call the elements in M (P )
extreme shortest paths even though they are mere cost vectors. The reason is that there is a
bijective relationship between elements in P and Π as long as no two paths in Π have the
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same cost vector. However, if there are multiple paths in Π with the same cost vector we
prefer to count them only once. This is the reason why we focus on the set P instead of the
set Π.

Second, if a cost vector v is an extreme shortest path depends on the path set Π. For
instance, if Π := {π}, then any cost vector v = c (π) is an extreme shortest path. Thus, if we
say that v is an extreme shortest path, this is always with respect to some path set Π and
cost function c that we either mention explicitly or that should be clear from the context.

Third, a cell of a d-metric PSS Sd (P ) is a (d − 1)-dimensional and not a d-dimensional
facet. The reason is that the preference space Pd lives in d dimensions but is itself a
(d − 1)-dimensional object (because the preferences sum up to one).

This work is about finding an upper bound for the number of extreme shortest paths in
P (Πst (n) , c) in arbitrary dimensions d and for arbitrary cost functions c ∈ Cd.

Comparison of Personalized Route Planning and Parametric Shortest
Path Problem
In the parametric shortest path problem, as defined for three dimensions in [9], the edge
costs have the form

c
(
e ∈ E, λ ∈ Rd

)
:= λc (e)T (3)

with c : E → Rd. In contrast to the definition in [9], λ1 is typically set to one. However,
note that the shortest path problem is homogeneous in the sense that if we scale all edge
costs by a factor δ > 0 we also scale the extreme shortest paths by δ. Thus, as argued in [9],
(3) can always be scaled to either λ1 = 1 or λ1 = −1. The complexity of these two versions
therefore can only differ by a factor of two.

In the personalized route planning model the edge costs are defined as

c (e ∈ E, α ∈ Pd) := αc (e)T (4)

with c : E → Rd
≥0. The differences between (4) and (3) are that the preferences α ∈ Pd

and cost vectors are non-negative and the preferences sum up to one. We can handle the
normalization with the same scaling argument as above. The non-negativity makes sure that
there are no negative cost cycles in G regardless of α. This issue is treated differently in the
parametric shortest path problem by requiring G to by acyclic. In the end, it is a matter of
taste which requirement to choose. With minor adjustments our proofs also work for the
case when G is acyclic and the costs and preferences are allowed to be negative.

3 A General Upper Bound on the Number of Extreme Shortest Paths

In this section we prove the following theorem.

▶ Theorem 10. For any fixed but arbitrary d ≥ 1 and any cost function c ∈ Cd the number
of extreme shortest paths in P (Πst (n) , c) is upper bounded by nO(logd−1 n).

▶ Definition 11. We define φr
d (n, l) to be the maximum of φr

d (Πst (l)) over all possible
graphs G (V, E) with n nodes and all possible node pairs s, t ∈ V .

Thus, Theorem 10 is equivalent to the statement φd−1
d (n, n) ∈ nO(logd−1 n). We prove

Theorem 10 with a recursion of the form φd−1
d (n, n) ≤ f

(
φd−2

d−1 (n, n)
)
. Thus, we upper

bound φd−1
d (n, n) with a recursion in the dimension d, which is an idea also used in the

proof of the upper bound for d = 3 in [9].
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Figure 3 Example preference space subdivision with red hyperplane intersection.

We obtain the function f as follows. First, we show that the intersection of a d-
dimensional PSS and a hyperplane can have at most the complexity of a (d − 1)-dimensional
PSS (Lemma 12). In fact, this observation is based on a similar result shown in [9] in the
context of parametric shortest paths. Second, we use this insight to upper bound φd−2

d (n, l)
for special path sets (Lemma 13 and 14), which then allows us to construct a second recursion
of the form φd−2

d (n, l) ≤ g
(
φd−2

d

(
n, l

2
))

. This leads to an upper bound for φd−2
d (n, l) based

on φd−2
d−1 (n, l) (Lemma 15). The proof of Theorem 10 then uses Lemma 15 together with an

observation we discuss in Section 3.1 to construct the function f . We consider Lemma 13
and 14 in Section 3.3 as our main contributions as these ingredients allow us to generalize
the ideas shown in [9] to arbitrary values d.

3.1 A First Upper Bound on the Number of Cells
The number of (d − 2)-dimensional facets in a PSS is an upper bound of the number of
(d − 1)-dimensional facets in the same PSS for the following reasons. Given any finite point
set P ⊂ Rd with d > 1. Each facet fd−2

P of Sd (P ) supports at most two (d − 1)-dimensional
facets. Moreover, every facet fd−1

P is supported by at least d (d − 2)-dimensional facets. This
is true because the preference space Pd is bounded itself and, thus, there is no unbounded
cell in Sd (P ). Therefore, we have

φd−1
d (P ) ≤ 2

d
φd−2

d (P ). (5)

For the case d = 1, our task of counting extreme shortest paths is simple. It holds

φ0
1 (P ) ≤ 1 (6)

for any finite point set P because M (P ) = {minv∈P v}.

3.2 Bounding the Complexity of PSS Intersections
In this section we show that the complexity of the intersection of a hyperplane with a d-metric
PSS is upper bounded by the complexity of a (d − 1)-metric PSS. This observation is a
crucial ingredient of our proof of Theorem 10 as it allows us to construct recursive upper
bounds in the dimension d. The authors of [9] prove a similar statement in the context of
parametric shortest paths. As their setting and notation slightly differ from ours, we decided
to give a proof of the following lemma.
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▶ Lemma 12. Let d > 1 and let Hd be a hyperplane in d dimensions with Pd ⊈ Hd that
intersects the preference space Pd. Then for any path set Π and cost function c ∈ Cd the set
Y := {fd−1

P (Π, c) ∩ Hd | dim
(

fd−1
P (Π, c) ∩ Hd

)
= d − 2} has at most φd−2

d−1 (Π) elements.

Proof. We fix an arbitrary cost function c ∈ Cd and define P := P (Π, c). See Figure 3 for
an example of the intersection Hd ∩ Pd. The set Z := {f ∩ Hd | f ∈ Sd (P )} looks like a
(d − 1)-metric PSS. However, it is unclear whether the complexity bounds for (d − 1)-metric
PSS also apply for sets like Z, which live in d dimensions. This lemma says that the answer
is yes in the case of extreme shortest paths.

Our strategy to prove Lemma 12 looks as follows.
1. We show that for each v ∈ P there is at most one f ∈ Y with dim (fP (v) ∩ f) = d − 2.
2. We define mappings η : Rd → Rd−1 and β : Hd ∩ Pd → Pd−1 such that for each

α ∈ Hd ∩ Pd and each v ∈ P it holds αvT = β (α) η (v)T .
We prove these points later on and first show that they are sufficient to prove the lemma.
Let η (P ) and β (fP ) be the mapped sets P and fP . It follows from the second point that
for any v ∈ P with dim (fP (v) ∩ Hd) = d − 2 it holds

β (fP (v) ∩ Hd) ⊆ fη(P ) (η (v)) .

Therefore, for each f ∈ Y there is also an extreme shortest path v′ ∈ M (η (P )) with
β (fP (v)) ⊆ fη(P ) (η (v′)) (see Lemma 6).

Let v′ ∈ M (η (P )) be any extreme shortest path with respect to η (P ). Then the set
W := {f ∈ Y | β (f) ⊆ fη(P ) (v′)} contains at most one element. Otherwise, we could take
any cost vector v ∈ P with η (v) = v′ and show, using point two, that all elements of W are
subsets of fP (v). This contradicts the first point.

In summary, for each element f ∈ Y we find an extreme shortest path v′ ∈ M (η (P ))
with β (f) ⊆ fη(P ) (v′). Furthermore, for each extreme shortest path v′ ∈ M (η (P )) we find
at most one f ∈ Y with β (f) ⊆ fη(P ) (v′). Thus, it is possible to injectively map Y to
M (η (P )). As |M (η (P )) | ≤ φd−2

d−1 (Π) by definition and because we chose the cost function
c arbitrarily, this finishes the proof.

It remains to show that the two points are correct. Assume that we find a cost vector
v ∈ P and two elements f1, f2 ∈ Y with f1 ⊆ fP (v) and f2 ⊆ fP (v). We know from Lemma
6 that there is a v′ ∈ M (P ) with fP (v) ⊆ fP (v′). Let f3 := fP (v′) ∩ Hd. Clearly, f1 ⊆ f3
and f2 ⊆ f3. As f1 ̸= f2 at least one of them cannot be equal to f3. W.l.o.g. let f2 ⊂ f3.

By definition of Y , we find a shortest path v2 ∈ M (P ) with f2 = fP (v2) ∩ Hd. As
f2 ⊂ Hd and f3 ⊂ Hd it follows that Hd is described by α (v′ − v2)T = 0. But then
fP (v2) ∩ Hd = fP (v′) ∩ Hd = f3, which is a contradiction to f2 ⊂ f3.

We come to the second point. W.l.o.g. let the intersection Hd ∩ Pd be describable by an
equation of the form

α1 = x2 · α2 + x3 · α3 + · · · + xd−1 · αd−1 + b =: f (α)

with xi, b ∈ R. We map each point v := (v1, v2, . . . , vd) ∈ P to

η (v) := (v2 + v1 · ṽ2,1 + vd · ṽ2,d, v3 + v1 · ṽ3,1 + vd · ṽ3,d, . . . , vd + v1 · ṽd,1 + vd · ṽd,d)

with ṽi,1 = xi +b, ṽi,d = − (xi + b) and xd = 0. Note that η reduces the number of dimensions
by one. Let η (P ) be the set of mapped points of P . By definition, Sd−1 (η (P )) has at most
φd−2

d−1 (n, l) (d − 2)-dimensional facets. Thus, there are at most φd−2
d−1 (n, l) extreme shortest

paths in η (P ).
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Let the map β : Hd ∩ Pd → Pd−1 be defined as follows.

β (α) = (α2, α3, . . . , αd + α1)

For any v ∈ P and α ∈ Hd ∩ Pd we have

α · vT =
(

f (α) , α2, . . . , 1 − f (α) −
∑

1<i<d

αi

)
· (v1, . . . , vd)T

=f (α) (v1 − vd) + vd +
∑

1<i<d

αi (vi − vd)

=b (v1 − vd) + (α1 + αd) vd +
∑

1<i<d

αixi (v1 − vd) +
∑

1<i<d

αivi

= (α1 + αd) (vd + v1ṽd,1 + vdṽd,d) +
∑

1<i<d

αi (vi + v1ṽi,1 + vdṽi,d)

=β (α) η (v)T
. ◀

3.3 Decomposing Path Sets
In this section we first look at path sets Πsut that can be written as the pairwise concatenation
of two path sets Πsu and Πut that end/start at a common node u. We will see that in such
a scenario the PSS S (P (Πsut, c)) is the overlay of S (P (Πsu, c)) and S (P (Πut, c)) for any
cost function c (see Figure 4 for an example). Thus, we can upper bound φd−2

d (Πsut) with
the help of Lemma 12.

▶ Lemma 13. Let Πsu and Πut be two path sets such that each path in Πsu ends at node u ∈ V

and each path in Πut starts at node u. Furthermore, let Πsut := {π1π2 | π1 ∈ Πsu, π2 ∈ Πut}
be the pairwise concatenation of Πsu and Πut. Then it holds

φd−2
d (Πsut) ≤ φd−2

d−1 (Πut) · φd−2
d (Πsu) + φd−2

d−1 (Πsu) · φd−2
d (Πut) .

Proof. We fix an arbitrary cost function c ∈ Cd and prove the inequality for c. Let Psut :=
P (Πsut, c), Psu := P (Πsu, c) and Put := P (Πut, c). Given any α ∈ Pd, let vsu and vut be
the α-shortest paths in Psu and Put. Then with vsut := vsu + vut it holds vsut ∈ Psut and
vsut is the α-shortest path in Psut. This is true because all paths in Πsut go via node u.
Thus, S (Psut) is the overlay of S (Psu) and S (Put).

Every facet fd−2
Psu

is part of a hyperplane Hd. If we let Hd intersect the preference
subdivision Sd (Put) we know from Lemma 12 that this intersection contains no more than
φd−2

d−1 (Πut) (d − 2)-dimensional facets. Thus, in the overlay of S (Psu) and S (Put) the facet
fd−2

Psu
can be split into at most φd−2

d−1 (Πut) (d − 2)-dimensional facets as well. An analogous
statement holds for the facets fd−2

Put
, which finishes the proof. ◀

The following lemma addresses the problem of upper bounding φd−2
d (Π′) if the path set Π′

is the union of multiple path sets.

▶ Lemma 14. Given k path sets Π1, Π2, . . . , Πk and let Π′ :=
⋃

1≤i≤k Πi, then it holds for
every d > 1

φd−2
d (Π′) ≤ 2 · k · φ′ ·

∑
1≤i≤k

φd−2
d (Πi) ,

with φ′ := max1≤i≤k φd−2
d−1 (Πi).
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Figure 4 This figure illustrates the meaning of Lemma 13. With the two path sets Πsu and Πut

the PSS S (Psut), as defined in Lemma 13, is the overlay of S (Psu) and S (Put). An edge f1
Psu

can
cause multiple edges in the PSS S3 (Psut) by intersecting the PSS S3 (Put). Lemma 13 says that
f1

Psu
can be split into at most φ1

2 (Πut) many edges in S3 (Psut).

Proof. We fix an arbitrary cost function c ∈ Cd and define P ′ := P (Π′, c) and Pi := P (Πi, c)
for all 1 ≤ i ≤ k.

Now, let us fix a facet fd−2
P ′ ∈ S (P ′). The facet is part of a hyperplane H that is described

by α (v1 − v2)T = 0 with v1, v2 ∈ M (P ′) and v1 ̸= v2.
We first assume that v1 and v2 belong to the same set Pi. As Pi ⊆ P ′, we have v1, v2 ∈

M (Pi) and fP ′ (v1)∩fP ′ (v2) ⊆ fPi
(v1)∩fPi

(v2). Therefore, dim (fPi
(v1) ∩ fPi

(v2)) = d−2
and there is a facet fd−2

Pi
= fPi

(v1) ∩ fPi
(v2). Thus, we have at most φd−2

d (Πi) such pairs
v1, v2 in M (Pi).

We now assume that v1 and v2 belong to different sets Pi and Pj . From Pi ∪ Pj ⊆ P ′ it
follows that fP ′ (v1) ∩ fP ′ (v2) ⊆ fPi

(v1) ∩ fPj
(v2). Thus, dim

(
fPi

(v1) ∩ fPj
(v2)

)
≥ d − 2.

Therefore, there must be a facet fd−2
Pi

or fd−2
Pj

(or both) that intersects with fPi (v1) ∩
fPj

(v2).
In summary, for each facet fd−2

P ′ we either find a corresponding facet fd−2
Pi

with fd−2
P ′ ⊆

fd−2
Pi

(case one) or an intersection fd−2
Pi

∩fd−1
Pj

(or fd−1
Pi

∩fd−2
Pj

) with dim
(

fd−2
Pi

∩ fd−1
Pj

)
= d−2

(case two). Clearly, we can upper bound the first case with
∑

1≤i≤k φd−2
d (Πi).

The second case we handle with the help of Lemma 12. The intersection of the facet
fd−2

Pi
with any PSS Sd (Pj) can contain at most φd−2

d−1 (Πj) ≤ φ′ (d − 2)-dimensional facets
(Lemma 12). Moreover, there are at most two extreme shortest paths in Pi that are adjacent
to fd−2

Pi
. Thus, in total the facet fd−2

Pi
can contribute to at most 2 · (k − 1) · φ′ intersections

of case two. Therefore, the number of facets fd−2
P ′ of case two can be upper bounded by

2 · (k − 1) · φ′ ·
∑

1≤i≤k φd−2
d (Πi).

With
∑

1≤i≤k φd−2
d (Πi) + 2 · (k − 1) · φ′ ·

∑
1≤i≤k φd−2

d (Πi) ≤ 2 · k · φ′ ·
∑

1≤i≤k φd−2
d (Πi)

the statement follows. ◀

3.4 Proving the Upper Bound via Recursion
In the following lemma we describe a recursive upper bound for φd−2

d (n, l) in the dimension
d, which we then use to prove Theorem 10.

▶ Lemma 15. φd−2
d (n, l) ≤ d · l2 · n2 log l · φd−2

d−1 (n, l)2 log l for d > 1.

Proof. We prove Lemma 15 for an arbitrary complete path set Πst (l) and cost function
c ∈ Cd and define Pst := P (Πst (l) , c). We first introduce path sets Πsut := {π ∈ Πst (l) | u ∈
V divides π into subpaths of at most ⌈ l

2 ⌉ edges}. Clearly, each path π ∈ Πst (l) is contained
in at least one path set Πsut. Thus, we can apply Lemma 14 and get
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φd−2
d (Πst (l)) ≤ 2 · n · φd−2

d−1 (n, l) ·
∑
u∈V

φd−2
d (Πsut) , (7)

as one can easily show that φd−2
d−1 (n, l) ≥ maxu∈V φd−2

d−1 (Πsut).
The path sets Πsut can be written as the pairwise concatenation of the path sets Πsu

(
l
2
)

and Πut

(
l
2
)
. Thus, they satisfy the requirements to apply Lemma 13 such that for each

node u we get

φd−2
d (Πsut) ≤ φd−2

d−1

(
Πut

(
l

2

))
· φd−2

d

(
Πsu

(
l

2

))
+ φd−2

d−1

(
Πsu

(
l

2

))
· φd−2

d

(
Πut

(
l

2

))
≤ 2 · φd−2

d−1

(
n,

l

2

)
· φd−2

d

(
n,

l

2

)
.

(8)

If we combine (7) and (8), we get

φd−2
d (Πst (l)) ≤ 4 · n2 · φd−2

d−1 (n, l) · φd−2
d−1

(
n,

l

2

)
· φd−2

d

(
n,

l

2

)
≤ 4 · n2 · φd−2

d−1 (n, l)2 · φd−2
d

(
n,

l

2

)
.

(9)

Using this recursion in l we obtain with φd−2
d (n, 1) = d

φd−2
d (Πst (l)) ≤ d · 4log l · n2 log l · φd−2

d−1 (n, l)2 log l

= d · l2 · n2 log l · φd−2
d−1 (n, l)2 log l

.
(10)

◀

Proof of Theorem 10. We need to show that φd−1
d (n, n) ∈ nO(logd−1 n) for a fixed but

arbitrary number of cost types d ≥ 1. From Lemma 15 we know that φd−2
d (n, n) ≤

d · n2+2 log n · φd−2
d−1 (n, n)2 log n. With (5) we get φd−1

d (n, n) ≤ 2 · n2+2 log n · φd−2
d−1 (n, n)2 log n.

With φ0
1 (n, n) = 1 this leads to φd−1

d (n, n) ∈ nO((2·log n)d−1), which is, for a fixed d, equal
to φd−1

d (n, n) ∈ nO(logd−1 n). ◀

4 Conclusions

In this paper we showed that the number of extreme shortest paths in a graph G is upper
bounded by nO(logd−1 n), where n is the number of nodes and d is the fixed but arbitrary
number of edge costs in G. This is a generalization of previous results in the context of
parametric shortest paths for two and three dimensions.

An open question is whether one can also generalize the matching two-dimensional lower
bounds shown in [5].
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Given a graph G and two independent sets Is and It of size k, the Independent Set Recon-
figuration problem asks whether there exists a sequence of independent sets (each of size k)
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so-called reconfiguration step. Viewing each independent set as a collection of k tokens placed on the
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Token Jumping problem [17, 22, 26, 8]. As for the Token Sliding problem, which is mentioned in
most of these papers, almost nothing is known beyond the fact that the problem is polynomial-time
solvable on trees [11] and interval graphs [6]. We remedy this situation by introducing a new model
for the reconfiguration of independent sets, which we call galactic reconfiguration. Using this new
model, we show that (standard) Token Sliding is fixed-parameter tractable on graphs of bounded
degree, planar graphs, and chordal graphs of bounded clique number. We believe that the galactic
reconfiguration model is of independent interest and could potentially help in resolving the remaining
open questions concerning the (parameterized) complexity of Token Sliding.
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naturally arise in the fields of mathematical puzzles, operational research, computational
geometry [23], bioinformatics, and quantum computing [13] for instance. These questions
received a substantial amount of attention under the so-called combinatorial reconfiguration
framework in the last few years [9, 28, 30]. We refer the reader to the surveys by van den
Heuvel [28] and Nishimura [24] for more background on combinatorial reconfiguration.

In this work, we focus on the reconfiguration of independent sets. Given a simple
undirected graph G, a set of vertices S ⊆ V (G) is an independent set if the vertices of S

are all pairwise non-adjacent. Finding an independent set of maximum cardinality, i.e., the
Independent Set problem, is a fundamental problem in algorithmic graph theory and is
known to be not only NP-hard, but also W[1]-hard and not approximable within O(n1−ϵ),
for any ϵ > 0, unless P = NP [31].

We view an independent set as a collection of tokens placed on the vertices of a graph such
that no two tokens are adjacent. This gives rise to two natural adjacency relations between
independent sets (or token configurations), also called reconfiguration steps. These two
reconfiguration steps, in turn, give rise to two combinatorial reconfiguration problems. In the
Token Jumping (TJ) problem, introduced by Kamiński et al. [20], a single reconfiguration
step consists of first removing a token on some vertex u and then immediately adding it back
on any other vertex v, as long as no two tokens become adjacent. The token is said to jump
from vertex u to vertex v. In the Token Sliding (TS) problem, introduced by Hearn and
Demaine [15], two independent sets are adjacent if one can be obtained from the other by a
token jump from vertex u to vertex v with the additional requirement of uv being an edge
of the graph. The token is then said to slide from vertex u to vertex v along the edge uv.
Note that, in both the TJ and TS problems, the size of independent sets is fixed. Generally
speaking, in the Token Jumping and Token Sliding problems, we are given a graph G

and two independent sets Is and It of G. The goal is to determine whether there exists a
sequence of reconfiguration steps – a reconfiguration sequence – that transforms Is into It

(where the reconfiguration step depends on the problem).
Both problems have been extensively studied, albeit under different names [6, 7, 11, 12,

16, 19, 20, 22]. It is known that both problems are PSPACE-complete, even on restricted
graph classes such as graphs of bounded bandwidth (and hence pathwidth) [29] and planar
graphs [15]. On the positive side, it is easy to prove that Token Jumping can be decided in
polynomial time on trees (and even on chordal graphs) since we simply have to iteratively
jump tokens to leaves (resp. vertices that only appear in the bag of a leaf in the clique
tree) to transform an independent set into another. Unfortunately, for Token Sliding, the
problem becomes more complicated because of what we call the bottleneck effect. Indeed,
there might be a lot of empty leaves in the tree but there might be a bottleneck in the graph
that prevents us from reaching these desirable vertices. For instance, consider a star plus a
long subdivided path attached to the center of the star. One cannot move any token from
the leaves of the star to the path if there are at least two tokens on the leaves (in other
words, two tokens adjacent to a cut-vertex prevent us from using the cut vertex). Even if
we can overcome this issue for instance on trees [11] and on interval graphs [6], the Token
Sliding problem remains much “harder” than the Token Jumping problem. In split graphs
for instance (which are chordal), Token Sliding is PSPACE-complete [4]. Lokshtanov
and Mouawad [21] showed that, in bipartite graphs, Token Jumping is NP-complete while
Token Sliding remains PSPACE-complete.

In this paper we focus on the parameterized complexity of the Token Sliding problem.
While the complexity of Token Jumping parameterized by the size of the independent set
is quite well understood, the comprehension of the complexity of Token Sliding remains
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evasive. A problem Π is FPT (fixed-parameterized tractable) parameterized by k if one
can solve it in time f(k) · poly(n), for some computable function f . In other words, the
combinatorial explosion can be restricted to a parameter k. In the rest of the paper, our
parameter k will be the size of the independent set (i.e. number of tokens). Both Token
Jumping and Token Sliding are known to be W[1]-hard1 parameterized by k on general
graphs [22]. On the positive side, Lokshtanov et al. [22] showed that Token Jumping is
FPT on bounded degree graphs. This result has been extended in a series of papers to planar
graphs, nowhere-dense graphs, and finally strongly Kℓ,ℓ-free graphs [18, 8], a graph being
strongly Kℓ,ℓ-free if it does not contain any Kℓ,ℓ as a subgraph. For Token Sliding, it was
proven in [2] that the problem is W[1]-hard on bipartite graphs and C4-free graphs (a similar
result holds for Token Jumping but based on weaker assumptions for the bipartite case [1]).

Almost no positive result is known for Token Sliding even for incredibly simple cases
like graphs of bounded degree. Our main contributions are to develop two general tools for
the design of parameterized algorithms for Token Sliding, namely galactic reconfiguration
and types. Galactic reconfiguration is a general simple tool that allows us to reduce instances.
Using it, we will derive that Token Sliding is FPT on bounded degree graphs. Our second
tool, called types, will in particular permit to show that when the deletion of a small subset
of vertices leaves too many components, then one of them can be removed. Combining both
tools with additional rules, we prove that Token Sliding is FPT on planar graphs and on
chordal graphs of bounded clique number. We complement these results by proving that
Token Sliding is W[1]-hard on split graphs.

Our first result is the following:

▶ Theorem 1.1. Token Sliding is FPT on bounded degree graphs parameterized by k.

Much more than the result itself, we believe that our main contribution here is the general
framework we developed for its proof, namely galactic reconfiguration. Before explaining
exactly what it is, let us explain the intuition behind it. As we already said, even if there
are vertices which are far apart from the vertices of an independent set, we are not sure
we can reach them because of the bottleneck effect. Our intuition was that it should be
possible to reduce a part of large diameter of the graph that does not contain any tokens
(just as we can find irrelevant vertices when we have large grid minors). The idea is that
since the diameter is large, we should be able to hide tokens far apart from each other in
this structure, avoiding the “bottleneck issue”. And thus the structure should be reducible.
However, proving that a structure can be reduced in reconfiguration is usually very technical.
To overcome this problem, we introduce a new kind of vertices called black holes which can
swallow as many tokens of the independent set as we like. A galactic graph is a graph that
might contain black holes. A galactic independent set is a set of vertices on which tokens lie,
such that the set of non black hole vertices holding tokens is an independent set and such
that each black hole might contain any number of tokens.

Our main result is to prove that if there exists a long shortest path that is at distance
at least two from the initial and target independent sets, then we can replace it by a black
hole (whose neighborhood is the union of the neighborhoods of the path vertices). This
rule, together with other simple rules on galactic graphs, allows us to reduce the size of
bounded-degree graphs until they reach a size of at most f(k) in polynomial time. Since a
kernel ensures the existence of an FPT algorithm, Theorem 1.1 holds.

1 Informally, it means that they are very unlikely to admit an FPT algorithm.
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In the rest of the paper, we combine galactic graphs with other techniques to prove that
Token Sliding is FPT on several other graph classes. We first prove the following:

▶ Theorem 1.2. Token Sliding is FPT on planar graphs parameterized by k.

To prove Theorem 1.2, we cannot simply use our previous long path reduction since, in
a planar graph, there might be a universal vertex which prevents the existence of a long
shortest path. Note that the complexity of Token Sliding is open on outerplanar graphs
and it was not known to be FPT prior to our work.

Our strategy consists in reducing to planar graphs of bounded degree and then applying
Theorem 1.1. To do so, we provide another general tool to reduce graphs for Token Sliding.
Namely, we show that if there is a set X of vertices such that G − X contains too many
connected components (in terms of k and |X|) then at least one of them can be safely
removed. The idea of the proof consists in defining the type of a connected component of
G − X. From a very high level perspective, the type2 of a path in a component of G − X

is the sequence of its neighborhoods in X. The type of a component C is the union of the
types of the paths starting on a vertex of C. We then show that if too many components of
G − X have the same type then one of them can be removed.

However, this component reduction is not enough since, in the case of a vertex x universal
to an outerplanar graph, the deletion of x does not leave many connected components. We
prove that, we can also reduce a planar graph if (i) there are too many vertex-disjoint
(x, y)-paths for some pair x, y of vertices or, (ii) if a vertex has too many neighbors on an
induced path. Since one can prove that in an arbitrarily large planar graph with no long
shortest path (i) or (ii) holds, it will imply Theorem 1.2.

Note that our proof techniques can be easily adapted to prove that the problem is FPT
for any graph of bounded genus. We think that the notion of types may be crucial to derive
FPT algorithms on larger classes of graphs such as bounded treewidth graphs.

We finally provide another application of our method by proving that the following holds:

▶ Theorem 1.3. Token Sliding is FPT on chordal graphs of bounded clique number.

The proof of Theorem 1.3 consists in proving that, since there is a long path in the clique
tree, we can either find a long shortest path (and we can reduce the graph using galactic
rules) or find a vertex x in a large fraction of the bags of this path. In the second case, we
show that we can again reduce the graph. We complement this result by proving that it
cannot be extended to split graphs, contrarily to Token Jumping.

▶ Theorem 1.4. Token Sliding is W[1]-hard on split graphs.

We show hardness via a reduction from the Multicolored Independent Set problem,
known to be W[1]-hard [10]. The crux of the reduction relies on the fact that we have a
clique of unbounded size and hence we can use different subsets of the clique to encode vertex
selection gadgets and non-edge selection gadgets.

The first natural generalization of our result on chordal graphs of bounded clique size
would be the following:

▶ Question 1.1. Is Token Sliding FPT on bounded treewidth graphs? Or simpler, on
bounded pathwidth graphs?

2 The exact definition is actually more complicated.
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We did not succeed in answering Question 1.1 but we think that the method we used for
Theorem 1.3 is a good starting point (with a much more involved analysis). Recall that the
problem is PSPACE-complete on graphs of constant bandwidth for a large enough constant
that is not explicit in the proof [29]. Note that our galactic reconfiguration rules directly
ensure that Token Sliding is FPT on bounded bandwidth graphs and the multi-component
reduction ensures that the problem is FPT for graphs of bounded treedepth. But even for
bounded pathwidth, the situation is unclear. There are good indications to think that solving
the bounded pathwidth case is the hardest step to obtain an FPT algorithm for bounded
treewidth graphs. On the positive side, we simply know that the problem is polynomial
time solvable on graphs of treewidth one (namely forests) [11] and the problem is open for
outerplanar graphs, which are graphs of treewidth 2:

▶ Question 1.2. Is Token Sliding polynomial-time solvable on outerplanar graphs? Trian-
gulated outerplanar graphs?

Organization of the paper. In Section 2, we formally introduce galactic graphs and provide
our main reduction rules concerning such graphs, including the long shortest path reduction
lemma. In Section 3, we introduce the notion of types and journeys and prove that if there
are too many connected components in G − X then at least one of them can be removed. In
Section 4, we briefly describe our results for Token Sliding on planar graphs and chordal
graphs of bounded clique number. Our hardness reduction for split graphs and all omitted
proofs can be found in the full version of the paper [3].

2 Galactic graphs and galactic token sliding

We say that a graph G = (V, E) is a galactic graph when V (G) is partitioned into two sets
A(G) and B(G) where the set A(G) ⊆ V (G) is the set of vertices that we call planets and
the set B(G) ⊆ V (G) is the set of vertices that we call black holes. For a given graph G′, we
write G′ ≺ G whenever |A(G′)| < |A(G)| or, in case of equality, |B(G′)| < |B(G)|. In the
standard Token Sliding problem, tokens are restricted to sliding along edges of a graph as
long as the resulting sets remain independent. This implies that no vertex can hold more
than one token and no two tokens can ever become adjacent. In a galactic graph, the rules
of the game are slightly modified. When a token reaches a black hole (a special kind of
vertex), the token is absorbed by the black hole. This implies that a black hole can hold more
than one token, in fact it can hold all k tokens. Moreover, we allow tokens to be adjacent
as long as one of the two vertices is a black hole (since black holes are assumed to make
tokens “disappear”). On the other hand, a black hole can also “project” any of the tokens
it previously absorbed onto any vertex in its neighborhood (be it a planet or a black hole).
Of course, all such moves require that we remain an independent set in the galactic sense.
We say that a set I is a galactic independent set of a galactic graph G whenever G[I ∩ A]
is edgless. To fully specify a galactic independent set I of size k containing more than one
token on black holes, we use a weight function ωI : V (G) → {0, . . . , k}. Hence, ωI(v) ≤ 1
whenever v ∈ A(G), ωI(v) ∈ {0, . . . , k} whenever v ∈ B(G), and

∑
v∈V (G) ωI(v) = k.

We are now ready to define the Galactic Token Sliding problem. We are given
a galactic graph G, an integer k, and two galactic independent sets Is and It such that
|Is| = |It| = k ≥ 2 (when k = 1 the problem is trivial). The goal is to determine whether there
exists a sequence of token slides that will transform Is into It such that each intermediate
set remains a galactic independent set. As for the classical Token Sliding problem,
given a galactic graph G we can define a reconfiguration graph which we call the galactic
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reconfiguration graph of G. It is the graph whose vertex set is the set of all galactic independent
sets of G, two vertices being adjacent if their corresponding galactic independent sets differ
by exactly one token slide. We always assume the input graph G to be a connected graph,
since we can deal with each component independently otherwise. Furthermore, components
without tokens can be safely deleted. Given an instance (G, k, Is, It) of Galactic Token
Sliding, we say that (G, k, Is, It) can be reduced if we can find an instance (G′, k′, I ′

s, I ′
t)

which is positive (yes-instance) if and only if (G, k, Is, It) is positive and G′ ≺ G.
Let G be a galactic graph. A planetary component is a maximal connected component of

G[A]. A planetary path P , or A-path, composed only of vertices of A, is called A-geodesic
if, for every x, y in P , distG[A](x, y) = distP (x, y). We use the term A-distance to denote
the length of a shortest path between vertices u, v ∈ A such that all vertices of the path
are also in A. Let us state a few reduction rules that allow us to safely reduce an instance
(G, k, Is, It) of Galactic Token Sliding to an instance (G′, k′, I ′

s, I ′
t).

Reduction rule R1 (adjacent black holes rule): If two black holes u and v are adjacent,
we contract them into a single black hole w. If there are tokens on u or v, the merged
black hole receives the union of all such tokens. In other words, ωI′

s
(w) = ωIs(u) + ωIs(v)

and ωI′
t
(w) = ωIt

(u) + ωIt
(v). Loops and multi-edges are ignored.

Reduction rule R2 (dominated black hole rule): If there exists two black holes u and v

such that N(u) ⊆ N(v), ωIs
(u) = 0, and ωIt

(u) = 0, we delete u.
Reduction rule R3 (absorption rule): If there exists u, v such that u is a black hole, v ∈
N(u)∩A (v is a neighboring planet that could be in Is ∪It) and |((Is ∪It)∩A)∩N [v]| ≤ 1,
then we contract the edge uv. We say that v is absorbed by u. If v ∈ Is ∪ It then we
update the weights of u accordingly.
Reduction rule R4 (twin planets rule): Let u, v ∈ A(G) be two planet vertices that are
twins (true or false twins). That is, either uv ̸∈ E(G) and N(u) = N(v) or uv ∈ E(G)
and N [u] = N [v]. If u ̸∈ Is ∪ It then delete u. If both u and v are in Is (resp. It) and at
least one of them is not in It (resp. Is) then return a trivial no-instance. If both u and v

are in Is as well as It then delete N [u] ∪ N [v], decrease k by two, and set I ′
s = Is \ {u, v}

and I ′
t = It \ {u, v}.

Reduction rule R5 (path reduction rule): Let G be a galactic graph and P be a A-geodesic
path of length at least 5k such that (A ∩ N [P ]) ∩ (Is ∪ It) = ∅. Then, P can be contracted
into a black hole (we ignore loops and multi-edges). That is, we contract all edges in P

until one vertex remains.

▶ Lemma 2.1. Reduction rule R5, the path reduction rule, is safe.

Sketch of the proof. Let P be an A-geodesic path of length 5k in G such that no vertex of
A∩N [P ] are in the initial or target independent sets, Is and It. Let G′ be the graph obtained
after contracting P into a single black hole b. Let I ′

s and I ′
t be the galactic independent

sets corresponding to Is and It. If there is a transformation from Is to It in G, then one
can show that there is a transformation from I ′

s to I ′
t in G′ by simply absorbing tokens that

become adjacent to the black hole and then projecting them appropriately when needed.
Now we consider a transformation from I ′

s to I ′
t in G′ and show how to adapt it in G.

We first prove (in the full version of the paper [3]) that we can always assume the existence
of a sequence in G′ where the number of tokens in N(b) ∩ A is at most one throughout the
sequence, for any black hole b. Now, assuming such a sequence, we can simulate the sequence
in G with the hard case being when multiple tokens slide into b. Note, however, that P is of
length 5k and is A-geodesic. Hence, every vertex a ∈ A has at most three neighbors in P

and any independent set of size at most k in A has at most 3k neighbors in P . This leaves



V. Bartier, N. Bousquet, and A. E. Mouawad 15:7

2k vertices on P which we can use to hold as many as k tokens that need to slide into b (in
G′). In other words, whenever more than one token slides into b in G′, we simulate this by
sliding the tokens in P onto the 2k vertices of P that are free. ◀

As immediate consequences, the following properties hold in an instance where reduction
rules R1 to R5 cannot be applied.

▶ Corollary 2.2. Every planetary component must contain at least one token and therefore
G can have at most k planetary components, when k ≥ 2.

▶ Corollary 2.3. Let (G, k, Is, It) be an instance of Galactic Token Sliding where
reduction rules R1, R3, and R5 (adjacent black holes rule, absorption rule, and the path
reduction rule) have been exhaustively applied. Then, the graph G has diameter at most
O(k2). Moreover, any planetary component has diameter at most O(k2).

We now show how the galactic reconfiguration framework combined with the previous
reduction rules immediately implies that Token Sliding is fixed-parameter tractable
for parameter k + ∆(G), where ∆(G) denotes the maximum degree of G. Theorem 2.4
immediately implies positive results for graphs of bounded bandwidth/bucketwidth.

▶ Theorem 2.4. Token Sliding is fixed-parameter tractable when parameterized by k+∆(G).
Moreover, the problem admits a bikernel3 with k∆(G)O(k2) + (2k + 2k∆(G))∆(G) vertices.

Proof. Let (G, k, Is, It) be an instance of Token Sliding. We first transform it to an
instance of Galactic Token Sliding where all vertices are planetary vertices. We then
apply all of the reduction rules R1 to R5 exhaustively. By a slight abuse of notation we let
(G, k, Is, It) denote the irreducible instance of Galactic Token Sliding.

The total number of planetary components in G is at most k by Corollary 2.2 and the
diameter of each such component is at most O(k2) by Corollary 2.3. Hence the total number
of planet vertices is at most k∆(G)O(k2).

To bound the total number of black holes, it suffices to note that no black hole can have
a neighbor in B ∪ (A \ N [Is ∪ It]). In other words, no black hole can be adjacent to another
black hole (since the adjacent black holes reduction rule would apply) and no black hole can
be adjacent to a planet without neighboring tokens (otherwise the absorption reduction rule
would apply). Hence, combined with the fact that each black hole must have degree at least
one, the total number of black holes is at most (2k + 2k∆(G))∆(G). ◀

3 The multi-component reduction rule (R6)

General idea. The goal of this section is to show how we can reduce a graph when we have
a small vertex separator with many components attached to it. We let X be a subset of
vertices and H be an induced subgraph of G−X (for simplicity we assume G is a non-galactic
graph in this section). Let Is and It be two independent sets which are disjoint from H

and consider a reconfiguration sequence from Is to It in G. Let v be a vertex of H and
assume that there is a token t that is projected on v at some point of the reconfiguration
sequence, meaning that the token t is moved from a vertex of X to v. This token may stay a
few steps on v, move to some other vertex w of H, and so on until it eventually goes back
to X. Let this sequence of vertices (allowing duplicate consecutive vertices) be denoted by
v1 = v, v2, . . . , vr. We call this sequence the journey of v (formal definitions are given in the
next subsection).

3 A kernel where the resulting instance is not an instance of the same problem.
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Assume now that the number of connected components attached to X is arbitrarily large.
Our goal is to show that one of those components can be safely deleted, that is, without
compromising the existence of a reconfiguration sequence if one exists. Suppose that we
decide to delete the component H. The transformation from Is to It does not exist anymore
since, in the reconfiguration sequence, the token t was projected on v ∈ V (H). But we can
ask the following question: Is it possible to simulate the journey of v in another connected
component of G − X? In fact, if we are able to find a vertex w in a connected component
H ′ ≠ H of G − X and a sequence w1 = w, . . . , wr of vertices such that wiwi+1 is an edge
for every i and such that N(wi) ∩ X = N(vi) ∩ X, then we could project the token t on w

instead of v and perform this journey instead of the original journey4 of t. One possible issue
is that the number r of (distinct) vertices in the journey can be arbitrarily large, and thus
the existence of w and H ′ is not guaranteed a priori. This raises more questions: What is
important in the sequence v = v1, . . . , vr? Why do we go from v1 to vr? Why many steps in
the journey if r is large? The answers are not necessarily unique. We distinguish two cases.

First, suppose that in the reconfiguration sequence, the token t was projected from X to
v, performed the journey without having to “wait” at any step (so no duplicate consecutive
vertices in the journey), and then was moved to a vertex x′ ∈ X. Then, the journey only
needs to “avoid” the neighbors of the vertices in X that contain a token. Let us denote by s1
the step where the token t is projected on v and by s2 the last step of the journey (that is,
the step where t is one move/slide away from X). Let Y be the vertices of X that contain
a token between the steps s1 and s2. The journey of t can then be summarized as follows:
a vertex whose neighborhood in X is equal to N(v) ∩ X, a walk whose vertices all belong
to H and are only adjacent to subsets of X \ Y , and then a vertex whose neighborhood in
X is equal to N(vr) ∩ X. In particular, if we can find, in another connected component of
G − X, a vertex w for which such a journey (with respect to the neighborhood in X) also
exists, then the we can project t on w instead of v. Clearly, the obtained reconfiguration
sequence would also be feasible (assuming again no other tokens in the component of w).

However, we might not be able to go “directly” from v1 = v to vr. Indeed, at some point
in the sequence, there might be a vertex vi1 which is adjacent to a token in X. This token
will eventually move (since the initial journey with t in H is valid), which will then allow the
token t to go further on the journey. But then again, either we can reach the final vertex vr

or the token t will have to wait on another vertex vi2 for some token on X to move, and so
on (until the end of the journey). We say that there are conflicts during the journey5.

So we can now “compress” the path as a path from v1 to vi1 , then from vi1 to vi2 (together
with the neighborhood in X of these paths), as we explained above. However, we cannot
yet claim that we have reduced the instance sufficiently since the number of conflicts is not
known to be bounded (by a function of k and/or the size of X). The main result of this
section consists in proving that, if we consider a transformation from Is to It that minimizes
the number of moves “related” to X, then (almost) all the journeys have a “controllable”
amount of (so-called important) conflicts. Actually, we prove that, in most of the connected
components H of G − X, we can assume that we have a “controllable” number of important
conflicts for every journey on H in a transformation that minimizes the number of token
modifications involving X. The idea consists in proving that, if there are too many important
conflicts during a journey of a token t, we could mimic the journey of t on another component
to reduce the number of token slides involving X. Finally, we will only have to prove that if
all the vertices have a controllable number of conflicts (and there are too many components),
then we can safely delete a connected component of G − X.

4 We assume for simplicity in this outline that the component of w does not contain tokens.
5 Actually, there might exist another type of conflict we do not explain in this outline for simplicity.
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Journeys and conflicts. We denote a reconfiguration sequence from Is to It by R =
⟨I0, I1, . . . , Iℓ−1, Iℓ⟩. Let X ⊆ V (G) and H be a component in G − X such that Is ∩ V (H) =
It ∩ V (H) = ∅. All along this section, we are assuming that tokens have labels just so we
can keep track of them. For every token t, let vi(t), 0 ≤ i ≤ ℓ, denote the vertex on which
token t is at position i in the reconfiguration sequence R.

Whenever a token enters H and leaves it, we say that the token makes a journey in H.
Let Ii denote the first independent set in R where vi(t) ∈ V (H) and let Ij , i ≤ j, denote the
first independent set after Ii where vj+1(t) ̸∈ V (H). Then the journey J of t in H is the
sequence (vi(t), . . . , vj(t)). The journey is a sequence of vertices (with multiplicity) from H

such that consecutive vertices are either the same or connected by an edge. We associate each
journey J with a walk W in H. The walk W of t in H is the journey of t where duplicate
consecutive vertices have been removed.

We say that a token is waiting at step i if vi(t) = vi−1(t); otherwise the token is active.
Given a journey J and its associated walk W , we say that w ∈ W is a waiting vertex if there
is a step where the vertex w is a waiting vertex in the journey. Otherwise w is an active
vertex (with respect to the reconfiguration sequence). So we can now decompose the walk W

into waiting vertices and transition walks. That is, assuming the walk starts at y and ends
at z, we can write W = yP0w0P1w1 . . . wℓPℓz, where each wi is a waiting vertex and each Pi

is a transition walk (consisting of the walk of active vertices between two consecutive waiting
vertices). Note that the transition walks could be empty.

We are interested in why a token t might be waiting at some vertex w. In fact, we will
only care about waiting vertices that we will call important waiting vertices. Let w1, . . . , wℓ

be the waiting vertices of the journey and, for every i ≤ ℓ, let us denote by [si, s′
i] the time

interval of the reconfiguration sequence where the token t is staying on the vertex wi. Note
that si < s′

i and when t is active the other tokens are not moving; thus the position of any
token different from t is the same all along the interval [s′

i + 1, si+1] for every i ≤ ℓ − 1.
Let i < j ≤ ℓ and let wi be a waiting vertex. We say that wj is the important waiting

vertex after wi if j > i and j is the largest integer such that no vertex along the walk of
token t between wi (included) and wj (included) is adjacent to a token t′ ̸= t or contains a
token t′ ̸= t between steps s′

i and sj (note that the important waiting vertex after wi might
be the last vertex of the sequence). Since token t is active from s′

i + 1 to si+1 and is moving
from wi to wi+1 during that interval, the important waiting vertex after wi is well-defined
and is at least wi+1. Let Qi,j denote the walk in H that the token t follows to go from wi to
wj (both wi and wj are included in Qi,j). In other words, Qi,j = wiPi+1wi+1 . . . Pjwj . Now,
note that since wj is the important waiting vertex after wi (i.e. we cannot replace wj by
wj+1), then we claim that the following holds:

▷ Claim 3.1. If wj is not the last vertex of the walk W , either
(i) there is a token on or adjacent to a vertex of Pj+1wj+1 (the transition walk after wj)

at some step in [s′
i, s′

j ] or,
(ii) there is a token on or adjacent to a vertex of Qi,j − wj in the interval [sj , sj+1].

We now define the notion of conflicts. Since we cannot replace wj by wj+1, it means that,
by definition, there is at least one step sq in [s′

i, sj+1] where a token tq ̸= t is adjacent to
(or on a vertex) vq of Qi,j+1. We call such a step a conflict. We say that (sq, vq, tq) is the
conflict triplet associated to the conflict (we will mostly refer to a triplet as a conflict).

The conflicts of type (i) are called right conflicts and the conflicts of type (ii) are called
left conflicts. It might be possible that wj is the important waiting vertex because we have
(several) left and right conflicts. We say that wj is a left important vertex if there is at least
one left conflict and a right important vertex otherwise.
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If wj is a left important vertex, we let the important conflict (s⋆, v⋆, t⋆) denote the
first conflict associated with Qi,j between steps sj and s′

j , i.e., there exists no s such that
sj ≤ s < s⋆ ≤ s′

j such that there is a conflict at step s with a token t′ ̸= t which is either
on Qi,j or incident to Qi,j . Note that v⋆ cannot be a vertex of Qi,j since that would imply
at least one more conflict before s⋆, hence v⋆ ∈ N(V (Qi,j)). If wj is a right important
vertex, we let (s⋆, v⋆, t⋆) denote the important conflict associated with Pj+1wj+1 between
steps s′

i and s′
j as the last conflict associated to Pj+1wj+1, i.e., there exists no s such that

s′
i ≤ s⋆ < s ≤ s′

j and there is a conflict (s, vs, ts) such that vs in Pj+1wj+1 or incident to
Pj+1wj+1. Note that v⋆ cannot be a vertex of Pj+1wj+1 since that would imply at least one
more conflict after s⋆, hence v⋆ ∈ N(V (Pj+1wj+1)). We use C(Qi,j+1)[s′

i, s′
j ] to denote all

conflict triplets (left and right conflicts) associated with Qi,j+1 between steps s′
i and s′

j .
To conclude this section, let us remark that the conflicts might be due to vertices of

H or vertices of X. In other words, for a conflict triple (s, v, t) ∈ C(Qi,j+1)[s′
i, s′

j ], v is an
H-conflict or an X-conflict depending on whether v is in H or in X. In what follows we
will only be interested in X-conflicts. The X-important waiting vertex after wi is wj where
j > i is the smallest integer such that C(Qi,j+1)[s′

i, s′
j ] contains at least one triplet (s, v, t′)

where t′ ≠ t, v ∈ X, and s′
i ≤ s ≤ s′

j . Now given a journey we can define the sequence of
X-important waiting vertices as the sequence w′

1, . . . , w′
r starting with vertex w1 and such

that w′
j+1 is the X-important waiting vertex after wj . What will be important in the rest

of the section is the length r of this sequence. If this sequence is short (bounded by f(k)),
then we can check if we can simulate a similar journey in other components efficiently. If the
sequence is long, we will see that it implies that we can find a “better” transformation.

Since we will mostly be interested in how a journey interacts with X, we introduce
the notion of the X-walk associated with journey J . The X-walk is written as W X =
yP0w0P1w1 . . . wℓPℓz, where each w is an X-important waiting vertex and each P is the walk
that the token takes (this walk could have non-important waiting vertices) before reaching
the next X-important waiting vertex. We call each P in an X-walk an X-transition walk.

Types and signatures. Let X be a subset of vertices and H be a component of G − X.
An ℓ-type is defined as a sequence IY1W1Y2W2 . . . YℓWℓYℓ+1F such that for every i, Wi is a
(possibly empty) subset of X and Yi is a (possibly empty) subset of X or a special value ⊥
(the meaning of ⊥ will become clear later on). We call I the initial value and F the final
value and they are both non-empty subsets of vertices of X. The 0-type is defined as IY0F

and we allow I to be equal to F . We will often represent an ℓ-type by (I(YiWi)i≤ℓYℓ+1F ).
Note that if X is bounded, then the number of ℓ-types is bounded. More precisely, we have:
▶ Remark 3.2. The number of ℓ-types is at most (2|X| + 1)2(ℓ+2).

The neighborhood of a set of vertices S ⊆ V (H) in X is called the X-trace of S. A journey
J is compatible with an ℓ-type IY1W1Y2W2 . . . YℓWℓYℓ+1F if it is possible to partition the
X-walk W of J into W X = yP0w0P1w1 . . . PℓwℓPℓ+1z such that:

the X-trace of each vertex wi is Wi,
for every walk Pi which is not empty, the X-trace of Pi is Yi, i.e., ∪x∈Pi

N(x) ∩ X = Yi

(note that we can have Yi = ∅),
for every empty walk Pi, we have Yi =⊥, and
the X-trace of y is I and the X-trace of z is F .

The ℓ-signature of a vertex v ∈ V (H) (with respect to X) is the set of all ℓ′-types with ℓ′ ≤ ℓ

that can be simulated by v in H . That is, for every ℓ-type, there exists a walk W starting at
v such that W = vP0w0P1w1 . . . PℓwℓPℓ+1z is compatible with the ℓ-type if and only if the
ℓ-type is in the signature. Two vertices are ℓ-equivalent if their ℓ-signatures are the same.
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▶ Lemma 3.3. One can compute in O∗((2|X| + 1)2(ℓ+2)) the ℓ-signature of a vertex v in H.

X-reduced sequences and equivalent journeys. Let J be a journey with exactly r X-
important waiting vertices (in its X-walk). Let wi and Pi be respectively the i-th X-important
waiting vertex and the i-th X-transition walk. Let Pr+1 be the final X-transition walk. Let
us denote by Wi the neighborhoods of wi in X, and by Yi the neighborhood of Pi in X. Let
I and F be the neighborhoods of the initial and final vertices of the walk associated with J ,
respectively. The type T of the journey J is I(YiWi)i≤rYr+1F .

▶ Definition 3.4. Two journeys are X-equivalent whenever the following holds:
They have the same number of X-important waiting vertices;
The initial and final vertex of the X-walk have the same X-trace;
For every i, the X-trace of the ith X-important waiting vertex is the same in both journeys;
For every i, the X-trace of the ith X-transition walk is the same in both journeys.

Let I, J be two independent sets and X be a subset of vertices of G. A slide of a token
is related to X if the token is moving from or to a vertex in X (possibly from some other
vertex in X). We call such a move an X-move.

▶ Definition 3.5. A transformation R from I to J is X-reduced if the number of X-moves
is minimized and, among the transformations that minimize the number of X-moves, R
minimizes the total number of moves.

The multi-component reduction. Let H be a connected component of G − X. The ℓ-
signature of H is the union of the ℓ-signatures of the vertices in H. Let H be a subset of
connected components of G − X. We say that H ∈ H is ℓ-dangerous for H if there is a ℓ-type
in the ℓ-signature of H that appears in at most ℓ connected components of H. Otherwise we
say that H is ℓ-safe. If there are no ℓ-dangerous components, we say that H is ℓ-safe. One
can easily prove the following using iterated extractions:

▶ Lemma 3.6. Let ℓ = 5|X|k. If there are more than ℓ(2|X| + 1)2(ℓ+2) + 2k + 1 components
in G − X, then there exists a collection of at least 2k + 1 components that are ℓ-safe which
can be found in f(k, |X|) · nO(1)-time, for some computable function f .

We can now prove the main result of this section:

▶ Lemma 3.7. Let Is, It be two independent sets and X be a subset of V (G). Let R be an
X-reduced transformation from Is to It. Assume that there exists a subset H of at least 2k +1
connected components of G − X that is (5|X|k)-safe. Then, for every C ∈ H, any journey
on the component C has at most 5|X|k − 1 X-important waiting vertices in its X-walk.

Sketch of the proof. Assume for a contradiction that there exists a safe component C ∈ H
and a journey J of some token t in C that has at least 5|X|k X-important waiting vertices.
Amongst all such journeys, select the one that reaches first its (5|X|k)-th X-important waiting
vertex. Let us denote by I(YiWi)i≤5kY5k+1 the type of the journey J that we truncate after
Y5k+1. And, let us denote by v(Piwi)i≤5kP5k+1 the partition of the walk into X-important
waiting vertices and X-transition walks (we assume the walk starts at vertex v ∈ V (C)).

For each X-important waiting vertex wi, let (qi, xi, ti) be the important conflict associated
to it. Since there are at most k labels of tokens and |X| vertices in X, there exists a vertex
x ∈ X and a token with label t′ such that there exists at least 5 waiting vertices such
that the important conflict is of the form (q, x, t′) for some q. In other words, there exists
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Pi1 , . . . , Pi5 such that for each Pi we have a triplet (q, x, t′) (recall that q denotes the step in
the reconfiguration sequence). Let us denote by s1, . . . , s5 the steps of those conflicts whose
token label is t′ and whose vertex in X is x and such that these conflicts are important
conflict triples in five different X-transition walks.

The rest of the proof consists in proving that, rather than making the initial transformation,
we can project t′ on an appropriately chosen component C ′ of H distinct from C and mimic
the journey of t between steps s1 and s5. In other words, t′ can simply follow a journey on
C ′ of the same type as that of t between s1 and s5 and we can then safely project it back
on x at step s5 without creating any X-conflicts. This implies that we can strictly reduce
the number of X-conflicts, a contradiction to the assumption that the transformation is
X-reduced. We also manage H-conflicts by using the minimality of the journey. ◀

▶ Lemma 3.8. Let Is, It be two independent sets and X be a subset of V (G). If G − X

contains at least 4k + 2 (5|X|k)-safe components, then we can delete one of those components,
say C, such that there is a transformation from Is to It in G if and only if there is a
transformation in G − V (C).

Sketch of the proof. The proof consists in proving that, since all the journeys have at most
5|X|k − 1 X-important waiting vertices by Lemma 3.7, one can replace a journey in a safe
component by a journey in another component either by not creating any conflicts or by
creating some conflicts on shorter “time periods” which ensures the procedure converges. ◀

▶ Corollary 3.9. Given a cutset X, we can assume that G − X has at most 5|X|k(2|X| +
1)2(5|X|k+2) + 4k + 2 = 2O(|X|2k) connected components. Moreover, when the number of
components is larger we can find a component to delete in f(k, |X|) · nO(1)-time.

4 Applications

Due to space restriction we only very briefly explain the main steps of the proofs.

Planar graphs. First note that, using galactic reconfiguration, we can reduce the diameter
of the graph to O(k2) by Corollary 2.3. The core of the proof then consists in reducing high
degree vertices. If the degree is bounded by a function of k, then the conclusion will follow
from Theorem 2.4. To reduce the degree, we prove that, for every pair x, y of large degree
vertices, 1) V (G) \ {x, y} does not contain too many components by Corollary 3.9 (Rule
R6), 2) the graph can be reduced if there are not too many internally vertex-disjoint paths
from x to y and, 3) the graph can be reduced if it contains a few other slightly more general
structures. All these results together permit to ensure that G does not contain any large
degree vertices after applying all the rules, which completes the proof.

Chordal graphs of bounded clique number. A chordal graph is a graph with no induced
cycle of length at least four. Equivalently, it also has a clique-tree (see full version [3] for
formal definitions). If a node v of the clique-tree has large degree then V (G) \ Bv (where Bv

denotes the bag of v) has many connected components, and one of them can be removed
by Corollary 3.9. So we can assume that the degree of the clique-tree is bounded. Thus,
if the graph is large, the clique-tree should contain a long path P . If no vertex belongs to
a large fraction of the bags of P , then the diameter is large and we can reduce the graph
by Corollary 2.3. So a vertex belongs to a large fraction of the bags of P . We can actually
prove that, there exists a sub-path P ′ of P and X ⊆ V (G) such that X belongs to all the
bags of P ′ and no other vertex appears in a significant fraction of the bags of P ′. Together
with a few other properties, we prove that some vertices in the bags of P ′ can be deleted
without modifying the existence of a reconfiguration sequence from Is to It.
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Abstract
Cache-adaptive algorithms are a class of algorithms that achieve optimal utilization of dynamically
changing memory. These memory fluctuations are the norm in today’s multi-threaded shared-memory
machines and time-sharing caches.

Bender et al. [8] proved that many cache-oblivious algorithms are optimally cache-adaptive, but
that some cache-oblivious algorithms can be relatively far from optimally cache-adaptive on worst-
case memory fluctuations. This worst-case gap between cache obliviousness and cache adaptivity
depends on a highly-structured, adversarial memory profile. Existing cache-adaptive analysis does not
predict the relative performance of cache-oblivious and cache-adaptive algorithms on non-adversarial
profiles. Does the worst-case gap appear in practice, or is it an artifact of an unrealistically powerful
adversary?

This paper sheds light on the question of whether cache-oblivious algorithms can effectively adapt
to realistically fluctuating memory sizes; the paper focuses on matrix multiplication and sorting.
The two matrix-multiplication algorithms in this paper are canonical examples of “(a, b, c)-regular”
cache-oblivious algorithms, which underlie much of the existing theory on cache-adaptivity. Both
algorithms have the same asymptotic I/O performance when the memory size remains fixed, but one
is optimally cache-adaptive, and the other is not. In our experiments, we generate both adversarial
and non-adversarial memory workloads. The performance gap between the algorithms for matrix
multiplication grows with problem size (up to 3.8×) on the adversarial profiles, but the gap does not
grow with problem size (stays at 2×) on non-adversarial profiles. The sorting algorithms in this paper
are not “(a, b, c)-regular,” but they have been well-studied in the classical external-memory model
when the memory size does not fluctuate. The relative performance of a non-oblivious (cache-aware)
sorting algorithm degrades with the problem size: it incurs up to 6× the number of disk I/Os
compared to an oblivious adaptive algorithm on both adversarial and non-adversarial profiles.

To summarize, in all our experiments, the cache-oblivious matrix-multiplication and sorting
algorithms that we tested empirically adapt well to memory fluctuations. We conjecture that cache-
obliviousness will empirically help achieve adaptivity for other problems with similar structures.
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1 Introduction

Applications running on multi-threaded and multi-core systems often experience fluctuations
in the amount of physical memory available. For example, when concurrently running
programs share RAM, the amount of RAM allocated to any particular program can change as
other programs start or finish. Interestingly, even when identical copies of the same program
run concurrently, these copies may acquire an unequal fraction of the RAM [20], resulting in
further unpredictability.

These memory fluctuations can cause an application’s performance to suffer [24, 26].
If the available memory becomes scarce, an application may thrash, which means that
the application pages excessively, crippling performance [18, 19, 28]. If memory becomes
abundant, the program may not take advantage of the larger available RAM and thus perform
extraneous I/Os.

In this paper, we empirically show that some optimal cache-oblivious algorithms [21,22,31]
– specifically matrix multiplication and sorting – adapt gracefully to most memory fluctuations,
except for some adversarially constructed worst-case instances. Optimal cache-oblivious
algorithms are asymptotically optimal for all fixed memory sizes without the knowledge of
the memory size. Past theoretical work shows that optimal cache-oblivious algorithms can
perform poorly on adversarially constructed memory fluctuations [7, 8].

Experimental approaches to adaptivity. Past experimental work [29,30, 34, 35] focused on
developing improved algorithms that adapt to a variety of memory profiles, where a memory
profile is a curve representing the memory size as a function of time. For example, Pang
et al. [29] introduced a memory-adaptive merge sort that dynamically adjusts the size of
each subproblem at each level of the recursion as memory fluctuates. A similar technique is
used by Pang et al. [30] to modify the GRACE hash join algorithm [23] so that it can adapt
to changes in memory size. Zhang and Larson [34,35] introduced techniques that balance
the memory usage among many sorting programs running concurrently on a single machine
sharing its memory.

Researchers have also explored environment-level modifications to adapt to dynamic
memory profiles. For example, Brown et al. [12] introduced memory-management techniques
for a DBMS that accommodate multiple concurrently running database workloads, where each
workload may have its own individual memory requirements. Mills et al. [24–26] proposed a
user interface that enables a user to request sufficient memory for their application.

Theoretical approaches to adaptivity. Barve and Vitter [2, 3] designed algorithms that
have provable performance guarantees even when the memory size changes. They gave
memory-adaptive algorithms for sorting, matrix multiplication, FFT, LU decomposition,
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and permutation. To prove optimality, they extended the traditional external-memory
model [1] – also called the disk-access machine (DAM) – to allow for changes in the
memory size over time.

More recently, Bender et al. [8] showed that many cache-oblivious algorithms could adapt
well to memory fluctuations. A cache-oblivious algorithm is a platform-independent
algorithm that is not parameterized by properties of the memory hierarchy such as RAM
or cache-line size [21,22,31]. An optimal cache-oblivious algorithm is universal in the sense
that the algorithm is optimal for any value of the cache parameters, provided that these
values do not change over time. (Past theoretical work on cache-oblivious algorithms use the
terms memory, cache, and RAM interchangeably) [4,5]. On the other hand, a cache-adaptive
algorithm remains cache-optimal even when memory size changes over time. One possible
way to deal with memory fluctuations is to start with an algorithm already known to be
cache-oblivious and hope it also happens to be cache adaptive.

Cache-obliviousness and cache-adaptivity. Bender et al. [8] showed that cache-oblivious
algorithms are often (but not always) cache adaptive. For example, they showed that
Lazy Funnel Sort (LFS) [10, 21], a cache-oblivious sorting algorithm, is optimally cache-
adaptive. Follow-up work [7] provided an analytical framework for determining whether
cache-oblivious algorithms having a certain recursive form (“(a, b, c)-regular”) are also cache
adaptive. Algorithms with (a, b, c)-regular recursive structure have a common form of
divide-and-conquer cache-oblivious design [6, 7]; see Section 2 for more details. Depending
on the settings of the parameters a, b, and c, these cache-oblivious algorithms are either
asymptotically optimal or a logarithmic factor away from optimal. For example, cache-
oblivious algorithms exist for matrix multiplication [21, 22], some of which are optimally
cache-adaptive (MM-INPLACE) and some are a log factor away from optimally cache-
adaptive (MM-SCAN) [7,8]. MM-SCAN (a = 8, b = 4, and c = 1) performs an out-of-place
matrix addition at the end of each recursive call and is suboptimal in the cache-adaptive
model, while MM-INPLACE (a = 8, b = 4, and c < 1) performs the additions in-place and is
optimally cache-adaptive; see Section 3.

Connections between experimental and theoretical approaches. Existing theoretical
approaches to cache adaptivity provide worst-case guarantees but leave open the question of
how algorithms perform under arbitrary memory workloads. Specifically, past work showed
that cache-oblivious (a, b, c)-regular algorithms are always at most a log factor away from
being optimally cache-adaptive. However, this log factor is based on a worst-case memory
workload that seems brittle and unlikely to appear in practice. Furthermore, this worst-case
analysis does not capture how cache-oblivious algorithms actually perform under practical
memory workloads.

In contrast, empirical solutions [12,23–26,29,30,34,35] are designed to improve performance
under practical memory workloads. However, they lack worst-case analysis and therefore do
not have worst-case performance guarantees.

Recent work [6] has gone beyond worst-case analysis. The authors apply smoothing
techniques [32] on memory profiles and explore how well cache-oblivious algorithms adapt
to smoothed memory profiles. They observe that the I/O-performance gap between cache-
obliviousness and cache-adaptivity disappears given sufficient smoothing. Their results
leave open the question of whether the performance gap between cache-oblivious and cache-
adaptive algorithms persists across a larger space of memory profiles. If the performance gap
turns out to be only a theoretical artifact rarely seen in practice, cache-oblivious algorithms
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could be an exciting way to solve a wide range of problems with no known cache-adaptive
solutions. Examples of such problems include Gaussian elimination [15], triangle counting [9],
min-weight cycle [33], negative triangle detection and counting [33], replacement paths
problem [33], etc.

Do these worst-case memory workloads arise naturally when no adversary controls the
available memory? How feasible is it to construct such worst-case memory profiles?
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Figure 1 Normalized disk I/O of the non-adaptive algorithm to the cache-adaptive algorithm as
a function of input size for matrix multiplication and sorting for four memory profiles: adversarial
(worst-case), benevolent, constant, and oblivious. An increase in the y-axis means that the non-
adaptive algorithm performs progressively worse relative to the adaptive algorithm.

Results
We empirically study how cubic-time matrix multiplication (MM) algorithms and external-
memory sorting algorithms adapt to a range of different memory profiles. MM is a particularly
interesting test case because not only is it the canonical example of an (a, b, c)-regular
algorithm but also we can find a pair of MM algorithms, both with the same I/O-complexity
in the cache-oblivious model, where one is optimally cache-adaptive and the other is a
logarithmic factor away from optimal. For the case of MM, we evaluate MM-INPLACE and
MM-SCAN and find that both can adapt to a wide range of memory profiles even though
MM-SCAN is not provably cache-adaptive. In contrast, for the case of sorting, we evaluate
LFS [10,21] and External-memory Merge Sort (EMS) [1], a non-oblivious and non-adaptive
algorithm, and find that EMS does not adapt well to a wide range of memory fluctuations.
Table 1 illustrates some of the key properties of the tested algorithms.

Since the worst-case profile is tightly coupled with an algorithm’s structure, we designed
a memory profile generator that can simulate an adversarial by looking into a program’s
execution. It can generate the worst-case adversarial memory profile by increasing the
available memory when the program cannot benefit from the extra memory and decreasing
the memory when the program would benefit. It can also generate non-adversarial profiles
that follow a program’s execution.

First, we empirically study the MM-SCAN and MM-INPLACE algorithms for matrix
multiplication, and we find that even though MM-SCAN is not optimally cache-adaptive, it
adapts well to a wide range of memory fluctuations except the most adversarially constructed
profiles. We measure how well an algorithm adapts to the memory fluctuations by measuring
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Table 1 Properties of the algorithms for cubic-time matrix multiplication and external-memory
sorting studied in this paper.

Algorithm Cache-oblivious Cache-adaptive

MM-SCAN [21,22] ✓ ✗

MM-INPLACE [21,22] ✓ ✓

EM Merge Sort [1] ✗ ✗

Lazy Funnel Sort [10] ✓ ✓

the disk I/Os it incurs during its execution. MM-SCAN and MM-INPLACE are both
theoretically optimal when the memory does not fluctuate; empirically, Figure 1a shows
that MM-INPLACE performs roughly 1.8× better than MM-SCAN across all problem sizes
under a constant memory profile (fixed memory size). We used the memory profile
generator to create profiles coupled with algorithm execution. Under the adversarial memory
workload, MM-SCAN performs 1.6 – 3.8× more disk I/Os than MM-INPLACE. Critically,
the performance gap grows with the input size. We also created a benevolent memory
profile that is tightly synchronized with the algorithm’s execution but non-adversarial in
nature. Under the benevolent memory profile, MM-SCAN and MM-INPLACE perform
roughly within 1.5× of each other for all problem sizes. Under oblivious memory profiles,
i.e., profiles that are not tightly coupled with the algorithms’ execution, we found that
MM-SCAN incurs about 1.8× more I/Os than MM-INPLACE for all problem sizes. These
results suggest that MM-SCAN possesses almost all the benefits of cache-adaptivity.

Next, we evaluate the cache-oblivious Lazy Funnel Sort (LFS) [10, 21] and the non-
oblivious External-memory Merge Sort (EMS) [1] (both are I/O-optimal when the memory is
fixed), and we find that even though LFS has a computational overhead over EMS stemming
from its cache-obliviousness; it outperforms EMS on a wide range of fluctuating memory
profiles. Figure 1b suggests that External-memory Merge Sort has better I/O-performance
than Lazy Funnel Sort for all problem sizes under the constant memory profile (roughly
incurring 0.9× disk I/Os on average). On the other hand, LFS adapts when the memory
fluctuates, whereas EMS fails to adapt. EMS performs progressively worse than LFS as the
input size increases under all types of fluctuating memory workloads (adversarial, benevolent,
and oblivious), incurring 1.3 – 7× more disk I/Os. Despite the computational overhead of
cache-obliviousness, LFS performs significantly better than EMS under a range of fluctuating
memory profiles.

These results suggest that for the problems of MM and sorting, cache-oblivious but
non-adaptive algorithms adapt well, while non-oblivious algorithms do not. The tested
cache-oblivious algorithms adapt well because they are agnostic to the cache size, while the
cache-aware algorithms are optimized for specific cache sizes. We conjecture that cache-
oblivious algorithms have most of the empirical benefits of cache adaptivity, and our results
are consistent with the conjecture.

Paper overview. The rest of this paper is organized as follows.Section 2 reviews preliminaries
about the cache-adaptive model and analysis necessary to understand the experimental design
in this paper. Section 3 explains the memory profiles that we tested on. Section 4 describes
the experimental setup and the algorithms’ performance with fixed memory. Section 5
describes the memory-profile generator and the algorithms’ performance under adaptively
constructed memory profiles. Section 6 explores the algorithms’ performance under obliviously
constructed memory profiles. Section 7 provides concluding remarks and future directions.

ESA 2022



16:6 When Are Cache-Oblivious Algorithms Cache Adaptive?

2 Cache-adaptive analysis

This section reviews fundamentals of cache-adaptive and cache-oblivious analysis. It also
explains how (a, b, c)-regular algorithms play a key role in the analysis.

Cache-adaptive model. The cache-adaptive model is an extension of the disk-access machine
(DAM) model [1], where the size of memory available to an algorithm can change. In the
DAM model, the machine has a two-level memory hierarchy comprising a cache/memory
of size M and a disk of unbounded size. Data is transferred between disk and memory in
blocks of size B, called I/Os. The cache-adaptive model extends the traditional DAM model
by allowing the memory size to be a function of time. Each I/O takes one time step and
computation is modeled as free and instantaneous. At time t, the memory available to a
program is M(t), which can change after each time step.

Cache-oblivious algorithms and (a, b, c)-regularity. An algorithm is cache-oblivious [21,22,
31] if it is not parameterized by M and B. An optimal cache-oblivious algorithm is universal,
in the sense that it runs optimally in the DAM model for all possible (fixed) values of M

and B.
Cache-oblivious algorithms with a particular kind of divide-and-conquer structure, are

said to be (a, b, c)-regular. An algorithm is (a, b, c)-regular for constants a ≥ 1, b > 1,
and 0 ≤ c ≤ 1, if, for problem size N , its I/O complexity satisfies the following recurrence:
Q(N) = a · Q(N/b) + Θ(1 + N c/B).

Specifically, the algorithm has a recursive calls on sub-problems of size N/b and Θ(1)
linear/sequential scans before, between, or after the recursive calls, where the size of the
largest scan is Θ(N c).

The worst-case performance gap between obliviousness and adaptivity. DAM-optimal
(a, b, c)-regular algorithms can be up to an O(log N)-factor away from being optimally cache-
adaptive [7]. Specifically, they are suboptimal in the cache-adaptive model when a ≥ b and
c ≥ 1 [7]. Intuitively, (a, b, c)-regular algorithms are not optimal when they contain large
sequential reads through memory at each level of the recursion.

The worst-case memory profile. The logarithmic gap in I/O-performance of some (a, b, c)-
regular algorithms from being optimally cache-adaptive is based on a worst-case memory
workload that adaptively mimics the recursive structure of the algorithm and is tightly
synchronized with the execution of the algorithm. Specifically, the worst-case profile provides
extra memory to the non-adaptive algorithm during the linear scans (when it cannot benefit
from the extra memory) and takes away the extra memory at the end of the linear scans (when
it would be able to use the extra memory). The worst-case memory profile is constructed in
an adaptive manner by following the execution of the non-adaptive algorithm, MM-SCAN in
case of matrix multiplication and EMS in case of sorting.

Example: MM-SCAN and MM-INPLACE. To illustrate the parameter choices for (a, b, c)-
regular algorithms, Bender et al. [7] compare two cache-oblivious cubic matrix multiplication
algorithms: MM-SCAN and MM-INPLACE [16,21,22,31], and show that only MM-INPLACE
is optimally cache adaptive, whereas MM-SCAN is a logarithmic-factor away from being
optimally cache adaptive. MM-SCAN divides each input matrix into b = 4 blocks and
perform a = 8 recursive multiplications on the blocks. It uses extra space to store an
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intermediate matrix and performs all additions at once with a linear scan. The recurrence
relation of MM-SCAN for problem size N (to multiply two matrices of size

√
N ×

√
N) is

Q(N) = 8Q(N/4) + O(1 + N/B). Hence, MM-SCAN has c = 1. MM-INPLACE has the
same recursive structure, but it avoids the linear scan by performing the multiplications and
additions in-place. The recurrence for MM-INPLACE has the same a and b as MM-SCAN,
but has c = 0: Q(N) = 8Q(N/4) + O(1). Both MM-SCAN and MM-INPLACE are optimal
cache-oblivious algorithms, having an I/O cost of O(N3/2/(

√
MB)).

In contrast, MM-INPLACE (with c < 1) is optimally cache-adaptive while MM-SCAN
(with c = 1) is not. This example of MM-SCAN and MM-INPLACE exemplifies how changing
the values of a, b, and c can determine whether a cache-oblivious algorithm is optimally
cache adaptive or not. Here, the answer depends on whether c < 1 or c = 1.

From the above discussion, MM-SCAN may seem to be a strictly worse algorithm than
MM-INPLACE because MM-SCAN is provably not cache adaptive. However, MM-SCAN
is more parallelizable than MM-INPLACE [16] as it can achieve 8-way parallelism whereas
MM-INPLACE can only achieve 4-way parallelism.

Example: EMS and LFS. Finally, we will review the gap between cache-adaptive and
non-adaptive sorting algorithms to see an example of cache-adaptive analysis outside
of (a, b, c)-regular algorithms. Both EMS and LFS achieve the disk I/O complexity,
O((N/B) logM/B(N/B)) in the external-memory model [1], which is the lower bound for
sorting when the cache-parameters remain fixed. However, EMS is not cache-adaptive [7] as
it has large linear scans involved and any reduction of memory from the promised amount
M during these phases affects the performance of the algorithm heavily. On the other hand,
despite not having the same recursive structure as that of the (a, b, c)-regular algorithms,
LFS [10,21] is provably cache-adaptive [8]).

3 Memory profile design

This section presents the high-level design of our evaluation of cache-adaptive and non-
adaptive algorithms on a variety of memory profiles for matrix multiplication and external-
memory sorting. We test on adaptively constructed memory profiles (e.g. the worst-case
profile) as well as “oblivious” memory profiles that are erratic but not adaptively constructed.
To perform this evaluation, this study uses a memory profile that does not fluctuate with
respect to time. We refer to this as the constant memory profile and we use it as a
baseline in our experiments.

It is theoretically shown that under adaptively constructed worst-case memory work-
load the performance of two DAM-optimal algorithm diverges. Between two (a, b, c)-regular
algorithms, MM-INPLACE is cache adaptive and MM-SCAN is non-adaptive as it is log-
factor away from being optimally cache adaptive under this worst-case memory profile. We
construct this worst-case adversarial memory profile by adapting to the execution of the
non-adaptive algorithm and allowing it enough memory to store each recursive sub-problem
during its linear scan, and low memory when the algorithm is not performing a linear scan.
Since linear scans do not employ any locality of reference, the algorithm only requires O(1)
memory; any memory given more than that is not utilized during linear scan. For example,
MM-SCAN contains a linear scan at the end of each recursion; in each linear scan of size
N × N , memory is increased to 5N2 to hold the input and output matrices as well as the
intermediate results. However, the cache-adaptive algorithm opportunistically benefits from
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Figure 2 Sample adversarial memory profile generated from running MM-SCAN to multiply two
square matrices of width 8192. The structure of the memory profile mimics the recursive structure
of MM-SCAN.

these memory increases, causing its I/O-performance to improve considerably relative to
that of the non-adaptive algorithm. Figure 2 shows a sample adversarial memory profile for
matrix multiplication.

Similarly, we construct another category of adaptive memory profiles, i.e., the benevolent
memory profile, but these are designed to be benevolent to the non-adaptive algorithm.
The non-adaptive algorithms are unable to use any extra memory that adversarial memory
provides during the recursive sequential scans. In the case of the benevolent memory profile,
during the sequential scans, instead of increasing the memory we adaptively decrease memory.
When the linear scan ends, the memory is again increased to the initial value.

Both the adversarial and benevolent memory profiles are tightly synchronized with the
execution of the non-adaptive algorithm. In fact, the adversarial memory profile mimics the
recursive structure of the non-adaptive algorithm to bring out the worst performance relative
to the adaptive algorithm. In contrast, the benevolent profile aims to minimize the advantage
of the cache-adaptive algorithm over the non-adaptive algorithm. However, adversarial and
benevolent memory profiles might be too pessimistic or too optimistic in terms of the relative
performance of the non-adaptive algorithm and rarely found in the real-world applications.
The beyond-worst-case analysis [6] shows the performance gap between MM-SCAN and
MM-INPLACE disappears with sufficient smoothing on the worst-case profile, otherwise, the
performance gap remains even under smoothed memory profiles. Hence the question remains,
how do the non-adaptive algorithms perform under a range of memory profiles that are not
generated in an adaptive manner (i.e. the profiles which do not adapt to the execution of
the algorithm)?

To gain a more complete view of algorithm performance under memory fluctuations, we
run algorithms under oblivious memory profiles that are generated non-synthetically and
non-adaptively. These profiles are created independently of a given algorithm’s execution. A
sample oblivious profile can be obtained by running several programs concurrently in shared
memory without limiting any of their memory usages [13, 14]. An evaluation under such
oblivious workloads accounts for the fact that in practice, often a running process is forced
to share available RAM with other concurrent memory-intensive programs. Hence, these
oblivious profiles enable us to observe a more complete view of an algorithm’s performance
under memory fluctuations in a multi-program environment.
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4 Evaluation on constant profiles

This section presents details of the experimental setup and studies the performance of the
matrix multiplication and external-memory sorting algorithms described in Section 3 on
constant memory profiles. All of the tested algorithms are theoretically optimal when the
memory does not fluctuate. The empirical results confirm the theory: the performance gap
between the cache-adaptive and non-adaptive algorithms does not grow with the problem
size when the memory size is fixed.

Experimental setup. All experiments were conducted on a Dell Precision 5820 with an
Intel®Core™i9-9900X 3.50GHz processor, two Samsung 16GB M378A2K43DB1-CTD Dual
Rank Memory Modules, and Seagate Barracuda ST2000DM001 Desktop SATA Hard Drive.
The operating system used is Linux Mint 19.1, Tessa, with kernel version 4.15.0-88. We used
C++14 to implement the algorithms, g++ 9.3.0-17ubuntu1 20.04 as compiler, and bash
scripts to run the experiments. We measure performance in disk I/Os using /proc. At the
start of each experiment, we use the sync system call to free page-cache and slab objects.
We use Linux control groups (cgroups) to limit the memory available to a program. We run
all the experiments with 25 trials and average the measured I/Os.

Algorithm implementation descriptions. We implemented the two algorithms for MM-
SCAN and MM-INPLACE directly from their description in past work on cache-
adaptivity [7]. Section 2 provides a detailed description of the divide-and-conquer recursion
of these two algorithms.

We explored two algorithms for sorting: External-memory Merge Sort (EMS) and Lazy
Funnel Sort (LFS). We implemented an (M/B)-way external-memory merge sort that is
compatible with the memory profile generator and chose M = 256 MiB and B = 8 MiB.
Previous work [11] on engineering external sorting algorithms demonstrate that carefully
engineered cache-aware sorting algorithms can perform up to 2× better than cache-oblivious
ones when the memory does not fluctuate. We expect our results regarding relative algorithm
performance in the face of memory fluctuations to hold for other implementations of EMS
and LFS because of the difference in the algorithm structure between the two algorithms.
For LFS, we used an implementation from Olsen and Skov [27].

Problem sizes. We evaluate the relative performance of MM-SCAN to MM-INPLACE on
the constant memory workloads as a function of input size. For each matrix multiplication
experiment, we multiply two square matrices. We increase the input matrix width from 512
to 32768. For all the experiments, we provide a fixed memory of 10 MiB to the programs.

Similarly, we study the relative performance of EMS to LFS on the constant memory
workloads. For each sorting experiment, we sort an integer array. We increase the input
array length from 67 million to 1 billion. We provide a fixed memory of 256 MiB to the
programs.

Results. Figure 1a shows that when memory size is fixed, cache-adaptive MM-INPLACE
performs roughly 1.8× better than non-adaptive MM-SCAN for all input sizes, i.e., their
performance gap does not grow with problem size. On the other hand, Figure 1b shows
that cache-aware non-adaptive EMS incurs less disk I/Os (roughly 0.9× on average) than
cache-adaptive LFS. This result shows the cache-oblivious sorting algorithm does not bear a
major computational overhead when the memory does not fluctuate.
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5 Evaluation on adaptive profiles

This section presents details of how we generate the memory fluctuations and studies the
performance of the matrix multiplication and sorting algorithms described in Section 3 on
adaptively-generated memory workloads. Specifically, it first introduces the memory profile
generator used to construct the adaptive profiles. Using this profile generator, we explore
two types of adaptive memory profiles: the adversarial profile, and the benevolent profile.
Under adversarial workloads, the cache-adaptive algorithms perform up to 4.5× better than
the non-adaptive algorithms with increasing problem size. On the other hand, the benevolent
memory profile demonstrates that oblivious algorithms adapt well to non-adversarial memory
fluctuations while non-oblivious algorithms suffer. MM-INPLACE is up to 1.5× better than
MM-SCAN, but the gap does not grow with the problem size. In contrast, LFS performs
increasingly better (up to 3.2×) than EMS as the problem size grows.

Memory profile generator. We designed a memory profile generator that runs a program
under a particular memory workload. To fluctuate the memory available to a program,
we first used cgroups, however cgroups does not allow us to decrease the memory available
to a program (that the program already claimed) efficiently while the program is running.
To address this, the memory profile generator uses cgroups to set an initial memory limit
available to a program and runs a balloon program concurrently with the program within the
cgroups. The balloon program uses the memory complement to what we intend the program
to use. For example, if we want a program to use memory M until time t and thereafter
memory M + δ, and the cgroups has memory C, the balloon program uses memory C − M

until time t and thereafter it uses memory C −M −δ. The initial memory given to a program
remains the same as for the constant memory workload.

Using this memory profile generator, we generate two types of profiles, adversarial and
benevolent; see Section 3. We measure algorithm performance using the same problem sizes
as in Section 4.

Results for the adversarial memory profile

First, let us turn our attention to the adversarial memory workloads. Figure 1 illustrates that
under the adversarial memory workloads, the cache-adaptive algorithms perform better than
the non-adaptive algorithms, and the gap increases as the problem sizes grow. MM-INPLACE
performs roughly up to 4× better than MM-SCAN and LFS performs roughly up to 4.5×
better than EMS.

Time spent in linear scan. The performance gap between the cache-adaptive and non-
adaptive algorithms grows with the problem size because the relative time spent in scans
by the non-adaptive algorithms (MM-SCAN and EMS) grows with problem size. Table 2
shows that the relative time spent in scans grows with problem size for both MM-SCAN
(up to 13%) and EMS (up to 76%). Hence, the performance gap also increases between the
adaptive and non-adaptive algorithms with problem size. Cache-adaptive algorithms do not
perform any such linear scans and take advantage of the extra memory in the adversarial
profile. Cache-adaptive algorithms do not perform any such linear scans and take advantage
of the extra memory in the adversarial profile.
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Table 2 Percentage of running time that the non-adaptive algorithms spend on linear scans.

Algorithm Input size % of runtime

MM-SCAN 1024 × 1024 0.1

MM-SCAN 2048 × 2048 4.7

MM-SCAN 4096 × 4096 13.2

EM Merge Sort 512 MiB 43.6

EM Merge Sort 1 GiB 57.9

EM Merge Sort 2 GiB 76.8

Results for the benevolent memory profile

Next, let us turn our attention to the algorithms’ performance under the benevolent memory
workloads. Figure 1a shows that MM-SCAN performs very close to MM-INPLACE (between
1.3 × −1.6×) on the benevolent profiles since MM-SCAN is not affected by the memory
reductions that occurred during the linear scans whereas MM-INPLACE is affected. On the
other hand, Figure 1b shows that the gap between EMS and LFS grows with the problem
size – EMS incurs up to 3.2× more I/Os than LFS on the largest input. EMS is unable to
adapt to memory reductions during linear scans while LFS adapts to all changes in memory.

6 Evaluation on oblivious profiles

This section explains the setup for the oblivious memory workloads that are not synchronized
with the recursive execution of the algorithm and shows that the I/O-performance gap
between the two cache-oblivious MM algorithms disappears, but remains between the cache-
oblivious and non-oblivious algorithm for sorting. Figure 1a illustrates that MM-SCAN
incurs roughly 2× more disk I/Os on average than MM-INPLACE for oblivious memory
profiles as we increase the input size. Figure 1b, on the other hand, shows that EMS incurs
increasingly worse than LFS with problem size incurring up to 4.3× I/Os on average under
oblivious memory profiles. In fact, Figure 3b shows EMS may perform up to 7× more I/Os
under oblivious memory workloads.

Experimental setup. This study runs multiple memory-intensive programs concurrently, all
sharing the same RAM, to ensure that each program instance experiences memory fluctuations
that do not follow the recursive execution of the algorithm. We create these oblivious memory
fluctuations in two ways: by creating a uniform environment where multiple identically-sized
copies of the same program runs concurrently, and by creating a nonuniform environment
by creating nonuniformity in the concurrent programs. Such nonuniform concurrent programs
may include program instances of the same program of different problem sizes, or different
programs of same problem sizes. The concurrent programs share a fixed memory that is
given at the starting of the experiment. For all the MM experiments, it is 10 MiB, and for
all the sorting experiments, it is 256 MiB, if not stated otherwise. We keep the rest of the
experimental setup the same as in the case of constant memory profiles (see Section 4).
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Figure 3 Average disk I/O of a non-adaptive program to the cache-adaptive program as a function
of problem size when running up to 4 instances concurrently normalized to the same when a single
instance runs concurrently.

Running uniform instances concurrently
First, let us turn our attention to the oblivious memory workloads that are generated by
running multiple concurrent instances of the same program that share a memory [13, 14].
Figure 3a illustrates that cache-oblivious non-adaptive algorithm MM-SCAN performs close
to cache-adaptive MM-INPLACE and incurs roughly up to 2× disk I/Os across all problem
sizes. On the other hand, Figure 3b shows that the I/O-performance for the cache-aware
algorithm EMS rapidly declines relative to the cache-adaptive LFS with increasing problem
size (1.4 – 7.1×). Dice et al. [20] showed that multiple threads in shared memory may
exhibit a “winner-takes-all” phenomenon where a thread may take memory from the others.
However, Figure 3 shows that even if uniformly-sized program instances unevenly share the
cache, cache-oblivious algorithms adapt well to memory fluctuations.

Setup. We evaluate the average I/O-performance of the cache-adaptive and non-adaptive
algorithms by running concurrent uniform instances, i.e., multiple identically-sized copies
of the same program. This multi-program environment setup ensures that each program
instance runs under a memory profile that is erratic due to the uncertainty stemming from
the concurrent programs’ memory requirement but independent of the recursive structure of
the particular program under consideration. We perform the study on uniform instances
in two ways. First, we vary the input problem sizes given a number of concurrent program
instances. Next, we vary the number of concurrent instances in the range of 1 – 4 for a
given problem size and observe slowdown, the degradation of average I/O-performance of a
program instance.

Slowdown. Figure 4 illustrates that cache-oblivious algorithms incur relatively small slow-
downs even as the number of concurrent instances increases. When we run up to 4 MM-SCAN
instances concurrently, the average disk I/Os stays within 1.2× than the disk I/Os incurred
by MM-SCAN when a single concurrent instance runs. The MM-INPLACE instances also
face almost no slowdown in a similar environment. In contrast, concurrent EMS instances
face up to 6× more disk I/Os when compared to an EMS program that does not share
memory with other concurrent programs. However, LFS faces a negligible slowdown in the
same scenario.
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Figure 4 Average normalized disk I/O of a program instance when up to four program instances
run concurrently normalized to the disk I/O when a single instance runs.
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Figure 5 Average normalized disk I/O of non-adaptive MM-SCAN to cache-adaptive MM-
INPLACE as a function of problem size with 30 MiB memory given. The y-axis indicates that
MM-SCAN performs within a constant factor of MM-INPLACE.

Running nonuniform instances concurrently

Next, let us turn our attention to how the algorithms perform when nonuniform program
instances run concurrently and share a fixed memory. The nonuniform programs have
different memory requirements at every time step, and therefore are more likely to cause more
dramatic memory fluctuations compared to the uniform case. We observe that along with the
cache-adaptive algorithms, cache-oblivious MM-SCAN also adapts to the fluctuations caused
by nonuniform instances. MM-SCAN incurs up to 2.5× more disk I/Os than MM-INPLACE
even when the memory fluctuations are more dramatic in the nonuniform case than in the
uniform case, as shown in Figure 5. On the other hand, EMS incurs up to 6× more disk
I/Os than LFS, which is more than the gap in the uniform case as demonstrated in Figure 6.
Since the memory fluctuations in the nonuniform environment are likely to be more dramatic
compared to the uniform environment, the performance gap between EMS and LFS is likely
to be more than in the uniform environment because EMS is non-oblivious. Indeed, EMS
performs increasingly worse than LFS under the oblivious memory workloads generated in
nonuniform environments.

Setup. We create nonuniformity among the program instances in two different manners. In
all experiments in Figures 5 and 6, we set the memory size to 30 MiB for MM and to 768
MiB for sorting and retain the problem sizes as mentioned in Section 4.

First, we concurrently run 3 instances of the same algorithm on different input sizes. For
each experiment, we select 3 input sizes from the available set of sizes uniformly at random.
The algorithm in each instance runs sequentially, but the instances run concurrently with
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Figure 6 Average normalized disk I/O of non-adaptive EMS to cache-adaptive LFS as a function
of problem size with 768 MiB memory given. An increase in the y-axis indicates that EMS performs
progressively worse than LFS.
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Figure 7 Normalized disk I/O of the non-adaptive to the cache-adaptive algorithm for variable
problem size for oblivious memory workloads that we generated by running TPC-C concurrently
with the programs. An increase in the y-axis means that the non-adaptive algorithm performs
progressively worse relative to the adaptive algorithm.

each other. For each experiment, since the smaller instances may complete earlier than the
larger ones, we repeat any instances that have finished until all instances have finished. To
measure I/O, we report only the first run of each instance per experiment. As a baseline, we
also run 3 uniform program instances to evaluate the effect of nonuniform input sizes.

Second, we concurrently run different algorithms for the same problem on the same input
size. Specifically, we run 3 instances of the cache-adaptive algorithm (MM-INPLACE or
LFS) and 3 instances of the non-adaptive algorithm (MM-SCAN or EMS) concurrently.

Running a database program concurrently

Finally, we turn our attention to how the MM and sorting algorithms perform when run under
oblivious memory workloads that we simulated by running a memory-intensive database
program concurrently. The database program is not adversarial and therefore not tied to
any particular algorithm structure, so we expect the cache-oblivious algorithms to adapt
better to the resulting memory fluctuations. Figure 7 confirms this hypothesis – MM-SCAN
performs very close to MM-INPLACE (roughly incurring 2.1× disk I/Os), while EMS
performs increasingly worse (up to 6×) than LFS as the problem size grows.
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Setup. As the oblivious memory profiles are generated in a non-synthetic manner (see
Section 3), and the memory fluctuations are oblivious to what the algorithm does, we choose
to run a concurrent memory-intensive database program with the desired algorithm to
evaluate the algorithm’s performance. We generated such an oblivious memory workload by
running the TPC-C [17] workload concurrently with either a cache-adaptive or a non-adaptive
program and present the normalized disk I/Os of the non-adaptive algorithms to the adaptive
algorithms. TPC-C is a popular online transaction processing (OLTP) benchmark used to
measure database management systems. Both the MM and sorting algorithms share the
memory with the memory-intensive TPC-C program.

7 Conclusion

We investigated how some cache-oblivious and cache-adaptive (and neither) algorithms per-
form under a wide range of memory profiles. Specifically, we focused on matrix-multiplication
algorithms as representatives of (a, b, c)-regular algorithms and sorting algorithms as repres-
entatives of cache-optimized but not (a, b, c)-regular algorithms. We experimentally exhibited
the gap in I/O-performance between the cache-adaptive and non-adaptive algorithms for MM
and sorting under adversarially-generated memory workloads. To do so, we needed to design
a profile generator that can dynamically change the amount of available memory depending
on a program’s execution. On the other hand, under our oblivious memory workloads,
cache-oblivious MM algorithms performed close to each other, whereas the non-oblivious
sorting algorithm still performed worse than the cache-oblivious (and adaptive) algorithm.
We conjecture that what we have seen in our experiments applies more generally. That is,
we conjecture that cache-oblivious programming is a powerful way of empirically achieving
cache-adaptivity. This could be important because as mentioned in Section 1, there are many
more known cache-oblivious algorithms than known cache-adaptive algorithms. Our results
provide hope for the large body of work on cache-oblivious algorithms to empirically perform
well even when the cache size fluctuates.
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Abstract
Designing dynamic algorithms against an adaptive adversary whose performance match the ones
assuming an oblivious adversary is a major research program in the field of dynamic graph algorithms.
One of the prominent examples whose oblivious-vs-adaptive gap remains maximally large is the fully
dynamic spanner problem; there exist algorithms assuming an oblivious adversary with near-optimal
size-stretch trade-off using only polylog(n) update time [Baswana, Khurana, and Sarkar TALG’12;
Forster and Goranci STOC’19; Bernstein, Forster, and Henzinger SODA’20], while against an
adaptive adversary, even when we allow infinite time and only count recourse (i.e. the number of
edge changes per update in the maintained spanner), all previous algorithms with stretch at most
log5(n) require at least Ω(n) amortized recourse [Ausiello, Franciosa, and Italiano ESA’05].

In this paper, we completely close this gap with respect to recourse by showing algorithms
against an adaptive adversary with near-optimal size-stretch trade-off and recourse. More precisely,
for any k ≥ 1, our algorithm maintains a (2k − 1)-spanner of size O(n1+1/k log n) with O(log n)
amortized recourse, which is optimal in all parameters up to a O(log n) factor. As a step toward
algorithms with small update time (not just recourse), we show another algorithm that maintains a
3-spanner of size Õ(n1.5) with polylog(n) amortized recourse and simultaneously Õ(

√
n) worst-case

update time.
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1 Introduction

Increasingly, algorithms are used interactively for data analysis, decision making, and
classically as data structures. Often it is not realistic to assume that a user or an adversary is
oblivious to the outputs of the algorithms; they can be adaptive in the sense that their updates
and queries to the algorithm may depend on the previous outputs they saw. Unfortunately,
many classical algorithms give strong guarantees only when assuming an oblivious adversary.
This calls for the design of algorithms that work against an adaptive adversary whose
performance match the ones assuming an oblivious adversary. Driven by this question, there
have been exciting lines of work across different communities in theoretical computer science,
including streaming algorithms against an adaptive adversary [10, 52, 66, 3, 56, 28], statistical
algorithms against an adaptive data analyst [51, 37, 7, 63], and very recent algorithms for
machine unlearning [47].
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In the area of this paper, namely dynamic graph algorithms, a continuous effort has
also been put on designing algorithms against an adaptive adversary. This is witnessed
by dynamic algorithms for maintaining spanning forests [53, 60, 67, 61, 34], shortest paths
[13, 11, 14, 35, 36, 49, 50, 48, 33], matching [20, 21, 22, 24, 64, 23], and more. This development
led to new powerful tools, such as the expander decomposition and hierarchy [62, 42, 59]
applicable beyond dynamic algorithms [57, 58, 1, 68], and other exciting applications such
as the first almost-linear time algorithms for many flow and cut problems [27, 26, 33, 17].
Nevertheless, for many fundamental dynamic graph problems, including graph sparsifiers [2],
reachability [18], directed shortest paths [49], the performance gap between algorithms against
an oblivious and adaptive adversary remains large, waiting to be explored and, hopefully,
closed.

One of the most prominent dynamic problems whose oblivious-vs-adaptive gap is max-
imally large is the fully dynamic spanner problem [5, 38, 8, 25, 40, 16, 12]. Given an
unweighted undirected graph G = (V, E) with n vertices, an α-spanner H is a subgraph of
G whose pairwise distances between vertices are preserved up to the stretch factor of α, i.e.,
for all u, v ∈ V , we have distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v).1 In this problem, we
want to maintain an α-spanner of a graph G while G undergoes both edge insertions and
deletions, and for each edge update, spend as small update time as possible.

Assuming an oblivious adversary, near-optimal algorithms have been shown: for every
k ≥ 1, there are algorithms maintaining a (2k − 1)-spanner containing Õ(n1+1/k) edges2,
which is nearly tight with the Ω(n1+1/k) bound from Erdős’ girth conjecture (proven for the
cases where k = 1, 2, 3, 5 [65]). Their update times are either O(k log2 n) amortized [8, 40] or
O(1)k log3 n worst-case [16], both of which are polylogarithmic when k is a constant.

In contrast, the only known dynamic spanner algorithm against an adaptive adversary
by [5] requires O(n) amortized update time and it can maintain a (2k − 1)-spanner of size
O(n1+1/k) only for k ≤ 3. Whether the O(n) bound can be improved remained open until
very recently. Bernstein et al. [12] show that a log6(n)-spanner can be maintained against
an adaptive adversary using polylog(n) amortized update time. The drawback, however, is
that their expander-based technique is too crude to give any stretch smaller than polylog(n).
Hence, for k ≤ log6(n), it is still unclear if the Θ(n) bound is inherent. Surprisingly, this
holds even if we allow infinite time, and only count recourse, i.e., the number of edge changes
per update in the maintained spanner. The stark difference in performance between the two
adversarial settings motivates the main question of this paper:

Is the Ω(n) recourse bound inherent for fully dynamic spanners against an adaptive
adversary?

Recourse is an important performance measure of dynamic algorithms. There are dynamic
settings where changes in solutions are costly while computation itself is considered cheap,
and so the main goal is to directly minimize recourse [45, 44, 6, 46]. Even when the final
goal is to minimize update time, there are many dynamic algorithms that crucially require
the design of subroutines with recourse bounds stronger than update time bounds to obtain
small final update time [31, 42, 32]. Historically, there are dynamic problems, such as planar
embedding [55, 54] and maximal independent set [29, 9, 30], where low recourse algorithms
were first discovered and later led to fast update-time algorithms. Similar to dynamic
spanners, there are other fundamental problems, including topological sorting [15] and edge
coloring [19], for which low recourse algorithms remain the crucial bottleneck to faster update
time.

1 Here, distG(u, v) denotes the distance between u and v in graph G.
2 Õ(·) hides a polylog(n) factor.
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In this paper, we successfully break the O(n) recourse barrier and completely close the
oblivious-vs-adaptive gap with respect to recourse for fully dynamic spanners against an
adaptive adversary.3

▶ Theorem 1. There exists a deterministic algorithm that, given an unweighted graph G

with n vertices undergoing edge insertions and deletions and a parameter k ≥ 1, maintains a
(2k − 1)-spanner of G containing O(n1+1/k log n) edges using O(log n) amortized recourse.

As the above algorithm is deterministic, it automatically works against an adaptive
adversary. Each update can be processed in polynomial time. Both the recourse and stretch-
size trade-off of Theorem 1 are optimal up to a O(log n) factor. When ignoring the update
time, it even dominates the current best algorithm assuming an oblivious adversary [8, 40] that
maintains a (2k − 1)-spanner of size O(n1+1/k log n) using O(k log2 n) recourse. Therefore,
the oblivious-vs-adaptive gap for amortized recourse is closed.

The algorithm of Theorem 1 is as simple as possible. As it turns out, a variant of
the classical greedy spanner algorithm [4] simply does the job! Although the argument is
short and “obvious” in hindsight, for us, it was very surprising. This is because the greedy
algorithm sequentially inspects edges in some fixed order, and its output solely depends on
this order. Generally, long chains of dependencies in algorithms are notoriously hard to
analyze in the dynamic setting. More recently, a similar greedy approach was dynamized
in the context of dynamic maximal independent set [9] by choosing a random order for the
greedy algorithm. Unfortunately, the random order must be kept secret from the adversary
and so this fails completely in our adaptive setting. Despite these intuitive difficulties, our
key insight is that we can adaptively choose the order for the greedy algorithm after each
update. This simple idea is enough, see Section 2 for details.

Theorem 1 leaves open the oblivious-vs-adaptive gap for the update time. Below, we
show a partial progress on this direction by showing an algorithm with near-optimal recourse
and simultaneously non-trivial update time.

▶ Theorem 2. There exists a randomized algorithm that, given an unweighted graph G with n

vertices undergoing edge insertions and deletions, with high probability maintains against an
adaptive adversary a 3-spanner of G containing Õ(n1.5) edges using Õ(1) amortized recourse
and Õ(

√
n) worst-case update time.

We note again that, prior to the above result, there was no algorithm against an adaptive
adversary with o(n) amortized update time that can maintain a spanner of stretch less than
log6(n). Theorem 2 shows that for 3-spanners, the update time can be Õ(

√
n) worst-case,

while guaranteeing near-optimal recourse.
We prove Theorem 2 by employing a technique called proactive resampling, which was

recently introduced in [12] for handling an adaptive adversary. We apply this technique
on a modification of a spanner construction by Grossman and Parter [43] from distributed
computation community. The modification is small, but seems inherently necessary for
bounding the recourse.

To successfully apply proactive resampling, we refine the technique in two ways. First,
we present a simple abstraction in terms of a certain load balancing problem that captures
the power of proactive resampling. Previously, the technique was presented and applied
specifically for the dynamic cut sparsifier problem [12]. But actually, this technique is

3 We wish to mention here that our algorithm works against an adaptive adversary that, in addition to
just seeing the algorithm’s output, also has access to the internal randomness of the algorithm.
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Table 1 The state of the art of fully dynamic spanner algorithms.

Ref. Stretch Size Recourse Update Time Deterministic?

Against an oblivious adversary
[8] 2k − 1 O(k8n1+1/k log2 n) O(7k/2) amortized rand. oblivious
[8, 40] 2k − 1 O(n1+1/k log n) O(k log2 n) amortized rand. oblivious
[16] 2k − 1 Õ(n1+1/k) O(1)k log3 n worst-case rand. oblivious

Against an adaptive adversary

[5] 3 O(n1+1/2) O(∆) amortized deterministic
5 O(n1+1/3) O(∆) amortized deterministic

[12] Õ(1) Õ(n) Õ(1) amortized rand. adaptive
no(1) Õ(n) no(1) worst-case deterministic

Ours
2k − 1 O(n1+1/k log n) O(log n) amortized poly(n) worst-case deterministic

3 Õ(n1+1/2) Õ(1) amortized Õ(
√

n) worst-case rand. adaptive
3 O(n1+1/2) O(min{∆,

√
n} log n) worst-case deterministic

conceptually simple and quite generic, so our new abstraction will likely facilitate future
applications. Our second technical contribution is to generalize and make the proactive
resampling technique more flexible. At a very high level, in [12], there is a single parameter
about sampling probability that is fixed throughout the whole process, and their analysis
requires this fact. In our load-balancing abstraction, we need to work with multiple sampling
probabilities and, moreover, they change through time. We manage to analyze this generalized
process using probabilistic tools about stochastic domination, which in turn simplifies the
whole analysis.

If a strong recourse bound is not needed, then proactive resampling can be bypassed
and the algorithm becomes very simple, deterministic, and has slightly improved bounds as
follows.

▶ Theorem 3. There exists a deterministic algorithm that, given an unweighted graph G with
n vertices undergoing edge insertions and deletions, maintains a 3-spanner of G containing
O(n1.5) edges using O(min{∆,

√
n} log n) worst-case update time, where ∆ is the maximum

degree of G.

Despite its simplicity, the above result improves the update time of the fastest deterministic
dynamic 3-spanner algorithm [5] from O(∆) amortized to O(min{∆,

√
n} log n) worst-case.

In fact, all previous dynamic spanner algorithms with worst-case update time either assume
an oblivious adversary [38, 25, 16] or have a very large stretch of no(1) [12]. See Table 1 for
detailed comparison.

Organization. In Section 2, we give a very short proof of Theorem 1. In Section 3, we
prove Theorem 2 assuming a crucial lemma (Lemma 8) needed for bounding the recourse.
To prove this lemma, we show a new abstraction for the proactive resampling technique in
Section 4 and complete the analysis in Section 5. Our side result, Theorem 3, is based on the
the static construction presented in Section 3.1 and its simple proof is given in Section 3.2.

2 Deterministic Spanner with Near-optimal Recourse

Below, we show a decremental algorithm that handles edge deletions only with near-optimal
recourse. This will imply Theorem 1 by a known reduction formally stated in Lemma 6. To
describe our decremental algorithm, let us first recall the classic greedy algorithm.
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The Greedy Algorithm. Althöfer et al. [4] showed the following algorithm for computing
(2k − 1)-spanners. Given a graph G = (V, E) with n vertices, fix some order of edges in E.
Then, we inspect each edge one by one according to the order. Initially EH = ∅. When we
inspect e = (u, v), if distH(u, v) ≥ 2k, then add e into EH . Otherwise, ignore it. We have
the following:

▶ Theorem 4 ([4]). The greedy algorithm above outputs a (2k − 1)-spanner H = (V, EH) of
G containing O(n1+1/k) edges.

It is widely believed that the greedy algorithm is extremely bad in dynamic setting: an
edge update can drastically change the greedy spanner. In contrary, when we allow the order
in which greedy scans the edges to be changed adaptively, we can avoid removing spanner
edges until it is deleted by the adversary. This key insight leads to optimal recourse. When
recourse is the only concern, prior to our work this result was known only for spanners with
polylog stretch, which is a much easier problem.

The Decremental Greedy Algorithm. Now we describe our deletion-only algorithm. Let G

be an initial graph with m edges and H = (V, EH) be a (2k − 1)-spanner with O(n1+1/k)
edges. Suppose an edge e = (u, v) is deleted from the graph G. If (u, v) /∈ EH , then we do
nothing. Otherwise, we do the following. We first remove e from EH . Now we look at the
only remaining non-spanner edges E \EH , one by one in an arbitrary order. (Note that the
order is adaptively defined and not fixed through time because it is defined only on E \EH .)
When we inspect (x, y) ∈ E \EH , as in the greedy algorithm, we ask if distH(x, y) ≥ 2k and
add (x, y) to EH if and only if it is the case. This completes the description of the algorithm.

Analysis. We start with the most crucial point. We claim that the new output after
removing e is as if we run the greedy algorithm that first inspects edges in EH (the order
within EH is preserved) and later inspects edges in E \ EH .

To see the claim, we argue that if the greedy algorithm inspects EH first, then the whole
set EH must be included, just like EH remains in the new output. To see this, note that,
for each (x, y) ∈ EH , distH(x, y) ≥ 2k when (x, y) was inspected according to some order.
But, if we move the whole set EH to be the prefix of the order (while the order within EH is
preserved), it must still be the case that distH(x, y) ≥ 2k when (x, y) is inspected and so e

must be added into the spanner by the greedy algorithm.
So our algorithm indeed “simulates” inspecting EH first, and then it explicitly implements

the greedy algorithm on the remaining part E \ EH . So we conclude that it simulates the
greedy algorithm. Therefore, by Theorem 4, the new output is a (2k − 1)-spanner with
O(n1+1/k) edges.

The next important point is that, whenever an edge e added into the spanner H, the
algorithm never tries to remove e from H. So e remains in H until it is deleted by the
adversary. Therefore, the total recourse is O(m). With this, we conclude the following key
lemma:

▶ Lemma 5. Given a graph G with n vertices and m initial edges undergoing only edge
deletions, the algorithm above maintains a (2k − 1)-spanner H of G of size O(n1+1/k) with
O(m) total recourse.

By plugging Lemma 5 to the fully-dynamic-to-decremental reduction by [8] below, we
conclude Theorem 1.
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▶ Lemma 6 ([8]). Suppose that for a graph G with n vertices and m initial edges undergoing
only edge deletions, there is an algorithm that maintains a (2k − 1)-spanner H of size
O(S(n)) with O(F (m)) total recourse where F (m) = Ω(m), then there exists an algorithm
that maintains a (2k − 1)-spanner H ′ of size O(S(n) log n) in a fully dynamic graph with n

vertices using O(F ((U) log n)) total recourse. Here U is the total number of updates, starting
from an empty graph.

3 3-Spanner with Near-optimal Recourse and Fast Update Time

In this section, we prove Theorem 2 by showing an algorithm for maintaining a 3-spanner
with small update time in addition to having small recourse. We start by explaining a
basic static construction and needed data structures in Section 3.1 and show the dynamic
algorithm in Section 3.2. Assuming our key lemma (Lemma 8) about proactive resampling,
most details here are quite straight forward. Hence, due to space constraint, some proofs are
omitted. They will appear in our full version.

Throughout this section, we let NG(u) = {v ∈ V : (u, v) ∈ E} denote the set of neighbors
of a node u ∈ V in a graph G = (V, E), and we let degG(u) = |NG(u)| denote the degree of
the node u in the graph G.

3.1 A Static Construction and Basic Data Structures
A Static Construction. We now describe our static algorithm. Though our presentation
is different, our algorithm is almost identical to [43]. The only difference is that we do not
distinguish small-degree vertices from large-degree vertices.

We first arbitrarily partition V into
√

n equal-sized buckets V1, . . . , V√
n. We then construct

three sets of edges E1, E2, E3. For every bucket Vi, i ∈ [1,
√

n], we do the following. First,
for all v ∈ V \ Vi, if Vi ∩NG(v) is not empty, we choose a neighbor ci(v) ∈ Vi ∩NG(v) and
add (v, ci(v)) to E1. We call ci(v) an i-partner of v. Next, for every edge e = (u, v), where
both u, v ∈ Vi, we add e to E2. Lastly, for u, u′ ∈ Vi with overlapping neighborhoods, we
pick an arbitrary common neighbor wuu′ ∈ NG(u) ∩NG(u′) and add (u, wuu′), (wuu′ , u′) to
E3. We refer to the node wuu′ as the witness for the pair u, u′.

▷ Claim 7. The subgraph H = (V, E1 ∪ E2 ∪ E3) is a 3-spanner of G consisting of at most
O(n
√

n) edges.

Proof. We need to show that (1) H is a 3-spanner and (2) EH = E1 ∪ E2 ∪ E3 has size at
most O(n

√
n).

Stretch. Consider an edge e = (u, v) where u ∈ Vi, v ∈ Vj . We show that H has a path
of length at most 3 between u and v. The easy case is when (u, v) ∈ EH . This gives us a
path of one edge. It happens when u = ci(v) or v = cj(u), or i = j. Suppose (u, v) /∈ EH .
Consider v′ = cj(u). Since u is a common neighbor between v and v′, P (v, v′) is not empty.
As e /∈ EH , u ̸= wvv′ . As, the path u, v′, wvv′ , v has length exactly 3, the stretch part is
concluded.

Size. Each vertex u has upto
√

n partners. Since we have n vertices, |E1| = O(n
√

n). For E2,
the graph induced on Vi has at most O(n) edges. Since we have

√
n buckets, |E2| = O(n

√
n).

For E3, |E3| is bounded by the number of witnesses we need. Since we have O
√

n buckets, and
we have O(n) pairs of vertices within the same bucket, for all buckets, |E3| must be bounded
by O(n

√
n). We conclude the proof by saying that |EH | = O(|E1|+ |E2|+ |E3|) = O(n

√
n)
◁
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Dynamizing the Construction. Notice that it suffices to separately maintain E1, E2, E3, in
order to maintain the above dynamic 3-spanner. Maintaining E1 and E2 is straightforward
and can be done in a fully-dynamic setting in O(1) worst-case update time. Indeed, if
e = (u, ci(u)) ∈ E1 is deleted, then we pick a new i-partner ci(u) ∈ Vi ∩ NG(u) for u.
Maintaining Vi ∩ NG(u) for all u allows us to update ci(u) efficiently. If e = (u, u′) ∈ E2,
where u, u′ ∈ Vi, is deleted, then we do nothing.

The remaining task, maintaining E3, is the most challenging part of our dynamic algorithm.
Before we proceed, let us define a subroutine and a data structure needed to implement our
algorithm.

Resampling Subroutine. We define Resample(u, u′) as a subroutine that uniformly samples
a witness wuu′ (i.e. a common neighbor of u and u′), if exists. Notice that, we can obtain E3
by calling Resample(u, u′) for all u, u′ ∈ Vi and for all i ∈ [1,

√
n].

Algorithm 1 Maintaining a 3-spanner after one edge deletion.

Data: G = (V, E), H = (V, E1 ∪ E2 ∪ E3)
Input: e = (u, v) is an edge being deleted
Result: G′ = (V, E′) , H ′ = (V, E′

1 ∪ E′
2, E′

3)
1 begin
2 E′ ←− E \ e

3 Let iu be such that u ∈ Viu

4 Let iv be such that v ∈ Viv

5

6 if u = ciu
(v) then

7 Reselect ciu(v) from Viu ∩NG′(v)
8 if v = civ

(u) then
9 Reselect civ (u) from Viv ∩NG′(u)

10 E′
1 ←− E1 \ e ∪ {(u, ciu

(v)), (v, civ
(u))}

11

12 if iu = iv then
13 E′

2 ←− E2 \ e

14

15 E′
3 ←− E3 \ e

16 for u′ ∈ Viu \ u do
17 if v = wuu′ then
18 wuu′ ←− Resample(u, u′) /* Resample(·, ·) is drawn from G′ */
19

20 E′
3 ←− E′

3 ∪ {(u, wuu′), (wuu′ , u′)}

21 for v′ ∈ Viv
\ v do

22 if u = wvv′ then
23 wvv′ ←− Resample(v, v′)
24 E′

3 ←− E′
3 ∪ {(v, wvv′), (wvv′ , v′)}

Partnership Data Structures. The subroutine above hints that we need a data structure
for maintaining the common neighborhoods for all pairs of vertices that are in the same
bucket. For vertices u and v within the same bucket, we let P (u, v) = NG(u) ∩NG(v) be

ESA 2022
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the partnership between u and v. To maintain these structures dynamically, when an edge
(u, v) is inserted, if u ∈ Vi and v ∈ Vj , we add v to P (u, u′) for all u′ ∈ Vi ∩NG(v) \ {u}, and
symmetrically add u to P (v, v′) for all v′ ∈ Vj ∩NG(u) \ {v}. This clearly takes O(

√
n log n)

worst-case time for edge insertion. and this is symmetric for edge deletion.
As we want to prove that our final update time is Õ(

√
n), we can assume from now

that E1, E2, and all partnerships are maintained in the background. The pseudocode for
maintaining the 3-spanner is provided in Algorithm 1.

3.2 Maintaining Witnesses via Proactive Resampling
Remark. For clarity of exposition, we will present an amortized update time analysis. Using
standard approach, we can make the update time worst case. We will discuss this issue at
the end of this section.

Our dynamic algorithm runs in phases, where each phase lasts for n
√

n consecutive
updates (edge insertions/deletions). As a spanner is decomposable4, it suffices to maintain a
3-spanner H of the graph undergoing only edge deletions within this phase and then include
all edges inserted within this phase into H, which increases the size of H by at most n

√
n

edges. Henceforth, we only need to present how to initialize a phase and how to handle
edge deletions within each phase. The reason behind this reduction is because our proactive
resampling technique naturally works for decremental graphs.

Initialization. At the start of the phase, since our partnerships structures only processed
edge deletions from the previous phase, we first update partnerships with all the O(n

√
n)

inserted edges from the previous phase. Then, we call Resample(u, u′) for all u, u′ ∈ Vi for
all i ∈ [1,

√
n] to replace all witnesses and initialize E3 of this phase.

Difficulty of Bounding Recourse. Maintaining E3 (equivalently, the witnesses) in Õ(
√

n)
worst-case time is straightforward because the partnership data structure has O(

√
n log n)

update time. However, our goal is to show Õ(1) amortized recourse, which is the most
challenging part of our analysis. To see the difficulty, if (u, v) is deleted and u ∈ Vi, a vertex
v may serve as a witness {wuu′} for all u′ ∈ Vi. In this case, deleting (u, v) causes the
algorithm to find a new witness wuu′ for all u′ ∈ Vi. This implies a recourse of |Vi| = Ω(

√
n).

To circumvent this issue, we apply the technique of proactive resampling, as described below.

Proactive Resampling. We keep track of a time-variable T ; the number of updates to G

that have occurred in this phase until now. T is initially 0. We increment T each time an
edge gets deleted from G.

In addition, for all i ∈ [1,
√

n] and u, u′ ∈ Vi with u ̸= u′, we maintain: (1) wuu′ , the
witness for the pair u and u′ and (2) a set Schedule[u, u′] of positive integers, which is the
set of timesteps where our algorithm intends to proactively resample a new witness for u, u′.
This set grows adaptively each time the adversary deletes (u, wuu′) or (wuu′ , u′).

Finally, to ensure that the update time of our algorithm remains small, for each λ ∈
[1, n
√

n] we maintain a List[λ], which consists of all those pairs of nodes (x, x′) such that
λ ∈ Schedule[x, x′].

4 Let G1 = (V, E1) and G2 = (V, E2). If H1 and H2 are α-spanners G1 and G2 respectively, then H1 ∪ H2
is a α-spanner of G1 ∪ G2.
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When an edge (u, v), where u ∈ Vi and v ∈ Vj is deleted, we do the following operations.
First, for all u′ ∈ Vi that had v = wuu′ as a common neighbor with u before deleting
(u, v), we add the timesteps {T + 2k | T + 2k ≤ n

√
n, k ∈ N} to Schedule[u, u′]. Second,

analogous to the previous one, for all v′ ∈ Vj that had u = wvv′ as a common neighbor
with v before deleting (u, v), we add the timesteps {T + 2k | T + 2k ≤ n

√
n, k ∈ N} to

Schedule[v, v′]. Third, we set T ← T + 1. Lastly, for each (x, x′) ∈ List[T ], we call the
subroutine Resample(x, x′).

The key lemma below summarizes a crucial property of this dynamic algorithm. Its proof
appears in Section 4.

▶ Lemma 8. During a phase consisting of n
√

n edge deletions, our dynamic algorithm makes
at most Õ(

√
n) calls to the Resample subroutine after each edge deletion. Moreover, the

total number of calls to the Resample subroutine during an entire phase is at most Õ(n
√

n)
w.h.p. Both these guarantees hold against an adaptive adversary.

Analysis of Recourse and Update Time. Our analysis are given in the lemmas below.

▶ Lemma 9 (Recourse). The amortized recourse of our algorithm is Õ(1) w.h.p., against an
adaptive adversary.

Proof. To maintain the edge-sets E1 and E2, we pay a worst-case recourse of O(1) per
update. For maintaining the edge-set E3, our total recourse during the entire phase is at
most O(1) times the number of calls made to the Resample(., .) subroutine, which in turn
is at most Õ(n

√
n) w.h.p. (see Lemma 8). Finally, while computing E3 in the beginning of a

phase, we pay O(n
√

n) recourse. Therefore, the overall total recourse during an entire phase
is Õ(n

√
n) w.h.p.. Since a phase lasts for n

√
n time steps, we conclude the lemma. ◀

▶ Lemma 10 (Worst-case Update Time within a Phase). Within a phase, our algorithm
handles a given update in Õ(

√
n) worst case time w.h.p..

Proof. Recall that the sets E1, E2 can be maintained in O(1) worst case update time.
Henceforth, we focus on the time required to maintain the edge-set E3 after a given update
in G.

Excluding the time spent on maintaining the partnership data structure (which is Õ(
√

n)
in the worst-case anyway), this is proportional to Õ(1) times the number of calls made to the
Resample(., .) subroutine, plus Õ(1) times the number of pairs u, u′(v, v′) where we need
to adjust SCHEDULE[u, u′]. The former is w.h.p. at most Õ(

√
n) according to Lemma 8,

while the latter is also at most Õ(
√

n) since |Vi|, |Vj | ≤
√

n. Thus, within a phase we can
also maintain the set E3 w.h.p. in Õ(

√
n) worst case update time. ◀

Although the above lemma says that we can handle each edge deletion in Õ(
√

n) worst-
case update time, our current algorithm does not guarantee worst-case update time yet
because the intialization time exceed the Õ(

√
n) bound. In more details, observe that the

total initialization time is O(n
√

n)×O(
√

n log n) because we need to insert O(n
√

n) edges
into partnership data structures, which has O(

√
n log n) update time. Over a phase of n

√
n

steps, this implies only Õ(
√

n) amortized update time.
However, since the algorithm takes long time only at the initialization of the phase, but

takes Õ(
√

n) worst-case step for each update during the phase, we can apply the standard
building-in-the-background technique to de-amortized the update time.5 We conclude the
following:

5 The proof for this standard technique will be included in our full version.
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▶ Lemma 11 (Worst-case Update Time for the Whole Update Sequence). W.h.p., the worst-case
update time of our dynamic algorithm is Õ(

√
n).

4 Proactive Resampling: Abstraction

The goal of this section is to prove Lemma 8 for bounding the recourse of our 3-spanner
algorithm. This is the most technical part of this paper. To ease the analysis, we will abstract
the problem situation in Lemma 8 as a particular dynamic problem of assigning jobs to
machines while an adversary keeps deleting machines and the goal is to minimize the total
number of reassignments. Below, we formalize this problem and show how to use it to bound
the recourse of our 3-spanner algorithm.

Our abstraction has two technical contributions: (1) it allows us to easily work with
multiple sampling probabilities, while in [12], they fixed a single parameter on sampling
probability, (2) the simplicity of this abstraction can expose the generality of the proactive
resampling technique itself; it is not specific to the cut sparsifier problem as used in [12].

Jobs, Machines, Routines, Assignments, and Loads. Let J denote a set of jobs and M

denote a set of machines. We think of them as two sets of vertices of the (hyper)-graph
G = (J, M, R).6 A routine r ∈ R is a hyperedge of G such that r contains exactly one
job-vertex from J , denoted by job(r) ∈ J , and may contain several machine-vertices from M ,
denoted by M(r) ⊆M . Each routine r in G means there is a routine for handling job(r) by
simultaneously calling machines in M(r). Note that r = {job(r)} ∪M(r). We say that r is a
routine for job(r). For each machine x ∈M(r), we say that routine r involves machine x,
or that r contains x. The set R(x) is then defined as the set of routines involving machine
x. Observe that there are degG(u) different routines for handling job u. An assignment
A = (J, M, F ⊆ R) is simply a subgraph of G. We say assignment A is feasible iff degA(u) = 1
for every job u ∈ J where degG(u) > 0. That is, every job is handled by some routine, if
exists. When r ∈ A, we say that job(r) is handled by routine r. Finally, given an assignment
A, the load of a machine x is the number of routines in A involving x, or in other words, is
the degree of x in A, degA(x). We note explicitly that our end-goal is not to optimize loads
of machines. Rather, we want to minimize the number of reassignments needed to maintain
feasible assignments throughout the process.

In this section, we usually use u, v, w to denote jobs, use x, y, z to denote machines, and
use e or r to denote routines or (hyper)edges.

The Dynamic Problem. Our problem is to maintain a feasible assignment A while the
graph G undergoes a sequence of machine deletions (which might stop before all machines
are deleted). More specifically, when a machine x is deleted, all routines r containing x are
deleted as well. But when routines in A are deleted, A might not be feasible anymore and we
need to add new edges to A to make A feasible. Our goal is to minimize the total number of
routines ever added to A.

To be more precise, write the graph G and the assignment A after t machine-deletions as
Gt = (J, M, Rt) and At = (J, M, F t), respectively. Here, we define recourse at timestep t

to be |F t \ F t−1|, which is the number of routined added into A at timestep t. When the
adversary deletes T machines, the goal is then to minimize the total recourse

∑T
t=1 |F t\F t−1|.

6 This graph is different from the graph that we maintain a spanner in previous sections.
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The Algorithm: Proactive Resampling. To describe our algorithm, first let Resample(u)
denote the process of reassigning job u to a uniformly random routine for u. In the graph
language, Resample(u) removes the edge r such that job(r) = u from A, sample an edge r′

from {r ∈ R | job(r) = u}, and then add r′ into A. At timestep 0, we initialize a feasible
assignment A0 by calling Resample(u) for every job u ∈ J , i.e., assign each job u to a
random routine for u. Below, we describe how to handling deletions.

Let T be the total number of machine-deletions. For each job u, we maintain
Schedule(u) ⊆ [T ] containing all time steps that we will invoke Resample(u). That
is, at any timestep t, before an adversary takes any action, we call Resample(u) if
t ∈ Schedule(u).

We say that an adversary touches u at timestep t if the routine r ∈ At handling u at
time t is deleted. When u is touched, we call Resample(u) and, very importantly, we put
t + 1, t + 2, t + 4, . . . where t + 2i ≤ T into Schedule(u). This is the action that we call
proactive resampling because we do not just resample a routine for u only when u is touched,
but do so proactively in the future as well. This completes the description of the algorithm.

Clearly, A remains a feasible assignment throughout because whenever a job u is touched,
we immediately call Resample(u). The key lemma below states that the algorithm has low
recourse, even if the adversary is adaptive in the sense that each deletion at time t depends
on previous assignment before time t.

▶ Lemma 12. Let T be the total number of machine-deletions. The total recourse of the
algorithm running against an adaptive adversary is O

(
|J | log(∆) log2 |M |+ T log2 |M |

)
with

high probability where ∆ is the maximum degree of any job. Moreover, if the load of a machine
never exceeds λ, then our algorithm has O(λ log T ) worst-case recourse.

We will prove Lemma 12 in Section 5. Before proceeding any further, however, we argue
why Lemma 12 directly bounds the recourse of our 3-spanner algorithm.

Back to 3-spanners: Proof of Lemma 8. It is easy to see that maintaining E3 in our
3-spanner algorithm can be framed exactly as the job-machine load-balancing problem.
Suppose the given graph is G = (V, E) where n = |V | and m = |E|. We create a job juu′ for
each pair of vertices u, u′ ∈ Vi with u ̸= u′. For each edge e ∈ E, we create a machine xe.
Hence, |J | = O(n1.5) and |M | = |E| = m. For each job, as we want to have a witness wuu′ ,
this witness is corresponding to two edges e = (u, wuu′) and e′ = (u′, wuu′). Hence, we create
a routine r = (juu′ , e, e′) for each u, u′ ∈ Vi and a common neighbor wuu′ . Since there are at
most n common neighbors between each u and u′, ∆ = O(n). A feasible assignment is then
corresponding to finding a witness for each job. Our algorithm that maintains the spanner is
also exactly this load-balancing algorithm. Hence, the recourse of the 3-spanner construction
follows from Lemma 12 where we delete exactly T = O(n1.5) machines. As |J | = O(n1.5),
the total recourse bound then becomes O(n1.5 log3 n). As T = O(n1.5), averaging this bound
over all timesteps yields O(log3 n) amortized recourse.

5 Proactive Resampling: Analysis (Proof of Lemma 12)

The first step to prove Lemma 12 is to bound the loads of machines x. This is because
whenever machine x is deleted, its load of degA(x) would contribute to the total recourse.

What would be the expected load of each machine? For intuition, suppose that the
adversary was oblivious. Recall that R(x) denote the set of all routines involving machine
x. Then, the expected load of machine x would be

∑
r∈R(x) 1/ degG(job(r)) because each
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job samples its routine uniformly at random, and this is concentrated with high probability
using Chernoff’s bound. Although in reality our adversary is adaptive, our plan is to still
prove that the loads of machines do not exceed its expectation in the oblivious setting too
much. This motivates the following definitions.

▶ Definition 13. The target load of machine x is target(x) =
∑

r∈R(x) 1/ degG(job(r)). The
target load of x at time t is targett(x) =

∑
r∈Rt(x) 1/ degGt(job(r)). An assignment A has

overhead (α, β) iff degA(x) ≤ α · target(x) + β for every machine x ∈M .

Our key technical lemma is to show that, via proactive resampling, the loads of machines
are indeed close to its expectation in the oblivious setting. That is, the maintained assignment
has small overhead. Recall that T is the total number of machine-deletions.

▶ Lemma 14. With high probability, the assignment A maintained by our algorithm always
has overhead (O(log T ), O(log |M |)) even when the adversary is adaptive.

We defer the proof of Lemma 14 to Section 6. Assuming Lemma 14, we formally show
how to bound of machine loads implies the total recourse, which proves Lemma 12.

Proof of Lemma 12. Let T be the total number of deletions. Observe that the total recourse
up to time T is precisely the total number of Resample(.) calls up to time T , which in turn
is at most the total number of Resample(.) calls put into Schedule(.) since time 1 until
time T . Therefore, our strategy is to bound, for each time t, the number of Resample(.)
calls newly generated at time t. Let xt be the machine deleted at time t. Observe this is at
most O(log T )× degAt(xt) where degAt(xt) is xt’s load at time t and the O(log T ) factor is
because of proactive sampling.

By Lemma 14, we have degAt(xt) ≤ O
(
log (T )targett(xt) + log |M |

)
. Also, we claim

that
∑T

t=1 targett(xt) = O(|J | log ∆) where ∆ is the maximum degree of jobs (to be proven
below). Therefore, the total recourse up to time T is at most

O(log T )
T∑

t=1
degAt(xt) ≤ O(log T )

T∑
t=1

O
(
log(T )targett(xt) + log |M |

)
≤ O

(
|J | log (∆) log2 |M |+ T log2 |M |

)
as T ≤ |M |.

It remains to show that
∑T

t=1 targett(xt) = O(|J | log ∆). Recall that targett(x) =∑
r∋x

1
degGt (job(r)) . Imagine when machine xt is deleted at time t. We will show how to

charge targett(xt) to jobs with edges connecting to xt. For each job u with c (hyper)edges
connecting to xt, u’s contribution of targett(xt) is c/ degGt(u). So we distribute the charge of
c/ degGt(u) ≤ 1

degGt (u) + 1
degGt (u)−1 + . . . + 1

degGt (u)−c+1 to u. Since these edges are charged
from machine xt to job u only once, the total charge of each job u at most 1

degG(u) + 1
degG(u)−1 +

· · ·+ 1/2 + 1 = O(log ∆). Since there are |J | jobs, the bound
∑T

t=1 targett(xt) = O(|J | log ∆)
follows.

To see that we have worst-case recourse, one can look at any timestep t. There are O(log t)
timesteps that can cause Resample to be invoked at timestep t, namely, t−1, t−2, t−4, . . ..
At each of these timesteps t′, one machine is deleted, so the number of Resample calls
added from timestep t′ is also bounded by the load of the deleted machine xt′ , which does
not exceed λ. Summing this up, the number of calls we make at timestep t is at most
O(λ log t) = O(λ log T ). This concludes our proof. ◀
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6 Proof of Lemma 14

Here, we show that the load degAt(x) of every machine x at each time t is small. Some basic
notions are needed in this analysis.

Experiments and Relevant Experiments. An experiment X is a binary random variable
associated with an edge/routine e and time step t, where X = 1 iff Resample(job(e)) is
called at time t and e is chosen to handle job(e), among all edges incident to job(e). Observe
that P[X = 1] = 1/ degGt(job(e)). Note that each call to Resample(u) at time t creates
new degGt(u) experiments. We order all experiments X1, X2, X3, . . . by the time of their
creation. For convenience, for each experiment X, we let e(X), t(X), and job(X) denote its
edge, time of creation, and job respectively.

Next, we define the most important notion in the whole analysis.

▶ Definition 15. For any time t and edge e ∈ Rt at time t, an experiment X is (t, e)-relevant
if

e(X) = e, and
there is no t(X) < t′ < t such that t′ ∈ Schedulet(X)(job(e)).

Moreover, X is (t, x)-relevant if it is (t, e)-relevant and edge e ∈ Rt(x) is incident to x.

Intuitively, X is a (t, e)-relevant experiment if X could cause e to appear in the assignment
At at time t. To see why, clearly if e(X) ̸= e, then X cannot cause e to appear. Otherwise, if
e(X) = e but there is t′ ∈ (t(X), t) where t′ ∈ Schedulet(X)(job(e)), then X cannot cause
e to appear at time t either. This is because even if X is successful and so e appears at time
t(X), then later at time t′ > t(X), e will be resampled again, and so X has nothing to do
whether e appears at time t > t′. With the same intuition, X is (t, x)-relevant if X could
contribute to the load degAt(x) of machine x at time t.

Notice that we decide whether X is a (t, e)-relevant based on Schedulet(X)(job(e)) at
time t(X). If it was based on Schedulet(job(e)) at time t, then there would be only a
single experiment X that is (t, e)-relevant (which is the one with e(X) = e and maximum
t(X) < t).

According to Definition 15, there could be more than one experiments that are (t, e)-
relevant. For example, suppose X is (t, e)-relevant. At time t(X) + 1, the adversary could
touch job(e), hence, adding t(X) + 2, t(X) + 4, . . . into Schedule(job(e)). Because of this
action, there is another experiment X ′ that is (t, e)-relevant and t(X ′) > t(X). This motivates
the following definition.

▶ Definition 16. Let Rel(t, e) be the random variable denoting the number of (t, e)-relevant
experiments, and let Rel(t, x) =

∑
e∈Rt(x) Rel(t, e) denote the total number of (t, x)-relevant

experiments.

To simplify the notations in the proof of Lemma 14 below, we assume the following.

▶ Assumption 17 (The Machine-disjoint Assumption). For any routines e, e′ with job(e) =
job(e′), then M(e) ∩M(e′) = ∅. That is, the edges adjacent to the same job are machine-
disjoint.

Note that this assumption indeed holds for our 3-spanner application. This is because any
two paths of length 2 between a pair of centers u and u′ must be edge disjoint in any simple
graph. We show how remove this assumption in our full version. The notations there will
slightly be more complicated.
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Roadmap for Bounding Loads. We are now ready to describe the key steps for bounding
the load degAt(x), for any time t and machine x.

First, we write X (t,x) = X
(t,x)
1 , X

(t,x)
2 , . . . , X

(t,x)
Rel(t,x) as the sequence of all (t, x)-relevant

experiments (ordered by time step the experiments are taken). The order in X (t,x) will be
important only later. For now, we write

degAt(x) =
∑

X∈X (t,x)

X,

as the total number of success (t, x)-relevant experiments. As any edge e adjacent to x in
At may appear only because of some successful (t, x)-relevant experiment X ∈ X (t,x), we
conclude the following:

▶ Lemma 18 (Key Step 1). degAt(x) ≤ degAt(x).

Lemma 18 reduces the problem to bounding degAt(x). If all (t, x)-relevant experiments
X (t,x) = {X(t,x)

i }i were independent, then we could have easily applied standard concentration
bounds to degAt(x) =

∑
X∈X (t,x) X. Unfortunately, they are not independent as the outcome

of earlier experiments can affect the adversary’s actions, which in turn affect later experiments.
Our strategy is to relate the sequence X (t,x) of (t, x)-relevant experiments to another

sequence X̂ (t,x) = X̂
(t,x)
1 , X̂

(t,x)
2 . . . , X̂

(t,x)
Rel(t,x) of independent random variables defined as

follows. For each (t, x)-relevant experiment X̂
(t,x)
i where e = e(X̂(t,x)

i ) and u = job(e), we
carefully define X̂

(t,x)
i as an independent binary random variable such that

P[X̂(t,x)
i = 1] = 1/ degGt(u),

which is the probability that Resample(u) chooses e at time t. We similarly define

d̂egAt(x) =
∑

X̂∈X̂ (t,x)

X̂,

that sums independent random variables, where each term in the sum is closely related to
the corresponding (t, x)-relevant experiments. By our careful choice of P[X̂(t,x)

i = 1], we can
relates d̂egAt(x) to degAt(x) via the notion of stochastic dominance defined below.

▶ Definition 19. Let Y and Z be two random variables not necessarily defined on the same
probability space. We say that Z stochastically dominates Y , written as Y ⪯ Z, if for all
λ ∈ R, we have P[Y ≥ λ] ≤ P[Z ≥ λ].

Our second important step is the following lemma. The proof of Lemma 20 is omitted
and will appear in our full version.

▶ Lemma 20 (Key Step 2). degAt(x) ⪯ d̂egAt(x).

Lemma 20 reduces the problem to bounding d̂egAt(x), which is indeed relatively easy to
bound because it is a sum of independent random variables. The last key step of our proof
does exactly this:

▶ Lemma 21 (Key Step 3). d̂egAt(x) ≤ 2 log (t) · targett(x) + O(log |M |) with probability
1− 1/|M |10.

We show the proof Lemma 21 in our full version. Here, we only mention one important
point about the proof. The log(t) factor above follows from the factor the number of (t, e)-
relevant experiment is always at most Rel(t, e) ≤ log(t) for any time t and edge e. This
property is so crucial and, actually, is what the proactive resampling technique is designed for.

Given three key steps above (Lemmas 18, 20, and 21), we can conclude the proof of
Lemma 14.
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Proof of Lemma 14. Recall that we ultimately want to show that, for every timestep t, the
maintained assignment At has overhead O(log (T ), log |M |). In other words, for every t ∈ T

and every x ∈M , we want to show that

degAt(x) ≤ targett(x) ·O(log (T )) + O(log |M |).

By Lemma 18, it suffices to show that

degAt(x) ≤ targett(x) ·O(log (T )) + O(log |M |).

By Lemmas 20 and 21,

P[degAt(x) ≥ 2 log(t) · targett(x) + O(log |M |)]

≤ P[d̂egAt(x) ≥ 2 log(t) · targett(x) + O(log |M |)] (Lemma 20)

≤ 1/|M |10
. (Lemma 21)

Now we apply union bound to the probability above. There are T ≤ |M | timesteps and
|M | machines, hence the probability that a bad event happens is bounded by T |M |

|M |10 = 1
|M |8 .

Here, we conclude the proof of Lemma 14. ◀

7 Conclusion

In this paper, we study fully dynamic spanner algorithms against an adaptive adversary.
Our algorithm in Theorem 1 maintains a spanner with near-optimal stretch-size trade-off
using only O(log n) amortized recourse. This closes the current oblivious-vs-adaptive gap
with respect to amortized recourse. Whether the gap can be closed for worst-case recourse is
an interesting open problem.

The ultimate goal is to show algorithms against an adaptive adversary with polylogarithmic
amortized update time or even worst-case. Via the multiplicative weight update framework
[39, 41], such algorithms would imply O(k)-approximate multi-commodity flow algorithm
with Õ(n2+1/k) time which would in turn improve the state-of-the-art. We made partial
progress toward this goal by showing the first dynamic 3-spanner algorithms against an
adaptive adversary with Õ(

√
n) update time in Theorem 3 and simultaneously with Õ(1)

amortized recourse in Theorem 2, improving upon the O(n) amortized update time since the
15-year-old work by [5].

Generalizing our Theorem 3 to dynamic (2k − 1)-spanners of size Õ(n1+1/k), for any
k ≥ 2, is also a very interesting and challenging open question.
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Abstract
Given a metric space M = (X, δ), a weighted graph G over X is a metric t-spanner of M if for
every u, v ∈ X, δ(u, v) ≤ δG(u, v) ≤ t · δ(u, v), where δG is the shortest path metric in G. In this
paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given
a sequence of points (s1, . . . , sn), where the points are presented one at a time (i.e., after i steps, we
have seen Si = {s1, . . . , si}). The algorithm is allowed to add edges to the spanner when a new point
arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a
t-spanner Gi for Si for all i, while minimizing the number of edges, and their total weight.

Under the L2-norm in Rd for arbitrary constant d ∈ N, we present an online (1 + ε)-spanner
algorithm with competitive ratio Od(ε−d log n), improving the previous bound of Od(ε−(d+1) log n).
Moreover, the spanner maintained by the algorithm has Od(ε1−d log ε−1) · n edges, almost matching
the (offline) optimal bound of Od(ε1−d) · n. In the plane, a tighter analysis of the same algorithm
provides an almost quadratic improvement of the competitive ratio to O(ε−3/2 log ε−1 log n), by
comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison
to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ωd(ε−d)
lower bound for the competitive ratio for online (1 + ε)-spanner algorithms in Rd under the L1-norm.

Then we turn our attention to online spanners in general metrics. Note that, it is not possible
to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the
offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner
algorithm, dubbed ordered greedy. With stretch factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1),
we show that it maintains a spanner with O(ε−1 log ε−1) · n1+ 1

k edges and O(ε−1n
1
k log2 n) lightness

for a sequence of n points in a metric space. We show that these bounds cannot be significantly
improved, by introducing an instance that achieves an Ω( 1

k
· n1/k) competitive ratio on both sparsity

and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness
for points in ultrametrics, showing that one can maintain a (2 + ε)-spanner for ultrametrics with
O(ε−1 log ε−1) · n edges and O(ε−2) lightness.
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18:2 Online Spanners in Metric Spaces

1 Introduction

Let M = (P, δ) be a finite metric space. Let G = (P, E) be a graph on the points of P in
M, where the edges are weighted with the distances between their endpoints. The graph G

is a t-spanner, for t ≥ 1, if δG(u, v) ≤ t · δ(u, v) for all u, v ∈ P , where δG(u, v) is the length
of the shortest path between u and v in G, and δ(u, v) is the distance between u and v in
M.1 The stretch factor t of G is the maximum distortion between the metrics δ and δG.
Spanners were first introduced by Peleg and Schäffer [52], and since then they have turned
out to be one of the fundamental graph structures with numerous applications in the area
of distributed systems and communication, distributed queuing protocol, compact routing
schemes, etc. [25, 43, 53, 54].

The study of Euclidean spanners, where P ⊂ Rd with L2-norm, was initiated by Chew [23].
Since then a large body of research has been devoted to Euclidean spanners due to its
vast range of applications across domains, such as topology control in wireless networks,
efficient regression in metric spaces, approximate distance oracles, data structures, and many
more [34, 38, 57, 60]. Some of the results generalize to metric spaces with constant doubling
dimensions [18] (the doubling dimension of Rd under L2-norm is Θ(d)).

Lightness and sparsity are two fundamental parameters for spanners. The lightness
of a spanner G = (P, E) is the ratio w(G)/w(MST ) between the total weight of G and
the weight of a minimum spanning tree (MST) on P . The sparsity of G is the ratio
|E(G)|/|E(MST )| ≈ |E(G)|/|P | between the number of edges of G and an MST. Since every
spanner is connected and thus contain a spanning tree, the lightness and sparsity of a spanner
G, resp., are trivial lower bounds for the ratio of w(G) and |E(G)| to the optimum weight
and the number of edges.

Online Spanners. We are given a sequence of points (s1, . . . , sn) in a metric space, where
the points are presented one-by-one, i.e., point si is revealed at step i, and Si = {s1, . . . , si}
for i ∈ {1, . . . , n}. The objective of an online algorithm is to maintain a t-spanner Gi for Si

for all i. The algorithm is allowed to add edges to the spanner when a new point arrives,
however it is not allowed to remove any edge from the spanner. Moreover, the algorithm
does not know the total number of points in advance.

The performance of an online algorithm ALG is measured by comparing it with the offline
optimum OPT using the standard notion of competitive ratio [17, Ch. 1]. The competitive
ratio of an algorithm ALG is defined as supσ

ALG(σ)
OPT(σ) , where the supremum is taken over all

input sequences σ, OPT(σ) is the minimum weight of a t-spanner for the (unordered) set
of points in σ, and ALG(σ) denotes the weight of the t-spanner produced by ALG for this
input sequence. Note that, in order to measure the competitive ratio it is important that σ

is a finite sequence of points.
The online spanner problem is motivated by natural application domains. For example,

consider a developing area with limited resources, where new settlements are created suc-
cessively. As the community grows, new roads are built, and there is no reason to remove
existing roads. Alternatively, online spanners are also motivated by distributed mobile
computing, where new subscribers successively join a network. Maintaining a cost-effective
network is equivalent to minimum-weight online spanner problem.

1 Often in the literature, the input metric is the shortest path metric of a graph G = (V, E, w), and a
spanner is required to be a subgraph of the input graph (see e.g. [4]). Here we study metric spanners
where there is no such requirement.
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In the online minimum spanning tree problem, points of a finite metric space arrive
one-by-one, and we need to connect each new point to a previous point to maintain a spanning
tree. Imase and Waxman [44] proved Θ(log n)-competitiveness, which is the best possible
bound. Later, Alon and Azar [2] studied this problem for points in the Euclidean plane, and
proved a lower bound Ω(log n/ log log n) for the competitive ratio. Their result was the first
to analyze the impact of auxiliary points (Steiner points) on a geometric network problem in
the online setting. Several algorithms were proposed over the years for the online minimum
Steiner tree and Steiner forest problems, on graphs in both weighted and unweighted settings;
see [1, 5, 10, 40, 50]. However, these algorithms do not provide any guarantees on the stretch
factor. This leads to the following open problem.

▶ Problem. Determine the best possible bounds for the competitive ratios for the weight and
the number of edges of online t-spanners, for t ≥ 1.

Previously, Gupta et al. [39, Theorem 1.5] constructed online spanners for terminal pairs
in the same model we consider here. The analysis of [39] implicitly implies that, given
a sequence of n points in an online fashion in a general metric space, one can maintain
a O(log n)-spanner with O(n) edges and O(log n) lightness, as pointed out by one of the
authors [59]. Recent work on online directed spanners [36] is not comparable to our results.

In the geometric setting, (1 + ε)-spanners are possible in any constant dimension d ∈ N.
Tight worst-case bounds Θd(ε−d) and Θd(ε1−d) on the lightness and sparsity of offline (1+ε)-
spanners have recently been established by Le and Solomon [47]. Online Euclidean spanners in
Rd have been introduced by Bhore and Tóth [14]. In the real line (1D), they have established
a tight bound of O((ε−1/ log ε−1) log n) for the competitive ratio of any online (1+ε)-spanner
algorithm for n points. In dimensions d ≥ 2, the dynamic algorithm DefSpanner of Gao et
al. [33] maintains a (1 + ε)-spanner with Od(ε−(d+1)n) edges and Od(ε−(d+1) log n) lightness,
and works under the online model (as it never deletes edges when new points arrive). However,
no lower bound better than the 1-dimensional Ω((ε−1/ log ε−1) log n) is currently known in
higher dimensions.

1.1 Our Contribution
See Table 1 for an overview of our results.

Upper Bounds for Points in Rd. Under the L2-norm in Rd, for arbitrary constant d ∈ N,
we present an online algorithm for (1 + ε)-spanner with lightness Od(ε−d log n) and sparsity
O(ε1−d log ε−1) (Theorem 2 in Section 2.1). This improves upon the previous lightness bound
of Od(ε−(d+1) log n) by Gao et al. [33, Lemma 3.8]. In the plane, we give a tighter analysis of
the same algorithm and achieve an almost quadratic improvement of the competitive ratio to
O(ε−3/2 log ε−1 log n) (Theorem 6 in Section 2.2). Recall that in the offline setting, Θ(ε−2)
is a tight worst-case bound for the lightness of a (1 + ε)-spanner in the plane [47]. We obtain
a better dependence on ε by comparing the online spanner with an instance-optimal spanner
directly, bypassing the comparison to an MST (i.e., lightness). The logarithmic dependence
on n cannot be eliminated in the online setting, based on the lower bound in R1 [14].

Lower Bounds for Points in Rd. As a counterpart, we design a sequence of points that
yields a Ωd(ε−d) lower bound for the competitive ratio for online (1 + ε)-spanner algorithms
in Rd under the L1-norm (Theorem 13 in Section 3). This improves the previous bound
of Ω(ε−2/ log ε−1) in R2 under the L1-norm [14]. It remains open whether a similar lower
bound holds in Rd under the L2-norm; the current best lower bound is Ω((ε−1/ log ε−1) log n),
established in [14], holds already for the real line (d = 1).
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18:4 Online Spanners in Metric Spaces

Table 1 Overview of online spanners algorithms. In the last three rows, we compare the spanner
weight directly with the optimum weight (rather than the MST) to bound the competitive ratio.

Family Stretch # of edges Lightness Reference
General metrics (2k − 1)(1 + ε) O(ε−1 log ε−1) n1+ 1

k O(ε−1n
1
k log2 n) Theorem 14

O(log n) O(n) O(log n) [39, 59]
α-HST 2 α

α−1 n − 1 1 Full paper
Ultrametric O(ε−1) n − 1 1 + ε Full paper

2 + ε O(ε−1 log ε−1) n O(ε−2) Full paper
Doubling d-space 1 + ε ε−O(d) n ε−O(d) log n [33]
Euclidean d-space 1 + ε Od(ε−d) n Od(ε−(d+1) log n) [33]

1 + ε Od(ε1−d) n Ω(ε−1n) [56]
1 + ε Od(ε1−d log ε−1) n Od(ε−d log n) Theorem 2

Real line 1 + ε O(n) Θ̃(ε−1 log n) [14]

Family Stretch # of edges Comp. Ratio Reference
General metrics 2k − 1 - Ω( 1

k
· n

1
k ) Theorem 19

Euclidean plane 1 + ε O(ε−1 log ε−1) n Õ(ε−3/2 log n) Theorem 6
Rd with L1-norm 1 + ε - Ω(ε−d) Theorem 13

Points in General Metrics. In Section 4, we study online spanners in general metrics. Note
that it is not possible to obtain a spanner with stretch less than 3 with a subquadratic
number of edges, even in the offline settings, for general metrics. We analyze an online
version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch
factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1), we show that it maintains a spanner
with O(ε−1 log ε−1) · n1+ 1

k edges and O(ε−1n
1
k log2 n) lightness for a sequence of n points

in a metric space (Theorem 14). We show (in Theorem 19) that these bounds cannot be
significantly improved, by introducing an instance where every online algorithm will have
Ω( 1

k · n1/k) competitive ratio on both sparsity and lightness. Next, we establish the trade-off
among stretch, number of edges and lightness for points in ultrametrics. Specifically, we show
(in the full paper) that it is possible to maintain a (2 + ε)-spanner with O(ε−1 log ε−1) · n

edges and O(ε−2) lightness in ultrametrics. Note that as the uniform metric (shortest path
on a clique) is an ultrametric, any subquadratic spanner must have stretch at least 2.

1.2 Related Work

1.2.1 Dynamic & Streaming Algorithms for Graph Spanners

A t-spanner in a graph G = (V, E) is a subgraph H = (V, E′) such that δH(u, v) ≤ t · δG(u, v)
for all pairs of vertices u, v ∈ V . That is, the stretch t is the maximum distortion between the
graph distances δG and δH . Importantly, when G changes (under edge/vertex insertions or
deletions), the underlying metric δG changes, as well. The distance δG(u, v) may dramatically
decrease upon the insertion of the edge uv. In contrast, our model assumes that the distances
in the underlying metric space M = (P, δ) remain fixed, but the algorithm can only see the
distances between the points that have been presented. For this reason, our results are not
directly comparable to models where the underling graph changes dynamically.

For unweighted graphs with n vertices, the current best fully dynamic and single-pass
streaming algorithms can maintain spanners that achieve almost the same stretch-sparsity
trade-off available for the static case: 2k − 1 stretch and O(n1+ 1

k ) edges, for k ≥ 1, which is
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attained by the greedy algorithm [4], and conjectured to be optimal due to the Erdős girth
conjecture [28]. In the dynamic model, the objective is design algorithms and data structures
that minimize the worst-case update time needed to maintain a t-spanner for S over all
steps, regardless of its weight, sparsity, or lightness. See [7, 9, 11, 16] for some excellent work
on dynamic spanners. In the streaming model the input is a sequence (or stream) of edges
representing the edge set E of the graph G. A (single-pass) streaming algorithm decides, for
each newly arriving edge, whether to include it in the spanner. The graph G is too large to fit
in memory, and the objective is to optimize work space and update time [6, 8, 26, 29, 30, 49].

1.2.2 Incremental Algorithms for Geometric Spanners
We briefly review three previously known incremental (1+ε)-spanner algorithms in Euclidean
d-space from the perspective of competitive analysis.

Deformable Spanners. Gao et al. [33] designed a dynamic DefSpanner algorithm that
maintains a (1+ε)-spanner for a dynamic set S in the Euclidean d-space. For point insertions,
it only adds new edges, so it is an online algorithm, as well. It maintains a (1 + ε)-spanner
with Od(ε−d) · n edges and Od(ε−(d+1) log n) lightness. Since the ∥MST(S)∥ is a lower bound
for the optimal spanner weight, its competitive ratio is also Od(ε−(d+1) log n). The key
ingredient of DefSpanner is hierarchical nets [42, 46, 55], a form of hierarchical clustering,
which can be maintained dynamically. Hierarchical nets naturally generalize to doubling
spaces, and so DefSpanner also maintains a (1 + ε)-spanner with ε−O(d) · n edges and
ε−O(d) · log n lightness for doubling dimension d [35, 55].

Well-Separated Pair Decomposition (WSPD). Well-separated pair decomposition was
introduced by Callahan and Kosaraju [21] (see also [37, 41, 51, 58]). For a set S in a metric
space, a WSPD is a collection of unordered pairs W = {{Ai, Bi} : i ∈ I} such that (1)
Ai, Bi ⊂ S for all i ∈ I; (2) min{∥ab∥ : a ∈ Ai, b ∈ Bi} ≤ ϱ · max{diam(Ai), diam(Bi)} for
all i ∈ I, where ϱ is the separation ratio; (3) for each point pair {a, b} ⊂ S there exists a pair
{Ai, Bi} such that Ai and Bi each contain one of a and b. Given a WSPD with separation
ratio ϱ > 4, any graph that contains at least one edge between Ai and Bi, for all i ∈ I, is a
spanner with stretch t = 1 + 8/(ϱ − 4). Setting ϱ ≥ 12ε−1 for 0 < ε < 1, we obtain t ≤ 1 + ε.

Hierarchical clustering provides a WSPD [41, Ch. 3]. Perhaps the simplest hierarchical
subdivisions in Rd are quadtrees. Let T be a quadtree for a finite set S ⊂ Rd. The root of
T is an axis-aligned cube of side length a0, which contains S; it is recursively subdivided
into 2d congruent cubes until each leaf cube contains at most one point in S. For all pairs of
cubes {Q1, Q2} at level ℓ of T , create a pair {Ai, Bi} with Ai = Q1 ∩ S and Bi = Q2 ∩ S

whenever Dℓ ≤ dist(Q1, Qb) < 2Dℓ for Dℓ = ϱ ·diam(Q1) = 12ε−1 ·
√

d ·a0/2ℓ; and repeat for
all levels ℓ ≥ 0. Properties (1)–(3) of a WSPD are easily verified [41, Ch. 3]. The resulting
(1 + ε)-spanner has Od(ε−d) · n edges [41, 42] and lightness Od(ε−(d+1) log n) [14].

For point insertions in Rd, a dynamic quadtree only adds nodes, which in turn creates
new pairs in the WSPD, and new edges in the spanner. This is an online algorithm with the
same guarantees as DefSpanner [14, 42] (see also [32] for an efficient implementation).

Ordered Yao-Graphs and Θ-Graphs. Among the first constructions for (offline) sparse
(1 + ε)-spanners in the Euclidean d-space were Yao- and Θ-graphs [24, 45, 56]. Incremental
versions of Yao-graphs and Θ-graphs were introduced by Bose et al. [20]. Let S = {s1, . . . , sn}
be an ordered set of points in R2. For each si ∈ S, partition the plane into k cones with
apex s and aperture 2π/k. The ordered Yao-graph Yk(S) contains an edge between si and
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18:6 Online Spanners in Metric Spaces

a closest previous point in {sj : j < i} in each cone. The graph Θk(S) is defined similarly,
but in each cone the distance to the apex is measured by the orthogonal projection to a ray
within the cone. Bose et al. [20] showed that the ordered Yao- and Θ-graphs have spanning
ratio at most 1/(1 − 2 sin(π/k)) for k > 8; tighter bounds were later obtained in [19]. In
particular, the ordered Yao- and Θ-graphs are (1 + ε)-spanners for k ≥ Ω(ε−1).

The construction generalizes to Rd for all d ∈ N [56]. For an angle α ∈ (0, π), let A ⊂ Sd−1

be a maximal set of points in the (d−1)-sphere such that mina,b∈A dist(a, b) ≤ α (in radians).
A standard volume argument shows that |A| ≤ Od(α1−d). For each ai ∈ A, create a cone Ci

with apex at the origin o, aperture α, and symmetry axis oai. Note that Rd ⊆
⋃

i Ci. Given
a finite set P ⊂ Rd, we translate each cone Ci to a cone Ci(p) with apex p ∈ P . For every
cone Ci(p), the Yao-graph contains an edge between p and a closest point in P ∩ Ci(p). For
every ε > 0 and d ∈ N, there exists an angle α = α(d, ε) = Θd(ε) for which the Yao-graph is
a (1 + ε)-spanner for every finite set P ⊂ Rd.

Ordered Yao- and Θ-graphs give online algorithms for maintaining a (1 + ε)-spanner for a
sequence of points in Rd. The sparsity of these spanners is bounded by the number of cones
per vertex, Od(ε1−d), which matches the (offline) lower bound of Ωd(ε1−d) [47]. However,
their weight may be significantly higher than optimal: For n equally spaced points in a unit
circle, in any order, Yao- and Θ-graphs yield (1 + ε)-spanners of weight Ω(ε−1) · n, hence
lightness Ω(ε−1) · n, while the optimum weight is O(ε−2) [47].

Online Steiner Spanners. An important variant of online spanners is when it is allowed to
use auxiliary points (Steiner points) which are not part of the input sequence of points, but
are present in the metric space. An online algorithm is allowed add Steiner points, however,
the spanner must achieve the given stretch factor only for the input point pairs. It has been
observed through a series of work in recent years, that Steiner points allow for substantial
improvements over the bounds on the sparsity and lightness of Euclidean spanners in the
offline settings . Highly nontrivial insights are required to argue the bounds for Steiner
spanners, and often they tend to be even more intricate than their non-Steiner counterpart;
see [12, 13, 47, 48]. Bhore and Tóth [14] showed that if an algorithm can use Steiner points,
then the competitive ratio for weight improves to O(ε(1−d)/2 log n) in the Euclidean d-space.

2 Upper Bounds in Euclidean Spaces

We present an online algorithm for a sequence of n points in the Euclidean d-space (Section 2.1).
It combines features from several previous approaches, and maintains a (1 + ε)-spanner of
lightness Od(ε−d log n) and sparsity Od(ε1−d log ε−1) for d ≥ 1. Lightness is an upper bound
for the competitive ratio for weight; the sparsity almost matching the optimal bound Od(ε1−d)
attained by ordered Yao-graphs. In the plane (d = 2), we show that the same algorithm
achieves competitive ratio O(ε−3/2 log ε−1 log n) using a tighter analysis: A charging scheme
that charges the weight of the online spanner to a minimum weight spanner (Section 2.2).

2.1 An Improvement in All Dimensions
We combine features from two incremental algorithms for geometric spanners, and obtain an
online (1 + ε)-spanner algorithm for a sequence of n points in Rd. We maintain a dynamic
quadtree for hierarchical clustering, and use a modified ordered Yao-graph in each level of
the hierarchy. In particular, we limit the weight of the edges in the Yao-graph in each level
of the hierarchy (thereby avoiding heavy edges). We start with an easy observation.
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▶ Lemma 1. Let G = (S, E) be a t-spanner and let w > 0. Let G′ = (S, E′), where
E′ = {e ∈ E : ∥e∥ ≤ w} is the set of edges of weight at most w. Then for every a, b ∈ S with
∥ab∥ < w/t, graph G′ contains an ab-path of weights at most t ∥ab∥.

Proof. Since G is a t-spanner, it contains an ab-path Pab of weight at most t ∥ab∥ ≤ w. By
the triangle inequality, every edge in this path has weight at most w, hence present in G′.
Consequently G′ contains Pab. ◀

The input is a sequence of points (s1, s2, . . .) in Rd, d ≥ 1. The set of the first n points
is denoted by Sn = {si : 1 ≤ i ≤ n}. For every n, we dynamically maintain a quadtree Tn

for Sn. Every node of Tn corresponds to a cube. The root of Tn, at level 0, corresponds
to a cube Q0 of side length a0 = Θ(diam(Sn)). At every level ℓ ≥ 0, there are at most
2dℓ interior-disjoint cubes, each of side length aℓ = a0 2−ℓ. A cube Q ∈ Tn is nonempty
if Q ∩ Sn ̸= ∅. For every nonempty cube Q, we maintain a representative s(Q) ∈ Q ∩ Sn,
selected at the time when Q becomes nonempty. At each level ℓ, let Pℓ be the sequence of
representatives, in the order in which they are created.

For each level ℓ, we maintain a modified ordered Yao-graph Gℓ = (Pℓ, Eℓ) as follows.
When a new point p is inserted into Pℓ, cover Rd with Θd(ε1−d) cones of aperture α(d, ε) as
in the construction of Yao-graphs. In each cone Ci, find a point qi ∈ Ci ∩ Pℓ closest to p; and
add pqi to Eℓ if ∥pqi∥ < 24aℓ

√
d · ε−1. The algorithm maintains the spanner G =

⋃
ℓ≥0 Gℓ.

▶ Theorem 2. Let d ≥ 1 and ε ∈ (0, 1). The online algorithm ALG1 maintains, for a sequence
of n points in Euclidean d-space, an (1 + O(ε))-spanner with weight Od(ε−d log n) · ∥MST ∥
and Od(ε1−d log ε−1) · n edges.

Note that Theorem 2 implies that the competitive ratio of this algorithm is also Od(ε−d log n).

Proof.

Stretch Analysis. We give a bound on the stretch factor in two steps: First, we define
an auxiliary graph H = (S, E′) which is a (1 + ε)-spanner for S by the analysis of WSPDs.
Then we show that G contains an ab-path of weight at most (1 + ε)∥ab∥ for each edge of H.
Overall, the stretch of G is at most (1 + ε)2 = (1 + O(ε)) for all a, b ∈ S.

First Layer: WSPD. For each level ℓ ≥ 0, let Hℓ = (Pℓ, E′
ℓ) be the graph that contains an

edge between two representatives a, b ∈ Pℓ whenever ∥ab∥ ≤ 12aℓ

√
d · ε−1. Let H =

⋃
ℓ≥0 Hℓ.

The auxiliary graph Hℓ contains an edge between the representatives of any such pair of
cubes at level ℓ. As noted Section 1.2.2, H =

⋃
ℓ≥0 Hℓ is a (1 + ε)-spanner (cf. [41, 42]).

Second Layer: Near-Sighted Yao-graphs. As H is a (1 + ε)-spanner, for every a, b ∈ Sn,
it contains an ab-path of weight at most (1 + ε)∥ab∥. Consider such a path Pab = (a =
p0, . . . , pm = b). Each edge pi−1pi is in Hℓ for some ℓ ≥ 0. By construction, every edge in
Hℓ has weight at most 12aℓ

√
d · ε−1. For every level ℓ, the ordered Yao-graph Y (Pℓ) with

angle α(d, ε) is a (1 + ε)-spanner. The graph Gℓ = (Pℓ, Eℓ) constructed by ALG1 at level ℓ

is a subgraph of Y (Pℓ). By Lemma 1, for every p, q ∈ Pℓ with ∥pq∥ ≤ 12aℓ

√
d · ε−1, graph

Gℓ contains a pq-path of weight at most (1 + ε)∥pq∥.
Overall, H contains an ab-path Pab = (p0, . . . , pm) of weight at most (1 + ε)∥ab∥. For

each edge pi−1pi of Pab, graph G contains a pi−1pi-path of weight (1 + ε)∥pi−1pi∥. The
concatenation of these paths is an ab-path of weight (1 + ε)2∥ab∥ ≤ (1 + O(ε))∥ab∥.
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Weight Analysis. We may assume w.l.o.g. that the root of the quadtree Tn is the unit cube
[0, 1]d ⊂ Rd, which has diameter

√
d. This implies diam(Sn) ≤

√
d = Od(1). Assume further

that n > 1, and 1
4 ≤ diam(Sn) ≤ ∥MST (Sn)∥.

Every edge in Eℓ at level ℓ has weight Od(ε−1 2−ℓ). In particular, every edge at level
ℓ ≥ 2 log n has weight Od(ε−1/n2); and the total weight of these edges is Od(ε−1) ≤
Od(ε−1∥MST (Sn)∥).

It remains to bound the weight of the edges on levels ℓ = 1, . . . , ⌊2 log n⌋. At level ℓ of
the quadtree Tn, there are at most 2dℓ nodes, hence |Pℓ| ≤ 2dℓ. If |Pℓ| < 3d, then Gℓ has at
most O(32d) = Od(1) edges, each of weight at most diam(Pℓ) ≤ diam(Sn) ≤ ∥MST(Sn)∥,
and so ∥Eℓ∥ ≤ Od(∥MST(Sn)∥). Assume now that |Gℓ| ≥ 3d. By the definition of ordered
Yao-graphs, each vertex inserted into Pℓ adds Θ(ε1−d) new edges, each of weight O(ε−1 2−ℓ).
The total weight of the edges in Gℓ is at most

∥Eℓ∥ ≤ |Pℓ| · ε1−d · max
e∈Eℓ

∥e∥ ≤ Od(|Pℓ| ε−d 2−ℓ). (1)

We next derive a lower bound for ∥MST(Sn)∥ in terms of |Pℓ|, when |Pℓ| > 1 and ℓ > 2,
using a standard volume argument. Define a graph on the vertex set Pℓ such that two
nodes p, q ∈ Pℓ are adjacent iff p and q lie in neighboring quadtree cells of level ℓ. Since
every quadtree cell has 3d − 1 neighbors, this graph is (3d − 1)-degenerate, and contains
an independent set Iℓ of size at least (3d − 1)−1|Pℓ| = Ωd(|Pℓ|). The distance between any
two disjoint quadtreee cells at level ℓ is at least 2−ℓ. Consequently, the open balls of radius
2−(ℓ+1) centered at the points in Iℓ are pairwise disjoint. None of the balls contains Sn for
ℓ > 2, as the diameter of each of ball is 2−ℓ while diam(Sn) ≥ 1

4 . For all ℓ > 2, MST(Sn)
contains the center of each ball and a point in its exterior; hence the intersection of MST(Sn)
and each ball contains a path from the center to a boundary point, which has weight at least
2−(ℓ+1). Summation over |Iℓ| disjoint balls yields

∥MST (Sn)∥ ≥ |Iℓ| · 2−(ℓ+1) ≥ Ωd(|Pℓ| 2−ℓ). (2)

Comparing inequalities (1) and (2), we obtain ∥Eℓ∥ ≤ Od(ε−d) · ∥MST (Sn)∥. Summation
over all levels ℓ ∈ N yields ∥E∥ ≤ Od(ε−d log n) · ∥MST(Sn)∥, as claimed.

Sparsity Analysis. In the full paper, we show that G has O(ε1−d log ε−1) · n edges. ◀

2.2 Further Improvements in the Plane
We presents a tighter analysis of algorithm ALG1 for d = 2 that compares the spanner weight
to the offline optimum weight, and bypasses the comparison with the MST (i.e., lightness).

Minimum-Weight Euclidean (1 + ε)-Spanner. For any a, b ∈ Rd, an ab-path Pab of
Euclidean weight at most (1 + ε)∥ab∥ lies in the ellipsoid Eab with foci a and b and great
axes of weight (1 + ε)∥ab∥; see Figure 1. A key observation is that the minor axis of Eab is
((1 + ε)2 − 12)1/2 ∥ab∥ ≈

√
2ε ∥ab∥. Furthermore, Bhore and Tóth [13] recently observed that

the directions of “most” edges of the path Pab are “close” to the direction of ab. Specifically,
if we denote by E(α) the set of edges e in Pab with ∠(ab, e) ≤ α, then the following holds.

▶ Lemma 3 (Bhore and Tóth [13]). Let a, b ∈ Rd and let Pab be an ab-path of weight ∥Pab∥ ≤
(1 + ε)∥ab∥. Then for every i ∈ {1, . . . , ⌊1/

√
ε⌋}, we have ∥E(i ·

√
ε)∥ ≥ (1 − 2/i2) ∥ab∥.

Let R(a, b) = Eab ∩ N (a, b), where N (a, b) is the annulus bounded by two concentric
spheres centered at a, of radii 1+ε

2 ∥ab∥ and ∥ab∥; see Figure 1 for an example.
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a b

d

R(a, b)

Figure 1 Any ab-path of weight at most (1 + ε)∥ab∥ lies in the ellipse Eab with foci a and b. The
shaded region R(a, b) is the part of the ellipse Eab between two concentric circles centered at a.

▶ Lemma 4. If 0 < ε < 1
9 , then every ab-path Pab of weight at most ∥Pab∥ ≤ (1 + ε)∥ab∥

contains interior-disjoint line segments s ⊂ R(a, b) of total weight at least 1
9 ∥ab∥ such that

∠(
−→
ab, s) ≤ 3 ·

√
ε.

Proof. Since the distance between the two concentric circles is 1−ε
2 ∥ab∥, every ab-path

contains a subpath of weight at least 1−ε
2 ∥ab∥ in the annulus N (a, b).

Let Pab be an ab-path of weight at most (1 + ε)∥ab∥. As noted above Pab ⊂ Eab.
Hence, ∥Pab ∩ N (a, b)∥ = ∥Pab ∩ R(a, b)∥ ≥ 1−ε

2 ∥ab∥ in R(ab); and so ∥Pab \ R(a, b)∥ =
∥Pab∥ − ∥Pab ∩ R(a, b)∥ ≤ 1+3ε

2 ∥ab∥.
Applying Lemma 3 with i = 3, the total weight of the edges e of Pab with dir(ab, e) ≤ 3·

√
ε

is at least 7
9 ∥ab∥. The parts of these edges lying outside of R(a, b) have weight at most

∥Pab \ R(a, b)∥ ≤ 1+3ε
2 ∥ab∥. Consequently, the remaining part of these edges are in R(a, b),

and their weight is at least
( 7

9 − 1+3ε
2

)
∥ab∥ = 5−27ε

18 ∥ab∥ > 1
9 ∥ab∥ if ε < 1

9 , as claimed ◀

We also need an observation from elementary geometry; see Figure 1.

▶ Lemma 5. For a, b ∈ Rd, let cd be the minor axis of the ellipsoid Eab. Then ∠cad ≤
√

8ε.

Proof. We may assume w.l.o.g. that ∥ab∥ = 1. Let o be the center of the ellipsoid Eab. Then
sec∠cao = (cos∠cao)−1 = ∥ac∥

∥ao∥ = 1+ε. The Taylor estimate sec(x) = 1+ 1
2 x2 + 5

24 x4 + . . . ≥
1 + 1

2 x2 for 0 < x < 1 yields ∠cao ≤
√

2ε. Consequently, ∠cad = 2∠cao ≥
√

8 ε. ◀

▶ Theorem 6. Let d = 2 and ε ∈ (0, 1). The online algorithm ALG1 maintains, for a sequence
of n points in Euclidean plane, an (1 + ε)-spanner of weight O(ε−3/2 log ε−1 log n) · OPT,
where OPT denotes the minimum weight of an (1 + ε)-spanner for the same point set.

Proof. Theorem 2 has established that algorithm ALG1 maintains a (1 + ε)-spanner. The
tighter competitive analysis uses Lemmas 4 and 5.

Competitive Analysis. Assume w.l.o.g. that diam(Sn) = Θ(1), hence the side length of every
quadtree square at level ℓ is Θ(2−ℓ). For a set Sn = {s1, . . . , sn} ⊂ R2, let G∗ = (Sn, E∗)
be a (1 + ε)-spanner of minimum weight, and let OPT = ∥G∗∥. Let G = (Sn, E) be the
spanner returned by the online algorithm ALG1. Recall that G =

⋃
ℓ≥0 Gℓ, where the total

weight of all edges at levels ℓ > 2 log n is less than diam(Sn), so it is enough to consider
ℓ = 0, . . . , ⌈2 log n⌉.

▷ Claim 7. ∥Gℓ∥ ≤ O(ε−3/2 log ε−1) · OPT for all ℓ ≥ 0.

Claim 7 immediately implies ∥G∥ ≤ O(ε−3/2 log ε−1 log n) · OPT. For every level ℓ ≥ 0,
Gℓ = (Pℓ, Eℓ) is a graph on the representatives Pℓ. Note that G∗ is a Steiner spanner with
respect to the point set Pℓ, as G∗ is a spanner on all n points of the input.

We prove Claim 7 using a charging scheme: We charge the weight of every edge in Gℓ

to G∗ (more precisely, to line segments along the edges of G∗), and then show that each
line segment of weight w in G∗ receives O(ε−3/2 log ε−1) · w charge. For every point p ∈ Pℓ,
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algorithm ALG1 greedily covers R2 by Θ(ε−1) cones of aperture π/k = Θ(ε−1) and apex p,
and adds an edge pqi in each nonempty cone Ci. For the competitive analysis, we greedily
cover R2 by Θ(ε−1/2) cones of aperture

√
ε and apex p. We use translates of the same cone

cover for all p ∈ Pℓ. Standard volume argument implies that a cone of aperture
√

ε intersects
O(ε−1/2) cones of aperture Θ(ε−1). We describe the charging scheme for each such cone Ĉ.

Charging Scheme. Consider a cone Ĉ with apex p and aperture
√

ε. Let E(Ĉ) be the set of
edges pq, q ∈ Ĉ that algorithm ALG1 adds to Gℓ when p is inserted into Pℓ. Since Ĉ intersects
O(ε−1/2) cones of the ordered Yao-graph, then |E(Ĉ)| ≤ O(ε−1/2). By construction, every
edge in Gℓ has weight at most O(ε−12−ℓ). Hence

∥E(Ĉ)∥ =
∑

pq∈E(Ĉ)

∥pq∥ ≤ |E(Ĉ)| · O(ε−12−ℓ) ≤ O(ε−3/22−ℓ). (3)

Let q0 = q0(Ĉ) be a closest point in Pℓ ∩ Ĉ to p. (Possibly, q0 arrived after p.) We
distinguish between two cases:

Case 1: ∥pq0∥ < 2 · 2−ℓ. Since q0 ∈ Pℓ, and Pℓ contains at most one point in each
quadtree cell of side length Θ(2−ℓ), this case occurs at most O(1) times per apex p. On
the one hand, the summation of (3) over all p ∈ Pℓ and all cones Ĉ with ∥pq0∥ < 2 · 2−ℓ is
bounded by O(|Pℓ| · ε−3/22−ℓ). On the other hand, OPT ≥ Ω(∥MST(Pℓ)∥) ≥ Ω(|Pℓ| · 2−ℓ).
Consequently, the total weight of all edges handled in Case 1 is O(ε−3/2) OPT.

Case 2: ∥pq0∥ ≥ 2 · 2−ℓ. The optimal spanner G∗ contains a pq0-path P0 of weight at
most (1 + ε)∥pq0∥. Recall P0 lies in the ellipse E0 with foci p and q0, and R(p, q0) is the
half of E0 that contains q0 (cf. Figure 1). Let E∗(Ĉ) be the set of maximal line segments e

along edges in E∗ such that e ⊂ P0 ∩ R(p, q0) and ∠(e, pq0) ≤ 3 ·
√

ε. By Lemma 4, we have
∥E∗(Ĉ)∥ ≥ 1

9 ∥pq0∥. We distribute the weight of all edges in E(Ĉ) uniformly among the line
segments in E∗(Ĉ). That is, each segment of weight w in E∗(Ĉ) receives a charge of

∥E(Ĉ)∥
∥E∗(Ĉ)∥

· w ≤ O(ε−3/22−ℓ)
Ω(2−ℓ) · w ≤ O(ε−3/2) · w. (4)

This completes the description of the charging scheme in Case 2.

Charges Received. A point along an edge of the optimal spanner G∗ may receive charges
from several cones Ĉ, possibly with different apices p ∈ Pℓ. Let L be a maximal line segment
along an edge of G∗ such that every point in L receives the same charges.

For a cone Ĉ of aperture
√

ε, let K̂ denote a cone with the same apex and axis as Ĉ, but
aperture 3

√
ε; refer to Figure 2.

▷ Claim 8. If L receives charges from Ĉ, then L ⊂ K̂.

Indeed, if L receive charges from Ĉ, then L ⊂ R(p, q0) ⊂ E0, where E0 is the ellipse with
foci p and the closest point q0 ∈ Ĉ ∩ Pℓ. By Lemma 5, R(p, q0) lies in a cone with apex p,
aperture 2

√
ε, and axis pq0. Consequently L ⊂ R(p, q0) ⊂ K̂, which proves Claim 8.

Note that if L receives positive charge from a cone Ĉ with apex p and closest point q0,
then ∠(L, pq0) ≤ 3 ·

√
ε. Since the aperture of the cones Ĉ is

√
ε, then L receives charges

from cones Ĉ with at most O(1) different orientations. We may restrict ourselves to cones Ĉ

that are translates of each other (but have different apices in Pℓ).
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R(a, b)

√
ε

Ĉ1
p

Ĉ2

Ĉ0

q0

p

K̂1

√
ε

√
ε

q0

Ĉ1

Ĉ2

Ĉ0

Figure 2 Left: There consecutive cones, Ĉ0, Ĉ1, and Ĉ1, with apex p and aperture
√

ε. Point q0

is the closest to p in Pℓ ∩ Ĉ1; and R(p, q0) ⊂ K̂1 = Ĉ0 ∪ Ĉ1 ∪ Ĉ2. Right: No point in Pℓ is in the
blue sector K̂, but there may be points in the pink sectors.

Let A be the set of all translates of a cone Ĉ with aperture
√

ε and apices in Pℓ, and
L receives positive charge from Ĉ. We partition A into O(log ε−1) classes as follows. For
j = 1, . . . , ⌈log(2ε−1)⌉, let Aj be the set of cones Ĉ ∈ A such that 2j−ℓ ≤ ∥pq0∥ < 2j+1−ℓ,
where p ∈ Pℓ is the apex of Ĉ and q0 is the closest point in Pℓ ∩ Ĉ to p.

▷ Claim 9. For each j, segment L receives O(ε−3/2) ∥L∥ total charges from all cones in Aj .

For a cone Ĉ ∈ Aj , the bound (3) is replaced by

∥E(Ĉ)∥ =
∑

pq∈E(Ĉ)

∥pq∥ ≤ |E(Ĉ)| · O(2j−ℓ) ≤ O(ε−1/22j−ℓ), (5)

while ∥E∗(Ĉ)∥ ≥ 1
9 ∥pq0∥ ≥ Ω(2j−ℓ) by Lemma 4. Refining (4), L receives a charge

∥E(Ĉ)∥
∥E∗(Ĉ)∥

· ∥L∥ ≤ O(ε−1/22j−ℓ)
Ω(2j−ℓ) · ∥L∥ ≤ O(ε−1/2) · ∥L∥ (6)

from each cone in Aj . To prove Claim 9, it is enough to show that |Aj | ≤ O(2j) ≤ O(ε−1).

h−

h−

L

p1

p2

p2

p4

Ĉ1

Ĉ4

U

Figure 3 The union U of triangles Ĉ ∩ h−, where L receives charges from the cones Ĉ.

By Claim 8, L received charges from cones of O(1) different orientations. We consider
each orientation separately. We may assume w.l.o.g. that the symmetry axis of every cone in
Aj is parallel to the x-axis, and their apex is their leftmost point. Let h be a vertical line that
contains the left endpoint of L, and let h− be the left halfplane bounded by h; see Figure 3.
The intersections Ĉ ∩ h and K̂ ∩ h are vertical line segments of length O(2j−ℓ tan

√
ε). We

have L ∩ h ⊂ K̂ ∩ h by Claim 8; and obviously Ĉ ∩ h ⊂ K̂ ∩ h. Consequently, a vertical line
segment of length O(2j−ℓ tan

√
ε) contains h ∩ Ĉ for all Ĉ ∈ Aj .
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Let U be the union of the triangles Ĉ ∩ h− for all Ĉ ∈ Aj . The interior of Ĉ ∩ h−

does not contain any point in Pℓ. Consequently, the apices of all cones lie on the boundary
∂U of U . The part of ∂U in h− is a y-monotone curve with slopes ±

√
ε. It follows that

the length of ∂U is O(2j−ℓ tan
√

ε/ sin
√

ε) = O(2j−ℓ csc
√

ε) = O(2j−ℓ). This, in turn,
implies that ∂U intersects O(2j) cubes of side length a02−ℓ at level ℓ of the quadtree, and so
|Aj | ≤ O(2j) ≤ O(ε−1), as required. This completes the proof Claim 9, and hence the proof
of Theorem 6. ◀

3 Lower Bounds in Rd Under the L1 Norm

In this section we introduce a strategy based on the points on the integer lattice Zd, that
achieves a new lower bound for the competitive ratio of an online (1 + ε)-spanner algorithm
in Rd under the L1 norm.

Figure 4 A sketch of the construction for the lower bound in two dimensions. Any online
algorithm is required to add the red pairs.

Construction. We describe an adversary strategy with Ωd(ε−d) points and show that any
online algorithm returns a (1+ε)-spanner whose weight is Ωd(ε−d) times the optimum weight.
One can extend this result for arbitrary number of points, but that does not necessarily
improve the lower bound. The final point set X consists of the points of the integer lattice Zd

in the hypercube [0, 1
εd )d, where ε < 1

d . The points are presented in stages in order to deceive
the online algorithm to add more edges than needed. In step 2i, where 0 ≤ i < 1

2ε , points
x ∈ X such that ∥x∥1 = i will be given to the algorithm. In step 2i + 1, where 0 ≤ i < 1

2ε ,
the adversary presents points x ∈ X such that ∥x∥1 = ⌈1/ε⌉ − i (Figure 4). In other words,
points are presented in batches according to their L1 norms.

Competitive Ratio. Denote by Xi the set of points presented in step i. The idea is to show
that there has to exist many edges between Xi and Xi+1 in order to guarantee the 1 + ε

stretch-factor. Specifically, we define an ordered-pair as follows.

▶ Definition 10 (ordered-pair). A pair of points (x, y) in Rd is an ordered-pair if x ∈ X2i

and y ∈ X2i+1 for some i, and xk ≤ yk for all k, where xk and yk are the k-th coordinates
of x and y respectively.
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Now we show that any ordered-pair (x, y) ∈ X2i × X2i+1 requires an edge in the spanner
immediately after x and y are presented. To prove this, we show (in the full paper) that
previously presented points cannot serve as via points in a (1 + ε)-path between x and y.

▶ Lemma 11. Let (x, y) be an ordered-pair. Then there is no (1 + ε)-path between x and y

that goes through any other point z ∈ Xj with j ≤ i + 1.

We next show that the total weight of the edges between ordered pairs is Ωd(ε−2d).

▶ Lemma 12. The total weight of the edges between the ordered-pairs is Ωd(ε−2d).

Proof. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be two points in X. We show that if
xk ∈ [ 1

4ε(d+0.25) , 1
4εd ] for all 1 ≤ k ≤ d, and yk ∈ [ 3

4ε(d+0.25) , 3
4εd ] for all 1 ≤ k ≤ d − 1, then

there is a choice of yd that makes (x, y) an ordered-pair. This would imply that there are
Ωd(ε−2d+1) ordered-pairs and by Lemma 11, each pair requires an edge of weight Ωd(ε−1),
thus the total weight of required edges would be Ωd(ε−2d).

In order to find such a yd, recall that ∥x∥1 + ∥y∥1 = ⌈ε−1⌉ holds because (x, y) is an
ordered-pair. This equality uniquely determines the value of yd,

yd = ⌈ε−1⌉ −
d∑

k=1
xk −

d−1∑
k=1

yk.

We just need to prove the inequalities yk ≥ xk and yk ≤ 1/(εd) for this unique yk. This can
simply be done by plugging the maximum (and minimum) values of xks and other yks and
calculating the result,

yd ≥ 1
ε

− d

4εd
− 3(d − 1)

4εd
= 3

4εd
> xd.

Also,

yd ≤ 1
ε

+ 1 − d

4ε(d + 0.25) − 3(d − 1)
4ε(d + 0.25) = 1 + 1

ε(d + 0.25) <
1
εd

. ◀

Now we can prove the main theorem of this section.

▶ Theorem 13. The competitive ratio of any online (1 + ε)-spanner algorithm in Rd under
the L1-norm is Ωd(ε−d).

Proof. For the point set X ⊂ Rd, the unit-distance graph is a Manhattan network: It
contains a path of weight ∥xy∥1 for all x, y ∈ X. Its weight is Θd(ε−d) which is an upper
bound for the weight of a (1 + ε)-spanner for any ε ≥ 1. By Lemma 12, any online algorithm
returns a spanner of weight Ωd(ε−2d). Thus its competitive ratio is Ωd(ε−d). ◀

4 General Metrics: The Ordered Greedy Spanner

In this section we study the online spanners problem on general metric spaces. The points
arrive one by one, where for each new point we also receive its distances to all previously
introduced points.

In the offline setting, the celebrated greedy spanner algorithm [4] sorts the edges by
increasing weight, and then processes them one by one, adding each edge if by the time
of examination, the distance between its endpoints is too large. This algorithm achieves
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the existentially optimal2 sparsity and lightness as a function of the stretch factor [31].
However, in the online model, we do not receive the edges in a sorted order, and therefore
cannot execute the greedy algorithm. As an alternative, we propose here the ordered greedy
algorithm. This is a deterministic algorithm working against an adaptive adversary. The
algorithm receives a stretch factor t, and works naturally as follows: We maintain a spanner
H. When a point vi arrives, we order its edges3 in the original metric by weight. Each edge
{vi′ , vi} is added to the spanner H if currently δH(vi′ , vi) > t · δX(vi′ , vi). Note that this
algorithm can be easily executed in an online fashion.

▶ Theorem 14. Given an n-point metric space (X, δX) in an (adaptive) adversarial order,
with stretch factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1), the ordered greedy algorithm
returns a spanner with O(ε−1 log ε−1) · n1+ 1

k edges and weight O(ε−1n
1
k log2 n) · w(MST).

Proof. The bounded stretch of our spanner is straightforward by construction, as every pair
was examined at some point, and taken care of. Next we analyze the lightness.

In the online spanning tree problem, points of a finite metric space arrive one-by-one,
and we need to connect each new point to a previous point to maintain a spanning tree. The
ordered greedy algorithm connects each vertex vi, to the closest vertex in {v1, . . . , vi−1}. As
was shown by Imase and Waxman [44], the tree created by the ordered greedy algorithm
has lightness O(log n), which is the best possible [44]. Denote the online spanning tree by
TG. Note that the ordered greedy spanner H will contain TG, as a shortest edge between
a new vertex to a previously introduced vertex is always added to the spanner H. The
following clustering lemma is frequently used for spanner constructions (see e.g. [3, 22, 27]).
We provide a proof for the sake of completeness.

▷ Claim 15. For every i ∈ N, the point set X can be partitioned into clusters Ci of diameter
at most Di = ε · (1 + ε)i w.r.t. the metric δTG

such that |Ci| = O( w(TG)
ε·(1+ε)i ).

Proof. Let Ni be a maximal set of vertices such that for every x, y ∈ Ni, δTG
(x, y) > 1

2 · Di.
For every vertex x ∈ Ni let Cx =

{
z : x = argminy∈Ni

δX(z, y)
}

be the Voronoi cell of x.
Clearly, diam(Cx) ≤ Di for all x. Further, consider a continuous version of TG (where each
edge is an interval). Then as the graph TG is connected, each cluster Cx contains at least
1
4 Di length of edges (as the balls

{
BTG

(x, 1
4 Di)

}
x∈Ni

are pairwise disjoint). It follows that

|Ci| = |Ni| ≤ w(TG)
1
4 Di

= O

(
w(TG)

ε · (1 + ε)i

)
. ◁

For every i, consider the scale Ei =
{

e = {u, v} ∈ H : (1 + ε)i−1 ≤ δX(u, v) < (1 + ε)i
}

. We
are now ready to bound the lightness and the sparsity of the ordered greedy spanner. This is
accomplished in the next two claims, with proofs in the full paper.

▷ Claim 16. The weight of the ordered greedy spanner is O(n 1
k · ε−2 log2 n) · w(MST).

▷ Claim 17. The ordered greedy spanner has O(ε−1 log 1
ε ) · n1+ 1

k edges.

This completes the proof of Theorem 14. ◀

2 Specifically, if a t-spanner construction achieves an upper bound m(n, t) and l(n, t), resp., on the size
and lightness of an n-vertex graph then this bound also holds for the greedy t-spanner [31].

3 By edges we mean point pairs in the metric space, we will often use notation from graph theory.
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5 Lower Bound for General Metrics

In this section we prove an Ω( 1
k · n

1
k ) lower bound on the competitive ratio of an online

(2k − 1)-spanner of n-vertex graphs. Our lower bound holds in both cases where the
quality is measured by number of edges or the weight. It follows that our upper bound in
Theorem 14 cannot be substantially improved, even if we consider competitive ratio instead
of lightness/sparsity.

Recall that the Erdős Girth Conjecture [28] states that for every n, k ≥ 1, there exists an
n-vertex graph with Ω(n1+ 1

k ) edges and girth 2k + 2. The proof of the following lemma is
based on a counting argument form the recent lower bound proof for (static) vertex fault
tolerant emulators by Bodwin, Dinitz, and Nazari [15].

▶ Lemma 18. Assuming the Erdős girth conjecture, for every n, k ≥ 1, there exists an
n-point metric space (X, δX) with diameter 2k − 1, such that every (2k − 1)-spanner has
Ω( 1

k · n1+ 1
k ) edges and weight Ω(n1+ 1

k ).

Proof. Let G = (V, EG) be the graph fulfilling the Erdős girth conjecture. That is, G is an
unweighted n-vertex graph with girth 2k + 2 and |EG| = Ω(n1+ 1

k ) edges. Set a metric δX

over V as follows,4

∀u, v ∈ V δX(u, v) = min {δG(u, v), 2k − 1} .

Suppose that H = (V, EH) is a (2k − 1)-spanner for (V, δX) with weight function wH , where
the weight of an edge e′ ∈ {u, v} ∈ EH is wH(e′) = δX(u, v). Let E′ = EH \ EG be the edges
of H which are not in G. We say that an edge e′ ∈ E′ covers an edge e ∈ EG, if there is a
shortest path in G between the endpoints of e′ going through e of weight at most k. Note
that as e′ has weight at most k, there is a unique shortest path in G between its endpoints.
In particular, each edge e ∈ E′ can cover at most k edges in EG.

Consider an edge e = {v0, vs} ∈ EG \ EH . We argue that some edge e′ ∈ E′ must cover
e. Suppose for contradiction otherwise, and let P = (v0, v1, . . . , vs) be the shortest path
in H between the endpoints v0, vs of e. Suppose first that P contains an edge vi, vi+1 of
weight at least wH({vi, vi+1}) ≥ k + 1. In particular, δG({vi, vi+1}) ≥ k + 1. Then by the
triangle inequality, δG(v0, vi) + δG(vi+1, vs) ≥ δG(vi, vi+1) − δG(v0, vs) ≥ k. It follows that
P has weight at least 2k + 1, a contradiction to the fact that H is a 2k − 1 spanner. We
conclude that for every i ∈ {0, . . . , s − 1}, δX(vi, vi+1) = δG(vi, vi+1) ≤ k. In particular, in
G there is a unique path Pi = (ui

0, . . . , ui
si

) between vi to vi+1 of weight δG(vi, vi+1) ≤ k. As
no edge covers e, e does not belong to any of these paths. The concatenation of this paths
P0 ◦ P1 ◦ · · · ◦ Ps−1 is a path in G of at most 2k − 1 edges between the endpoints of e. It
follows that G contains a 2k-cycle, a contradiction.

For conclusion, as every edge in EG \ EH is covered, and every edge in E′ = EH \ EG

can cover at most k edges, it follows that |EH \ EG| ≥ 1
k · |EG \ EH |. In particular,

|EH | = |EH ∩ EG| + |EH \ EG| ≥ |EH ∩ EG| + 1
k

· |EG \ EH | ≥ 1
k

· |EG| .

To bound the weight, for each edge e′ = {s, t} ∈ E′, let Ae′ be the set of edges in EG covered
by e′. Note that wH(e′) = δG(s, t) = |Ae′ |. As all the edges in EG \ EH are covered, we
conclude

4 Note that ∀x, y, z ∈ V , δX(x, z) = min {δG(x, z), 2k − 1} ≤ min {δG(x, y) + δG(y, z), 2k − 1} ≤
min {δG(x, y), 2k − 1} + min {δG(y, z), 2k − 1} = δX(x, y) + δX(y, z). Thus δX is a metric space.
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wH(EH) = wH(EH ∩ EG) + wH(EH \ EG)

= |EH ∩ EG| +
∑

e′∈E′

|Ae′ |

≥ |EH ∩ EG| + |EG \ EH | = |EG| = Ω(n1+ 1
k ). ◀

▶ Theorem 19. Assuming Erdős girth conjecture, the competitive ratio of any online (2k −1)-
spanner algorithm for n-point metrics is Ω( 1

k · n
1
k ), for both weight and number of edges.

In more details, there is an n-point metric space (X, δX) with a (2k − 1)-spanner HOPT =
(X, EOPT), and order over X for which every (2k−1)-spanner produced by an online algorithm
will have Ω( 1

k · n
1
k ) · |EOPT| edges, and Ω( 1

k · n
1
k ) · w(HOPT) weight.

Proof. Consider the metric space (X, δX) from Lemma 18 with parameters n − 1 and k. Let
X ′ be the metric space X with an additional point r at distance 2k−1

2 from all the points in
X. Note that no pairwise distance is changed due to the introduction of r. The adversary
provides the online algorithm the points in X first (in some arbitrary order), and the point
r last. After the algorithm received all the points in X ′, it has a 2k − 1-spanner Hn−1.
According to Lemma 18, Hn−1 has Ω( 1

k · (n − 1)1+ 1
k ) = Ω( 1

k · n1+ 1
k ) edges, and Ω(n1+ 1

k )
weight.

Next the algorithm introduces r. Consider the spanner S = (X ′, ES) consisting of n − 1
edges with r as a center. Note that the maximum distance in S is 2k − 1, and hence S is a
2k − 1 spanner as required. Note that S contains n − 1 edges of weight 2k−1

2 each, and thus
have total weight of O(nk). We conclude

|EHn | ≥ |EHn−1 | = Ω( 1
k · n1+ 1

k ) = Ω( 1
k · n

1
k ) · |ES | .

w(EHn
) ≥ w(EHn−1) = Ω(n1+ 1

k ) = Ω( 1
k · n

1
k ) · w(S) .

◀

6 Conclusion

We studied online spanners for points in metric spaces. In the Euclidean d-space, we presented
an online (1 + ε)-spanner algorithm with competitive ratio O(ε1−d log n), improving the
previous bound of Od(ε−(d+1) log n) from [14]. In fact, the spanner maintained by the
algorithm has Od(ε1−d log ε−1) · n edges, almost matching the (offline) optimal bound of
Od(ε1−d) · n. Moreover, in the plane, a tighter analysis of the same algorithm provides
an almost quadratic improvement of the competitive ratio to O(ε−3/2 log ε−1 log n), by
comparing the online spanner with an instance-optimal spanner directly, circumventing the
comparison to an MST (i.e., lightness). Note that, the logarithmic dependence on n is
unavoidable due to a Ω((ε−1/ log ε−1) log n) lower bound in the real line [14]. However, our
lower bound Ω(ε−d) under the L1-norm in Rd shows a dependence on the dimension. This
leads to the following question.

▶ Question. Does the competitive ratio of an online (1 + ε)-spanning algorithm for n points
in Rd necessarily grow proportionally with ε−f(d) · log n, where limd→∞ f(d) = ∞?

Interestingly, for t ∈ [(1 + ε)
√

2, (1 − ε)2], we can show that every online t-spanner
algorithm in Rd must have competitive ratio 2Ω(ε2d) (see the full paper for further details).

Next, we studied online spanners in general metrics. We showed that the ordered greedy
algorithm maintains a spanner with O(ε−1 log ε−1)·n1+ 1

k edges and O(ε−1n
1
k log2 n) lightness,

with stretch factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1), for a sequence of n points in
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a metric space. Moreover, we show that these bounds cannot be significantly improved, by
introducing an instance that achieves an Ω( 1

k · n1/k) competitive ratio on both sparsity and
lightness. Finally, we established the trade-off among stretch, number of edges and lightness
for points in ultrametrics, showing that one can maintain a (2 + ε)-spanner for ultrametrics
with O(ε−1 log ε−1) · n edges and O(ε−2) lightness.
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Abstract
A temporal graph is an undirected graph G = (V, E) along with a function λ : E → N+ that assigns
a time-label to each edge in E. A path in G such that the traversed time-labels are non-decreasing is
called a temporal path. Accordingly, the distance from u to v is the minimum length (i.e., the number
of edges) of a temporal path from u to v. A temporal α-spanner of G is a (temporal) subgraph H

that preserves the distances between any pair of vertices in V , up to a multiplicative stretch factor
of α. The size of H is measured as the number of its edges.

In this work, we study the size-stretch trade-offs of temporal spanners. In particular we show
that temporal cliques always admit a temporal (2k− 1)−spanner with Õ(kn1+ 1

k ) edges, where k > 1
is an integer parameter of choice. Choosing k = ⌊log n⌋, we obtain a temporal O(log n)-spanner
with Õ(n) edges that has almost the same size (up to logarithmic factors) as the temporal spanner
given in [Casteigts et al., JCSS 2021] which only preserves temporal connectivity.

We then turn our attention to general temporal graphs. Since Ω(n2) edges might be needed by
any connectivity-preserving temporal subgraph [Axiotis et al., ICALP’16], we focus on approximating
distances from a single source. We show that Õ(n/ log(1 + ε)) edges suffice to obtain a stretch of
(1 + ε), for any small ε > 0. This result is essentially tight in the following sense: there are temporal
graphs G for which any temporal subgraph preserving exact distances from a single-source must use
Ω(n2) edges. Interestingly enough, our analysis can be extended to the case of additive stretch for
which we prove an upper bound of Õ(n2/β) on the size of any temporal β-additive spanner, which
we show to be tight up to polylogarithmic factors.

Finally, we investigate how the lifetime of G, i.e., the number of its distinct time-labels, affects
the trade-off between the size and the stretch of a temporal spanner.
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1 Introduction

A temporal graph is a graph G = (V, E) in which each edge can be used only in certain time
instants. This recurrent idea of time-evolving graphs has been formalized in multiple ways,
and a simple widely-adopted model is the one of Kempe, Kleinberg, and Kumar [11], in
which each edge e ∈ E has an assigned time-label λ(e) representing the instant in which
e can be used. A path from a vertex to another in G is said to be a temporal path if the
time-labels of the traversed edges are non-decreasing. Accordingly, a graph is temporally
connected if there exists a temporal path from u to v, for every two vertices u, v ∈ V .

Notice that, unlike paths in static graphs, the existence of temporal paths is neither
symmetric nor transitive.1 For this reason, temporal graphs exhibit a different combinatorial
structure compared to static graphs, and even problems that admit easy solutions on static
graphs become more challenging in their temporal counterpart. Indeed, one of the main
problems introduced in the seminal paper of Kempe, Kleinberg, and Kumar [11] is that of
finding a sparse temporally connected subgraph H of an input temporal graph G. Such a
subgraph H is sometimes referred to as a temporal spanner of G. While any spanning-tree
is trivially a connectivity-preserving subgraph of a static graph, not all temporal graphs
G admit a temporal spanner having O(n) edges [11]. In particular, [11] exhibits a class of
temporal graphs that contain Θ(n log n) edges and cannot be further sparsified. Later, [4]
provided a stronger negative result showing that there are temporal graphs G such that any
temporal spanner of G must use Θ(n2) edges. These strong lower bounds on general graphs
motivated [7] to focus on temporal cliques instead. Here the situation improves significantly,
as only O(n log n) edges are sufficient to guarantee temporal connectivity. This gives rise to
the following natural question, which is exactly the focus of our paper: can one design a
temporal spanner that also guarantees short temporal paths between any pair of vertices?

To address this question, we measure the length of a temporal path as the number of
its edges,2 and we introduce the notion of temporal α-spanner of a temporal graph G, i.e.,
a subgraph H of G such that dH(u, v) ≤ α · dG(u, v) for every pair of vertices u, v ∈ V ,
where dH(u, v) (resp. dG(u, v)) denotes the length of a shortest temporal path from u to v

in H (resp. G). Our main question then becomes that of understanding which trade-offs
can be achieved between the size, i.e., the number of edges, of H and the value of its
stretch-factor α. This same question received considerable attention on static graphs and
gave rise to a significant amount of work (see, e.g., [1]), hence we deem investigating its
temporal counterpart as a very interesting research direction.

To the best of our knowledge, the only temporal α-spanner currently known is actually the
connectivity-preserving subgraph of [7] having size O(n log n). However, a closer inspection of
its construction shows that the resulting α-spanner can have stretch α = Θ(n). In particular,
even the problem of achieving stretch o(n) using o(n2) edges remains open.

In this paper we investigate which size-stretch trade-offs can be attained by selecting
subgraphs of temporal graphs, as detailed in the following.

1 Indeed, a temporal path from u to v is not necessarily a temporal path from v to u, even when G is
undirected. Moreover, the existence of a temporal path from u to v, and of a temporal path from v to
w, does not imply the existence of a temporal path from u to w.

2 Alternative definitions for the length of a temporal path are also natural, e.g., the arrival time, departure
time, duration, or travel time as we briefly discuss in the conclusions.
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1.1 Our results
Temporal cliques. Following [7], we start by considering temporal cliques (see Section 3).
Our main result is the following: given a temporal clique G and an integer k ≥ 2, we can con-
struct, in polynomial time, a temporal (2k−1)-spanner of G having size O(kn1+1/k log1−1/k n).
Interestingly, the special case k = ⌊log n⌋ shows that O(n log2 n) edges suffice to ensure that
a temporal path of length O(log n) exists between any pair of vertices. For this choice of k,
the size of our spanner is only a logarithmic factor away from the size the temporal spanner
of [7] that uses O(n log n) edges and only preserves connectivity. We obtain our results by
constructing hierarchical clustering of the vertices that guides the constructions of temporal
paths.

We also show that there are temporal cliques for which any temporal spanner with stretch
smaller than 3 must have Ω(n2) edges.

Single-source temporal spanners on general graphs. Next, in Section 4, we move our
attention from temporal cliques to general temporal graphs. As already pointed out, there
are temporal graphs that do not admit any connectivity-preserving subgraph with o(n2)
edges [4]. Hence, we consider the special case in which we have a single source s. One can
observe that any temporal graph G admits a temporal subgraph containing O(n) edges and
preserving the connectivity from s (see also [11]). However, to the best of our knowledge, no
non-trivial result is known on the size of subgraphs preserving approximate distances from s.

We formalize this problem by introducing the notion of single-source temporal α-spanner
of G = (V, E) w.r.t. a source s ∈ V , which we define as a subgraph H of G such that
dH(s, v) ≤ α · dG(s, v) for every v ∈ V . Our main contribution for the single-source case is
the following: given any temporal graph G, we can compute in polynomial time a single-source
temporal (1 + ε)-spanner having size O( n log4 n

log(1+ε) ), where ε > 0 is a parameter of choice.
Furthermore, we show that any single-source temporal 1-spanner (i.e., a subgraph pre-

serving exact distances from s) must have Ω(n2) edges in general. Our construction can
be generalized to provide a lower bound of Ω( n2

β ) on the size of any single-source temporal
β-additive spanner, namely a subgraph H that preserves single-source distances up to an
additive term of at most β ≥ 1 (i.e., we require dH(s, v) ≤ dG(s, v) + β for all v ∈ V ).

Interestingly, the same techniques used to obtain our single-source temporal (1 + ε)-
spanner can be also applied to build a single-source temporal β-additive spanner of size
O( n2 log4 n

β ), which essentially matches our aforementioned lower bound.

The role of lifetime. An important parameter that measures how time-dependent is a
temporal graph G = (V, E) is its lifetime, i.e., the number L of distinct time-labels associated
with the edges of G. Indeed, a temporal graph with lifetime L = 1 is just a static graph,
while any temporal graph trivially satisfies L = O(n2). It is not surprising that the lifetime
plays a crucial role in determining the number of edges required by temporal spanners. For
example, the lower bound of Ω(n2) on the size of any connectivity-preserving temporal
subgraph requires L = Ω(n) [4]. In this paper, we also present a collection of results with the
goal of shedding some light on the lifetime-size trade-off of temporal spanners. In particular,
our results provide the following lifetime-dependant upper bounds on the size of temporal
α-spanners

As far as temporal cliques are concerned, we show how to build, in polynomial time, a
temporal 3-spanner with O(2Ln log n) edges. This implies that, when L = O(1), we can
achieve stretch 3 with Õ(n) edges.3

3 The notation Õ(f(n)) is a synonym for O(f(n) · polylog f(n)).
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If L = 2, we can find (in polynomial time) a temporal 2-spanner of a temporal clique
having size O(n log n). We deem this result interesting since, as soon as L > 2, our lower
bound of Ω(n2) on the size of any temporal 2-spanner still applies.
We show that, when L is small, general temporal graphs can be sparsified by exploiting
known size-stretch trade-offs for spanners of static graphs. In particular, we show that if
it is possible to compute, in polynomial time, an α-spanner of a static graph having size
f(n), then one can also build a temporal α-spanner of size O(Lf(n)). This yields, e.g., a
temporal ⌊log n⌋-spanner of size o(n2) on general temporal graphs with L = o(n).

Due to space limitations, these results and some of the proofs are omitted and can be
found in the full version of the paper.

1.2 Related work
The definitions of temporal graphs and temporal paths given in the literature sometimes
differ from the ones we adopt here. We now discuss how our results relate to some of the
most common variants. A first difference concerns the notion of temporal paths: some
authors consider strict temporal paths [2, 7, 11], i.e., temporal paths in which edge labels
must be strictly increasing (rather than non-decreasing). As observed by [11], if we adopt
strict temporal paths then there are dense graphs that cannot be sparsified, indeed no edge
can be removed from a temporal clique in which all edges have the same time-label. As
observed in [7], one can get rid of these problematic instances by assuming that time-labels
are locally distinct, namely that all the time-labels of the edges incident to any single vertex
are distinct. In this case all temporal paths are also strict temporal paths and hence they
focus on temporal paths as defined in our paper. A second difference concerns whether edges
are allowed to have multiple time-labels, as in [2, 12]. In this case, each edge e is associated
to a non-empty set of time instants λ(e) ⊆ N+ in which e is available. We observe that any
algorithm that sparsifies a temporal clique with single time-labels can be directly used on
the case of multiple time-labels by selecting an arbitrary time-label for each edge (see also
the discussion in [7]). This is no longer true when we consider general temporal graphs, since
removing edge labels might affect distances. However, all our algorithms work also in the
case of multiple labels and, since our lower bounds are given for single labels, they also apply
to the case of multiple labels.

Another research line concerns random temporal graphs. In particular, temporal cliques
in which each edge has a single time-label chosen u.a.r. from the set {1, . . . , α}, where
α ≥ 4, admit temporal spanners with O(n log n) edges w.h.p. [2]. In [8], the authors study
connectivity properties of random temporal graphs defined as an Erdős-Rényi graph Gn,p in
which each edge e has time-label chosen as the rank of e in a random permutation of the
graph’s edges. They show that p = log n

n , p = 2 log n
n , p = 3 log n

n , and p = 4 log n
n are sharp

thresholds to guarantee that the resulting temporal graph G satisfies the following respective
conditions asymptotically almost surely: a fixed pair of vertices can reach each other via
temporal paths in G, there is some vertex s which can reach all other vertices in G via
temporal paths, G is temporally connected, G and admits a temporal spanner with 2n − 4
edges (which is tight when time-labels are locally distinct).

Besides temporal graphs, other models to represent graphs or paths that evolve over time
have been considered in the literature, we refer the interested reader to [9] for a survey.

Finally, as we already mentioned, there is a large body of literature concerning spanners
on static graphs (see [1] for a survey on the topic) and clustering techniques similar to the
ones we employ on temporal cliques have proven to be a useful tool to design sparse spanner
also in this setting (see, e.g., [5, 6]).
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A reader that is already familiar with the area might notice that our upper bound of
Õ(n1+ 1

k ) on the size of a temporal (2k − 1)-spanner of a temporal clique, happens to resemble
the classical upper bound of O(n1+ 1

k ) on the size of a (2k − 1)-spanner of a general static
graph [3]. Nevertheless, the first result only applies to complete (temporal) graphs and
requires different technical arguments to handle temporal paths.

2 Model and preliminaries

Let G = (V, E) be an undirected temporal graph with n vertices, and a labeling function
λ : E → N+ that assigns a time-label λ(e) to each edge e. If G is complete we will say that it
is a temporal clique. A temporal path π from vertex u to vertex v is a path in G from u to v

such that the sequence e1, e2, . . . , ek of edges traversed by π satisfies λ(ei) ≤ λ(ei+1) for all
i = 1, . . . , k − 1. We denote with |π| the length of π, i.e., the number of its edges. A shortest
temporal path from vertex u to vertex v is a temporal path from u to v with minimum
length. We denote with dG(u, v), the length of a shortest temporal path from u to v in G.
Given a generic graph H, we denote by V (H) its vertex-set and by E(H) its edge-set.

For α ≥ 1 and β ≥ 0, a temporal (α, β)-spanner of G is a (temporal) subgraph H of G

such that V (H) = V and dH(u, v) ≤ α · dG(u, v) + β, for each u, v ∈ V . We call a temporal
(α, β)-spanner: (i) temporal α-spanner if β = 0, (ii) temporal β-additive spanner if α = 1,
(iii) temporal preserver if α = 1 and β = 0. We say that H is a single-source temporal
(α, β)-spanner w.r.t. a vertex s ∈ V , if dH(s, v) ≤ α · dG(s, v) + β, for each v ∈ V . The size
of a temporal spanner is the number of its edges.

We define the lifetime L of G as the number of distinct time-labels of its edges. Further-
more, we assume w.l.o.g. that each time instant in {1, . . . , L} is used by at least one time-label
(since otherwise we can replace each time-label with its rank in the set {λ(e) | e ∈ E}), so
that L = maxe∈E λ(e).

We will make use of the following well-known result:

▶ Lemma 1. Given a collection S of subsets of {1, . . . , n}, where each subset has size
at least ℓ and |S| is polynomially bounded in n, we can find in polynomial time a subset
R ⊆ {1, . . . , n} of size O((n/ℓ) log n) that hits all subsets in the collection, i.e., R ∩ S ̸= ∅
for all S ∈ S.

3 Spanners for temporal cliques

In this section, we design an algorithm such that, given a temporal clique G, returns a
temporal (2k − 1)-spanner H of G with size Õ(n1+ 1

k ), for any integer k > 1. We also provide
a temporal clique G for which any temporal 2-spanner of G has size Ω(n2).

Before describing the algorithm for constructing temporal (2k − 1)-spanners, we show as
a warm up how to construct a temporal 3-spanner and a temporal 5-spanner of size Õ(n1+ 1

2 )
and Õ(n1+ 1

3 ), respectively.

3.1 Our temporal 3-spanner
Given a temporal clique G, we construct a temporal 3-spanner H of G via a clustering
technique. For each u ∈ V , we select a set Eu containing the Θ(

√
n log n) edges incident to u

having the smallest labels (ties are broken arbitrarily). We define Su = {v ∈ V | (u, v) ∈ Eu}.
Next, we find a hitting set R ⊆ V of the collection {Su}u∈V . Thanks to Lemma 1, we can
deterministically compute a hitting set of size |R| = O(

√
n log n).
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Figure 1 (a) A vertex u and its neighbours in G, the edges are sorted top-down by increasing
time-label. The red edges are those belonging to Eu while the black edges belong to E(G) \ Eu. (b)
An example of a cluster Cx where x ∈ R. The edges incident to x are sorted from left to right by
increasing-time label. The black and red edges are added to E(H) during the initialization phase, in
particular the red edges are those belonging to Ez(x). The blue edges are added w.r.t. u to E(H)
during the first augmentation. The green edges belong to E(G) \ Ez(x) and are added to E(H)
during the second augmentation.

We partition the vertices of V into |R| clusters. More precisely, we create a cluster
Cx ⊆ V for each vertex x ∈ R. Each vertex u ∈ V belongs to exactly one arbitrarily chosen
cluster Cx that satisfies x ∈ Su, i.e., x hits Su. We call x the center of cluster Cx.4 Moreover,
we choose the special vertex of cluster Cx as a vertex z(x) in Cx that maximizes the label of
the edge (x, z(x)).

Notice that, for every x ∈ R and u ∈ Cx, u can reach z(x) via a temporal path of length
at most 2 in G by using the edges (u, x) and (x, z(x)) since, by definition of z(x) and Su, we
have λ(u, x) ≤ λ(x, z(x)).

We now build our temporal spanner H of G. The set of edges E(H) is constructed in
three phases (See Figure 1 for an example of the whole construction):
Initialization: For each u ∈ V , we add the edges in Eu to E(H);
First Augmentation: For every u ∈ V , we add the edges in Eu,z(x) = {u} × Sz(x) to E(H),

where x is the center of the cluster containing u;
Second Augmentation: For each x ∈ R, we add the edges in Ez(x),V = {z(x)} × V to E(H).
It is easy to see that H contains O(n

√
n log n) edges. We now show that for any u, v ∈ V

there is a temporal path from u to v of length at most 3 in H. Indeed, let x ∈ R be the
center of the cluster Cx containing u. If v = z(x) then, since u ∈ Cx, the initialization
phase ensures that (u, x) ∈ E(H) and (x, z(x)) ∈ E(H), which form a temporal path as
we already discussed above. We hence assume that v ̸= z(x). If (z(x), v) ∈ Ez(x) then
the first augmentation phase added (u, v) ∈ Eu,z(x) to E(H), which is a temporal path of
length one from u to v. Otherwise (z(x), v) ∈ E(G) \ Ez(x) and, the second augmentation
phase added edge (z(x), v) to E(H). Moreover, since (z(x), v) ̸∈ Ez(x), (z(x), v) is not
among the Θ(

√
n log n) edges incident to z(x) with lowest labels. As a consequence, since

(x, z(x)) ∈ Ez(x), we have λ(x, z(x)) ≤ λ(z(x), v). Hence, the edges (u, x), (x, z(x)), and
(z(x), v) form a temporal path of length 3 from u to v in H.

3.2 Our temporal 5-spanner
We show how to modify the construction of a temporal 3-spanner given in previous section
in order to obtain a temporal 5-spanner of size Õ(n4/3). The idea is to replace the single-
level clustering of Section 3.1 with a two-level clustering, where the second-level clustering

4 Here and throughout the paper, the center of a cluster is not required to belong to the cluster itself.
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Figure 2 (a) Two vertices u and z of G, where z ∈ Z1 and the red edges belong to E1,u and E1,z,
respectively. For vertex z the purple edges belong to E2,z. (b) A two level clustering. The level
one consists of three cluster C1,x1 , C1,x2 , C2,x3 . The level-two cluster C2,y, with y ∈ R2, contains
vertices z1(x1), z1(x2) and z1(x3), where z2(y) = z1(x3).

partitions the special vertices of the first level clustering and the number of selected clusters
decreases as we move from the first level to the second one.

The level-one clustering is built similarly to the one used in our temporal 3-spanner. For
each vertex u ∈ V we define sets E1,u and S1,u where E1,u consists of the Θ(n1/3 log2/3 n)
edges with the smallest label among those incident to u (ties are broken arbitrarily) and
S1,u = {v ∈ V | (u, v) ∈ E1,u}. We compute a hitting set R1 of the collection {S1,u}u∈V ,
where R1 has size O(n2/3 log1/3 n) thanks to Lemma 1. We partition the vertices of V into
|R1| clusters C1,x, for each x ∈ R1, as before, and let z1(x) the vertex in C1,x that maximizes
the label of the edge (x, z1(x)).

The level-two clustering is built on top of the vertices Z1 = {z1(x) | x ∈ R1}. For each
u ∈ Z1, we define E2,u as a set of Θ(n2/3 log1/3 n) edges with the smallest label among
those that are incident to u but do not belong to E1,u. We also define a corresponding set
S2,u = {v ∈ V | (u, v) ∈ E2,u}. We once again invoke Lemma 1 to compute a hitting set R2
of size O(n1/3 log2/3 n) of the collection {S2,u}u∈Z1 . Based on R2, we partition the special
vertices in Z1 by associating each u ∈ Z1 to an arbitrary cluster C2,y centered in y ∈ R2
such that y ∈ S2,u. Each cluster C2,y has an associated special vertex z2(y) ∈ C2,y chosen
among the ones that maximize the label of the edge (y, z2(y)), see Figure 2.

We are now ready to build our temporal 5-spanner H. As before, the set of edges E(H)
is constructed in three phases:
Initialization: For each u ∈ V , we add the edges in E1,u to E(H) and, for each u ∈ Z1, we

add the edges in E2,u to E(H);
First Augmentation: For every u ∈ V , we add the edges in Eu,z1(x) = {u} × S1,z1(x) to

E(H), where x is the center of the cluster containing u. Moreover, for each z ∈ Z1 we
add the edges in {z} × (S1,z2(y) ∪ S2,z2(y)) to E(H), where y is the center of the level-two
cluster C2,y containing z;

Second Augmentation: For each y ∈ R2, we add the set {z2(y)} × V to E(H).

See Figure 3 for an example of the whole construction. We now show that H is a 5-spanner
of size O(n4/3 log2/3 n).

▶ Lemma 2. Let u, v ∈ V . There is a temporal path from u to v of length at most 5 in H.

Proof. Let x ∈ R1 be the center of the level-one cluster C1,x containing u and y ∈ R2 be
the center of the level-two cluster C2,y containing z1(x).

We first show that in H there exists a temporal path π of length 4 from u to z2(y)
consisting of the sequence of edges (u, x), (x, z1(x)), (z1(x), y), (y, z2(y)). Notice that, the
edges (u, x), (x, z1(x)), (z1(x), y), (y, z2(y)) belong to E1,u, E1,z1(x), E2,z1(x), and E2,z2(y),
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x y

z1(x) z2(y)u

Figure 3 An example of a two-level cluster and of the edges added to E(H) during the spanner
construction. The black, red and purple edges are added during initialization phase. In particular,
for every u ∈ V , the red edges are those in E1,u and, for every z ∈ Z1, the purple edges are those in
E2,z. The dark blue and light blue edges are those added to E(H) during the first augmentation
phase. The green edges are the edges added to E(H) during the second augmentation phase.

respectively. Moreover, the initialization phase ensures that they all belong to E(H). Then,
by definition of z1(x), we have λ(u, x) ≤ λ(x, z1(x)). Moreover, since (x, z1(x)) ∈ E1,z1(x)
and (z1(x), y) ∈ E2,z1(x), then λ(x, z1(x)) ≤ λ(z1(x), y). Finally, (y, z2(y)) ∈ E2,z2(y) and, by
definition of z2(y), we have λ(z1(x), y) ≤ λ(y, z2(y)).

If v = z2(y), then u can reach v via a temporal path of length 4 in H, by using π.
Moreover, if v = z1(x) then u can reach v via a temporal path of length 2 by using the
subpath π1 of π consisting of the edges (u, x) and (x, z1(x)). Otherwise, we can build a
temporal path to v by considering one of following three cases (to be checked in order):

If (z1(x), v) ∈ E1,z1(x), then v ∈ S1,z1(x) and, due to the first augmentation phase, we
have that (u, v) ∈ E(H).
If (z2(y), v) ∈ E1,z2(y) ∪ E2,z2(y), then vertex v ∈ S1,z2(y) ∪ S2,z2(y) and the first augmenta-
tion phase ensures that (z1(x), v) ∈ E(H). Moreover, since (z1(x), v) ̸∈ E1,z1(x), we have
that λ(x, z1(x)) ≤ λ(z1(x), v). Hence the concatenation of π1 with the edge (z1(x), v)
yields a temporal path of length 3 from u to v in H.
If (z2(y), v) ̸∈ (E1,z2(y)∪E2,z2(y)), the second augmentation phase ensures that (z2(y), v) ∈
E(H). Moreover, λ(y, z2(y)) ≤ λ(z2(y), v). Therefore the concatenation of π with the
edge (z2(y), v) yields a temporal path of length 5 from u to v in H. ◀

▶ Lemma 3. The size of H is O(n4/3 log2/3 n).

3.3 Our temporal (2k − 1)-spanner
In this section, we describe an algorithm that, given an integer k ≥ 2 and a temporal clique
G of n vertices, returns a temporal (2k − 1)-spanner of G with size O(k · n1+ 1

k log
k−1

k n).
The idea is to define a hierarchical clustering of G, where a generic level-i clustering

partitions the special vertices of the level-(i−1) clustering and determines the special vertices
of level i. As we move from one clustering level to the next, the number of clusters decreases
by a factor of roughly n

1
k , thus allowing us to add an increasing number of edges incident to

the special vertices into the spanner.
We ensure that each vertex u ∈ V can reach some special vertex by moving upwards

in the clustering hierarchy. These special vertices work as hubs, i.e., each of them allows
to directly reach a subset of vertices of V , and some special vertex of higher level (via a
temporal path of length at most 2). Then u can reach any vertex in v ∈ V by first reaching
a suitable special vertex z in the hierarchy, and then following the edge (z, v).
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Algorithm 1 Computes a temporal (2k − 1)-spanner.
Input : A temporal clique G;
Output : A temporal (2k − 1)-spanner of G;

1 Z0 ← V ;
2 foreach u ∈ V do E(u)← {(u, v) | v ∈ V };
3 for i = 1, . . . , k − 1 do
4 foreach u ∈ Zi−1 do
5 Ei,u ← set of the first min-time label n

i
k log n edges of E(u);

6 E(u)← E(u) \ Ei,u;
7 Si,u ← {v ∈ V : (u, v) ∈ Ei,u};

8 Ri ←hitting set of {Si,u}u∈Zi−1 computed as in Lemma 1;
9 C ← ∅ ; // Set of vertices in Zi−1 that are already clustered

10 foreach x ∈ Ri do
11 Ci,x = {u ∈ Zi \ C : x ∈ Si,u};
12 zi(x)← arg maxu∈Ci,x{λ(u, x)};
13 C ← C ∪ Ci,x;

14 Zi ← {zi(x) ∈ Zi−1 : x ∈ Ri};

15 H ← (V, ∅) for i = 1 to k − 1 do // Initialization
16 foreach u ∈ Zi−1 do E(H)← E(H) ∪ Ei,u;

17 for i = 1, . . . , k − 1 do // First augmentation
18 foreach u ∈ Zi−1 do
19 Let x ∈ Ri such that u ∈ Ci,x;
20 E(H)← E(H) ∪ {u} × {

⋃i

j=1 Szi(x),j};

21 foreach z ∈ Zk−1 do E(H)← E(H) ∪ {z} × V ; // Second Augmentation

22 return H;

We build our clustering in k − 1 rounds indexed from 1 to k − 1 (a detailed pseudocode is
given in Algorithm 1), where the generic i-th round defines a set Zi of level-i special vertices.
Initially, Z0 = V , i.e., all vertices are special vertices of level 0. During the i-th round, the
level-i clustering is computed from the set of vertices in Zi−1 defined at the previous round
as follows.

For each u ∈ Zi−1, we let Ei,u be a set of δi = Θ(n i
k log

k−i
k n) edges with the smallest

label among those that are incident to u but do not belong to
⋃i−1

j=1 Eu,j , and we denote by
Si,u = {v ∈ V : (u, v) ∈ Ei,u} the set containing the endvertices of the edges incident to u in
Ei,u. We now compute a hitting set Ri ⊆ V of the collection {Si,u | u ∈ Zi−1} having size at
most O( n

δi
log n). Lemma 1 guarantees that Ri always exists. Notice that, as i increases, the

time labels of the edges in Ei,u became larger, δi increases, and |Ri| decreases.
We now partition the vertices in Zi−1 into |Ri| clusters Ci,x, one for each x ∈ Ri. We do

so by adding each vertex u ∈ Zi−1 into an arbitrary cluster Ci,x such that x ∈ Si,u. We call
x the center of the cluster Ci,x. Moreover, for each cluster Ci,x, we choose a special vertex
zi(x) ∈ Ci,x as a vertex that maximizes the label of edge (x, zi(x)).

Once the hierarchical clustering is built, our algorithm proceeds to construct a temporal
(2k − 1)-spanner H of G. At the beginning H = (V, ∅), then edges are added to H in the
following three phases:

ESA 2022



19:10 Sparse Temporal Spanners with Low Stretch

Z0 = V

Z1

Z2

Zk−1

Zi

Figure 4 The set of edges selected for each vertex during the initialization phase.

Initialization: For each u ∈ V , we add to E(H) all the edges in the sets Ei,u for i = 1, . . . , j+1,
where j is the largest integer between 0 and k − 2 for which u ∈ Zj , see Figure 4.

First Augmentation: For each i = 1, . . . , k − 1 and each u ∈ Zi−1, we consider the center
x ∈ Ri of the level-i cluster Ci,x containing u, and we add to E(H) all the edges (u, v)
with v ∈

⋃i
j=1 Sj,zi(x).

Second Augmentation: We add to E(H) all edges incident to some vertex in Zk−1.

We now show that all vertices are at distance at most 2k − 1 in H, and that the size of
H is O(k · n1+ 1

k log
k−1

k n).

▶ Lemma 4. For every u, v ∈ V (G), dH(u, v) ≤ (2k − 1)dG(u, v).

Proof. Let z0 = u and, for i = 1, . . . , k − 1, let zi = zi(xi) where xi ∈ Ri is the center of the
cluster Ci,xi containing zi−1. The initialization phase ensures that, for any i, there exists a
temporal path from z0 to zi in H of length 2i entering zi with the edge (xi, zi) ∈ Ei,zi

.5 Indeed,
πi can be chosen as the path that traverses edge (zi−i, xi) ∈ Ei,zi−1 and edge (xi, zi) ∈ Ei,zi

,
in this order. Notice that, by definition of zi, λ(zi−1, xi) ≤ λ(xi, zi). Moreover, if i < k − 1,
λ(xi, zi) ≤ λ(zi, xi+1) since (xi, zi) ∈ Ei,zi

while (zi, xi+1) ∈ Ei+1,zi
. See Figure 5.

If v = zi for some i = 1, . . . , k − 1 then, from the discussion above, we know that πi is a
temporal path from u to v in H of length 2i < 2k − 1. Otherwise, we distinguish two cases
depending on whether there exists some i = 1, . . . , k − 1 such that (zi, v) ∈

⋃i
j=1 Ej,zi .

Suppose that the above condition is met, and let i > 0 be the minimum index for which
(zi, v) ∈

⋃i
j=1 Ej,zi . If λ(zi, v) ≥ λ(xi, zi), then πi followed by edge (zi, v), is a temporal path

from u to v of length 2i+1 ≤ 2k −1. If λ(zi, v) < λ(xi, zi) then, since (zi, v) ∈
⋃i

j=1 Ej,zi
, we

have v ∈
⋃i

j=1 Sj,zi
and the first augmentation phase adds (zi−1, v) to E(H). By hypothesis

we have (zi−1, v) ̸∈
⋃i−1

j=1 Ej,zi−1 and hence λ(zi−1, v) ≥ λ(xi−1, zi−1). This shows that πi−1
followed by (zi−1, v) is a temporal path from u to v in H of length 2i − 1 ≤ 2k − 1.

It only remains to handle the case in which, for every i, we have (zi, v) ̸∈
⋃i

j=1 Ej,zi
.

In this case, the algorithm adds (zk−1, v) to E(H) during the second augmentation phase.
Moreover, since λ(zk−1, v) ≥ λ(xk−1, zk−1), the path πk−1 followed by edge (zk−1, v) is a
temporal path from u to v in H of length 2k − 1. ◀

▶ Theorem 5. Given a temporal clique G, for any k ≥ 1, the above algorithm computes a
temporal (2k − 1)-spanner H of size O(k · n1+ 1

k log
k−1

k n).

5 This path is not necessarily a simple path (e.g., when zi = zi+1). The existence of a non-simple temporal
path of length ℓ implies the existence of simple temporal path of length at most ℓ.
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x1 ∈ R1

z1 z2 z3 zk−2 zk−1z0

x2 ∈ R2 x3 ∈ R3 xk−1 ∈ Rk−1

Figure 5 The hierarchy of clusters for vertex z0, where zi = zi(xi) where xi ∈ Ri is such that
zi−1 ∈ Ci,xi . The dashed line is the temporal path π3 that goes from z0 to z3.

We conclude this section with a simple lower bound on the size of any temporal 2-spanners
of a temporal clique.

▶ Theorem 6. There exists a temporal clique G of n vertices such that any temporal 2-spanner
of G has size Ω(n2).

4 Single-source spanners for general temporal graphs

In the first part of this section we design an algorithm that, for every 0 < ε < n, builds a
single-source temporal (1 + ε)-spanner of G w.r.t. s of size O

(
n log4 n
log(1+ε)

)
. We observe that,

for constant values of ε, the size of the computed spanner is almost linear, i.e., linear up to
polylogarithmic factors. The algorithm can be extended so as, for every 1 ≤ β < n, it builds
a single-source temporal β-additive spanner of G w.r.t. s of size O

(
n2 log4 n

β

)
.6

Our upper bounds leave open the problem of deciding whether a temporal graph G

admits a single-source temporal preserver w.r.t. s of size Õ(n). We answer to this question
negatively in the second part of this section. More precisely, we show a temporal graph G

of size Θ(n2) and a source vertex s for which no edge can be removed if we want to keep a
shortest temporal path from s to every other vertex u. The construction can be extended to
show a lower bound of Ω(n2/β) on the size of single-source temporal β-additive spanners,
for every β ≥ 1. This implies that our upper bound on the size of single-source temporal
additive spanners is asymptotically optimal, up to polylogarithmic factors.

4.1 Our upper bound
In this section we present an algorithm that, for every 0 < ε < n, computes a single-source
temporal (1 + ε)-spanner of G w.r.t. s of size O

(
n log4 n
log(1+ε)

)
in polynomial time.7

In the following we say that a temporal path is τ -restricted if it uses edges of time-label
of at most τ . Our algorithm computes a spanner that, for every τ = 1, . . . , L, contains
(1 + ε)-approximate τ -restricted temporal paths from s to any vertex v (recall that L is the
lifetime of G). More formally, for two vertices u and v of G, we denote by d⩽τ

G (u, v) the length
of a shortest τ -restricted temporal path from u to v in G. We assume d⩽τ

G (u, v) = +∞ when
G does not contain a τ -restricted temporal path from u to v. The single-source temporal
(1 + ε)-spanner H of G w.r.t. s computed by our algorithm is such that, for every v ∈ V ,
and for every τ = 1, . . . , L, d⩽τ

H (s, v) ≤ (1 + ε)d⩽τ
G (s, v).

6 We refer the interested reader to the full version of this paper for details.
7 Our algorithm also works in the case of directed temporal graphs and/or multiple time-labels. Both

the algorithm and the stretch analysis require no modification. Regarding the running time, we
only need to observe that τ -restricted shortest paths can be computed in polynomial time even in
directed/multiple-label temporal graphs.
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Algorithm 2 Computes a set Πv of temporal paths from s to v in G that provides a good
approximation of any shortest τ -restricted temporal path from s to v in G.

Input : A temporal graph G (with lifetime L), a source vertex s ∈ V , and a vertex v ∈ V .
Output : A set Πv of temporal paths from s to v in G such that, for every τ = 1, . . . , L,

there exists a τ -restricted temporal path π ∈ Πv such that |π| ≤ (1 + δ)d⩽τ
G (s, v).

1 Πv ← ∅; t← +∞;
2 for τ = 1 to L do
3 if d⩽τ

G (s, v) ̸= +∞ and d⩽τ
G (s, v) < t

1+δ
then

4 Let π be a shortest τ -restricted temporal path from s to v in G;
5 Πv ← Πv ∪ {π};
6 t← |π|;

7 return Πv;

For technical convenience, in the following we design an algorithm that, for any 0 < δ < n

and any positive integer k, builds a single-source temporal (1 + δ)k-spanner of G w.r.t. s of
size O

(
kn

1+ 1
k log2− 1

k n
log(1+δ)

)
. The desired bound of O

(
n log4 n
log(1+ε)

)
on the size of the single-source

temporal (1 + ε)-spanner is obtained by choosing k = ⌊log n⌋ and δ = (1 + ε)
1

log n − 1.
Our algorithm uses a subroutine that, for a given vertex v of G, computes a set Πv of

O
(

log n
log(1+δ)

)
temporal paths from s to v of G such that, for every τ = 1, . . . , L, Πv contains

a τ -restricted temporal path π satisfying |π| ≤ (1 + δ)d⩽τ
G (s, v).

The subroutine (see Algorithm 2 for the pseudocode) builds Πv iteratively by adding a
subset of shortest τ -restricted temporal paths from s to v in G, where τ = 1, . . . , L. We do
so by scanning shortest τ -restricted temporal paths from s to v in increasing order of values
of τ . The scanned path π is added to Πv if no other path already contained in Πv has a
length of at most (1 + δ)|π|. The next lemma shows the correctness of our subroutine and
bounds the number of paths contained in Πv.

▶ Lemma 7. For every τ = 1, . . . , L, there is a τ -restricted temporal path π in Πv such that
|π| ≤ (1 + δ)d⩽τ

G (s, v). Moreover, |Πv| = O
( log n

log(1+δ)
)
.

In the rest of this section, for any given temporal path π, we denote by π(ℓ) the subpath
of π containing the last min{ℓ, |π|} edges of π. We observe that π(ℓ) = π when |π| ≤ ℓ.
Moreover, for two vertices u and v of a temporal path π that visits u before v, we denote by
π[u, v] the temporal subpath of π from u to v.

Before diving into the technical details, we describe the main idea of our algorithm and
show how we can use it to build a single-source temporal (1 + δ)2-spanner of G w.r.t. s of
size O

(
n3/2 log3/2 n

log(1+δ)
)
.

For technical convenience, let R0 = V and P0 =
⋃

v∈R0
Πv. In principle, we could build

our single-source temporal (1 + δ)-spanner of G w.r.t. s by simply setting its edge set to⋃
π∈P0

E(π). Unfortunately, Lemma 7 alone is insufficient to provide a subquadratic upper
bound on the size of this spanner. Therefore, to obtain a spanner of truly subquadratic size,
we compute a single-source temporal (1 + δ)2-spanner H of G w.r.t. s instead.

We build H by adding all the short temporal paths in P0, i.e., all paths with at most ℓ0
edges for a suitable choice of ℓ0, and by replacing each long temporal path π ∈ P0 from s to
some vertex v with the shortest temporal path from s to x in Πx, for some vertex x that hits
π(ℓ0), combined with π[x, v].
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Algorithm 3 Single-source temporal spanner of a temporal graph G.
Input : A temporal graph G = (V, E) of n vertices and a source vertex s ∈ V .
Output : A single-source temporal spanner H of G w.r.t. s.

1 for i = 0 . . . , k − 1 do ℓi ← n
i+1

k log1− i+1
k n;

2 foreach v ∈ V do use Algorithm 2 to compute Πv;
3 R0 ← V ; P0 ← {π ∈ Πv | v ∈ R0};
4 for i = 1, . . . , k − 1 do
5 P long

i−1 = {π ∈ Pi−1 | |π| > ℓi};
6 Ri ← hitting set of {π(ℓi−1) | π ∈ P long

i−1 } computed as in Lemma 1;
7 Pi ←

⋃
v∈Ri

Πv;

8 return H =
(

V,
⋃k−1

i=0

⋃
π∈Pi

E(π(ℓi))
)

;

In more details, we define ℓ0 =
√

n log n and we introduce a new parameter ℓ1 =
n. We say that a temporal path π ∈ P0 is short if |π| ≤ ℓ0; it is long otherwise. Let
P long

0 = {π ∈ P0 | |π| > ℓ0} be the subset of long temporal paths in P0. We compute a
set R1 that hits {π(ℓ0) | π ∈ P long

0 } using Lemma 1, and we then use this set to define
a new collection of temporal paths P1 =

⋃
v∈R1

Πv.8 The edge set of H is defined as
E(H) =

⋃
i∈{0,1}

⋃
π∈Pi

E(π(ℓi)). The next lemma shows that this simple algorithm already
computes a single-source temporal (1 + δ)2-spanner of G w.r.t. s of truly subquadratic size.

▶ Lemma 8. For every τ = 1, . . . , L and every v ∈ V , d⩽τ
H (s, v) ≤ (1 + δ)2d⩽τ

G (s, v).
Moreover, the size of H is O

(
n3/2 log3/2 n

log(1+δ)

)
.

The technique we used to replace each of the temporal paths in P long
0 with a temporal

path that is longer by a factor of at most (1 + δ) can be applied recursively on the set P1,
for a suitable choice of ℓ1, to obtain an even sparser spanner. As we show now, k − 1 levels
of recursion allow us to compute a single-source temporal (1 + δ)k-spanner H of G w.r.t. s of
size O

(
kn

1+ 1
k log2− 1

k n
log(1+δ)

)
.

In the following we provide the technical details (see Algorithm 3 for the pseudocode). For
every i = 0, . . . , k − 1, let ℓi = n

i+1
k log1− i+1

k n. As before, let R0 = V and P0 =
⋃

v∈R0
Πv.

During the i-th iteration, the algorithm computes a set Ri that hits {π(ℓi−1) | π ∈ P long
i−1 },

where P long
i−1 = {π ∈ Pi−1 | |π| > ℓi−1} is the set of long temporal paths of Pi−1. The i-th

iteration ends by computing the set Pi =
⋃

v∈Ri
Πv that is used in the next iteration. The

edge set of the graph H that is returned by the algorithm is E(H) :=
⋃k−1

i=0
⋃

π∈Pi
E(π(ℓi)).

▶ Theorem 9. For every τ = 1, . . . , L, for every i = 1, . . . , k, and for every v ∈ Rk−i, we
have that d⩽τ

H (s, v) ≤ (1 + δ)id⩽τ
G (s, v). Moreover, the size of H is O

(
kn

1+ 1
k log2− 1

k n
log(1+δ)

)
.

Proof. We start proving the first part of the theorem statement. The proof is by induction
on i. Fix a vertex v ∈ Rk−i such that d⩽τ

G (s, v) is finite.
For the base case i = 1, we observe that Πv is entirely contained in H by construction.

Therefore, by Lemma 7, d⩽τ
H (s, v) ≤ (1 + δ)d⩽τ

G (s, v) and the claim follows.
We now prove the inductive case. We assume that the claim holds for i − 1 and we prove

it for i. Let π ∈ Πv be a shortest τ -restricted temporal path from s to v among those in Πv.
By Lemma 7, |π| ≤ (1 + δ)d⩽τ

G (s, v). Moreover, by definition, π ∈ Pk−i. If π is short, i.e.,

8 With a little abuse of notation, R1 hits a temporal path π if R1 hits V (π).
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6

s z1z2

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 2520

Figure 6 Example of the lower bound with h = 2 and β = 0. Path π1 consists of the black edges.
Path π2 is built on top of π1, whose vertices have been numbered in order of a traversal from s, and
consists of: the fist hop from s to µ (in green), the forward hops (in blue), and the backward hops
(in red). The arrows on the edges of π2 are directed away from s along π2.

|π| ≤ ℓk−i, then π is entirely contained in H and therefore d⩽τ
H (s, v) ≤ (1 + δ)d⩽τ

G (s, v) ≤
(1 + δ)k−id⩽τ

G (s, v). So, in the following we assume that π is long. Let x ∈ Rk−i+1 be a
vertex that hits π(ℓk−i). By construction, the path π[x, v], being a subpath of π(ℓk−i), is
entirely contained in H. Let τ ′ be the label of the edge incident to x in π[x, v]. Clearly,
τ ′ ≤ τ . Moreover, by inductive hypothesis, d⩽τ ′

H (s, x) ≤ (1 + δ)i−1 · |π[s, x]|.
As a consequence, d⩽τ

H (s, v) ≤ d⩽τ ′

H (s, x) + |π[x, v]| ≤ (1 + δ)i−1 · |π[s, x]| + |π[x, v]| ≤
(1 + δ)i−1 · |π| ≤ (1 + δ)id⩽τ

G (s, v).
To bound the size of H, we first observe that, for each v ∈ V , |Πv| = O

( log n
log(1+δ)

)
by Lemma 7. Next, using Lemma 1, we observe that each Ri, with i ≥ 1, has size
|Ri| = O

(
n log n
ℓi−1

)
= O

(
n1− i

k log
i
k n
)
. Furthermore, also |R0| = n = n1− 0

k log
0
k n. Therefore,

for every i = 0, . . . , k − 1, we have |Ri|ℓi = O
(
n1+ 1

k log1− 1
k n
)
. As a consequence,

∑
π∈Pi

|π(ℓi)| =
∑

v∈Ri

∑
π∈Πv

|π(ℓi)| = O

(
|Ri|ℓi

log n

log(1 + δ)

)
= O

(
n1+ 1

k log2− 1
k

log(1 + δ)

)
.

Hence, |E(H)| =
∑k−1

i=0
∑

π∈Pi
|π(ℓi)| = O

(
kn

1+ 1
k log2+ 1

k

log(1+δ)

)
. ◀

The following corollary follows by choosing τ = L and i = k (so that Rk−i = R0 = V ):

▶ Corollary 10. Let G be a temporal graph with n vertices and let s be a vertex of G. The
graph H returned by Algorithm 3 is a single-source temporal (1 + δ)k-spanner of G w.r.t. s

of size O
(

kn
1+ 1

k log2+ 1
k

log(1+δ)

)
.

4.2 Our lower bound
In this section we show that, for every β ≥ 0, there is a temporal graph G of n vertices for
which the size of any single-source temporal β-additive spanner of G w.r.t. s is Ω

(
n2

1+β

)
. This

gives a lower bound of Ω(n2) for the size of a single-source temporal preserver.
The temporal graph G has n = (13 + β)h vertices, where h is an integer, and is formed

by the union of h pairwise edge-disjoint temporal paths π1, . . . , πh. Each path πi goes from s

to a vertex zi and has length Ω(n − i(1 + β)). The construction guarantees that the unique
temporal path of G from s to zi of length of at most dG(s, zi) + β is πi. This implies that
the size of G is Ω

(
n2

1+β

)
, as desired.

The temporal path π1 is a Hamiltonian path that spans all the n vertices of G and goes
from s to z1. All edges of π1 have time-label 1. The remaining temporal paths are defined
recursively. More precisely, for each i = 2, . . . , h, the temporal path πi is defined on top of
the temporal path πi−1 as follows. Let us number the vertices visited in a traversal of πi−1
from s to zi−1 in order from 0 to |πi−1| − 1. The temporal path πi is defined as a sequence
of hops over the vertices of πi−1. We call offset a value µ that is equal to β + 7 for even
values of β, and to β + 8 for odd values of β. The first hop is the one from s to vertex µ,



D. Bilò, G. D’Angelo, L. Gualà, S. Leucci, and M. Rossi 19:15

if it exists. The rest of the path is given by a maximal alternating sequence of backward
and forward hops that do not visit zi−1. A generic backward hop goes from vertex j, with j

odd, to vertex j − 3, while a generic forward hop goes from vertex j, with j even, to vertex
j + 5. All the edges of πi have time-label i. A pictorial example of the definition of πi is
given in Figure 6. The choice of odd values for the offset is a necessary condition to have
pairwise edge-disjoint paths, while the dependency of the offset on β guarantees that πi

is the unique temporal path from s to zi in G such that |πi| ≤ dG(s, zi) + β. Finally, the
alternating sequence of backward and forward hops guarantees that |πi| = Ω(n − i(1 + β)).
The above discussion yields the following theorem, and a corollary for the case β = 0.

▶ Theorem 11. For every positive integer n and every β ≥ 0, there is a temporal graph G of
n vertices and a source vertex s of G such that any single-source temporal β-additive spanner
of G w.r.t. s has size Ω

(
n2

1+β

)
.

▶ Corollary 12. For every positive integer n, there is a temporal graph G of n vertices such
that any single-source temporal preserver of G w.r.t. s has size Θ(n2).

5 Conclusions

In this paper we addressed the size-stretch trade-offs for temporal spanners. We showed
that a temporal clique admits a temporal (2k − 1)-spanner of size Õ(n1+ 1

k ), which implies
a spanner having size Õ(n) and stretch O(log n). The previous best-known result was the
temporal-spanner of [7] which only preserves temporal connectivity between vertices. Our
construction guarantees O(log n)-approximate distances at the cost of only an additional
O(log n) multiplicative factor on the size. We also considered the single-source case for
general temporal graphs, where we provided almost-tight size-stretch trade-offs, along with
the special case of temporal graphs with bounded lifetime.

The main problem that remains open is understanding whether better trade-offs are
achievable for temporal cliques. In particular, no superlinear lower bounds are known even
for the case of 3-spanners.

Finally, as we already mentioned, temporal graphs admit other natural notions of distances
between vertices (which have have been used, e.g., in [10, 12, 13]). The most commonly used
distances are the earliest arrival time, the latest departure time, the fastest time (i.e., the
smallest difference between the arrival and departure time of a temporal path from u to
v), and – if each edge has an associated travel time – the shortest time distance (i.e., the
minimum sum of the travel times of the edges of a temporal path from u to v). One can
wonder whether sparse temporal spanners with low stretch are attainable also in the case of
the above distances. Unfortunately the answer is negative and strong lower bounds on the
size of temporal α-spanners for temporal cliques can be shown even for large values of α, as
we discuss in the full version of the paper.
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Abstract
We revisit the (block-angular) min-max resource sharing problem, which is a well-known generalization
of fractional packing and the maximum concurrent flow problem. It consists of finding an ℓ∞-minimal
element in a Minkowski sum X =

∑
C∈C XC of non-empty closed convex sets XC ⊆ RR

≥0, where C
and R are finite sets. We assume that an oracle for approximate linear minimization over XC is
given.

We improve on the currently fastest known FPTAS in various ways. A major novelty of our
analysis is the concept of local weak duality, which illustrates that the algorithm optimizes (close to)
independent parts of the instance separately. Interestingly, this implies that the computed solution
is not only approximately ℓ∞-minimal, but among such solutions, also its second-highest entry is
approximately minimal.

Based on a result by Klein and Young [21], we provide a lower bound of Ω
( |C|+|R|

δ2 log |R|
)

required oracle calls for a natural class of algorithms. Our FPTAS is optimal within this class – its
running time matches the lower bound precisely, and thus improves on the previously best-known
running time for the primal as well as the dual problem.
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1 Introduction

1.1 Problem description

Dividing a limited set of resources among customers is an overarching theme of numerous
problems in discrete and continuous optimization. A common formulation of such problems
is known as min-max resource sharing in the literature. In this work, we consider the
block-angular min-max resource sharing problem as it was first studied by Grigoriadis and
Khachiyan [13]. The problem consists of choosing a feasible resource allocation for every
customer, such that the maximum accumulated resource usage is minimized. Formally, it
can be described as follows:

There is a finite set of customers C and a finite set of resources R. We denote their
sizes by n := |C| and m := |R|. For each customer C ∈ C, there is a non-empty closed
convex set XC ⊆ Rm

≥0 of feasible resource allocations, also referred to as block. The set of
feasible solutions of the (block-angular) min-max resource sharing problem is given as the
Minkowski-sum X :=

∑
C∈C XC .
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Further, we assume that we are given, for some constant σ ≥ 1, a σ-approximate block-
solver, which is an approximate linear minimization oracle for non-negative price vectors. It
is specified by functions fC : Rm

≥0 → XC for all C ∈ C that satisfy

∀y ∈ Rm
≥0 : ⟨y, fC(y)⟩ ≤ σoptC(y), (1)

where optC(y) := minx∈XC
⟨y, x⟩.

The (block-angular) min-max resource sharing problem is to compute resource allocations
xC ∈ XC for every customer C ∈ C, such that x :=

∑
C∈C xC attains

λ∗ := min
x∈X
∥x∥∞ . (2)

We abbreviate this problem as resource sharing problem in the following. In this work, we
consider fully polynomial-time approximation schemes relative to σ. For δ > 0, we construct
a solution x ∈ X with ∥x∥∞ ≤ σ(1 + δ)λ∗ within a number of oracle calls that is polynomial
in n, m, and δ−1.

Algorithms that interact with the feasible region only via a linear minimization oracle
are known as algorithms of the Dantzig-Wolfe type. An iteration consists of choosing a price
vector y ∈ Rm

≥0 and querying the linear minimization oracle of a customer C ∈ C with y.
The computed solution is a convex combination of the solutions returned from the oracle.
At their core, Dantzig-Wolfe-type algorithms are primal-dual algorithms. In the case of
the resource sharing problem, the dual is to find q ∈ ∆m := {p ∈ [0, 1]m : ∥p∥1 = 1}, such
that minx∈X ⟨q, x⟩ = maxp∈∆m

minx∈X ⟨p, x⟩. Strong duality is implied by von Neumann’s
minimax theorem:

max
p∈∆m

min
x∈X
⟨p, x⟩ = min

x∈X
max

p∈∆m

⟨p, x⟩ = min
x∈X
∥x∥∞ = λ∗. (3)

The resource sharing formulation can be used to model a large variety of packing problems
in combinatorial optimization. Prominent examples include multicommodity and concurrent
flow problems, where the linear minimization tasks correspond to shortest path problems, or
fractional Steiner tree packing problems, where the linear minimization tasks correspond to
minimum weight Steiner tree problems and can be implemented, for example, with a fast
2-approximation.

Using a linear minimization oracle to interact with the feasible region is a standard tool
in convex optimization, most often encountered in the form of conditional gradient descent
(a.k.a. Frank-Wolfe algorithm [9]), that has regained interest in current research as it leads
to surprisingly fast algorithms in practice [17, 19]. Apart from efficiency, utilizing a linear
minimization oracle has the advantage that solutions are constructed explicitly as an (often
sparse) combination of extreme points. This is highly useful if one is interested in an integral
solution to the packing problem, since, in practice, a close to optimal integral solution can
often be recovered by applying e.g. randomized rounding to the sparse fractional solution [28].

Resource sharing has a long history of incremental generalizations and improvements
since Shahrokhi and Matula [29] introduced the idea to use a linear optimization oracle with
an exponential weight function in the context of multicommodity flows. At their heart, most,
if not all, steps in this line of work can be interpreted as variants of the now well-known
multiplicative weight update method. Since we also present a variant of that algorithm and
improve on the best-known running time in this setting, our work can be regarded as another
step in that line. But more than that, we study an aspect that – to the best of our knowledge
– is absent from any treatment of multiplicative-weight-based algorithms even in special cases
such as multicommodity flow. We are interested in the stability of such algorithms and in
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(a) High congestion only in local hotspots. (b) High congestion in almost every part.

Figure 1 Comparison of two fractional routing results. Congestion of global routing tiles is
visualized by color (lowest congestion in green, highest in violet).

deriving guarantees that go beyond the min-max objective. For example, one might alter a
given instance X by adding a completely independent resource and consider X × {Λ} with
Λ≫ minx∈X ∥x∥∞. In this case, ℓ∞-guarantees of existing algorithms do not provide any
insight into the quality of their computed solution on the perturbed instance when restricted
to X . We introduce techniques that allow a comprehensive treatment of such situations.

To provide more motivation for this pursuit, we consider the example of global routing
in VLSI design, where a resource sharing formulation has proven successful in theory and
practice [12, 16, 24]. Highly simplified, the problem consists of a Steiner tree packing problem
in a grid graph. One seeks to find a collection of (fractional) Steiner trees that minimize
the maximum edge overload. Figure 1 depicts two fractional routing results on an industrial
microprocessor. The maximum edge congestion is the same in both cases, so both solutions
have the same objective value w.r.t. the resource sharing problem. As indicated in Figure
1a, however, the maximum congestion might be caused by local effects that are beyond reach
for global optimization. A practicable algorithm must be resilient to such local hotspots and
produce solutions that are close to optimal on the set of remaining resources. The solution
in Figure 1a is clearly to be preferred over that in Figure 1b. In practice, the ideal outcome
might be a solution x ∈ X that minimizes the maximal entry, and among such solutions, it
minimizes the second-highest entry, and among those, it minimizes the third-highest, and so
on. This concept is known as decreasingly minimal [6].

▶ Definition 1. Let x ∈ Rm. We denote by x↓ the vector x with entries sorted in decreasing
order. We introduce the decreasing preorder, by defining for x, y ∈ Rm, x ≤dec y if either
x↓ = y↓ or there exists k ∈ {1, . . . , m} such that (x↓)k < (y↓)k and (x↓)j = (y↓)j for all
j < k. Given a set X ⊆ Rm, we say that an element x ∈ X is decreasingly minimal if
x ≤dec y holds for all y ∈ X.

1.2 Our contribution
In this work, we present a fully polynomial-time approximation scheme for the primal as well
as the dual of the resource sharing problem. Our algorithm is an extension of the algorithm
by Müller, Radke, and Vygen [24].

We introduce the novel concept of local weak duality (Definition 2) to analyze the core
algorithm (Algorithm 1) which is a variant of the multiplicative weight update method.
Given local weak duality, we can prove stronger bounds on maxr∈S xr for the computed
solution x ∈ X and certain subsets S ⊆ R. That provides a theoretical counterpart to
the empirical observation that the algorithm optimizes (close to) independent parts of the
instance separately. Moreover, it allows concluding that – with an exact block solver – our
algorithm always computes a solution that is approximately decreasingly minimal on the two
highest entries. Such guarantees were not known even for special cases of the problem and
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could, in principle, be transferred to many other settings where the multiplicative weight
update method is employed. We also provide a negative result, namely that our algorithm
will not compute close to decreasingly minimal solutions on the three highest entries in
general.

Furthermore, we present an iterative scaling scheme in conjunction with an amortized
running time analysis that results in the currently fastest known constant factor approximation
for the resource sharing problem with O((n+m) log m) many oracle calls. This is then utilized
as an initial scaling technique to design an FPTAS improving on the best-known running
time for the resource sharing problem. Also, dual convergence, which follows immediately
with our analysis, was not shown in prior work.

Moreover, we discuss the limits of algorithms in this setting. We study a class of natural
extensions of the core algorithm and prove, using a result by Klein and Young [21], that any
algorithm from this class requires Ω( n+m

δ2 log m) oracle calls to compute a (1+δ)-approximate
solution (for a range of parameters as described in Theorem 13). This matches the running
time of our algorithm precisely. As this is independent of the choice of the prices, this proves
that – in a certain sense – multiplicative price updates are optimal, and that no warm-start
analysis (i.e. reducing the running time by starting with a close to optimal dual solution) of
such algorithms is possible.

1.3 Related work

The resource sharing problem originates from the maximum concurrent flow problem. For
this special case, Shahrokhi and Matula [29] introduced the idea to use Dantzig-Wolfe-
type algorithms with an exponential weight function. Another important special case of
this problem is fractional packing, which can be described as follows. Given a polyhedron
P ⊆ Rk, a matrix A ∈ Rm×k that satisfies Ax ≥ 0 for all x ∈ P , and a vector b ∈
Rm

>0, find an x ∈ P that satisfies Ax ≤ b. The width of the instance is defined as ρ :=
maxx∈P maxi=1,...,m(Ax)i/bi. Plotkin, Shmoys, and Tardos [26] studied this problem in the
context of Dantzig-Wolfe-type algorithms. Their results were generalized and improved
multiple times [5, 11, 13, 18, 20, 22, 24]. An important idea in this line of work is a step-size
technique introduced by Garg and Könemann [11] and extended by Fleischer [5], which is
used to design algorithms with width-independent running times.

The general version of the block-angular min-max resource sharing problem, as it is the
subject of this work, was studied first by Grigoriadis and Khachiyan [13]. In their formulation,
one is given non-empty closed convex blocks BC for each C ∈ C, and resource allocation
functions g(C) : BC → Rm

≥0, which are convex and non-negative in each coordinate. Then,
one seeks to compute min{maxr∈R

∑
C∈C g(C)(bC)r : bC ∈ BC ∀C ∈ C}. Their optimization

oracle solves minbC ∈BC
⟨y, g(C)(bC)⟩ for a given price vector y ∈ Rm

≥0. It is easy to see that
this formulation fits into our framework by defining XC as the convex hull of g(C)(BC). The
currently fastest known algorithm for the general case is due to Müller, Radke, and Vygen
[24]. They present a sequential algorithm that computes a solution of value at most σ(1 + δ)
within O((n + m) log m(δ−2 + log log m)) oracle calls. All of the mentioned approaches can
be interpreted as variants of the multiplicative weights update method [2].

Klein and Young [21] studied lower bounds on the number of iterations that are required
by any Dantzig-Wolfe-type algorithm to compute a (1+δ)-approximate solution for fractional
packing. They provide an asymptotic width-dependent bound of Ω

(
min

{
ρ log m

δ2 , m1/2−γ
})

(for any fixed γ ∈ (0, 1/2)). This matches known upper bounds precisely for a range of
parameters. If the width of the instance is unbounded, it is easy to see that Ω(m) oracle
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Algorithm 1 Core Resource Sharing Algorithm with parameters ϵ, T .

1: y ← 1 ∈ Rm

2: for t = 1, .., T do
3: for C ∈ C do
4: α← 0
5: s

(t)
C ← 0

6: while α < 1 do
7: b← fC(y)
8: ξ ← min{1− α, 1/ ∥b∥∞}
9: yr ← yr exp(ϵξbr) ∀r ∈ R

10: s
(t)
C ← s

(t)
C + ξb

11: α← α + ξ

12: end while
13: end for
14: s(t) ←

∑
C∈C s

(t)
C

15: end for
16: return 1

T

∑T
t=1 s(t)

calls are required to compute a constant-factor approximation [14]. If one is not restricted to
algorithms of the Dantzig-Wolfe-type, then it is known how to avoid the δ−2 dependence on
the running time for the case of fractional packing [1, 3].

Decreasingly minimal solutions to optimization problems appear under many different
names in the literature, such as lexicographically optimal [10, 23], egalitarian [4], fair [8, 27]
and more recently in a line of work by Frank and Murota – who study the integral case – as
decreasingly minimal [6, 7]. We are going to use their notation in the following. It is known
how to find such solutions with linear programming techniques [25, 27]. In our case, since
X is a non-empty closed convex subset of Rm

≥0, it contains a unique decreasingly minimal
element [27]. A concept related to decreasing minimization is that of majorization [15]. If
the set of feasible solutions contains a least majorized element, it is also the decreasingly
minimal element and can be extracted as the minimum of non-decreasing separable convex
functions [30]. We are not aware of results w.r.t. decreasingly minimal solutions in the
context of Dantzig-Wolfe-type algorithms.

1.4 Outline
The core algorithm (Algorithm 1, [24]) starts with the uniform price vector y = 1 ∈ Rm

and, after every oracle call, it updates the prices yr ← yr exp(ϵξbr), where ϵ > 0 is a fixed
parameter of the algorithm. It runs in T ∈ N phases (iterations of the outer loop). At the
end, the average solution over all phases x(T ) := 1

T

∑T
t=1 s(t) is returned. The restricted step

sizes in Line 8 were first proposed by Garg and Könemann [11] in the case of multicommodity
flows.

The standard tool to prove primal convergence of algorithms that are based on the
multiplicative weight update method is weak duality: For y ∈ Rm

≥0, it holds that∑
C∈C
⟨y, fC(y)⟩ ≤ σ min

x∈X
⟨y, x⟩ ≤ σ ∥y∥1 min

x∈X
∥x∥∞ = σ ∥y∥1 λ∗. (4)

This is sufficient to derive bounds on
∥∥x(T )

∥∥
∞. However, we aim to prove stronger bounds on

maxr∈S x
(T )
r for certain subsets of resources S ⊆ R. To this end, we introduce the concept

of local weak duality, which generalizes weak duality. We briefly describe the intuition behind
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G1 G2

(a) The decreasingly minimal solution λ with a
decomposition λ = λ(blue) + λ(red). Here λ(blue)

(λ(red)) assigns value 1 to all edges that are marked
with solid blue (red) lines and value 1/2 to all edges
that are marked with dashed blue (red) lines.

G1 G2
e

f
g

(b) Example of a bad oracle. Consider edge prices
y ∈ RE(G)

≥0 , given by ye = 2, yf = yg = 1, and zero
otherwise. Then, a 2-approximation oracle may
return the solution above, not satisfying local weak
duality on E(G1) or E(G2) for any value µ < 2.

Figure 2 An instance of fractional Steiner tree packing in a graph G that consists of two subgraphs
G1 and G2 which are joined by an edge. The goal is to find fractional Steiner trees that connect the
blue, respectively red terminals, such that the maximum edge load is minimized.

this notion. Given y ∈ Rm
≥0, one may consider the local objective value

∑
C∈C

∑
r∈S yrfC(y)r

of the oracles on S (e.g. the cost of the paths restricted to a subset of edges in the
multicommodity flow case). A local analog to weak duality is given if this objective value
can be bounded by µ

∑
r∈S yr for some µ > 0, independently of yr for r ∈ R \ S (the prices

on the remaining edges). The following definition includes a different price vector for every
customer, which is necessary to deal with the sequential price updates of the core algorithm.
Then, the upper bound on the local objective value is defined using the point-wise maximum
of these prices.

▶ Definition 2. We say that an instance X of the resource sharing problem satisfies local
weak duality w.r.t. a subset of resources S ⊆ R and µ ≥ 0 if for any collection of non-negative
price vectors (y(C))C∈C ⊆ Rm

≥0 it holds that

∑
C∈C

∑
r∈S

y(C)
r fC(y(C))r ≤ µ

∑
r∈S

max
C∈C

y(C)
r . (5)

This definition generalizes weak duality, in the sense that every instance satisfies local
weak duality w.r.t. S = R and µ = σλ∗.

Let us briefly present an exemplary application. Figure 2 displays an instance of the
fractional Steiner tree packing problem with unit capacities. The goal is to find fractional
Steiner trees in G that connect the blue, respectively the red terminals such that the maximum
edge usage is minimized. We have C = {blue, red} and R = E(G). The figure also depicts
an optimum solution λ = λ(red) + λ(blue) to the resource sharing problem as described in the
caption of Figure 2a. In this case, λ is also the decreasingly minimal solution. As the figure
indicates, G can be decomposed into two subgraphs G1 and G2 that are joined by an edge e.
It is clear that e is the bottleneck, meaning that λe = minx∈X ∥x∥∞ = 2. However, the (local)
maximum usage on G1 and G2 is lower, it holds maxe∈E(G1) λe = 1 and maxe∈E(G2) λe = 1

2 .
We observe that the Steiner tree problems decompose into two independent subproblems in
G1 and G2, i.e. the blue, respectively red terminals in G1 and G2 need to be connected to
the contained endpoint of e. Let us discuss two examples of how to apply local weak duality
to this instance for different oracles.
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(i) The oracle is exact. Thus it also solves the subproblems in G1 and G2 exactly. Now
consider price vectors y(red), y(blue) ∈ RE(G)

≥0 . Since λ(blue) and λ(red) are feasible
solutions for the blue, respectively the red customer, we get:∑

e∈E(G1)

y(blue)
e fblue(y(blue))e ≤

∑
e∈E(G1)

y(blue)
e λ(blue)

e ≤
∑

e∈E(G1)

λ(blue)
e max{y(blue)

e , y(red)
e }.

Applying the analogous inequality to the red customer and using that λ = λ(blue)+λ(red),
we can derive∑

e∈E(G1)

y(blue)
e fblue(y(blue))e +

∑
e∈E(G1)

y(red)
e fred(y(red))e ≤

∑
e∈E(G1)

λe max{y(blue)
e , y(red)

e }.

The right hand side can be bounded by maxe∈E(G1) λe

∑
e∈E(G1) max{y(blue)

e , y
(red)
e }.

Therefore, local weak duality is satisfied w.r.t. S = E(G1) and µ = maxe∈E(G1) λe = 1.
The very same argument can be applied to show that local weak duality is also satisfied
w.r.t. S = E(G2) and µ = maxe∈E(G2) λe = 1

2 .
(ii) The oracle is a 2-approximation given by a path-decomposition algorithm. In this case,

we know that it will solve the subproblems in G1 exactly (as these are shortest path
problems) and the approximation guarantee of 2 also holds for the subinstance in G2.
Thus, with the same argument as above, local weak duality is satisfied with regard to
S = E(G1) and µ = 1, and with regard to S = E(G2) and µ = 2 · 1

2 = 1.
In general, we cannot assume local weak duality with µ < 2 for all 2-approximation oracles
as described in Figure 2b for this instance. This illustrates that our notion of local weak
duality is not only a property of the convex region that we consider but also a property of the
oracle. This instance is an example of a product case, which we briefly discuss in Section 3.

In Section 2.1, we analyze the core algorithm with new techniques. We prove primal-dual
convergence and that, under local weak duality, maxr∈S x

(T )
r is bounded by µ plus an additive

error that is linear in δ. Dual convergence was not shown in [24]. The core algorithm is
sufficient to obtain fast convergence in normalized settings, i.e. when λ∗ is known up to
a constant factor. To derive a FPTAS for the general problem one needs to extend this
algorithm by a prior constant factor approximation. In [24] this is done with a scaling/binary
search approach. We present a faster constant-factor approximation in Section 2.2. This
allows to transfer all results from the normalized to the general setting without increasing
the asymptotic number of oracle calls. We summarize this in the following main theorem.

▶ Theorem 3 (Main Theorem). Let X be an instance of the resource sharing problem and
δ ∈ (0, 1]. One can compute a primal solution x ∈ X and a dual solution z ∈ ∆m satisfying

∥x∥∞ ≤ (1 + δ)σλ∗, min
x∈X
⟨z, x⟩ ≥ (1− δ)λ∗

σ
, (6)

and, for all S ⊆ R, µ ≥ 0 such that (5) holds,

max
r∈S

xr ≤ µ + δ max {λ∗, µ} , (7)

using O
(

(n+m)
δ2 log m

)
oracle calls, and further operations taking polynomial time.

In Section 3, we show how to apply this result to product settings and that the computed
solution is close to decreasingly minimal on the two highest entries in the following sense.
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▶ Corollary 4. Let λ ∈ X be decreasingly minimal. If the block solver is exact, i.e. σ = 1,
then the returned solution x ∈ X satisfies

(x↓)1 ≤ (λ↓)1 + δλ∗ and (x↓)2 ≤ (λ↓)2 + δλ∗. (8)

This analysis is best possible for the general case. In the full version we show that an
analogous version of Corollary 4 does not hold for the three highest entries. Furthermore, it
is not possible to reduce the additive constant of δλ∗ to δ(λ↓)2 in the second inequality of
(8). In a sense, an additive error of O(δλ∗) is best possible in our framework, because the
core algorithm is known to make an additive error of O(δ) and we scale the instance such
that λ∗ ∈ [c, C] for some constants 0 < c < C before applying it.

In Section 4, we study a class of generalizations of the core algorithm. These can be
described as standard block-coordinate descent algorithms. This class contains all algorithms
that run in a number of phases T , and in each phase 1, . . . , T construct a solution for
every customer by using any choice of prices and the restricted step size rule as in Line
8 of the core algorithm. Our algorithm is optimal within this class in the sense that any
such algorithm requires Ω( n+m

δ2 log m) many oracle calls to construct a (1 + δ)-approximate
solution (Theorem 13), even if λ∗ = 1 is known. This follows from a result by Klein and
Young [21] and matches the upper bound provided by our algorithm precisely.

2 Proof of the main theorem

2.1 Analysis on normalized instances
First, we prove the main theorem for normalized instances, meaning those for which λ∗ ∈ [c, 1]
is known for a constant c > 0. Later, in Section 2.2, we show how to remove this assumption.
We write x(t) := 1

t

∑t
p=1 s(p) ∈ X for the current solution and y(t) for the price vector y after

phase t of the core algorithm is completed. Note that y
(t)
r = exp(ϵ

∑t
p=1 s

(p)
r ) = exp(ϵtx(t)

r )
holds for all r ∈ R and t = 1, . . . , T . This can be used to deduce a simple bound for any
S ⊆ R:

max
r∈S

x(t)
r = max

r∈S

1
ϵt

log y(t)
r ≤

1
ϵt

log
∑
r∈S

y(t)
r . (9)

Especially,
∥∥x(t)

∥∥
∞ ≤

1
ϵt log

∥∥y(t)
∥∥

1 holds. We denote the dual objective values that corres-
pond to the price vectors y(t) by

Θt := min
x∈X

⟨y(t), x⟩∥∥y(t)
∥∥

1
=

∑
C∈C optC(y(t))∥∥y(t)

∥∥
1

. (10)

We provide a bound that relates the number of oracle calls to the price vector y(t). This
bound improves (slightly) on the bound that was shown in [24], which was tn + m

ϵ log
∥∥y(t)

∥∥
1.

▶ Lemma 5. The number of oracle calls of the core algorithm until termination of phase
t = 1, .., T is bounded by

tn + m

ϵ
log

∥∥y(t)
∥∥

1
m

. (11)

A proof can be found in the full version. The following lemma states a bound on
∑

r∈S y
(t)
r ,

which implies a bound on maxr∈S x
(t)
r according to Inequality (9). In the case S = R, this

provides a bound on the primal error and the number of oracle calls. Again, we refer to the
full version for a proof of the lemma.



D. Blankenburg 20:9

▶ Lemma 6 (Upper bound on the price increase). Let X be an instance of the resource sharing
problem that satisfies local weak duality w.r.t. S ⊆ R and µ > 0. Let η := exp(ϵ)−1. Assume
that ηµ < 1. Then for all t = 0, 1, . . . , T , it holds that∑

r∈S

y(t)
r ≤ |S| exp

(
tηµ

1− ηµ

)
. (12)

As pointed out earlier, every instance satisfies local weak duality w.r.t. R and σλ∗. So
the bound

∥∥y(t)
∥∥

1 ≤ m exp(tησλ∗/(1− ησλ∗)) that was stated in [24] follows. In this case,
however, it is possible to insert the definition of the dual values to obtain the primal-dual
bound

∥∥y(t)
∥∥

1 ≤ m exp
(

ησ
1−ησλ∗

∑t
p=1 Θp

)
, which can be used to prove also dual convergence

of the average dual solution.

▶ Theorem 7 (Bound on the primal and dual error). Assume ϵ ∈ (0, 1], ησλ∗ < 1. For every
t = 1, ..., T the primal solution x(t) and the average dual solution z(t) := 1

t

∑t
p=1

y(p)

∥y(p)∥1
∈ ∆m

satisfy∥∥∥x(t)
∥∥∥

∞
≤ log m

ϵt
+ 1 + ϵ

1− ησλ∗ σλ∗, min
x∈X
⟨z(t), x⟩ ≥ 1− ησλ∗

σ(1 + ϵ)

(
λ∗ − log m

ϵt

)
. (13)

Moreover, if X satisfies local weak duality w.r.t. S ⊆ R and µ > 0, then

max
r∈S

x(t)
r ≤

log |S|
ϵt

+ 1 + ϵ

1− ησλ∗ µ. (14)

For normalized instances, the main theorem follows with a straightforward calculation from
Theorem 7 by choosing ϵ = δ

8σ and T =
⌈

log m
2σcϵ2

⌉
. Omitted proofs can be found in the full

version.

2.2 Constant-factor approximation in O((n + m) log m) oracle calls
In the following, we assume λ∗ ∈ [1, σm], which can be guaranteed in n oracle calls, by
computing for each customer a solution to the uniform price vector x :=

∑
C∈C fC(1) ∈ X

and scaling the instance with σm
∥x∥∞

. Our constant-factor approximation, Algorithm 2, is
similar to the core algorithm, but it works with adaptive parameters, may discard the
solutions of some phases, and restart them. This is done by checking a bound on the sum
of the prices, in Line 13, after every oracle call. The algorithm maintains a guess on λ∗,
denoted by Λ, which influences the convex coefficient ξ. A violation of the bound indicates
that the guess was too low. This leads to a restart of the phase with ϵ← ϵ/2 and Λ← 2Λ.

Let K∗ := ⌈log λ∗⌉. We denote by K the number of restarts of the algorithm (i.e. times
the if-statement in Line 13 is satisfied). Further, t1 ≤ · · · ≤ tK denote the (not necessarily
distinct) indices of the phases in which the restarts occur. For a phase t, we write ϵ(t) for
the ϵ-value with which it was completed successfully. As before, we write x(t) := 1

t

∑t
p=1 s(p)

for the current solution after phase t. By construction of the algorithm, we have that
y

(t)
r = exp

(∑t
p=1 ϵ(p)s

(p)
r

)
. Note that ϵ(p) is decreasing for p = 1, . . . , t. Therefore, one can

bound the maximum usage of the current solution at termination of phase t analogous to
previously by

∥∥x(t)
∥∥

∞ ≤
1

ϵ(t)t
log

∥∥y(t)
∥∥

1. We only sketch the analysis of the algorithm in
the following. Note that after the k’th restart, ϵ = 1

2k4σ
. So, for larger k, the price updates

yr ← exp(ϵξbr) get smaller and smaller. Similarly to the proof of Lemma 6, one can show
that after K∗ restarts, ϵ is small enough to guarantee that the price bound will not be
violated again.
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Algorithm 2 Constant-factor approximation for the resource sharing problem.

1: y ← 1 ∈ Rm

2: ϵ← 1
4σ ▷ Current epsilon for the price update

3: Λ← 1 ▷ Current guess on λ∗

4: for t = 1, .., T := ⌈log m⌉ do
5: y(t−1) ← y ▷ Store the last price vector
6: for C ∈ C do
7: α← 0, s

(t)
C ← 0

8: while α < 1 do
9: b← fC(y)

10: ξ ← min{1− α, Λ/ ∥b∥∞} ▷ Decide the “amount” with which b is taken
11: yr ← yr exp(ϵξbr) ∀r ∈ R
12: s

(t)
C ← s

(t)
C + ξb , α← α + ξ

13: if ∥y∥1 > m exp (t) then ▷ Check price bound
14: y ← y(t−1) ▷ Reset the prices to those of the start of this phase
15: ϵ← ϵ/2, Λ← 2Λ ▷ Reduce ϵ, increase the guess on λ∗

16: go to 6 ▷ Restart phase, solutions from this phase are discarded
17: end if
18: end while
19: end for
20: s(t) ←

∑
C∈C s

(t)
C

21: end for
22: return 1

T

∑T
t=1 s(t)

▶ Lemma 8. The total number of restarts K is bounded by K∗.

This means that the number of restarts is bounded by ⌈log λ∗⌉ ≤ ⌈log σm⌉ ∈ O(log m).
Analogously to Lemma 5, one can deduce the following bound on the number of oracle calls,
which depends on the indices of the phases that are restarted.

▶ Lemma 9. There is a constant c1 > 0, such that the number of oracle calls is bounded by
Tn + c1m

(
T +

∑K
i=1 ti

)
.

To use this bound one exploits that (due to the price bound in Line 13)

λ∗ ≤
∥∥∥x(t)

∥∥∥
∞
≤ 1

ϵ(t)t
log

∥∥∥y(t)
∥∥∥

1
≤ log m

ϵ(t)t
+ 1

ϵ(t) (15)

holds for every successfully completed phase t. Thus if λ∗ ≫ 1, then ϵ(t) must be small
already for low values of t. This implies that many restarts occurred in the early phases.
Indeed, we provide upper bounds on the ti, which allow estimating

∑K
i=1 ti by a geometric

series resulting in
∑K

i=1 ti ∈ O(log m).

▶ Lemma 10. There are constants c2, c3 > 0, such that ti ≤ c2 + 2i−K∗
c3 log m holds

∀i = 1, . . . , K. Thus the number of oracle calls is in O((n + m) log m).

Lemma 8 states that phase T is completed with ϵ(T ) ≥ 1
2K∗ 4σ

≥ 1
λ∗8σ . Inserting this into

Inequality (15) shows that
∥∥x(T )

∥∥
∞ ≤ 16σλ∗. The analysis is summarized in the following

theorem.

▶ Theorem 11. Algorithm 2 computes a solution x(T ) ∈ X to the resource sharing problem
that satisfies

∥∥x(T )
∥∥

∞ ≤ 16σλ∗ using O((n + m) log m) oracle calls.

Combining Algorithm 2 with the core algorithm proves the main theorem. Omitted proofs
from this section can be found in the full version.
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3 Decreasing Minimality on the two highest entries

In this section, we discuss the implications of local weak duality. In particular, we prove
that our algorithm computes solutions that are close to decreasingly minimal on the two
largest entries. Before that, let us consider a simple application, which is the product case.
Assume that the instance of the resource sharing problem consists of multiple independent
parts, that is, there exists a (perhaps unknown) partition of the resources R = R1 ∪ · · · ∪Rk

on which the customers act “independently”. More precisely, we assume that each of
the convex sets XC can be decomposed into a product XC = X

(C)
1 × · · · × X

(C)
K where

X
(C)
i ⊆ R|Ri|

≥0 for i = 1, . . . , k. Let us write Xi :=
∑

C∈C X
(C)
i for i = 1, . . . , k. Note

that we have X = X1 × · · · × Xk. Let C ∈ C and y(C) ∈ Rm
≥0. In this case, X satisfies

local weak duality w.r.t. Rj and minxj∈Xj ∥xj∥∞ for every j = 1, . . . , k. A proof can be
found in the full version. So, indeed, according to the main theorem, Theorem 3, every
independent part of the instance is optimized separately, i.e. the primal solution x(T ) satisfies
maxr∈Ri

x
(T )
r ≤ minxi∈Xi

∥xi∥∞ +δλ∗ for all i = 1, . . . , k. We already saw a natural example
of a product setting in Figure 2. As discussed in the beginning, especially in these product
cases it is reasonable to assume local weak duality also for approximate block solvers (with
their approximation guarantee). A more surprising observation is that any instance X with
an exact block solver satisfies local weak duality w.r.t. to all but one coordinate and the
value of the second-highest entry in the decreasingly minimal solution.

▶ Lemma 12. Let X be an instance of the resource sharing problem with σ = 1. Let λ ∈ X
be the decreasingly minimal element. Assume that (λ↓)1 > (λ↓)2 holds. Let r∗ ∈ R be the
coordinate of the unique maximum entry, i.e. λr∗ = (λ↓)1. Then X satisfies local weak
duality w.r.t. S := R \ {r∗} and µ := (λ↓)2.

A proof of this statement can be found in the full version. Note that if (λ↓)1 = (λ↓)2
Corollary 4 is trivial due to primal convergence. In the case (λ↓)1 > (λ↓)2, Corollary 4
follows due to local weak duality with an application of the main theorem.

One might conjecture that an analogous version to Corollary 4 is valid also for the
third-highest entry and so on (meaning that the computed solution x(T ) satisfies (x(T )

↓ )3 ≤
(λ↓)3 + δλ∗ etc.). This is not the case in general. We provide a counterexample in the full
version.

4 Limits of standard Dantzig-Wolfe-type algorithms

In this section, we study a class of algorithms that can be described by the meta-algorithm
Algorithm 3. This class contains all algorithms that process the customers in a number T

of phases and compute a solution s
(t)
C ∈ XC for every customer in each phase t = 1, ..., T .

We allow to choose any price vector for the oracle queries and allow to return any convex
combination at the end of the algorithm. However, we fix the restricted step size rule in
Line 7. On the one hand, this class can be interpreted as a natural generalization of the
core algorithm. On the other hand, it includes standard conditional gradient methods that
work with this restricted step size rule. Using this step-size rule is explained by the fact that
otherwise ∥ξb∥∞ > 1 holds. Since ξb is added to the current solution of the given phase and
the goal is to find an element with small ℓ∞-norm, it is a reasonable approach to restrict the
step-size towards elements with large ℓ∞-norm. Note that the bound 1/ ∥b∥∞ in Line 7 can
be replaced by C/ ∥b∥∞ for any other constant C > 0 without affecting the asymptotic lower
bound. We prove that any such algorithm needs to use Ω( n+m

δ2 log m) many oracle calls to
terminate with a (1 + δ)-approximate solution.
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Algorithm 3 Standard block-coordinate descent with restricted steps.

1: for t = 1, .., T do
2: for C ∈ C do
3: α← 0, s

(t)
C ← 0

4: while α < 1 do
5: Choose y ∈ Rm

≥0
6: b← fC(y)
7: ξ ← min{1− α, 1/ ∥b∥∞}
8: s

(t)
C ← s

(t)
C + ξb

9: α← α + ξ

10: end while
11: end for
12: s(t) ←

∑
C∈C s

(t)
C

13: end for
14: return a convex combination of s(1), . . . , s(T )

▶ Theorem 13. For every γ ∈ (0, 1/2) there exist constants Kγ , τγ > 0, such that for every
m > Kγ , n ∈ N, there exists an instance of the resource sharing problem with n+2 customers,
2m resources and λ∗ = 1, such that for any δ ∈ (0, 1/10), any version of Algorithm 3 requires

τγ(n + m) min
{

log m

δ2 , m1/2−γ

}
(16)

oracle calls to compute a (1 + δ)-approximate solution.

For a proof we refer to the full version.

5 Conclusion

In this work, we have presented an FPTAS for the primal and the dual of the resource sharing
problem and improved on the best-known running time in terms of number of oracle calls.

We were able to show that our algorithm has the natural property to optimize (close
to) independent parts of the instance separately by introducing the notion of local weak
duality. This implied that our algorithm computes solutions that are close to decreasingly
minimal on the two largest entries. Local weak duality provides a theoretical understanding
of the empirically observed resilience to local effects of multiplicative-weight-based algorithms.
Extending the algorithm to achieve (approximate) decreasing minimality on the third-highest
entry and beyond is subject to future work.

In the last section, we have shown that further improvements, if possible, require different
types of algorithms. A mere change of the price update rule is not enough to achieve faster
convergence. This also implied that no warm-start analysis of any version of Algorithm 3 is
possible.
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Abstract
The number one criticism of average-case analysis is that we do not actually know the probability
distribution of real-world inputs. Thus, analyzing an algorithm on some random model has no
implications for practical performance. At its core, this criticism doubts the existence of external
validity, i.e., it assumes that algorithmic behavior on the somewhat simple and clean models does
not translate beyond the models to practical performance real-world input.

With this paper, we provide a first step towards studying the question of external validity
systematically. To this end, we evaluate the performance of six graph algorithms on a collection of
2751 sparse real-world networks depending on two properties; the heterogeneity (variance in the
degree distribution) and locality (tendency of edges to connect vertices that are already close). We
compare this with the performance on generated networks with varying locality and heterogeneity.
We find that the performance in the idealized setting of network models translates surprisingly
well to real-world networks. Moreover, heterogeneity and locality appear to be the core properties
impacting the performance of many graph algorithms.
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Supplementary Material We provide our source code, a docker image for easier reproducibility, the
real-world network data set as well as all generated data (networks and statistics):
Software (Source Code): https://github.com/thobl/external-validity
Dataset (Source Code Archive, Docker Image, Networks, Statistics): https://doi.org/10.5281/
zenodo.6587324

1 Introduction

The seminal papers of Cook in 1971 [16] and Karp in 1972 [26] establish that many funda-
mental combinatorial problems are NP-hard, and thus cannot be solved in polynomial time
unless P = NP. Since then, the list of NP-hard problems is growing every year.

Though the non-existence of polynomial time algorithms (unless P = NP) is major bad
news, the concept of NP-hardness is limited to the worst case. It thus leaves the possibility
of imperfect algorithms that fail sometimes but run correctly and in polynomial time on
most inputs. Many algorithms used today are slow in the worst case but perform well on
relevant instances. An early attempt to theoretically capture this “good in practice” concept
is the average-case analysis. There, one assumes the input to be randomly generated and
then proves a low failure probability or a good expected performance.1 On that topic, Karp
wrote in 1983 [27] that

1 We note that within the scope of this paper the term average case refers to exactly those situations
where the input is drawn from some probability distribution. This includes proving bounds that hold
with high probability (instead of in expectation), which would technically be better described as typical
case. Moreover, it excludes the case of randomized algorithms on deterministic inputs.
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One way to validate or compare imperfect algorithms for NP-hard combinatorial
problems is simply to run them on typical instances and see how often they fail. [. . .]
While probabilistic assumptions are always open to question, the approach seems to
have considerable explanatory power [. . .]. (Karp in 1983)

With this promising starting point, one could have guessed that average-case analysis is
an important pillar of algorithmic research. However, it currently plays only a minor role in
theoretical computer science. The core reason for this was summarized by Karp almost forty
years later in 2020 in the Lex Fridman Podcast.2

The field tended to be rather lukewarm about accepting these results as meaningful
because we were making such a simplistic assumption about the kinds of graphs that
we would be dealing with. [. . .] After a while I concluded that it didn’t have a lot of
bite in terms of the practical application. (Karp in 2020)

At its core, this describes the issue that an average-case analysis is lacking external
validity, i.e., the insights on randomly generated graphs do not transfer to practical instances.

The simplistic probabilistic assumption mentioned in the above quotes is that input
graphs are drawn from the Erdős–Rényi model [23], where all edges exist independently
at random with the same probability. This assumption has the advantages that it is as
unbiased as possible and sufficiently accessible to allow for mathematical analyses. However,
in its simplicity, it is unable to capture the rich structural properties present in real-world
networks, leading to the lack of external validity.

That being said, since the beginnings of average-case considerations, there have been
several decades of research in the field of network science dedicated to understanding and
explaining properties observed in real-world networks. This in particular includes the analysis
of random network models and the transfer of insights from these models to real networks;
indicating external validity. Thus, we believe that it is time to revisit the question of whether
average-case analyses of graph algorithms can have external validity. With this paper, we
present a first attempt at systematically studying this question.

Before describing our approach and stating our contribution, we want to give two examples
from network science, where the existence of external validity is generally accepted.

Examples from Network Science. The Barabási–Albert model [2] uses the mechanism of
preferential attachment to iteratively build a network. Each newly added vertex chooses a
fixed number of neighbors among the existing vertices with probabilities proportional to the
current vertex degrees. This simple mechanism yields heterogeneous networks, i.e., networks
with power-law degree distributions where most vertices have a small degree while few vertices
have very high degree.3 It is well known that networks generated by this model are highly
artificial, exhibiting properties that are far from what is observed in real-world networks.
Nonetheless, beyond the specific model, it is generally accepted that the mechanism of
preferential attachment facilitates power-law distributions. Thus, assuming external validity,
the Barabási–Albert model can serve as an explanation of why we regularly observe power-
law distributions in real-world data. Moreover, whenever we deal with a process involving
preferential attachment, we should not be surprised when seeing a power-law distribution.

2 Transcript of the Lex Fridman Podcast #111. The quote itself starts at 1:39:59. For the full context,
start at 1:37:28 (https://youtu.be/KllCrlfLuzs?t=5848).

3 Barabási and Albert were not the first to study a preferential attachment mechanism; see, e.g., Price’s
model [19]. However, there is no doubt that their highly influential paper [2] popularized the concept.

https://youtu.be/KllCrlfLuzs?t=5848


T. Bläsius and P. Fischbeck 21:3

The Watts–Strogatz model [32] first starts with a ring lattice, i.e., the vertices are
distributed uniformly on a circle and vertex pairs are connected if they are sufficiently
close. This yields a regular graph with high locality, i.e., all connections are short and we
observe many triangles. Moreover, ring lattices have high diameter. The second step of
the Watts–Strogatz model introduces noise by randomly rewiring edges. This diminishes
locality by replacing local connections with potentially long-range edges. Watts and Strogatz
demonstrate that only little locality has to be sacrificed before getting a small-world network
with low diameter. Again, this model is highly artificial and thus far from being a good
representation for real-world networks. However, it seems generally accepted that these
observations have implications beyond the specific model, namely that there is a simple
mechanism that facilitates the small-world property even in networks with mostly local
connections. Thus, in real-world settings where random long-range connections are possible,
one should not be surprised to observe the small-world property.

Contribution. We consider algorithms for six different problems that are known to perform
better in practice than the worst-case complexity would suggest. We evaluate them on
network models that allow for varying amounts of locality and heterogeneity.4 This shows
us the impact of these two properties on the algorithms’ performance in the controlled
and clean setting of generated networks. We compare this with practical performance by
additionally evaluating the algorithms on a collection of 2751 sparse real-world networks.
Our overall findings can be summarized as follows. Though the real-world networks yield
a less clean and more noisy picture than the generated networks, the overall dependence
of the performance on locality and heterogeneity coincides with surprising accuracy for
most algorithms. This indicates that there is external validity in the sense that if, e.g.,
increasing locality in the network models improves performance, we should also expect better
performance for real-world networks with high locality. Moreover, it indicates that locality
and heterogeneity are the core properties to impact the performance for many networks.

Our insights for the specific algorithms are interesting in their own right, independent of
the question of external validity. Moreover, our experiments led to several interesting findings
that are beyond the core scope of this paper. These can be found in the full version [4].

In Section 2, we introduce some basic notation and formally define measures for hetero-
geneity and locality. In Section 3, we describe the set of real-world and generated networks
we use in our experiments. Section 4 compares generated and real-world networks for the
different algorithms. Related work as well as our insights specific to the algorithms are
discussed in this section. In Section 5 we conclude with a discussion of our overall results.

Our source code is available on GitHub5. It is additionally archived at Zenodo6, together
with a docker image for easier reproducibility. The latter repository additionally includes the
real-world network data set as well as all generated data (networks and statistics). Details
omitted from this extended abstract can be found in the full version [4].

4 For non-local networks, we use the Erdős–Rényi and the Chung–Lu model for homogeneous and
heterogeneous degree distributions, respectively. For local networks, we use geometric inhomogeneous
random graphs (GIRGs), which let us vary the amount of locality and heterogeneity.

5 https://github.com/thobl/external-validity
6 https://doi.org/10.5281/zenodo.6587324
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Figure 1 The density (kernel density estimation) of heterogeneity, degree locality, distance locality,
and locality of the networks in our data set of real-world networks.

2 Basic Definitions, Heterogeneity, and Locality

Let G = (V, E) be a graph. Throughout the paper, We denote the number of vertices and
edges with n = |V | and m = |E|. For v ∈ V , let N(v) = {u | {u, v} ∈ E} be the neighborhood
of v, and let deg(v) = |N(v)| be the degree of v. Additionally, N [v] = N(v) ∪ {v} is the
closed neighborhood of v. An edge e ∈ E is a bridge if G − e is disconnected, where G − e

denotes the subgraph induced by E \ {e}.
We define the heterogeneity of a graph as the logarithm (base 10) of the coefficient

of variation of its degree distribution, i.e., it is log10(σ/µ) for the average degree µ =
1
n

∑
v∈V deg(v) and the variance σ2 = 1

n

∑
v∈V (deg(v) − µ)2.

We define the locality based on two different measures. For u, v ∈ V , let deg(u, v) =
|N(u) ∩ N(v)| be the common degree of u and v. For a non-bridge edge {u, v} ∈ E the degree
locality is defined as

Ldeg({u, v}) = deg(u, v)
min(deg(u), deg(v)) − 1 .

It essentially measures in how many triangles {u, v} appears. The degree locality Ldeg(G) of
G is the average degree locality over all non-bridge edges.

For u, v ∈ V , let dist(u, v) be the distance between u and v in G. For P ⊆
(

V
2
)
, we denote

the average distance between vertex pairs in P with dist(P ). For {u, v} ∈ E, the detour
distance dist+(u, v) is the distance between u and v in G − {u, v}. Let E =

(
V
2
)

\ E and
assume that E ̸= ∅. For a non-bridge edge {u, v} ∈ E, define the distance locality as

Ldist({u, v}) = 1 − dist+(u, v) − 2
dist(E) − 2

.

It essentially measures how short the edge {u, v} is compared to the average distance in the
graph. If dist(E) = 2, we define Ldist({u, v}) = 0. The distance locality Ldist(G) of G is the
maximum of 0 and the average distance locality over all non-bridge edges.

The locality of G is L(G) = (Ldeg(G) + Ldist(G))/2. To compute the locality, we
approximate average distances [12]. See Figure 1 for distribution plots.

3 Networks

Real-World Networks. We use 2751 graphs from Network Repository [29], which we selected
as follows. We started with all networks with at most 1 M edges and reduced each network to
its largest connected component. We removed multi-edges and self-loops and ignored weights
or edge directions. We tested the resulting connected, simple, undirected, and unweighted
graphs for isomorphism and kept only one copy for each group of isomorphic networks. This
resulted in 3006 networks. From this we removed 255 networks for different reasons.



T. Bläsius and P. Fischbeck 21:5

We removed 105 networks that were randomly generated and thus do not count as
real-world networks.7

We removed 17 trees. They are not very interesting, and locality is not defined for trees.
We removed 133 graphs with density at least 10 %. Our focus lies on sparse graphs and
network models for sparse graphs. Thus, dense graphs are out of scope.

Random Networks. We use three random graph models to generate networks; the Erdős–
Rényi model [23] (non-local and homogeneous), the Chung–Lu model [14, 15] (non-local and
varying heterogeneity), and the GIRG model [11] (varying locality and heterogeneity). For
the latter, we use the efficient implementation in [8].

For each model and parameter configuration, we generate five networks with n = 50 k
vertices and (expected) average degree 10. As for the real-world networks, we reduce each
generated graph to its largest connected component. We average the five generated graphs
for each parameter configuration and represent their average as singe dot in the plots.

4 Comparison Between the Models and Real-World Networks

Each of the following subsections compares the performance of a different algorithm between
generated and real-world networks. For the cost c of the algorithm, we plot c depending on
heterogeneity and locality using color to indicate the cost; see, e.g., Figure 2. The left and
middle plot show one data point for each parameter setting of the models and each real-world
network, respectively. The right plot aggregates real-world networks with similar locality
and heterogeneity. Each point represents a number of networks indicated by its radius (log
scale). We regularly assume the cost c to be polynomial in m (or n), i.e., c = mx, and plot
x = logm c. In this case, the color in the left and right plot shows the mean exponent x for
the aggregated networks.

4.1 Bidirectional Search
We can compute a shortest path between two vertices s and t using a breadth first search
(BFS). The BFS explores the graph layer-wise, where the ith layer contains the vertices of
distance i from s. By exploring the ith layer, we refer to the process of iterating over all
edges with an endpoint in the ith layer, thereby finding layer i + 1. The bidirectional BFS
alternates the exploration of layers between a forward BFS from s and a backward BFS from
t. The alternation strategy we study here greedily applies the cheaper of the two explorations
in every step. The cost of exploring a layer is estimated via the sum of degrees of vertices in
that layer. The search stops once the current layers of forward and backward search intersect.

The cost c for the bidirectional BFS is the average number of edge explorations over
100 random st-pairs. Note that c ≤ 2m, as each edge can be explored at most twice; once
from each side. Figure 2 shows the exponent x for c = mx depending on heterogeneity and
locality.

Impact of Locality and Heterogeneity. For the generated networks, we see that networks
with high locality and homogeneous degree distribution (top left corner) have an exponent
of around 1 (red). Thus, the cost of the bidirectional search is roughly m, which matches

7 Finding generated networks was done manually by searching for suspicious naming patterns or graph
properties. For each candidate, we checked its source to verify that it is a generated network. Though we
checked thoroughly, there are probably a few random networks hiding among the real-world networks.
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Figure 2 The exponent x of the average cost c = mx of the bidirectional BFS over 100 st-pairs.

the worst-case bound. If the network is heterogeneous (right) or less local (bottom), we get
significantly lower exponents of around 0.5, indicating a cost of roughly

√
m. The cost is

particularly low for very heterogeneous networks. Overall, we get a strict separation between
hard (high locality, low heterogeneity) and easy (low locality or high heterogeneity) instances.

For real-world networks, we observe the same overall behavior that instances that are
local and homogeneous tend to be hard while all others tend to be easy. There are only
few exceptions to this, indicating that the heterogeneity and locality are usually the crucial
properties impacting the performance of the bidirectional BFS.

Discussion. Borassi and Natale [10] found that the bidirectional BFS is exceptionally
efficient on many real-world networks. Though its efficiency is surprising when compared to
the worst case, existing average-case considerations suggest that this is actually the expected
behavior. It runs in sublinear time on the non-local Erdős–Rényi and Chung–Lu graphs [10].
It is also sublinear on the local and heterogeneous hyperbolic random graphs, but linear on
geometric random graphs in Euclidean geometry [7]. The latter two models can be seen as
special case of GIRGs, covering the top-right and top-left corner.

4.2 Diameter
The eccentricity of s ∈ V is maxt∈V dist(s, t), i.e., the distance to the vertex farthest from s.
The diameter of the graph G is the maximum eccentricity of its vertices. It can be computed
using the iFUB algorithm [17]. It starts with a root r ∈ V from which it computes the BFS
tree T . It then processes the vertices bottom up in T and computes their eccentricities using
a BFS per vertex. This process can be pruned when the distance to r is sufficiently small
compared to the largest eccentricity found so far. Pruning works well if r is a central vertex
in the sense that it has low distance to many vertices and a shortest path between distant
vertices gets close to r. The central vertex r is selected as follows. A double sweep [28] starts
with a vertex u, chooses a vertex v at maximum distance from u, and returns a vertex w from
a middle layer of the BFS tree from v. A 4-sweep [17] consists of two double sweeps, starting
the second sweep with the result w of the first sweep. We consider the iFUB+4-sweephd
algorithm, which chooses r by doing a 4-sweep from a vertex of maximum degree.
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Figure 3 The exponent x of the number of BFSs c = nx of the iFUB+4-sweephd algorithm,
excluding 19 real-world networks with timeout. The GIRG ground space is a square.

The cost c of iFUB+4-sweephd is the number of BFSs it performs. Note that c ≤ n.
Figure 3 shows the exponent x for c = nx depending on heterogeneity and locality. It excludes
19 of the 2751 real-world networks that exceeded the time limit of 30 min. The GIRG model
uses a square as ground space instead of the usual torus.

Impact of Locality and Heterogeneity. The general dependence is the same for generated
and real-world networks. An almost linear number of BFSs is required for networks lacking
locality and heterogeneity. For local or heterogeneous networks, it is substantially sublinear.
The picture for real-world networks shows some noise, which indicates that there are properties
besides locality and heterogeneity that impact the performance. We note that this observation
agrees with the models, where we get highly varying exponents for individual parameter
settings, e.g., for GIRGs with T = 0.82 and β = 3.4, we get exponents ranging from 0.21 to
0.92 for the five generated instances.

Discussion. The iFUB algorithm was introduced by Crescenzi, Grossi, Habib, Lanzi, and
Marino [17]. They note that it works well on networks with high difference between radius
and diameter. This corresponds to the existence of a central vertex with eccentricity close
to half the diameter. Additional experiments indicate that locality facilitates the existence
of a central vertex (essentially in the center of the geometric ground space). Moreover,
in heterogeneous networks, the high degree vertices serve as central vertices. The latter
is also supported by the theoretical analysis of Borassi, Crescenzi, and Trevisan [9], who
in particular showed that heterogeneous Chung–Lu graphs allow the computation of the
diameter in sub-quadratic time, indeed using a vertex of high degree as central vertex.

4.3 Vertex Cover Domination
A vertex set S ⊆ V is a vertex cover if every edge has an endpoint in S, i.e., removing S from
G leaves a set of isolated vertices. We are interested in finding a vertex cover of minimum
size. For two adjacent vertices u, v ∈ V , we say that u dominates v if N [v] ⊆ N [u]. The
dominance rule states that there exists a minimum vertex cover that includes u. Thus, one
can reduce the instance by including u in the vertex cover and removing it from the graph.
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Figure 4 The relative kernel size of the vertex cover domination rule.

To evaluate the effectiveness of the dominance rule, we apply it exhaustively, i.e., until no
dominant vertices are left. Moreover, we remove isolated vertices. We refer to the number c

of vertices in the largest connected component of the remaining instances as the kernel size.
Figure 4 shows the relative kernel size c/n with respect to locality and heterogeneity.

Impact of Locality and Heterogeneity. We see a sharp separation for the generated
networks. For low locality and heterogeneity (bottom left), the reduction rule cannot be
applied. For high locality and heterogeneity (top right), the dominance rule completely solves
the instance. For real-world networks, the separation is less sharp, i.e., there is a larger
range of locality/heterogeneity values in the middle where the dominance rule is effective
sometimes. Nonetheless, we see the same trend that the reduction rule is more likely to be
effective the higher the locality and heterogeneity. In the extreme regimes (bottom left or
top right), we observe the same behavior as for the generated networks with relative kernel
sizes close to 1 and 0, respectively, for almost all networks. Moreover, there is dichotomy in
the sense that many instances are either (almost) completely solved by the dominance rule
or the rule is basically inapplicable.

Discussion. Though vertex cover is NP-hard [26], it is rather approachable: It can be solved
in 1.1996nnO(1) time [34] and there is a multitude of FPT-algorithms with respect to the
solution size k [18], the fastest one running in O(1.2738k + kn) [13]. Moreover, there are
good practical algorithms [1, 33]. Both algorithms apply a suite of reduction rules, including
the dominance rule or a generalization. We note that the dominance rule is closely related
to Weihe’s reduction rules for hitting set [33]. Previous experiments for Weihe’s reduction
rules match our results: they work well if the instances are local and heterogeneous [6].
Concerning theoretic analysis on models, we know that on hyperbolic random graphs, the
dominance rule is sufficiently effective to yield a polynomial time algorithm [5]. Thus, it is
not surprising that the top-right corner in Figure 4 is mostly green.

4.4 The Louvain Algorithm for Graph Clustering
Let V1 ·∪ · · · ·∪ Vk = V be a clustering where each vertex set Vi is a cluster. One is usually
interested in finding clusterings with dense clusters and few edges between clusters, which is
formalized using some quality measure, e.g., the so-called modularity. A common subroutine
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Figure 5 Number of iterations of the first local search of the Louvain algorithm. The color scale
is logarithmic. Four outliers (real-world) with more than 1 k iterations are excluded.

in clustering algorithms is to apply the following local search. Start with every vertex in its
own cluster. Then, check for each vertex v ∈ V whether moving v into a neighboring cluster
improves the clustering. If so, v is moved into the cluster yielding the biggest improvement.
This is iterated until no improvement can be achieved. Doing this with the modularity
as quality measure (and subsequently repeating it after contracting clusters) yields the
well-known Louvain algorithm [3].

The run time of the Louvain algorithm is dominated by the number of iterations of the
initial local search. Figure 5 shows this number of iterations.

Impact of Locality and Heterogeneity. For the generated instances, the number of iterations
is generally low but increasing when decreasing the locality. For GIRGs, the average number
of iterations ranges from 10.2 to 54.2 for the different parameter configurations. Moreover,
the number of iterations starts to rise only for low localities. For 86 % of the configurations
the average number of iterations lies below 20. For the Erdős–Rényi graphs we obtain an
average of 196.4 iterations and for Chung–Lu graphs it goes up to 591.4 for one configuration.
However, these average values over five generated instances have to be taken with a grain of
salt as there is a rather high variance, e.g., the number of iterations for the five Chung–Lu
graphs with power-law exponent 25 ranges from 82 up to 312.

For the real-world networks there is no clear trend depending on locality or heterogeneity.
In general, the number of iterations is rather low except for some outliers. While the strongest
outlier requires almost 20 k iterations, 98.6 % of the networks have at most 100 iterations.

Discussion. The worst-case number of iterations of the Louvain algorithm can be upper
bounded by O(m2) due to the fact that the modularity is bounded and each vertex move
improves it by at least Ω(1/m2). Moreover, there exists a graph family that requires Ω(n)
iterations for the first local search [25, Proposition 3.1].

Our experiments indicate that locality or heterogeneity are not the properties that
discriminate between easy and hard instances. For generated instances, there is the trend
that low locality increases the number of iterations, which does not transfer to the real-world
networks (or is at least less clearly). However, the general picture that most instances require
few iterations while there are some outliers coincides for generated and real-world networks.

ESA 2022



21:10 On the External Validity of Average-Case Analyses of Graph Algorithms

Figure 6 The number of maximal cliques relative to m depending on the heterogeneity and
locality, restricted to networks where this value is at most 1 (93 % of the networks).

4.5 Maximal Cliques

A clique is a subset of vertices C ⊆ V such that C induces a complete graph, i.e., any pair of
vertices in C is connected. A clique is maximal, if it is not contained in any other clique. In
the following, we are never interested in non-maximal cliques. Thus, whenever we use the
term clique, it implicitly refers to a maximal clique. To enumerate all cliques, we used the
algorithm by Eppstein, Löffler, and Strash [20], using their implementation [21, 22].

As the cliques of a network can be enumerated in polynomial time per clique [30], the
number of maximal cliques is a good indicator for the hardness of an instance. For all
generated and most real-world networks, the number of cliques does not exceed the number
of edges m. Out of the 2751 real-world networks, 2556 (93 %) have at most m and 193 have
more than m cliques. For the remaining 2 networks, the timeout of 30 min was exceeded.
Figure 6 shows the number of cliques relative to m for all networks with at most m cliques.

Impact of Locality and Heterogeneity. One can see that the networks (generated and
real-world) with low locality have roughly m cliques, while the number of cliques decreases
for increasing locality. Moreover, among networks with locality, there is the slight trend that
networks with higher heterogeneity have more cliques.

It is not surprising that networks with low locality have roughly m cliques, as graphs
without triangles have exactly m cliques. For graphs with higher locality, there are two
effects counteracting each other. On the one hand, multiple edges combine into larger cliques,
which decreases the number of cliques. On the other hand, each edge can be contained in
multiple cliques, which increases the number of cliques. Our experiments show that the
former effect usually supersedes the latter, i.e., the size of the cliques increases more than
the number of cliques each edge is contained in.

Discussion. There are many results on enumerating cliques and on the complementary
problem of enumerating independent sets. Here, we focus on discussing two results that
are closely related. Eppstein, Löffler and Strash [21] give an algorithm for enumerating all
cliques that runs in O(dn3d/3) time, where d is the degeneracy (a measure for sparsity). We
use this algorithm for our experiments as it performs well in practice.
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Fox, Roughgarden, Seshadhri, Wei, and Wein [24] introduced the closure as a measure
that captures the tendency that common neighbors facilitate direct connections, i.e., as
a measure for locality. Additionally, they introduced the weak closure as a more robust
measure. Fox et al. show that weakly c-closed graphs have at most 3(c−1)/3n2 cliques. For
c-closed graphs they give the additional upper bound of 4(c+4)(c−1)/2n2−21−c .

Qualitatively, at a first glance, these theoretical results seem to match our observations
on real-world networks: sparse graphs contain few cliques and there are fewer cliques for
more local networks (small c). However, a closer look reveals two caveats. First, both upper
bounds are exponential in the parameter while 93 % of real-world networks have at most m

cliques. Second, the (weak) closure does not actually correlate with the number of cliques or
the locality. Weak closure and degeneracy only seem to be a good measure for hardness on
the remaining 7 % of the instances. Thus, on the large majority of instances, the generative
models yield a much better fit.

4.6 Chromatic Number
We study the effectiveness of a reduction rule for computing the chromatic number based on
the size k of the maximum clique [31]. It reduces a graph to its k-core and is thus closely
related to the degeneracy of the network.

Whether the reduction rule performs well comes, at its core, down to how the clique
size k compares to the degeneracy d. We observe that both, k and d, mainly depend on
locality and heterogeneity and behave very similar on real-world and generated networks.
However, k and d have the same dependence on locality and heterogeneity, which means that
(at least for some regimes) other properties have to tip the scale. We in particular observe a
dependence on the average degree for the generated networks; the higher the average degree,
the worse the reduction rule performs. More details on this can be found in the full version
of the paper [4].

5 Discussion and Conclusion

Networks from different domains have varying structural properties. Thus, trying to find
probability distributions that match or closely approximate those of real-world networks
seems like a hopeless endeavor. Moreover, even if we knew such a probability distribution, it
would most likely be highly domain specific and too complicated for theoretical analysis.

Our View on Average-Case Analysis. A more suitable approach to average case analysis
is the use of models that assume few specific structural properties and are as unbiased as
possible beyond that. If the chosen properties are the dominant factors for the algorithm’s
performance, we obtain external validity, i.e., the results translate to real-world instances
even though they do not actually follow the assumed probability distributions. There are
two levels of external validity.

The models capture the performance-relevant properties sufficiently well that algorithms
perform similar on generated and real-world networks.
The models are too much of an idealization for this direct translation to practical
performance. However, varying a certain structural property in this idealized world has
the same qualitative effect on performance as it has on real-world networks.

Though an average case analysis cannot yield strong performance guarantees, with the above
notions of external validity, it can give insights into what properties are crucial for performance
(first level) and how the performance depends on a property (second level). Moreover, even a
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lack of external validity can yield valuable insights in the following sense. Assume we have
the hypothesis that property X is the crucial factor for algorithmic performance and thus we
study a model with property X as null model. Then, a lack of external validity lets us refute
the hypothesis as there clearly has to be a different property impacting the performance.

Impact of Locality and Heterogeneity. Non-surprisingly, the performance on real-world
networks depending on locality and heterogeneity is more noisy compared to the generated
networks, as real-world networks are diverse and vary in more than just these two properties.
That being said, the observations on the models and in practice coincide almost perfectly for
the bidirectional search and the enumeration of maximal cliques. For the maximal cliques,
the match even includes constant factors, which is particularly surprising, as these numbers
are below m while the worst case is exponential.

For the vertex cover domination rule as well as the iFUB algorithm, we obtain a slightly
noisier picture. However, the overall trend matches well, which indicates that locality and
heterogeneity are crucial factors for the performance, but not the only ones. For the iFUB
algorithm, we already identified the existence of central vertices as additional factor (difference
between torus and square as underlying geometry).

For the chromatic number, we observe that heterogeneity and locality are important but
not the only factors impacting performance. Nonetheless, the performance is similar on the
models compared to real-world networks.

For the Louvain clustering algorithm, the models and real-world networks coincide insofar,
that the number of iterations is low, with few exceptions. This indicates that locality and
heterogeneity are not the core properties for differentiating between hard and easy instances.

Conclusions. Locality and heterogeneity have significant impact on the performance of
many algorithms. We believe that it is useful for the design of efficient algorithms to have
these two dimensions of instance variability in mind. Moreover, GIRGs [11] with the available
efficient generator [8] provide an abundance of benchmark instances on networks with varying
locality and heterogeneity. Finally, we believe that average case analyses on the four extreme
cases can help to theoretically underpin practical run times. The four extreme cases can, e.g.,
be modeled using geometric random graphs for local plus homogeneous, hyperbolic random
graphs8 for local plus heterogeneous, Erdős–Rényi graphs for non-local plus homogeneous,
and Chung–Lu graphs for non-local plus heterogeneous networks.
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1 Introduction

The Traveling Salesperson Problem is among the most popular and most intensively
studied combinatorial optimization problems in graph theory1. From the practical point of
view, the problem was already studied in the 1950s; see, e.g., [15]. We define the problem
formally as follows.

Input: An undirected graph G = (V, E), edge weights ω : E → N, and a budget b ∈ N.
Question: Is there a closed walk in G of total weight at most b that traverses each vertex of

G at least once?

Traveling Salesperson Problem (TSP)

TSP is known to be NP-hard [24]. It is worth mentioning that the input to TSP is usually
a complete graph and it is required that each vertex is visited exactly once (single-visit
version). In this paper, we aim to study the impact of the structure of the input graph on the
complexity of finding a solution to TSP. Towards this, we employ parameterized analysis [16]
and therefore we also consider the decision version of TSP. Many variants of the problem
have been studied in detail [29]. Our formulation is also known as Graphical TSP [14].

In this paper, we further study two natural generalizations of TSP– Subset TSP and
Waypoint Routing Problem. In Subset TSP (subTSP) the objective is to find a closed
walk required to traverse only a given subset W of vertices (referred to as waypoints) instead
of the whole vertex set as is in TSP. An instance of TSP can be interpreted as an instance
of subTSP by letting W = V (G). In Waypoint Routing Problem (WRP) the edges of
the input graph have capacities (given by a function κ : E(G) → N) and the objective is to
find a closed walk traversing a given subset of vertices respecting the edge capacities, i.e.,
there is an upper limit on the number of times each edge can be traversed in a solution. As
we show later, an instance of subTSP can be interpreted as an instance of WRP by letting
κ(e) = 2 for every e ∈ E(G). Note that both subTSP and WRP are NP-complete.

Related Work. TSP (and its variants) were extensively studied from the viewpoint of
approximation algorithms. The single-visit version of TSP in general cannot be approximated,
unless P = NP [51]. For the metric single-visit version of the problem Christofides [13] provided
a 3

2 -approximation, while it is known that unless P = NP, there is no 117
116 -approximation

algorithm [12]. This is so far the best known approximation algorithm for the general case,
despite a considerable effort, e.g., [54, 26, 10, 23, 8, 30, 37].

The problem remains APX-hard even in the case of weights 1 and 2, however, a 7
6 -

approximation algorithm is known for this special case [50]. A PTAS is known for the special
case of Euclidean [4, 47] and planar [27, 3, 38] TSP. Also, the case of graph metrics received
significant attention. Gharan et al. [25] found a 3

2 − ε0 approximation for this variant.
Mömke and Svensson [48] then obtained a combinatorial algorithm for graphic TSP with
an approximation factor of 1.461. This was later improved by Mucha [49] to 13

9 and then
by Sebö and Vygen [53] to 1.4. See, e.g., the monograph of Applegate et al. [2] for further
information.

A popular practical approach to the single-visit version of TSP is to gradually improve
some given solution using local improvements – the so-called q-OPT moves (see, e.g., [35, 36]).
Marx [45] proved that TSP is W[1]-hard w.r.t. q. Later, Bonnet et al. [7] studied the q-OPT

1 TSP Homepage: http://www.math.uwaterloo.ca/tsp/index.html.

http://www.math.uwaterloo.ca/tsp/index.html
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technique on bounded degree graphs. They also investigated the complexity in the case
where q is a fixed constant. The first significant theoretical improvement in the general case
was by de Berg et al. [6] (announced at ICALP ’16) who gave an O(n⌊2q/3⌋+1) time dynamic
programming based algorithm. Furthermore, they showed that improving upon the O(n3)
time for the case of 3-OPT would yield a breakthrough result by a connection with the
All Pairs Shortest Paths (APSP) problem (see, e.g., [11]). Lancia and Dalpasso [40]
observed that the DP-based approach is indeed slow in practice and implemented a practical
fast algorithm tailored for 4-OPT. Later, Cygan et al. [17] improved the result of de Berg et
al. [6] by presenting an O(n(1/4+εq)q) time algorithm. Moreover, they showed a connection
of 4-OPT to APSP. Guo et al. [28] considered other suitable measures (parameters) for local
search (e.g., r-swap or r-edit) and provided a W[1]-hardness result in general graphs (for
both parameters). Furthermore, they gave an FPT algorithm for planar graphs and showed
that the existence of polynomial kernels is unlikely even in this case.

Subset TSP can be solved in time 2ℓ · nO(1) by first computing the distance between
every pair of waypoints, and then solving the resulting ℓ-waypoint instance using the standard
Bellman-Held-Karp dynamic programming algorithm [5, 31]. Klein and Marx [39] showed
that if G is an undirected planar graph with polynomially bounded edge weights, then the
problem can be solved significantly faster, in 2O(

√
ℓ log ℓ) · nO(1) time. It is also known that

Subset TSP can be solved in 2O(
√

ℓ log ℓ) ·nO(1) on edge-weighted directed planar graphs [46].
Amiri et al. [1] initiated the study of the variant of WRP discussed in this paper. They

showed that the problem admits an XP algorithm w.r.t. the treewidth of the input graph.
They also gave a randomized algorithm for the problem with running time 2ℓ · nO(1), where
ℓ is the number of waypoints; the algorithm can be derandomized if ℓ = O((log log n)1/10).
Schierreich and Suchý [52] improved the former algorithm by giving a deterministic algorithm
with running time 2O(tw) · n, which is tight under ETH [33]. Note that Hamiltonian Path
and therefore TSP is W[1]-hard w.r.t. the cliquewidth of the input graph [21].

It is somewhat surprising that, despite its popularity in theoretical computer science,
the TSP problem did not receive much attention from the perspective of data reduction
(kernelization). A notable exception is the work of Mannens et al. [43, 44] who studied Many
Visits TSP and gave a polynomial kernel when the problem is parameterized by the vertex
cover number of the input graph. In this work, we significantly expand the kernelization
approach to TSP and its variants.

Structural parameters within the class of bounded treewidth. Even though all problems
in FPT admit a kernel, not all of them admit a polynomial-sized kernel. It is not hard to see
that TSP is AND-compositional and therefore we can (conditionally) exclude the existence
of a polynomial kernel w.r.t. treewidth; more precisely, we show the following.

▶ Lemma 1 (⋆). There is no polynomial kernel for unweighted Traveling Salesperson
Problem with respect to either the fractioning number or the combined parameter treewidth
and maximum degree, unless the polynomial hierarchy collapses.

It follows that in order to obtain positive results we should investigate parameters within
the class of bounded treewidth. Note that, roughly speaking, fractioning number is a
modulator to parameter-sized components. A modulator is a set of vertices M such that when
we remove M from a graph G the components of G \ M fall into a specific (preferably simple)
graph class (see Section 2 for formal definitions). Since almost all graph classes are closed
under disjoint union, it is also popular to speak of addition of k vertices to a graph class (i.e.,
for a graph class G we write G + kv if we are “adding” k vertices). Thus, it naturally models

ESA 2022
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Vertex Cover Number
T3 T4 T4

Mod. to Const. Paths
T5 T5 ?

Feedback Edge Set No.
T7 T7 T7

Mod. to Const. Comps.
T6 ? ?

Feedback Vertex Set No.
? ? ?

Max. Degree + Treewidth
L1 L1 L1

Fractioning Number
L1 L1 L1

Mod. to Disjoint Cycles
? T2 T2

Treewidth
der der der

Figure 1 Overview of our results. Each node names a graph parameter and at its bottom it
contains boxes representing (from left to right) TSP, subTSP, and WRP. If a node A is connected
to a lower node B with an edge, then B(G) = O(A(G)) for respective parameters. Modulator,
Constant, and Components are shortened. Each box contains either a reference to the theorem which
proves existence or non-existence of polynomial kernel (e.g. T2), or it contains ? if the problem is
open, or it contains der if the result for such setting is derived from another result.

the situation when the input is close to a class of graphs where we can solve the problem
efficiently (also called “Distance to G”). Modulator size is a popular structural parameter (see,
e.g., [9, 41, 42]). Thus, the above result motivates us to study modulator-based parameters
and their effect on kernelization of TSP and its variants. Indeed, many problems admit
much more efficient algorithms w.r.t. vertex cover than for treewidth parameterization; see,
e.g., [34, 19, 20]. Therefore, this is exactly the point where the positive part of our journey
begins.

Before we do so, we discuss one more negative result. For subTSP we can, under a
standard complexity-theoretic assumption, exclude the existence of a polynomial (Turing)
kernel for the parameter size of a modulator to graphs of treewidth two. More specifically,
we show the following.

▶ Theorem 2 (⋆). Unweighted subTSP with respect to the minimum k′ such that there is
a size k′ modulator to cycles of size at most k′ and there are at most k′ non-terminals is
WK[1]-hard.

Therefore, subTSP parameterized by the size of a modulator to (disjoint) cycles does not
admit a polynomial (Turing) kernel, unless all problems in WK[1] admit a polynomial Turing
kernel. Moreover, it does not admit (classical) polynomial kernel, unless the polynomial
hierarchy collapses. For more details on WK[1]-completeness, see [32].

Our Contribution. On a positive note, we begin with a polynomial kernel for TSP and
WRP w.r.t. vertex cover number to demonstrate the general techniques we employ in this
paper. We study the properties of a nice solution to the instance with respect to a particular
structural parameter and its interaction with the modulator. We begin the study with TSP
as a warm-up. In this case, we show that if there are “many” vertices in G \ M , where M is
the modulator (vertex cover), then all but few of them behave in a “canonical way”. Based
on the properties and cost of this canonical traversal, we identify which of these vertices can
be safely discarded from the instance. In particular, we show the following.
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▶ Theorem 3 (⋆). Traveling Salesperson Problem admits a kernel with O(k3) vertices,
O(k4) edges, and with a total bit-size O(k16), where k is the vertex cover number of G.

In the case of subTSP or WRP, we cannot be sure that a solution visits all vertices in
the modulator. Quite naturally, this results in the second kind of rule where we see that if
there are “many” vertices attached to the modulator in the same way, we can mark some
vertices in the modulator as terminals (there is a solution visiting them).

▶ Theorem 4 (⋆). Waypoint Routing Problem admits a kernel with O(k8) vertices,
O(k9) edges, and with a total bit-size O(k36), where k is the vertex cover number of G.

Using similar, yet more involved results, we are able to find a polynomial kernel for
subTSP for a modulator to constant-sized paths and for TSP for a modulator to constant-
sized components.

One ingredient for our approach is that we may assume that all vertices outside the
modulator are terminals, and therefore every solution visits them. It is not clear how to use
our approach in the presence of capacities already in the case of modulator to paths, since
the previous observation does not hold already in this simple case. Indeed, we show this by
contracting some of the edges, which in the presence of capacities might have a side effect on
the set of possible traversals of the component. The other and more important ingredient is
the so-called blending of solutions (see Lemma 30).

▶ Theorem 5 (⋆). Let r be a fixed constant. Subset TSP admits a kernel of size kO(r),
where k is the size of a modulator to paths of size at most r.

When we allow general constant-sized components outside the modulator, we have not
yet succeeded in dealing with the highly connected non-terminals in the modulator. At this
point, it is not clear whether many components with the same combination of canonical
transversal and attachment to the modulator set ensure that we can safely mark a vertex in
the modulator as a terminal.

▶ Theorem 6 (⋆). Let r be a fixed constant. Traveling Salesperson Problem admits a
kernel of size kO(r), where k is the size of a modulator to components of size at most r.

We conclude our algorithmic study by providing a rather simple polynomial kernel for
WRP parametrized by the feedback edge set number. On the one hand, this result is an
application of rather straightforward local reduction rules. On the other hand, these rules
are heavily based on the use of edge capacities. It should be pointed out that we get a
polynomial kernel for TSP as it has a polynomial compression to WRP, however, it can be
shown that “local reduction rules” do not exist in the case of TSP.

▶ Theorem 7 (⋆). Waypoint Routing Problem admits a kernel with O(k) vertices and
edges and bit size O(k4), where k is the feedback edge set number of G.

For an overview of our results, please, refer to Figure 1.

Organization of the paper. We summarize the notation and technical results we rely
on in Section 2. Section 3 contains a few useful technical lemmas and simple reduction
rules. In Section 4, we begin with the core concepts applied in the case of TSP and vertex
cover number. The similar approach is then applied in Section 5 to more general types of
modulators; this is the most technical part of this manuscript. Finally, in Section 6 we
conclude the results and discuss future research directions.
Statements where proofs or details are omitted due to space constraints are marked with ⋆.
All missing proofs and details are available in the full version of the paper.
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2 Preliminaries

We follow the basic notation of graph theory by Diestel [18]. In parameterized complexity
theory, we follow the monograph of Cygan et al. [16].

A walk in a graph G is a non-empty alternating sequence of vertices and edges S =
v1, e1, . . . , eℓ−1, vℓ such that vi ∈ V (G), ei ∈ E(G), and ei = {vi, vi+1}, ∀i ∈ {1, . . . , ℓ − 1}.
It is closed if vℓ = v1. The weight of walk S is ω(S) =

∑ℓ−1
i=1 ω(ei). If all vertices in a walk

are distinct, it is called a path.
A solution to our problems is a closed walk S visiting every vertex in W of total weight

at most b (traversing each edge e at most κ(e) times). The least cost such walk is called
an optimal solution. Given such a walk, we can construct the corresponding multigraph GS

which is a multigraph with vertex set being the set of vertices visited by S and each edge
occuring as many times as traversed by S. We naturally extend ω to this multigraph, which
yeilds ω(GS) =

∑
e∈E(GS) ω(e) = ω(S). The degree of a vertex in a multigraph is the number

of the edges incident with it. Conversely, if a multigraph GS is Eulerian (connected with all
degrees even), then it admits a walk visiting every vertex of the graph and traversing each
edge exactly as many times as occuring in GS .

Structural Graph Parameters. Let G = (V, E) be a graph. A set of edges F ⊆ E is a
feedback edge set of the graph G if G \ F is an acyclic graph. Feedback edge set number fes(G)
of a graph G is the size of a smallest feedback edge set F of G. A set of vertices C ⊆ V is
called vertex cover of the graph G if it holds that ∀e ∈ E we have e ∩ C ̸= ∅. The vertex
cover number vc(G) of a graph G is the least size of a vertex cover of G.

▶ Definition 8. Let G be a graph family, let G be a graph, and M ⊆ V (G). We say that M

is a modulator of the graph G to the class G if each connected component of G \ M is in G.
The distance of G to G, denoted modul(G, G), is the minimum size of a modulator of G to G.

Let r be a fixed constant. Let Grc be the class of graphs with every connected component
having at most r vertices. The distance of G to r-components is modul(G, Grc). Similarly, if
Grp is a class of graphs where every connected component is a path with at most r vertices,
then the distance of G to r-paths is modul(G, Grp).

A set of vertices Cr ⊆ V is called r-fractioning set of the graph G if |Cr| ≤ r and every
connected component of G \ Cr has at most r vertices. The fractioning number fn(G) is a
minimum r ∈ N such that there is an r-fractioning set Cr in graph G.

3 The Toolbox

In this section, we give formal proofs to a few technical statements we use throughout the rest
of the paper. This yields a useful set of assumptions that allow us to present less technical
proofs in the subsequent sections. We begin with a technical lemma we were not able to find
in literature.

▶ Lemma 9 (⋆). Let G be a graph with more than 2|V (G)| − 2 edges. Then there is a cycle
C in G such that the graph G′ = G \ E(C) has the same connected components as G.

When proving the safeness of our reduction rules, it is easier to work with a solution that
does not use many edges and traverses each edge at most twice. We show that we can always
assume to work with such a solution.
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▶ Definition 10 (Nice Solution). Let (G, W, ω, κ, b) be an instance of TSP, Subset TSP,
or WRP. We call a solution nice if it uses every edge at most twice and contains at most
2|V | edges (edge traversals) in total.

Indeed, we may always assume that we work with a nice solution.

▶ Lemma 11 (⋆). Let (G, W, ω, κ, b) be an instance of TSP, Subset TSP, or WRP. There
is a nice optimal solution.

We continue with a remark about our instances. It is important to note that item (b) is
applicable in general, however, one should be careful when doing so, since it increases the
weights in the instance.
▶ Remark 12 (⋆). Let (G, W, ω, κ, b) be an instance of TSP, Subset TSP, or WRP. We
assume that a) G is a connected graph and b) ω(e) > 0 for all e ∈ E(G).

We apply the following lemma to reduce the weights of the kernelized instances. It follows
in a rather straightforward way from results of Frank and Tardos [22].

▶ Lemma 13 (⋆). There is a polynomial time algorithm, which, given an instance
(G, W, ω, κ, b) of TSP, subTSP, or WRP with at most d edges, produces ω′ and b ′ such
that the instances (G, W, ω, κ, b) and (G, W, ω′, κ, b ′) are equivalent and (G, W, ω′, κ, b ′) is of
total bit-size O(d4).

Finally, we present two simple reduction rules; we always assume that Reduction Rule 1
is not applicable.

▶ Reduction Rule 1 (⋆). Let an instance of TSP, subTSP, or WRP be given. If b < 0,
then answer no. Otherwise, if |W | ≤ 1, then answer yes.

▶ Reduction Rule 2 (⋆). Let I be an instance of Subset TSP and v /∈ W . For each pair
of vertices u, w ∈ N(v) we introduce a new edge {u, w} into the graph with ω({u, w}) =
ω({u, v}) + ω({v, w}) (if this creates parallel edges, then we only keep the one with the lower
weight). Finally, we remove v together with all its incident edges.

While Reduction Rule 2 is easy to apply, its application may destroy the structure of
the input graph. Therefore, we only apply it to some specific vertices as explained in the
subsequent sections.

4 Polynomial Kernel with Respect to Vertex Cover Number for TSP

In this (warm-up) section, we argue that TSP admits a polynomial kernel with respect to
the vertex cover number. That is, we are going to present the most simple use-case of our
reduction rules and therefore we can focus on the introduction of the core concept – the
natural behavior. We begin with the definition of a (natural) behavior, which is a formal
description of how a vertex “can behave” in a solution. Let M be a vertex cover of G of size
k = vc(G) and let R = V \ M .

▶ Definition 14. For a vertex r ∈ R a behavior of r is a multiset F ⊆ {{r, m} | {r, m} ∈
E, m ∈ M} containing exactly two edges (edge occurrences). We let B(r) be the set of all
behaviors of r. We naturally extend the weight function such that for a behavior F ∈ B(r)
we set its weight to ω(F ) =

∑
e∈F ω(e). For a vertex r ∈ R its natural behavior bnat(r) is a

fixed minimizer of min {ω(F ) | F ∈ B(r)} that takes two copies of a minimum weight edge
incident with r.
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The following lemma shows that in an optimal solution, most of the vertices of R actually
use some behavior.

▶ Lemma 15 (⋆). Let S be an optimal solution. Then the number of vertices r ∈ R that are
traversed more than once by S is at most k.

Now, that we know what a behavior is, we can observe that each vertex can have one of
two roles in the sought solution – they are either “just attached” using the natural behavior
or they provide some connectivity between (two) vertices in the vertex cover. The role of a
vertex is formalized as follows.

▶ Definition 16. Let r ∈ R and F ∈ B(r) be a behavior of r. We say that F touches a
vertex m of M if m has nonzero degree in ({r} ∪ M, F ). We call the set imp(F ) of touched
vertices the impact of behavior F .

Let Ir = {imp(F ) | F ∈ B(r)} be the set of all possible impacts of behaviors of r. Let
I =

⋃
r∈R Ir.

Note that we have 1 ≤ | imp(F )| ≤ 2 for each behavior F . Therefore, we get |I| ≤(
k
2
)

+ k ≤ k2. Note also that for each r ∈ R we have | imp(bnat(r))| = 1.
Now, we show that, in large instances, most of the vertices of R fall back to their natural

behavior in an optimal solution. Towards this, we take a solution that differs from this in
the fewest possible vertices r ∈ R. Then, we observe that if r is not in the natural behavior,
then it is attached to (at least) two vertices in M . If there are many such “extra” edges
in a solution, we can apply Lemma 9 – this would yield a contradiction. Thus, we get the
following.

▶ Lemma 17 (⋆). There is an optimal solution S such that for all but at most 3k vertices
r ∈ R the solution contains exactly the edges of bnat(r) among the edges incident with r.

Now, we know that there are only a few vertices that behave unnaturally in an optimal
solution, we would like to keep these in the kernel. We arrive at the question of which
vertices to keep. To resolve this question, we observe that if a vertex deviates from its natural
behavior, we (possibly) have to pay for this some extra price (which comes in the exchange
of the provided connectivity). Thus, we would like to keep sufficiently many vertices for
which this deviation is cheap. To this end, we first formalize the price.

▶ Definition 18. For r ∈ R and an impact I ∈ I let the price P (r, I) of change from bnat(r)
to I at r be ω(FI) − ω(bnat(r)) if there is a behavior FI ∈ B(r) with imp(FI) = I and we let
it be ∞ otherwise.

Note that if there is a behavior FI ∈ B(r) with imp(FI) = I, then it is unique.
Now, based on this, we can provide the following reduction rule we employ.

▶ Reduction Rule 3. For each I ∈ I if there are at most 3k vertices r ∈ R with finite P (r, I),
then mark all of them. Otherwise mark 3k vertices r ∈ R with the least P (r, I).

For each unmarked r ∈ R, remove r and decrease b by ω(bnat(r)).

Safeness. Let (G, ω, b) be the original instance and (Ĝ, ω̂, b̂) be the new instance resulting
from the application of the rule. Note that ω̂ is just the restriction of ω to Ĝ which is
a subgraph of G. Let R− be the set of vertices of R removed by the rule. Note that
b̂ = b −

∑
r∈R− ω(bnat(r)). We first show that if the new instance is a yes-instance, then so

is the original one.
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Let Ŝ be a solution walk in the new instance and let ĜS be the corresponding multigraph
formed by the edges of Ŝ. Note that the total weight of ĜS is at most b̂. We construct a
multigraph GS by adding to ĜS for each r ∈ R− the vertex r together with the edge set
bnat(r). Since ĜS is connected and each bnat(r) is incident with a vertex of M ⊆ V (ĜS), GS

is also connected. As each addition increases the degree of the involved vertex by exactly 2
and the degree of each vertex is even in ĜS , it follows that the degree of each vertex is even
in GS . Hence GS is Eulerian and contains all vertices of G. Since the weight of the added
edges is exactly

∑
r∈R− ω(bnat(r)) it follows that (G, ω, b) is a yes-instance.

Now suppose that the original instance (G, ω, b) is a yes-instance.

▷ Claim 19 (⋆). There is an optimal solution S for (G, ω, b) such that each r ∈ R− is
incident exactly to the edges of bnat(r) in S.

Let S be a solution for (G, ω, b) as in the claim and GS the corresponding multigraph.
Let ĜS be obtained from GS by removing the edges of bnat(r) and vertex r for each r ∈ R−.
This reduces the total weight by exactly

∑
r∈R− ω(bnat(r)), hence, as GS is of weight at most

b, ĜS is of weight at most b̂. Furthermore, as each r ∈ R− has only one neighbor in GS , ĜS

is connected. Moreover, each removal decreases the degree of exactly one remaining vertex
by exactly 2, hence all degrees in ĜS are even. Thus ĜS is Eulerian, yielding a solution Ŝ

for (Ĝ, ŵ, b̂). This completes the proof. ◀

Since |I| ≤ k2, the following observation is immediate.

▶ Observation 20 (⋆). After Reduction Rule 3 has been applied, the number of vertices in R

is bounded by 3k3 and, hence, the total number of edges is O(k4).

We conclude this section in the following theorem (which follows using Lemma 13).

▶ Theorem 3 (⋆). Traveling Salesperson Problem admits a kernel with O(k3) vertices,
O(k4) edges, and with a total bit-size O(k16), where k is the vertex cover number of G.

5 Polynomial Kernels with Respect to Modulator Size

In this section, we move to more general type of modulators. Recall that if M is a vertex
cover, the connected components of G \ M are single vertices. We are going to relax this
a bit – we shall investigate general components of constant size and paths of constant size.
For the first, more general one, we obtain a polynomial kernel for TSP. For the second, we
obtain a polynomial kernel even for subTSP.

5.1 TSP and the Distance to Constant Size Components
For the rest of the section, we assume that we are given an undirected graph G = (V, E), k is
its distance to r-components, M the corresponding modulator, EM =

(
M
2

)
, and R = G \ M .

Let M = {m1, . . . , mk} be a fixed order of the vertices of the modulator.
We begin with the definition of a behavior.

▶ Definition 21. For a connected component C of R we consider the graph GC = G[C ∪ M ]\
EM . A behavior of C is a multiset F ⊆ E[GC ] of edges of GC (each can be used at most
twice) such that in the multigraph (C ∪ M, F ), (i) each vertex v ∈ C has nonzero even degree
and (ii) each connected component contains a vertex of M , and the set F contains at most
2r edges incident with the vertices of M . We let B(C) be the set of all behaviors of C. For a
component C its natural behavior bnat(C) is a fixed minimizer of min {ω(F ) | F ∈ B(C)}.
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Now, it is not hard to see, that a solution might “visit” a component of G \ M more than
once. With this, we arrive at the key notion we introduce in this section – the segments. It
is not hard to see that a solution may even revisit some terminals in a component; we shall
later prove that this is the case for a few exceptional components only (see Lemma 25).

▶ Definition 22. Let C be a connected component of R and S be a walk starting and ending in
v0 ∈ M forming a nice optimal solution to the instance. We split S into segments S1, . . . , Sq

such that each segment starts and ends in a vertex of M , whereas the inner vertices of each
segment are from R. Let F(S, C) be obtained from the empty set by the following process: For
each i, add Si into F(S, C) if and only if there is a vertex c ∈ C visited by Si and not visited
by any of the previous segments. Let F (S, C) be the union of edges of Si, Si ∈ F(S, C),
including multiplicities.

We observe that the multiset F (S, C) is a behavior of C, i.e, F (S, C) ∈ B(C).
Again, for a connected component of G \ M , we want to introduce the notion of touched

vertices and the (connectivity) impact of a behavior of the component. For a better under-
standing of Definition 23, we refer the reader to an example in Figure 2.

▶ Definition 23. Let C be a connected component of R and F ∈ B(C) be a behavior of C.
We say that F touches a vertex m of M if m has nonzero degree in (C ∪ M, F ). Let T (F ) be
the set of touched vertices.

Consider the multiset D(F ) of edges obtained from the empty set as follows. For each
connected component H of (C ∪ M, F ) containing at least two vertices of M , let mi be the
vertex with the least index in M ∩ V (H). For each mj in (M ∩ V (H)) \ {mi} add to D(F ) a
single edge {mi, mj} if mj is incident with an odd number of edges of F and a double edge
{mi, mj} if mj is incident with an even number of edges of F .

We call the pair imp(F ) = (T (F ), D(F )) the impact of behavior F .
Let IC = {imp(F ) | F ∈ B(C)} be the set of all possible impacts of behaviors of C.
Let I =

⋃
C connected component of R IC .

From the Handshaking Lemma we get the following observation.

▶ Observation 24. Let mi be as in Definition 23. Then mi is incident with an even number
of edges of D(F ) if and only if it is incident with an even number of edges of F .

It is not hard to see that |I| = kO(r).
Now, we want to give some properties that an optimal solution should have. Namely,

we want to see that most of the connected components of G \ M fallback to their natural
behavior. Towards this, we first prove that there are only a few segments that are not part
of a behavior of any component; recall that if the solution “revisited” some terminals in the
connected component, this segment might not be part of any behavior.

▶ Lemma 25 (⋆). There is an optimal solution S such that there are at most 2|M | segments
of S that are not part of any F(S, C), and, furthermore, for all but at most 2|I|2 + 2|M |
components we have F (S, C) = bnat(C) and F (S, C) contains all edges of S incident with C.

Next, we want to introduce the notion of price of a transition between two impacts of a
connected component.

▶ Definition 26. For a connected component C of R and an impact I ∈ I let B(C, I) be the
set of behaviors F ∈ B(C) satisfying imp(F ) = I.

For a connected component C of R and a pair I, I ′ ∈ I let the price P (C, I, I ′) of change
from I to I ′ at C be min{ω(F ) | F ∈ B(C, I ′)} − ω(bnat(C)) if B(C, I ′) is non-empty and
I = imp(bnat(C)) and we let it be ∞ if some of the conditions is not met.
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C

m1 m2 m3 m4 m5

. . . M

C ′ C ′′

Figure 2 Illustration of Definition 23. A behavior F consists of red and green edges, and vertices
m2, . . . , m5 made the set T (F ) of touched vertices. We built the multiset D(F ) for behavior F as
follows. We start with an empty set. For the red connected component, the vertex mi ∈ M with
least index is m2. Thus, for m3 we add to D(F ) double edge {m2, m3}, because the vertex m3 is
incident with even number of edges in behavior F . For the vertex m5, we add to D(F ) the edge
{m2, m5} only once, as the vertex m5 is incident with odd number of edges in F . For the green
connected component, we do not extend D(F ) since, in this connected component, there is only one
vertex from M .

Now, we are ready to introduce the reduction rule used in this section. To keep a record
of the vertices that are marked towards achieving a different goal, we mark them in different
colors. Red vertices are those that behaves unnaturally in an optimal solution and their
deviation from natural behavior is cheap. The task of the vertices marked in green is to
ensure that at least one vertex with the same impact of natural behavior remains in the
instance to provide the connectivity. Finally, there are components marked in blue. These
are supposed to cover the segments which are not part of any behavior.

▶ Reduction Rule 4 (⋆). For each pair I, I ′ ∈ I if there are at most 2|I|2 +2|M | components
C with finite P (C, I, I ′), then mark all of them in red. Otherwise mark 2|I|2 + 2|M |
components C with the least P (C, I, I ′) in red.

For each pair of vertices u, v ∈ M , if there is a component C in R such that GC contains
a u-v-path, then mark a component which contains the shortest such path in blue.

For each I ∈ I, if there are unmarked components C with imp(bnat(C)) = I, then do the
following. If the number of such components is odd, then mark one arbitrary such component
in green. If the number of such components is even, then mark two arbitrary such components
in green.

For each unmarked component C, remove C from G and reduce b by ω(bnat(C)).

To prove Theorem 6 we estimate the number of vertices and edges in the reduced instance;
Theorem 6 then follows using Lemma 13.

▶ Lemma 27 (⋆). After Reduction Rule 4 has been applied, the number of components is
bounded by 2(|I|2 + 2|M |)|I|2 +

(|M |
2

)
+ 2|I| = kO(r). Hence, the number of vertices and

edges in the reduced graph G is kO(r).

5.2 Subset TSP and the Distance to Constant Size Paths
We start by applying Reduction Rule 2 to all vertices of R. Note that after each application
of the reduction rule R remains a disjoint union of paths, because each vertex has degree at
most 2 within R. Hence, for the rest of the section we assume that V (R) ⊆ W .
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We reuse the notions of the (natural) behavior, impact, and price (Definitions 21, 23,
and 26) from the previous section.

We define piece of F ∈ B(C) as any connected component of (C ∪ M, F ) \ M to which
we add all incident edges in GS . We define legs of a piece as a subset of its edges which are
incident with vertices of M . As G \ M consists of disjoint union of paths we note that each
piece of F consists of a path on C and its legs.

▶ Lemma 28 (⋆). Given a Subset TSP instance (G, W, ω, b) let S be a nice optimal
solution to the instance. Let k be the size of the modulator to disjoint union of paths.
There are at most k components with pieces of F (S, C) with more than 2 legs in behaviors
{F (S, C) | imp(F (S, C)) = I} for any fixed I ∈ I.

It is the case that every natural behavior has only two-legged pieces.

▶ Observation 29 (⋆). For each C component of R, each piece of bnat(C) has two legs.

The most technical part of this section is the following lemma that allows us to, under
some conditions, mark a non-terminal in the modulator as a terminal. For this to work, we
want to do the following. Take many components which share the impact of the natural
behavior which touches the particular non-terminal. Since there are many, many of them
also share the impact of the actual behavior and have all pieces 2-legged. For each of them
we want to find a behavior that is half-way between the actual and the natural behavior
(using the following lemma). This behavior should touch the non-terminal and be of at most
the same weight as the actual behavior. Then we find two components for which the half-way
behavior has the same impact and change these, so that we obtain a solution that visits the
particular non-terminal.

▶ Lemma 30 (Blending lemma ⋆). Let M ′ ⊆ M (the set of actually visited vertices) and C a
component of R (therefore a path) such that T (bnat(C)) ⊈ M ′. Let v ∈ T (bnat(C)) \ M ′ and
A ∈ B(C) (the actual behavior) such that T (A) ⊆ M ′ and such that each piece has two legs.
Then there is a behavior F ∈ B(C) such that v ∈ T (F ), T (F ) ⊆ T (A) ∪ T (bnat(C)), every
connected component of (C ∪ M, F ) contains a vertex of M ′, and ω(F ) ≤ ω(A).

Now, we are ready to present the reduction rule used in this case. The colors have the
same meaning as in Reduction Rule 4. It remains to secure that every vertex in M that is
incident with some natural behavior for many vertices in R is in W . Towards this, we prove
that if a vertex m ∈ M is needed for a natural behavior for many vertices in R, it is safe to
mark m as a terminal. If this is not the case, we mark the vertices r ∈ R in yellow.

▶ Reduction Rule 5 (⋆). For each pair I, I ′ ∈ I of impacts if there are at most 2|I|2 + 2|M |
components C with finite P (C, I, I ′), then mark all of them in red. Otherwise mark 2|I|2 +
2|M | components C with the least P (C, I, I ′) in red.

For each pair of vertices u, v ∈ M , if there is a component C in R such that GC contains
a u-v-path, then mark the component which contains the shortest such path in blue.

For each I ∈ I, if there are unmarked components C with imp(bnat(C)) = I, then let
I = (T, D) and do the following. If T ⊆ W , then if the number of such components is odd,
then mark one arbitrary such component in green. If the number of such components is even,
then mark two arbitrary such components in green.

If T ⊈ W and there are at most
(
(r + 1)4r · 24r+1 + k

)
· |I| unmarked components C with

imp(bnat(C)) = I, then mark them all in yellow.
If T ⊈ W and there are more than

(
(r + 1)4r · 24r+1 + k

)
· |I| unmarked components C

with imp(bnat(C)) = I, then add T to W .
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If W was not changed, then for each unmarked component C, remove C from G and
reduce b by ω(bnat(C)).

To prove Theorem 5 we estimate the number of vertices and edges in the reduced instance;
Theorem 5 then follows using Lemma 13.

▶ Lemma 31 (⋆). After Reduction Rule 5 has been applied, the number of components is
bounded by 2(|I|2 + 2|M |)|I|2 +

(|M |
2

)
+ 2|I| +

(
(r + 1)4r · 24r+1 + k

)
· |I|2 = kO(r). Hence,

the number of vertices and edges in the reduced graph G is kO(r).

6 Conclusions

The core focus of this work is kernelization of the Traveling Salesperson Problem. To
stimulate further research in this area we would like to promote some follow up research
directions. Design of “local” rules might be impossible (as was mentioned in the case of
feedback edge set number) and therefore we occasionally have to consider generalizations of
this problem that give us more power when designing the reductions. An interesting open
problem that remains in this area is whether TSP does admit a polynomial kernel with
respect to the feedback vertex number. Towards this we have provided several steps that
suggest it should be possible to design a polynomial kernel. It should be noted that in order
to do so, one could try to “lift” our arguments to modulator to trees of any size. Note that
this is not possible for cycles.

Yet another interesting line of work is the one of q-path vertex cover (q-pvc). This is a
generalization of the vertex cover number – a graph G has q-pvc of size k if it has a modulator
M (with |M | = k) such that in G \ M there is no path of length q. It is not hard to see that
some of our arguments can be applied for components of G \ M that are stars (of arbitrary
size). Therefore, it should be possible to give a polynomial kernel for 3-pvc. Thus, the
question arises: Is there a polynomial kernel with respect to r-pvc for constant r? In this
case we are more skeptical and believe that the correct answer should be negative.
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Abstract
Motivated by practical applications, recent works have considered maximization of sums of a
submodular function g and a linear function ℓ. Almost all such works, to date, studied only the
special case of this problem in which g is also guaranteed to be monotone. Therefore, in this
paper we systematically study the simplest version of this problem in which g is allowed to be
non-monotone, namely the unconstrained variant, which we term Regularized Unconstrained
Submodular Maximization (RegularizedUSM).

Our main algorithmic result is the first non-trivial guarantee for general RegularizedUSM. For
the special case of RegularizedUSM in which the linear function ℓ is non-positive, we prove two
inapproximability results, showing that the algorithmic result implied for this case by previous works
is not far from optimal. Finally, we reanalyze the known Double Greedy algorithm to obtain improved
guarantees for the special case of RegularizedUSM in which the linear function ℓ is non-negative; and
we complement these guarantees by showing that it is not possible to obtain (1/2, 1)-approximation
for this case (despite intuitive arguments suggesting that this approximation guarantee is natural).
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1 Introduction

The field of submodular optimization has been rapidly developing over the last two decades,
partially due to new applications. Some of these applications have also motivated the
optimization of composite objective functions that can be represented as the sum of a
submodular function g and a linear function ℓ. Let us briefly discuss two such applications

The first application is optimization with a regularizer. To avoid overfitting in machine-
learning, it is customary to optimize a function of the form g − ℓ, where g is the quantity
that we would like to maximize and ℓ is a (often linear) function that favors small solutions.
This function ℓ is known as “regularizer” in the machine learning jargon, or “soft constraint”
in the operations research jargon.

The other application we discuss is optimization with a curvature. Traditionally, the
theoretical study of submodular optimization problems looks for approximation guarantees
that apply to all submodular functions, or at least all monotone submodular functions.
However, approximation guarantees of this kind are often pessimistic, and do not capture
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the practical performance of the algorithms analyzed. This has motivated studying how
the optimal approximation ratios of various submodular maximization problems depend
on various numerical function properties. Historically, the first property of this kind to
be defined was the curvature property, which was suggested by Conforti and Cornuéjol [4]
already in 1984. The curvature measures the distance of the submodular function from
being linear, and a strong connection was demonstrated by Sviridenko et al. [17] between
optimizing a submodular function with a given curvature and optimizing the sum g + ℓ of a
monotone submodular function g and a linear function ℓ.

Motivated by the above applications, Sviridenko et al. [17] also initialized the study
of the optimization of g + ℓ sums. In particular, they described algorithms with optimal
approximation guarantees for this problem when g is a non-negative monotone submodular
function, ℓ is a linear function and the optimization is subject to either a matroid or a
cardinality constraint.1 Later works obtained faster and semi-streaming algorithms for the
same setting [7, 10, 11, 14]. However, in contrast to all these (often tight) results for monotone
submodular functions g, much less is known about the case of non-monotone submodular
functions. In fact, we are only aware of a single previous work that considered g + ℓ sums
involving such functions [12].2

Given the rarity of results so far for optimizing g + ℓ with a function g that is non-
monotone, this paper is devoted to a systematic study of the simplest problem of this kind,
namely, unconstrained maximization of such sums. Formally, we study the Regularized
Unconstrained Submodular Maximization (RegularizedUSM) problem. In this problem,
we are given a non-negative submodular function g : 2N → R≥0 and a linear function
ℓ : 2N → R over the same ground set N , and the objective is to output a set T ⊆ N
maximizing the sum g(T ) + ℓ(T ). Unfortunately, it is not possible to prove standard
multiplicative approximation ratios for RegularizedUSM.3 Therefore, we follow previous
works (starting from [7, 17]), and look in this work for algorithms that output a (possibly
randomized) set T ⊆ N such that E[g(T ) + ℓ(T )] ≥ maxS⊆N [α · g(S) + β · ℓ(S)] for some
coefficients α, β ≥ 0. For convenience, we say that an algorithm having this guarantee is an
(α, β)-approximation algorithm.4

It is instructive to begin the study of RegularizedUSM with the special case in which
the objective function g is guaranteed to be monotone (in addition to being non-negative
and submodular). We refer below to this special case as “monotone RegularizedUSM”. The
work of Feldman [7] on constrained maximization of g + ℓ immediately implies (1− e−β , β)-
approximation for monotone RegularizedUSM for every β ∈ [0, 1]. Our first result provides
a matching inapproximability result.

▶ Theorem 1. For every β ≥ 0 and ε > 0, no polynomial time algorithm can guarantee
(1− e−β + ε, β)-approximation for monotone RegularizedUSM even when the linear function
ℓ is guaranteed to be non-positive.

1 Technically, Sviridenko et al. [17] proved optimal approximation guarantees only for the case in which
the coefficient β of ℓ is 1 (see details below). However, their results were extended to the general case of
β ≥ 0 by Feldman [7].

2 Very recently, another work of this kind appeared as a pre-print [16]. However, the main result of [16] is
identical to the result of [12]. In particular, it is important to note that the result of [16] applies only to
non-positive ℓ functions, like the result of [12], although this is not explicitly stated in [16].

3 Formally, this is implied, e.g., by Theorem 1. Intuitively, the hurdle is that the combination of a positive
g and a negative ℓ can lead to an optimal value that is very close to 0 compared to the values taken
by the individual functions g and ℓ. When this happens, any algorithm with a positive multiplicative
guarantee must output a solution that is close to optimal in terms of g and ℓ.

4 Some previous works compare their algorithms against α ·g(OP T )+β · ℓ(OP T ), where OP T is a feasible
set maximizing g(OP T ) + ℓ(OP T ), instead of comparing against maxS⊆N [α · g(S) + β · ℓ(S)] like we
do in this paper. This distinction is usually of little consequence.



K. Bodek and M. Feldman 23:3

We would like to draw attention to two properties of Theorem 1. First, for β = 1 the
coefficient of g in the inapproximability proved by the theorem is 1 − 1/e, matching the
optimal approximation ratio for the problem of maximizing a monotone submodular function
subject to a matroid constraint. Therefore, in a sense, adding the linear part ℓ makes the
unconstrained problem as hard as this constrained problem. Interestingly, we get a similar
result for RegularizedUSM below.

The other noteworthy property of Theorem 1 is that it applies to any β ≥ 0, while the
algorithmic result of Feldman [7] applies only to β ∈ [0, 1]. This difference between the
results exists because, when ℓ can take positive values, setting the coefficient β to be larger
than 1 might require the algorithm to output a set T ⊆ N obeying ℓ(T ) > maxS⊆N ℓ(S).
However, it turns out that, when ℓ is non-positive, the algorithmic result can be extended to
match Theorem 1 for every β ≥ 0. To understand how this can be done, we need to discuss
the previous work in a bit more detail.

Sviridenko et al. [17] designed two algorithms for maximizing g + ℓ sums, one of which
was based on the continuous greedy algorithm of Călinescu et al. [3]. It is possible to modify
this algorithm to be based instead on a related algorithm called “measured continuous
greedy” due to [8]. In general, this does not lead to any result for maximizing g + ℓ sums.
However, Lu et al. [12] recently observed that one can obtain in this way results when ℓ is
non-positive. In particular, it leads to (1 − e−β , β)-approximation for the special case of
monotone RegularizedUSM in which ℓ is non-positive for any constant β ≥ 0, which settles
the approximability of monotone RegularizedUSM.

We now get to the study of (not necessarily monotone) RegularizedUSM. The only result
that is known to date for this problem is (1/e, 1)-approximation for the special case in which
ℓ is non-positive, which was proved by Lu et al. [12] using the technique discussed above.
Our main algorithmic contribution is the first algorithm with a non-trivial approximation
guarantee for general RegularizedUSM.

▶ Theorem 2. For every constant β ∈ (0, 1], let us define α(β) = β(1−β)/(1+β). Then, for
every constant ε ∈ (0, α(β)), there exists a polynomial time (α(β)− ε, β − ε)-approximation
algorithm for RegularizedUSM.

We also study in more detail the special cases of RegularizedUSM in which ℓ is either non-
negative or non-positive. The above mentioned result of Lu et al. [12] for RegularizedUSM
with a non-positive ℓ can be extended (using the ideas of Feldman [7]) to get (βe−β , β)-
approximation for the same special case for any β ∈ [0, 1].5 It is not immediately clear,
however, how good this extended result is. For example, one can compare it with the
inapproximability result of Theorem 1 (which applies to the current setting as well), but
there is a large gap between the above algorithmic and inapproximability results when the β

coefficient of ℓ is relatively large (see Figure 1). This gap exists because Theorem 1 holds
even in the special case in which g is monotone. Therefore, we prove the following theorem,
which provides an alternative inapproximability result designed for the non-monotone case.
Since it is difficult to understand the behavior of the expression stated in Theorem 3, we
numerically draw it in Figure 1, which demonstrates that Theorem 3 closes much of the gap
left with regard to RegularizedUSM with non-positive linear function ℓ.

5 Technically, this result can be extended to any constant β ≥ 0, but this is not interesting since βe−β is
a decreasing function for β ≥ 1.
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Figure 1 Graphical presentation of the existing results for RegularizedUSM with a non-positive
linear function ℓ. The x and y axes represent the coefficients of ℓ and g, respectively. The algorithmic
guarantee drawn is the (βe−β , β)-approximation obtainable by generalizing Lu et al. [12]. The
shaded area represents the gap that still exists between the best known approximation guarantee
and inapproximability results.

▶ Theorem 3. Given a value β ≥ 0, let us define

α(β) = min
t≥1

r∈(0,1/2]

{
t + 1 +

√
(t + 1)2− 8tr

4t
− r

t + 1

[
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√
(t + 1)2− 8tr

2

)]}
.

Then, for every ε > 0, no polynomial time algorithm guarantees (α(β) + ε, β)-approximation
for RegularizedUSM even when the linear function ℓ is guaranteed to be non-positive.

It is interesting to note that, for β = 1, Theorem 3 matches the state-of-the-art inapprox-
imability result of Oveis Gharan and Vondrák [15] for maximizing a non-negative submodular
function subject to matroid constraint. Therefore, at least at the level of the known inap-
proximability results, RegularizedUSM with a non-positive ℓ is as hard as maximizing a
non-negative submodular function subject to a matroid constraint.

It remains to consider the special case of RegularizedUSM with a non-negative ℓ. Here g+ℓ

is a non-negative submodular function on its own right, and therefore, RegularizedUSM be-
comes a special case of the well-studied problem of Unconstrained Submodular Maximization
(USM). The optimal approximation ratio for USM is 1/2 due to an inapproximability result of
Feige et al. [6], and the first algorithm to obtain this approximation ratio was the “Double
Greedy” algorithm of Buchbinder et al. [2]. Specifically, Buchbinder et al. [2] described two
variants of their algorithm, a deterministic variant guaranteeing 1/3-approximation, and a
randomized variant guaranteeing 1/2-approximation. We refer below to these two variants
as DeterministicDG and RandomizedDG, respectively. Interestingly, we are able to show in
the next two theorems that the performance of DeterministicDG and RandomizedDG for
RegularizedUSM is even better than what one would expected based on the guarantees of
these algorithms for general USM.

▶ Theorem 4. When ℓ is non-negative, the algorithm DeterministicDG guarantees (α, 1−α)-
approximation for RegularizedUSM for all α ∈ [0, 1/3] at the same time (the algorithm is
oblivious to the value of α).
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▶ Theorem 5. When ℓ is non-negative, the algorithm RandomizedDG guarantees (α, 1−α/2)-
approximation for RegularizedUSM for all α ∈ [0, 1/2] at the same time (the algorithm is
oblivious to the value of α).

We conclude this section with an interesting observation. Up to this point, the most well
studied g + ℓ maximization problem was maximizing the sum of a non-negative monotone
submodular function g and a linear function ℓ subject to a matroid constraint. When ℓ is
positive, the optimal approximation guarantee for this problem is (1− 1/e, 1) [17], which is
natural since 1− 1/e is the optimal approximation ratio for maximizing such a function g

subject to a matroid constraint [13]. Thus, one might expect to get (1/2, 1)-approximation
for RegularizedUSM with a non-negative ℓ. However, both Theorems 4 and 5 fail to prove
such a guarantee, and we are able to show that this is not a coincidence.

▶ Theorem 6. Even when the linear function ℓ is guaranteed to be non-negative, no polynomial
time algorithm can guarantee (1/2, 1)-approximation for RegularizedUSM.

Paper Structure. In Section 2 we give a few formal definitions and explain the nota-
tion used throughout the paper. Then, we prove our inapproximability result for mono-
tone RegularizedUSM (Theorem 1) in Section 3. Our results for general RegularizedUSM,
RegularizedUSM with non-positive ℓ and RegularizedUSM with non-negative ℓ can be found
in Sections 4, 5 and 6, respectively.

2 Preliminaries

Set Functions and Notation. Given a set function f : 2N → R, an element u ∈ N and a set
S ⊆ N , the marginal contribution of u to S with respect to f is f(u | S) ≜ f(S∪{u})−f(S).
A set function f : 2N → R is called submodular if it satisfies the intuitive property of
diminishing returns. More formally, f is submodular if f(u | S) ≥ f(u | T ) for every two sets
S ⊆ T ⊆ N and element u ∈ N \ T . An equivalent definition of submodularity is that f is
submodular if f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for every two sets S, T ⊆ N .

The set function f is called monotone if f(S) ≤ f(T ) for every two sets S ⊆ T ⊆ N , and
it is called linear if there exist values {au ∈ R | u ∈ N} such that f(S) =

∑
u∈S au for every

set S ⊆ N .6 One can verify that any linear set function is submodular, but the reverse does
not necessarily hold. Additionally, given a set S, a set function f and an element u, we often
use S + u, S − u and f(u) as shorthands for S ∪ {u}, S \ {u} and f({u}), respectively.

Multilinear extension. It is often useful to consider continuous extensions of set functions,
and there are multiple ways in which this can be done. The proofs of our inapproximability
results employ one such extension known as the multilinear extension (due to [3]). Formally,
given a set function f : 2N → R, its multilinear extension is the function F : [0, 1]N → R
defined, for every vector x ∈ [0, 1]N , by F (x) = E[f(R(x))], where R(x) is a random subset
of N including every element u ∈ N with probability xu, independently.

One can verify that, as is suggested by its name, the multilinear extension F is a
multilinear function of the coordinates of its input vector. Furthermore, F is an extension
of the set function f in the sense that for every set S ⊆ N we have F (1S) = f(S), where
1S is the characteristic vector of the set S (i.e., a vector that has the value 1 in coordinates
corresponding to elements of S, and the value 0 in the other coordinates).

6 Linear set functions are also known as modular functions.
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23:6 Maximizing Sums of Non-Monotone Submodular and Linear Functions

Value Oracle. As is standard in the submodular optimization literature, we assume in this
paper that algorithms access their set function inputs only through value oracles. A value
oracle for a set function f is a black box that given a set S ⊆ N returns f(S). One advantage
of this convention is that it makes it possible to use information theoretic arguments to prove
unconditional inapproximability results (i.e., inapproximability results that are not based on
any complexity assumption). Nevertheless, if necessary, these inapproximability results can
usually be adapted to apply also to succinctly represented functions (instead of functions
accessed via value oracles) at the cost of introducing some complexity assumption [5].

3 Inapproximability for Monotone Functions

In this section we show an inapproximability for monotone RegularizedUSM (Theorem 1).
All our inapproximability results in this paper are proved using Theorem 7. Since the proof
of this theorem is a relatively straightforward adaptation of the symmetry gap framework of
Vondrák [18], we defer it to the full version of this paper [1].

▶ Theorem 7. Consider an instance (g, ℓ) of RegularizedUSM consisting of a non-negative
submodular function g : 2N → R≥0 and a linear function ℓ : 2N → R≥0, and assume that
there exists a group G of permutations over N such that the equalities g(S) = g(σ(S)) and
ℓ(S) = ℓ(σ(S)) hold for all sets S ⊆ N and permutations σ ∈ G. Let G and L be the
multilinear extensions of g and ℓ respectively, and for every vector x ∈ [0, 1]N , let us denote
x̄ = Eσ∈G [x], i.e., x̄ is the expected vector σ(x) when σ is picked uniformly at random out of
G. For any two constants α, β ≥ 0, if maxS⊆N [α · g(S) + β · ℓ(S)] is strictly positive and

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
S⊆N

[α · g(S) + β · ℓ(S)] ,

then no polynomial time algorithm for RegularizedUSM can guarantee ((1 + ε)α, (1 + ε)β)-
approximation for any positive constant ε. Furthermore, this inapproximability guarantee
holds also when we restrict attention to instances (g′, ℓ′) of RegularizedUSM having the
following additional properties.

If ℓ is non-negative or non-positive, then we can assume that ℓ′ also has the same property.
If g is monotone, then we can assume that g′ is monotone as well.

In the common case in which the linear function ℓ is a non-positive, the following
observation allows us to produce slightly cleaner results using Theorem 7.

▶ Observation 8. If ℓ is non-positive and α > 0, then one can replace the term “((1 +
ε)α, (1 + ε)β)-approximation” in Theorem 7 with the term “(α + ε, β)-approximation”.

Proof. Theorem 7 proves, under some conditions, that no polynomial time algorithm for
RegularizedUSM has ((1 + ε)α, (1 + ε)β)-approximation. Furthermore, if we reduce the
value of the constant parameter ε of the theorem by a factor of α, then the theorem also
shows that no such algorithm can guarantee (α + ε, β + εβ/α)-approximation. This implies
the observation since, when ℓ is non-positive, any (α + ε, β)-approximation algorithm for
RegularizedUSM is also an (α + ε, β + εβ/α)-approximation algorithm. ◀

To prove Theorem 1 using Theorem 7, we need to define an instance I of monotone
RegularizedUSM. Specifically, consider a ground set N of size n ≥ 2 and a value r ∈ (0, 1],
and let us define

g(S) = min{|S|, 1} and ℓ(S) = −r · |S| ∀ S ⊆ N .
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▶ Lemma 9. For any constants ε > 0, β ≥ 0 and α = 1 − e−β + ε, when n is large
enough, there exists a value r ∈ (0, 1] such that the inequality of Theorem 7 applies to I and
maxS⊆N [α · g(S) + β · ℓ(S)] is strictly positive.

Proof. Observe that maxS⊆N [α · g(S) + β · ℓ(S)] ≥ α−βr = 1− e−β + ε−βr because S can
be chosen as a singleton subset of N . Let us now study the left hand side of the inequality
of Theorem 7. Since both g and ℓ are unaffected when an arbitrary permutation is applied
to the ground set, we can choose G as the group of all permutations over N . Thus, for every
vector x ∈ [0, 1]N , x̄ = ∥x∥1

n · 1N . Therefore,

max
x∈[0,1]N

[G(x̄) + L(x̄)] = max
x∈[0,1]

[G(x · 1N ) + L(x · 1N )]

= max
x∈[0,1]

[1− (1− x)n − xrn] = 1− r − r(n− 1)[1− r1/(n−1)] ,

where the last equality holds since the maximum is obtained for x = 1− n−1
√

r. Note now
that if we denote y = (n− 1)−1, then by L’Hôpital’s rule,

lim
n→∞

(n− 1)[1− r1/(n−1)] = lim
y→0

1− ry

y
= lim

y→0

−ry ln r

1 = − ln r ,

and therefore, for a large enough n, (n− 1)[1− r1/(n−1)] ≥ − ln r − ε; which implies

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ 1− r − r[− ln r − ε] ≤ 1− r(1− ln r) + ε.

Given the above bounds, we get that the inequality of Theorem 7 holds for any r > 0
obeying 1 − e−β + ε − βr ≥ 1 − r(1 − ln r) + ε. Since the last inequality is equivalent to
r − r ln r ≥ e−β + βr, it holds for r = e−β ⊆ (0, 1]. Furthermore, for this choice of r,

max
S⊆N

[α ·g(S)+β · ℓ(S)] ≥ 1−e−β +ε−βr = 1− (1+β)e−β +ε ≥ 1− 1 + β

1 + β
+ε = ε > 0 .◀

Theorem 1, which we repeat here for convenience, now follows by combining Theorem 7,
Observation 8 and Lemma 9 since g is a non-negative monotone submodular function and ℓ

is a non-positive linear function.

▶ Theorem 1. For every β ≥ 0 and ε > 0, no polynomial time algorithm can guarantee
(1− e−β + ε, β)-approximation for monotone RegularizedUSM even when the linear function
ℓ is guaranteed to be non-positive.

4 Algorithm for the General Case

In this section we describe and analyze the only non-trivial algorithm known to date (as far
as we know) for general RegularizedUSM. Using this algorithm we prove Theorem 2, which
we repeat here for convenience.

▶ Theorem 2. For every constant β ∈ (0, 1], let us define α(β) = β(1−β)/(1+β). Then, for
every constant ε ∈ (0, α(β)), there exists a polynomial time (α(β)− ε, β − ε)-approximation
algorithm for RegularizedUSM.

Our algorithm is based on a non-oblivious local search, i.e., a local search guided by
an auxiliary function rather than the objective function. Non-oblivious local searches have
been used previously in the context of submodular maximization by, for example, Feige et
al. [6] and Filmus and Ward [9]. The auxiliary function used by our algorithm is a function
h : 2N → R≥0 defined as follows. For every set S ⊆ N ,
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23:8 Maximizing Sums of Non-Monotone Submodular and Linear Functions

h(S) = E[g(S(β))] + β(1 + β) · ℓ(S) ,

where S(β) is a random subset of S that includes every element of S with probability β,
independently.

Ideally, we would like to find a local maximum with respect to h, i.e., a set T ⊆ N such
that the value of h(T ) cannot be increased either by adding a single element to T , or by
removing a single element from T . However, there are two issues that make the task of
finding such a local maximum difficult.

We do not know how to exactly evaluate the expectation in the definition of h in
polynomial time. Therefore, whenever we need to calculate expressions involving h, we
have to approximate them using sampling, which introduces estimation errors that have
to be taken into account.
A straightforward local search algorithm changes its current solution whenever adding
or removing a single element improves this solution. However, the time complexity of
such a naïve algorithm can be exponential. Therefore, our algorithm adds or removes an
element only when this is beneficial enough, which means that the algorithm finds an
approximate local maximum rather than a true one. Employing this idea is not trivial
given the errors introduced by the sampling, as mentioned above. However, we manage
to prove that, for the value ∆ defined by our algorithm, with high probability: (i) the
algorithm only makes changes that increase the value of h(T ) by ∆/2 or more, and (ii)
the algorithm continues to make changes as long as there exists some possible change
that increases the value of h(T ) by at least 3∆/2.
The quality of the approximate local maximum produced by our algorithm is controlled by
the parameter ε of Theorem 2. Setting a lower value for ε decreases ∆, which increases our
algorithm’s time complexity, but also makes the approximate local maximum produced
closer to being a true local maximum, and thus, improves the approximation guarantee.

Let Ŝ be a subset of N maximizing (α(β)− ε) · g(Ŝ) + (β − ε) · ℓ(Ŝ). To implement the
solutions described in the last two bullets, it is useful to assume that the ground set N does
not include elements that have some problematic properties. The following reduction shows
that we can assume that this is indeed the case without loss of generality. Due to space
constraints, the proof of this reduction and some other proofs from this section are deferred
to the full version of this paper [1]. In a nutshell, the first part of Reduction 10 is proved by
arguing that elements violating this part cannot belong to the set we need to compete with,
and thus, can be ignored; and the second part of the reduction is proved by showing that a
simple algorithm outputting the best solution of size at most 1 achieves the guarantee of
Theorem 2 when this part of the reduction is violated.

▶ Reduction 10. While proving Theorem 2, we may assume that every element u ∈ N obeys

α(β) · g(u) + β · ℓ(u) ≥ 0 and max{g(u) + ℓ(u), g(∅)} ≤ β · [g(Ŝ) + ℓ(Ŝ)] .

From this point until the end of the section, we denote by n the size of the ground
set N . We are now ready to describe our algorithm (given as Algorithm 1). This algo-
rithm implicitly assumes that Reduction 10 was applied, that n is large enough and that
max{g(∅), maxu∈N g(u)} > 0.7 The algorithm maintains a solution T , which it updates in

7 Let us explain why the problem becomes easy if either of the last two assumptions is violated. If n
is bounded by a constant, it is possible to use exhaustive search to find the set T ⊆ N maximizing
g(T )+h(T ), and one can verify that such a set has the properties guaranteed by Theorem 2. Additionally,
if max{g(∅), maxu∈N g(u)} = 0, then the submodularity of g guarantees that g is the zero function,
which means that we can get the guarantee of Theorem 2 by outputting the set {u ∈ N | ℓ(u) > 0}.
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iterations. In each iteration, the algorithm calculates for every element u an estimate ωu of
the contribution of u to the g component of the auxiliary function h. Then, Line 6 of the
algorithm looks for an element u ∈ N \T which, based on the estimate ωu, will increase h(T )
by ∆ if added to T . If such an element u is found, the algorithm adds it to T and continues
to the next iteration. Otherwise, Line 8 looks for an element u ∈ T which will increase
h(T ) by ∆ if removed from T (again, based on the estimate ωT ). If such an element u is
found, then the algorithm removes it from T and continues to the next iteration. However, if
both Lines 6 and 8 fail to find an appropriate element, the algorithm assumes that it has
encountered an approximate local maximum, and terminates. Somewhat surprisingly, when
this happens the algorithm outputs a sample T̂ of T (β) rather than the solution T itself
(unless the value of this sample is negative, in which case the algorithm falls back to the
solution ∅). We show below that if T is an approximate local maximum of the auxiliary
function h, then T (β) is in expectation a good solution with respect to the objective function.

Algorithm 1 Non-oblivious Local Search (β, ε).

1 Let ∆← ε
2n ·max{g(∅), maxu∈N g(u)} and T ← {u ∈ N | ℓ(u) > 0}.

2 for i = 1 to ⌈4n2/ε⌉+ 1 do
3 for every u ∈ N do
4 Let ωu be an estimate of β · E[g(u | T (β)− u)] obtained by taking the average

of β · g(u | T (β)− u) for k = ⌈128n4ε−2β2 · ln(10n4/ε)⌉ independent samples
of T (β).

5 if there exists u ∈ N \ T such that ωu + β(1 + β) · ℓ(u) ≥ ∆ then
6 Update T ← T + u.
7 else if there exists u ∈ T such that ωu + β(1 + β) · ℓ(u) ≤ −∆ then
8 Update T ← T − u.
9 else Exit the “for” loop.

10 Let T̂ be a sample of T (β).
11 if g(T̂ ) + ℓ(T̂ ) ≥ 0 then return T̂ .
12 else return ∅.

It is clear that Algorithm 1 runs in polynomial time, and therefore, we concentrate
in the rest of this section on proving its approximation guarantee. Algorithm 1 makes
multiple estimation during its execution. We say that an estimate ωu is good if |ωu − E[g(u |
T (β) − u)]| ≤ ∆/2 (for the set T at the time in which the estimate was made), otherwise
the estimate is bad. The following lemma is proved by showing that every estimate strongly
concentrates due to the independent samples used to compute it, and then lower bounding
the probability that all the estimates are good via the union bound.

▶ Lemma 11. With high probability (a probability approaching 1 when n tends to infinity),
all the estimates made by Algorithm 1 are good.

Using the previous lemma, we can now prove that, with high probability, Algorithm 1
terminates with T being an approximate local maximum. Specifically, in the proof of the
next lemma we show that if all the estimates are good (which is a high probability event
by the previous lemma), then Algorithm 1 must encounter an approximate local maximum
because otherwise the value of its solution grows to an impossibly high value.

▶ Lemma 12. With high probability, when Algorithm 1 terminates we have

h(T ) ≥ h(T + u)− 3∆/2 ∀ u ∈ N \ T and h(T ) ≥ h(T − u)− 3∆/2 ∀ u ∈ T .
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23:10 Maximizing Sums of Non-Monotone Submodular and Linear Functions

The last lemma shows that with high probability the final set T is an approximate local
maximum with respect to h. Lemma 14 shows that this implies that T (β) is a good solution
in expectation. To prove Lemma 14, we need the following known lemma.

▶ Lemma 13 (Lemma 2.2 of [6]). Let f : 2X → R≥0 be a submodular function, and given a set
A ⊆ X, let us denote by Ap a random subset of A where each element appears with probability
p ∈ [0, 1] (not necessarily independently). Then, E[f(Ap)] ≥ (1− p) · f(∅) + p · f(A).

Recall that Ŝ is a subset of N maximizing the expression (α(β)− ε) · g(Ŝ) + (β− ε) · ℓ(Ŝ).

▶ Lemma 14. If the set T obeys

h(T ) ≥ h(T + u)− 3∆/2 ∀ u ∈ N \ T and h(T ) ≥ h(T − u)− 3∆/2 ∀ u ∈ T ,

then E[g(T (β)) + ℓ(T (β))] ≥ (α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ).

Proof. By the first part of Lemma 12, for every element u ∈ N \T , h(T ) ≥ h(T + u)− 3∆/2,
or equivalently h(u | T ) ≤ 3∆/2. Therefore, by the submodularity of g,

E[g(T (β) ∪ (Ŝ \ T ))] + (1 + β) · ℓ(Ŝ \ T ) (1)

≤ E[g(T (β))] +
∑

u∈Ŝ\T

{E[g(u | T (β)− u)] + (1 + β) · ℓ(u)}

= E[g(T (β))] + β−1 ·
∑

u∈Ŝ\T

h(u | T ) ≤ E[g(T (β))] + 3β−1|Ŝ \ T |∆/2 ,

where the equality holds because the law of total expectation implies that, for u ̸∈ T ,

h(u | T ) = E[g((T + u)(β))− g(T (β))] + β(1 + β) · ℓ(u)
= βE[g(T (β) + u)− g(T (β))] + (1− β) · E[g(T (β))− g(T (β))] + β(1 + β) · ℓ(u)
= βE[g(T (β) + u)− g(T (β))] + β(1 + β) · ℓ(u) = βE[g(u | T (β)− u)] + β(1 + β) · ℓ(u) .

Similarly, since the second part of Lemma 12 implies that for every u ∈ T we have h(u |
T − u) ≥ −3∆/2, the submodularity of g gives us

E[g(T (β) ∩ Ŝ)]− β(1 + β) · ℓ(T \ Ŝ) (2)

≤ E[g(T (β))]−
∑

u∈T \Ŝ

{β · E[g(u | T (β)− u)]− β(1 + β) · ℓ(u)}

= E[g(T (β))]−
∑

u∈Ŝ\T

h(u | T − u) ≤ E[g(T (β))] + 3|T \ Ŝ|∆/2 .

Adding β times Inequality (1) to Inequality (2) now yields

β · E[g(T (β) ∪ (Ŝ \ T ))] + E[g(T (β) ∩ Ŝ)] + β(1 + β) · [ℓ(Ŝ \ T )− ℓ(T \ Ŝ)] (3)

≤ (1 + β) · E[g(T (β))] + 3[|Ŝ \ T |+ |T \ Ŝ|]∆/2 ≤ (1 + β) · E[g(T (β))] + 3n∆/2 .

We can now use Lemma 13 to lower bound the first two terms on the leftmost side of the
last inequality as follows.

β · E[g(T (β) ∪ (Ŝ \ T ))] + E[g(T (β) ∩ Ŝ)]

≥ β(1− β) · g(Ŝ \ T ) + β2 · g(Ŝ ∪ T ) + β · g(T ∩ Ŝ) + (1− β) · g(∅)

≥ β(1− β) · [g(Ŝ \ T ) + g(T ∩ Ŝ)] ≥ β(1− β) · g(Ŝ) ,
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where the second inequality follows from the non-negativity of g, and the last inequality
holds by g’s submodularity (and non-negativity). Plugging this inequality into Inequality (3)
now gives

β(1− β) · g(Ŝ) + β(1 + β) · [ℓ(Ŝ \ T )− ℓ(T \ Ŝ)] ≤ (1 + β) · E[g(T (β))] + 3n∆/2 ,

and rearranging this inequality yields

E[g(T (β)) + ℓ(T (β))] = E[g(T (β))] + β · ℓ(T )

≥ β(1− β) · g(Ŝ)− 3n∆/2
1 + β

+ β · [ℓ(Ŝ \ T )− ℓ(T \ Ŝ)] + β · ℓ(T )

≥ α(β) · g(Ŝ) + β · ℓ(Ŝ)− 3n∆/2 .

To complete the proof of the lemma, it remains to show that 3n∆/2 ≤ (3ε/4)·[g(Ŝ)+ℓ(Ŝ)].
Towards this goal, observe that

max
u∈N

g(u) ≤ max
u∈N

{
g(u) + 1 + β

2β2 · [α(β) · g(u) + β · ℓ(u)]
}

= 1 + β

2β
·max

u∈N
[g(u) + ℓ(u)] ,

where the inequality follows from the first part of Reduction 10. Using this inequality and
the non-negativity of g, we can get

3n∆
2 = 3ε

4 ·max{g(∅), max
u∈N

g(u)} ≤ 3ε(1 + β)
8β

·max{g(∅), max
u∈N

[g(u) + ℓ(u)]}

≤ 3ε(1 + β)
8 · [g(Ŝ) + ℓ(Ŝ)] ≤ 3ε

4 · [g(Ŝ) + ℓ(Ŝ)] ,

where the penultimate inequality follows from the second part of Reduction 10, and the last
inequality uses the observation that the second part of Reduction 10 and the non-negativity
of g imply together that g(Ŝ) + ℓ(Ŝ) is non-negative. ◀

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall that T̂ is a sample of T (β) for the value of the set T when
Algorithm 1 terminates. Lemmata 12 and 14 prove together that there exists a high probability
event E such that

E[g(T̂ ) + ℓ(T̂ ) | E ] ≥ (α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ) .

The last two lines of Algorithm 1 guarantee that this algorithm always outputs a set whose
value is at least g(T̂ ) + h(T̂ ) because g(∅) + ℓ(∅) = g(∅) ≥ 0. Therefore, if we denote by T̄

the set outputted by Algorithm 1, then we also have

E[g(T̄ ) + ℓ(T̄ ) | E ] ≥ (α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ) .

The last two lines of Algorithm 1 also guarantee that the output set T̄ of Algorithm 1
always has a non-negative value, and therefore, E[g(T̄ ) + h(T̄ ) | Ē ] ≥ 0. Combining this
inequality with the previous one using the law of total expectation yields

E[g(T̄ ) + h(T̄ )] ≥ Pr[E ] · E[g(T̄ ) + h(T̄ ) | E ]

≥ (1− o(1)) · [(α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ)]

≥ (α(β)− ε) · g(Ŝ) + (β − ε) · ℓ(Ŝ) = max
S⊆N

[(α(β)− ε) · g(S) + (β − ε) · ℓ(S)] ,
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where the second inequality holds since g(T̄ ) + h(T̄ ) is always non-negative, the equality
follows from the definition of Ŝ, and o(1) represents a term that diminishes when n goes to
infinity. To justify the third inequality, note that

o(1) · [(α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ)] ≤ o(1) · (β − 3ε/4) · [g(Ŝ) + ℓ(Ŝ)]

≤ (ε/4) · [g(Ŝ) + ℓ(Ŝ)] ,

where the last inequality here holds for large enough values of n because the second part of
Reduction 10 and the non-negativity of g imply together that g(Ŝ)+ℓ(Ŝ) is non-negative. ◀

5 Inapproximability for Negative Linear Functions

In this section we prove Theorem 3, which we repeat here for convenience.

▶ Theorem 3. Given a value β ≥ 0, let us define

α(β) = min
t≥1

r∈(0,1/2]

{
t + 1 +

√
(t + 1)2− 8tr

4t
− r

t + 1

[
1− β − 2 ln

(
t + 1−

√
(t + 1)2− 8tr

2

)]}
.

Then, for every ε > 0, no polynomial time algorithm guarantees (α(β) + ε, β)-approximation
for RegularizedUSM even when the linear function ℓ is guaranteed to be non-positive.

The proof of Theorem 3 is based on Theorem 7, and therefore, we start this proof by
describing an instance I of RegularizedUSM. This instance is very similar to the instance
used by Oveis Gharan and Vondrák [15] to prove their hardness result for maximizing a
non-negative (not necessarily monotone) submodular function subject to a matroid constraint.
Specifically, the instance I has 3 parameters: an integer n ≥ 1, a real value t ≥ 1 and a real
value r ∈ (0, 1/2]. The ground set of I is N = {a, b} ∪ {ai, bi | i ∈ [n]}, and its objective
functions are ℓ(S) = −r · |S ∩ {ai, bi | i ∈ [n]}| and

g(S) = t · (|S ∩ {a, b}| mod 2) + 1[a ̸∈ S] · 1[S ∩ {ai | i ∈ [n]} ̸= ∅]
+ 1[b ̸∈ S] · 1[S ∩ {bi | i ∈ [n]} ̸= ∅] .

One can verify that g is indeed a non-negative submodular function. Additionally, the
functions g and ℓ are both symmetric in the sense that the following types of swaps do not
affect the values of these functions.

Any swap of the identities of the elements of {ai | i ∈ [n]}.
Swapping the identifies of a with b plus swapping the idenities of ai and bi for every
i ∈ [n].

Let G be the group of permutations obtained by combining swaps of these two kinds in any
way.

In the next lemma, G and L are the multilinear extensions of g and ℓ, respectively,
and x̄ = Eσ∈G [σ(x)]. Theorem 3 follows by combining this lemma with Theorem 7 and
Observation 8. The (quite technical) proof of Lemma 15 can be found in the full version of
this paper [1].

▶ Lemma 15. Let r and t be the values for which the maximum is obtained in the definition of
α(β). Then, for any constant ε > 0 and a large enough n, maxS⊆N [(α(β)+ε) ·g(S)+β ·ℓ(S)]
is strictly positive and maxx∈[0,1]N [G(x̄) + L(x̄)] ≤ maxS⊆N [α(β) · g(S) + β · ℓ(S)].
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6 Results for Positive Linear Functions

In this section we study RegularizedUSM in the special case in which the linear function ℓ

is non-negative. As explained in Section 1, following related known results, it is natural to
expect a (1/2, 1)-approximation for this case since 1/2 is the best possible approximation
ratio for unconstrained maximization of a non-negative submodular function. However, we
show in Section 6.1 that this cannot be done (Theorem 6).

Let us now define f ≜ g+ℓ. As explained in Section 1, since f is a non-negative submodular
function on its own right, one can optimize it using any algorithm for Unconstrained
Submodular Maximization (USM). The first algorithm to obtain a tight approximation ratio
of 1/2 for USM was an algorithm called “Double Greedy” due to Buchbinder et al. [2].
Buchbinder et al. [2] described two variants of their algorithm, a deterministic variant that we
term DeterministicDG and guarantees 1/3-approximation, and a randomized variant that
we term RandomizedDG and guarantees 1/2-approximation. It should also be noted that the
original analysis of [2] proves slightly stronger results than the above stated approximation
ratios. Specifically, their analysis shows that DeterministicDG always outputs a set of value
at least 1

3 [f(S) + f(∅) + f(N )] ≥ 1
3 g(S) + 2

3 ℓ(S) for any set S, where the inequality holds
because ℓ is non-negative; which implies that DeterministicDG is a (1/3, 2/3)-approximation
algorithm. Similarly, the analysis of Buchbinder et al. [2] shows that RandomizedDG outputs
a set whose expected value is at least 1

4 [2f(S) + f(∅) + f(N )] ≥ 1
2 g(S) + 3

4 ℓ(S), which
implies that RandomizedDG is a (1/2, 3/4)-approximation algorithm.

Theorems 4 and 5 show that DeterministicDG and RandomizedDG, respectively, guarantee
(α, β)-approximation for many additional pairs of α and β. The proofs of these theorems can
be found in Sections 6.2 and 6.3, respectively.

6.1 Impossibility of the Naturally Expected Approximation Guarantee
In this section we prove the following theorem. We note that the technique used in the proof
of this theorem can also prove a somewhat stronger result. However, since the improvement
represented by this stronger result is not very significant, we chose to state in the theorem the
cleaner and more conceptually important result rather than the strongest result achievable.

▶ Theorem 6. Even when the linear function ℓ is guaranteed to be non-negative, no polynomial
time algorithm can guarantee (1/2, 1)-approximation for RegularizedUSM.

The proof of Theorem 6 is based on Theorem 7, and therefore, we need to describe an
instance I of RegularizedUSM that has an integer parameter n ≥ 2. The ground set of the
instance I is N = {a, b} ∪ {ci | i ∈ [n]}, and its objective functions are given, for every
S ⊆ N , by ℓ(S) = 1/3 and

g(S) = 2 · [(S ∩ {a, b}) mod 2] + 1[{a, b} ∩ S ̸= ∅] · 1[{ci | i ∈ [n]} ̸⊆ S] .

One can verify that g is indeed a non-negative submodular function. Additionally, the
functions g and ℓ are both symmetric in the sense that swapping the identities of a and b

does not change the values of these functions for any set, and the same applies to any swap of
the identities of the elements of {ci | i ∈ [n]}. Let G be the group of permutations obtaining
by combining swaps of these two kinds in any way.

In the next lemma, G and L are the multilinear extensions of g and ℓ, respectively, and
x̄ = Eσ∈G [σ(x)]. By combining this lemma with Theorem 7, we get that, even when the
linear function ℓ is non-negative, no polynomial time algorithm for RegularizedUSM can
guarantee (0.4998(1 + ε) + (n − 1.0003)(1 + ε)/(n − 1))-approximation for any ε > 0 and
large enough n. Theorem 6 follows by choosing ε = 0.0003/n. Due to space constraints, (the
quite technical) proof of Lemma 16 has been deferred to the full version of this paper [1].
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▶ Lemma 16. For a large enough n,

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
S⊆N

[
0.4998 · g(S) + n− 1.0003

n− 1 · ℓ(S)
]

,

and the right hand side of the inequality is strictly positive.

6.2 Reanalysis of Deterministic Double Greedy
In this section we prove Theorem 4, which we repeat here for convenience. The algorithm
DeterministicDG referred to by this theorem is given as Algorithm 2 (recall that f ≜ g + ℓ).

▶ Theorem 4. When ℓ is non-negative, the algorithm DeterministicDG guarantees (α, 1−α)-
approximation for RegularizedUSM for all α ∈ [0, 1/3] at the same time (the algorithm is
oblivious to the value of α).

Algorithm 2 DeterministicDG.

1 Denote the elements of N by u1, u2, . . . , un in an arbitrary order.
2 Let X0 ← ∅ and Y0 ← ∅.
3 for i = 1 to n do
4 Let ai ← f(ui | Xi−1) and bi ← −f(ui | Yi−1 − ui).
5 if ai ≥ bi then Let Xi ← Xi−1 + ui and Yi ← Yi−1.
6 else Let Xi ← Xi−1 and Yi ← Yi−1 − ui.
7 return Xn(= Yn).

The heart of the proof of Theorem 4 is the following lemma. To state this lemma, we
need to define, for every integer 0 ≤ i ≤ n and set S ⊆ N , S(i) = (S ∪Xi) ∩ Yi.

▶ Lemma 17. For every integer 1 ≤ i ≤ n, value α ∈ [0, 1/3] and set S ⊆ N , α · [f(Xi)−
f(Xi−1)] + (1− 2α) · [f(Yi)− f(Yi−1)] ≥ α · [f(S(i−1))− f(S(i))].

Before we get to the proof of Lemma 17, let us show why it implies Theorem 4.

Proof of Theorem 4. Fix some α ∈ [0, 1/3] and set S ⊆ N . Summing up Lemma 17 over
all integer 1 ≤ i ≤ n, we get

α ·
n∑

i=1
[f(Xi)− f(Xi−1)] + (1− 2α) ·

n∑
i=1

[f(Yi)− f(Yi−1)] ≥ α ·
n∑

i=1
[f(S(i−1))− f(S(i))] .

The sums in the last inequality are telescopic sums, and collapsing them yields

α · [f(Xn)− f(X0)] + (1− 2α) · [f(Yn)− f(Y0)] ≥ α · [f(S(0))− f(S(n))] .

One can observe that Xn = Yn = S(n), f(X0) = g(∅) ≥ 0, f(Y0) = g(N ) + ℓ(N ) ≥ ℓ(S) and
S(0) = S. Plugging all these observations into the previous inequality yields

α · f(Xn) + (1− 2α) · [f(Xn)− ℓ(S)] ≥ α · [f(S)− f(Xn)] .

It remains to rearrange the last inequality, and plug in f(S) = g(S) + ℓ(S), which implies
f(Xn) ≥ α · g(S) + (1− α) · ℓ(S). The theorem now follows since: (i) Xn is the output set of
Algorithm 2, and (ii) the last inequality holds for every α ∈ [0, 1/3] and set S ⊆ N . ◀
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Let us now prove Lemma 17.

Proof of Lemma 17. Buchbinder et al. [2] showed that Algorithm 2 guarantees8

[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)] ≥ f(S(i−1))− f(S(i)) . (4)

Furthermore, we prove below that we also have the inequality

f(Yi)− f(Yi−1) ≥ 0 . (5)

These two inequalities imply the lemma together since the inequality guaranteed by the
lemma is equal to α · (4) + (1 − 3α) · (5) – note that the coefficients α and 1 − 3α in this
expression are non-negative for the range of possible values for α.

It remains to prove Inequality (5). If Yi = Yi−1, then Inequality (5) trivially holds as an
equality. Consider now the case of Yi ̸= Yi−1. By Lines 5 and 6 of Algorithm 2, this case
happens only when bi > ai, and Yi is set to Yi−1 − ui when this happens. Therefore, we
get in this case f(Yi)− f(Yi−1) = f(Yi−1 − ui)− f(Yi−1) = bi > ai+bi

2 ≥ 0, where the last
inequality holds since Buchbinder et al. [2] also showed that ai + bi ≥ 0. ◀

6.3 Reanalysis of Randomized Double Greedy
In this section we prove Theorem 5, which we repeat here for convenience. The algorithm
RandomizedDG referred to by this theorem is given as Algorithm 3 (recall that f ≜ g + ℓ).

▶ Theorem 5. When ℓ is non-negative, the algorithm RandomizedDG guarantees (α, 1−α/2)-
approximation for RegularizedUSM for all α ∈ [0, 1/2] at the same time (the algorithm is
oblivious to the value of α).

Algorithm 3 RandomizedDG.

1 Denote the elements of N by u1, u2, . . . , un in an arbitrary order.
2 Let X0 ← ∅ and Y0 ← ∅.
3 for i = 1 to n do
4 Let ai ← f(ui | Xi−1) and bi ← −f(ui | Yi−1 − ui).
5 if bi ≤ 0 then Let Xi ← Xi−1 + ui and Yi ← Yi−1.
6 else if ai ≤ 0 then Let Xi ← Xi−1 and Yi ← Yi−1 − ui.
7 else
8 with probability ai

ai+bi
do Let Xi ← Xi−1 + ui and Yi ← Yi−1.

9 otherwise Let Xi ← Xi−1 and Yi ← Yi−1−ui.// Occurs with prob. bi

ai+bi

10 return Xn(= Yn).

The heart of the proof of Theorem 5 is the next lemma. To state this lemma, we need to
define, like in Section 6.2, S(i) = (S ∪Xi) ∩ Yi for every integer 0 ≤ i ≤ n and set S ⊆ N .

▶ Lemma 18. For every integer 1 ≤ i ≤ n, value α ∈ [0, 1/2] and set S ⊆ N , (α/2) ·
E[f(Xi)− f(Xi−1)] + (1− 3α/2) · E[f(Yi)− f(Yi−1)] ≥ α · E[f(S(i−1))− f(S(i))].

8 Technically, Buchbinder et al. [2] proved Inequality (4) only for the special case in which S is a set
maximizing f . However, their analysis does not use this property.
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Before we get the to the proof of Lemma 18, let us show why it implies Theorem 5.

Proof of Theorem 5. Fix some α ∈ [0, 1/2] and set S ⊆ N . Summing up Lemma 18 over
all integer 1 ≤ i ≤ n, we get

α
2

n∑
i=1

E[f(Xi)−f(Xi−1)]+(1−3α/2)·
n∑

i=1
E[f(Yi)−f(Yi−1)] ≥ α·

n∑
i=1

E[f(S(i−1))−f(S(i))] .

Due to the linearity of the expectation, the sums in the last inequality are telescopic sums.
Collapsing these sums yields

α
2 E[f(Xn)− f(X0)] + (1− 3α/2) · E[f(Yn)− f(Y0)] ≥ α · E[f(S(0))− f(S(n))] .

Observe now that, like in the proof of Theorem 4, we have Xn = Yn = S(n), f(X0) = g(∅) ≥ 0,
f(Y0) = g(N ) + ℓ(N ) ≥ ℓ(S) and S(0) = S. Plugging all these observations into the previous
inequality yields

α
2 E[f(Xn)] + (1− 3α/2) · E[f(Xn)− ℓ(S)] ≥ α · E[f(S)− f(Xn)] .

It remains to rearrange the last inequality, and plug in f(S) = g(S) + ℓ(S), which implies
E[f(Xn)] ≥ α · g(S) + (1− α/2) · ℓ(S). The theorem now follows since: (i) Xn is the output
set of Algorithm 2, and (ii) the last inequality holds for every α ∈ [0, 1/2] and set S ⊆ N . ◀

Let us now prove Lemma 18.

Proof of Lemma 18. Buchbinder et al. [2] showed that Algorithm 3 guarantees9

E[f(Xi)− f(Xi−1)] + E[f(Yi)− f(Yi−1)] ≥ 2E[f(S(i−1))− f(S(i))] . (6)

Given this inequality, to prove the lemma it suffices to show that (1−2α)·E[f(Yi)−f(Yi−1)] ≥ 0
(because adding this inequality to α/2 times Inequality (6) yields the inequality that we
want to prove). Below we prove the stronger claim that the inequality f(Yi) ≥ f(Yi−1) holds
deterministically. One observe that this stronger claim indeed implies (1− 2α) · E[f(Yi)−
f(Yi−1)] because 1− 2α is non-negative in the range of allowed values for α.

If Yi = Yi−1, then the inequality f(Yi) ≥ f(Yi−1) trivially holds as an equality. Therefore,
we assume from now on Yi ̸= Yi−1, which implies Yi = Yi−1 − ui. Due to the condition
in Line 5 of Algorithm 3, Yi can be set to Yi−1 − ui only when bi > 0, and thus, f(Yi) =
f(Yi−1 − ui) = f(Yi−1) + bi > f(Yi−1). ◀
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Abstract
We show that List Colouring can be solved on n-vertex trees by a deterministic Turing machine
using O(log n) bits on the worktape. Given an n-vertex graph G = (V, E) and a list L(v) ⊆ {1, . . . , n}
of available colours for each v ∈ V , a list colouring for G is a proper colouring c such that c(v) ∈ L(v)
for all v.
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1 Introduction

Various applications can be modelled as an instance of List Colouring, e.g., the vertices
may correspond to communication units, with lists giving the possible frequencies or channels
that a vertex may choose from as colours and edges showing which units would interfere if
they are assigned the same colour [17, 24].

Given a graph G = (V, E) and given a list L(v) of colours for each vertex v ∈ V , an
L-colouring c is a proper colouring (that is, c(u) ̸= c(v) when uv ∈ E) mapping every vertex
v to a colour in the list L(v). This gives rise to the following computational problem.

List Colouring
Input: A graph G = (V, E) with a list L(v) ⊆ {1, . . . , n} of available colours for each
v ∈ V .
Question: Is there an L-colouring for G?

List Colouring is computationally hard. It is NP-complete on cographs [19] and on
planar bipartite graphs, even when all lists are of size at most 3 [18]. The problem remains
hard when parameterised by “tree-like” width measures: it was first shown to be W[1]-hard
parameterised by treewidth in 2011 by [16] and recently shown to be XNLP-hard implying
W[t]-hardness for all t by [4]. On the other hand, on n-vertex trees the problem can be solved
in time linear in n (using hashing) [19], but this algorithm may use Ω(n) space.
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In this paper, we study the auxiliary space requirements of List Colouring on trees in
terms of the number of vertices n of the tree. We assume that the vertices of T have been
numbered 1, . . . , n, which gives a natural order on them, and that, given vertices v, v′ in
T and i, i′ ∈ {1, . . . , n}, it can be checked in O(log n) space whether the ith colour in L(v)
equals the i′th colour in L(v′). As is usual for the complexity class L (logspace), we measure
the space requirements in terms of the number of bits on the work tape of a deterministic
Turing machine, where the description of the tree and the lists are written on a (read-only)
input tape. In particular, the number of bits on the input tape is allowed to be much larger.

Since n-vertex trees have pathwidth O(log n), our problem can be solved non-
deterministically using O(log2 n) bits on the work tape (see Proposition 3). However,
doing better than this is surprisingly challenging, even in the non-deterministic case! Our
main result is as follows.

▶ Theorem 1. List Colouring for trees is in L.

Our initial interest in the space complexity of List Colouring on trees arose from a recent
result showing that List Colouring parameterised by pathwidth is XNLP-complete [4].
XNLP is the class of problems on an input of size n with parameter k, which can be solved
by a non-deterministic Turing machine in f(k)nO(1) time and f(k) log n space for some
computable f . Since the treewidth of a graph is upper bounded by the pathwidth, List
Colouring is also XNLP-hard parameterised by treewidth. This is conjectured1 to imply
that there is a constant k∗ for which any deterministic Turing machine needs ω(log n) space
in order to solve List Colouring for n-vertex graphs of treewidth k∗; this work shows
that k∗ > 1. It seems likely that List Colouring parameterised by treewidth is not in
XNLP, and we conjecture that it is complete for a parameterised analogue of NAuxPDA (also
known as SAC) from [1, 23] . Considering such classes which (also) have space requirements
(complexity classes such as XL, XNL and XNLP [4, 5, 7, 15]) has proven successful in
classifying the complexity of parameterised problems which are not known to be complete
for any classes that only consider time requirements. Since some of such classes are very
naturally modelled by instances of List Colouring, we believe the complexity class of List
Colouring on trees could be of theoretical interest as well.

Another motivation for studying space requirements comes from practice, since memory
can be much more of a bottleneck than processing time (e.g. for dynamic programming
approaches). This motivates the development of techniques to reduce the space complexity.
Although many techniques have been established to provide algorithms which are efficient
with respect to time, fewer techniques are known to improve the space complexity. Notable
exceptions include the logspace analogue of Bodlaender’s and Courcelle’s theorem [14] which
allows one to check any monadic second-order formula on graphs of bounded treewidth in
logspace (which in particular allows one to test membership in any minor-closed family) and
Reingold’s [25] work on undirected connectivity. Reachability and isomorphism questions
have also been well-studied on restricted graph classes, e.g. [8, 21, 22]. Another interesting
piece of related work [13] shows that for each graph H, List H-Colouring is either in L or
NL-hard. We remark that List H-Colouring on trees (for fixed H) is easily seen to be
solvable in logspace using an analogue of Proposition 3 or the logspace Courcelle’s theorem
[14]. The difficulty in our case comes from the fact that the sizes of the lists are unbounded.

1 The conjecture (see [23, Conjecture 2.1] or [4, Conjecture 5.1]) states that there is no deterministic
algorithm for an XNLP-hard problem that runs in XP time and FPT space. If for each k, there exists
a constant f(k) such that List Colouring can be solved in space f(k) log n on n-vertex graphs of
treewidth k, then this would in particular yield an algorithm running in nf(k) time and f(k)nO(1) space.



H. L. Bodlaender, C. Groenland, and H. Jacob 24:3

We also generalise our algorithm to graphs of bounded tree-partition-width (also called
strong treewidth).

▶ Corollary 2. There is a deterministic O(k log k log n) space algorithm for List Colouring
on n-vertex graphs with a given tree-partition of width k.

The algorithm of Corollary 2 does not run in FPT time. We also include a simple proof that
List Colouring is W[1]-hard when parameterised by tree-partition-width, which shows
that it is unlikely that there exists an algorithm running in FPT time.

The algorithm of Theorem 1 is highly non-trivial and requires several conceptual ideas
that we have attempted to separate out by first explaining some key ideas and an easier
deterministic algorithm that uses O(log2 n) space in Section 3. We assume our given tree to
be rooted and transverse it by first “recursing” on children whose subtrees are not the largest.
This bounds the number of such recursions by O(log n), and so we can “spend” O(log n)
space per recursion. When we move to the heaviest subtree, we have either already rejected,
or may forget entirely about the colour of v, or found a single colour that “works” for the
non-heavy subtrees of v (“criticality”). Along a heavy branch, we always keep at most two
such colours “per recursion depth” (the colour of v, and possibly one of its parent; once we
move to the child of v we may forget the colour of the parent of v).

There are two further main ideas that remove the additional log n-factor. Most import-
antly, when we “move” from a vertex v to one of its children u, we will let the amount of
storage allocated for storing v and its colour depend on the size of the subtree of u: the
larger the subtree, the less space we allow. In the extreme case in which the size of the
subtree of u is linear in the size of the subtree of v, we allow only a constant number of
bits. At specific points during the algorithm, when more space is available temporarily, we
use this stored information to recompute the vertex v and its colour. Suppose that v has
d children u1, . . . , ud. We define the list Lj(v) as the colours c such that when we give v

colour c, we can extend the colouring to the subtrees of u1, . . . , uj . If |Lj(v)| > d − j, then
v is “non-critical”: we will always be able to assign it a colour after colouring the subtrees
of uj+1, . . . , ud. This allows us to maintain that |Lj(v)| ≤ d − j and so the number of bits
required to store the position of c in Lj(v) decreases as j increases.

We need to be a bit more clever when we define the lists. The second main idea is to
distribute the children of v into about log log(n/2) brackets, where n denotes the number of
vertices in the subtree below v. The distribution is done based on how much smaller the
subtree of the child is compared to n. We allocate a specific number of bits per bracket: to
brackets which allow bigger subtrees, we allocate less space. When “processing” brackets of
smaller subtrees, we may need to store information as well for the brackets of bigger subtrees,
but vice versa is not allowed. We choose the bracket sizes so that if we store information for
the first j brackets, this “fits” in the space allocated to the (j + 1)th bracket. In the end, the
final algorithm is rather subtle and requires a careful analysis.

We outline some relevant definitions and background in Section 2. We give the simpler
O(log2 n) space algorithm in Section 3 and discuss the logspace algorithm in Section 4. We
prove our results concerning tree-partition-width in Section 5 and point to some directions
for future work in Section 6. Some technical details can be found in the full version [3].

2 Preliminaries

All logarithms in this paper have base 2. Let T be a rooted tree and v ∈ V (T ). We write Tv

for the subtree rooted at v and T − v for the forest obtained by removing v and all edges
incident to v. We refer the reader to textbooks for basic notions in graph theory [9] and
(parameterised) complexity [2, 12].
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2.1 Simple logspace computations on trees

We repeatedly use the fact that simple computations can be done on a rooted tree using
logarithmic space, such as counting the number of vertices in a subtree. We include a brief
sketch below and refer to [22] for further details.

We first explain how to traverse a tree in logspace. Record the index of the current vertex
and create states down, next and up. We start on the root with state down. When in state
down, we go to the first child while remaining in the state down. If there is no child, we
change the state to next. When in state next, we go to the next sibling if it exists and
change state to down, or (if there is no next sibling) we change state to up. When in state up,
we simultaneously go to the parent and change the state to next. We stop when reaching
the root with state up. By keeping track of the number of vertices discovered, we can use
the same technique to count the number of vertices in a subtree. This can then be used to
compute the child with maximum subtree size and to enumerate children ordered by their
subtree size. If the input tree is not rooted, we may use the indices of the vertices to root
the tree in a deterministic way.

2.2 Graph width measures

Let G = (V, E) be a graph. A tuple (T, {Xt}t∈V (T )) is a tree decomposition for G if T is a
tree, for t ∈ V (T ), Xt ⊆ V is the bag of t, for each edge uv ∈ E there is a bag such that
{u, v} ⊆ Xt, and for each u ∈ V , the bags containing u form a nonempty subtree of T . If T

is a path, this defines a path decomposition.
The width of such a decomposition is maxt∈V (T ) |Xt| − 1. The treewidth (resp. pathwidth)

of G is the minimum possible width of a tree decomposition (resp. path decomposition) of G.
A nice path decomposition has empty bags on endpoints of the path and two consecutive

bags differ by at most one vertex. Hence, either a vertex is introduced, or a vertex is forgotten.
Let G be a graph, let T be a tree, and, for all t ∈ V (T ), let Xt be a non-empty set so that

(Xt)t∈V (T ) partitions V (G). The pair (T, (Xt)t∈V (T )) is a tree-partition of G if, for every edge
vv′ ∈ E(G), either v and v′ are part of the same bag, or v ∈ Xt and v′ ∈ Xt′ for tt′ ∈ E(T ).
The width of the partition is maxt∈V (T ) |Xt|. The tree-partition-width (also known as strong
treewidth) of G is the minimum width of all tree-partitions of G. It was introduced by Seese
[26] and can be characterised by forbidden topological minors [11]. Tree-partition-width is
comparable to treewidth on graphs of maximum degree ∆ [10, 27]: tw +1 ≤ 2 tpw ≤ O(∆ tw).
However, it is incomparable to treedepth, pathwidth and treewidth for general graphs.

The treedepth of a graph is the minimum height of a forest F with the property that
every edge of G connects a pair of nodes that have an ancestor-descendant relationship to
each other in F .

3 Warm up: first ideas and a simpler algorithm

3.1 Storing colours via their position in the list

It is not too difficult to obtain a non-deterministic algorithm that uses O(log2 n) space.

▶ Proposition 3. List Colouring can be solved non-deterministically using O(log n log ∆)
space on n-vertex trees of maximum degree ∆.

The proposition follows from the following two lemmas.
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▶ Lemma 4. List Colouring can be solved non-deterministically using O(k log ∆ + log n)
space for an n-vertex graph G of maximum degree ∆ if we can deterministically compute a
path decomposition for G of width k in O(log n) space.

A deterministic logspace algorithm for computing an optimal path decomposition exists for
all graphs of bounded pathwidth [20], but this does not apply directly to trees (since their
pathwidth may grow with n).

▶ Lemma 5. If T is an n-vertex tree, we can deterministically construct a nice path
decomposition of width O(log n) using O(log n) space.

We remark that ∆ may be replaced by a bound on the list sizes in Proposition 3 and Lemma
4. The main observation in the proof of Lemma 4 is that for a vertex v, we only need to
consider the first d(v) + 1 colours from its list so that we can store the position of the colour
rather than the colour itself. Note that we cannot keep the path decomposition in memory,
but rather recompute it whenever any information is needed. We keep in memory only the
current position in the path decomposition and the list positions of the colours we assigned
for vertices in the previous bag.

3.2 Heavy children, recursive analysis and criticality
Suppose that we are given an instance (T, L) of List Colouring. We fix a root v∗ of T in
an arbitrary but deterministic fashion, for example the first vertex in the natural order on
the vertices. Let v ∈ V (T ). We see v as a descendant and ancestor of itself. We write Tv for
the subtree with root v.

▶ Definition 6 (Heavy). A child u of a vertex v in a rooted tree T is called heavy if
|V (Tu)| ≥ |V (Tu′)| for all children u′ of v, with strict inequality whenever u′ < u in the
natural order on V .

Each vertex has at most one heavy child. We also record the following nice property.

▶ Observation 7. If u is a child of v which is non-heavy, then |V (Tu)| ≤ (|V (Tv)| − 1)/2.

An obvious recursive approach is to loop over the possible colour c ∈ L(r) for the root r and
then to recursively check for all children v of r whether a list colouring can be extended to
the subtree Tv (while not giving v the colour c). We wish to prove a space upper bound of
the form S(n) = f(n) log n on the number of bits of storage required for trees on n vertices
(for some non-decreasing function f). We compute

S(n/2) = log(n/2)f(n/2) ≤ log(n/2)f(n) = log nf(n) − log 2f(n) ≤ S(n) − f(n). (1)

This shows that while performing a recursive call on some subtree Tv with |V (Tv)| = n/2, we
may keep an additional f(n) bits in memory (on top of the space required in the recursive
call). In particular, we can store the colour c using O(log n) bits when f(n) = Θ(log n), but
can only keep a constant number of bits for such recursions when proving Theorem 1.

We next explain how we can ensure that we only need to consider recursions done on
non-heavy children. Suppose v has non-heavy children v1, . . . , vk and heavy child u. We will
write Gv = Tv − Tu. Suppose the parent v′ of v needs to be assigned colour c′. One of the
following must be true.

There is no colouring of Gv which avoids colour c′ for v. In this case, we can reject.
There is a unique colour c ̸= c′ that can be assigned to v in a list colouring of Gv. We
say v is critical and places the colour constraint on u that it cannot receive colour c.
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There are two possible colours unequal to c′ that we can give v in Gv. We then say v is
non-critical : it can be coloured for each colour we might wish to assign its heavy child u.

One example of non-criticality is if the list of available colours |L(v)| ≥ k + 2. In this case,
Tv is list colourable if and only if Tv1 , . . . , Tvk

, Tu are all list colourable (using lists L).

3.3 A deterministic algorithm using O(log2 n) space and polynomial
time

We define a procedure solve(v, p) which given a vertex v and number p ∈ {0, 1, . . . , n},
determines whether the subtree Tv rooted on v can be list coloured; for p ≥ 1 there is an
additional constraint that v cannot receive the pth colour in L(v); for p = 0 the vertex v

may receive any colour.
Suppose we call solve(r, p) for some r ∈ V (T ). Let v1, . . . , vk denote the non-heavy

children of r and u the heavy child. The algorithm works as follows.
1. For i = 1, . . . , k, we recursively verify that Tvi can be list coloured (solve(vi, 0)); we

reject if any of these rejects.
2. If |L(r)| ≥ d(r) + 1 = k + 2, then we are “non-critical”: we free up our memory (removing

also (r, p)) and recursively verify whether Tu can be list coloured by calling solve(u, 0).
3. From now on, |L(r)| ≤ k + 1. We check that there is some p1 ∈ {1, . . . , |L(r)|} for which

we can assign v the p1th colour in its list, and extend to a list colouring of T \ Tu. This
involves recursive calls solve(vi, pi,1) where pi,1 places the appropriate constraint2 on vi.
If no such p1 exists, we reject.

4. Next, we check whether r is “non-critical”, that is, whether there is some p2 ̸= p1 for
which there is a list colouring of T \ Tu in which r receives the p2th colour from its list.
If such p2 exists, we free up our memory and recursively verify whether Tu can be list
coloured.
If p2 does not exist, then we know that r must get colour p1. If p1 = p, we reject.
Otherwise, we free up our memory and run solve(u, p′

1), where p′
1 is either 0 or the

position in the list of u of the p1th colour of L(r).
We give a brief sketch of the space complexity; more precise arguments including also
pseudocode and the time analysis of this algorithm are given in the full version [3].

For the sake of analysis, suppose we keep a counter r that keeps track of the “recursion
depth”. We increase this by one each time we do a call on a non-heavy child (decreasing it
again once it finishes), but do not adjust it for calls on a heavy child.

Suppose r has been increased due to a sequence of recursive calls on
(v1, 0), (v2, p2), . . . , (vℓ, pℓ), with v1 the root of the tree and vi+1 a non-heavy child of some
heavy descendant of vi for all i ∈ [ℓ − 1]. Then |V (Tvℓ

)| ≤ 1
2 |V (Tvℓ−1)| ≤ · · · ≤ 1

2ℓ−1 |V (T )|.
In particular, r is always bounded by log n.

Crucially, if a call solve(u, p′) is made on the heavy descendant u of some vi, the only
information we need to store relating to the part of the tree “between vi and u” is p′.
Therefore, if we distribute our work tape into ⌈log n⌉ parts where the ith part will be used
whenever r takes the value i, then each part only needs to use 10 log n bits, giving a total
space complexity of O(log2 n).

2 Let c1 be the p1th colour in L(r). If c1 ̸∈ L(vi), let pi,1 = 0. Otherwise, let pi,1 be the position of c1 in
L(vi).
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4 Proof of Theorem 1

In this section, we describe our O(log n) space algorithm. This also uses the ideas of using
positions in a list (rather than the colours themselves), criticality and starting with the
non-heavy children described in the previous section. However, we need to take the idea of
first processing “less heavy” children even further.

The main idea is to store the colour c that we are trying for a vertex v using the position
pj of c in some list Lj(v), and to reduce the size of the list (and therefore the storage
requirement of pj) before we process “heavier” children of v. There are two key elements:

We can recompute c from pj in O(log n) space. This is useful, since we can do a recursive
call while only having pj (rather than c) as overhead, discover some information, and
then recompute c only at a point where we have a lot of memory available to us again.
The space used for pj will depend on the size of the tree that we process. It is too expensive
to consider all sizes separately, and therefore we will “bracket” the sizes. Subtrees whose
size falls within the same bracket are processed in arbitrary order. For example, we put
all trees of size O(

√
n) in a single bracket: these can be processed while using O(log n)

bits of information about c (which is trivially possible). At some point we reach brackets
for which the subtrees have size linear in n, say of size at least 1

4 n. Then, we may only
keep a constant number of bits of information about c. Intuitively, this is possible because
at most four children of r can have a subtree of size ≥ 1

4 n, so the “remaining degree” of
v is small. In particular, if more than six colours for v work for all smaller subtrees, then
v is “non-critical”.

We first explain our brackets in Section 4.1. We then explain how we may point to a colour
using less memory in Section 4.2 and how we keep track of vertices using less memory in
Section 4.3. We then sketch the proof of Theorem 1 by outlining the algorithm and its space
analysis in Section 4.4.

4.1 Brackets
Recall that we fixed a root for T in an arbitrary but deterministic fashion.

Let v ∈ V (T ) and u the heavy child of v. Let Gv = Tv − Tu and nv = |V (Tv)|. Each
subtree T ′ of Gv − v is rooted in a non-heavy child of v and will be associated to a bracket
based on |V (T ′)|. By Observation 7, 1 ≤ |V (T ′)| ≤ (nv − 1)/2. Let Mv = ⌈log log(nv/2)⌉.
The brackets are given by the sets of integers in the intervals

[1, nv/22Mv−1
), [nv/22Mv−1

, nv/22Mv−2
), . . . , [nv/256, nv/16), [nv/16, nv/4), [nv/4, nv/2).

There are Mv brackets: [nv/22j

, nv/22j−1) is the jth bracket for j ∈ {1, . . . , Mv − 1} and
[1, nv/22Mv−1) is the Mvth bracket. Note that nv/22Mv−1 = O(√nv). This implies that while
doing a recursive call on a tree in the Mvth bracket, we are happy to keep an additional
O(log nv) bits in memory.

We aim to show that for some universal constant C, when doing a recursive call on a tree
in the jth bracket, we can save all counters relevant to the current call using at most C2j

bits (which depending on the value of j, could be Ω(log n)). In our analysis, we save the
counters in a new read-only part of the work tape. The recursive call cannot alter this (and
will have to work with less space on the work space). We can then use our saved state to
continue with our calculations once the recursive call finishes.

We short-cut M = Mv for legibility; the dependence of M on v is only needed to ensure
that we do not start storing counters for lots of empty brackets when nv is much smaller
than n, and can be mostly ignored.

ESA 2022



24:8 List Colouring Trees in Logarithmic Space

4.2 The information pj stored about a colour c

Let v ∈ V (T ) with heavy child u and c ∈ L(v). Recall that Gv = Tv − Tu. We will loop over
j = M, . . . , 0 and consider subtrees of Gv whose size falls in the jth bracket in an arbitrary,
but deterministic order (e.g. using the natural order on their roots). When j decreases, we
will perform recursions on larger subtrees of Gv − v and can therefore keep less information
about c. We first define “implicit” lists.

Set LM (v) = L(v).
For j ∈ [0, M − 1], let Lj(v) be the set of colours α ∈ L(v) such that all subtrees T ′ of
Gv − v with |V (T ′)| < n/22j can be coloured without giving the colour α to the root of
T ′ (so that v may receive colour α according to those subtrees).

Note that Lj(v) = L(v) if there are no subtrees T ′ with |V (T ′)| < n/22j . Since the subtrees
associated to brackets 1, . . . , j have size at least n/22j , there can be at most 22j of them. If
|Lj(v)| ≥ 22j + 3 and all subtrees T ′ of Gv − v can be coloured, then v is “non-critical”: after
the parent and heavy child of v have been coloured, the colouring can always be extended to
v and the rest of Gv.

Suppose we are testing if we can give colour c to v. If c ̸∈ Lj(v), then we may reject:
c is not a good colour for one of the subtrees. We define pj = pj(c, v) as the integer
x ∈ {1, . . . , |Lj(v)|} such that the xth element in Lj(v) equals c. In particular, pM is the
position of the colour c in the list LM (v) = L(v) and p0 gives the position of c in the list of
colours for which all subtrees of Gv allow v to receive c. For j < M , we will reserve at least
log(22j + 3) bits for pj . This is possible, because we can maintain that |Lj(v)| ≤ 22j + 2 by
going into a “non-critical subroutine” if we discover the list is larger.

4.3 Position of the current vertex

Next, we describe how to obtain efficient descriptions of the vertices in the tree. When
performing recursions, we find it convenient to store information using which we can retrieve
the “current vertex” of the parent call. Therefore, we require small descriptions for such
vertices if the call did not make much “progress”.

For any v ∈ V (T ), define a sequence h(v, 1), h(v, 2), . . . of heavy descendants as follows.
Let h(v, 1) = v. Having defined h(v, i) for some i ≥ 1, if this is not a leaf, we let h(v, i + 1) be
the heavy child of h(v, i). Note that given the vertex h(v, i), we can find the vertex h(v, i + 1)
(or conclude it does not exist) in O(log n) space. We give a deterministic way of determining
a bit string pos(v, i) that represents h(v, i), where the size of the bit string will depend on
the “progress” made at the vertex h(v, i) that it represents. This “progress” is measured by
the size ti of the largest subtree T ′ of a non-heavy child of h(v, i), that is, T ′ is the largest
component of T − h(v, i) which does not contain h(v, j) for j ̸= i. We define pos(v, i) as
follows.

Let j be given such that ti ∈ [nv/22j

, nv/22j−1). Start pos(v, i) with j zeros, followed by
a 1.
There are at most 22j values of i for which ti ≥ 22j . We add a bit string of length 2j

to pos(v, i), e.g. the value x for which h(v, i) is the xth among h(v, 1), . . . , h(v, a) with
ti ∈ [nv/22j

, nv/22j−1).
Note that, given v, we can compute pos(v, i) from h(v, i) and h(v, i) from pos(v, i) using
O(log n) space. If we do a recursive call, it will be on a non-heavy child u of some h(v, i).
By definition, |V (Tu)| ≤ ti and pos(v, i) depends on ti in a way that we are able to keep it
in memory while doing the recursive call.
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We use the encoding (pos(v∗, i), j, ℓ) for the ℓth child u of h(v∗, i) whose subtree has a
size that falls in the jth bracket. We can also attach another such encoding, e.g.

((pos(v∗, i), j, ℓ), (pos(u, i′), j′, ℓ′)),

to keep track of u and the ℓ′th child v of h(u, i′) whose subtree has a size that falls in the
j′th bracket. We can retrieve v from the encoding above in O(log n) space and therefore can
retrieve it whenever we have such space available to us.

4.4 Description of the algorithm
During the algorithm, the work tape will always start with the following.

r: the recursion depth r written in unary. At the start, r = 0.
pos = pos0| · · · |posr: encodes vertices as described Section 4.3. At the start, this is
empty and points at the root v∗ of the tree on the input tape.
p = p0| . . . |pr: encodes colour restriction information for the vertices encoded by pos.
At the start, this is empty and no restrictions are given. We maintain throughout the
algorithm that pi gives us colour restrictions for the vertex v pointed at by posi. The
restriction can either be “no restrictions” or “avoid c′’; in the latter case pi contains a
tuple (j, p′

j) with p′
j the position of c′ in Lj(v′), where v′ is the parent of v.

aux = aux0| . . . |auxr: further auxiliary information for parent calls that may not be
overwritten.

We define a procedure process. While the value of r equals r, the bits allocated to
posi, pi, auxi for i < r will be seen as part of the read-only input-tape. In particular, the
algorithm will not make any changes to posi, pi or auxi for any i < r, but may change the
values for i = r.

We will only increase r when we do a recursive call. If during the run of the algorithm
r = r and a recursive call is placed, then we increase r to r + 1 and return to the start of
our instructions. However, since r has increased it will now see a “different input tape”.
When the call finished, we will decrease r back to r and wipe everything from the work space
except for r, posi, pi, auxi for i ≤ r, and the answer of the recursive call (0 or 1). We then
use auxi to reset our work space and continue our calculations.

We will ensure that r is always upper bounded by log n. Indeed, the vertex vr encoded
by posr will always be a non-heavy child of a descendant of the vertex encoded by posr−1.

While r = r, the algorithm is currently doing calculations to determine whether the
vertex v pointed at by posr−1 (v∗ for r = 0) has the property that Tv can be list coloured,
while respecting the colour restrictions encoded by pr−1 (none if r = 0). Recall that rather
than writing down v explicitly, we use a special encoding from which we can recompute v

whenever we have C log n space available on the work tape (for some universal constant C).
Similarly, pr−1 may give a position p′

j in Lj(v′) for some j < M (for v′ the parent of v), and
we may need to use our current work tape to recompute the corresponding position p′

M of
the colour in L(v′), so that we can access the colour from the input tape. This part will
make the whole analysis significantly more technical.

We define an algorithm which we call process as follows. A detailed outline is given in
the full version [3], whereas an informal description of the steps is given below.
0. Let v be the vertex pointed at by posr. We maintain that at most one colour c′ has been

encoded that v must avoid. Handle the case in which v is a leaf. If not, it has some heavy
child h. We go to 1, which will eventually lead us to one of the following (recall that
Gv = Tv − Th):
(rej) There is no list colouring of Gv avoiding c′ for v. We return false.
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(nc) The vertex v can get two colours (unequal to c′) in list colourings of Gv. In this
case, we say v is non-critical. We update posr to h, set pr to “none” and repeat from
0.

(cr) There is a unique colour c ̸= c′ that works. Then {c} ⊆ L0(v) ⊆ {c, c′} and so can
represent p0 = p0(c, v) with a single bit. We update posr to h, update pr to (0, p0)
and repeat from 0.

1. We check that all subtrees can be coloured if we do not have any colour restrictions
(necessary for the non-critical subroutine). This involves recursive calls on process where
we have no colour constraint on the root of the subtree.

2. We verify that L0(v) is non-empty. We iteratively try to compute pM from p0 = 1 via
p1, . . . , pM−1. Starting from p0 = 1 and j = 0, we compute pj+1 from pj as follows.

(i) Initialise currj = 1. This represents a position in Lj(v) (giving the number of
“successes”).
Initialise prevj = 1. This represents a position in Lj+1(v) (giving the number of
“tries”).

(ii) We check whether the prevjth colour of Lj+1(v) works for the trees in the jth
bracket. This involves a recursive call on process for each tree T ′ in the jth bracket,
putting (j + 1, prevj) as the colour constraint for the root of T ′. (The colour
restriction gives a position in Lj+1(v); we do not store the corresponding colour
and rather will recompute it in the recursive call!)

(iii) If one of those runs fails, we increase prevj ; if this is now > 22j+1 + 3, then this
implies a lower bound on |Lj+1(v)| which allows us to move to (nc).
If currj < pj we increase both currj and prevj .
Once currj = pj , we have succesfully computed pj+1 = prevj and continue to
compute pj+2 if j + 1 < M . Otherwise we repeat from (ii).

Once we have pM , we can access the corresponding colour from the input tape by looking
at the pM th colour of L(v). If pM > |L(v)|, we go to (rej).

3. We verified |L0(v)| ≥ 1. We establish whether |L0(v)| ≥ 3 in a similar manner. If so, we
can go to (nc); else we need to start considering the colour constraints of the parent v′ of
v. Note that we can use auxr to store auxiliaries such as α = |L0(v)| ∈ {1, 2}.
It remains to explain how we check whether the first or second colour from L0(v) satisfies
the colour constraint from v′. Suppose a colour c′ has been encoded via the position p′

j′

of c′ in Lj(v′) for some j′ ∈ [0, M ′] (where M ′ = Mv′).
We can recompute p′

M ′ from p′
j in a similar manner to the above. However, once we store

p′
M ′ , we may no longer be able to compute pM from p0 = 1 or p0 = 2, since p′

M ′ may
take too much space3. Therefore, we first recompute pj′ from p0 and then simultaneously
recompute pj′+1 from pj′ and p′

j′+1 from p′
j′ until we computed pM and p′

M ′ . We then
check whether the pM th colour of L(v) equals c′, the p′

M ′th colour of L(v′). (It may be
that M ̸= M ′, meaning that we may finish one before the other.)
The computation of p′

x+1 from p′
x for the parent v′ of v is a bit more complicated if v is

a non-heavy child of v′. In this case, v is in the (j′ − 1)th bracket of v′. The algorithm
calls again on itself for subtrees in the xth bracket of v′, but now we see a resulting call
to process as a same-depth call rather than a “recursive call”. The computations work
the same way, but we do not adjust r and will add the current state from before the call
in auxr.

3 This is one of the issues that made this write-up more technical and involved than one might expect
necessary at first sight; if we do a recursion on a child in the jth bracket of v or v′, then we are only
allowed to keep O(2j) bits on top of the space used by the recursion. This means we cannot simply
keep p′

M ′ in memory if j is much smaller than M ′.
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By an exhaustive case analysis, the algorithm computes the right answer. It remains to argue
that it terminates and runs in the correct space complexity.

We first further explain the same-depth calls on process. When we make such call, we do
not adjust r. When the call is made, posr will encode a vertex v1 which is a non-heavy child
of v′. After the call, posr will point to some other non-heavy child v2 of v′. Importantly,
the bracket of v2 will always be higher than the bracket of v1, so that at most M such
same-depth calls are made before changing our recursion level. Each same-depth call may
stack on a number of auxiliary counters which we keep track of using auxr; since for each j,
there is at most one vertex from the jth bracket which may append something to this, it
suffices to ensure a vertex from bracket j adds at most C2j bits. Indeed, this ensures that
the size of auxr takes at most C

∑j′

j=1 2j ≤ C2j′+1 = O(2j′) bits once posr encodes a vertex
from bracket j′.

We now argue that it terminates. Each time we do a same depth call, the value of
the bracket j will increase by at least one. We therefore may only do a finite number of
same-depth calls in a row. When r = 0, each time we reach (nc) or (cr), we move one
step on the heavy path from the root to a leaf, so this will eventually terminate. A similar
observation holds for r > 0 once we fix pos1| . . . |posr−1: this points to some vertex v and
posr will initially point to a non-heavy descendent u or v, and then “travel down the heavy
path” from u to a leaf.

We next consider the space used by the algorithm. Let S(n) be the largest amount of
bits used for storing r, pos, p and aux during a run of process on an n-vertex tree. We
can distribute our work space into two parts: C1 log n space for temporary counters and for
doing calculations such as computing the heavy child of a vertex, and S(n) bits for storing
r, pos, p and aux. It suffices to prove that S(n) ≤ C2 log n; this is the way we decided to
formalise keeping track of the “overhead” caused by recursive calls.

Note that r is bounded by log n if the input tree has n vertices: each time it increases,
we moved to a non-heavy child whose subtree consists of at most n/2 vertices.

Suppose we call process with pos pointing at some vertex v whose subtree has size nv.
We will show inductively that the number of bits used by pos, p and aux is in O(log nv)
throughout this call (note that nv may be much smaller than n, the number of vertices of
the tree on the input tape). Whenever we do a recursive call, this will be done on a tree
whose size is upper bounded by nv/22j−1 for some 1 ≤ j ≤ M = ⌈log log(nv/2)⌉. Since by
induction the recursive call requires only

S(n/22j−1
) = C2 log(n/22j−1

) ≤ S(n) − C22j−1

additional bits, we will allow ourselves to add at most C22j−1 bits to r, pos, p and aux before
we do a recursive call that divides the number of vertices by at least 22j−1 . The constant C2
will be relatively small (for example, 1000 works).

Fix a value of j. From the definitions in Section 4.2 and 4.3, at the point that we do a
recursion on a subtree whose size is upper bounded by nv/22j−1 , posr and pr store at most
three integers (they are of the form (pos(v′, i), j, ℓ) and (x, px) respectively) that are bounded
by 22j + 3. Therefore, these require at most C ′2j−1 bits for some constant C ′ (e.g. C ′ = 50
works).

The worst case comes from auxr which may get stacked up on by the “same-depth calls”.
There is at most one such same-depth call per x ∈ {1, . . . , j}. For such x, we add on a bounded
number of counters (e.g. currx and prevx) which can take at most 22x+1 + 3 ≤ 2 · 22x+1

values. Since C
∑j

x=1 2x ≤ 4C2j−1, auxr also never contains more than O(2j−1) bits while
doing a call on a tree whose size falls in bracket j.
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5 Graphs of bounded tree-partition-width

5.1 Proof of Corollary 2
Here we sketch the proof of Corollary 2. Let (T, (Xt)t∈V (T )) be a tree-partition of width k

for an N -vertex graph G, where it will be convenient to write n = |V (T )| ≤ N . We prove
that there is an algorithm running in O(k log k log n) space, for each k by induction on n.

We root T in the vertex of lowest index. We define the recursion depth, heavy children,
the brackets, M and “position” for the vertices in T exactly as we did in Section 4.

Suppose pos points at some vertex t ∈ V (T ). We aim to use O(k log k log(22j )) bits
for the information pj stored about the colouring c of the vertices in Xt while processing
subtrees in bracket j. This is done as follows. For t ∈ V (T ), let Gt,j be the graph induced
on the vertices that are either in Xt or in Xs for s a non-heavy child of t in bracket j or
above. For v ∈ Xt, we define Lj(v) to be the list of colours α ∈ L(v) such that there is a
list colouring of Gt,j that assigns the colour α to v. There are at most 22j subtrees of T

associated to brackets 1, . . . , j, and so these include at most k22j neighbours of v. Therefore,
if |Lj(v)| ≥ k(22j + 3), then G can be list coloured if and only if G − v can be list coloured
and we no longer need to keep track of the colour of v. We then establish v is non-critical.
We use k bits to write for each vertex of Xt whether or not it has been established to be
critical, and for those vertices that are critical, we use log(k(22j + 3)) bits per vertex to index
a colour from Lj(v).

We use k+log((3k)k) = O(k log k) bits of information in aux to keep track of the following.
For each v ∈ Xt, whether or not v has been established to be critical. After processing t,
the vertex v ∈ Xt will be critical if there are at most 3k colours in L(v) for which there
exists an extension to Gt. Let Ct ⊆ Xt denote the critical vertices.
For each p0 ∈

∏
v∈Ct

L0(v) (of which there are at most (3k)k), a single bit which indicates
whether or not the parent of t would allow the corresponding colouring.

While computing the information above, we still need the auxiliary information from the
parent of t, but we can discard this by the point we start processing the heavy child of t.

We make two more small remarks:
We need to redefine what we mean by “increasing” pj for some j, since we now work
with a tuple of list positions. We fix an arbitrary but deterministic way to do this, for
example in lexicographical order using the natural orders on the vertices and colours.
When we check whether the colouring c of Xt corresponding to p0 ∈

∏
v∈Ct

L0(v) is
allowed by the parent t′ of t, we run over p′

0 ∈
∏

v′∈Ct′ L0(v′), and as before we need to
compute pi, p′

i from pi−1, p′
i−1 iteratively until we obtain the colourings corresponding

to pM and p′
M . If those colourings are compatible, then we know that there is a list

colouring of the graph “above t” for which Xt is coloured “according to p0”, and so we
record in aux that p0 is allowed.

The calculations in the space analysis work in the exact same way: we simply multiply
everything by Ck log k (for a universal constant C).

5.2 W[1]-hardness
We give an easy reduction for the following result.

▶ Theorem 8. List Colouring parameterised by the width of a given tree-partition is
W[1]-hard.

Proof. We reduce from Multicoloured Clique.
Consider a Multicoloured Clique instance G = (V, E), V1, . . . , Vk with k ≥ 2 colours.

We denote by G = (V, E) the complement of G.
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We now describe the construction of our instance graph H . We first add vertices v1, . . . , vk,
with lists L(vi) = Vi for all i ∈ [k]. Then for each edge e = uv ∈ E we add a vertex xuv with
list L(xuv) = {u, v}. Furthermore, for α ∈ {u, v}, let i be such that α ∈ Vi. We add the edge
xuvvi.

The resulting graph has tree-partition-width at most k: we put v1, . . . , vk in the same
bag which is placed at the centre of a star, and create a separate leaf bag containing xuv for
each uv ∈ E.

▷ Claim 9. If there is a proper list colouring of H , then there is a multicoloured clique in G.

Proof. Suppose that H admits a list colouring. Let ai ∈ Vi = L(vi) be the colour assigned to
vi for all i ∈ [k]. We will prove a1, . . . , ak forms a multicoloured clique in G.

Consider distinct i, j ∈ [k] and suppose aiaj is not an edge of G, that is, aiaj ∈ E. Then
there exists a vertex xaiaj

adjacent to both vi and vj , but there is no way to properly colour
it, a contradiction. So we must have aiaj ∈ E as desired. ◁

▷ Claim 10. If there is a multicoloured clique in G, then there is a proper list colouring
of H.

Proof. We denote by a1, . . . , ak the vertices of the multicoloured clique, where ai ∈ Vi for
all i. We assign the colour ai to vertex vi. Consider now xuv for some uv ∈ E. Let i and
j be given so that xuv is adjacent to vi and vj . Then {u, v} ̸= {ai, aj} since aiaj ∈ E and
uv ∈ E. Therefore, we may assign either u or v (or both) as colour to xuv. ◁

Since Multicoloured Clique is W[1]-hard, this proves that List Colouring paramet-
erised by tree-partition-width is W[1]-hard. ◀

We remark that the above proof also shows that List Colouring parameterised by vertex
cover is W[1]-hard.

6 Conclusion

In this paper, we combined combinatorial insights and algorithmic tricks to give a space-
efficient colouring algorithm.

By combining Logspace Bodlaender’s theorem [14], Lemma 5 and Lemma 4, List Col-
ouring can be solved non-deterministically on graphs of pathwidth k in O(k log n) space
and on graphs of treewidth k in O(k log2 n) space.4 However, we already do not know the
answer to the following question.

▶ Problem 11. Can a non-deterministic Turing machine solve List Colouring for n-vertex
graphs of treewidth 2 using o(log2 n) space?

Another natural way to extend trees is by considering graphs of bounded treedepth. Such
graphs then also have bounded pathwidth (but the reverse may be false). It has been
observed for several problems such as 3-Colouring and Dominating Set that “dynamic
programming approaches” (common for pathwidth or treewidth) require space exponential
in the width parameter, whereas there is a “branching approach” with space polynomial in

4 First compute a tree decomposition (T, (Bt)t∈V (T )) of width k for G in O(log n) space [14], and then
compute a (not necessarily optimal) path decomposition of width O(log |V (T )|) in O(log n) space for
T , and turn this into a path decomposition for G of width O(k log n) by replacing t ∈ V (T ) with the
vertices in its bag Bt. Then use Lemma 4.
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treedepth [6]. A simple branching approach also allows List Colouring to be solved in
O(k log n) space on n-vertex graphs of treedepth k. We wonder if the approach in our paper
can be adapted to improve this further.

▶ Problem 12. Can List Colouring be solved in f(k)g(n) + O(log n) space on graphs of
treedepth k, with g(n) = o(log n) and f a computable function?

Another interesting direction is what the correct complexity class is for List Colouring
parameterised by tree partition width. We do not expect this to be in the W-hierarchy
because the required witness size seems to be too large. Moreover, the conjecture [23,
Conjecture 2.1] mentioned in the introduction together with Corollary 2 would imply that
the problem is not XNLP-hard.

Finally, it would be interesting to study other computational problems than List Col-
ouring. We remark that our results are highly unlikely to generalise to arbitrary Constraint
Satisfaction Problems. Recall that there is conjectured to be a k∗ ∈ N for which List Col-
ouring requires ω(log n) space for n-vertex graphs of treewidth k∗. Since List Colouring
on n-vertex graphs of treewidth at most k∗ can be reduced in logspace to a CSP on at most
n variables, each having a lists of size at most nk∗ , and binary constraints on the variables,
such CSP problems would then also require ω(log n) space since k∗ is a constant.

References
1 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng

Tang. Width-parametrized SAT: Time–space tradeoffs. Theory of Computing, 10:297–339,
2014. doi:10.4086/toc.2014.v010a012.

2 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

3 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. List colouring trees in logarithmic
space. arXiv, CoRR(2206.09750), 2022. doi:10.48550/ARXIV.2206.09750.

4 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
pages 193–204, 2021. doi:10.1109/FOCS52979.2021.00027.

5 Hans L. Bodlaender, Carla Groenland, and Céline M. F. Swennenhuis. Parameterized complex-
ities of dominating and independent set reconfiguration. In Petr A. Golovach and Meirav Zehavi,
editors, Proceedings 16th International Symposium on Parameterized and Exact Computation,
IPEC 2021, volume 214 of LIPIcs, pages 9:1–9:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.9.

6 Li-Hsuan Chen, Felix Reidl, Peter Rossmanith, and Fernando Sánchez Villaamil. Width, depth,
and space: Tradeoffs between branching and dynamic programming. Algorithms, 11(7):98,
2018. doi:10.3390/a11070098.

7 Yijia Chen, Jörg Flum, and Martin Grohe. Bounded nondeterminism and alternation
in parameterized complexity theory. In Proceedings 18th Annual IEEE Conference on
Computational Complexity, CCC 2003, pages 13–29. IEEE Computer Society, 2003. doi:
10.1109/CCC.2003.1214407.

8 Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner.
Planar graph isomorphism is in log-space. In Proceedings 24th Annual IEEE Conference
on Computational Complexity, CCC 2009, pages 203–214. IEEE Computer Society, 2009.
doi:10.1109/CCC.2009.16.

9 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics.
Springer, 2012.

10 Guoli Ding and Bogdan Oporowski. Some results on tree decomposition of graphs. J. Graph
Theory, 20(4):481–499, 1995. doi:10.1002/jgt.3190200412.

https://doi.org/10.4086/toc.2014.v010a012
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.48550/ARXIV.2206.09750
https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.4230/LIPIcs.IPEC.2021.9
https://doi.org/10.3390/a11070098
https://doi.org/10.1109/CCC.2003.1214407
https://doi.org/10.1109/CCC.2003.1214407
https://doi.org/10.1109/CCC.2009.16
https://doi.org/10.1002/jgt.3190200412


H. L. Bodlaender, C. Groenland, and H. Jacob 24:15

11 Guoli Ding and Bogdan Oporowski. On tree-partitions of graphs. Discret. Math., 149(1-3):45–
58, 1996. doi:10.1016/0012-365X(94)00337-I.

12 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
13 László Egri, Pavol Hell, Benoît Larose, and Arash Rafiey. Space complexity of list H -colouring:

A dichotomy. In Chandra Chekuri, editor, Proceedings 25th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, pages 349–365. SIAM, 2014. doi:10.1137/1.9781611973402.
26.

14 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of
Bodlaender and Courcelle. In Proceedings 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2010, pages 143–152. IEEE Computer Society, 2010. doi:
10.1109/FOCS.2010.21.

15 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

16 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful problems
parameterized by treewidth. Inf. Comput., 209(2):143–153, 2011. doi:10.1016/j.ic.2010.
11.026.

17 Naveen Garg, Marina Papatriantafilou, and Philippas Tsigas. Distributed list coloring: How to
dynamically allocate frequencies to mobile base stations. In Proceedings 8th IEEE Symposium
on Parallel and Distributed Processing, SPDP 1996, pages 18–25. IEEE Computer Society,
1996. doi:10.1109/SPDP.1996.570312.

18 Sylvain Gravier, Daniel Kobler, and Wieslaw Kubiak. Complexity of list coloring problems
with a fixed total number of colors. Discrete Applied Mathematics, 117(1-3):65–79, 2002.

19 Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete Applied
Mathematics, 75(2):135–155, 1997. doi:10.1016/S0166-218X(96)00085-6.

20 Shiva Kintali and Sinziana Munteanu. Computing bounded path decompositions in logspace.
Electron. Colloquium Comput. Complex. (ECCC), page 126, 2012. URL: https://eccc.
weizmann.ac.il/report/2012/126.

21 Jan Kynčl and Tomáš Vyskočil. Logspace reduction of directed reachability for bounded genus
graphs to the planar case. ACM Trans. Comput. Theory, 1(3), 2010. doi:10.1145/1714450.
1714451.

22 Steven Lindell. A logspace algorithm for tree canonization (extended abstract). In Proceedings
24th Annual ACM Symposium on Theory of Computing, STOC 1992, STOC ’92, pages 400–404,
New York, NY, USA, 1992. Association for Computing Machinery. doi:10.1145/129712.
129750.

23 Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018. doi:10.1145/
3154856.

24 Krishna N. Ramachandran, Elizabeth M. Belding-Royer, Kevin C. Almeroth, and Milind M.
Buddhikot. Interference-aware channel assignment in multi-radio wireless mesh networks. In
Proceedings 25th IEEE International Conference on Computer Communications, INFOCOM
2006, pages 1–12. IEEE Computer Society, 2006. doi:10.1109/INFOCOM.2006.177.

25 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008. doi:10.1145/
1391289.1391291.

26 Detlef Seese. Tree-partite graphs and the complexity of algorithms. In Lothar Budach,
editor, Proceedings 5th International Conference on Fundamentals of Computation Theory,
FCT 1985, volume 199 of Lecture Notes in Computer Science, pages 412–421. Springer, 1985.
doi:10.1007/BFb0028825.

27 David R. Wood. On tree-partition-width. Eur. J. Comb., 30(5):1245–1253, 2009. doi:
10.1016/j.ejc.2008.11.010.

ESA 2022

https://doi.org/10.1016/0012-365X(94)00337-I
https://doi.org/10.1137/1.9781611973402.26
https://doi.org/10.1137/1.9781611973402.26
https://doi.org/10.1109/FOCS.2010.21
https://doi.org/10.1109/FOCS.2010.21
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1109/SPDP.1996.570312
https://doi.org/10.1016/S0166-218X(96)00085-6
https://eccc.weizmann.ac.il/report/2012/126
https://eccc.weizmann.ac.il/report/2012/126
https://doi.org/10.1145/1714450.1714451
https://doi.org/10.1145/1714450.1714451
https://doi.org/10.1145/129712.129750
https://doi.org/10.1145/129712.129750
https://doi.org/10.1145/3154856
https://doi.org/10.1145/3154856
https://doi.org/10.1109/INFOCOM.2006.177
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1007/BFb0028825
https://doi.org/10.1016/j.ejc.2008.11.010
https://doi.org/10.1016/j.ejc.2008.11.010




Dynamic Coloring of Unit Interval Graphs with
Limited Recourse Budget
Bartłomiej Bosek #

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University in Kraków, Poland

Anna Zych-Pawlewicz1 #

University of Warsaw, Poland

Abstract
In this paper we study the problem of coloring a unit interval graph which changes dynamically.
In our model the unit intervals are added or removed one at the time, and have to be colored
immediately, so that no two overlapping intervals share the same color. After each update only a
limited number of intervals are allowed to be recolored. The limit on the number of recolorings per
update is called the recourse budget. In this paper we show, that if the graph remains k-colorable at
all times, the updates consist of insertions only, and the final instance consists of n intervals, then
we can achieve an amortized recourse budget of O(k7 log n) while maintaining a proper coloring
with k colors. This is an exponential improvement over the result in [10] in terms of both k and n.
We complement this result by showing the lower bound of Ω(n) on the amortized recourse budget in
the fully dynamic setting. Our incremental algorithm can be efficiently implemented.

As an additional application of our techniques we include a new combinatorial result on coloring
unit circular arc graphs. Let L be the maximum number of arcs intersecting in one point for some
set of unit circular arcs A. We show that if there is a set A′ of non-intersecting unit arcs of size
L2 − 1 such that A ∪ A′ does not contain L + 1 arcs intersecting in one point, then it is possible to
color A with L colors. This complements the work on circular arc coloring [4, 30, 31], which specifies
sufficient conditions needed to color A with L + 1 colors or more.
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1 Introduction

In this paper we study dynamic algorithms for the graph coloring problem. The setting
we focus on is as follows. We are given a graph G, which is modified over time by vertex
insertions or vertex deletions, where vertices are inserted (or deleted) together with all the
adjacent edges connecting them to the vertices that are already present in G. For a positive
integer k, a proper k-coloring of a graph is an assignment of colors in {1, . . . , k} to the
vertices of the graph in such a way that no two adjacent vertices share a color. We say that
a graph admitting such an assignment is k-colorable. In the dynamic setting, the ultimate
goal is to design an algorithm, that (for some given l ⩾ k) efficiently maintains the proper
l-coloring on a dynamically changing k-colorable graph G.
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Dynamic graph coloring is a fundamental problem in computer science and as such it
has received a lot of attention in the literature. Chronologically, dynamic graph coloring
was first considered in a more restricted online setting, where the updates consist of vertex
insertions only, and one is not allowed to change the colors of the previously added vertices.
Many pessimistic lower bounds for online graph coloring have been revealed. In particular,
for general k-colorable graphs, one cannot color the graph online with less then l = n

log2 n
k

colors [18], where n is the number of vertices added to G. This lower bound holds even
for randomized algorithms. Even for trees, which are 2-colorable, one needs l = Ω(log n)
colors [3] in the online model. The situation improves if we consider k-colorable interval
graphs, for which l = 3k − 2 colors are necessary and sufficient in the online model [20]. The
case of unit interval graphs has also been extensively studied, revealing that 2k − 1 colors
suffice and 3k/2 colors are necessary to color a k-colorable unit interval graph online [6, 15].

To go beyond the pessimistic lower bounds imposed by the online model, several settings
were proposed where an algorithm is given more power. The one that received a lot
of attention is the limited recourse budget framework. In this setting the algorithm is
allowed to change a number of past decisions, but there is a limit on the number of such
changes, referred to as the recourse budget. This model has been well established and
successfully applied to a variety of optimization problems, often implying efficient dynamic
algorithms [5, 7, 8, 9, 19, 23, 21, 2, 29, 10]. For the coloring problem that we study, the
recourse budget is the number of vertices that change their color after an addition or removal
of a vertex. Barba et al. apply the recourse budget model to coloring general graphs [2].
They devise two complementary algorithms. For any d > 0, the first (resp. second) algorithm
maintains a k(d + 1)-coloring (resp. k(d + 1)n1/d-coloring) of a k-colorable graph and recolors
at most (d + 1)n1/d (resp. d) vertices per update, which is either addition or removal of a
vertex. While the second trade-off was improved in [29], the authors in [2] show that the first
trade-off is tight, and the bad example is a forest. Thus, if one insists on using few colors,
one has to incur a polynomial in n recourse budget on every class of graphs that contains
forests. This pushed the researchers to apply the limited recourse budget model to coloring
interval and unit interval graphs.

For unit interval graphs a very positive result has been obtained. The recoloring budget of
O(k2) (worst case) is sufficient for maintaining a (k + 1)-coloring of a k-colorable graph [10].
It is left open what budget is needed for maintaining an optimal k-coloring for unit interval
graphs, even if we only allow vertex insertions. The lower bound given in [10] is Ω(log n)
(even when updates are only insertions), while the upper bound (which only works for vertex
insertions) is O(k!

√
n) (the same as for general interval graphs). Such a tremendous gap for

such elementary graph class calls for further investigation. The main result of this paper is
that we close this gap up to the factors polynomial in k. To be more precise, we show that
an amortized recourse budget of O(k7 log n) is sufficient to maintain k-coloring under vertex
insertions. This is an exponential improvement over [10] in terms of both n and k. It is fairly
easy to see that our algorithm can be efficiently implemented. We complement this result by
showing that in the fully dynamic setting one must spent an amortized recourse budget of
Ω(n) per update.

It is worth emphasizing, that our results show a fine line between (k + 1)-coloring and
optimal k-coloring of unit interval graphs in the limited recourse budget model. While
(k + 1)-coloring admits an algorithm with the worst case recourse budget of O(k2) in the
fully dynamic setting, we cannot hope (in this setting) for any reasonable recourse budget
for optimal k-coloring, even if we allow amortization. If we restrict to only adding intervals,
we get the amortized recourse budget of O(k7 log n) and Ω(log n) is the lower bound. The
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incremental setting is interesting by itself, as it generalizes the online model (where the
recourse budget is zero and only insertions are allowed). In other words, we show that if in
the online model we allow a modest number of O(k7 log n) recolorings per update, we can
get down from 3k/2 to the optimum number k of colors. Our result is not only motivated by
the online model, but also fits nicely in the recent line of research related to parameterized
dynamic algorithms [1, 14, 12], with k being the parameter.

The techniques we develop to obtain our main result seem applicable to a wider range
of problems. In particular, we apply one of our techniques to the problem of coloring unit
circular arc graphs. We obtain a combinatorial result that nicely fits into the related line of
research. Imagine that L is the maximum number of arcs intersecting in one point for some
set of unit circular arcs A. We show that if there is a set A′ of non-intersecting unit arcs
of size L2 − 1 such that A ∪ A′ does not contain L + 1 arcs intersecting in one point, then
it is possible to color A with L colors. This complements the work on circular arc coloring
[4, 30, 31], which specifies sufficient conditions needed to color A with L + 1 colors or more.

The remainder of the paper is organized as follows. In Section 2 we provide basic
definitions related to interval graphs and unit interval graphs, together with some elementary
algorithms that solve the coloring problem for static instances of those graphs. In Section 3
we provide an overview of our results and techniques. Due to space limitations, we only
sketch the proofs in Section 3, skipping most of technical details. The full proofs can be found
in the full version of the paper [11]. We conclude with Section 4 in which we discuss some
properties and extensions of our main result. In particular, we discuss the implementation of
our incremental algorithm and its actual running time (which is amortized O(k7 log n) per
interval insertion). We also discuss extending our incremental algorithm to changing values
of k, and finally we briefly discuss why our main result does not easily extend to general
interval graphs. We end Section 4 with the problems that we leave open.

2 Preliminaries

We consider in this paper closed-open intervals I = [x, y) for some x, y ∈ R, x < y. Note
that this causes no loss in generality, as closed-open intervals induce the same class of graphs
as open-closed, closed-closed and open-open intervals (see [13, 26]). For an interval I we
define operators x(I) def= x and y(I) def= y for accessing the begin and the end coordinate. A
multiset of intervals can be interpreted as a graph: the intervals are interpreted as vertices,
which are adjacent if and only if the corresponding intervals intersect. Graphs obtained
in this way are called interval graphs. The coloring related definitions stated in the first
paragraph of Section 1 directly translate to multisets of intervals interpreted as graphs. For
a multiset of intervals I, the function c : I 7→ {1, . . . , k} is a proper k-coloring if for any
I, J ∈ I it holds that c(I) ̸= c(J) if I and J intersect. The chromatic number χ(I) is the
minimum number k for which I admits a proper k-coloring. Similarly we can adapt the
definition of a clique: a multiset of intervals J = {J1, J2, . . . , Jm} is a clique if and only if⋂

J def= J1 ∩ . . . ∩ Jm ̸= ∅, or equivalently maxm
i=1 x(Ji) < minm

i=1 y(Ji). In such case it holds
that

⋂
J = [maxm

i=1 x(Ji), minm
i=1 y(Ji)). We refer to this intersection as span of J , and

denote it as span(J ) def=
⋂

J . To emphasize the size of J we often refer to it as an m-clique.
The clique number ω(I) of a multiset of intervals I is the maximum number m such that I
contains an m-clique. It is well known that interval graphs are perfect, that is:

▶ Lemma 1 (Golumbic [17]). Let I be a multiset of intervals. Then ω(I) = χ(I).
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25:4 Dynamic Coloring of Unit Interval Graphs with Limited Recourse Budget

We introduce two orders ⊏ and < on a multiset of intervals I. For any I, J ∈ I we let
I ⊏ J if x(I) < x(J). If I = J , we solve the tie arbitrarily. Hence, ⊏ is a linear order
on I. We say that I < J if and only if y(I) ⩽ x(J). Hence, < is a linear order only on
independent sets of intervals (i.e., multisets of intervals that are pairwise non-intersecting).
Orders ⊏ and < extend to multisets of intervals in a natural manner. For two multisets of
intervals J and K, we say that J ⊏ K (respectively J < K) if for all J ∈ J , K ∈ K it holds
that J ⊏ K (respectively J < K). For a multiset of intervals I by I = {I1 ⊏ . . . ⊏ Im}
we denote that I = {I1, . . . , Im} and I1 ⊏ . . . ⊏ Im. For an ordered multiset of intervals
I = {I1 ⊏ . . . ⊏ Im} we now define a prefix, a suffix and an infix of I. For Ii, Il ∈ I, l > i

we set prefix⊏I (Ii) = {I1, . . . , Ii}, suffix⊏I (Ii) = {Ii, . . . , Im} and infix⊏I (Ii, Il) = {Ii, . . . , Il}.
We now move on to some basic observations that hold for multisets of unit intervals. An

interval I is unit if and only if y(I) = x(I) + 1.

▶ Observation 2. Let I = {I1 ⊏ . . . ⊏ Im} be a multiset of unit intervals. If ω(I) < m,
then the extremal intervals are disjoint, i.e., I1 < Im.

Proof. Suppose contrary that I1 ∩ Im ̸= ∅, i.e., x(Im) < y(I1) = x(I1) + 1. Then
maxm

i=1 x(Ii) < minm
i=1 y(Ii) and as a consequence

⋂
I ̸= ∅ contradicting ω(I) < m. ◀

For interval graphs there is a simple greedy algorithm, that can be applied to complete
a coloring given on the prefix of the representation ordered by ⊏ [24]. In this paper we
need a more specific but equally simple algorithm which is restricted to unit interval graphs.
The same idea was used for instance to color proper circular arc graphs [25] or to schedule
round-robin tournaments [27]. Since we use it in a different context, we introduce it here
from scratch and we refer to it as the Modulo Color Completion algorithm. Informally,
given some coloring on the prefix of a k-colorable instance, this algorithm looks at the first
k consecutive uncolored intervals (in ⊏ order), and copies the coloring given on the last
k intervals that are colored (respecting the ⊏ order). This proceeds until all intervals are
colored. This simple procedure works given that the coloring that is being copied consists
of all colors from 1 to k. We describe the Modulo Color Completion algorithm more
formally in the following observation, which also proves the corectness.

▶ Observation 3. Let I = {I1 ⊏ . . . ⊏ Im} be a multiset of unit intervals such that ω(I) ⩽ k.
Let k ⩽ l < m and let c : prefix⊏I (Il) 7→ [k] be a proper k-coloring for prefix⊏I (Il) such
that c is a bijection on infix⊏I (Il−k+1, Il). Let c′ : I 7→ [k] (referred to as Modulo Color
Completion ) be defined as follows: c′(Ii)

def= c(Ii) for i ∈ [l] and c′(Il+i)
def= c(Il−k+(i mod k))

for i ∈ [n − l]. Then c′ is a proper k-coloring on I.

Proof. It is clear that c assigns only colors in [k], it remains to prove that it is also a proper
coloring. Let Ii, Ij ∈ I, where i < j and j > l. If j < i + k, then by definition c(Ii) ̸= c(Ij).
Otherwise, |{Ii, Ii+1, . . . , Ij}| ⩾ k + 1, so by Observation 2, Ii ∩ Ij = ∅. ◀

The following observation will be useful to bring the prefix coloring to the state when we can
use the Modulo Color Completion algorithm, i.e., the coloring on the prefix ends with
the bijection.

▶ Observation 4. Let I = {I1 ⊏ . . . ⊏ I2k} be a multiset of unit intervals such that ω(I) ⩽ k

and let c ′ : prefix⊏I (Ik) 7→ [k] be a proper k-coloring on prefix⊏I (Ik). Then there is a proper
k-coloring c : I 7→ [k] such that c(Ii) = c ′(Ii) for i ∈ [k] and c is a bijection on suffix⊏I (Ik+1).

Proof. To construct c, we first set c(Ii) = c ′(Ii) for all i ∈ [k]. Let J = {Il, Il+1, . . . Ik} be
the intervals of prefix⊏I (Ik) that intersect Ik. Thus, J is a (k − l + 1)-clique. We first assign
the l − 1 colors not used by J to the first l − 1 intervals of suffix⊏I (Ik+1). That is we assign
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colors [k] \ c(J ) to intervals infix⊏I (Ik+1, Ik+l−1) in an arbitrary order. We get a proper
coloring since the intervals of infix⊏I (Ik+1, Ik+l−1) do no intersect intervals of prefix⊏I (Ik) other
than J . Finally, we set c(Ii) = c(Ii−k) for i ∈ {k + l, . . . , 2k}. By Observation 2 intervals Ii

and Ii−k do not intersect. This completes the proof. ◀

Observe that Observation 3 and Observation 2 give an alternative to [24] algorithm that
completes the prefix coloring on unit interval graphs. We refer to this algorithm as Greedy
Color Completion (even though we can use the algorithm of [24] instead).

3 Overview of our results and techniques

Our final result is based on new techniques that might be of independent interest. This section
outlines our techniques and gives an overview on how they are combined into obtaining the
final result. Our techniques are encapsulated in Section 3.1 and Section 3.2 as completely
independent results, as we see the potential of applying them to a wider range of problems.
In Section 3.1 we introduce our new technique of color sorting, which allows to solve the
Unit Precoloring Extension problem efficiently under a specific condition that might
naturally appear in a number of applications. In Section 3.2 we introduce the Frogs game
technique, which is a natural generalization of the folklore technique applied for merging sets
in Find-Union like algorithms. We expect the Frogs game technique to be also applicable
to a wider range of problems. Our main application of the color sorting technique and the
Frogs game technique is presented in Section 3.3, where we introduce the Incremental
Unit Interval Recoloring problem and sketch the solution to this problem.

3.1 Color sorting applied to the Unit Precoloring Extension problem
Our first contribution is the color sorting technique, that we apply to the Unit Precoloring
Extension problem. In this problem we are given a k-colorable multiset of unit intervals
I = {I1 ⊏ . . . ⊏ Im}, m > 2k. We are also given a proper k-coloring c′ on prefix⊏I (Ik) (the
first k intervals) and a proper k-coloring c′′ on suffix⊏I (Im−k+1) (the last k intervals). The
problem is to extend c′ and c′′ to a proper l-coloring of I minimizing l.

The Unit Precoloring Extension problem was proven NP-hard [22], moreover, it
is even NP-hard to decide whether one can extend the coloring using l = k colors. In
our application, however, we are only interested in the instances when this is possible, i.e.,
the Unit Precoloring Extension ceases to be NP-hard. We specify a condition on I
under which one can, using the color sorting technique, extend the precoloring to a proper
k-coloring. Our condition essentially requires that there is some slack space between the
colored prefix and the colored suffix, which allows color sorting. By the slack we mean that
we can fit between the prefix and the suffix additional k2 − 1 mutually disjoint unit intervals
without increasing the chromatic number of I. This slack is used to gradually sort the color
permutation given on the prefix to finally obtain the color permutation given on the suffix,
in an insertion sort fashion. The precise result is stated in the following lemma.

▶ Lemma 5 (Precoloring Extension Lemma). Let k be an integer and let I = {I1 ⊏ . . . ⊏ Im}
be a k-colorable multiset of m ⩾ 2k unit intervals. Let c ′ : prefix⊏I (Ik) 7→ [k] and c ′′ :
suffix⊏I (Im−k+1) 7→ [k] be bijections. Let there exist a set of k2 − 1 pairwise non-intersecting
unit intervals L, such that prefix⊏I (Ik) ⊏ L ⊏ suffix⊏I (Im−k+1) and I ∪ L is k-colorable. Then
there is a proper k-coloring c : I 7→ [k] such that c extends both c′ and c′′, i.e., c(Ii) = c′(Ii)
for i ∈ [k] and c(Ii) = c′′(Ii) for i ∈ {m − k + 1, . . . , m}.
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25:6 Dynamic Coloring of Unit Interval Graphs with Limited Recourse Budget

The full proof of Lemma 5 can be found in the full version of the paper [11], Appendix A.

Sketch of proof of Lemma 5. The proof introduces the color sorting technique, which uses
the slack intervals of L to gradually transform the coloring c′ into the coloring c′′, in an
insertion sort like fashion. In order to accomplish that, we modify the instance (by inserting
dummy intervals from L) to allow the color sorting technique to work. We describe this
process first.

We start by assuming that the multiset of unit intervals I is connected as a graph (other-
wise Lemma 5 follows from the Modulo Color Completion algorithm, see Observation 3).
An example instance for which our assumptions hold is pictured in Figure 1.

I1

I2

I3

I4

I5

L1 I6

I7

L2

L3

L4

L5

L6

L7

L8

prefix⊏I (I3)

In−2

In−1

In

suffix⊏I (In−2)

Figure 1 An example illustrating the assumptions of Lemma 5 for k = 3.

We now partition L = {L1 < . . . < Lk2−1} into 2k − 1 sets of unit intervals as follows:
L = L1 ∪ {M1} ∪ L2 ∪ . . . ∪ {Mk−1} ∪ Lk, where Li = {L(i−1)k+1, . . . , Lik−1} for i ∈ [k] and
Mi = Lik for i ∈ [k − 1]. Observe that |Li| = k − 1. Thus, the intervals of the partition are
ordered as follows: prefix⊏I (Ik) ⊏ L1 < {M1} < L2 < . . . < {Mk−1} < Lk ⊏ suffix⊏I (In−k+1).
Next we partition I into k parts: I = I1 ∪ I2 ∪ . . . ∪ Ik, in the way that the following holds:
prefix⊏I (Ik) ⊆ I1 ⊏ {M1} ⊏ I2 ⊏ . . . ⊏ {Mk−1} ⊏ Ik ⊇ suffix⊏I (In−k+1). This partition is
pictured in Figure 2. We now enlarge I by adding to each Ii some dummy intervals. More

I1

I2

I3

I4

I5

L1

L2

L3 =M1

L4

L5

L6 =M2

L′
1

In−2

In−1

In
L′

2 L′
3 =∅

I1
I2 I3

Figure 2 An example illustrating partitioning the intervals, k = 3.

precisely, to each Ii ⊆ I we add a subset L′
i ⊆ Li as to make the number of intervals in

the extension Ji
def= Ii ∪ L′

i a multiple of k (see Figure 2). As a consequence, J def=
⋃k

i=1 Ji

and J1, J2, . . . , Jk satisfy the following (note that since I is connected as a graph, each Ii is
nonempty and thus each Ji is also nonempty):
1. ω(J ∪ {M1, . . . , Mk−1}) ⩽ k,
2. for each i ∈ [k] we have |Ji| = kpi for some pi ∈ N \ {0},
3. prefix⊏I (Ik) ⊆ J1 ⊏ {M1} ⊏ J2 ⊏ . . . ⊏ {Mk−1} ⊏ Jk ⊇ suffix⊏I (In−k+1).

Now, rather than the proper coloring for I, we construct the proper coloring c for J (which
is obviously also proper for I). The construction of c starts by copying colors of c ′, so that c

coincides with c ′ on prefix⊏I (Ik). Let us now consider a block Jj−1 = {Jj−1
0 ⊏ . . . ⊏ Jj−1

sj−1−1},
where (j − 1) ∈ [k], sj−1 = |Jj−1|. Suppose that c is already defined on prefix⊏Jj−1

(Jj−1
k−1)

(the first k intervals of Jj−1). Note that coloring c on prefix⊏Jj−1
(Jj−1

k−1) defines a permutation
of colors. We use the Modulo Color Completion algorithm to copy this permutation
to suffix⊏Jj−1

(Jj−1
sj−1−k) (the last k intervals of Jj−1). This works because k|sj−1. Suppose
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that this permutation already coincides with the permutation given by c ′′ on the last j − 2
positions. We now use the slack given by Mj−1 to define c on prefix⊏Jj

(Jj
k−1) in such a way

that the corresponding permutation agrees with the permutation given by c ′′ on the last j − 1
positions. To be more precise, we apply one step of the insertion sort on the permutation
to bring one more color to the appropriate position, as shown in Figure 3. This is possible
because of the slack given by Mj−1. The intuition is that if we apply Modulo Color
Completion on prefix⊏Jj

(Jj
k−1), then we obtain a proper k-coloring on prefix⊏Jj

(Jj
k−1) that

precisely copies the color permutation from suffix⊏Jj−1
(Jj−1

sj−1−k). On the other hand, if we
apply Modulo Color Completion to {Mj−1} ∪ prefix⊏Jj

(Jj
k−1), then on prefix⊏Jj

(Jj
k−1)

we get the same permutation with all colors shifted down by one, and this is also a proper
coloring. The insertion sort step that we apply (see Figure 3) gives a permutation that
alternates at most twice between the same permutation and the shifted permutation. Also,
the insertion sort step moves one special color (purple in Figure 3) further away than required
by the Modulo Color Completion algorithm. Hence the obtained coloring is proper.

◀

· · ·

Mj−1

Jj−1
sj−1−1

Jj−1
sj−1−2

Jj−1
sj−1−3

Jj−1
sj−1−4

Jj−1
sj−1−5

Jj
4

Jj
3

Jj
2

Jj
1

Jj
0

Jk
sk−1

Jk
sk−2

Jk
sk−3

Jk
sk−4

Jk
sk−5

Figure 3 An insertion sort step, where coloring c is constructed on prefix⊏Jj
(Jj

k−1) for j = 4,
k = 5.

3.2 The Frogs game
Our second contribution is a technique that generalizes a folklore trick typically used in the
analysis of Union-Find data structure. The Set Union problem, where the Union-Find data
structure finds its application, can be thought of as a game. In this game we are initially
given n pairwise disjoint sets of size δ, and the adversary keeps merging consecutive pairs of
sets until there is only one set left. Each time the adversary merges a pair of sets, we incur
the cost equal to the size of the smaller set among the ones being merged (as if we move
all elements of the smaller set to the larger set, one by one). It is clear that the maximum
total cost the adversary can generate is δn log n, as each of δn elements can contribute to
the total cost at most log n times.

The generalization we propose is that the cost we incur with each merging is the sum of
the sizes of κ consecutive sets rather then just one. We sum κ consecutive sizes either to the
left or to the right of the merged pair, whatever turns out cheaper. We show that the total
cost an adversary can generate here is O(δκn log n). We refer to this generalization as the
Frogs game, and we now introduce its formal definition.

▶ Definition 6. We define an instance of a Frogs game as a tuple F = (N, κ, δ, J). There,
N ,κ, and δ are integers, referred to as the size of the game, the jump number, and the initial
rank value respectively. It also holds that κ ⩽ N . Moreover J is a sequence of N − 1 integers
J = (j1, j2, . . . , jN−1), where 1 ⩽ jτ ⩽ N − τ and J is referred to as the jump sequence.
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We now define the cost of the Frogs game.

▶ Definition 7. Let F = (N, κ, δ, J) be an instance of the Frogs game, where J =
(j1, j2, . . . , jN−1). Let R1 = (δ, . . . , δ) be a sequence of length N (R1 is called the ini-
tial rank sequence). Let Rτ+1

def= (rτ,1, . . . , rτ,jτ −1, rτ,jτ
+ rτ,jτ +1, rτ,jτ +2, . . . , rτ,N−τ+1)

(rank sequence Rτ+1 in time τ + 1 is obtained by adding two neighboring ranks in
Rτ placed at positions jτ and jτ + 1). The Frogs cost incurred in time τ is
ςτ

def= min(rτ,jτ−κ+1 + . . . + rτ,jτ , rτ,jτ+1 + . . . + rτ,jτ+κ), where for i < 1 and i > N − τ + 1
we set rτ,i

def= δ. The total cost of the Frogs game F is ς(F) def= ς1 + . . . + ςN−1.

We bound the cost of any Frogs game F using the following theorem.

▶ Theorem 8 (Frogs theorem). For an instance F = (N, κ, δ, J) of the Frogs game we have

ς(F) ⩽ δ(2κ − 1)(N + 2κ − 2) log2
N + 2κ − 2

2κ − 1 .

The Frogs theorem is proved in the full version of the paper [11] in Appendix B. The
technique given by Frogs theorem might be of independent interest. It seems applicable as
a building block to more problems than the one studied further in this paper.

3.3 Incremental Unit Interval Recoloring problem
The main result of this paper is an algorithm for the Incremental Unit Interval
Recoloring problem. We are given a parameter k and a sequence of n unit intervals:
I1, I2, . . . , In such that {I1, . . . , In} is k-colorable. This sequence defines n + 1 multisets of
unit intervals: I0 = ∅ and Ij

def= {I1, . . . , Ij} for j > 0. Instance Ij differs from Ij−1 by one
interval Ij . The goal is to maintain a proper k-coloring on the dynamic instance. To be more
precise, after the interval Ij is presented, the algorithm needs to compute a proper k-coloring
cj for Ij . Our objective is to minimize the recourse budget, which is the number of intervals
with different colors in cj and cj−1. We obtain the following result.

▶ Theorem 9. There is an algorithm for the Incremental Unit Interval Recolor-
ing problem with a total recourse budget of O(k7n log n).

Theorem 9 is formally proved in the full version of the paper [11], Appendix C. Here we
outline how the Precoloring Extension lemma (Lemma 5) and the Frogs theorem (Theorem 8)
are combined to obtain the main result, skipping the technical details that are deferred to
the full proof.

Sketch of the proof of Theorem 9. Let us imagine that a new interval Ij is presented and
we need to provide the coloring cj for Ij . Let us order Ij according to the ⊏ order. Let I

be the direct predecessor (in ⊏ order) of Ij in Ij . Let interval J (R) be the interval of Ij

succeeding I (in ⊏ order) such that between I and J (R) there is room to insert the set L
of k2 − 1 mutually disjoint unit intervals, as required by the Precoloring Extension lemma
(Lemma 5). Let J (L) be an analogous interval preceding I. For simplicity let us assume
that both J (L) and J (R) exist. Based on the Precoloring Extension lemma (Lemma 5), it is
(almost) sufficient to recolor the infix of Ij between I and J (R), or the infix of Ij between
J (L) and I, and it is up to the algorithm which of the two infixes it chooses to recolor. Our
recoloring algorithm basically chooses the infix that is smaller in size and recolors it (although
there are small technical details that make the algorithm a bit more complicated in the end).
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The whole weight of the proof lies now in the analysis, which shows that the size of the
smaller infix is O(k7 log n) in the amortized sense. To prove that we use the Frogs theorem
(Theorem 8), so we need to define the appropriate size N , jump number κ, initial rank
value δ, and the jump sequence J , and all these numbers must strongly relate to what the
recoloring algorithm does. We sketch here the main idea of how we do it. We look at all
k-cliques of the final instance In′ , n′ ∈ O(kn) (the final instance is not In because, for a
technical reason mentioned further, we may be forced to add some dummy intervals after the
whole instance In was presented). Every k-clique is a set of k overlapping intervals, whose
intersection is some (not necessarily unit) interval. So we represent the k-cliques of the final
instance In′ as a set Sn′ of intervals, which are mutually disjoint, and we order them by <

order. This is shown in Figure 4, where at the bottom the intervals of In′ are drown (either
solid black or dashed blue), and above them the corresponding cliques of Sn′ are pictured
(also either solid black or dashed blue).

In′ :

Sn′ : Bj

Figure 4 Example span partition : – intervals of Ij , – intervals of In′ \ Ij (future
intervals), – spans of Sj , – spans of Sn′ \ Sj (future spans), – blocks of
partition Bj , k = 3.

We observe that m
def= |Sn′ | = O(kn). We assume that Sn′ is tightly packed, i.e., two

consecutive intervals in Sn′ are at distance less than one (for this assumption to hold we
add dummy intervals to In and obtain In′ -whenever two consecutive cliques are at distance
at least one, we insert a dummy interval between them without increasing the chromatic
number). The intuition now is that at the beginning each clique in Sn′ is empty, but
successively the cliques in Sn′ are filled with the intervals, until each of them is filled up to
the maximum level k. A new interval Ij adds 1 to the level of all the cliques it intersects.
Let us denote by lvlj(S) the level of clique S ∈ Sn′ in step j. In Figure 4, the intervals of Ij

are marked solid black, while the future intervals (not presented until step j) are marked
dashed blue. Consequently, the fully filled cliques of Sn′ are marked solid black, while the
cliques that are not filled to the maximum level in step j are marked dashed blue.

In each step j, we partition the cliques S ∈ Sn′ into blocks depending on their level
lvlj(S). We refer to the corresponding partition as Bj . The rule is that the consecutive
cliques who are entirely filled (meaning that lvlj(S) = k) belong to the same block of the
partition Bj , while the cliques that are not filled are placed in a separate one-element block.
An example partition Bj is pictured in Figure 4. As a result, the blocks of Bj are merged
over the time, but never split. The grey blocks of Bj consisting of entirelly filled cliques are
called passive, while the remaining blue blocks (the one-element blocks containing the cliques
that are not filled) are called active.

Now for each insertion step j there is a corresponding rank sequence Rτ in the Frogs game.
Each block B ∈ Bj is assigned at least one and at most (k + 1) consecutive ranks r

(B)
τ,i in

Rτ , in the way that every rank r
(B)
τ,i assigned to B bounds the sum of the levels in B, i.e.,

r
(B)
τ,i ⩾

∑
S∈B lvlj(S). Each active block B is assigned at least k − lvlj(S) + 1 consecutive

ranks r
(B)
τ,i , while each passive block is assigned precisely one rank.
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When the interval Ij arrives, some cliques S ∈ Sn′ increase their level. Such a clique S

that increases its level is necessarily in an active (singleton) block B = {S}, as Ij certifies
that S is not completely filled up yet. To account for the insertion of Ij , we merge any two
consecutive ranks assigned to B = {S} (there is at least k − lvlj(S) + 1 ⩾ 2 ranks available).
We observe that the infix recolored by the algorithm is entirely contained within O(k3)
consecutive blocks to the left or to the right of B, and in what follows we argue why this
holds. First of all, the recolored infix can intersect at most O(k3) active blocks: each active
block certifies that a future unit interval fits in, but k active blocks may be witnesses for the
same future unit interval that fits in. Note that the infix recolored by the algorithm contains
at most (k2 − 1) pairwise disjoint future intervals. Second of all, the recolored infix intersects
no more passive blocks than active blocks, since each passive block has a neighboring active
block.

Since every block is assigned at most (k + 1) consecutive ranks, if we set the jump number
κ = O(k4), the cost incurred in the Frogs game covers the ranks assigned to the O(k3)
consecutive blocks, which in turn bound the recoloring cost in the recoloring algorithm for
step j. Of course, upon the arrival of Ij some cliques need to be merged into one passive
block, and even some passive blocks get merged together, meaning that we need to merge
some extra ranks in the rank sequence, but this also can be handled by the Frogs game. ◀

3.4 Fully Dynamic Unit Interval Recoloring problem
In this section we show that for the Fully Dynamic Unit Interval Recoloring problem
one cannot hope for an algorithm with a reasonably limited recourse budget. In the Fully
Dynamic Unit Interval Recoloring problem, we are initially given an empty multiset
of unit intervals I0 = ∅. The instance Ij+1 is obtained from Ij by adding a new unit interval
to Ij or removing the existing chosen interval from Ij . Every instance Ij presented to the
algorithm is k-colorable. The goal is again to maintain a proper k-coloring on the dynamic
instance. After each interval insertion and removal, the algorithm needs to compute a proper
k-coloring cj for Ij . Similarly as before, our objective is to minimize the recourse budget,
which is the number of intervals with different colors in cj and cj−1. For this problem we get
the following negative result.

▶ Observation 10. There is a sequence of m updates for the Fully Dynamic Unit Interval
Recoloring problem that forces the total number of recolorings of Ω(m2).

Proof. We first construct an instance M = I ∪ J ∪ K ∪ L, where I = {I1, . . . , In}, J =
{J1, . . . , Jn}, K = {K1, . . . , Kn} and L = {L1, . . . , Ln}. All four sets contain pairwise disjoint
intervals. Both K ∪ L and I ∪ J are paths when interpreted as graphs. Additionally, set
K ∪ L is placed to the left of I ∪ J . This is shown in Figure 5.

L3 L2 L1

K3 K2 K1

J1 J2 J3

I1 I2 I3

I ′

I

· · · · · ·

Figure 5 The update when K1 has the same color as I1.
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Observe that since M is 2-colorable, all sets K, L, I and J are necessarily monochromatic,
moreover set K has different color than L, and I has different color than J . We construct the
instance so, that K1 is the rightmost interval of K ∪ L and interval I1 is the leftmost interval
of I ∪ J . Moreover, the distance between the end coordinate of K1 and the begin coordinate
of I1 is less than one (see Figure 5). Consider the case when K1 has the same color as I1.
Then we insert to M two intersecting intervals I and I ′, such that I intersects K1 and I ′

intersects I1 (see Figure 5). This results in M ∪ {I, I ′} being a path when interpreted as a
graph. The instance is still 2-colorable, but now I needs to have the same color as L and J
needs to have the same color as K. This requires recoloring 2n intervals, since either I ∪ J
or K ∪ L has to be recolored. Next, we remove I and I ′. Consider now the case when K1
has a different color than I1 (see Figure 6). In that case we insert an interval I intersecting

L3 L2 L1

K3 K2 K1

J1 J2 J3

I1 I2 I3

I

· · · · · ·

Figure 6 The update when K1 has different color than I1.

both K1 and I1. This causes that K1 and I1 have to now be assigned different colors, and
again either I ∪ J or K ∪ L has to be recolored. ◀

3.5 Coloring Unit Circular Arc Graphs
In this section we present a different application of the Precoloring Extension Lemma
(Lemma 5). As a result, we offer a new combinatorial result for coloring unit circular arc
graphs.

Unit circular arc graphs, as a subclass of proper circular arc graphs, admit an O(n1.5)
algorithm that statically finds an optimum proper coloring [28]. On the other hand, the
problem of coloring circular arc graphs is NP-hard [16], and a lot of research has been
devoted to find positive results regarding this problem. This line of research exposes two
important parameters describing an instance A of a circular arc graph: the load load(A)
and the cover number cn(A). The load load(A) stands for the maximum number of arcs
intersecting in one point, whereas the cover number cn(A) stands for the minimum number of
arcs covering the whole circle. The research focus is on the conditions under which a circular
arc graph admits a proper coloring using close to load(A) colors. Tucker [30] shows, that if
cn(A) ⩾ 4, then ⌊3 load(A)/2⌋ colors suffice. Valencia-Pabon [31] shows that if cn(A) ⩾ 5,
then

⌈
cn(A)−1
cn(A)−2 load(A)

⌉
colors is enough. For cn(A) ⩾ load(A) + 2 the bound becomes

load(A) + 1. Belkale and Chandran [4] prove the Hadwiger’s conjecture for proper circular
arc graphs. Neither of these results exposes a condition sufficient to color the instance
with precisely load(A) colors. We use Lemma 5 to show, that if one can add load(A)2 − 1
non-intersecting unit arcs to an instance of a unit circular arc graph in a way that the load
does not increase, then load(A) colors is sufficient to properly color the instance. This is
formalized by the following lemma, proved in the full version [11] in Appendix D.

▶ Theorem 11. Let A be a set of unit circular-arcs on the circle with a circumference at
least 2, such that A can be extended with r = load(A)2 − 1 not intersecting unit circular-arcs
B1, . . . , Br which do not increase the load, i.e., load(A) = load(A ∪ {B1, . . . , Br}). Then
χ(A) ⩽ load(A).

Note that our condition of Theorem 11 can be easily checked in linear time and it might be
a very natural assumption for some applications.
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4 Concluding remarks

In this section we discuss several interesting extensions and aspects of our main result, which
is the recoloring algorithm for the Incremental Unit Interval Recoloring problem.
We conclude with future research directions and open problems.

The first interesting property of the Recolor algorithm is its resistance to malicious
coloring. By that we mean, that the Recolor algorithm on its input coloring does not
assume anything other than being a proper k-coloring. In other words, some evil adversary
could potentially repaint the whole instance before inserting the new interval, and as long
as this is a proper k-coloring, the Recolor algorithm works. This might be of interest for
some applications, one of which is described next.

Throughout the paper we make a simplifying assumption that the chromatic number k of
the final instance is given apriori to the Recolor algorithm (as a parameter). Using the fact
that our algorithm works against malicious coloring, it is easy to get rid of this assumption
by running the recoloring algorithm with changing values of k. To be more precise, let us
consider each step j when the chromatic number increases: l − 1 = χ(Ij−1) < χ(Ij) = l (we
can easlily detect all such steps j). Before Ij arrives, we have the (l − 1)-coloring cj−1 of Ij−1
at our disposal. Coloring c is obviously also an l-coloring for Ij−1, so the recoloring algorithm
for Ij gets the correct input. From now on, until the next step when the chromatic number
increases, the algorithm runs with parameter k = l. It is easy to see that the algorithm
modified in this way returns the proper coloring. Let K be the chromatic number of the final
instance In (not known to the algorithm). Since for every k used by the modified algoritm
we have k ⩽ K, the analysis for parameter K bounds from above the total recoloring budget
of the modified algorithm. Thus, using O(K7 log n) amortized recoloring budget, we can
maintain an optimal coloring for each instance Ij .

Our incremental algorithm can be implemented in total time O(k7n log n), where k is the
final chromatic number. It suffices to maintain a sorted list of intervals Ij in an AVL tree.
Such a list allows inserting a new interval in time O(log n). It allows finding the predecessor
and the successor of the newly inserted interval, and efficient iteration to the left and to the
right. This allows detecting the infix that we want to recolor in the time proportional to the
size of the infix. The coloring step can then be performed in linear time. We refer to the full
version [11] of the paper for the details and the pseudocode of the algorithm.

Finally, let us shortly discuss why our approach does not seem to extend to general interval
graphs, or even the intervals whose lengths vary from 1 to (1 + ϵ). The main reason for that
is that the Modulo Color Completion algorithm spectacularly fails on such graphs. In
particular, Observation 2 ceases to hold, and the Modulo Color Completion algorithm
is based on this observation. It would be interesting to see if the color sorting technique
could work with some algorithms other than Modulo Color Completion , effective on
any superclass of unit interval graphs. We leave this as the main open question. Note that
due to our lower bound in Section 3.4, which carries over to any superclass of unit interval
graphs, we cannot hope on positive results regarding the fully dynamic setting.
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Abstract
For a fixed simple digraph H without isolated vertices, we consider the problem of deleting arcs
from a given tournament to get a digraph which does not contain H as an immersion. We prove
that for every H, this problem admits a polynomial kernel when parameterized by the number of
deleted arcs. The degree of the bound on the kernel size depends on H.
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1 Introduction

Kernelization is an algorithmic framework for describing preprocessing procedures that
given an instance of a hard problem, identify and reduce easily resolvable parts. The usual
formalization of the concept is based on the paradigm of parameterized complexity. A
kernelization procedure, or a kernel for short, for a parameterized decision problem L is a
polynomial-time algorithm that given an instance (I, k) of L, where k is the parameter,
outputs an equivalent instance (I ′, k′) such that both |I ′| and k′ are bounded by a computable
function of k. If this function is a polynomial in k, we say that the kernel is polynomial. The
search for (polynomial) kernels is an established research area within the field of parameterized
algorithms. We refer to the textbook of Fomin et al. [13] for a broader discussion of classic
results and techniques.

A particularly fruitful line of research within kernelization concerns the methodology of
protrusions and protrusion replacement. The idea is to find a large protrusion: a piece of
graph that is simple – for instance, has bounded treewidth – and communicates with the rest
of the graph only through a small interface. If found, a protrusion can be fully understood –
for instance, using dynamic programming on its tree decomposition – and replaced with a
smaller one with the same functionality. So if one proves that, provided the given instance is
large, a large protrusion can be efficiently found and replaced with a strictly smaller one,
then applying this strategy exhaustively eventually arrives at a kernel. Protrusion-based
techniques were pioneered by Bodlaender et al. [5], but by now have become a part of the
standard toolbox of kernelization. We refer the interested reader to [13, Part 2] for more
information.

A particularly important achievement in the development of protrusion-based kernelization
procedures is the result of Fomin et al. [12], who gave a polynomial kernel for the Planar
F-Deletion problem, defined as follows. Let F be a fixed family of graphs containing
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at least one planar graph. Then in the problem we are given a graph G and an integer k

(considered to be the parameter), and the question is whether one can hit all minor models
of graphs from F in G using a hitting set consisting of at most k vertices. Fomin et al.
gave a polynomial kernel for this problem for every fixed family F as above. The degree of
the polynomial bound on the kernel size depends on F and it is known that under certain
complexity-theoretical assumptions, this is unavoidable [15]. The assumption that F contains
a planar graph is crucial in the approach: under this assumption, graphs not containing any
graph from F as a minor have treewidth bounded by a constant, which unlocks a multitude
of tools related to tree decomposition using which one can understand the structure of the
instance.

The concept of a protrusion, as described above, is quite capacious and can be applied in
different settings as well. For instance, Giannopolou et al. [18] considered the F-Immersion
Deletion problem, where for a given graph G and parameter k, one wishes to hit all
immersion models of graphs from F using a hitting set of edges of size at most k (Recall
that an immersion model of a graph H in a graph G consists of mapping the vertices of H

to distinct vertices of G and edges of H to pairwise edge-disjoint paths in G so that the
image of an edge uv connects the image of u with the image of v.). By loosely following the
approach of [12], Giannopolou et al. [18] gave a linear kernel for F-Immersion Deletion
for every family F that contains a subcubic planar graph. Here, the main idea was to adjust
the notions of protrusions to the graph parameter tree-cutwidth and corresponding tree-cut
decompositions, which play the same role for immersions as treewidth and tree decompositions
play for minors.

Motivated by this, it is interesting to consider other settings where the protrusion
methodology could be applied. A particularly tempting area is that of directed graphs,
where natural analogues of problems considered in undirected graphs can be easily stated.
Unfortunately, the structural theory of directed graphs is much less understood than that of
undirected graphs, and many problems become inherently harder; see e.g. [16, 17, 20]. In
particular, there is even a scarcity of fixed-parameter tractability results, not to mention
kernelization results.

However, there is a particular class of directed graphs where a sound structural theory
has been developed: tournaments. (Here, recall that a tournament is a directed graph where
every pair of vertices is connected by exactly one arc.) This theory1 was pioneered by
Chudnovsky, Ovetsky Fradkin, Kim, and Seymour [9, 10, 26, 27, 21], while structural and
algorithmic aspects connected to parameterized complexity were investigated by Fomin and
Pilipczuk [14]. See the introductory section of [14] for an overview.

In particular, as proved in the aforementioned works, there are two main width notions
for tournaments: cutwidth and pathwidth. The first one is tightly connected to (directed)
immersions as follows: if a tournament T excludes a digraph H as an immersion, then the
cutwidth of T is bounded by a constant depending only on H. Pathwidth is connected
to topological minors and strong minors in the same sense. These structural results were
used for the design of parameterized algorithms for containment problems in tournaments
in [9, 26, 14]. Later, they were used by Raymond [28] and by Bożyk and Pilipczuk [8] to
establish Erdős-Pósa properties for immersions and topological minors in tournaments.

The goal of this work is to explore the applicability of the structural theory of tournaments
for kernelization, with a particular focus of developing a sound protrusion-based methodology.

1 In this line of work, most results concern the class of semi-complete digraphs, which differ from
tournaments by allowing that a pair of vertices can be also connected by two oppositely-oriented arcs.
In this article we focus on the setting of tournaments for simplicity.
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Our contribution. For a simple directed graph H without isolated vertices we define the
following parameterized problem:

H-hitting Immersions in Tournaments

Input: A tournament T and a positive integer k.
Parameter: k

Output: Is there a set F ⊆ A(T ), such that |F | ⩽ k and T −F is H-immersion-free?

That this problem is fixed-parameter tractable is proved in [14]. Our main result states
that for every fixed H, H-hitting Immersions in Tournaments admits a polynomial
kernel, of degree dependent on H. Formally, we prove the following theorem.

▶ Theorem 1. For every simple digraph H without isolated vertices there exists a constant c

and an algorithm that given an instance (T, k) of H-hitting Immersions in Tournaments,
runs in polynomial time and returns an equivalent instance (T ′, k) with |T ′| ⩽ c · kc.

We remark that when H is the directed triangle, H-hitting Immersions in Tourna-
ments is equivalent to the Feedback Arc Set in Tournaments (FAST) problem. There
is a sizeable literature on the parameterized complexity of FAST, see e.g. [1, 11, 14, 19],
mostly due to the fact that it admits a subexponential parameterized algorithm with running
time 2O(

√
k) · nO(1). Kernelization procedures for FAST were investigated by Bessy et al.

in [4], while kernelization of the dual problems of packing arc-disjoint triangles and packing
arc-disjoint cycles in tournaments were recently studied by Bessy et al. in [3].

On a very high conceptual level, the proof of Theorem 1 follows the classic blueprint of
protrusion-based kernelization, like in e.g. [12, 18]. That is, if (T, k) is a given instance of
H-hitting Immersions in Tournaments, we perform the following steps.

We may assume that the cutwidth of T is bounded polynomially in k, for otherwise in T

one can find k + 1 arc-disjoint immersion models of H; these witness a negative answer
to the instance.
Assuming that T is large – of size superpolynomial in k – but has cutwidth bounded
polynomially in k, we may find in T a large protrusion. Here, a protrusion is an interval
I in the vertex ordering σ witnessing small cutwidth such that σ restricted to I witnesses
that T [I] has constant cutwidth, and there is only a constant number of σ-backward arcs
with one endpoint in I and the other outside of I. These are instantiations of the two
desired properties of a protrusion: it has to have bounded width and communicate with
the rest of the graph through a boundary of bounded size.
We can replace the obtained protrusion with a strictly smaller one of the same “type”,
thus obtaining a strictly smaller equivalent instance. Applying this strategy exhaustively
eventually yields a kernel of polynomial size.

Compared to the previous works, the main difficulty is to tame the interaction between
a protrusion and the remainder of the instance. Namely, this interaction is not restricted
to a set of vertices or arcs of constant size: as we work with tournaments, every vertex
of a protrusion will necessarily have an arc connecting it to every vertex outside of the
protrusion. The idea is that all but a constant number of those arcs will be forward arcs in
the fixed vertex ordering σ with bounded cutwidth. We call those well-behaved forward arcs
generic, while the remaining constantly many backward arcs are singular. Understanding the
interaction between a protrusion and the rest of the tournament as being governed by few
singular arcs and a large number of well-behaved generic arcs is the crux of our approach.
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26:4 Polynomial Kernel for Immersion Hitting in Tournaments

In particular, while looking for a large replaceable protrusion, we have to be extremely
careful when arguing about how such a protrusion may interact with optimum solutions.
Here, a key step is to find several protrusions that appear consecutively in σ (recall that
our protrusions are intervals in σ), have the same type (in the sense of admitting partial
immersions of H), and such that their union is a protrusion of again the same type. This
step is done using Simon Factorization, a tool commonly used in the theory of automata
and formal languages. Simon Factorization was recently used a few times in structural
graph theory [7, 23, 24], but we are not aware of any previous application in the context of
kernelization.

The application of Simon Factorization is also the only step in the reasoning that causes
the degree of the polynomial bounding the size of our kernel to depend on H. It is an
interesting open question whether this can be improved, or in other words, whether there is
a kernel of size at most c · kd, where c may depend on H but d does not. Judging by the
results on hitting immersions in undirected graphs [18], we expect that this might be the
case.

We remark that the sign q denotes statements whose proofs are deferred to the full
version of the paper.

2 Preliminaries

We use the standard terminology and notation for describing immersions in tournaments and
for cutwidth of digraphs and of tournaments. This terminology and notation is borrowed
mostly, and often in a verbatim form, from the work of Bożyk and Pilipczuk [8].

For a positive integer n, we denote [n] := {1, . . . , n} and [−n] = {−1, . . . ,−n}.
We use standard graph terminology and notation. All graphs considered in this paper are

finite, simple (i.e. without self-loops or multiple arcs with same head and tail), and directed
(i.e. are digraphs). For a digraph D, by V (D) and A(D) we denote the vertex set and the
arc set of D, respectively. We denote

|D| := |V (D)| and ∥D∥ := |A(D)|.

For X ⊆ V (D), the subgraph induced by X, denoted D[X], comprises of the vertices of X and
all the arcs of D with both endpoints in X. By D −X we denote the digraph D[V (D) \X].
Further, if F is a subset of arcs of D, then by D − F we denote the digraph obtained from
D by removing all the arcs of F . For X, Y ⊆ V (D) we denote by −→A (X, Y ) the set of all arcs
(u, v) ∈ A(D) such that u ∈ X and v ∈ Y and moreover A(X, Y ) := −→A (X, Y ) ∪ −→A (Y, X).
For an arc a = (u, v) ∈ A(D) we define tail(a) := u and head(a) := v. For a directed (not
necessarily simple) path P we denote by first(P ) and last(P ) the first and the last arcs on
path P , respectively.

Tournaments. A simple digraph T = (V, A) is called a tournament if for every pair of
distinct vertices u, v ∈ V , either (u, v) ∈ A, or (v, u) ∈ A (but not both). Alternatively, one
can represent the tournament T by providing a pair (σ,

←−
A σ(T )), where σ : V → [|V |] is an

ordering of the set V and ←−A σ(T ) is the set of σ-backward arcs, that is,

←−
A σ(T ) := { (u, v) ∈ A | σ(u) > σ(v) }.

All the remaining arcs are called σ-forward. If the choice of ordering σ is clear from the
context, we will call the arcs simply backward or forward.
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Cutwidth. Let T = (V, A) be a tournament and σ be an ordering of V . For α, β ∈
{0, 1, . . . , |V |}, α ⩽ β, we define

σ(α, β] := {v ∈ V | α < σ(v) ⩽ β}.

Sets σ(α, β] as defined above will be called σ-intervals. The set

cutσ[α] = {(u, v) ∈ A | σ(u) > α ⩾ σ(v)} ⊆ ←−A σ(T )

is called the α-cut of σ. The width of the ordering σ is equal to max0⩽α⩽|V | | cut[α]|, and
the cutwidth of T , denoted ctw(T ), is the minimum width among all orderings of V .

It is perhaps a bit surprising that in tournaments, there is a very simple algorithm to
compute an ordering of optimum width: just sort the vertices by outdegrees.

▶ Lemma 2 (see [2, 25]). Let T be a tournament and σ be an ordering of T satisfying the
following for every pair of vertices u and v: if u appears before v in σ, then the outdegre of
u is not smaller than the outdegree of v. Then the width of σ is equal to ctw(T ).

If I = σ(α, β], then we denote

∂+(I) := −→A (I, σ(0, α]) and ∂−(I) := −→A (σ(β, |V |], I).

Note that ∂+(I) ⊆ cutσ[α] and ∂−(I) ⊆ cutσ[β] and therefore |∂+(I)| ⩽ c and |∂−(I)| ⩽ c,
where c is the width of σ. These inclusions may be proper, as the arcs from the set
∂̂(I) := −→A (σ(β, |V |], σ(0, α]) contribute to the cuts but are not incident with I. We define
∂(I) := ∂+(I) ∪ ∂−(I) and call the elements of ∂(I) I-singular (or simply singular) arcs.
Moreover, we define

Γ+(I) := −→A (I, σ(β, |V |]), Γ−(I) := −→A (σ(0, α], I), and Γ(I) = Γ+(I) ∪ Γ−(I),

and call the elements of Γ(I) I-generic (or simply generic) arcs.
If I ′ = V − I where I = σ(α, β], then we call the set I ′ a co-interval and define I ′-singular

and I ′-generic arcs as follows

∂−(I ′) := ∂+(I), ∂+(I ′) := ∂−(I), ∂(I ′) := ∂+(I ′) ∪ ∂−(I ′) = ∂(I),

Γ−(I ′) := Γ+(I), Γ+(I ′) := Γ−(I), Γ(I ′) := Γ−(I ′) ∪ Γ+(I ′) = Γ(I).

Immersions. A digraph Ĥ is an immersion model (or briefly a copy) of a digraph H if there
exists a mapping ϕ, called an immersion embedding, such that:

vertices of H are mapped to pairwise different vertices of Ĥ;
each arc (u, v) ∈ A(H) is mapped to a directed path in Ĥ starting at ϕ(u) and ending at
ϕ(v); and
each arc of Ĥ belongs to exactly one of the paths {ϕ(a) : a ∈ A(H)}.

If it does not lead to misunderstanding, we will sometimes slightly abuse the above notation
by identifying ϕ and Ĥ and calling ϕ the immersion model of H.

Let H be a digraph. We say that a digraph G contains H as an immersion (or H can be
immersed in G) if G has a subgraph that is an immersion model of H. Digraph G is called
H-immersion-free (or H-free for brevity) if it does not contain H as an immersion.

We will use the following result of Fomin and Pilipczuk [14].

▶ Theorem 3 (Theorem 7.3 of [14]). Let T be a tournament which does not contain a digraph
H as an immersion. Then ctw(T ) ∈ O((|H |+ ∥H∥)2).
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26:6 Polynomial Kernel for Immersion Hitting in Tournaments

▶ Corollary 4. For every digraph H there exists a constant cH such that for every H-free
tournament T , we have ctw(T ) ⩽ cH .

Throughout this paper we fix a simple digraph H without isolated vertices and an integer
k ∈ N. For a tournament T , a set F ⊆ A(T ) is called a solution if T −F is H-free. Moreover,
F is an optimal solution if it is a solution of the smallest possible size. So (T, k) is a
YES-instance of H-hitting Immersions in Tournaments if and only if there exists an
optimal solution in T of size at most k.

Monoids and Simon factorization. Simon factorization was originally developed by Simon
in [29] and the currently best bounds are due to Kufleitner [22]. See also the work of
Bojańczyk [6] for a nice exposition; we mostly follow the notation from that source.

Let S be a finite monoid (i.e., a finite set equipped with an associative binary operation
· and a neutral element 1). An element e ∈ S is called idempotent if e · e = e. For a finite
alphabet A, by A⋆ we denote the set of all finite words over A, and a morphism α : A⋆ → S

is a function satisfying α(ε) = 1 (ε being the empty word) and α(w1w2) = α(w1) · α(w2)
for every w1, w2 ∈ A⋆. Note that a morphism is uniquely defined by the images of single
symbols from A. The following lemma is a direct consequence of Simon Factorization.

▶ Lemma 5. Let S be a finite monoid, A be a finite alphabet, and α : A⋆ → S be a morphism.
Suppose w ∈ A⋆ is a word of length at least ℓ3|S|. Then there exists a subword w′ of w and
an idempotent e ∈ S such that w′ = w1w2 . . . wℓ, where wi ∈ A⋆ are nonempty subwords of
w and

α(w1) = α(w2) = . . . = α(wℓ) = e.

Note that in the setting of Lemma 5, given a word w ∈ A⋆ of length n ⩾ ℓ3|S|, one can
easily find w′ and a suitable decomposition w′ = w1w2 . . . wℓ in time O(|S| ·n3) assuming unit
cost of operations in S. Indeed, one can guess e (by trying at most |S| possibilities) and the
first position of w′ within w (by trying n possibilities), and then for every subword w′′ starting
at this position compute the longest possible decomposition of the form w′′ = w1w2 . . . wℓ′

such that α(w1) = . . . = α(wℓ′) = e, if existent. The latter can be done by a standard
left-to-right dynamic programming in time O(n2).

3 Partial immersions

Our goal in this section is to extend the notion of an immersion to partial immersions. These
will be used to understand possible behaviors of immersion models in a tournament T with
respect to different intervals in an ordering of the vertex set of T . Let then T = (V, A) be a
tournament and let σ be an ordering of V . For now, fix a σ-interval I := σ(α, β].

Partial immersions.

▶ Definition 6. A scattered path in I of size q ⩾ 0 is a sequence P̃ = (Pi)q
i=1 satisfying the

following properties:
for each i ∈ [q], Pi is a directed (simple) path of length at least 1 consisting of arcs that
belong to A(T [I]) ∪ ∂(I) ∪ Γ(I);
paths Pi for i ∈ [q] are pairwise arc-disjoint;
for every i ∈ [q], i ̸= 1, we have first(Pi) ∈ Γ−(I) ∪ ∂−(I);
for every i ∈ [q], i ̸= q, we have last(Pi) ∈ Γ+(I) ∪ ∂+(I).

Each term in the sequence (Pi)q
i=1 will be called a piece of P̃ . The set of arcs of all pieces of

P̃ is denoted A(P̃ ). If first(Pi) ∈ Γ−(I) and last(Pi) ∈ Γ+, then the piece Pi is called generic.
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Note that first(P1) is allowed to be an arc in the set A(T [I]) ∪ Γ+(I) ∪ ∂+(I). If it is such,
we call the vertex tail(first(P1)) ∈ I the beginning of P̃ and denote it by start(P̃ ). Similarly,
if last(Pq) ∈ A(T [I]) ∪ Γ−(I) ∪ ∂−(I), then we call the vertex head(last(Pq)) the end of P̃

and denote it by end(P̃ ). Note that the empty sequence is a scattered path of size 0. Also, a
scattered path with only one piece, whose both beginning and end exist, is just a path in
T [I]. By PI we denote the family of all scattered paths in I.

We say that a scattered path P̃ = (Pi)q
i=1 in I can be shortened to a scattered path P̃ ′

(or that P̃ ′ is a shortening of P̃ ) if:
start(P̃ ) = start(P̃ ′) and end(P̃ ) = end(P̃ ′) (meaning either equal or simultaneously
undefined);
for each piece Ps of P̃ ′ there exist indices i−

s ⩽ i+
s such that tail(first(Ps)) = tail(first(Pi−

s
))

and head(last(Ps)) = head(last(Pi+
s

)); and
whenever s < s′, we have i+

s < i−
s′ and Ps appears before Ps′ in P̃ ′.

Intuitively, shortening of the path means removing some pieces and replacing several con-
tiguous subsequences of the pieces with single pieces, keeping the tail of the beginning and
the head of the end of the replaced subsequence. Note that in particular, some pieces of P̃

can be simply omitted in P̃ ′ (other than the initial and the terminal one).

▶ Definition 7. A partial immersion embedding of H in I (or shortly, a partial immersion
in I) is a mapping ϕ : A(H)→ PI such that

all scattered paths ϕ(a) for a ∈ A(H) are pairwise arc-disjoint;
if tail(a) = tail(a′) then start(ϕ(a)) and start(ϕ(a′)) are either equal, or simultaneously
undefined;
if start(ϕ(a)) and start(ϕ(a′)) are defined and equal, then tail(a) = tail(a′);
if head(a) = head(a′) then end(ϕ(a)) and end(ϕ(a′)) are either equal, or simultaneously
undefined;
if end(ϕ(a)) and end(ϕ(a′)) are defined and equal, then head(a) = head(a′).

Intuitively, we can think of a partial immersion as of a “trace” which some immersion model
Ĥ of H in T leaves on the interval I. Some edges of H have images being paths in Ĥ

non-incident with I (these correspond to empty scattered paths in the partial immersion
embedding). Some images of arcs of H come back and forth to I, intersecting with I along a
non-empty scattered path (the ordering of paths on a single scattered path corresponds to
the order of their appearance along the image of the respective arc of H). Finally, some arc
images begin or end within I, which corresponds to the case when the beginning or the end
of a scattered path is defined and is a vertex of I.

We call a partial immersion ϕ′ in I a shortening of ϕ in I if for every a ∈ A(H), the
scattered path ϕ′(a) is a shortening of ϕ(a). We call ϕ minimal if there is no shortening of ϕ

with at least one scattered path of strictly smaller size. Note that ϕ may be minimal even if
some piece of some ϕ(a) can be replaced by a different single piece with equal first and last
vertices. Shortening which does not decrease the size of any scattered path will be called
trivial.

Note that each immersion model ϕ of H in T is a partial immersion in V (T ), in which
all scattered paths ϕ(a), a ∈ A(H), are paths in T beginning and ending at ϕ(tail(a)) and
ϕ(head(a)), respectively. Moreover, each partial immersion ϕ in I gives rise to a natural
partial immersion of H in J ⊆ I in which all paths ϕ(a) where a ∈ A(H) are “trimmed” to
scattered paths consisting of precisely those arcs which are incident with J .

Formally, let I and J be σ-intervals such that J ⊆ I. If P is a path in I, then define
the trace P |J of P on J to be the scattered path consisting of all arcs of P incident with J ,
arranged in the order of appearance along P . If P̃ = (Pi)q

i=1 is a scattered path in I, then
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define the trace P̃ |J of P̃ on J to be the concatenation of scattered paths Pi|J . The trace
ϕ|J of a partial immersion ϕ of H in I on J is defined by setting ϕ|J (a) = (ϕ(a))|J for every
a ∈ A(H).

Consider any σ-intervals I1, I2 with the property that there exist α, β, γ ∈ {0, 1, . . . , |V |}
such that I1 = σ(α, γ] and I2 = σ(γ, β]. We will call such a pair of intervals consecutive.
Equivalently, two intervals are consecutive if their union I = I1 ∪ I2 is a σ-interval as well.
Let P̃1 be a scattered path in I1 and P̃2 be a scattered path in I2. We say that P̃1 and P̃2
are compatible if

A(P̃1) ∩A(I1, I2) = A(P̃2) ∩A(I1, I2);
the set of pieces whose arc set is A(P̃1) ∪A(P̃2) can be ordered to form a scattered path
P̃ in I with the property that all pieces of P̃i appear in P̃ in the same order as they do
in P̃i, for i = 1, 2.

Every P̃ described above will be called a gluing of P̃1 and P̃2. Note that a gluing is not
necessarily uniquely defined, which can be seen particularly well when A(P̃1) ∩A(I1, I2) =
A(P̃2) ∩ A(I1, I2) = ∅ – in this case the pieces of both paths can be “shuffled” in any way
only keeping the order of pieces originating from the same path.

▶ Observation 8. If P̃1 is compatible with P̃2 and P̃ ′
2 is a shortening of P̃2, then there exists

a shortening P̃ ′
1 of P̃1 such that P̃ ′

1 and P̃ ′
2 are compatible and every gluing of them is a

shortening of some gluing of P̃1 and P̃2.

Proof. To construct P̃ ′
1 from P̃1 it is enough to omit the pieces which do not share arcs with

P̃ ′
2. ◀

We will say that two partial immersions ϕ1 in I1 and ϕ2 in I2 are compatible if there
exists a partial immersion ϕ in I such that ϕ1 = ϕ|I1 and ϕ2 = ϕ|I2 , or – in other words
– that for every a ∈ A(H) the scattered path ϕ(a) is a gluing of ϕ1(a) and ϕ2(a). We will
call every such ϕ a gluing of ϕ1 and ϕ2. Note that gluing is not necessarily uniquely defined.
Denote the set of all gluings of ϕ1 and ϕ2 by ϕ1 ⊕ ϕ2.

▶ Observation 9 (q). If ϕ ∈ ϕ1 ⊕ ϕ2 and ϕ is minimal, then ϕ1 and ϕ2 are minimal.

The notions of a scattered path, partial immersion and trace can be naturally extended
to co-intervals, by applying all definitions verbatim. If I is a σ-interval and I ′ = V − I is
the corresponding co-interval, then partial immersions ϕ1 in I and ϕ2 in I ′ are compatible if
there exists an immersion ϕ in T such that ϕ1 = ϕ|I and ϕ2 = ϕ|I′ . Again, every such ϕ is
called a gluing of ϕ1 and ϕ2.

Types of intervals. The key ingredient of our analysis is a constant-size encoding of the set
of possible “behaviors” of partial immersions in intervals.

A σ-interval I shall be called ℓ-long if |I| ⩾ ℓ. Further, we shall call I c-flat if |∂+(I)| ⩽ c,
|∂−(I)| ⩽ c, and σ restricted to T [I] has width at most c.

Note that if I = σ(α, β] is 2r-long, then the intervals I−
r := σ(α, α+r] and I+

r := σ(β−r, β]
are disjoint. On the other hand, if I is c-flat, then we can color all backward arcs incident with
I with at most 3c colors in such a way that each γ-cut of σ restricted to those arcs contains
arcs of mutually different colors. This can be achieved e.g. by greedy coloring the γ-cuts for
consecutive γ = α, . . . , β + 1. Formally, there exists a function ξ : ←−A σ(T ) ∩ A(I, V )→ [3c]
such that for every γ ∈ [|V | − 1] and every two distinct arcs a1, a2 ∈ cutσ[γ] ∩ A(I, V ) we
have ξ(a1) ̸= ξ(a2). In the following fix such a function.
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▶ Definition 10. Let ϕ be a partial immersion in an interval I that is 2r-long and c-flat.
For each a ∈ A(H) we define the (r, c)-type τ (r,c)(ϕ(a)) of the scattered path ϕ(a) = (Pi)q

i=1
as the following sequence of length 2q:

(f−(first(P1)), f+(last(P1)), f−(first(P2)), f+(last(P2)), . . . , f−(first(Pq)), f+(last(Pq))),

where the functions f± : A(T [I]) ∪ ∂(I) ∪ Γ(I)→ [−3c] ∪ [r] ∪ {X, H} are defined as follows

f−(a) =


−ξ(a) if a ∈ ∂−(I),
σ(head(a))− α if a ∈ Γ−(I) and head(a) ∈ I−

r ,

X if a ∈ Γ−(I) and head(a) /∈ I−
r ,

H otherwise;

f+(a) =


−ξ(a) if a ∈ ∂+(I),
r + σ(tail(a))− β if a ∈ Γ+(I) and tail(a) ∈ I+

r ,

X if a ∈ Γ+(I) and tail(a) /∈ I+
r ,

H otherwise.

Let S be the set of all terms of the sequences (τ (r,c)(ϕ(a)))a∈A(H), where by term we mean
a value with an assigned position (i.e. equal values in different sequences are considered
different terms). The (r, c)-type of ϕ is the collection of types τ (r,c)(ϕ) = (τ (r,c)(ϕ(a)))a∈A(H)
equipped with a pair of equivalence relations (R−, R+) on the set S ∪ [c] defined as follows.

If a piece P1 of ϕ(a1) and a piece P2 of ϕ(a2) satisfy head(first(P1)) = head(first(P2)),
then the corresponding terms in τ (r,c)(ϕ) (elements of the set {X} ∪ [r] with assigned
positions in respective sequences) are in relation R−.
If a piece P of ϕ(a) is such that head(first(P )) is the tail of a singular arc of color x ∈ [3c],
then the corresponding term in τ (r,c)(ϕ) is in relation R− with x.
Analogously, if tail(last(P1)) = tail(last(P2)), then the terms f+(last(P1)) and f+(last(P2))
are in relation R+. And x ∈ [3c] is in relation with all terms corresponding to tails of
ends of paths which are simultaneously the head of the singular arc of color x.

Let us provide some intuition on what kind of information is stored in the type of ϕ defined
above. First of all, the entire “singular interface” of this partial immersion is kept, i.e. in the
type we remember precisely the singular arcs used to enter or exit I when traversing along
each scattered path ϕ(a). Moreover, if we enter or exit I with a generic arc, we remember
the precise vertex of entry/exit inside I, but only if it is close enough to the “border” of I

(i.e. within the first or last r vertices in σ). Otherwise we remember the respective entry/exit
as “generic”, which is marked by the marker X. Moreover, we keep the information about
whether the scattered path begins or ends inside I – the marker H represents that a vertex
of H is mapped under the partial immersion embedding to a vertex within I. Finally if the
extreme (first or last) arcs of some pieces are generic and have the same first/last vertex in
I, we remember this fact in the equivalence relations R±. We shall need this information
to be able to “glue” two partial immersions without using the same generic gluing arc for
different pieces. The incidence with singular arcs is also stored to avoid a situation when
one attempts a generic gluing along a singular arc. The reason for colors being stored as
negative integers is purely technical – it ensures that [r] ∩ [−3c] = ∅.

An (r, c)-type is any collection of sequences of even lengths over the set [−3c]∪ [r]∪{X, H}
indexed by A(H) and equipped with a pair of equivalence relations (R−, R+) on the union
of the set of all terms of these sequences and [3c]. An I-admissible (r, c)-type is every type τ

such that there exists a partial immersion ϕ in I such that τ = τ (r,c)(ϕ). The size of a type
is the sum of lengths of its sequences (i.e. it does not depend on the equivalence relations).
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Let γr be a function mapping each element from the set [r] onto the single marker X,
and identity otherwise. Intuitively, the function γr keeps only the information about generic
nature of the end of a piece, and “forgets” about the closeness of this vertex to the boundary.
We say that an (r, c)-type τ ′ is a shortening of an (r, c)-type τ if for every a ∈ A(H) the
sequence γ(τ ′

a) is a subsequence of γ(τa) and the two sequences have the same first and last
terms.

The following observation is a direct consequence of the definition of shortening of a
partial immersion.

▶ Observation 11. If a partial immersion ϕ′ of (r, c)-type τ ′ is a shortening of a partial
immersion ϕ of (r, c)-type τ , then τ ′ is a shortening of τ .

▶ Definition 12. An I-admissible (r, c)-type τ is called minimal (in I) if there is no I-
admissible type τ ′ of strictly smaller size that would be a shortening of τ .

▶ Observation 13. Let ϕ be a partial immersion in I of (r, c)-type τ . Then ϕ is minimal if
and only if τ is minimal in I.

Proof. If ϕ is not minimal, then for any nontrivial shortening ϕ′ of ϕ, τ (r,c)(ϕ′) is a shortening
of τ of strictly smaller size. Conversely, if τ is not minimal, then there exists an I-admissible
type τ ′ of strictly smaller size. Every partial immersion ϕ′ of type τ ′ is a nontrivial shortening
of ϕ. ◀

We now observe that in a minimal partial immersion on an interval I, all scattered paths
will be relatively small, that is, will visit I only a bounded number of times.

▶ Lemma 14 (q). Suppose that F ⊆ A(T ) has the property that |F | ⩽ f , I is 4∥H∥(c+f +1)-
long and c-flat, and a partial immersion ϕ in I is minimal and disjoint with F . Then for
every a ∈ A(H) the scattered path ϕ(a) has size at most 2c + 3.

We call an (r, c)-type τ short if for every a ∈ A(H) the length of τ(ϕ(a)) is at most 4c + 6.

▶ Corollary 15 (q). For r ⩾ 1 we have the following:
1. If an interval I is 4∥H∥(r + c)-long and c-flat, and a partial immersion ϕ in I is minimal,

then τ (r,c)(ϕ) is short.
2. For every pair of integers r, c ∈ N there is a constant t(r, c) such that there are exactly

t(r, c) short (r, c)-types. In particular, for any interval I as above, there are at most t(r, c)
different I-admissible minimal (r, c)-types.

Let I1, I2 be two consecutive c-flat, 2(r + c)-long σ-intervals and I = I1 ∪ I2. We say that
two (r, c)-types τ1 of I1 and τ2 of I2 are compatible if there exists a partial immersion ϕ in I

such that ϕ|I1 and ϕ|I2 are compatible, ϕ|I1 has type τ1, and ϕ|I2 has type τ2.
The gluing of the types τ1 ⊕ τ2 is defined as the set of all (r, c)-types of all such ϕ. The

following lemma proves that this definition is correct, i.e. that types of two immersions store
enough information to ensure the possibility of gluing them.

▶ Lemma 16 (q). Let I1, I2 be two consecutive c-flat, 4∥H∥(r + c)-long σ-intervals and
I = I1 ∪ I2. If two (r, c)-types τ1 of I1 and τ2 of I2 are compatible, then for every partial
immersion ϕ1 in I1 of type τ1 and for every partial immersion ϕ2 in I2 of type τ2, the
immersions ϕ1 and ϕ2 are compatible.
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Boundaried intervals and signatures. In the process of replacing protrusions we will need
to consider intervals not as subsets of an ordered vertex set of a larger tournament, but as
standalone structures which can be used to replace one another. We introduce the notion of
an (r, c)-boundaried interval to enable such considerations.

▶ Definition 17. An (r, c)-boundaried intervalis a digraph D on vertex set V (D) = S+∪I∪S−

equipped with an ordering σI of I. Furthermore, we require the following:
|I| ⩾ 4∥H∥(r + c);
D[I] is a tournament;
σI has width at most c;
S− ⊆ [3c]× {−} and S+ ⊆ [3c]× {+};
each vertex of S+ has only one incident arc and this arc belongs to the set −→A (I, S+);
each vertex of S− has only one incident arc and this arc belongs to the set −→A (S−, I).

The r-boundary of D is the pair of sets I− and I+ consisting of the first and the last r

vertices of I in σI , respectively. For D defined above, we will shortly write D = I ∪ S±.

Note that this notion emulates a 4∥H∥(r + c)-long c-flat interval I in the following sense.
Arcs whose heads are contained in S+ correspond to ∂+(I), and arcs whose tails are contained
in the set S− correspond to ∂−(I). The names of the auxiliary vertices in S± correspond
to the ξ-colors of the respective backward arcs. The r-boundary consists of precisely those
vertices whose generic entry or exit is remembered in the (r, c)-type of a partial immersion.

Formally, every 4∥H∥(r + c)-long c-flat σ-interval I in T can be uniquely encoded with
an (r, c)-boundaried interval D(r,c)(I), whose structure resembles the structure of T [I] and
∂(I) as follows:

the vertices and arcs of I are kept along with their ordering in T ;
every singular arc a ∈ ∂±(I) is mapped to an arc joining (ξ(a),±) ∈ S± with the endpoint
of a contained in I;
the projection of S± onto the first coordinate is precisely {ξ(a) | a ∈ ∂±(I)}.

The notion of a partial immersion can be naturally adjusted to the setting of boundaried
intervals. The only difference is the lack of the “generic interface” i.e. there are no auxiliary
edges in boundaries intervals used to emulate Γ(I). These can be, however, emulated by
storing the information from the type (marker X or number in [r] if the generic arc is incident
with the r-boundary, and the equivalence relations R±) instead of the identity of particular
generic arcs. Formally, a piece of a scattered path in (r, c)-boundaried interval can begin or
end with an element in {X} ∪ [r] instead of a generic arc. In particular, this slightly modified
variant of partial immersions can be equipped with precisely the same definition of admissible
(r, c)-type as in the former case.

▶ Definition 18. An (r, c)-signature is a subset of the set of all short (r, c)-types. The
(r, c)-signature Σ(r,c)(I) of a 4∥H∥(r + c)-long c-flat σ-interval I is the set of all I-admissible
minimal (r, c)-types. The (r, c)-signature Σ(r,c)(D) of an (r, c)-boundaried interval D = I∪S±

is the set of all I-admissible minimal (r, c)-types.

The intuition behind this definition is that if I is appropriately long and flat, then the
signature of I stores the information about all possible interactions of I with minimal partial
immersions. Note that Σ(r,c)(D(r,c)(I)) = Σ(r,c)(I).

We say that two (r, c)-boundaried intervals I ∪ S± and I ′ ∪ S′± are exchangeable if they
have equal (r, c)-signatures, S± = S′± (both intervals use precisely the same colors on the
boundary), and the incidence structure of r-boundaries of those intervals with backward arcs
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is the same, i.e. for every i ∈ [r] the set of colors of singular arcs incident with both S∓ and
the i-th vertex of I± is the same as analogously defined set of colors for i-th vertex of I ′±.
Intuitively this means that in T we may replace the interval I with I ′.

▶ Corollary 19. For every pair of integers r, c ∈ N there is a constant s(r, c) such that there
are exactly s(r, c) different (r, c)-signatures.

Proof. We may set s(r, c) = 2t(r,c), where t(r, c) is the constant provided by Corollary 15. ◀

For future discussion of algorithmic aspects, we will need the following observation.

▶ Lemma 20 (q). Consider r and c fixed and let T , σ, and I be as in Definition 18. Then
given T , σ, and I, the signature Σ(r,c)(I) can be computed in polynomial time.

Let S(r,c) be the set of all (r, c)-signatures; we have |S(r,c)| = s(r, c), where s(r, c) is the
constant given by Corollary 19. Let S(r,c)

σ be the set of those (r, c)-signatures which are equal
to Σ(r,c)(I) for some σ-interval I, i.e. contain only I-admissible minimal (r, c)-types. Then
S(r,c)

σ ⊆ S(r,c), so |S(r,c)
σ | ⩽ s(r, c). We argue that Sr,c

σ has a structure of a semigroup in the
following sense.

▶ Lemma 21 (q). Let I1, I2 be two 4∥H∥(r + c)-long c-flat σ-intervals such that I = I1 ∪ I2
is a c-flat σ-interval. Then Σ(r,c)(I) is uniquely determined by Σ(r,c)(I1) and Σ(r,c)(I2).

Lemma 21 implies that the set S(r,c)
σ ∪ {0} can be endowed with an associative binary

product operation such that for every two consecutive intervals I1, I2, the product of their
signatures is the signature of their union I1 ∪ I2. Formally, we set the product for all pairs of
consecutive intervals as above; Lemma 21 enures that this is well-defined. Next, for all pairs
of elements τ1, τ2 ∈ Sr,c

σ for which their product is not yet defined, we set τ1 · τ2 = 0. Also,
we set 0 = 0 · 0 = 0 · τ = τ · 0 for all τ ∈ S(r,c)

σ . In this way, S(r,c)
σ ∪ {0} becomes a monoid;

the empty signature is the neutral element of multiplication.
By Lemma 5 we obtain the following.

▶ Corollary 22 (q). Suppose I is a c-flat 4∥H∥(r+c)ℓ3s(r,c)-long σ-interval. Then there exists
a sequence of consecutive 4∥H∥(r + c)-long c-flat σ-intervals (Ii)ℓ

i=1 whose (r, c)-signatures
are equal and equal to the signature of their union. Moreover, given r, c, T , σ, and I, such a
sequence can be found in polynomial time.

4 Finding protrusions

In order to find an appropriately large subgraph of T which does not “affect” the behavior
of T with respect to H-hitting Immersions in Tournaments, we roughly proceed as
follows. First, we find a suitable ordering σ of V (T ) and an appropriately long interval X

in σ such that X has a constant-size singular interface towards the remainder of T . Then,
inside X, we find (again, an appropriately long) subinterval I of a very specific structure: I

can be divided into 2k + 3 subintervals with the same signatures as itself. This is where we
use Simon Factorization through Corollary 22. In the next part we use this extra structure
to prove that one of these subintervals can be replaced with a strictly smaller replacement in
such a way that after the substitution, we obtain an equivalent instance of the problem.

We proceed to a formal implementation of this plan. The first lemma gives the ordering
σ and the interval X.
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▶ Lemma 23 (q). Let T be a tournament with ctw(T ) ⩽ c and |T | ⩾ (2c + 1)(x + 1)(k + 1).
If T contains at most k arc-disjoint immersion copies of H, then there exists an ordering σ

of V (T ) and an H-free σ-interval X such that |X| ⩾ x and X is cH-flat with respect to σ.
Moreover, given T, k, c, x as above, one can in polynomial time either conclude that T

contains more than k arc-disjoint immersion copies of H, or find an ordering σ and an
interval X satisfying the above properties.

In the remainder of this section let x ⩾ 4∥H∥, r, c be fixed positive integers. Moreover,
let T be a tournament for which there exists an optimal solution of size at most k and let
σ be an ordering of T . Finally let X be an H-free c-flat x(3c + k + 1)(2k + 3)3s(r,c)-long
σ-interval. We assume that there is a coloring ξ mapping all σ-backward arcs incident to X

to colors in [3c] such that not two such arcs of the same color participate in the same σ-cut.
We may apply Corollary 22 to X to find a collection of 2k + 3 consecutive σ-intervals Ii

with |Ii| = x(3c + k + 1) for all i ∈ [2k + 3] such that all Ii have equal (r, c)-signatures, and
this common signature, call it Σ, is equal to the (r, c)-signature of their union I. Then I is an
H-free c-flat x(3c + k + 1)(2k + 3)-long σ-interval. That such I can be found in polynomial
time (given r, c, x, T , X, σ, and ξ) follows from Corollary 22.

Now comes a key step in the proof: we argue that from the equality of types of
I, I1, . . . , I2k+3 it follows that every optimum solution will contain a bounded number of arcs
incident with I.

▶ Lemma 24 (q). For every optimal solution F ⊆ A(T ), we have |F ∩A(I, V (T ))| ⩽ 2c.

We define a digraph T ◦ based on T and I = I1 ∪ . . .∪ I2k+3 as follows: start with T , and
remove all vertices of I2;
for every arc a ∈ ∂+(I2), replace a with an arc with the same head as a and tail in a
fresh vertex s+

ξ(a);
for every arc a ∈ ∂−(I2), replace a with an arc with the same tail as a and head in a
fresh vertex s−

ξ(a).
We call the constructed graph a c-boundaried co-interval. The intuition of this construction
is as follows. We pinch off one of the 2k + 3 intervals and keep the singular arc interface in a
fashion similar as in (r, c)-boundaried intervals. The only difference is that we do not keep
track of the r-boundary vertices.

Now we can define the gluing of T ◦ with an (r, c)-boundaried interval B = I ∪ S± with
signature Σ, simply by identifying the singular arcs of the same color (note that different
vertices from S± can be therefore mapped to the same vertex) and completing the obtained
structure to a tournament by making all missing arcs generic. Note that in order for this to
be well-defined, we need to require that the sets of colors of the singular arcs in T ◦ and in
B are identical – if it is so, we will say that T ◦ and B are compatible. Also, note that we
require that the signature of B is Σ: that is, the possible types of partial immersions present
in B are exactly the same as in the substituted interval I2.

Denote by T ◦ ⊕ B the tournament obtained from gluing T ◦ and B. Note that in this
tournament we have naturally defined ordering of vertices: in T ◦ it is inherited from the
ordering σ of T and within B it is inherited from the ordering σI of the boundaried interval.
Finally all the vertices of the substituted interval appear in the ordering between the two
interval parts (prefix and suffix) of the co-interval. The following observation is obvious.

▶ Observation 25. If two exchangable (r, c)-boundaried intervals B = I∪S± and B′ = I ′∪S±

are compatible with T ◦, then the (r, c)-signatures of I in T ◦ ⊕B and I ′ in T ◦ ⊕B′ are equal.
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We now observe, by inspecting the proof of Lemma 24, that if in I we replace one of
its subintervals with an exchangeable interval, then the conclusion of Lemma 24 – that the
modified I ′ will still have constant incidence with every optimal solution in T – will still
hold. Let us summarize this section with putting together these observations and recalling
all needed assumptions.

▶ Corollary 26 (q). Suppose that x ⩾ 4∥H∥, r, c are fixed positive integers, T is a tournament
of for which there exists an optimal solution of size at most k and σ is an ordering of T .
Suppose further that X is an H-free c-flat x(3c + k + 1)(2k + 3)3s(r,c)-long σ-interval with
all incident σ-backward arcs colored according to ξ with colors [3c] so that no two arcs of the
same color participate in the same σ-cut.

Then there exists an (r, c)-signature Σ, a c-boundaried co-interval T ◦ of this signature,
and an (r, c)-boundaried interval B = I ∪ S± such that T = T ◦ ⊕ B and moreover for
every B′ = I ′ ∪ S′± exchangeable with B and for every optimal solution F ⊆ A(T ′) where
T ′ = T ◦ ⊕B′ we have: |F ∩A(I ′, T ′)| ⩽ 2c. Moreover, given x, r, c, T , σ, and X, such Σ,
T ◦, and B can be computed in polynomial time.

5 Replacing protrusions

In the entire section we fix c := cH , where cH is the constant from Corollary 4, and r := 6∥H∥c.
Moreover we assume that x ⩾ 4∥H∥; the precise value of x will be determined later.

▶ Definition 27. Protrusion is any (r, c)-boundaried interval X = I ∪ S± which is H-free
and x(3c + k + 1)-long. For brevity we will refer to X as to I. The set Σ(r,c)(X) is the
signature of the protrusion.

Let T be a tournament equipped with a vertex ordering σ and let I be an H-free interval
and such that T = T ◦ ⊕X, where X is a protrusion of signature Σ. Let I ⊆ V (T ) be the
interval defined by the protrusion. Fix the coloring ξ of σ-backward arcs incident with I.

Recall that from Corollary 26 follows that for every (r, c)-boundaried co-interval T ◦

compatible with X if T ◦ ⊕X admits an optimal solution F of size not greater than k, then
there are at most 2c arcs in F incident with X.

For every protrusion X = I ∪S± define a function fX : 2S(r,c) → {0, 1, 2, . . . , 2c}∪{∞} as
follows: fX(S) is the minimum number of arcs in A(I, I) needed to hit all partial immersions
in I whose signatures belong to S, or ∞ if this number is greater than 2c.

We introduce an equivalence relation ∼ on the set of all protrusions. Let X = I ∪ S±,
X ′ = I ′ ∪ S′±. We say that X ∼ X ′ if:

S± = S′±;
Σ(r,c)(X) = Σ(r,c)(X ′); and
fX(S) = fX′(S) for every S ⊆ S(r,c).

Note that the number of equivalence classes of ∼ is finite and bounded by a constant
depending only on H. This means that if in each class we pick a representative with the
minimal number of vertices (call each such element a small protrusion), then all small
protrusions will have size bounded from above uniformly by a constant sH depending on the
digraph H only.

Same arguments as in the proof of Lemma 20 give the following.

▶ Lemma 28. Given protrusions X and X ′ it can be decided in polynomial time whether
X ∼ X ′.

We now argue that equivalent protrusions are replaceable.
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▶ Lemma 29 (q). Suppose that T = T ◦ ⊕X is a tournament satisfying the conclusion of
Corollary 26, where X is a boundaried (r, c)-interval of signature Σ and T ◦ is a c-boundaried
co-interval which is compatible with X.

Then for every X ′ such that X ∼ X ′, the optimal solution in T ◦⊕X is of size not greater
than k if and only if the optimal solution in T ◦ ⊕X ′ is of size not greater than k.

We are now set up with all tools needed to prove our main theorem.

Proof of Theorem 1. We prove that provided |T | > C · kC , where the constant C will
be defined later, one can compute an instance (T ′, k) equivalent to (T, k) and satisfying
|T ′| < |T |. The conclusion will follow from applying such reduction (at most) |T | times.

First of all note that from Theorem 3 for a digraph being a disjoint union of k exemplars
of H, we conclude that if T does not contain k arc-disjoint immersion copies of H, then
ctw(T ) ⩽ c0k2 for some constant c0 (depending on H). In particular, it follows that if
ctw(T ) > k2c0 (which can be established in polynomial time using Lemma 2), then T is a
no-instance. So from now on we may assume that ctw(T ) ⩽ c0k2.

Let c = cH , r = 6∥H∥c, x′ = max {4∥H∥, sH + 1} and x = x′(3c + k + 1)(2k + 3)3s(r,c),

where s(r, c) is defined in Corollary 19. Let C be a constant satisfying CkC ⩾ (2k2c0 + 1)(x +
1)(k + 1), e.g. C = max{3s(r, c) + 4, 53s(r,c) · 3c0 · 4x′ · (6c + 2)}.

Suppose that T is a tournament satisfying ctw(T ) ⩽ k2c0 and |T | > CkC . Applying
Lemma 23, we either conclude that T admits more than k arc-disjoint copies of H (so (T, k)
is a no-instance), or find an ordering σ of V (T ) and an H-free c-flat x-long σ-interval J .
Both conclusions can be effectively gained in polynomial time.

In the latter case, we may use Corollary 22 in a manner described in Section 4 to find in
J an H-free c-flat x′(3c + k + 1)(2k + 3)-long σ-interval I of (r, c)-signature Σ, which can be
decomposed to 2k + 3 consecutive x′(3c + k + 1)-long σ-intervals Ii, each of (r, c)-signature
Σ. Both I and Σ are found in polynomial time.

Let T = T ◦ ⊕ X be the decomposition where T ◦ is a c-boundaried co-interval and
X = (I2 ∪ S±, Σ) is a protrusion corresponding to I2. Clearly, X is compatible with T ◦.
Using Lemma 28 we may check in polynomial time all small protrusions to find one X ′ such
that X ′ ∼ X. Let us define T ′ = T ◦ ⊕X ′.

By Lemma 29 we conclude that (T ′, k) is an instance of H-hitting Immersions in
Tournaments equivalent to (T, k). Moreover as |X ′| ⩽ sH < |X|, we have that |T ′| <

|T |. ◀
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Abstract
We investigate the relationship between various isomorphism invariants for finite groups. Specifically,
we use the Weisfeiler-Leman dimension (WL) to characterize, compare and quantify the effectiveness
and complexity of invariants for group isomorphism.

It turns out that a surprising number of invariants and characteristic subgroups that are classic
to group theory can be detected and identified by a low dimensional Weisfeiler-Leman algorithm.
These include the center, the inner automorphism group, the commutator subgroup and the derived
series, the abelian radical, the solvable radical, the Fitting group and π-radicals. A low dimensional
WL-algorithm additionally determines the isomorphism type of the socle as well as the factors in
the derives series and the upper and lower central series.

We also analyze the behavior of the WL-algorithm for group extensions and prove that a low
dimensional WL-algorithm determines the isomorphism types of the composition factors of a group.

Finally we develop a new tool to define a canonical maximal central decomposition for groups.
This allows us to show that the Weisfeiler-Leman dimension of a group is at most one larger than
the dimensions of its direct indecomposable factors. In other words the Weisfeiler-Leman dimension
increases by at most 1 when taking direct products.
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1 Introduction

Tasks of classifying finite groups up to isomorphism and generating particular classes of
finite groups are fundamental and recurring themes in computational group theory. Yet, in
particular the computational complexity of such problems remains most illusive to date.

For example, for most orders up to 20.000 the number of non-isomorphic finite groups has
been computed and the groups have been exhaustively generated [13]. But there are currently
38 notoriously difficult, exceptional cases, for which this information is beyond our current
means (see [13]). The varying difficulty across different orders is in part caused by the erratic
fluctuation of the number of isomorphism classes of finite groups as the order increases. This
number appears to be closely linked to the multiplicities of the prime factors of the respective
order, but even estimating the number of groups of a given order is non-trivial.
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27:2 Isomorphism Invariants of Groups and the WL-Dimension

Generation tasks for classes of groups have a long tradition dating back to Cayley [7].
Nowadays, there is extensive work on generating particular classes of groups. For example
there are practically efficient algorithms for the generation of finite nilpotent or finite solvable
groups [12]. However, the algorithms come without efficient running time guarantees.

One of the difficulties for a complexity analysis stems from the group isomorphism problem.
Indeed, the group isomorphism problem for finite groups stays among the few standard tasks
in computational group theory with uncertain complexity. In principle, we desire algorithms
with an efficient worst case running time measured in the number of generators through
which the groups are given. However, we do not even have algorithms with an efficient worst
case running time when measured in the order of the group. In fact the only improvement
for the worst case complexity over Tarjan’s classic nlog(n)+O(1) algorithm are n

1
c ·log(n)+O(1)

algorithms with a small constant c depending on the model of computation (randomization,
quantum computing etc.) [21, 23, 24]. There is however a nearly-linear time algorithm that
solves group isomorphism for most orders [11].

A closely related problem is that of computing isomorphism invariants to distinguish
groups. Efficiently computable complete invariants are sufficient for general isomorphism
testing. However, we do not know efficiently computable complete invariants even for very
special cases, such as nilpotent p-groups of class 2. Partial invariants only give incomplete
isomorphism tests, but they still find application in generation tasks allowing for heuristic
fast pruning [13]. Given the long history of (algorithmic) group theory, there is an abundance
of partial invariants.

Generally the techniques involved in generation and isomorphism computations exploit
the existence of various characteristic subgroups classic to group theory. As outlined in [13],
these include exploiting the Frattini subgroup Φ(G) [3], the exponent-p-central series [22],
characteristic series [25] and similar.

Overall, many of the techniques currently in use are ad-hoc, focused on practical per-
formance, and do not lead to efficient worst case upper bounds for the complexity of the
algorithmic problems. As a consequence, the general picture for finite groups is somewhat
chaotic. There is often no structured way of comparing or combining invariants for group
isomorphism. E.g., two given invariants may be incomparable in their distinguishing power,
making it unclear which invariant to use. Also the required time to evaluate an invariant
may be difficult to estimate and can depend significantly on the input group. Even when
we are given a class of efficiently computable invariants, it will generally be unclear which
invariants to choose or how to efficiently combine their evaluation algorithmically.

In Summary, we lack the formal means to characterize, compare, or quantify the effective-
ness and complexity of invariants for group isomorphism. We therefore propose a systematic
study of computationally tractable invariants for finite groups.

For inspiration on how to systematize such a study, we turn to algorithmic finite model
theory and specifically descriptive complexity theory. This allows us to characterize the
complexity of an invariant by considering a formula within a logic that captures the invariant.
A natural choice for a logic from which to choose the formulas is the powerful fixed point logic
with counting. Not only can this logic express all polynomial time computable languages on
ordered structures [17, 26], but in the context of graphs it has also proven to be an effective
tool in comparing invariants (see [20]). As a measure for the complexity of an invariant we
can then use the number of variables required to express the invariant in fixed point logic with
counting. Crucially there is a corresponding algorithm, the k-dimensional Weisfeiler-Leman
algorithm (WL-refinement, WL), that (implicitly) simultaneously evaluates all invariants
that are expressible by formulas requiring at most k + 1 variables in polynomial time1.

1 For groups there are actually two natural, closely related versions of the logic and of the algorithm,
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Thus, to enable a quantification and comparison of the complexity of invariants we suggest
the Weisfeiler-Leman algorithm. More specifically we suggest to use the Weisfeiler-Leman
dimension, which determines how many variables are required to express a given invariant
as a formula. This gives us a natural and robust framework for studying group invariants.
In fact, the k-dimensional Weisfeiler-Leman algorithm is universal for all invariants of the
corresponding dimension, resolving the issue of how to combine invariants. With this approach
we also include an abundance of invariants that have not been considered before. However,
it is a priori not clear at all that commonly used invariants can even be captured by the
framework, i.e., that they even have bounded WL-dimension.

Contribution. The first contribution of this paper is to show that a surprising number of
isomorphism invariants and subgroups that are classic to group theory can be detected and
identified by a low dimensional Weisfeiler-Leman algorithm.

Specifically, we show first that for a small value of k, groups not distinguished by k-WLII
have centers (k ≥ 2), inner automorphism groups (k ≥ 4), derived series (k ≥ 3), abelian
radicals (k ≥ 3), solvable radicals (k ≥ 2), Fitting groups (k ≥ 3) and π-radicals (k ≥ 3)
that are indistinguishable by k-WLII. They also have isomorphic socles (k ≥ 5), stepwise
isomorphic factors in the derives series (k ≥ 4), upper central series (k ≥ 4), and lower
central series (k ≥ 4). Our techniques regarding characteristic subgroups are fairly general.
We thus expect them to be applicable to a large variety of other isomorphism invariants.
In particular they should facilitate the analysis of combinations of invariants one might be
interested in (such as the Fitting series or the hypercenter).

Beyond these characteristic subgroups, in our second contribution we show that composi-
tion factors are implicitly computed by a Weisfeiler-Leman algorithm of bounded dimension.

▶ Theorem 1.1. If k ≥ 5 and G is indistinguishable from H via k-WLI, then G and H have
the same (isomorphism types of) composition factors (with multiplicities).

The theorem shows that the WL-algorithm, which is a purely combinatorial algorithm,
can compute group theoretic invariants that do not even appear as a canonical subset of the
group. In particular, the composition factors cannot be localized within the group, and at
first sight it might not be clear that WL grasps quotient groups.

Our third contribution, having the most technical proof and building on our other results,
regards direct products of groups. Here we consider the decomposition of a group into direct
factors. We show that direct products indistinguishable by k-WL must arise from factors
that are indistinguishable by (k + 1)-WL.

▶ Theorem 1.2. Let G = G1 × · · · × Gd be a direct product and k ≥ 5. If G and H are not
distinguished by k-WLII then there are direct factors Hi ≤ H such that H = H1 × · · · × Hd

and such that for all i the groups Gi and Hi are not distinguished by (k − 1)-WLII.

In other words, the Weisfeiler-Leman dimension increases by at most 1 when taking direct
products. The main difficulty here is that decompositions into direct products are not unique,
and thus not definable. These complications arise mainly due to central elements. However
we manage to define a canonical maximal central decomposition, that is generally finer than
a decomposition into direct factors. We then show that this canonical decomposition is
implicitly computed by the WL-algorithm.

k-WLI and k-WLII, see Section 3.
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27:4 Isomorphism Invariants of Groups and the WL-Dimension

One way of interpreting our results is that the Weisfeiler-Leman algorithm comprises a
unified way of computing all the mentioned invariants and characteristics simultaneously.
The dimension can therefore be used to compare the complexity of invariants.

Techniques. To show the various results on characteristic subgroups, we prove a general
result on group expressions. It essentially shows that subsets that can be defined by equation
systems can be detected by k-WL (see Lemma 4.3).

The result on composition factors involves a technique that relates k-WL distinguishability
of groups to detectable normal subgroups and detectable quotients (Theorem 4.8).

To deal with direct products, we extend the technique to simultaneously relate chains
of subgroups in two indistinguishable groups (Lemma 4.9). Here we exploit well-known
connections of pebble games to Weisfeiler-Leman algorithms. However, the main difficulty
regarding our result on decompositions into direct factors is that such decompositions are
not unique. In fact in general, a group element cannot be assigned to a direct factor
in a well defined sense, making it impossible for WL to detect direct factors. For this
purpose we develop a new technical tool, component-wise filtrations (Definition 6.8), which
compensate for the non-uniqueness to extract at least the isomorphism type of the direct
factors (Lemma 6.10). We also exploit the non-commuting graph of the group and show
that certain subsets, which we call non-abelian components, can be detected by k-WL
(Lemma 6.14). These non-abelian components lead to a WL-definable maximal central
decomposition of every finite group.

Outline. Section 2 provides preliminaries. Section 3 treats WL-refinement in the context
of colored groups. In Section 4, we show that invariants generated via WL-refinement
fulfill group theoretic closure properties. Section 5 is an extensive collection of specific
structure properties and invariants which Weisfeiler-Leman algorithms detect in finite groups.
Finally, in Section 6 we investigate the ability of WL-refinement to detect direct product
decompositions, building on the results of the previous sections. Throughout the paper
various lemmas have been condensed and proofs are omitted. Attached is a full version of
the paper (sections agree but the sections are expanded and numbers may disagree.).

Further related work. We should point out that there are various results in the literature
on decomposing groups into indecomposable direct factors for various input models of groups.
For example there is a polynomial time algorithm to decompose permutation groups into direct
products [28]. Finally, there is a recent algorithm that finds direct product decompositions of
permutation groups with factors having disjoint support [8]. There is also a polynomial time
algorithm that computes direct factors efficiently for groups given by multiplication table [19].
Aspects of this algorithm are related to arguments we use for studying the behavior of WL
on direct products (see the beginning of Section 6 for a discussion).

Regarding group isomorphism problems, for isomorphism of Abelian groups a linear
time algorithm is known [18] and there are near linear time algorithms for some classes
of non-abelian groups (e.g, [10]). Recent directions relate group isomorphism to tensor
problems [15]. The Weisfeiler-Leman algorithm has also been incorporated as a subroutine
within other sophisticated group isomorphism algorithms [6].

Regarding Weisfeiler-Leman algorithms, the literature is somewhat limited when it comes
to groups [4, 6] but quite extensive when it comes to graphs. In [2], for example the authors
investigate some graph invariants that are captured by the Weisfeiler-Leman algorithm. We
refer to [20] for an introduction and extensive overview over recent results for WL on graphs.
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2 Preliminaries

Sets & Partitions. We denote multisets as {{. . . }}. Given disjoint sets M and N , their
union is M ⊎ N . The m-th Cartesian power of M is M (m).

Graphs. We use V (Γ) and E(Γ) to refer to the vertices or edges of a graph Γ. For a subset
S ⊆ V (Γ), let Γ[S] denote the subgraph induced by the set S.

Groups. Groups are assumed to be finite. The symmetric group on m symbols is denoted
by Sm. The order of a group element g ∈ G is the order of the group generated by g, i.e.,
|g| := |⟨g⟩|. Given a finite set of primes π, a π-group is a group whose order is only divisible
by primes in π. A group element is called a π-element if it generates a π-group. For any
d ∈ Z, set (G)d := ⟨{gd | g ∈ G}⟩ in contrast to the d-fold direct power Gd. Given g, h ∈ G,
we define the commutator [g, h] := ghg−1h−1. Conjugation is denoted by gh := hgh−1. If
M, N ⊆ G we set [M, N ] := ⟨[m, n] | m ∈ M, n ∈ N⟩ and we write G′ := [G, G].

3 Colored Groups & Weisfeiler-Leman Algorithms

We recapitulate various notions regarding WL-algorithms on groups. For WL on graphs we
refer to [20]. For uncolored groups, versions of WL were defined in [4]. For our purpose, we
need to generalize the concepts to the setting of colored groups. Let us point out that in the
case of graphs, colors can be replaced by gadget constructions to obtain uncolored graphs
while maintaining the graph’s combinatorial properties. However, for groups it is unclear how
to do this. Nevertheless, we can still use colors to restrict the set of possible automorphisms.

3.1 Colorings on Finite Groups
Given a natural number k and a finite group G, a (k-)coloring (over G) is just a map
γ : G(k) → C where C denotes some finite set of colors. A k-coloring γ partitions G(k) into
color classes. We refer to 1-colorings as element-colorings.

The color set C is often omitted. Considering two natural numbers m < k, a k-
coloring γ : G(k) → C induces an m-coloring γ(m) : G(m) → C via γ(m)((g1, . . . , gm)) :=
γ((g1, . . . , gm, 1, . . . , 1)). To simplify notation, we may write γ again instead of γ(m) and
instead of γ(1) we use γ(G) to emphasize that the coloring is pulled back to group elements.

▶ Definition 3.1. A colored group is a group G together with an element-coloring γ over G.
We say M ⊆ G is γ-induced if γ(M)∩γ(G\M) = ∅ holds, i.e., M is a union of γ-color classes.
Colored groups (G, γG) and (H, γH) are isomorphic if there is a group isomorphism φ : G → H

that respects colors, i.e., γH ◦ φ = γG. We set AutγG
(G) := {φ ∈ Aut(G) | γG ◦ φ = γG}.

3.2 Weisfeiler-Leman Refinement on Colored Groups
In [4], three versions of Weisfeiler-Leman algorithms on groups were defined. For us it is
sufficient to consider two of these versions. The relevant definitions and results are discussed
below. They are essentially taken from [4], but we added colorings.

For k ≥ 2 we devise a Weisfeiler-Leman algorithm of dimension k (k-WL) that takes
as input a colored group (G, γ) and computes an Autγ(G)-invariant coloring on G(k). The
algorithm computes an initial coloring from isomorphism invariant properties of k-tuples and
then iteratively refines color classes until the process stabilizes. The stable colorings arising
from k-WL provide (possibly incomplete) polynomial-time non-isomorphism tests.

ESA 2022



27:6 Isomorphism Invariants of Groups and the WL-Dimension

Version I (k-WLI). The initial coloring χI,k
γ,0 is defined via the group’s multiplication

relation while also taking into account element-colors. Two tuples ḡ := (g1, . . . , gk) and
h̄ := (h1, . . . , hk) obtain the same initial color if and only if for all indices i, j, and m between
1 and k it holds γ(gi) = γ(hi), gi = gj ⇐⇒ hi = hj , and gigj = gm ⇐⇒ hihj = hm. The
subsequent refinements are defined iteratively via χI,k

γ,i+1(ḡ) :=
(

χI,k
γ,i(ḡ), M(ḡ)

)
. Here, M(ḡ)

is the multiset of k-tuples of colors given by M(ḡ) := {{(χI,k
γ,i(ḡ1←x), . . . , χI,k

γ,i(ḡk←x)) | x ∈ G}},
where ḡj←x is obtained by replacing the j-th entry of ḡ by x.

Version II (k-WLII). The initial coloring χII,k
γ,0 is defined in terms of colored, ordered

isomorphism of tuples. Thus, ḡ = (g1, . . . , gk) and h̄ = (h1, . . . , hk) obtain the same initial
color if and only if there exists an isomorphism of colored subgroups φ : ⟨ḡ⟩ → ⟨h̄⟩ such that
φ(gi) = hi for all i. The refinement step is unchanged from Version I.

For finite G there is a smallest i such that χI,k
γ,i and χI,k

γ,i+1 induce the same color class
partition on G(k). At this point color classes become stable and we obtain the stable coloring
χI,k

γ := χI,k
γ,i. Define χII,k

γ analogously. For uncolored groups write χI,k
G and χII,k

G , respectively.
By definition, the initial colorings are invariant under isomorphisms that respect γ. This

property then holds for the iterated colorings as well. In particular, whenever (G, γG) and
(H, γH) are isomorphic as colored groups, there is a bijection f : G(k) → H(k) such that
χI,k

γG
= χI,k

γH
◦ f (and the same holds for Version II). So we obtain a non-isomorphism test by

comparing stable colorings computed by k-WLI or k-WLII as follows.

▶ Definition 3.2. Let (G, γG) and (H, γH) be colored groups. We say G is distinguished
from H by k-WLI if there is no bijection f : G(k) → H(k) with χI,k

γG
= χI,k

γH
◦ f . We say

k-WLI identifies G if it distinguishes G from all other (non-isomorphic) groups. We write
G ≡I

k H to indicate that G and H are not distinguished by k-WLI. Furthermore, for m ≤ k,
tuples of group elements ḡ ∈ G(m) and h̄ ∈ H(m) are distinguished by k-WLI if they obtain
different colors in the respective induced m-colorings (χI,k

γG
)(m) and (χI,k

γH
)(m). All definitions

also apply to Version II in the obvious way.

The different versions of WL on groups are closely related: in particular, (k + 1)-WLI
subsumes k-WLII. For the colored versions this is briefly discussed in Lemma 3.4 below.

Finally, we note that in [4], a run time bound of O(|G|k+1 log(|G|)) is given for both
versions of k-WL to compute the stable coloring on G(k). The same bound applies to colored
groups. In particular, the initial coloring of k-WLII is efficiently computable, since we only
have to compute isomorphism types of k-generated subgroups relative to a fixed and ordered
generating set of size k.

3.3 Bijective k-Pebble Games
As with graphs and uncolored groups, WL-algorithms on colored groups can be characterized
via pebble games. For details we refer to the full version (contained in the appendix).

▶ Lemma 3.3 (see [4, Theorem 3.2]). Let J ∈ {I, II} and k ≥ 2. Consider colored
groups (G, γG) and (H, γH) with ḡ ∈ G(k) and h̄ ∈ H(k). Then χJ,k

γG
(ḡ) = χJ,k

γH
(h̄) if

and only if Spoiler has a winning strategy in the configuration [(g1, . . . , gk, ⊥), (h1, . . . , hk, ⊥)]
in the (k + 1)-pebble game (Version J).

In [4] (see [5, Section 3]), relationships for the different versions of WL for uncolored
groups are discussed, for the convenience of the reader we sketch the corresponding statement
for colored groups here.
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▶ Lemma 3.4. Let (G, γG) and (H, γH) be colored groups.
1. Consider ḡ ∈ G(m), h̄ ∈ H(m) and k ≥ m. If ḡ is distinguished from h̄ by k-WLI then

ḡ is distinguished from h̄ by k-WLII. If ḡ is distinguished from h̄ by k-WLII then ḡ is
distinguished from h̄ by (k + 1)-WLI.

2. It holds that (G, γG) ≡I
k+1 (H, γH) =⇒ (G, γG) ≡II

k (H, γH) =⇒ (G, γG) ≡I
k (H, γH).

Proof Sketch. Part 2) follows from Part 1). For Part 1), the first claim is true by definition.
For the second claim, using Lemma 3.4, we compare the (k + 1)-pebble game (ver. II) and
the (k + 2)-pebble game (ver. I) with initial configurations given by placing pebble pairs on
(gi, hi) for all i. In the version I game, Spoiler copies the winning strategy from the version II
game. By assumption, Spoiler eventually reaches a winning configuration in the version II
game, meaning that the pebble pairs in this eventual configuration induce a map that does
not extend to an isomorphism between the subgroups generated by the respectively pebbled
group elements. Then, for each bijection Duplicator may further choose, there must be a
witness of this fact, i.e., a word over the currently pebbled group elements in G that is not
mapped multiplicatively by Duplicator’s bijection. Spoiler can use the extra pebble to win
immediately or reduce the length of the witness. A very similar argument is spelled out in
the proof of [5, Lemma 3.10, Part 3)] in full detail. ◀

3.4 Induced Colorings & Refinements
We say that a coloring γ2 : G(k) → C2 refines a coloring γ1 : G(k) → C1, denoted γ2 ⪯ γ1, if
each γ1-color class is a union of γ2-color classes.

▶ Lemma 3.5. Let γ1, γ2 be colorings on G such that (χI,k
γ1

)(G) ⪯ γ2 ⪯ γ1. Then χI,k
γ1

and
χI,k

γ2
induce the same color classes on G(k).

4 WL-Refinement on Quotient Groups

We investigate the interplay between WL and basic group structure, e.g., subgroups, normal
closures or quotients. We use subset selectors to compare substructures of different groups.

▶ Definition 4.1. A subset selector S associates with each colored group (G, γ) a subset
S(G, γ) ⊆ G. For each version J ∈ {I, II}, a subset selector S is called k-WLJ -detectable, if
χJ,k

γG
(S(G, γG))∩χJ,k

γH
(H \S(H, γH)) = ∅ holds for all pairs of colored groups (G, γG), (H, γH).

When the dependency of S(G, γG) on (G, γG) is clear from the context, we also say that
S(G, γG) is k-WLJ -detectable (instead of (G, γ) 7→ S(G, γ) being detectable). Examples
of 2-WLJ -detectable subset selectors include the association of every group with its center
(J = II) or the subset selector associating with each group the subset of elements of order 2.

We should remark that in our sense detectable means that the subset of interest is a union
of χJ,k

γG
-color classes, but we make no statement on how to algorithmically determine which

color classes form the set. It might a priori not be clear that the subset is even computable.
If S is k-WLJ -detectable then S(G, γG) is χJ,k

γG
-induced, hence AutγG

(G)-invariant. If S
and T are k-WLJ -detectable, so are their union (intersection) in G and G \ S(G, γG).

▶ Definition 4.2. A group expression E := (S1, . . . , St; R) of length t is a sequence of subset
selectors Si together with a set R of words w(x1, . . . , xt) over t variables x1, . . . , xt, allowing
inverses. Let (G, γ) be a colored group, then a t-tuple (g1, . . . , gt) ∈ G(t) is a solution to E if
for each i it holds that gi ∈ Si(G, γ) and for each w ∈ R it holds that w(g1, . . . , gt) = 1. Let
SolE(G, γ) ⊆ G(t) denote the set of all solutions to E over (G, γ).
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▶ Lemma 4.3. Consider a group expression E := (S1, . . . , St; R). Let k ≥ t and assume that
each Si is k-WLII-detectable.
1. Let (G, γG) and (H, γH) be colored groups. Then all t-tuples in SolE(G, γG) can be

distinguished from all t-tuples in H(t) \ SolE(H, γH) via k-WLII.
2. For 1 ≤ j ≤ t and colored groups (G, γ) define

Sol∃
j (G, γ) := {x ∈ G | ∃(x1, . . . , xt) ∈ SolE(G, γ) : xj = x}

Sol∀
j (G, γ) := {x ∈ G | (∀xi ∈ Si(G, γ))1≤i≤t : (x1, . . . , xj−1, x, xj+1, . . . , xt) ∈ SolE(G, γ)}.

Then Sol∃j and Sol∀j are k-WLII-detectable subset selectors for all j.
The same holds for k-WLI, provided k > t.

We can now argue that WL is powerful enough to incorporate various basic group theoretic
concepts. This in particular includes generated subgroups, normal closures, powers, conjugacy
classes, centralizers, and normalizers. All these statements are relative to inductively detected
structures, so the processes can be iterated. Let us record this in the following lemma.

▶ Lemma 4.4. Consider k-WLII-detectable subset selectors S, T . Then the following subset
selectors are k-WLII-detectable:
1. Se for each e ∈ Z, where Se(G, γ) := {se | s ∈ S(G, γ)},
2. CS(T ), where CS(T )(G, γ) := {s ∈ S(G, γ) | [s, T (G, γ)] = {1}}.
Provided k is at least 3, k-WLII further detects the following subset selectors:
3. {s1 . . . se | si ∈ S(G, γ)} for each e ∈ N, in particular also ⟨S(G, γ)⟩,
4. {st := tst−1 | s ∈ S(G, γ), t ∈ T (G, γ)}, hence the normal closure ⟨S(G, γ)G⟩,
5. NS(T ), where NS(T )(G, γ) := {s ∈ S(G, γ) |

T (G, γ)s = T (G, γ)},
6. [S, T ], where [S, T ](G, γ) := ⟨[s,t] | s∈S(G, γ), t∈T (G, γ)⟩.
All statements remain true if we replace Version II by Version I everywhere (including the
assumptions), provided k > 2 in Parts 1 and 2 and k > 3 in Parts 3–6.

We point out how to identify groups as direct products of detectable subgroups.

▶ Example 4.5. Let G ≡II
3 H and assume that G = G1 × G2 with χII,3

G -induced subgroups
Gi. We use element-colors in Gi to define a detectable subset selector K 7→ Ki := {x ∈
K | χII,k

K (x) ∈ χII,k
G (Gi)}. Since G ≡II

3 H, also Hi ≡II
3 Gi. By the previous lemma, 3-WLII

detects [G1, G2] and G1 ∩ G2, which are both trivial, as well as ⟨G1, G2⟩, which is equal to
G. By definition of detectability, the same must hold for H1 and H2, thus H = H1 × H2.

In Section 6 we discuss the (much harder) case of arbitrary direct decompositions, without
the assumption that each direct factor is detectable as a subgroup.

Next, we prove that WL is capable of exploiting properties of quotients over detectable
subgroups. Later, this can be inductively leveraged along chains of subgroups.

▶ Definition 4.6. Given a coloring γ : G → C and a normal subgroup N ⊴ G define the
induced quotient coloring γ̄ on G/N via γ̄(gN) := {{γ(gn) | n ∈ N}}.

▶ Lemma 4.7. Let k ≥ 4 and consider colored groups (G, γG) and (H, γH). Assume that there
are normal subgroups NG ⊴ G and NH ⊴ H which are induced by γG and γH , respectively,
such that γG(NG) = γH(NH). Then

χI,k
γ̄G

(g1NG, . . . , gkNG) ̸= χI,k
γ̄H

(h1NH , . . . , hkNH) =⇒ χI,k
γG

(g1, . . . , gk) ̸= χI,k
γH

(h1, . . . , hk)

for all choices of gi ∈ G and hi ∈ H.
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Proof sketch. The idea is to simulate the pebble game on quotient groups in the pebble
game on G and H. Spoiler can first win modulo NG and NH , respectively, and then use a
constant number of pebbles to manipulate the configuration into one that fulfills the winning
condition over the original groups. For details, we refer to the full version. ◀

We synthesize the previous results into our first main theorem, stating that whenever
G ≡I

k H holds, there is a color preserving correspondence between detectable substructures.

▶ Theorem 4.8. Let k be at least 4.
1. Consider subset selectors N, U and U/N such that for all (G, γ) it holds that N(G, γ) ⊴ G,

N(G, γ) ≤ U(G, γ) and U/N(G/N(G), γ̄) = U(G)/N(G). If N and U/N are k-WLI-
detectable then so is U .

2. Consider colored groups (G, γG) ≡I
k (H, γH). Let Ψ : G → H be a bijection with

(χI,k
γG

)(G) ◦ Ψ = (χI,k
γH

)(H). Then M ⊆ G is χI,k
γG

-induced if and only if Ψ(M) ⊆ H is
χI,k

γH
-induced. In this case it holds that Ψ(⟨M⟩) = ⟨Ψ(M)⟩. In particular, if M is a

subgroup then so is Ψ(M) and it holds (M, γG|M ) ≡I
k (Ψ(M), γH |Ψ(M)). Additionally, M

is normal if and only if Ψ(M) is and then it also holds that (G/M, γ̄G) ≡I
k (H/Ψ(M), γ̄H).

Finally let us point out that detectable substructures can be used to limit Duplicator-
strategies. This technique will be needed towards the main result of Section 6. More precisely,
we show that Spoiler can “trade off” one pebble pair to enforce that Duplicator’s bijections
are simultaneously compatible with detectable substructures in the following sense.

▶ Lemma 4.9. Let k ≥ 3 and J ∈ {I, II}. Consider groups G and H with G ≡J
k H, so

Duplicator has a winning strategy in the (k + 1)-pebble game (Version J). Assume χJ,k
G and

χJ,k
H induce chains of subgroups Gs ≤ · · · ≤ G1 ≤ G and Hs ≤ · · · ≤ H1 ≤ H, respectively,

such that χJ,k
G (Gi) = χJ,k

H (Hi) for all i. Then Duplicator has a winning strategy in the k-
pebble game (Version J) on (G, H) such that each bijection f : G → H chosen by Duplicator’s
strategy fulfills the following condition: ∀x ∈ G ∀i : f(xGi) = f(x)Hi.

The proof actually works in a context more general than groups, replacing subgroup
chains by nested equipartitions. This generalization might find applications in different
contexts.

5 WL-dimension of certain isomorphism invariants

We just briefly summarize our results in what follows. A detailed treatment can be found in
the full version, for group theoretic foundations see for example [16].

▶ Lemma 5.1. For k ≥ 2, k-WLII identifies all finite k-generated groups and all finite
abelian groups.

5.1 Derived & Central Series
▶ Lemma 5.2.
1. For k ≥ 3, G′ := [G, G] is k-WLII-detectable.
2. Assume that k ≥ 4 and G ≡I

k H hold. Let G0 ≥ G1 ≥ · · · ≥ Gt denote the derived, upper
central or lower central series of G (without redundancies, starting at G0 := G). Define
the corresponding series of H via H0 ≥ · · · ≥ Hs. Then s = t holds and for all i we have
that Gi ≡I

k Hi, as well as Gi/Gi+1 ∼= Hi/Hi+1.
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The requirement k ≥ 3 is necessary in the first statement as computations on
SmallGroup(128,171) and SmallGroup(128,1122) from the Small Groups Library in GAP [14]
show.

▶ Corollary 5.3. For k ≥ 4, k-WLI distinguishes solvable from non-solvable groups and
k-WLI distinguishes between groups of different nilpotency classes.

5.2 Radicals
Let F be a class of finite groups that is closed under isomorphism and normal products.
Then the F-radical OF (G) of G is defined as the largest normal F -subgroup in G.

▶ Lemma 5.4. Let k ≥ 3. If F is closed under normal subgroups and (k − 1)-WLII
distinguishes F-groups from all non-F-groups, then k-WLII detects OF (G) in G.

▶ Lemma 5.5. The solvable radical is 2-WLII-detectable. The nilpotent radical Fit(G) and
all π-radicals Oπ(G) (π a collection of primes) are 3-WLII-detectable.

▶ Lemma 5.6. If G contains a unique maximal abelian normal subgroup, then it is 3-WLII-
detectable.

5.3 Simple Groups & Composition Factors
Recall that finite (almost) simple groups can be generated with 2 (respectively 3) elements [9].

▶ Lemma 5.7. 2-WLII identifies finite simple groups. 3-WLII identifies finite almost simple
groups and finite direct products of simple groups.

In the case of simple groups there is a stronger result, stating that simple groups are
uniquely identified among all groups up to isomorphism by their order and the orders of
their elements [27].

▶ Theorem 5.8. The socle of a finite group G is 4-WLII-detectable. Let k ≥ 5 and G ≡I
k H,

then G and H have the same composition factors (with multiplicities).

6 WL-Refinement and Direct Products

In this final section we study the detectability of direct product structures in finite groups.
The section is organized similar to [19], in the sense that we first consider direct products
where one factor is an abelian group (the semi-abelian case) and reduce to these in the
general case later on. A crucial difference between our setting and the one in [19] is that in
the latter, computations can be executed as long as they are efficient, where in our case, we
are analyzing a fixed algorithm that cannot make non-canonical choices.

▶ Definition 6.1. A group G is the (internal) central product of subgroups G1, G2 ≤ G, if it
holds that G = ⟨G1, G2⟩ and [G1, G2] = {1}.

Our main difficulty is that a group can admit several inherently different central decom-
positions. In contrast to that recall that indecomposable direct decompositions are unique in
the following sense.

▶ Lemma 6.2. Let G = G1 × · · · × Gm = H1 × · · · × Hn be two decompositions of G into
directly indecomposable factors. Then n = m and there is a permutation σ ∈ Sm such that
for all i we have Gi

∼= Hσ(i) and GiZ(G) = Hσ(i)Z(G).
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Proof. The first part is the well-known Krull-Remak-Schmidt Theorem and the addition
that GiZ(G) = Hσ(i)Z(G) can be easily derived (see for example [19, Corollary 6]) ◀

In particular, the collection of subgroups {GiZ(G)}1≤i≤m is invariant under automorph-
isms as a whole. Later we show that

⋃m
i=1 GiZ(G) is 5-WLI-detectable.

▶ Lemma 6.3. If J ∈ {I, II}, k ≥ 3, G1 ≡J
k H1 and G2 ≡J

k H2, then G1 × G2 ≡J
k H1 × H2.

The opposite direction is investigated below and turns out to be highly non-trivial.

6.1 Abelian and Semi-Abelian Case
Direct products with abelian groups serve as a basis for reduction later on.

▶ Definition 6.4. An element x ∈ G splits from G if there is a complement H ≤ G of x in
G, i.e., G = ⟨x⟩ × H.

A detailed treatment of splitting elements can be found in the full version.

▶ Corollary 6.5. The set of elements splitting from a finite group is 4-WLI-detectable.

The splitting of elements can reveal information about direct decompositions of a group.

▶ Lemma 6.6. Consider a direct product G = G1 × G2 and a p-element z := (z1, z2) ∈ Z(G).
Then z splits from G if and only if zi splits from Gi for some i ∈ {1, 2} which fulfills |zi| = |z|.

This can be inductively leveraged to handle the semi-abelian case, by which we mean
groups of the form H × A where A is abelian and H does not have abelian direct factors.

▶ Lemma 6.7. Let G = H × A with A a maximal abelian direct factor. The isomorphism
type of A is identified by 4-WLI, i.e., if G̃ ≡I

4 G then G̃ has a maximal abelian direct factor
isomorphic to A.

Controlling the non-abelian part is more complicated and led us to introduce a new technical
framework.

▶ Definition 6.8. Let G = L × R. A component-wise filtration of U ≤ G w.r.t. L and
R is a chain of subgroups {1} = U0 ≤ · · · ≤ Ur = U such that for all 1 ≤ i < r, we
have Ui+1 ≤ Ui(L × {1}) or Ui+1 ≤ Ui({1} × R). The filtration is k-WLI-detectable if all
subgroups in the chain are.

▶ Lemma 6.9. Let G = H × A with maximal abelian direct factor A. There exists a
component-wise filtration of Z(G) with respect to H and A that is 4-WLI-detectable.

▶ Lemma 6.10. Consider G := H × A and Ĝ = Ĥ × Â where A and Â are maximal abelian
direct factors. Then, for k ≥ 5, G ≡I

k Ĝ implies H ≡I
k−1 Ĥ.

6.2 General Case
The general case is reduced to the semi-abelian case. Consider an indecomposable direct
decomposition G = G1 ×· · ·×Gd. We first show that

⋃
i GiZ(G) can be detected by WL and

then we exploit the fact that the non-commuting graph induces components on
⋃

i GiZ(G)
which correspond to the groups GiZ(G).

▶ Definition 6.11. Given a group G, we define the non-commuting graph ΓG with vertex
set G, in which two elements g, h ∈ G are joined by an edge if and only if [g, h] ̸= 1.
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▶ Lemma 6.12 ([1], Prop. 2.1). If G is non-abelian then ΓG[G \ Z(G)] is connected.
We now approximate

⋃
i GiZ(G) from below by constructing a canonical central decom-

position of G which is WL-detectable.
▶ Definition 6.13. Consider a finite, non-abelian group G. Define M1 ⊆ G to be the set of
non-central elements g whose centralizers CG(g) have maximal order among all non-central
elements. Iteratively define Mi+1 by adding those elements g to Mi that have maximal
centralizer order |CG(g)| among the remaining elements G \ ⟨Mi⟩. Set M := M∞ to be the
stable set resulting from this process. Consider the subgraph of ΓG induced on M and let
K1 . . . , Km be its connected components. Set Ni := ⟨Ki⟩. We call N1, . . . , Nm the non-abelian
components of G.
▶ Lemma 6.14. In the notation of the previous definition, the following hold:
1. M is detectable in G by 3-WLII.
2. G = N1 · · · Nm is a central decomposition of G. For all i, Z(G) ≤ Ni and Ni is non-

abelian. In particular M generates G.
3. If G = G1 × · · · × Gd is an arbitrary direct decomposition, then for each 1 ≤ i ≤ m there

is exactly one 1 ≤ j ≤ d with Ni ⊆ GjZ(G). Collect all such i for one fixed j in an index
set Ij. Then the product over all Ni for i ∈ Ij is equal to GjZ(G).

▶ Definition 6.15. Let G = N1 · · · Nm be the decomposition into non-abelian components
and let G = G1 × · · · × Gd be an arbitrary direct decomposition. We say x ∈ G is full
for (Gj1 , . . . , Gjr

), if {1 ≤ i ≤ m | [x, Ni] ̸= 1} = Ij1 ∪ · · · ∪ Ijr
. For all x ∈ G define

Cx := Π[x,Ni]={1}Ni and Nx := Π[x,Ni]̸={1}Ni.
Overall, when grouped adequately, the full elements with maximal centralizers generate the
direct factors modulo central elements (see full version).
▶ Lemma 6.16. Let G = N1 · · · Nm be the decomposition into non-abelian components and
G = G1 × · · · × Gd a decomposition into indecomposable direct factors. For k ≥ 5, k-WLII
detects the set of elements that are full for only one Gi as well as the pairs of elements that
are full for the same collection of direct factors.
▶ Corollary 6.17. If G = G1 × · · · × Gd is a decomposition into indecomposable direct factors
then

⋃
i GiZ(G) is detected in G by 5-WLII.

▶ Theorem 6.18. Let G = G1 × · · · × Gd be a decomposition into indecomposable direct
factors and k ≥ 5. If G ≡II

k H then there are indecomposable direct factors Hi ≤ H such that
H = H1 × · · · × Hd and Gi ≡II

k−1 Hi for all i. Moreover G and H have isomorphic maximal
abelian direct factors and GiZ(G) ≡II

k HiZ(H).
Proof. Since FG :=

⋃
i GiZ(G) is 5-WLII-detectable, the group H must be decomposable

into indecomposable direct factors H = ×jHj such that FH =
⋃

j HjZ(H) ⊆ H is indistin-
guishable from FG. Consider the non-commuting graphs of G and H induced on these sets
and recall that non-commuting graphs of non-abelian groups are connected (Lemma 6.12).
Since different direct factors in a fixed decomposition centralize each other, we obtain that
for each non-singleton connected component K of ΓG[FG] there exists a unique indecom-
posable direct factor Gi such that K = GiZ(G) \ Z(G) and thus ⟨K⟩ = GiZ(G). Again by
Lemma 6.12, all non-abelian direct factors appear in this way.

The same holds for H and so if G is not distinguishable from H , there must be a bijection
between the components of ΓG[FG] and ΓH [FH ], such that the subgroups generated by
corresponding components are indistinguishable via 5-WLII. This defines a correspond-
ence GiZ(G) ≡II

k HiZ(H) after reordering the factors of H in an appropriate way. From
Lemma 6.10 it follows that Gi ≡II

k−1 Hi. By Lemma 6.9, G and H must have isomorphic
maximal abelian direct factors, so for abelian factors we even have Gi

∼= Hi. ◀
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7 Conclusion

We studied the Weisfeiler-Leman dimension of numerous isomorphism invariants of groups,
showing that a low dimensional WL-algorithm in fact captures a plethora of isomorphism
invariants, characteristic subgroups, and group properties classic to algorithmic group theory.
Particularly tricky was the treatment of direct indecomposable factors, for which we had
to circumvent the fact that the they do not correspond to canonical substructures of the
groups. Our techniques lead us to a canonical maximal central decomposition.

The observation that many efficiently computable isomorphism invariants are captured
by a low dimensional WL-algorithm raises the question whether there are actually invariants
that are not captured at all. Here we should emphasize that it is an open problem whether
some fixed dimension of WL represents a complete invariant. The question is equivalent to
the well-known open question whether the Weisfeiler-Leman dimension of groups is bounded
in general (stated explicitly in [4]).

For this open question, our results show that it suffices to consider directly indecomposable
groups. We wonder whether there are other, similar reductions to confine the search for
groups of high WL-dimension.
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Abstract
Subtrajectory clustering is an important variant of the trajectory clustering problem, where the start
and endpoints of trajectory patterns within the collected trajectory data are not known in advance.
We study this problem in the form of a set cover problem for a given polygonal curve: find the
smallest number k of representative curves such that any point on the input curve is contained in a
subcurve that has Fréchet distance at most a given ∆ to a representative curve. We focus on the case
where the representative curves are line segments and approach this NP-hard problem with classical
techniques from the area of geometric set cover: we use a variant of the multiplicative weights update
method which was first suggested by Brönniman and Goodrich for set cover instances with small
VC-dimension. We obtain a bicriteria-approximation algorithm that computes a set of O(k log(k))
line segments that cover a given polygonal curve of n vertices under Fréchet distance at most O(∆).
We show that the algorithm runs in Õ(k2n + kn3) time in expectation and uses Õ(kn + n3) space.
For input curves that are c-packed and lie in the plane, we bound the expected running time by
Õ(k2c2n) and the space by Õ(kn + c2n). In addition, we present a variant of the algorithm that
uses implicit weight updates on the candidate set and thereby achieves near-linear running time in
n without any assumptions on the input curve, while keeping the same approximation bounds. This
comes at the expense of a small (polylogarithmic) dependency on the relative arclength.
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1 Introduction

The advancement of tracking technology made it possible to record the movement of single
entities at a large scale in various application areas ranging from vehicle navigation over
sports analytics to the socio-ecological study of animal and human behaviour. The types
of trajectories that are analyzed range from GPS-trajectories [25] to full-body-motion
trajectories [22] and complex gestures [24], and even include the positions of the focus
point of attention from a human eye [15, 21].

In many such applications, a flood of data presents us with the challenging task of
extracting useful information. If a long trajectory is given as a sequence of positions in
some parameter space, it is rarely known in advance which specific movement patterns
occur. In particular, it is challenging to find the start and endpoints of such patterns, which
is why popular clustering algorithms heuristically partition the trajectories into smaller
subtrajectories. An example is the popular algorithm by Lee, Han and Whang [23].
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Since the criteria according to which one should detect, group and represent behaviour
patterns vary greatly among different kinds of application, there are many different variants
of the subtrajectory clustering problem, see also the survey papers [12, 26, 27]. One line of
research uses the well-established Fréchet distance to define similarity between subcurves,
for example the works of Agarwal et al. [1], Buchin et al. [11] and Akitaya et al. [2].

In an attempt to unify previous definitions of the underlying algorithmic problem, Akitaya
et al. [2] define the following geometric set cover problem. Given a polygonal curve, the goal
is to “cover” the whole curve with a minimum number of simpler representative curves, such
that each point of the trajectory is contained in a subcurve with small Fréchet distance to its
closest representative curve. This is in line with traditional clustering formulations such as
metric k-center, where clusters may overlap. In this paper, we study the set cover problem
introduced by Akitaya et al. and improve upon their results.

Preliminaries. For any n > 1, a sequence of points p1, . . . , pn ∈ Rd defines a polygonal
curve P by linearly interpolating consecutive points, that is, for each i, we obtain the edge
ei : [0, 1]→ Rd; t 7→ (1− t)pi + tpi+1. We may write ei = pi pi+1 for edges. We may think
of P as a continuous function P : [0, 1] → Rd by fixing n values 0 = t1 < . . . < tn = 1,
and defining P (t) = ei

(
t−ti

ti+1−ti

)
for ti ≤ t ≤ ti+1. We call the set (t1, . . . , tn) the vertex

parameters of the parametrized curve P : [0, 1]→ Rd. For n = 1, we may slightly abuse
notation to view a point p1 in Rd as a polygonal curve defined by an edge of length zero
with p2 = p1. We call the number of vertices n the complexity of the curve. For any two
a, b ∈ [0, 1] we denote with P [a, b] the subcurve of P that starts at P (a) and ends at P (b).
Note, that a > b is specifically allowed and results in a subcurve in reverse direction. We call
the subcurves of edges subedges. Let Xd

ℓ = (Rd)ℓ, and think of the elements of this set as
the set of all polygonal curves of ℓ vertices in Rd.

For two parametrized curves P and Q, we define their Fréchet distance as

dF (P, Q) = inf
α,β:[0,1]→[0,1]

sup
t∈[0,1]

∥P (α(t))−Q(β(t))∥,

where α and β range over all functions that are non-decreasing, surjective and continuous. We
call the pair (α, β) a traversal. Every traversal has a distance supt∈[0,1] ∥P (α(t))−Q(β(t))∥
associated to it.

We call a curve X in Rd c-packed, if for any point p and and radius r, the length of
X inside the disk is bounded by ||X ∩ br(p)|| ≤ cr, where br(p) = {x ∈ Rd | ∥p− x∥ ≤ r}.
Let X be a set. We call a set R where any r ∈ R is of the form r ⊆ X a set system with
ground set X.

We say a subset A ⊆ X is shattered by R if for any A′ ⊆ A there exists an r ∈ R such
that A′ = r ∩A. The VC-dimension of R is the maximal size of a set A that is shattered
by R. For a weight function w on the ground set X and a real value ε > 0, we say that a
subset C ⊂ X is an ε-net if every set of R of weight at least ε · w(X) contains at least one
element of C. For any A ⊆ X, we write w(A) short for

∑
a∈A w(a).

Computational Model. We describe our algorithms in the real-RAM model of computation,
which allows to store real numbers and to perform simple operations in constant time on
them. We call the following operations simple operations. The arithmetic operations
+,−,×, /. The comparison operations =, ≠, >,≥,≤, <, for real numbers with output 0 or
1. In addition to the simple operations, we allow the square-root operation. In the full
version [7], we describe how to circumvent the square-root operation with little extra cost.
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∆
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s1

s′1
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s3 s′3
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s′4

Figure 1 Illustration of the ∆-coverage of a set C = {Q1, Q2} and a curve P . Here we have
Ψ∆(P, C) = [s1, s′

1]∪[s2, s′
2]∪[s3, s′

4], since the subcurves P [s1, s′
1] and P [s3, s′

3] have Fréchet distance
∆ to Q1, the subcurves P [s2, s′

2] and P [s4, s′
4] have Fréchet distance ∆ to Q2 and each other subcurve

of P that has Fréchet distance at most ∆ to Q1 or Q2 is a subcurve of P [si, s′
i] for some 1 ≤ i ≤ 4.

Problem definition. We study the same problem as Akitaya, Chambers, Brüning and
Driemel [2]. Let P : [0, 1]→ Rd be a polygonal curve of n vertices and let ℓ ∈ N and ∆ ∈ R
be fixed parameters. Define the ∆-coverage of a set of center curves C ⊂ Xd

ℓ as follows:

Ψ∆(P, C) =
⋃

q∈C

⋃
0≤t≤t′≤1

{s ∈ [t, t′] | dF (P [t, t′], q) ≤ ∆}.

The ∆-coverage corresponds to the part of the curve P that is covered by the set of all
subtrajectories that are within Fréchet distance ∆ to some curve in C. If for some P, C, ∆ it
holds that Ψ∆(P, C) = [0, 1], then we call C a ∆-covering of P . The problem is to find a
∆-covering C ⊂ Xd

ℓ of P of minimum size. We study bicriterial approximation algorithms for
this problem, which we formalize as follows.

▶ Definition 1 ((α, β)-approximate solution). Let P ∈ Xd
n be a polygonal curve, ∆ ∈ R+ and

ℓ ∈ N. A set C ⊆ Xd
ℓ is an (α, β)-approximate solution to the ∆-coverage problem on P , if

C is an α∆-covering of P and there exists no ∆-covering C ′ ⊆ Xd
ℓ of P with β|C ′| < |C|.

Related work. Buchin, Buchin, Gudmundsson, Löffler and Luo were the first to consider
the problem of clustering subtrajectories under the Fréchet distance [10]. They consider the
problem of finding a single cluster of subtrajectories with certain qualities, like the number
of distinct subtrajectories, or the length of the longest subtrajectory assigned to it. In their
paper, they suggested a sweepline approach in the parameter space of the curves and obtain
constant-factor approximation algorithms for finding the largest cluster. They also show
NP-completeness of the corresponding decision problems. This hardness result extends to
(2 − ε)-approximate algorithms. For their 2-approximation algorithm, Buchin et al. [10]
develop an algorithm that finds a legible cluster center among the subcurves of the input
curve. Gudmundsson and Wong [19] present a cubic conditional lower bound for this problem
and show that it is tight up to a factor of O(no(1)), where n is the number of vertices.

The algorithmic ideas presented in [10] were implemented and extended by Gudmundsson
and Valladares [18] who obtained practical speed ups using GPUs. In a series of papers, these
ideas were also applied to the problem of reconstructing road maps from GPS data [8, 9].
In a similar vain, Buchin, Kilgus and Kölzsch [11] studied the trajectories of migrating
animals and defined so-called group diagrams which are meant to represent the underlying
migration patterns in the form of a graph. In their algorithm, to build the group diagram,
they repeatedly find the largest cluster and remove it from the data, inspired by the classical
greedy set cover algorithm.

ESA 2022
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The above cited works however do not offer theoretical guarantees when used for
computing a clustering of subtrajectories, nor do they explicitly formulate a clustering
objective. Agarwal, Fox, Munagala, Nath, Pan, and Taylor [1] define an objective function for
clustering subtrajectories based on the metric facility location problem, which consists of a
weighted sum over different quality measures such as the number of centers and the distances
between cluster centers and their assigned trajectories. While they show NP-hardness for
determining whether an input curve can be covered with respect to the Fréchet distance,
they also present a O(log2 n)-approximation algorithm for clustering κ-packed curves (for
some constant κ) under the discrete Fréchet distance, where n denotes the total complexity
of the input. The overall running time of their algorithm is roughly quadratic in n, cubic in
κ and depends logarithmically on the spread of the vertex coordinates.

In our paper, we focus on the clustering formulation previously studied by Akitaya,
Chambers, Brüning, and Driemel [2]. They present a pseudo-polynomial algorithm that
computes a bi-criterial approximation in the sense of Definition 1 with expected running
time in Õ(k( λ

∆ )2 + λ
∆ n), where λ denotes the total arclength of the input trajectory. The

algorithm finds an (α, β)-approximate solution with α ∈ O(1) and β ∈ O(ℓ2 log(kℓ)). In
combination with our Lemma 2, below, this can be directly improved to O(ℓ log(k)). It
should be noted that in this problem formulation some complexity constraint on the eligible
cluster centers is needed to prevent the entire input curve being a cluster center in a trivial
clustering.

Our contribution. Our main result is an algorithm that computes an (α, β)-approximate
solution with α ∈ O(1) and β = O(ℓ log k), where k is the size of an optimal solution. For
general curves, the algorithm runs in Õ(k2n + kn3) time in expectation and uses Õ(kn + n3)
space. (The Õ(·) notation hides polylogarithmic factors in n to simplify the exposition.) If
the input curve is a c-packed polygonal curve in the plane, the expected running time can be
bounded by Õ(k2c2n) and the space is in Õ(kn + c2n). In higher dimensions, the bound for
c-packed curves becomes quadratic in n. Our second result is an algorithm that achieves
near-linear running time in n – even for general polygonal curves – while keeping the same
approximation bounds at the expense of a small dependency on the arclength in the running
time. The algorithm needs in expectation Õ(nk3 log4( λ

∆k )) time and Õ(nk log( λ
∆k )) space,

where λ is the total arclength of the input curve. Here, we stated our results for general ℓ

using the reduction described below (Lemma 2).
In our algorithms we use a variant of the multiplicative weights update method [5], which

has been used earlier for set cover problems with small VC-dimension [6, 13]. The difficulty
in our case is that the set system initially has high VC-dimension, as shown by Akitaya et
al [2] – namely Θ(log n) in the worst case. We circumvent this by defining an intermediate
set cover problem where the VC-dimension is significantly reduced. We then show how to
compute a finite set system using a carefully chosen set of candidate curves on which the
multiplicative weight update method can be applied. A key idea that enables our results is
a curve simplification that requires the curve to be locally maximally simplified, a notion
that is borrowed from de Berg, Cook, and Gudmundsson [14]. To the best of our knowledge,
our candidate generation yields the first strongly polynomial algorithm for approximate
subtrajectory clustering under the continuous Fréchet distance. In the full version [7], we
also discuss how our candidate set can be used for the related problem of maximizing the
coverage. Our second algorithm improves the dependency on the relative arclength from
quadratic to polylogarithmic as compared to [2].
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Reduction to line segments. In the remainder of the paper, we will focus on finding a
∆-covering with line segments, that is ℓ = 2. The following lemma provides the reduction for
general ℓ at the expense of an increased approximation factor.

▶ Lemma 2. Let P ∈ Xd
n be a polygonal curve, ∆ ∈ R+ and ℓ ∈ N. Let C ⊆ Xd

ℓ be a
∆-covering of P of minimum cardinality. There exists a set of line segments C ′ ⊆ Xd

2 that is
a ∆-covering of P with |C ′| ≤ (ℓ− 1)|C|.

Proof. Choose as set C ′ the union of the set of edges of the polygonal curves of C. Clearly,
this set has the claimed cardinality and is a ∆-covering of P . ◀

Roadmap. In Section 2 we develop a structured variant of our problem that allows us to
apply the multiplicative weight update method in the style of Brönniman and Goodrich [6]
in an efficient way. Our intermediate goal is to obtain a structured set of candidates for a
modified coverage problem that is on the one hand easy to compute and on the other hand
sufficient to obtain good approximation bounds for the original problem. We first define our
notion of curve simplification. A crucial property of this simplification is that the relevant
subcurves of the input are within small Fréchet distance to subcurves of constant complexity
of the simplification. We then define a structured notion of ∆-coverage and a candidate space,
which lets us take advantage of this fact. We show that we can narrow our choice down even
further, to a finite set of subedges of the simplification, and still sufficiently preserve the
quality of the solution. In Section 3, we present our main algorithm. The algorithm uses
the concepts and techniques developed in Section 2 in combination with the multiplicative
weights update method. In Section 4, we analyze the approximation factor and running time
of this algorithm. Crucially, we show that the VC-dimension of the induced set system which
is implicitly used by our algorithm is small by design.

2 Structuring the solution space

In this section, we introduce key concepts that allow us to transfer the problem to a set cover
problem on a finite set system with small VC-dimension and still obtain good approximation
bounds. The main result of this section is Theorem 14.

Simplifications and containers. We start by defining the notion of curve-simplification that
we will use throughout the paper.

▶ Definition 3 (simplification). Let P be a polygonal curve in Rd. Let (t1, . . . , tn) be the
vertex-parameters of P , and pi = P (ti) the vertices of P . Consider an index set 1 ≤ i1 <

. . . < ik ≤ n that defines vertices pij
. We call a curve S defined by such an ordered set of

vertices (pi1 , . . . , pik
) ∈ (Rd)k a simplification of P . We say the simplification is ∆-good,

if the following properties hold:
(i) ∥pij − pij+1∥ ≥ ∆

3 for 1 ≤ j < k

(ii) dF (P [tij , tij+1 ], pij pij+1) ≤ 3∆ for all 1 ≤ j < k.
(iii) dF (P [t1, ti1 ], pi1 pi1) ≤ 3∆ and dF (P [tik

, tn], pik
pik

) ≤ 3∆
(iv) dF (P [tij , tij+2 ], pij pij+2) > 2∆ for all 1 ≤ j < k − 1
Our intuition is the following. Property (i) guarantees that S does not have short edges.
Property (ii) and (iii) together tell us, that the simplification error is small. Property (iv)
tells us, that the simplification is (approximately) maximally simplified, that is, we cannot
remove a vertex, and hope to stay within Fréchet distance 2∆ to P .

ESA 2022
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Figure 2 Example of the structured ∆-coverage of a set C = {Q1, Q2} and a curve P . Here we
have Ψ′

∆(P, C) = [s1, s′
1] ∪ [s2, s′

3] since the subcurves P [s1, s′
1] and P [s2, s′

2] have Fréchet distance
∆ to Q1 and P [s3, s′

3] has Fréchet distance ∆ to Q2. Note that [s4, s′
4] is not part of the coverage

since the subcurve P [s4, s′
4] consists of 4 edges.

▶ Definition 4 (Container). Let P be a polygonal curve, let π = P [s, t] be a subcurve of
P , and let (t1, . . . , tn) be the vertex-parameters of P . For a simplification S of P defined
by index set I = (i1, . . . , ik), define the container cS(π) of π on S as S[ta, tb], with
a = max ({i1} ∪ {i ∈ I | ti ≤ s}) and b = min ({i ∈ I | ti ≥ t} ∪ {ik}).

The following lemma has been proven by de Berg et al. [14]. We restate and reprove it
here with respect to our notion of simplification.

▶ Lemma 5 ([14]). Let P be a polygonal curve in Rd, and let S be a ∆-good simplification
of P . Let Q be an edge in Rd and let π be a subcurve of P with dF (Q, π) ≤ ∆. Then cS(π)
consists of at most 3 edges.

Proof. Assume for the sake of contradiction, that cS(π) contains 4 edges, that is it has
three internal vertices s1, s2, s3. By Definition 4 these three vertices are also interior vertices
of π. As the Fréchet distance dF (Q, π) ≤ ∆, there are points q1, q2, q3 ∈ Q, that get
matched to s1, s2 and s3 respectively during the traversal, with ∥si − qi∥ ≤ ∆. This implies
dF (π[s1, s3], q1 q3) ≤ ∆. It also implies, that dF (s1 s3, q1 q3) ≤ ∆. But then

dF (s1 s3, P [s1, s3]) = dF (s1, s3, π[s1, s3]) ≤ dF (s1 s3, q1 q3) + dF (π[s1, s3], q1 q3) ≤ 2∆,

contradicting the assumption that S is a ∆-good simplification. ◀

Structured coverage and candidate space. We want to make use of the property of ∆-good
simplifications shown in Lemma 5. For this we adapt the notion of ∆-coverage from Section 1
as follows.

▶ Definition 6. Let S be a polygonal curve in Rd. Let (t1, . . . , tn) be the vertex-parameters
of S. Let ℓ ∈ N and ∆ ∈ R be fixed parameters. Define the structured ∆-coverage of a set
of center curves C ⊂ Xd

ℓ as

Ψ′
∆(S, C) =

⋃
q∈C

⋃
(i,j)∈J

Ψ(i,j)
∆ (S, q)

where

Ψ(i,j)
∆ (S, q) = {s ∈ [t, t′] | ti ≤ t ≤ ti+1; t ≤ t′; tj−1 ≤ t′ ≤ tj ; dF (S[t, t′], q) ≤ ∆},

and where J = {1 ≤ i ≤ j ≤ n | 1 ≤ j − i ≤ 4}.
If it holds that Ψ′

∆(S, C) = [0, 1], then we call C a structured ∆-covering of S.
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Figure 3 Free space diagrams of the curves P and Q1 (resp. Q2) depicted in Figure 1. The
monotone paths πi illustrate that the Fréchet distance between P [si, s′

i] and Q1 (resp. Q2) is equal
to ∆ for 1 ≤ i ≤ 4.

▶ Observation 7. In general for any polygonal curve S and set of center curves C it holds
that Ψ′

∆(S, C) ⊆ Ψ∆(S, C).

We now want to restrict the candidate set to subedges of a simplification of the input
curve, thereby imposing more structure on the solution space. For this we begin by defining
a more structured parametrization of the set of edges of a polygonal curve.

▶ Definition 8 (Edge space). We define the edge space Tn = {1, . . . , n − 1} × [0, 1]. We
denote the set of edges of P with E(P ).

▶ Definition 9 (Candidate space). Let E = {e1, . . . , en−1} be an ordered set of edges in Rd. We
define the candidate space induced by E as the set ZE = {(i1, t1, i2, t2) ∈ Tn×Tn | i1 = i2}.
We associate an element (i, t1, i, t2) ∈ ZE with the subedge ei(t1) ei(t2).

The following theorem summarizes and motivates the above definitions of structured
coverage and candidate space. Namely, we can restrict the search space to subedges of
the simplification S and still obtain a good covering of P . Moreover, we can evaluate the
coverage of our solution solely based on S. The structured coverage only allows subcurves
of S that consist of at most three edges to contribute to the coverage. This technical
restriction is necessary to obtain a small VC-dimension in our main algorithm later on, and
it is well-motivated by Lemma 5.

▶ Theorem 10. Let S be a ∆-good simplification of a curve P . Let C be a set of subedges of
edges of S. If C is a structured 8∆-covering of S, then C is an 11∆-covering of P . Moreover,
if k is the size of an optimal ∆-covering of P , then there exists such a set C of size at most
3k.

Partial traversals and coverage. Our algorithm and analysis use the notion of the free
space diagram which was first introduced by Alt and Godau [3]. It is instructive to consider
this concept in the context of the coverage problem. Refer to Figure 3.

▶ Definition 11 (Free space diagram). Let P and Q be two polygonal curves parametrized
over [0, 1]. The free space diagram of P and Q is the joint parametric space [0, 1]2 together
with a not necessarily uniform grid, where each vertical line corresponds to a vertex of P and
each horizontal line to a vertex of Q. The ∆-free space of P and Q is defined as

D∆(P, Q) =
{

(x, y) ∈ [0, 1]2 | ∥P (x)−Q(y)∥ ≤ ∆
}
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a b
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d

π

Q(c)

Q(d)

P (a)

P (b)

Q

P

∆

Figure 4 An illustration of a ∆-feasible (2, 4)-partial traversal π from (a, c) to (b, d) of P and Q.
π covers all points between a and b on P , and all points between c and d on Q.

This is the set of points in the parametric space, whose corresponding points on P and Q are
at a distance at most ∆. The edges of P and Q segment the free space into cells. We call the
intersection of D∆(P, Q) with the boundary of cells the free space intervals.

Alt and Godau [3] showed that the ∆-free space inside any cell is convex and has constant
complexity. More precisely, it is an ellipse intersected with the cell. Furthermore, the Fréchet
distance between two curves is less than or equal to ∆ if and only if there exists a path
π : [0, 1]→ D∆(P, Q) that starts at (0, 0), ends in (1, 1) and is monotone in both coordinates.

▶ Definition 12 (Partial traversal). Let P be a polygonal curve in Rd, and let (t1, . . . , tn) be
the vertex-parameters of P . Let 1 ≤ i < j ≤ n be integer values. Let Q be an edge in Rd. We
define an (i, j)-partial traversal as a pair of continuous, monotone increasing and surjective
functions, f : [0, 1] → [a, b] and g : [0, 1] → [c, d], where ti ≤ a ≤ ti+1, tj−1 ≤ b ≤ tj,
0 ≤ a ≤ b ≤ 1, and 0 ≤ c ≤ d ≤ 1. We say that (f, g) is a partial traversal from (a, c) to
(b, d).

▶ Definition 13 (∆-feasible). We say that a partial traversal is ∆-feasible if the image of
the path π : [0, 1]→ [0, 1]2 defined by π(t) = (f(t), g(t)) is contained inside the ∆-free space
D∆(P, Q). We say that π covers a point t on P if t ∈ [a, b] and we say that π covers a point
t on Q if t ∈ [c, d].

A finite set of candidates. By Theorem 10, it is sufficient to find a structured covering
using a suitable simplification of the input curve. However the corresponding search space
would still be infinite, even for a single edge. We will next define a finite set of candidates
and show that it contains a good solution. In particular, our goal is to prove the following
theorem.

▶ Theorem 14. Let P be a polygonal curve of complexity n in Rd and let ∆ > 0 be given. Let
S be a ∆-good simplification of P . Assume there exists a ∆-covering C of P of cardinality k.
Then, there exists an algorithm that computes in O(n3) time and space a set of candidates
B ⊂ ZE(S) ⊂ Xd

2 with |B| ∈ O(n3), such that B contains a structured 8∆-covering CB of S

of size at most 12k. Moreover, CB is a 11∆-covering of P .

The main steps to constructing this set of candidates B are as follows. We first define a
special set of subcurves of the simplification S. Intuitively, these are the containers of S of
subcurves of P that may contribute to the coverage.
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e

Y

s∗
t∗

a2

a1

re

le
b1

b2

Figure 5 Examples of extremal points. Shown on the right are the two free space intervals [a1, b1]
and [a2, b2] as well as the left- and rightmost points le and re of the ∆-free space of e and Y . The
extremal points are defined by b2 and re. All points considered for the first extremal point are shown
in blue. Similarly all points considered for the second extremal point are shown in red. A traversal
from the first extremal point to the second extremal point is illustrated. On the left the resulting
subedge e[s∗, t∗] and the maximal subcurve of Y that can be matched are illustrated.

▶ Definition 15 (Generating subcurves). Let S be a ∆-good simplification of a polygonal curve
P . Let (t1, . . . , tm) be the vertex-parameters of S. For any 1 ≤ i, 1 ≤ j ≤ 3 and i + j ≤ m,
we say the subcurve S[ti, ti+j ] is a generating subcurve. In particular, this defines all
subcurves of at most three edges starting and ending at vertices of S.

Now, for every generating subcurve Y of S and every edge e of S, we can identify an
interval defining a subedge of e, that maximizes the ∆-coverage on Y over all subedges of
e. For this reason, we call the endpoints of this interval extremal. Using this definition we
define the finite candidate set induced by S via generating triples.

▶ Definition 16 (∆-extremal points). Given a value of ∆ > 0, a polygonal curve Y :
[0, 1] → Rd of m edges and an edge e : [0, 1] → Rd, such that they permit a ∆-feasible
(1, m)-partial traversal. As e is a single edge, the ∆-free space of Y and e consists of a
single row. Let [ai, bi] be the ith vertical free space interval of the ∆-free space of Y and
e. Denote by l = (lY , le) the leftmost point in the ∆-free space of Y and e and r = (rY , re)
the rightmost point (in case l is not unique, chose the point with smallest y-coordinate, and
r as the point with the biggest y-coordinate). We define the ∆-extremal points induced
by Y on e as the tuple E∆(Y, e) = (s, t) ∈ [0, 1]2 with s = min({le} ∪ {b1, . . . , bn−1}) and
t = max({re} ∪ {a1, . . . , an−1}). We explicitly allow that t < s.

▶ Definition 17 (Generating triples). Let S be a ∆-good simplification of a polygonal curve P .
We define the set of generating triples TS as a set of triples (e, Y1, Y2), where e is any edge
of S, and Y1 and Y2 are generating subcurves of S (not necessarily distinct). We include the
triple (e, Y1, Y2) in the set TS if and only if there are points p ∈ e, p1 ∈ Y1 and p2 ∈ Y2 such
that ||p− p1|| ≤ 8∆ and ||p− p2|| ≤ 8∆.

▶ Definition 18 (Candidate set). Let ∆ > 0 be a given value and let S be a ∆-good
simplification of a polygonal curve P . Let TS be the set of generating triples of S. We define
the candidate set induced by S with respect to ∆ as the set of line segments

B = {e[s1, t2] | ∃ (e, S1, S2) ∈ TS , s.t. E8∆(Si, e) = (si, ti) for i ∈ {1, 2}}

Clearly, the set B can be computed in O(|TS |) time and space, if the set TS is given.

In the full version [7], we show that, for any suitable covering, we can deform each
subedge of the solution to one of our candidates while retaining the coverage on a fixed
subcurve. However, while retaining coverage on one subcurve, we may lose coverage on
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another subcurve in the same cluster. We show, through a case analysis, how to deal with
all subcurves at once while increasing the number of clusters by a factor of at most 4. We
use this fact together with Theorem 10 to prove Theorem 14.

3 The main algorithm

We describe the main algorithm below with pseudocode specified in Algorithm 1 and
Algorithm 2. Specifications of the missing subroutines are given in Table 1. Several additional
building blocks of the algorithm are described in the full version [7]: computing candidates,
computing the structured coverage, testing feasibility and computing simplifications.

Algorithm. The algorithm receives as input a polygonal curve P in Rd and a parameter
∆ ≥ 0. The goal is to compute an small set of edges C, such that all points on P are covered
by the ∆′-coverage of C on P for some ∆′ ∈ O(∆). The algorithm ApproxCover (see
Algorithm 1), when called with input P and ∆, first computes a ∆-good simplification S

of P and generates a finite subset B of the candidate space ZE(S) ⊂ Xd
2 defined on the

edges of this simplification. For this, we use the construction of the candidate set presented
in Section 2. The algorithm then performs an exponential search with the variable k that
controls the target size of the solution. Starting with a constant k, the algorithm tries to find
a solution of size approximately k and if this fails, the algorithm doubles k and continues.
For finding a solution with fixed target size, the algorithm kApproxCover is used (see
Algorithm 1). This algorithm is called with the simplification S, the candidate set B and
set of parameters r, ∆′, k′, and imax. The algorithm kApproxCover uses a variant of the
multiplicative weight update method with a maximum number of (proper) iterations bounded
by imax. In the ith iteration, we take a sample from a discrete probability distribution Di

that is defined on B via a weight function wi : B → R, where the probability of an element
e ∈ B being in the sample is defined as wi(e)/

∑
e∈B wi(e). For the initial distribution D1, all

weights are set to 1, which corresponds to the uniform distribution over B. During the course
of the algorithm, we repeatedly update this distribution thereby generating distributions
D1,D2, . . . (up to Dimax , unless the algorithm finds a solution in an earlier iteration). The
update step performed by a call to subroutine UpdateWeight proceeds by doubling the
weight of the subset F of B. This can be done in O(|B|) time and space by storing the
cumulative probability distribution.

With this basic mechanism in place, the algorithm kApproxCover now proceeds as
follows. In each iteration, the algorithm computes a set C ⊂ B by taking k′ independent
draws from the current distribution Di. Then, the algorithm checks, if C is a solution to
our problem by a call to the subroutine PointNotCovered. The subroutine should either
return that all points on S are in the ∆′-coverage of the solution C, or return a point t on
S that is not covered in this way. This can be done by computing the structured coverage
Ψ′

∆′(S, C) explicitly. In the former case, the algorithm returns the solution and terminates.
In the latter case, we compute the subset F of candidates B that would cover t with respect
to the subcurves that contain t and which have at most 3 edges. To compute F , we simply
iterate over all elements of B and check if t is covered by a call to IsFeasible (see Algorithm
2). (For technical reasons, we parametrize the curve P via the edge space of the set of edges
of P , so that we can locate the edge that contains t in constant time.) It is important that
F is not a multiset, so repeated additions of an element will not increase its weight.

At this point we would like to perform the weight update step which we described above
with respect to the set F , however, we only do this if the weight of the set F is small. If the
total weight of the set F is larger than a 1

r -fraction of the total weight of B, then we simply
skip the update step and continue by taking another sample from the current distribution.
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Algorithm 1 Main algorithm.

1: procedure ApproxCover(P ∈ Xd
n, ∆ ∈ R )

2: S ← SimplifyCurve(P, ∆)
3: B ← GenerateCandidates(S, ∆)
4: k ← 1
5: γ ← 110d + 412 ▷ bound on the VC-dimension
6: repeat
7: k ← 2k ▷ increase target size for solution
8: r ← 2k , ∆′ ← α∆, k′ ← ⌈16kγ log(16kγ)⌉, imax ← 5k log2( |B|

k )
9: C ← kApproxCover(S, B, r, ∆′, k′, imax) ▷ search solution with this size

10: until C ̸= ∅ ▷ until we find a solution
11: return C

1: procedure kApproxCover(S ∈ Xd
n, B ⊂ Xd

2, r, ∆′ ∈ R, k′, imax ∈ N )
2: Let D1 be the uniform distribution over B with weight function w1 : B → {1}
3: i← 1
4: repeat
5: C ← sample k′ elements from Di

6: t← PointNotCovered(C, S, ∆′)
7: if t = −1 then return C ▷ if all points covered, return solution found
8: F ← ∅ ▷ otherwise, compute feasible set of t

9: for each Q ∈ B do
10: if IsFeasible(Q, S, t, ∆′) then add Q to F

11: if PrDi
[F ] ≤ 1

r then
12: Di+1 ← WeightUpdate(Di, F ) ▷ increase the probability of F

13: i← i + 1
14: until i > imax
15: return ∅ ▷ no solution found for this target size

Algorithm 2 Subroutine IsFeasible which is called by the main algorithm.

1: procedure IsFeasible(Q ∈ Xd
2, S ∈ Xd

n, t ∈ Tn, ∆′ ∈ R)
2: (t′, i′)← t ▷ locate edge of t on S

3: J = {1 ≤ i ≤ j ≤ n | 1 ≤ j − i ≤ 4; i ≥ i′ − 3; j ≤ i′ + 4} ▷ find generating subcurves
4: for (i, j) ∈ J do ▷ check if Q covers t on S

5: if t ∈ Ψi,j
∆′(S, Q) then return true

6: return false

Table 1 Specification of additional subroutines used in the main algorithm.

Procedure Input Output

SimplifyCurve P ∈ Xd
n, ∆ ≥ 0 ∆-good simplification of P (Def. 3)

GenerateCandidates S ∈ Xd
n, ∆ ≥ 0 candidate set (Def. 18)

PointNotCovered C ⊂ Xd
2, S ∈ Xd

n, ∆ ≥ 0 either t ∈ Tn \ Ψ′
∆(S, C) or −1 if

this set is empty
WeightUpdate distribution D given by weight

function w : B → R, F ⊂ B

D′ with w′ : B → R where weight
is doubled for all elements of F
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Figure 6 Example for the construction of the rectangle R = [α1, α2] × [β1, β2] for fixed P, i, j, t, ∆
and e. The left image shows the curves P [ti, tj ] and e with two circles of radius ∆ around P (ti+1)
and P (tj−1). The middle image shows the corresponding ∆-free space diagram with a (i, j)-partial
traversal from al to bu and the right image shows the rectangle R in the parameter space [0, 1]2 of e.

4 Analysis of the main algorithm

The algorithm described in Section 3 is based on the set cover algorithm by Brönniman
and Goodrich [6]. A crucial step in the analysis of this algorithm is the analysis of the
VC-dimension of the dual set system. In our case this is a set system formed by the sets F

computed in the main algorithm. For the formal analysis of this set system, we introduce
the notion of feasible sets.

▶ Definition 19 (Feasible set). Let S : Tn → Rd be a polygonal curve and let B ⊂ Xd
2 be a

candidate set of edges and let ∆ ≥ 0 be a real value. For any point t ∈ Tn, we define the
feasible set of t as the set of elements Q ∈ B that admit an (i, j)-partial traversal with S

that fully covers Q and that covers t on S, with the additional condition that j − i ≤ 3. We
denote the feasible set of t with F∆(t).

Note that for any fixed S and ∆ the set of feasible sets {F∆(t) | t ∈ Tn} is exactly the
set system determined by the subroutine IsFeasible described in Algorithm 2. We claim
that any feasible set can be split into sets corresponding to the edges of the simplification,
where each set consists of a constant union of rectangles in the candidate space restricted
to the respective edge. Figure 6 illustrates one of those rectangles. The following lemma
provides the formal statement.

▶ Lemma 20. Let P be a polygonal curve in Rd and let e ∈ Xd
2 be an edge. Let (t1, . . . , tn)

be the vertex-parameters of P . For any integer values 1 ≤ i < j ≤ min(i + 3, n) and real
value t ∈ [0, 1] with ti ≤ t ≤ tj, either there exist α1, α2, β1, β2 such that

R := {(α, β) ∈ [0, 1]2 | t ∈ Ψi,j
∆ (P, e[α, β])} = [α1, α2]× [β1, β2],

or the set R is empty. Moreover, each αv (respectively βv) for v ∈ {1, 2} can be written as
αv = cv +

√
dv (respectively βv = ev +

√
fv), where the parameters cv and dv (respectively ev

and fv) can be computed by an algorithm that takes (i, j), t and e as input and needs O(d)
simple operations.

To prove a VC-dimension bound of O(d), we combine the above lemma with the following
general theorem which can be attributed to Goldberg and Jerrum [16]. We use the variant
by Anthony and Bartlett [4], which is stated as follows.

▶ Theorem 21 (Theorem 8.4 [4]). Suppose h is a function from Ra × Rb to {0, 1} and let
H = {x→ h(α, x) | α ∈ Ra} be the class determined by h. Suppose that h can be computed
by an algorithm that takes as input the pair (α, x) ∈ Ra × Rb and returns h(α, x) after no
more than t simple operations. Then, the VC-dimension of H is ≤ 4a(t + 2).
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▶ Lemma 22. Let S : Tn → Rd be a polygonal curve and let ∆ ∈ R+. Consider the set
system {F∆(t) | t ∈ Tn} with ground set Xd

2. The VC-dimension of this set system is in O(d).

Proof. Define a function h : Tn × Xd
2 → {0, 1} with h(t, Q) = 1 if and only if a call to

IsFeasible(Q, S, t, ∆) returns true. We analyse the VC-dimension of the class of functions
determined by h:

H = {x→ h(t, x) | t ∈ Tn}

As a consequence, we obtain the same bounds on the VC-dimension of the corresponding set
system R with ground set Xd

2 where a set rt ∈ R is defined by a t ∈ Tn with

rt = {Q ∈ Xd
2 | h(t, Q) = 1}

In order to show the lemma, we first argue that for any given t ∈ Tn and Q ∈ X2
d the

expression h(t, Q) can be evaluated with O(d) simple operations.
Let (t′, i′) = t and recall the index set J = {(i, j) | i′ − 3 ≤ i ≤ i′ ≤ j ≤ i + 3} as in the

procedure IsFeasible. Note that |J | = 9 and that J can be determined by O(1) simple
operations from i′. Note that IsFeasible returns true if and only if t ∈ Ψi,j

∆ (S, Q) for some
(i, j) ∈ J . So, for fixed (i, j), consider the set

R = {(α, β) ∈ [0, 1]2 | t ∈ Ψi,j
∆ (S, Q[α, β])}

Lemma 20 implies that R is either empty or can be written as a rectangle [α1, α2]× [β1, β2].
Note that t ∈ Ψi,j

∆ (S, Q) if and only if R is non-empty and (0, 1) ∈ R. By Lemma 20, this
test can be performed using O(d) simple operations. Thus, we can apply Theorem 21 and
conclude that the VC-dimension of H is in O(d). ◀

With proper bounds on the VC-dimension in place, we obtain the following main result.
The proof is based on the well-known 1

r -net theorem by Haussler and Welzl [20], which
provides a bound on the probability that our sample chosen in line 5 is a 1

r -net of the
weighted set system, based on the VC-dimension of this set system. We use this to bound
the expected number of iterations of the main loop in kApproxCover within our analysis
of the multiplicative weights update algorithm.

▶ Theorem 23. Given a polygonal curve P ∈ Xd
n and ∆ ∈ R+, there exists an algorithm

that computes an (α, β)-approximate solution to the ∆-coverage problem on P with α = 11
and β = O(log k∗), where k∗ is the minimum size of a solution to the ∆-coverage problem on
P . The algorithm needs in expectation Õ((k∗)2n + k∗n3) time and Õ((k∗)n + n3) space.

In the full version [7], we show improved bounds for c-packed curves. The only modification
to the algorithm is a more careful generation of the triples that generate the candidate set.

▶ Theorem 24. Let P ∈ Xd
n be c-packed and ∆ ∈ R+. Let k∗ be the minimum size of

a solution to the ∆-coverage problem on P . There exists an algorithm that outputs an
(11, O(log(k∗)))-approximate solution. The algorithm needs
1. Õ((k∗)2n + nc2k∗) expected time and Õ(k∗n + nc2) space in R2,
2. Õ((k∗)2n + nc2k∗ + n2) expected time and Õ(k∗n + nc2) space in Rd.

In the full version [7], we also show that the property of the feasible sets as testified
by Lemma 20 can be exploited to implicitly update the weights of a much larger set of
candidates chosen from a uniform grid in the candidate space, thereby circumventing the
explicit computation of the candidates. This improves the overall dependency on the
complexity of the input curve in the running time, when compared to the previous algorithm
– at the cost of a logarithmic factor of the relative arc-length of the curve.
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▶ Theorem 25. Let P ∈ Xd
n and ∆ ∈ R+. Let k∗ be the minimum size of a solution to the

∆-coverage problem on P . Let further λ(P ) be the arc length of the curve P . There exists
an algorithm that outputs a (12, O(log(k∗))-approximate solution. The algorithm needs in
expectation O(nk∗3(log4( λ(P )

∆ ) + log3( n
k∗ )) + n log2(n)) time and O(nk∗ log( nλ(P )

∆k∗ )) space.

5 Conclusions

With the algorithm variants presented in this paper, we can find bicriteria-approximate
solutions to the ∆-coverage problem on a polygonal curve P . The new algorithms improve
upon previously known algorithms for the ∆-coverage problem both in terms of known
running time and space requirement bounds [2], as well as approximation factors. To the best
of our knowledge, our candidate generation leads to the first strongly polynomial algorithm
for subtrajectory clustering under the continuous Fréchet distance that does not depend on
the relative arclength λ/∆ of the input curve or the spread of the coordinates. The running
time is at most cubic in n, the number of vertices of the input curve (Theorem 23). In
practice, we expect this to be lower as testified by our analysis for c-packed curves (Theorem
24). The work of Gudmundsson et. al. [17] suggest that in practice most curves are c-packed
for a c that is considerably smaller than the complexity of the curve. However, it remains
to be seen if this also holds for the typically long curves which appear as input in the
subtrajectory clustering setting. We also present a variant of the algorithm with implicit
weight updates which achieves a linear dependency on n (Theorem 25) and this holds in
general, without any c-packedness assumption on the input.

There are several avenues for future research. We mention some of them here. An
interesting question that remains open for now is whether the implicit weight update can
be performed directly on the candidate set (Definition 18). For this, we need to develop a
dynamic data structure that can maintain the distribution on this candidate set to perform
updates with rectangles and to sample from it. Another future research direction is to
improve the dependency of the approximation factor on the parameter that controls the
complexity of the input curves. Currently, the dependency is linear, and we did not try to
improve it, since our focus was on clustering with line segments. Another interesting question
is, how the low complexity center curves obtained by our algorithm can be best connected to
center curves of higher complexity or even a geometric graph while retaining the ∆-covering.
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Abstract
We study the problem of constructing a data structure that can store a two-dimensional polygonal
curve P , such that for any query segment ab one can efficiently compute the Fréchet distance between
P and ab. First we present a data structure of size O(n log n) that can compute the Fréchet distance
between P and a horizontal query segment ab in O(log n) time, where n is the number of vertices of
P . In comparison to prior work, this significantly reduces the required space. We extend the type of
queries allowed, as we allow a query to be a horizontal segment ab together with two points s, t ∈ P

(not necessarily vertices), and ask for the Fréchet distance between ab and the curve of P in between
s and t. Using O(n log2 n) storage, such queries take O(log3 n) time, simplifying and significantly
improving previous results. We then generalize our results to query segments of arbitrary orientation.
We present an O(nk3+ε + n2) size data structure, where k ∈ [1, n] is a parameter the user can
choose, and ε > 0 is an arbitrarily small constant, such that given any segment ab and two points
s, t ∈ P we can compute the Fréchet distance between ab and the curve of P in between s and t

in O((n/k) log2 n + log4 n) time. This is the first result that allows efficient exact Fréchet distance
queries for arbitrarily oriented segments.

We also present two applications of our data structure. First, we show that our data structure
allows us to compute a local δ-simplification (with respect to the Fréchet distance) of a polygonal
curve in O(n5/2+ε) time, improving a previous O(n3) time algorithm. Second, we show that we can
efficiently find a translation of an arbitrary query segment ab that minimizes the Fréchet distance
with respect to a subcurve of P .
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1 Introduction

Comparing the shape of polygonal curves is an important task that arises in many contexts
such as GIS applications [2, 9], protein classification [20], curve simplification [7], curve
clustering [1] and even speech recognition [21]. Within computational geometry, there are
two well studied distance measures for polygonal curves: the Hausdorff and the Fréchet
distance. The Fréchet distance has proven particularly useful as it takes the course of the
curves into account. However, the Fréchet distance between curves is costly to compute:
as its computation requires roughly quadratic time [3, 8]. When a large number of Fréchet
distance queries are required, we would like to have a data structure, a so-called distance
oracle, to answer these queries more efficiently. This leads to a fundamental data structuring
problem: preprocess a polygonal curve such that, given a query polygonal curve, their Fréchet
distance can be computed efficiently (query curves are assumed to be comparatively small).
It turns out that this problem is extremely challenging. Indeed, even though great efforts
have been devoted to design data structures to answer Fréchet distance queries, there is still
no distance oracle known that is able to answer exact queries for a general query curve.

To make progress on this important problem, in this work we focus on a more restrictive
but fundamental setting: when the query curve is a single segment. The reasons to study this
variant of the problem are twofold. On the one hand, it is a necessary step to solve the general
problem. On the other hand, it is a setting that has its own applications. For example, in
trajectory simplification, or when trying to find subtrajectories that are geometrically close
to a given query segment (e.g. when computing shortcut-variants of the Fréchet distance [12],
or in trajectory analysis [5] on sports data). A similar strategy of tackling segment queries
has also been successfully applied in nearest neighbor queries with the Fréchet distance [4].

We study preprocessing a polygonal curve P to determine the exact continuous Fréchet
distance between P and a query segment in sublinear time. Specifically, we study prepro-
cessing a polygonal curve P of n vertices in the plane, such that given a query segment ab,
traversed from a to b, the Fréchet distance between P and ab can be computed in sublinear
time. Without preprocessing, this problem can be solved in O(n log n) time.

Related work. Data structures that support (approximate) nearest neighbor queries with
respect to the Fréchet distance have received considerable attention throughout the years [4,
13, 15]. In these problems, the goal is typically to store a set of polygonal curves such that
given a query curve and a query threshold ∆ one can quickly report (or count) the curves
that are (approximately) within (discrete) Fréchet distance ∆ of the query curve. Some of
these data structures even allow approximately counting the number of curves that have
a subcurve within Fréchet distance ∆ [5]. Highlighting its practical importance, the near
neighbor problem using Fréchet distance was posed as ACM Sigspatial GIS Cup in 2017 [24].

Here, we want to compute the Fréchet distance of (part of) a curve to a low complexity
query curve. For the discrete Fréchet distance, efficient (1 + ε)-approximate distance oracles
are known, even when P is given in an online fashion [14]. For the continuous Fréchet
distance, Driemel and Har-Peled [12] present an O(nε−4 log ε−1) size data structure that
given a query segment ab can compute a (1+ε)-approximation of the Fréchet distance between
P and ab in O(ε−2 log n log log n) time. Their approach extends to higher dimensions and low
complexity polygonal query curves. However, in contrast to our solution, this approximation
uses techniques that do not provide insight into the structure of the algorithmic problem.
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Gudmundsson et al. [17] present an O(n log n) sized data structure that can decide
if the Fréchet distance to ab is smaller than a given value ∆ in O(log2 n) time (so with
some parametric search approach one could consider computing the Fréchet distance itself).
However, their result holds only when the length of ab and all edges in P is relatively
large compared to ∆. De Berg et al. [6] presented an O(n2) size data structure that does
not have any restrictions on the length of the query segment or the edges of P . However,
the orientation of the query segment is restricted to be horizontal. Queries are supported
in O(log2 n) time, and even queries asking for the Fréchet distance to a vertex-to-vertex
subcurve are allowed (in that case, using O(n2 log2 n) space). Recently, Gudmundsson et
al. [18] extended this result to allow the subcurve to start and end anywhere within P .
Their data structure has size O(n2 log2 n) and queries take O(log8 n) time. In their journal
version, Gudmundsson et al. [19] directly apply the main result of a preliminary version
of this paper [10] to immediately improve space usage of their data structure to O(n3/2);
their preprocessing time remains O(n2 log2 n). The current version of this paper significantly
improves these results. Moreover, we present data structures that allow for arbitrarily
oriented query segments.

Problem statement & our results. Let P be a polygonal curve in R2 with n vertices
p1, . . . , pn. For ease of exposition, we assume that the vertices of P are in general position,
i.e., all x- and y-coordinates are unique, no three points lie on a line, and no four points are
cocircular. We consider P as a function mapping any time t ∈ [0, 1] to a point P (t) in the
plane. Our ultimate goal is to store P such that we can quickly compute the Fréchet distance
DF (P, Q) between P and a query curve Q. The Fréchet distance is defined as

DF (P, Q) = inf
α,β

max
t∈[0,1]

∥P (α(t)) − Q(β(t))∥,

where α, β : [0, 1] → [0, 1] are nondecreasing surjections, also called reparameterizations of P

and Q, respectively, and ∥p − q∥ denotes the Euclidean distance between p and q.
In this work we focus on the case where Q is a single line segment ab starting at a and

ending at b. Note that P may self-intersect and ab may intersect P . Our first main result
deals with the case where ab is horizontal:

▶ Theorem 1. Let P be a polygonal curve in R2 with n vertices. There is an O(n log n)
size data structure that can be built in O(n log2 n) time such that given a horizontal query
segment ab it can report DF (P, ab) in O(log n) time.

This significantly improves over the earlier result of de Berg et al. [6], as we reduce the
required space and preprocessing time from quadratic to near linear. We simultaneously
improve the query time from O(log2 n) to O(log n). We further extend our results to allow
queries against subcurves of P . Let s, t be two points on P , we use P [s, t] to denote the
subcurve of P from s to t. For horizontal query segments we then get:

▶ Theorem 2. Let P be a polygonal curve in R2 with n vertices. There is an O(n log2 n)
size data structure that can be built in O(n log2 n) time such that given a horizontal query
segment ab and two query points s and t on P it can report DF (P [s, t], ab) in O(log3 n) time.

De Berg et al. presented a data structure that could handle such queries in O(log2 n) time
(using O(n2 log2 n) space), provided that s and t were vertices of P . Compared to their data
structure we thus again significantly improve the space usage, while allowing more general
queries. The recently presented data structure of Gudmundsson et al. [18] does allow s and t
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to lie on the interior of edges of P (and thus supports queries against arbitrary subcurves).
Their original data structure uses O(n2 log2 n) space and allows for O(log8 n) time queries.
Compared to their result we use significantly less space, while also improving the query time.

Using the insights gained in this restricted setting, we then present the first data structure
that allows exact Fréchet distance queries with arbitrarily oriented query segments in sublinear
time. With near quadratic space we obtain a query time of O(n2/3 log2 n). If we insist on
logarithmic query time the space usage increases to O(n4+ε). In particular, we present a
data structure with the following time-space tradeoff. At only a small additional cost we can
also support subcurve queries.

▶ Theorem 3. Let P be a polygonal curve in R2 with n vertices, and let k ∈ [1..n] be a
parameter. There is an O(nk3+ε + n2) size data structure that can be built in O(nk3+ε + n2)
time such that given an arbitrary query segment ab it can report DF (P, ab) in O((n/k) log2 n)
time. In addition, given two query points s and t on P , it can report DF (P [s, t], ab) in
O((n/k) log2 n + log4 n) time.

In Theorem 3 and throughout the rest of the paper ε > 0 is an arbitrarily small constant.
In both Theorem 2 and Theorem 3 the query time can be made sensitive to the number of
vertices m = |P [s, t]| in the query subcurve P [s, t]. That is, we can get query times O(log3 m)
and O((m/k) log2 m + log4 m), respectively.

To achieve our results, we also develop data structures that allow us to efficiently query the
directed Hausdorff distance −→

DH(P [s, t], ab) = maxp∈P [s,t] minq∈ab ∥p − q∥ from (a subcurve
P [s, t] of) P to the query segment ab. For an arbitrarily oriented query segment ab and a
query subcurve P [s, t] our data structure uses O(n log n) space and can answer such queries
in O(log2 n) time. Using more space, queries can be answered in O(log n) time, see Section 4.

Applications. In the full version [11] we show how to efficiently solve two problems using
our data structure. First, we show how to compute a local δ-simplification of P – that is, a
minimum complexity curve whose edges are within Fréchet distance δ to the corresponding
subcurve of P – in O(n5/2+ε) time.This improves existing O(n3) time algorithms [16].

Recently, Gudmundsson et al. [18] (full version [19]) studied the query version of this
problem, where the goal is to preprocess P , such that given a query curve Q and two points
s and t on P , one can find the translation of Q that minimizes the Fréchet distance between
(a subcurve) P [s, t] and Q efficiently. They study this query version in a restricted setting,
where Q is a horizontal segment. Their original data structure uses O(n2 log2 n) space and
allows for O(log32 n) time queries. By applying our data structure, we solve their problem
using O(n log2 n) space whilst supporting O(log12 n) time queries. In addition, we answer
one of their open question to find optimal translations for arbitrarily oriented query segments.
Finally, we answer another of their open problems by showing how to find a scaling of a
query segment that minimizes the Fréchet distance. Specifically, we show a O(n log2 n) size
data structure that for any horizontal query segment, can compute the scaling of the segment
that minimizes its Fréchet distance to P [s, t] in O(log4 n) time.We also show a version for
arbitrarily oriented queries.

2 Global approach

We illustrate the main ideas of our approach, in particular for the case where the query
segment ab is horizontal, with a left of b. We can build a symmetric data structure in case a

lies right of b. We now first review some definitions based on those in [6].
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pj

pi

a b

pi

pj

pi

pj

a b a b(a) (b) (c)

Figure 1 (a) A polygonal curve and query segment. (b) The red vertex pj forms a backward
pair with all but one blue vertex. (c) For a fixed backward pair (pi, pj), we consider the distance
between the intersection (cross) of their bisector (dashed) and ab, and either pi or pj .

Let P≤ be the set of ordered pairs of vertices (p, q) ∈ P × P where p precedes or equals
q along P . An ordered pair (p, q) ∈ P≤ forms a backward pair if xq ≤ xp. Throughout
the rest of the paper, xp and yp denote the x- and y-coordinates of point p, respectively.
We denote by B(P ) the backward pairs and say (p, q) ∈ B(P ) is trivial if p = q (Figure 1).
For two points p, q ∈ P , we then define δpq(y) = minx max {∥(x, y) − p∥, ∥(x, y) − q∥} (See
Figure 1(c)). That is, δpq(y) is a function that for any y, gives the minimum distance between
a point at height y and both p and q. We will use the function δpq only when (p, q) ∈ B(P )
is a backward pair. We define the function DB(y) = max {δpq(y) | (p, q) ∈ B(P )} , which we
refer to as the backward pair distance of a horizontal segment at height y with respect to P .
Note that DB(y) is the upper envelope of the functions δpq for all backward pairs (p, q) of P .
De Berg et al. [6] prove that the Fréchet distance is the maximum of four terms:

DF (P, ab) = max
{

||p1 − a||, ||pn − b||,
−→
DH(P, ab), DB(ya)

}
. (1)

The first two terms are trivial to compute in O(1) time. Like de Berg et al., we build
separate data structures that allow us to efficiently compute the third and fourth terms.

A key insight is that we can compute −→
DH(P, ab) by building the furthest segment Voronoi

diagrams (FSVD) of two sets of horizontal halflines, and querying these diagrams with the
endpoints a and b. See Section 3.1. This allows for a linear space data structure that supports
querying −→

DH(P, ab) in O(log n) time, improving both the space and query time over [6].
However, in [6] the data structure that supports computing the backward pair distance

dominates the required space and preprocessing time, as there may be Ω(n2) backward pairs,
see Figure 1. Via a divide and conquer argument we show that the number of backward
pairs that show up on the upper envelope DB is only O(n log n), see Section 3.2. The crucial
ingredient is that there are only O(n) backward pairs (p, q) contributing to DB in which p is
a vertex among the first n/2 vertices of P , and q is a vertex in the remaining n/2 vertices.
Surprisingly, we can again argue this using furthest segment Voronoi diagrams of sets of
horizontal halflines. This allows us to build DB in O(n log2 n) time in total. We can then
extend these results to support queries against an arbitrary subcurve P [s, t] of P (see [11]).

For arbitrarily oriented query segments we similarly decompose DF (P, ab) into four terms
(Section 4). The directed Hausdorff term can still be queried efficiently using an O(n log2 n)
size data structure. However, our initial data structure for the backward pair distance
uses O(n4+ε) space. The main reason for this is that functions δpq expressing the cost of a
backward pair are now bivariate, depending on both the slope and intercept of the supporting
line of ab. The upper envelope of a set of n such functions may have quadratic complexity.

While our divide and conquer strategy does not help us to directly bound the complexity
of the (appropriately generalized function) DB in this case, it does allow us to support queries
against subcurves of P . Moreover, we can use it to obtain a favourable query time vs. space
trade off. In the full version [11] we then apply our data structure to efficiently solve various
Fréchet distance related problems. Omitted proofs can be found in the full version [11].
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p

q

u

←−p
h←−
S
(q) = h←−u (q)

v
h←−p (q)

q

(a) (b)

←−p

−→p q

Figure 2 (a) A set S := {p, u, v} with
←
S in blue. The distance h←−p (q) is the distance to the apex

of ←−p , whilst the distance h←−u (q) is their vertical difference. (b) the distance between a point q and p

is the maximum of the distance to the left and right halfline from p.

3 Horizontal queries

3.1 The Hausdorff term
In this section we introduce some definitions that will be used throughout the paper, and
state the fact that there is a linear-size data structure to query the Hausdorff term in O(log n)
time, which can be built in O(n log n) time. The proof of this result is in the full version [11].

For a point p ∈ R2, define ←p to be the “leftward” horizontal halfline starting at p and
containing all points directly to the left of p. Refer to Figure 2. Analogously, we define →p as
the “rightward” horizontal halfline starting at p, so that p = ←p ∩→p . We extend this notation
to any set of points S, that is,

←
S = {←s | s ∈ S} denotes the set of “leftward” halflines

starting at the points in S ⊆ R2. We define
→
S analogously. Let S and T be two (possibly

overlapping) point sets in the plane. We define the following distance functions for rays ←p ,
←
S

(definitions for →p ,
→
S are analogous):

h←
p

(q) = −→
DH({q},

←
p ) = min

{
∥p′ − q∥ | p′ ∈ ←p

}
, h←

S
(q) = max

{
h←

p
(q) | p ∈ S

}
Note that h→

S
(resp., h←

S
) is the upper envelope of the distance functions to the halflines in

→
S (resp.,

←
S ). Since h→

S
and h←

S
map each point in the plane to a distance, the envelopes live

in R3. Combining furthest segment Voronoi diagrams with point location data structures,
we can show how to compute −→

DH(S, ab) efficiently:

▶ Theorem 4. Let S be a set of n points in R2. In O(n log n) time we can build a data
structure of linear size so that given a horizontal query segment ab, −→

DH(S, ab) can be computed
in O(log n) time.

Note that the directed Hausdorff distance from a polygonal curve P to a (horizontal) line
segment is attained at a vertex of P [6], thus, we can use Theorem 4 to compute it.

3.2 The backward pairs term
Here we show that the function DB , representing the backward pair distance, has complexity
O(n log n), can be computed in O(n log2 n) time, and evaluated for some query value y in
O(log n) time. This leads to an efficient data structure for querying P for the Fréchet distance
to a horizontal query segment ab, proving Theorem 1. See the full version [11] for details.

Recall that DB(y) is the maximum over all function values δpq(y) for all backward pairs
(p, q) ∈ B(P ). To avoid computing B(P ), we define a new function δ′pq(y) that applies to any
ordered pair of points (p, q) ∈ P≤. We show that for all backward pairs (p, q) ∈ B(P ), we
have δ′pq(y) = δpq(y). For any pair (p, q) ∈ P≤ that is not a backward pair, we show that
there exists a (trivial) backward pair (p′, q′) ∈ B(P ) such that δ′pq(y) ≤ δ′p′q′(y) = δp′q′(y).
Consequently, we can compute the value DB(y) by computing the maximum value of δ′pq(y)
over all pairs in P≤. We will show how to do this in an efficient manner.
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(a) (b)

−→p

−→p←−q

←−q

Figure 3 The distance δ′pq(y) is realised by either (a) the point of intersection between y and the
bisector between ←q and →p or, (b) the vertical distance between a line at height y and p or q.

For a pair of points (p, q) ∈ P≤, we define the pair distance between a query ab at height
y and (p, q) as the Hausdorff distance from a horizontal line of height y to (→p ∪←q ), that is:

δ′pq(y) = min
x

max
{

h←
q

((x, y)), h→
p

((x, y))
}

.

See Figure 3. The following key lemma states that, for our purposes we can use δ′ instead
of δ.

▶ Lemma 5. For any y, DB(y) = max {δpq(y) | (p, q) ∈ B(P )} = max{δ′pq(y) | (p, q) ∈ P≤}.

3.2.1 Relating DB(y) to furthest segment Voronoi diagrams
Now we devise a divide and conquer algorithm that computes DB(y) by computing it for
subsets of vertices of P . Lemma 5 allows us to express DB(y) in terms of P≤ instead of B(P ).
Next we refine the definition of DB(y) to make it decomposable. To that end, we define
DB(y) on pairs of subsets of P . Let S, T be any two subsets of vertices of P , we define:

DS×T
B (y) = max

{
δ′pq(y) | (p, q) ∈ (S × T ) ∩ P≤

}
.

We show that we can compute DS×T
B (y) efficiently using the δ′ functions. For this, we fix

a value of y and show that computing DS×T
B (y) is equivalent to computing an intersection

between two curves that consist of a linear number of pieces, each of constant complexity. We
then argue that as y changes, the intersection point moves along a linear complexity curve
that can be computed in O(n log n) time. This will allow us to query DB(y) = DP×P

B (y) in
O(log n) time, for any query height y.

From distance to intersections. For a fixed value y′, computing DS×T
B (y′) is equivalent to

computing an intersection point between two curves:

▶ Lemma 6. Let y′ ∈ R be a fixed height, let p be a point in P , and let T be a subset of
the vertices of P [p, pn]. The graphs of the functions x 7→ h→

p
((x, y′)) and x 7→ h←

T
((x, y′))

intersect at a single point (x∗, y′). Moreover, D{p}×T
B (y′) = h←

T
((x∗, y′)) = h→

p
((x∗, y′))

▶ Lemma 7. Let y′ ∈ R be a fixed height, and let S, T be subsets of vertices of P such that
all vertices in S precede all vertices in T . The graphs of the functions x 7→ h→

S
((x, y′)) and

x 7→ h←
T

((x, y′)) intersect at a single point (x∗, y′). Moreover, DS×T
B (y′) = h→

S
((x∗, y′)) =

h←
T

((x∗, y′)).

Proof. If all points in S precede all points in T , then all elements in S × T are in P≤ and
we note: DS×T

B (y′) = maxp∈S

{
D{p}×T

B (y′)
}

. The equality then follows from Lemma 6. ◀
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Given such a pair S, T , for a fixed value y′, we can compute a linear-size representation
of x 7→ h←

T
((x, y′)) in O(n log n) time as follows (see Figure 4). We compute the FSVD of

←
T in O(n log n) time. Then, we compute the Voronoi cells intersected by a line of height
y′ (denoted by ℓy′) in left-to-right order in O(n log n) time. Suppose that a segment of ℓy′

intersects only the Voronoi cell belonging to a halfline ←q ∈
←
T , then on this domain the

function h←
T

((x, y′)) = h←
q

((x, y′)), and thus it has constant complexity. A horizontal line
can intersect at most a linear number of Voronoi cells, hence the function has total linear
complexity. Analogous arguments apply to x 7→ h→

S
((x, y′)).

Varying the y-coordinate. Let f
(
→
S ,
←
T )

: y 7→ x∗ be the function that for each y gives the
intersection point x∗ such that h→

S
((x∗, y)) = h←

T
((x∗, y)). The intersection point (x∗, y′) lies

on a Voronoi edge of the FSVD of (
←
T ∪

→
S ). More precisely, it lies on the bichromatic bisector

of the FSVD of
←
T and the one of

→
S .

When we vary the y-coordinate, the intersection point traces this bisector. This implies
that, given the FSVD of

→
S and the FSVD of

←
T , the graph of f

(
→
S ,
←
T )

can be computed in
O(n) time. Using these properties, we can prove the following.

▶ Lemma 8. Let S, T be subsets of vertices of P such that all vertices in S precede all
vertices in T . The function DS×T

B has complexity O(n) and can be computed in O(n log n)
time. Evaluating DS×T

B (y), for some query value y ∈ R, takes O(log n) time.

3.2.2 Applying divide and conquer
We begin by analyzing the complexity of the function DB(y). Consider a partition of P into
subcurves S and T with at most ⌈n/2⌉ vertices each, and with S occurring before T along P .
Our approach relies on the following fact.

▶ Observation 9. Let P be partitioned into two subcurves S and T with all vertices in S

occurring on P before the vertices of T . We have that

DB(y) = DP×P
B (y) = max

{
DS×S

B (y), DS×T
B (y), DT×T

B (y)
}

.

Note that we can omit DT×S
B because (T × S) ∩ P≤ = ∅. We obtain the following lemma.

x

y
h←−
T
((x, y∗))

(a) (b)
x

(c) (d)

z z

x

h−→
S
((x, y∗))

y∗

h←−
T
((x, y∗))

f
(
−→
S ,
←−
T )

(y′)

y
z

x

h←−
T
((x, y))

Figure 4 (a) A set
←
T of rays arising from a set T of points, with their FSVD. (b) h←

T
((x, y)) is

the distance from (x, y) to the ray corresponding to the Voronoi cell at (x, y). (c) For a fixed y′,
x 7→ h←

T
((x, y′)) is monotonically increasing. (d) The value x for which h←

T
((x, y′)) = h→

S
((x, y′))

corresponds to f
(
→
S ,
←
T )

(y′), and to DS×T
B (y′).
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▶ Lemma 10. Let P be a polygonal curve with n vertices. The function DB has complexity
O(n log n) and can be computed in O(n log2 n) time. Evaluating DB(y), for a given y ∈ R,
takes O(log n) time.

Eq. 1 together with Theorem 4 and Lemma 10 thus imply that we can store P in an O(n log n)
size data structure, so that we can compute DF (P, ab) for some horizontal query segment ab

in O(log n) time. That is, we have established Theorem 1.

Subcurve queries. We can extend our data structure to support Fréchet distance queries to
subcurves of P , establishing Theorem 2. The two main ideas are (i) to store all intermediate
data structures constructed in the above divide and conquer algorithm, and that (ii) we can
actually achieve the result of Lemma 8 – evaluating DS×T

B (y′) for some query value y′ in
O(log n) time – by separately storing a data structure on S and a data structure on T . See
the full version [11] for details. Our data structure has total size O(n log2 n) and allows us
to find O(log n) nodes whose associated subcurves make up the query subcurve P [s, t]. For
each such pair of nodes µ, ν we use the (extended) Lemma 8 data structures associated with
these nodes to compute the contribution DPµ×Pν

B (y) of backward pairs with one vertex in
subcurve Pν and one vertex in Pµ. We thus spend O(log3 n) time to compute the backward
pair distance. This dominates the O(log2 n) time required to query the Theorem 4 data
structures associated with each node to compute the Hausdorff distance term.

4 Arbitrary orientation queries

In this section we extend our results to arbitrarily oriented query segments, proving Theorem 3.
Let α be the slope of the line containing the query segment ab, and let β be its intercept
(note that vertical query segments can be handled by a rotated version of our data structure
for horizontal queries). We again consider the case where a is left of b; the other case
is symmetric. Following Eq. 1, we can write DF (P, ab) as the maximum of four terms:
∥p1 − a∥, ∥pn − b∥, −→

DH(P, ab), and the backward pair distance DB(α, β) with respect to α.
The backward pair distance is now defined as

DB(α, β) = max {δpq(α, β) | (p, q) ∈ B(P )} , where
δpq(α, β) = min

x
max {∥(x, αx + β) − p∥, ∥(x, αx + β) − q∥} .

In Section 4.1 we present an O(n log n) size data structure that supports querying
−→
DH(P, ab) in O(log2 n) time. The key insight is that we can use furthest point Voronoi
diagrams instead of furthest segment Voronoi diagrams. In Section 4.2 we present a data
structure that efficiently supports querying DB(α, β). In Section 4.3 we extend our results
to support queries against subcurves of P as well. This combines our insights from the
horizontal queries with our results from Sections 4.1 and 4.2. Finally, in Section 4.4 we then
show how this also leads to a space-time trade off.

4.1 The Hausdorff distance term
For any point p and slope α we will denote by ←α

p the ray with apex p and slope α that
points in the leftward direction. Similarly, for any point set T , we define

←α

T =
{
←α
p | p ∈ T

}
.

Furthermore, we define h←α
p

(x, y) to be the directed Hausdorff distance from (x, y) to the

ray ←α
p , and h←α

T
(x, y) = max{h←α

p
(x, y) | p ∈ T}.
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We can show that we can use the furthest point Voronoi diagram instead of the furthest
segment Voronoi diagram and obtain the following results.

▶ Lemma 11. Let T be a set of n points in R2. In O(n2) time we can construct an O(n2)
size data structure so that given a query point (x, y) and slope α we can compute h←α

T
(x, y)

in O(log n) time.

▶ Theorem 12. Let P be a polygonal curve in R2 with n vertices.
In O(n log n) time we can construct a data structure of size O(n log n) so that given a
query segment ab, −→

DH(P, ab) can be computed in O(log2 n) time.
In O(n2) time we can construct a data structure of size O(n2) so that given a query
segment ab, −→

DH(P, ab) can be computed in O(log n) time.

4.2 The backward pair distance term
Let (p, q) ∈ P≤ be an ordered pair. We restrict δpq(α, β) to the interval of α values for which
(p, q) is a backward pair with respect to orientation α. Hence, each δpq is a partially defined,
constant algebraic degree, constant complexity, bivariate function. The backward pair
distance DB is the upper envelope of O(n2) such functions. This envelope has complexity
O(n4+ε), for some arbitrarily small ε > 0, and can be computed in O(n4+ε) time [23].
Evaluating DB(α, β) for some given α, β takes O(log n) time. The following lemma, together
with Theorem 12 then gives an O(n4+ε) size data structure that supports O(log n) time
Fréchet distance queries.

▶ Lemma 13. Let P be an n-vertex polygonal curve in R2. In O(n4+ε) time we can construct
a size O(n4+ε) data structure so that given a query segment ab, DB(ab) can be computed in
O(log n) time.

4.3 Subcurve queries
Next, we sketch how to support querying against subcurves P [s, t] of P in O(log4 n) time as
well. Refer to the full version [11] for details. We use the same approach as in the horizontal
query segment case: we store the vertices of P into the leaves of a range tree where each
internal node ν corresponds to some canonical subcurve Pν , so that any subcurve P [s, t] can
be represented by O(log n) nodes.

The Hausdorff distance term. Computing the directed Hausdorff distance is decomposable,
so using this approach with the data structure of Theorem 12 immediately gives us a data
structure that allows us to compute −→

DH(P [s, t], ab) in O(log2 n) time. Since the space usage
satisfies the recurrence S(n) = 2S(n/2) + O(n2), this uses O(n2) space in total.

The backward pair distance term. By storing the data structure of Lemma 13 at every
node of the tree, we can efficiently compute the contribution of the backward pairs inside
each of the O(log n) canonical subcurves that make up P [s, t]. However, as before, we are
still missing the contribution of the backward pairs from different canonical subcurves. We
again store additional data structures at every node of the tree that allow us to efficiently
compute this contribution.

Let S and T be (the vertices of) two such canonical subcurves, with all vertices of S

occurring before T along P . As before we will argue that for some given α and β the functions
x 7→ h←α

T
(x, αx + β) and x 7→ h→α

S
(x, αx + β) are monotonically increasing and decreasing,
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respectively, and that the intersection point of (the graphs of) these functions corresponds to
the contribution of the backward pairs in S × T . So, our goal is to build data structures
storing S and T that given a query α, β allow us to compute the intersection point of these
functions. We will show that we can use the data structure of Lemma 11 to support such
queries in O(log2 n) time.

We generalize some of our earlier geometric observations to arbitrary orientations. Let
p, q be vertices of P , and let S and T be subsets of vertices of P . We define

δ′pq(α, β) = min
x

max
{

h←α
q

((x, αx + β)), h→α
p

((x, αx + β))
}

and

DS×T
B (α, β) = max

{
δ′pq(α, β) | (p, q) ∈ (S × T ) ∩ P≤

}
.

and prove the following lemmas (by essentially rotating the plane so that the query segment
becomes horizontal, and applying the appropriate lemmas from earlier sections):
▶ Lemma 14. Let P be partitioned into two subcurves S and T with all vertices in S

occurring on P before the vertices of T . We have that

DB(α, β) = DP×P
B (α, β) = max

{
DS×S

B (α, β), DT×T
B (α, β), DS×T

B (α, β)
}

.

▶ Lemma 15. Let S and T be subsets of vertices of P , with S occurring before T along P , and
let α, β denote some query parameters. The function x 7→ h←α

T
(x, αx + β) is monotonically

increasing, whereas x 7→ h→α

S
(x, αx+β) is monotonically decreasing. These functions intersect

at a point (x∗, αx∗ + β), for which DS×T
B (α, β) = h←α

T
(x∗, αx∗ + β) = h→α

S
(x∗, αx∗ + β).

Querying DS×T
B (α, β). Consider the predicate Q(x) = h←α

T
(x, αx + β) < h→α

S
(x, αx + β).

It follows from Lemma 15 that there is a single value x∗ so that Q(x) = False for all x < x∗

and Q(x) = True for all x ≥ x∗. Moreover, x∗ realizes DS×T
B (α, β). By storing S and T ,

each in a separate copy of the data structure of Lemma 11, we can evaluate Q(x), for any
value x, in O(log n) time. We then use parametric search [22] to find x∗ in O(log2 n) time.
Note that this approach is an O(log n) factor slower compared to the approach we used for
horizontal queries only.
▶ Lemma 16. Let S, T be subsets of vertices of P such that all vertices in S precede all
vertices in T , stored in the data structure of Lemma 11. For any query α, β we can compute
DS×T

B (α, β) in O(log2 n) time.
For every node ν of the recursion tree on P we store: (i) the data structure of Lemma 13

built on its canonical subcurve Pν , and (ii) the data structure of Lemma 11 built on
the vertices of Pν . The total space usage of the data structure follows the recurrence
S(n) = 2S(n/2) + O(n4+ε), which solves to O(n4+ε). To query the data structure with some
subcurve P [s, t] from some vertex s to a vertex t we again find the O(log n) nodes whose
canonical subcurves together define P [s, t], query the Lemma 13 data structure for each of
them, and run the algorithm from Lemma 16 for each pair. The total running time is then
O(log4 n). As before, the procedure can be easily extended to the case where s and t lie on
the interior of an edge. We conclude:
▶ Lemma 17. Let P be a polygonal curve in R2 with n vertices, and ε > 0. There is an
O(n4+ε) size data structure that can be built in O(n4+ε) time that for an arbitrary query
segment ab (and two points s and t on P ) can report DP [s,t]×P [s,t]

B (α, β) in O(log4 n) time.

Since we can compute all four terms ∥s−a∥, ∥t−b∥, −→
DH(P [s, t], ab), and DP [s,t]×P [s,t]

B (α, β)
in O(log4 n) time, it follows that we can efficiently answer Fréchet distance queries against
subcurves.
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4.4 Space vs. Query time tradeoff
We can use our approach for subcurve queries from Section 4.3 to obtain a space vs. query
time trade off for queries against the entire curve. Let k ∈ [1..n] be a parameter. We trim the
recursion tree on P at a node ν of size O(k). Let T denote the resulting tree (i.e., the top
log(n/k) levels of the full recursion tree), and let L(T ) denote the set of leaves of T , each of
which thus corresponds to a subcurve of length O(k). Let ℓ(ν) and r(ν) be the left and right
child of ν, respectively. By repeated application of the second equality in Lemma 14 we have

DP×P
B (α, β) = max

{
max
ν∈T

DPℓ(ν)×Pr(ν)
B (α, β), max

ν∈L(T )
DPν×Pν

B (α, β)
}

.

At every leaf of T we now store the data structure of Lemma 13, and at every internal
node the data structure of Lemma 11. The space required by all Lemma 13 data structures
is O((n/k)k4+ε) = O(nk3+ε). The total size for all Lemma 11 data structures follows the
recurrence S(n) = 2S(n/2) + O(n2) which solves to O(n2). Hence, the total space used is
O(nk3+ε + n2). The preprocessing time is O(nk3+ε + n2) as well.

To answer a query (α, β) we query the Lemma 13 data structures at the leaves of T in
O(log k) time each. For every internal node ν we use Lemma 16 to compute the contribution
of DPℓ(ν)×Pr(ν)

B (α, β) in O(log2 n) time. Hence, the total query time is O((n/k) log k +
(n/k) log2 n) = O((n/k) log2 n). So, e.g., choosing k = n1/3 yields an O(n2+ε) size data
structure supporting O(n2/3 log2 n) time queries. We can extend this idea to support subcurve
queries in O((n/k) log2 n + log4 n) time as well, giving us the following result:

▶ Lemma 18. Let P be a polygonal curve in R2 with n vertices, and let k ∈ [1..n] be a
parameter. In O(nk3+ε + n2) time we can construct a data structure of size O(nk3+ε + n2)
so that given a query segment ab, DB(ab) can be computed in O((n/k) log2 n) time. If, in
addition we are also given two points s and t on P , DP [s,t]×P [s,t]

B (ab) can be computed in
O((n/k) log2 n + log4 n) time.

Since computing −→
DH(P [s, t], ab) can be done in O(log2 n) time using only O(n2) space, we

thus established Theorem 3. Once again, it is possible to make the query time proportional
to the complexity of P [s, t] rather than to n.

5 Concluding Remarks

We presented data structures for efficiently computing the Fréchet distance of (part of) a
curve to a query segment. This constitutes an important step towards the more ambitious
goal of finding data structures to efficiently answer queries for general polygonal curves.

Our results improve over previous work for horizontal segments and are the first for
arbitrarily oriented segments. However, we are left with the challenge of reducing the space
used for arbitrary orientations. There are two main issues. The first issue is that even for a
small interval of query orientations (e.g., one of the O(n2) angular intervals defined by lines
through a pair of points) it is difficult to limit the number of relevant backward pairs to
o(n2). The second issue is how to combine the backward pair distance values contributed by
various subcurves. For (low algebraic degree) univariate functions, the upper envelope has
near linear complexity, whereas for bivariate functions the complexity is near quadratic. The
combination of these issues makes it hard to improve over the somewhat straightforward
O(n4+ε) space bound we build upon.
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Abstract
We investigate preprocessing for vertex-subset problems on graphs. While the notion of kernelization,
originating in parameterized complexity theory, is a formalization of provably effective preprocessing
aimed at reducing the total instance size, our focus is on finding a non-empty vertex set that belongs
to an optimal solution. This decreases the size of the remaining part of the solution which still
has to be found, and therefore shrinks the search space of fixed-parameter tractable algorithms
for parameterizations based on the solution size. We introduce the notion of a c-essential vertex
as one that is contained in all c-approximate solutions. For several classic combinatorial problems
such as Odd Cycle Transversal and Directed Feedback Vertex Set, we show that under
mild conditions a polynomial-time preprocessing algorithm can find a subset of an optimal solution
that contains all 2-essential vertices, by exploiting packing/covering duality. This leads to FPT
algorithms to solve these problems where the exponential term in the running time depends only on
the number of non-essential vertices in the solution.
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1 Introduction

Background and motivation. Due to the enormous potential of preprocessing to speed up
the algorithmic solution to combinatorial problems [1, 2, 3, 43, 44], a large body of work in
theoretical computer science is devoted to understanding its power and limitations. Using
the notion of kernelization [4, 20, 21, 25, 29, 33] from parameterized complexity [12, 15] it is
possible to formulate a guarantee on the size of the instance after preprocessing based on
the parameter of the original instance. Under this model, a good preprocessing algorithm is
a kernelization algorithm: given a parameterized instance (x, k), it outputs an equivalent
instance (x′, k′) of the same decision problem such that |x′| + k′ ≤ f(k) for some function f

that bounds the size of the kernel. Research into kernelization led to deep algorithmic
insights, including connections to protrusions and finite-state properties [5], well-quasi
ordering [22], and matroids [30]; these positive results were complemented by impossibility
results [13, 16, 30] delineating the boundaries of tractability.

Results on kernelization led to profound insights into the limitations of polynomial-time
data compression for NP-hard problems. However, as recently advocated [14], the definition
of kernelization only gives guarantees on the size of the instance after preprocessing, which
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does not directly correspond to the running time of subsequently applied algorithms. If
the preprocessed instance is not solved by brute force, but via a fixed-parameter tractable
algorithm whose running time is of the form f(k) · nO(1), then the exponential dependence
in the running time is on the value of the parameter k, which is not guaranteed to decrease
via kernelization. In fact, if P ̸= NP then no polynomial-time preprocessing algorithm can
guarantee to always decrease the parameter of an NP-hard fixed-parameter tractable problem,
as iterating the preprocessing algorithm would lead to its solution in polynomial time. In this
work, we develop a new analysis of preprocessing aimed at reducing the search space of the
follow-up algorithm. We apply this framework to combinatorial optimization problems on
graphs, whose goal is to find a minimum vertex-subset satisfying certain properties. The main
idea behind the framework is to define formally what it means for a vertex to be essential
for making reasonable solutions to the problem, and to prove that an efficient preprocessing
algorithm can detect a subset of an optimal solution that contains all such essential vertices.

Before stating our results, we introduce and motivate the model. We consider vertex-
subset minimization problems on (possibly directed) graphs, in which the goal is to find
a minimum vertex subset having a certain property. Examples of the problems we study
include Vertex Cover, Odd Cycle Transversal, and Dominating Set. The analysis
of such minimization problems, parameterized by the size of the solution, has played an
important role in the literature (cf. [9, 17, 27, 38, 40]). Our starting point is the thesis that
a good preprocessing algorithm should reduce the search space. Since many graph problems
are known to be fixed-parameter tractable when parameterized by the size of the solution,
we can reduce the search space of these FPT algorithms by finding one or more vertices
which are part of an optimal solution, thereby decreasing the size of the solution still to be
found in the reduced instance (i.e. the parameter value).

Since in general no polynomial-time algorithm can guarantee to identify at least one vertex
that belongs to an optimal solution, the guarantee of the effectiveness of the preprocessing
algorithm should be stated in a more subtle way. When solving problems by hand, one
sometimes finds that certain vertices v are easily identified to belong to an optimal solution, as
avoiding them would force the solution to contain a prohibitively large number of alternative
vertices and therefore be suboptimal. Can an efficient preprocessing algorithm identify those
vertices that cannot be avoided when making an optimal solution?

Since many NP-hard problems remain hard even when there is a unique solution [42],
this turns out to be too much to ask as it would allow instances with unique solutions
to be solved in polynomial time, which leads to NP = RP . We therefore have to relax
the requirements on the preprocessing guarantee slightly, as follows. For an instance of
a vertex-subset minimization problem Π on a graph G, we denote the minimum size of a
solution on G by OPTΠ(G). For a fixed c ∈ R≥1, we say a vertex v ∈ V (G) is c-essential
for Π on G if all feasible solutions S ⊆ V (G) for Π whose total size is at most c · OPTΠ(G)
contain v. Based on this notion, we can ask ourselves: can an efficient preprocessing algorithm
identify part of an optimal solution if there is at least one c-essential vertex?

Phrased in this way, the algorithmic task becomes more tractable. For example, for
the Vertex Cover problem, selecting all vertices that receive the value 1 in an optimal
half-integral solution to the LP-relaxation results in a set S which is contained in some
optimal solution (by the Nemhauser-Trotter theorem [37], cf [12, §2.5]), and at the same time
includes all 2-essential vertices: any vertex v /∈ S only has neighbors of value 1

2 and 1, which
implies that the set X of vertices other than v whose value in the LP relaxation is at least 1

2 ,
forms a feasible solution which avoids v. Its cardinality is at most twice the cost of the LP
relaxation and therefore X is a 2-approximation. Hence S contains all 2-essential vertices.
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This example shows that a preprocessing step that detects c-essential vertices without any
additional information is sometimes possible. However, to be able to extend the scope of our
results also to problems which do not have polynomial-time constant-factor approximations,
we slightly relax the requirements on the preprocessing algorithm as follows. Let Π be a
minimization problem on graphs whose solutions are vertex subsets and let c ∈ R≥1.

c-Essential detection for Π
Input: A graph G and integer k.
Task: Find a vertex set S ⊆ V (G) such that:
G1 if OPTΠ(G) ≤ k, then there is an optimal solution in G containing all of S, and
G2 if OPTΠ(G) = k, then S contains all c-essential vertices.

In this model, the preprocessing task is facilitated by supplying an additional integer k

in the input. The correctness properties of the output S are formulated in terms of k.
If OPTΠ(G) ≤ k, then the set S is required to be part of an optimal solution. The upper
bound on OPTΠ(G) is useful to the algorithm: whenever the algorithm establishes that
avoiding v would incur a cost of more than k, it is safe to add v to S. If OPTΠ(G) = k,
then the algorithm should guarantee that S contains all c-essential vertices. Knowing a lower
bound on OPTΠ(G) is useful to the algorithm in case it can establish that any optimal
solution containing v can be transformed into one avoiding v whose cost is (c − 1) · k larger,
which yields a c-approximation if (c − 1) · k ≤ (c − 1) OPTΠ(G). Hence vertices for which
such a replacement exists are not c-essential and may safely be left out of S.

Results. We present polynomial-time algorithms for c-Essential detection for Π for
a range of vertex-deletion problems Π and small values of c; typically c ∈ {2, 3}. Example
applications include Vertex Cover and Feedback Vertex Set, and also Chordal
Vertex Deletion (for which no O(1)-approximation is known), Odd Cycle Transversal
(for which no O(1)-approximation exists, assuming the Unique Games Conjecture [28, 45]),
and even Directed Odd Cycle Transversal (which is W [1]-hard parameterized by
solution size [35]).

The model of c-Essential detection for Π is chosen such that the detection algorithms
whose correctness is formulated with respect to the value of k, can be used as a preprocessing
step to optimally solve vertex-subset problems without any knowledge of the optimum.
Let EΠ

c (G) denote the set of c-essential vertices in G, which is well-defined since all optimal
solutions contain all c-essential vertices. By using a preprocessing step that detects a superset
of the c-essential vertices in the solution, we can effectively improve the running-time
guarantee for FPT algorithms parameterized by solution size from f(OPTΠ(G)) · |V (G)|O(1),
to f(OPTΠ(G) − |EΠ

c (G)|) · |V (G)|O(1). This leads to the following results.

▶ Theorem 1.1. For each problem Π with coefficient c and parameter dependence f listed
in Table 1 that is not W [1]-hard, there is an algorithm that, given a graph G, outputs an
optimal solution in time f(ℓ) · |V (G)|O(1), where ℓ := OPTΠ(G) − |EΠ

c (G)| is the number of
vertices in an optimal solution which are not c-essential.

Hence the running time for solving these problems does not depend on the total size
of an optimal solution, only on the part of the solution that does not consist of c-essential
vertices. The theorem effectively shows that by employing c-Essential detection for Π
as a preprocessing step, the size of the search space no longer depends on the total solution
size but only on its non-essential vertices.
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Table 1 For each problem Π, there is a polynomial-time algorithm for c-Essential detection for
the stated value of c. Combined with the state of the art algorithm for the natural parameterization,
this leads to an algorithm solving the problem in time f(ℓ)·|V (G)|O(1) where ℓ = OPTΠ(G)−|EΠ

c (G)|.

Problem c f(ℓ) Reference

Vertex Cover 2 1.2738ℓ [9]
Feedback Vertex Set 2 2.7ℓ [31]
Directed Feedback Vertex Set 2 4ℓ · ℓ! [10]
Odd Cycle Transversal 2 2.3146ℓ [34]
Directed Odd Cycle Transversal 3 W[1]-hard [35]
Chordal Vertex Deletion 13 2O(ℓ log ℓ) [8]

We also prove limitations to this approach. Assuming FPT ̸= W [1], for Dominating Set,
Perfect Deletion (in which the goal is to obtain a perfect graph by vertex deletions) and
Wheel-Free Deletion, there is no polynomial-time algorithm for c-Essential detection
for any c ∈ R≥1. In fact, we can even rule out such algorithms running in time f(k)·|V (G)|O(1).
These results are based on FPT-inapproximability results for Dominating Set [40] and
existing reductions [26, 32] to the mentioned vertex-deletion problems.

Techniques. The main work lies in the algorithms for c-Essential detection, which
are all based on covering/packing duality for forbidden induced subgraphs to certain graph
classes, or variations thereof in terms of (integer) solutions to certain linear programs and
their (integer) duals. To understand the relation between detecting essential vertices and
covering/packing duality, consider the Odd Cycle Transversal problem (OCT). Following
the argumentation for the classic Erdős-Pósa theorem [18], in general there is no constant c

such that any graph either has an odd cycle transversal of size c · k, or a packing of k

vertex-disjoint odd cycles. However, we show that a linear packing/covering relation holds
in the following slightly different setting. If G − v is bipartite (so all odd cycles of G

intersect v), then the minimum size of an OCT avoiding v equals the maximum cardinality
of a packing of odd cycles which pairwise intersect only at v. We can leverage this statement
to prove that any vertex v which is not at the center of a flower (see Definition 3.1) of more
than OPToct(G) odd cycles, is not 2-essential: for any optimal solution X containing v, the
graph G′ := G − (X \ {v}) becomes bipartite after removal of v and by assumption does
not contain a packing of more than OPToct(G) odd cycles pairwise intersecting at v. So by
covering/packing duality on G′, it has an OCT X ′ of size at most OPToct(G) avoiding v,
so that (X \ {v}) ∪ X ′ is a 2-approximation in G which avoids v, showing that v is not
2-essential. Since v is clearly contained in an optimal solution whenever there is a flower
of more than OPToct(G) odd cycles centered at v, this yields a method for c-Essential
detection when using a known reduction [23] to Maximum Matching to test for a flower
of odd cycles.

Organization. After presenting preliminaries in Section 2, we give algorithms to detect
essential vertices based on covering/packing duality in Section 3 and based on integrality
gaps in Section 4. In Section 5 we show how these detection subroutines can be used to
improve the parameter dependence of FPT algorithms parameterized by solution size. The
lower bounds are presented in Section 6. The investigation of c-essential vertices has close
connections to the area of perturbation stability, which we briefly explore in Section 7. We
conclude in Section 8. Due to space limitations, proofs of statements marked (⋆) are deferred
to the full version [7].



B. M. Bumpus, B. M. P. Jansen, and J. J. H. de Kroon 30:5

2 Preliminaries

We consider finite simple graphs, some of which are directed. We use standard notation for
graph algorithms; any terms not defined here can be found in the textbook by Cygan et
al. [12]. We consider vertex-deletion problems on graphs. For a graph class C, a C-modulator
in a graph G is a vertex set S ⊆ V (G) such that G − S ∈ C. The minimum size of a
C-modulator in G is denoted OPTC(G). The corresponding minimization problem is defined
as follows.

C-Deletion
Input: A graph G.
Task: Find a minimum-size vertex-subset S ⊆ V (G) such that G − S ∈ C.

Throughout this paper we consider hereditary graph classes C. These can be characterized
by a (possibly infinite) set of forbidden induced subgraphs denoted forb(C). The C-Deletion
problem is equivalent to finding a minimum set S ⊆ V (G) such that no induced subgraph of
G − S is isomorphic to a graph in forb(C). We say that such a set S hits all graphs from
forb(C) in G. For these classes the vertex set V (G) is a trivial C-modulator (since the empty
graph is in all hereditary classes), which ensures that the task of finding a smallest modulator
is always well-defined.

A graph is perfect if for every induced subgraph the size of a largest clique is equivalent
to its chromatic number. Equivalently, a graph is perfect if it has no induced cycle of odd
length at least five or its edge complement (cf. [24]). A graph is chordal if it has no induced
cycle of length at least four. A graph is bipartite if its vertex set can be partitioned into two
independent sets, or equivalently, it does not contain an odd-length cycle. Given a graph G

and a set T ⊆ V (G), a T -path is a path with at least one edge with both endpoints contained
in T . A T -path is odd if it has an odd number of edges. For u, v ∈ V (G), a (u, v)-separator
is a set S ⊆ V (G) \ {u, v} that disconnects u from v. If G is a directed graph, then in G − S

there is no directed path from u to v instead.

3 Positive results via Packing Covering

In this section we provide polynomial-time algorithms for c-Essential detection for Π
for various problems Π. The case for the Vertex Cover problem was given in Section 1.
The results in this section are all based on packing/covering duality (cf. [11], [41, §73]).
Towards this end, we generalize the notion of flowers, which played a key role in kernelization
for Feedback Vertex Set [6]. While flowers were originally formulated as systems of
cycles (forbidden structures for Feedback Vertex Set) pairwise intersecting in a single
common vertex, we generalize the notion to near-packings of arbitrary structures here.

▶ Definition 3.1. Let F be a set of graphs. For a graph G and v ∈ V (G), a (v,F)-flower
with p petals in G is a set {C1, C2, . . . , Cp} of induced subgraphs of G such that each Ci

(with i ∈ [p]) is isomorphic to some member of Fand such that V (Ci) ∩ V (Cj) = {v} for
all distinct i, j ∈ [p]. The F-flower number of a vertex v ∈ V (G), denoted ΓF (G, v), is the
largest integer p for which there is a (v,F)-flower in G with p petals.

We show a general theorem for finding 2-essential vertices for C-deletion if a maximum
(v,forb(C))-flower can be computed in polynomial-time. It applies to those classes C where
graphs with G − v ∈ C obey a min-max relation between C-modulators avoiding v and
packings of forbidden induced subgraphs intersecting only at v.
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▶ Theorem 3.2. Let C be a hereditary graph class such that, for any graph G and ver-
tex v ∈ V (G) with G − v ∈ C, the minimum size of a C-modulator avoiding v in G

equals Γforb(C)(G, v). Suppose there exists a polynomial-time algorithm A that, given a
graph G and vertex v ∈ V (G), computes Γforb(C)(G, v). Then there is a polynomial-time
algorithm that solves 2-Essential detection for C-Deletion.

Proof. Apply algorithm A to each vertex v ∈ V (G) and let S be the set of vertices for
which it finds that Γforb(C)(G, v) > k. We argue that Properties G1 and G2 are satisfied. If
OPTC(G) ≤ k, then every vertex in S is contained in every optimal solution for G since a
size-k solution cannot hit a flower of k + 1 petals from forb(C) without using v. Therefore
Property G1 is satisfied. Next suppose that OPTC(G) = k and let X be an optimal solution.
We argue that each vertex v /∈ S is not 2-essential. Clearly this holds for any vertex v /∈ X,
so suppose that v ∈ X. Note that for every vertex v /∈ S we have Γforb(C)(G, v) ≤ k, which
implies that Γforb(C)(G′, v) ≤ k where G′ := G − (X \ {v}). Note that since G′ − v ∈ C, by
assumption there exists a C-modulator X ′ ⊆ V (G′) \ {v} in G′ of size Γforb(C)(G′, v) ≤ k.
Observe that (X \ {v}) ∪ X ′ is a C-modulator in G of size at most 2k that avoids v and
therefore v is not 2-essential. ◀

Theorem 3.2 allows us to conclude the following result for Feedback Vertex Set (FVS)
and its directed variant (DFVS) using Gallai’s theorem and Menger’s theorem, respectively.

▶ Lemma 3.3 (⋆). There are polynomial-time algorithms for 2-Essential detection for
Π for Π ∈ {FVS, DFVS}.

Next, we consider Odd Cycle Transversal (OCT), which corresponds to C-Deletion
where C is the class of bipartite graphs and forb(C) consists of all odd cycles. In order to
apply Theorem 3.2 to OCT, we first argue that the class of bipartite graphs satisfies the
preconditions. The proof is similar to that of Geelen et al. [23, Lemma 11] who reduce
the problem of packing odd cycles containing v to a matching problem. We note that,
although their result can be used to obtain a 3-essential detection algorithm, we will show
(Lemma 3.7) how to efficiently detect 2-essential vertices as well. If the graph resulting from
their construction has a large matching, then there is a large (v,forb(C))-flower. If on the
other hand there is no large matching, then the Tutte-Berge formula is used to obtain a set
of size 2k that hits all the odd cycles passing through v. We show that if the graph G − v

is bipartite instead, then this second argument can be improved to obtain a hitting set of
size k by noting that the lack of a large matching implies that there is a small vertex cover
due to Kőnig’s theorem. This is below, using the viewpoint that odd cycles in G correspond
to odd T -paths in G − v for T = NG(v).

▶ Lemma 3.4. For any undirected graph G and set T ⊆ V (G), a maximum packing of odd
T -paths can be computed in polynomial time. Moreover, if G is bipartite then the cardinality
of a maximum packing of odd T -paths is equal to the minimum size of a vertex set which
intersects all odd T -paths.

Proof. We reduce to matching as in [23, Lemma 11]. Construct a graph H as follows. For
each v ∈ V (G) \ T , let v′ /∈ V (G) be a copy of v. Let V (H) = V (G) ∪ {v′ | v ∈ V (G) \ T}
and E(H) = E(G) ∪ {u′v′ | uv ∈ E(G − T )} ∪ {vv′ | v ∈ V (G) \ T}. Note that the graph
H consists of the disjoint union of G and a copy of G − T , with an added edge between
v ∈ V (G) \ T and its copy v′. Geelen et al. [23] mention that there is a 1-1 correspondence
between odd T -paths in G and certain augmenting paths in H. For completeness we give a
self-contained argument.
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▷ Claim 3.5. Graph G contains k vertex-disjoint odd T -paths if and only if H has a matching
M of size |V (G) \ T | + k. Furthermore, given a matching M in H of size |V (G) \ T | + k we
can compute a set of k vertex-disjoint odd T -paths in polynomial time.

Proof. (⇒) Let P = (P1, . . . , Pk) be a set of k vertex-disjoint odd T -paths in G. Consider a
path P = (v1, . . . , v2ℓ) ∈ P, where ℓ ≥ 1. First note that we can assume that V (P ) ∩ T =
{v1, v2ℓ}, since if vi ∈ T for some 1 < i < 2ℓ, then either (v1, . . . , vi) or (vi, . . . , v2ℓ) is an
odd T -path and we can update P accordingly. Construct a matching M in H as follows. For
any path P = (v1, . . . , v2ℓ) ∈ P, add the edges v1v2, v′

2v′
3, . . . , v2ℓ−1v2ℓ, alternating between

original vertices and copy vertices. This is possible as P is of odd length. For any vertex in
u ∈ V (G) \ T that is not contained in an odd T -path, we add uu′ to M . Observe that at
least 2|V (G) \ T | + 2k vertices are matched, therefore |M | ≥ |V (G) \ T | + k as desired.

(⇐) Let M be a matching of size |V (G) \ T | + k. If M contains both uv and u′v′ for
u, v ∈ V (G) \ T , then update M by removing them and inserting uu′ and vv′ instead. If for
v ∈ V (G) \ T only one of v and v′ is matched, and it is not matched to its copy, then match
it to its copy instead. Afterwards let E′ := {uv ∈ E(G) | uv ∈ M ∨ u′v′ ∈ M}. Observe that
in G[E′], each vertex in V (G) \ T has degree 0 or 2. For each v ∈ V (G) \ T such that v has
degree 0 in G[E′], add vv′ to M if it is not in already. Note that all vertices of H − T are
matched. It follows that at least 2k vertices in T are matched by M and they have degree 1
in G[E′]. Observe that G[E′] is a collection of paths and cycles with all degree-1 vertices in
T . We get that there are k T -paths in G that are of odd length by construction (every even
numbered edge in G[E′] originated from the copy part of H). Note that we can find them in
polynomial time. ◁

Since a maximum matching can be computed in polynomial time, by the claim above we
get that a maximum packing of vertex-disjoint odd T -paths can be computed in polynomial
time. Next we prove the second part of the statement.

▷ Claim 3.6. If G is bipartite and a maximum matching M in H has size |V (G) \ T | + k,
then there is a set S ⊆ V (G) of size at most k such that G − S has no odd-length T -path.

Proof. Observe that since G is bipartite, the graph H is bipartite as well. By Kőnig’s
theorem [41, Theorem 16.2], H has a vertex cover X of size |V (G) \ T | + k. Let S =
(X ∩ T ) ∪ {u | {u, u′} ⊆ X}. Note that for each u ∈ V (G) \ T , at least one of u ∈ X or
u′ ∈ X must hold to cover the edge uu′, thereby already accounting for |V (G) \ T | vertices
of the cover. It follows that |S| ≤ k. We argue that S hits all odd-length T -paths in G.

For the sake of contradiction suppose there is some odd-length T -path from t1 ∈ T to
t2 ∈ T \ {t1} in G − S. Let P = (t1, v1, . . . , v2ℓ, t2) be a (not necessarily induced) shortest
odd T -path. Note that neither of t1 and t2 belong to X by construction of S. Furthermore
P \ {t1, t2} ⊆ V (G) \ T , as otherwise we could construct a shorter odd-length T -path.
Consider the vertices V (P ) ∪ {v′

1, . . . , v′
2ℓ} ⊆ V (H). By construction of S, the vertex cover

X has exactly one of vi and v′
i for each i ∈ [2ℓ]. Observe that for it to be a vertex cover, X

must contain vertices of P \ {t1, t2} and their copies in an alternating fashion since for each
edge vi, vi+1 of P , the graph H contains edges viv

′
i, vi+1v′

i+1, vivi+1, v′
iv

′
i+1. Without loss of

generality, let v1 ∈ X. It follows that v2ℓ /∈ X. But this contradicts that X is a vertex cover
as v2ℓt2 is not covered. We conclude that S hits all odd-length T -paths in G. ◁

By Claim 3.5, a maximum packing of k of vertex-disjoint odd T -paths in G implies a
matching in H of size |V (G) \ T | + k. By Claim 3.6, we can create a set of size at most k

that intersects all odd T -paths in the bipartite graph G. Clearly such a set has size at
least k. It follows that if G is bipartite, then the cardinality of a maximum packing of odd
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T -paths is equal to the minimum size of a vertex set which intersects all odd T -paths. (For
completeness, we remark that this last property can also be derived from Menger’s theorem:
in a bipartite graph with bipartition into A ∪ B, a T -path is odd if and only if its endpoints
belong to different partite sets, so a maximum packing of odd T -paths is equivalent to a
maximum set of vertex-disjoint paths between A ∩ T and B ∩ T .) ◀

By observing that odd T -paths in G − v directly correspond to flowers with odd cycles
pairwise intersecting at v in G, Lemma 3.4 and Theorem 3.2 imply the following.

▶ Lemma 3.7. There is a polynomial-time algorithm for 2-Essential detection for
OCT.

The DOCT problem corresponds to C-deletion where forb(C) consists of all directed
cycles of odd length. Using Menger’s theorem on an auxiliary graph, we can detect 3-essential
vertices for this problem.

▶ Lemma 3.8 (⋆). There is a polynomial-time algorithm for 3-Essential detection for
DOCT.

We cannot use the approach based on computing a maximum (v, F)-flower for the
Chordal Deletion problem; a simple reduction1 from Disjoint Paths [39] shows that it
is NP-hard to compute a maximum (v, F)-flower when F is the set of chordless cycles of
length at least four. In the next section, we will therefore use an approach based on the
linear-programming relaxation to deal with Chordal Deletion.

4 Positive results via Linear Programming

Consider the following natural linear program for C-Deletion for hereditary graph classes C.
The LP corresponding to an input graph G is defined on the variables (xu)u∈V (G), as follows.

C-Deletion LP
Objective: minimize

∑
u∈V (G) xu.

Subject to:∑
u∈V (H) xu ≥ 1 for each induced subgraph H of G isomorphic to a graph in forb(C),

0 ≤ xu ≤ 1 for each u ∈ V (G).

In the corresponding integer program, the constraint 0 ≤ xu ≤ 1 is replaced by xu ∈ {0, 1}.
We say that a minimization LP has integrality gap at most c for some c ∈ R if the cost of an
integer optimum is at most c times the cost of a fractional optimum. In general, the number
of constraints in the C-Deletion LP can be exponential in the size of the graph. Using the
ellipsoid method (cf. [41]), this can be handled using a separation oracle: a polynomial-time
algorithm that, given an assignment to the variables, outputs a violated constraint if one
exists. It is well-known (cf. [41, Thm. 5.10]) that linear programs with an exponential number
of constraints can be solved in polynomial time using a polynomial-time separation oracle.
To detect essential vertices, the integrality gap of a slightly extended LP will be crucial. We
define the v-Avoiding C-Deletion LP for a graph G and distinguished vertex v ∈ V (G) as
the C-Deletion LP with the additional constraint that xv = 0. Hence its integral solutions
correspond to C-modulators avoiding v.

1 Starting from an instance (G, (s1, t1), . . . , (sℓ, tℓ)) of Disjoint Paths satisfying siti /∈ E(G) for all i ∈ [ℓ]
(which is without loss of generality), insert a vertex v adjacent to A =

⋃ℓ

i=1{si, ti} and insert all edges
between vertices in A except siti for each i ∈ [ℓ].



B. M. Bumpus, B. M. P. Jansen, and J. J. H. de Kroon 30:9

▶ Theorem 4.1 (⋆). Let C be a hereditary graph class such that for each graph G and v ∈
V (G) satisfying G − v ∈ C, the integrality gap of v-Avoiding C-Deletion on G is at
most c ∈ R≥1. If there is a polynomial-time separation oracle for the C-Deletion LP, then
there is a polynomial-time algorithm for (c + 1)-Essential detection for C-Deletion.

Using known results on covering versus packing for chordless cycles in near-chordal graphs,
the approach above can be used to detect essential vertices for Chordal Deletion. For
the class of chordal graphs, the corresponding set of forbidden induced subgraphs is the class
hole of all holes, i.e., induced chordless cycles of length at least four.

▶ Lemma 4.2 (⋆). There is a polynomial-time algorithm for 13-Essential detection
for Chordal Deletion.

5 Consequences for Parameterized Algorithms

In this section we show how the algorithms for c-Essential detection from the previous
section can be used to solve C-Deletion for various classes C, despite the fact that the
detection algorithms only work when certain guarantees on k are met. The main theorem
connecting the detection problem to solving C-Deletion is the following.

▶ Theorem 5.1. Let A be an algorithm that, given a graph G and an integer k, runs in
time f(k) · |V (G)|O(1) for some non-decreasing function f and returns a minimum-size
C-modulator if there is one of size at most k. Let B be a polynomial-time algorithm for c-
Essential detection for C-Deletion. Then there is an algorithm that, given a graph G,
outputs a minimum-size C-modulator in time f(ℓ) · |V (G)|O(1), where ℓ = OPTC(G)−|Ec(G)|
is the c-non-essentiality.

Proof. First we describe the algorithm as follows. For each 0 ≤ k ≤ |V (G)|, let Sk be the
result of running B on (G, k), let Gk := G − Sk, and let bk := k − |Sk|.

Letting L be the list of all triples (Gk, Sk, bk) sorted in increasing order by their third
component bk, proceed as follows. For each (Gk, Sk, bk) ∈ L, run A on (Gk, bk) to find a
minimum C-modulator SA of size at most bk, if one exists. If |SA| = bk, then output SA ∪ Sk

as a minimum C-modulator in G.
To analyze the algorithm, we first argue it always outputs a solution. For the call

with k∗ = OPTC(G), both conditions of the detection problem are met. Hence by Property
G1 the set Sk∗ is contained in a minimum modulator in G, so that OPTC(G − Sk∗) =
OPTC(G) − |Sk∗ | = k∗ − |Sk∗ |. Therefore graph Gk∗ = G − Sk∗ has a modulator of size
at most bk∗ = OPTC(G − Sk∗) and none which are smaller, so that A correctly outputs a
modulator of size bk∗ . In turn, this causes the overall algorithm to terminate with a solution.

Having established that the algorithm outputs a solution, we proceed to show that it
outputs a minimum-size modulator whenever it outputs a solution (which may be in an
earlier iteration than for k∗ = OPTC(G)). Let k′ be the value of k that is reached when the
algorithm outputs a solution SA ∪ Sk′ . Then we know:
1. algorithm A found a minimum-size modulator SA in Gk′ of size at most bk′ , and
2. the set SA ∪ Sk′ is a modulator in G, since SA is a modulator in Gk′ = G − Sk′ , and

therefore OPTC(G) ≤ bk′ + |Sk′ | = k′.

To see that the algorithm is correct, notice that, since OPTC(G) ≤ k′, the set Sk′ is
contained in some minimum-size modulator for G (since B satisfies Property G1). Hence
OPTC(Gk′) = OPTC(G) − |Sk′ |. Since A outputs a minimum-size modulator if there is
one of size at most bk, we have |SA| = OPTC(G) − |Sk′ |, so that A(Gk′) ∪ Sk′ is a feasible
modulator of size OPTC(G) and therefore optimal.
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Now we prove the desired running-time bound. First of all, notice that we can determine
the list L in polynomial time by running B once for each value of k (which is at most |V (G)|).
By how we sorted L, we compute A(Gk, bk) only when bk ≤ bk∗ , as we argued above that if
the algorithm has not already terminated, it does so after reaching k∗ = OPTC(G). Hence
the calls to algorithm A are for values of the budget bk which satisfy bk ≤ bk∗ . We bound
the latter, as follows.

Since k∗ = OPTC(G), the set Sk∗ found by B is a superset of the set Ec(G) of all of the
c-essential vertices in G (Property G2). This means that we have

bk∗ = OPTC(G) − |Sk∗ | ≤ OPTC(G) − |Ec(G)| = ℓ,

so the parameter of each call to A is at most ℓ, giving the total time bound f(ℓ)·|V (G)|O(1). ◀

Theorem 1.1 now follows from Theorem 5.1 via the algorithms for c-Essential de-
tection given in the previous sections and the state-of-the-art algorithms for the natural
parameterizations listed in Table 1. Although the latter may be originally stated for the
decision version, using self-reduction they can easily be adapted to output a minimum
solution if there is one of size at most k.

6 Hardness results

Given the positive results we saw in Sections 3 and 4, it is natural to seek problems Π for which
c-Essential detection for Π is intractable. Here we show that c-Essential detection
for Dominating Set is intractable for any c ∈ O(1) and then use this as a starting point to
prove similar results for Hitting Set, Perfect Deletion, and Wheel-free Deletion.

A dominating set is a vertex set whose closed neighborhood is the entire graph. The
domination number of a graph is the size of a minimum dominating set. The starting point for
our reductions is the following result which states that it is W [1]-hard to solve Dominating
set parameterized by solution size even on instances which have “solution-size gaps”.

▶ Lemma 6.1 ([40], cf. [19, Thm. 4]). Let F, f : N → N be any computable functions.
Assuming FPT ̸= W[1], there does not exist an algorithm that, given a graph G and integer k,
runs in time f(k) · |V (G)|O(1) and distinguishes between the following two cases:

Completeness: G has a dominating set of size k.
Soundness: Every dominating set of G is of size at least k · F (k).

All of our reductions in this section share a leitmotif. We start with a gap instance (G, k)
of Dominating Set and map it to an instance G′ of c-Essential detection for Π (for
appropriate Π) equipped with a distinguished vertex v∗ with the following property: (1) if
G has domination number at most k, then no optimal solution in G′ contains v∗; (2) if G

has domination number strictly greater than c · F (k) (for some appropriate F ), then v∗ is
contained in every solution of size at most c · F (k) in G′. Thus our hardness results will
follow by combining reductions of this kind with Lemma 6.1.

▶ Lemma 6.2 (⋆). There is a polynomial-time algorithm R that, given a graph G and
integer k, outputs a graph R(G, k) containing a distinguished vertex v∗ such that:

if G has dominating number at most k, then the domination number of R(G, k) is exactly k

and every optimal dominating set avoids v∗;
if G has domination number strictly greater than c · (k + 1) for some c ∈ R≥1, then
R(G, k) has domination number k + 1 and the distinguished vertex v∗ is contained in all
R(G, k)-dominating sets of size at most c · (k + 1).
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Proof sketch. The graph R(G, k) is defined formally as follows:
1. initialize R(G, k) as the graph on vertex set {vi | v ∈ V (G), 0 ≤ i ≤ k} with edges {viuj |

uv ∈ E(G), 0 ≤ i, j ≤ k},
2. for each i ∈ [k] insert an apex ai which is adjacent to {vi | v ∈ V (G)},
3. insert a vertex v∗ which is adjacent to {vi | v ∈ V (G), 0 ≤ i ≤ k}.
The proof that R(G, k) has the desired properties is given in the full version [7], together
with a figure of the construction. ◀

Lemma 6.1 combined with the reduction provided by Lemma 6.2 yields the following.

▶ Theorem 6.3. Unless FPT = W [1], there is no FPT-time algorithm for c-Essential
detection for Dominating Set parameterized by k for any c ∈ R≥1.

Proof. Suppose such an algorithm A exists for c; we will use it with Lemma 6.1 to
show FPT = W [1] for the function F (k) = c(k + 1).

Given an input (G, k) in which the goal is to distinguish between the completeness and
soundness cases, the algorithm proceeds as follows. Using the reduction R of Lemma 6.2,
consider the graph R(G, k) and let S be the output of an algorithm for c-Essential
detection for Dominating Set on the pair (R(G, k), k + 1); note that the solution size
for which we ask is k + 1 rather than k. Without loss of generality we may assume k ≥ 2, as
the distinction can trivially be made otherwise. We will show that in the completeness case
we have v∗ /∈ S, while in the soundness case we have v∗ ∈ S, which allows us to distinguish
between these cases by checking whether v∗ belongs to the output of A(R(G, k), k + 1).

For the completeness case, suppose G has domination number at most k. Then, by
Lemma 6.2, so does R(G, k). This means that Property G1 holds for the call to A(R(G, k), k+
1), so that there is some optimal solution S′ of size k which contains S and hence we have
v∗ ̸∈ S by Lemma 6.2.

For the soundness case, suppose G has domination number at least k · F (k) = c(k + 1)k >

c(k + 1) (we use k ≥ 2 here). Then by Lemma 6.2, graph R(G, k) has domination number
k + 1 and v∗ is contained in all its dominating sets of size at most c(k + 1). In other words:
v∗ is c-essential in R(G, k). Consequently, v∗ ∈ S by Property G2 since the argument k + 1
we supplied to A coincides with the optimum in R(G, k) in this case.

If A runs in FPT-time, then the overall procedure runs in FPT-time which implies FPT =
W [1] by Lemma 6.1. ◀

Combining Lemma 6.2 with the standard reduction S from Dominating Set to Hitting
Set (where hyperedges are given by closed neighborhoods) yields a composite mapping S ◦ R

which relates c-essentiality to gaps in solution quality in much the same way as R did. We
leverage this together with known reductions from Hitting Set to Perfect Deletion [26]
and Wheel-free Deletion [32] to show the following.

▶ Theorem 6.4 (⋆). Unless FPT = W [1], both c-Essential detection for PerfDel and
c-Essential detection for WheelDel do not admit FPT-time algorithms parameterized
by k for any c ∈ R≥1.

7 Connections to Perturbation Resilience

In the area of perturbation resilience [36] there is a notion of so-called c-perturbation resilient
instances to optimization problems. Roughly, these are instances G in which there is a unique
optimal solution S which far outperforms (by a factor of c) every other solution S′ in G.
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More formally, for a vertex-weighted graph minimization problem Π whose solution is a
vertex-subset, we say that an instance (G, w : V (G) → N) with a unique optimal solution S is c-
perturbation resilient if for any perturbed weight function w′ satisfying w(v) ≤ w′(v) ≤ c·w(v)
for all v ∈ V (G), the instance (G, w′(x)) has a unique optimal solution and furthermore this
solution is S. (Of course, one can define an analogous notion for maximization problems as
well and what follows in this section applies to both.)

Classes of c-perturbation resilient instances have been shown to be “islands of tractability”
where many intractable problems become polynomial-time-solvable [36] and the suggestive
intuition behind this fact is that perturbation resilient instances have unique optima which
“stand out” and are “obvious” in some sense. Viewing stability through the lens of parame-
terized complexity, it is natural to ask whether one can quantify in an algorithmically useful
way how distant an input is from being stable. The following proposition supports our claim
that the non-essentiality (recall Theorem 5.1) is a good such measure since on (> c)-stable
inputs, the c-non-essentiality is smallest possible (namely it is 0).

▶ Proposition 7.1. Given constants c′ > c ≥ 1, if G is a c′-stable input to a graph optimization
problem Π whose solutions are vertex-subsets, then EΠ

c (G) is the unique optimum of G.

Proof. Consider the unique optimum S for Π on G. If S′ is a c-approximation for Π on G,
then we must have S′ = S (since otherwise G would not be c′-stable). As a consequence we
know that every vertex of S must be c-essential and hence we have S ⊆ Ec(G) ⊆ S. ◀

Proposition 7.1 and Theorem 5.1 allow us to immediately deduce that any algorithm for
c-Essential detection solves all (> c)-perturbation resilient instances exactly.

▶ Corollary 7.2. Given a minimization problem Π, any algorithm for c-Essential detec-
tion for Π solves (> c)-stable instances exactly.

8 Conclusion

We introduced the notion of c-essential vertices for vertex-subset minimization problems on
graphs, to formalize the idea that a vertex belongs to all reasonable solutions. Using a variety
of approaches centered around the theme of covering/packing duality, we gave polynomial-
time algorithms that detect a subset of an optimal solution containing all c-essential vertices,
which decreased the search space of parameterized algorithms from exponential in the size of
the solution, to exponential in the number of non-essential vertices in the solution.

Throughout the paper we have restricted ourselves to working with unweighted problems.
However, many of the same ideas can be applied in the setting where each vertex has a
positive integer weight of magnitude O(|V (G)|O(1)) and we search for a minimum-weight
solution. Since integral vertex weights can be simulated for many problems by making
twin-copies of a vertex, our approach can be extended to Weighted Vertex Cover,
Weighted Odd Cycle Transversal, and Weighted Chordal Deletion.

Our results shed a new light on which instances of NP-hard problems can be solved
efficiently. FPT algorithms for parameterizations by solution size show that instances are
easy when their optimal solutions are small. Theorem 1.1 refines this view: it shows that
instances with large optimal solutions can still be easy, as long as only a small number of
vertices in the optimum is not c-essential.

We remark that there is an alternative route to algorithms for c-Essential detection,
which is applicable to C-Deletion problems which admit a constant-factor approximation.
If there is a polynomial-time algorithm that, given a graph G and vertex v, outputs a
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c-approximation for the problem of finding a minimum-size C-modulator avoiding v, it
can be used for c-Essential detection. A valid output S for the detection problem
with input (G, k) is obtained by letting S contain all vertices for which the approximation
algorithm outputs a v-avoiding modulator of size more than c · k. Using this approach
(cf. [22]) one can solve maxF ∈F |V (F )|O(1)-Essential detection for F-Minor-Free
Deletion for any finite family F containing a planar graph. As the results for problems for
which no constant-factor approximation exists are more interesting, we focused on those.

Our work opens up several questions for future work. Is the integrality gap for v-
Avoiding Planar Vertex Deletion constant, when G−v is planar? Can O(1)-Essential
detection for Planar Vertex Deletion be solved in polynomial time? Can 2-
Essential detection for Chordal Deletion be solved in polynomial time? Can the
constant c for which we can detect c-essential vertices be lowered below 2?

Considering a broader horizon, it would be interesting to investigate whether there are
less restrictive notions than c-essentiality which can be used as the basis for guaranteed
search-space reduction.
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Abstract
Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of
a network flow X on directed graph G into weighted source-to-sink paths whose superposition equals
X. We focus on a common formulation of the problem where the path weights must be non-negative
integers and also on a new variant where these weights can be negative. We show that, for acyclic
graphs, considering the width of the graph (the minimum number of s-t paths needed to cover all of
its edges) yields advances in our understanding of its approximability. For the non-negative version,
we show that a popular heuristic is a O(log |X|)-approximation (|X| being the total flow of X)
on graphs satisfying two properties related to the width (satisfied by e.g., series-parallel graphs),
and strengthen its worst-case approximation ratio from Ω(

√
m) to Ω(m/ log m) for sparse graphs,

where m is the number of edges in the graph. For the negative version, we give a (⌈log ∥X∥⌉ + 1)-
approximation (∥X∥ being the maximum absolute value of X on any edge) using a power-of-two
approach, combined with parity fixing arguments and a decomposition of unitary flows (∥X∥ ≤ 1)
into at most width paths. We also disprove a conjecture about the linear independence of minimum
(non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful
implication (polynomial-time assignments of weights to a given set of paths to decompose a flow)
holds for the negative version.
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1 Introduction

Minimum flow decomposition (MFD) is the problem of finding a smallest sized decomposition
of a network flow X on directed graph G = (V, E) into weighted source-to-sink paths whose
superposition equals X. We focus on the case where path weights are restricted to be integers.
It is a textbook result [1] that if G is acyclic (a DAG) a decomposition using no more than
m = |E| paths always exists. However, MFD is strongly NP-hard [25], even on DAGs, and

© Manuel Cáceres, Massimo Cairo, Andreas Grigorjew, Shahbaz Khan, Brendan Mumey, Romeo Rizzi,
Alexandru I. Tomescu, and Lucia Williams;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuel.caceresreyes@helsinki.fi
https://me.ariel.computer
https://orcid.org/0000-0003-0235-6951
mailto:cairomassimo@gmail.com
mailto:andreas.grigorjew@helsinki.fi
https://researchportal.helsinki.fi/en/persons/andreas-grigorjew
https://orcid.org/0000-0003-0989-2415
mailto:shahbaz.khan@cs.iitr.ac.in
https://shahbazk.github.io
https://orcid.org/0000-0001-9352-0088
mailto:brendan.mumey@montana.edu
https://orcid.org/0000-0001-7151-2124
mailto:romeo.rizzi@univr.it
https://romeorizzi.github.io
mailto:alexandru.tomescu@helsinki.fi
https://www.cs.helsinki.fi/u/tomescu/index.html
https://orcid.org/0000-0002-5747-8350
mailto:lgw2@uw.edu
https://lgw2.github.io
https://orcid.org/0000-0003-3785-0247
https://doi.org/10.4230/LIPIcs.ESA.2022.31
https://arxiv.org/abs/2207.02136
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Width Helps and Hinders Splitting Flows

even when the flow values come only from {1, 2, 4} [12]. Recent work has shown that the
problem is FPT in the size of the minimum decomposition [14] and that it can be formulated
as an ILP of quadratic size [7].

While difficult to solve, MFD is a key step in many applications. For example, MFD on
DAGs is used to reconstruct biological sequences such as RNA transcripts [18, 23, 11, 3, 22, 26]
and viral strains [2]. MFD can also be used to model problems in networking [25, 12, 15]
and transportation planning [16], although in some of these applications there may be cycles
in the input. Despite the ubiquity of the MFD problem, the gap in our knowledge about
the approximability of MFD is large, even when restricting to DAGs. It is known [12] that
MFD (even on DAGs) is APX-hard (i.e., there is some ϵ > 0 such that it is NP-hard to
approximate within a (1 + ϵ) factor), so in particular, MFD does not admit a PTAS, unless
P=NP. Furthermore, it can be approximated with a factor of λlog ∥X∥ log ∥X∥ [15], where
λ is the length of the longest source-to-sink path and ∥X∥ is the largest flow value in the
network. In this work, we attempt to fill in some of the gaps between these results.

A natural lower bound for the size of an MFD of a DAG is the size of a minimum path
cover of the set of edges with non-zero flow (i.e., the minimum number of paths such that
every such edge appears in at least one path) – this size is called the width of the network.
This trivially holds because every flow decomposition is also such a path cover. These two
notions are analogies of the more standard notions of path cover and width of the node set.
The node-variants are classical concepts, with algorithmic results dating back to Dilworth
and Fulkerson [8, 10]. Despite this, the width has not been given any attention in the MFD
problem, and in particular it has never been used in approximation algorithms. In this paper,
we show that the width can play a key role both in the analysis of popular heuristics, and in
obtaining the first approximation algorithm for a natural variant of MFD.

We start with a relaxation of MFD in which flow decomposition may also use negative
integer weighs on flow paths, rather than strictly positive weights as has traditionally been
considered [25, 12, 14]. An important observation that we leverage for this variant (unlike
the positive-only version) is that “the width does not increase” as flow paths are chosen and
removed. Using this, we give a (⌈log ∥X∥⌉+ 1) approximation algorithm for this variant. To
differentiate both versions, we use MFDN and MFDZ throughout the paper. While MFDZ is
a natural version of the problem, to our knowledge it has not been previously considered
in the MFD literature. However, it can also have natural applications, since by applying
MFDZ on the difference between two flows, one can minimally explain the differences between
them, e.g. to explain the differences in RNA expression between two tissue samples with the
fewest number of up/down regulated transcripts, which is often the goal of RNA sequencing
experiments [21]. Our approximation follows a power-of-two approach where the weights of
the paths chosen are (positive or negative) powers of two. More specifically, observe that if
all flow values are even, then one can divide them by 2 and obtain a flow X with smaller
∥X∥ whose decomposition can be transformed back into a decomposition of X. In order to
obtain such an even flow, we prove a basic property that can be of independent interest:
given any integer flow X, there exists a unitary flow (its values are 0, +1, or −1) Y , such
that X + Y is even on every edge (Lemma 5). In addition, given a unitary flow Y , we show
that Y can be decomposed into k paths of weight +1 or −1, such that k is at most the width
of the graph (Corollary 8). We obtain the (⌈log ∥X∥⌉+ 1) approximation ratio (Theorem 11)
by iteratively removing the unitary flow, dividing all flow values by 2, and preprocessing the
graph so that its width is a lower bound on the size of the MFDZ.
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In Section 4 we consider connections between the width and a popular heuristic algorithm
for MFDN which we call greedy-weight1 [25], which builds a flow decomposition by successively
choosing the path that can carry the largest flow. Greedy-weight is commonly used in
applications (see e.g., [23, 2, 18] among many), and it seems to be mentioned in nearly every
publication addressing flow decomposition. First, on sparse graphs we improve (i.e., increase)
the worst-case lower bound for the greedy-weight approximation factor from Ω(

√
m) [12] to

Ω(m/ log m), showing for the first time that greedy-weight can be exponentially worse than
the optimum. For this we use a class of sparse graphs where the optimum flow decomposition
has size O(log m) whereas the greedy-weight algorithm returns a solution of size Ω(m), only
a constant factor away from the trivial decomposition. The key to this new bound is to
design an input where the width increases exponentially when a path is greedily removed.
We also show that the same bound also holds for other greedy heuristics choosing instead
the longest or shortest paths. Second, we show that if the input satisfies the properties
that its width does not increase as source-to-sink paths are removed (Property 15) and
that it is possible to remove a path of large weight (Property 16), then greedy-weight is a
O(log |X|)-approximation, where |X| is the flow value (i.e., total flow out of s). A notable
class of graphs satisfying these properties is the class of series-parallel graphs; see [9, 24] for
fast recognition algorithms and pointers to other NP-hard problems that are easier on this
class of graphs. Series-parallel graphs are also of great interest for network flow problems
(see, e.g., [13, 4]).

Finally, in Section 5 we consider a closely related problem, called k-Flow Weight Assign-
ment [14]. In addition to the flow X, in this problem we are also given a set of k paths, and
we need to decide if there is an assignment of weights to the paths such that they form a
decomposition of X. If the weights belong to N, this was shown to be NP-complete in [14].
In this work, we first observe that in the same way that allowing negative integer weights
simplifies the approximability of MFD, allowing weights to belong to Z fully changes the
complexity of the k-Flow Assignment Problem, making it polynomial. This is due to the
fact that the linear system defined by the given paths loses its only inequality of restricting
the weights to positive integers. It thus transforms an ILP to a system of linear Diophantine
equations, which can be solved in polynomial time (see e.g. [19]). Second, we consider a
conjecture from [14] stating that if the weights belong to N, and k is the size of a MFDN
for X, then the problem admits a unique solution (i.e., a unique assignment of weights to
the given paths). If true, this would speed up the FPT algorithm of [14] for MFDN, because
a step solving an ILP could be executed by solving a standard linear program returning a
rational solution and checking if the (supposedly unique) solution to this system is integer.
Moreover, the same conjecture (with the same implication) was also a motivation behind the
greedy algorithm of [20] for MFDN. In this paper, we disprove the conjecture of [14], further
corroborating the gap between MFDN and MFDZ.

2 Preliminaries

We are given a directed graph G = (V, E). Without loss of generality, we assume a unique
source s and a unique sink t with no in-edges and no out-edges respectively; otherwise, the
graph can be converted to such a graph by adding a pseudo source and sink and connecting
them to all sources and sinks respectively with appropriately weighted edges. We also assume

1 Previous work has consistently referred to this algorithm as greedy-width. To avoid confusion with the
width of the graph, we introduce the name greedy-weight in this work.

ESA 2022
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(a) If negative weights are allowed, the four
paths decompose the flow with weights 4, 5, 8,
and −3 (dark blue).
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(b) With positive weights only, five paths are
needed, since the edge (v1, v2) must be decom-
posed by a weight 1 path, leaving 4 edges that
must be covered separately. The paths shown
are one such decomposition.

Figure 1 A positive flow admitting a decomposition into four paths only if negative weights are
allowed.

that every node is on some s-t path. We use n and m to denote the number of nodes and
edges of G, respectively. Additionally, we assume that G is a DAG throughout the paper.
While the problem is also studied for graphs with cycles (see, e.g., [25, 12]), the task is still to
decompose into simple paths, and so our inapproximability result on DAGs also applies for
graphs with cycles. We call functions X : E → Y pseudo-flows, where Y is some set of allowed
flow values (numbers). We treat pseudo-flows as vectors over E and use the notation X + Y

and aX to denote the (element-wise) sum of pseudo-flows and multiplication by a scalar,
respectively. The numbers 0 and 1 also denote (depending on context) pseudo-flows that are
0 (resp. 1) everywhere. We write X ≤ Y (and similarly <) to mean X(u, v) ≤ Y (u, v) for
every (u, v) ∈ E.

Given G, a flow is a pseudo-flow satisfying conservation of flow (incoming flow equal to
outgoing flow) on internal nodes V \ {s, t}. It is known that the sum of two flows X + Y ,
the multiplication of a flow with a scalar aX, and the empty flow 0 are themselves flows.
Let |X| denote the total flow out of s (or into t) for flow X. Given an s-t path P , let P

also denote the flow defined by setting 1 to every edge in P and 0 elsewhere. With these
definitions, we are ready to formally define MFD.

▶ Definition 1. Given a flow X, a flow decomposition of (G, X) of size k is a family of s-t
paths P = (P1, . . . , Pk) with weights (w1, . . . , wk) ∈ Yk such that X = w1P1 + · · ·+ wkPk.

▶ Definition 2. Given a flow X, let mfdY(G, X) be the smallest size of a flow decomposition
of (G, X) with weights in Y.

We omit Y if it is clear from the context. We call the problem of producing a flow
decomposition of (G, X) of minimum size the minimum flow decomposition (MFD) problem.
In this paper, we study two integer versions of the problem, MFDN (0 ∈ N) and MFDZ. Note
that the reduction showing MFDN to be strongly NP-hard from [25] also holds for MFDZ.
However, a positive flow may admit a decomposition using fewer paths if negative weights
are allowed, as shown in Figure 1. We explore further differences between MFDN and MFDZ
in Sections 3 and 5.

Let ∥X∥ = max(u,v)∈E |X(u, v)| denote the infinity norm on flows. In particular, notice
that if Y ⊆ Z, then ∥X∥ ≤ 1 means that X(u, v) ∈ {0,±1} for every (u, v) ∈ E. Let X ≡2 Y

if X and Y have the same parity everywhere, i.e., for every (u, v) ∈ E, we have that X(u, v)
is odd iff Y (u, v) is odd.

▶ Definition 3. Given S ⊆ E, we define widthS(G) as the minimum number of s-t paths in
G needed to cover all edges of S. If S = E we just write width(G).
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Just like its more common node variant, width(G) can be computed in O(mn) time. As
described by, e.g., [1, 6], this is done by reduction to a min-flow instance with demand one
on every edge; the minimum flow of this instance is width(G), and the flow can be found by
reduction to a max-flow instance. Moreover, the problem can be relaxed to only require the
coverage of S ⊆ E and solved in the same running time by setting the demands only on the
edges of S.

▶ Lemma 4 ([1, 17]). Let G = (V, E) be a DAG, and S ⊆ E. A flow C : E → N can be
computed in O(mn) time, such that C(e) ≥ 1 for all e ∈ S and |C| = widthS(G).

The flow C with total flow widthS(G) suffices in this paper, and we do not need to
calculate a path cover achieving that minimum. However, we note that it can be directly
computed given the flow C. We can think of this path cover as a flow decomposition of C

into widthS(G) weight-one paths, which can be found by greedily removing such paths from
C until it is completely decomposed. Since each path has no more than n − 1 edges and
since widthS(G) ≤ m, the overall runtime of finding the path cover is O(mn).

3 Width helps solve MFDZ

The idea behind our approximation algorithm for MFDZ is that a flow X : E → Z on DAG G

can always be decomposed into (⌈log ∥X∥⌉+ 1) ·width(G) paths. We show this using two key
facts: first, that X can be decomposed into (⌈log ∥X∥⌉+ 1) flows with a particular structure,
and, second, that each of these flows can be decomposed into width(G) paths. A key step in
proving both these facts is a subroutine which, given an input flow X, finds another flow Y

with only values from {0,±1} (a unitary flow) that matches the parity of X on all the edges.
Intuitively, given an input flow X, such a unitary flow Y can be added to X to “fix” its odd
edges to be even, with only a small change to X.

▶ Lemma 5. For any flow X : E → Z on G = (V, E), there exists a flow Y : E → Z such
that X ≡2 Y and ∥Y ∥ ≤ 1.

Proof. Consider the undirected graph Godd = (V, Eodd) where Eodd = {{u, v} | (u, v) ∈
E and X(u, v) is odd}.

Notice that every node of Godd, except possibly s and t, has even degree, due to
conservation of flow. Thus, Godd can be written as the edge-disjoint union of cycles and s-t
paths. Assign an arbitrary orientation to each cycle and s-t path, and let E+

odd be the set of
edges oriented in this way. Define

Y (u, v) =


+1 if (u, v) ∈ E+

odd

−1 if (v, u) ∈ E+
odd

0 if {u, v} /∈ Eodd

Notice that Y is a flow decomposed as a sum of flows, each along one of the edge-disjoint
cycles and s-t paths. Moreover, X ≡2 Y and ∥Y ∥ ≤ 1 by construction. ◀

Repeatedly applying Lemma 5 and dividing the resulting even flow by 2, we obtain the
the first key ingredient of the approach (proof in [5, Appendix B]).

▶ Corollary 6. Any (non-zero) flow X : E → Z can be written as X =
∑⌈log ∥X∥⌉

i=0 2i · Yi,
where Yi : E → Z is a flow with ∥Yi∥ ≤ 1 for all i.

ESA 2022
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(a) Unitary flow X on a graph
G and a decomposition of it into
four paths, two of weight 1 in or-
ange (see (e)), and two of weight
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(b) Flow C covering all edges of
G, of size |C| = width(G) = 4
(Lemma 4).
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(c) Flow X + C.
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(d) Unitary flow D matching the
parity of X+C, i.e., D ≡2 X+C
(Lemma 5).
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(e) Flow A = (C − D + X)/2
and a decomposition of it into
two paths of weight 1.
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(f) Flow B = (C − D − X)/2
and a decomposition of it into
two paths of weight 1.

Figure 2 Example of Lemma 7 and Corollary 8 applied to a unitary flow X on a graph G

(for clarity, 0 flow values are not shown). Positive flows A and B can be constructed so that
|A| + |B| ≤ width(G) holds. Flows A and B can be trivially decomposed into |A| and |B| paths,
respectively. We obtain a decomposition of X by taking the paths of A with weight 1 and the paths
of B with weight −1.

The following result is the second key ingredient of our approach. It guarantees (together
with Corollary 8) that any unitary flow can be decomposed into at most width(G) paths of
weight ±1 (see Figure 2 for an example). This is by no means obvious since, among other
problems, a unitary flow may contain positive and negative values which merge and cancel
each other out (as in Figure 2a). The proof is based on another application of Lemma 5,
along with some algebra on flows.

▶ Lemma 7. For any flow X : E → Z, ∥X∥ ≤ 1, there exist flows A, B : E → Z such that:
1. A, B ≥ 0
2. X = A−B

3. |A|+ |B| ≤ width(G)

Proof. Take C such that C ≥ 1 and |C| = width(G), according to Lemma 4. Take D such
that D ≡2 X + C and ∥D∥ ≤ 1, according to Lemma 5. Also, assume |D| ≥ 0 without loss
of generality (otherwise, take −D, which satisfies the same properties).

Since D ≡2 X + C, we have C −D ±X ≡2 0. So we can take A = (C −D + X)/2 and
B = (C −D −X)/2.
1. Notice that C −D ±X ≥ C − 2 since ∥D∥, ∥X∥ ≤ 1. So, C −D ±X ≥ −1, since C ≥ 1.

But C −D ±X ≡2 0 so C −D ±X ≥ 0, whence A, B ≥ 0.
2. A−B = C−D+X

2 − C−D−X
2 = X.

3. |A|+ |B| = |A + B| =
∣∣ C−D+X

2 + C−D−X
2

∣∣ = |C −D| = |C| − |D| ≤ |C| since |D| ≥ 0,
and |C| = width(G). ◀

▶ Corollary 8. For any flow X : E → Z with ∥X∥ ≤ 1, there exist paths P1, . . . , Pk with
k ≤ width(G) such that X = P1 + · · ·+ Pℓ − Pℓ+1 − · · · − Pk (for some 0 ≤ ℓ ≤ k).
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Proof. Take A, B according to Lemma 7, with A, B ≥ 0, X = A−B and |A|+|B| ≤ width(G).
Since A, B ≥ 0, there exist paths P1, . . . , P|A|+|B| such that A = P1 + · · · + P|A| and
B = P|A|+1 + · · · + P|A|+|B| [1]. Since X = A − B, we can write X = P1 + · · · + P|A| −
P|A|+1 − · · · − P|A|+|B|. Finally, recall that |A|+ |B| ≤ width(G), concluding the proof. ◀

Finally, expressing any flow as a sum of at most ⌈log ∥X∥⌉+ 1 unitary flows (Corollary 6),
and decomposing each unitary flow into at most width(G) positive or negative paths (Co-
rollary 8), we can decompose the flow into at most ⌈log ∥X∥⌉+ 1 paths whose weight are
positive and negative powers of two.

▶ Theorem 9. Given a DAG G = (V, E), for any flow X : E → Z, there exist paths
P1, . . . , Pk and weights {w1, . . . , wk} ⊆ {±2i | i ∈ N}, with k ≤ (⌈log ∥X∥⌉ + 1) · width(G)
such that X = w1P1 + · · ·+ wkPk.

Proof. Combine Corollaries 6 and 8, getting

X =
⌈log ∥X∥⌉∑

i=0
2i · Yi =

⌈log ∥X∥⌉∑
i=0

2i · (P1i + · · ·+ Pℓi − Pℓi+1 − · · · − Pki)

where ki ≤ width(G). ◀

The proof of Theorem 9 suggests a straightforward algorithm for MFDZ, which we detail
in Algorithm 2 and describe at a high level here. First, iteratively decompose X, yielding
log⌈∥X∥⌉ + 1 unitary flows. Then use Lemma 7 to decompose each into width(G) paths.
However, as we explained at the beginning of this section, width(G) is not a lower bound on
MFDZ, and thus this approach does not directly derives an approximation. To overcome
this issue, we instead find a flow decomposition of a spanning subgraph G′ of G whose width
lower bounds mfdZ(G, X). Namely, we first find a minimum path cover flow in G of the
subset S of edges with non-zero flow in O(mn) time (according to Lemma 4), and then
remove from G any edge not covered by the flow, obtaining G′. By construction, the size
of this path cover is a lower bound of mfdZ(G, X). Moreover, the size of this path cover is
exactly width(G′), since every path cover of G′ is also a path cover of S in G.

To prove the correctness of Algorithm 2, we first define a a subroutine implementing
Lemma 5.

▶ Lemma 10. Algorithm 1 returns a unitary flow from input flow Y such that X ≡2 Y , as
in Lemma 5, in O(m) time.

Proof. The correctness of the algorithm is given by Lemma 5. Finally, the first 3 subroutines
as well as the entire for-loop takes O(m) time. ◀

▶ Theorem 11. Algorithm 2 is a log⌈∥X∥⌉ + 1-approximation for MFDZ with runtime
O(m(log ∥X∥ ·mfdZ(G, X) + n)) = O(m2 log ∥X∥).

Proof. By Theorem 9 and our previous discussion, Algorithm 2 returns a flow decomposition
for X with no more than (⌈log ∥X∥⌉) + 1 · width(G′) = (⌈log ∥X∥⌉+ 1) ·mfdZ(G, X) paths.
We analyze the runtime line by line. Lines 2 and 5 take O(mn) time by Lemma 4. The
call to Algorithm 1 on line 6 takes O(m) time by Lemma 10, and checking the flow of
D and flipping signs (if necessary) also takes O(m) time. By Corollary 6, the while loop
on line 8 executes at most log⌈∥X∥⌉ + 1 times, meaning that the entire execution takes
O(m log ∥X∥) time since line 9 takes O(m) time by Lemma 10. Since there are at most
log⌈∥X∥⌉ + 1 Yi’s, the for loop on line 14 executes at most log⌈∥X∥⌉ + 1 times. Each
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Algorithm 1 Produces a unitary flow Y from input flow X such that X ≡2 Y , as in Lemma 5.

1: procedure Unitary(G, X)
2: Eodd ← odd edges of G, undirected
3: C ← a decomposition of Godd = (V, Eodd) into cycles, oriented arbitrarily
4: E+

odd ← directed edges of C

5: for (u, v) ∈ E do
6: if (u, v) ∈ E+

odd then
7: Y (u, v)← +1
8: else if (v, u) ∈ E+

odd then
9: Y (u, v)← −1

10: else
11: Y (u, v)← 0
12: end if
13: end for
14: return Y

15: end procedure

execution of the for-loop naively finds width(G′) paths, each of which can be found in O(m)
time, so the whole loop takes O(log ∥X∥ · width(G′) ·m) time. Thus, the overall runtime is
O(m log ∥X∥ · width(G′) + n) = O(m log ∥X∥ ·mfdZ(G, X) + n). ◀

A theorem analogous to Theorem 9 for MFDN is desirable, but cannot be achieved directly
with the previous methods. Lemma 5 makes use of negative weights, and yields positive
weights only if the flow graph solely consists of s-t paths. However, the approach can be
adapted for MFDN if the input flows are stable (Property 15), and if it is possible to “fix”
the odd flows to be even with only width(G) paths, which we leave as an open question.

4 Width matters for greedy approaches

Since the difference of two flows is still a flow, it is very natural to consider successively
removing the most obvious type of flow – that is to say, paths – as an algorithmic strategy
for MFDN. Indeed, the particular greedy path removal strategy of finding the heaviest path
(greedy-weight) is commonly used as a heuristic in applications (e.g., [18, 2, 23, 12]) and it
seems to be mentioned in nearly every paper addressing flow decomposition. More formally,
a path P is said to carry flow p if X(u, v) ≥ p for all edges (u, v) of P . The heaviest path is
an s-t path carrying the largest flow. Such a path can be easily found in linear time in the
size of the DAG by dynamic programming (see, e.g., [25]).

4.1 Width hinders greedy on MFDN

We define a family of MFDN instances (Gℓ, Xℓ,B), depending on two parameters ℓ ∈ N \ {0}
and B ∈ N. The family is defined recursively on ℓ. The base case (G1, X1,B) for ℓ = 1 is
shown in Figure 3a. For ℓ > 1, we build (Gℓ, Xℓ,B) from two disjoint copies of (Gℓ−1, Xℓ−1,B),
by adding 5 extra edges and flow values as shown in Figure 3b. We call the edge connecting
the two copies of Gℓ−1 a central edge. Edges whose flow value depends on B are called
backbone edges, and they form a s-t path. Choosing B = 2ℓ+1, we show that the flow Xℓ,2ℓ+1

can be decomposed using a number of paths linear in ℓ, thanks to the heavy backbone
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Algorithm 2 Finds the flow decomposition of Theorem 9.

1: procedure Path-Decomposition(G, X)
2: Compute a minimum path cover flow of {(u, v) ∈ E | X(u, v) ̸= 0} ▷ Lemma 4
3: Remove from G any edge not covered by this path cover to obtain G′

4: P ← [], w ← [] ▷ length-zero vectors
5: C ← flow of value width(G′), C ≥ 1 ▷ Lemma 4
6: D ← Unitary(G′, C); if |D| < 0 set D = −D ▷ Algorithm 1
7: i← 0
8: while ∥X∥ > 1 do
9: Yi ← Unitary(G′, X) ▷ Algorithm 1

10: X ← (X − Yi)/2
11: i← i + 1
12: end while
13: Yi ← X

14: for j ∈ {0, . . . , i} s.t. Yj ̸= 0 do
15: A← C −D + Yj , B ← C −D − Yj

16: Naively decompose A into |A| paths and B into |B| paths; concatenate A, B to P
17: Concatenate |A| copies of 2j and |B| copies of −2j to w

18: end for
19: return (P , w)
20: end procedure

edges, whereas the greedy-weight algorithm fully saturates the central edges with its first
path and is left with a remaining flow requiring 2ℓ+1 paths to be decomposed (proofs in [5,
Appendix B]).

▶ Lemma 12. Let Gℓ with flow Xℓ,2ℓ+1 be constructed as described before. Greedy-weight
uses 1 + 2ℓ+1 paths to decompose Xℓ,2ℓ+1 .

▶ Lemma 13. Let Gℓ with flow Xℓ,2ℓ+1 be constructed as described before. It is possible to
decompose Xℓ,2ℓ+1 using 2ℓ + 2 paths.

▶ Theorem 14. The approximation ratio for greedy-weight on MFDN is Ω(m/ log m) for
sparse graphs, in the worst case.

Proof. By Lemmas 12 and 13, greedy-weight uses Θ(2ℓ) paths to decompose the flow Xℓ,2ℓ+1

described above, whereas it is possible to decompose the flow with only Θ(ℓ) paths. It can be
easily verified by induction that the number of edges of Gℓ is 7 · 2ℓ − 5. So the ratio between
greedy-weight and optimal for this instance is Ω( m

log m ). ◀

While greedy-weight is most commonly used in applications, the approach was first
presented as part of a general framework [25]: pick any optimality criteria for s-t paths
that is saturating (i.e., fully decomposes at least one edge), and successively remove optimal
paths. Since each path is saturating, the algorithm must decompose the flow in m or fewer
paths. Another optimality criterion sometimes used in DNA assembly (e.g., in vg-flow [2])
is the longest path (with its maximum possible flow so that it is saturating). To adapt
our construction of (Gℓ, Xℓ,2ℓ+1) so that this approach has the same approximation ratio,
consider (G∗

ℓ , X∗
ℓ,2ℓ+1), constructed as in (Gℓ, Xℓ,2ℓ+1) except that we replace every backbone

edge (u, v) with two edges, (u, w) and (w, v). See [5, Figure 6] for an example. Then a path

ESA 2022



31:10 Width Helps and Hinders Splitting Flows

 2 + B

 2

 1

 1

 1 + B

 2

 2 + B

 B

 1 + B

(a) The base case (G1, X1,B)
(ℓ = 1). Backbone edges (bold)
carry flow at least B.

 Gℓ−1

 Gℓ−1

 2ℓ + B

 2ℓ + B

 B
 2ℓ

 2ℓ

(b) Building (Gℓ, Xℓ,B) from
two copies of (Gℓ−1, Xℓ−1,B)
(ℓ > 1). The 5 new edges
connect the source and sink of
(Gℓ, Xℓ,B) with the sources and
sinks of (Gℓ−1, Xℓ−1,B). The
central edge has flow B and
is part of the backbone (bold
edges).

 2 + B

 2

 1

 1

 1 + B

 2

 2 + B

 B

 1 + B

(c) Decomposing the base case
(G1, X1,B) (ℓ = 1), for B =
2ℓ+1. All non-backbone edges
can be decomposed with 2ℓ+1 =
3 paths. The orange path has
weight 1 and dark and light blue
paths have weight 2. A fourth
path (of weight 3) along the
backbone is required to fully de-
compose the flow.

Figure 3 Construction for (Gℓ, Xℓ,B). Setting B = 2ℓ+1 gives MFD instances where greedy-weight
uses Θ( m

log m
) times more paths than optimal to decompose the flow.

along the backbone edges will be the longest from s to t and the above asymptotic analysis
holds, since we no more than doubled the number of edges. Yet another optimality criterion,
studied in [12] for its application to network routing, is the shortest path (again with its
maximum possible flow). (G∗

ℓ , X∗
ℓ,2ℓ+1) will also force this approach to take an exponential

number of paths, since first the algorithm will take all 2ℓ+1 weight-1 edges with 2ℓ+1 different
paths.

4.2 Greedy approximation for series-parallel graphs
As exploited in Section 4.1, one sticking point for greedy path removal algorithms is the fact
that the width of a graph can increase after an edge is fully decomposed. We now show that
if, in a particular instance, a graph does not increase its width during the execution of the
algorithm, and greedy-weight can decompose “enough” flow at each step, then greedy-weight
is a O(log |X|)-approximation for MFDN.

If G is a directed graph and X ≥ 0 a flow on G, we write G|X (G restricted to X) to mean
the spanning subgraph of G made up of the edges e ∈ E such that X(e) ̸= 0. Conversely, if
S is a subgraph of G, we write X|S (X restricted to S) to mean the pseudo-flow X only on
the edges of S. In the case of MFDN, once an edge is fully decomposed, it cannot be used
in future paths, possibly increasing the width of the graph that can be used to decompose
the rest of the flow and sometimes triggering an increase of the size of a minimum flow
decomposition as well. We call a graph stable if it does not have this issue.

▶ Property 15 (Stable graph). We say that G is stable if, for any non-negative flow X on G,
it holds that width(G|X) ≤ width(G).

Many useful MFDN instances do in fact satisfy Property 15. For example, the first proof
of MFD’s NP-hardness [25] was a reduction to a very simple graph of this form; this means
that MFDN restricted to stable graphs is also NP-hard.

The second property that we need is that there is always, during the execution of the
algorithm, a path carrying “enough” flow from s to t.

▶ Property 16 (Paths of large weight). We say that G has paths of large weight if, for any
flow X ≥ 0 on G, there exists an s-t path in G|X carrying at least |X|/width(G) flow.
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Note that this property does not hold in general; see [5, Figure 7].

▶ Lemma 17. Let G = (V, E) be a graph, width(G) ≥ 2, satisfying Properties 15 and 16.
Greedy-weight uses at most ⌊log |X|/ log width(G)

width(G)−1⌋+ 1 paths to decompose any flow X : E →
N.

Proof. Let b = width(G). Since G satisfies Properties 15 and 16, greedy-weight removes
a path of weight at least |X ′|/b at every step, where X ′ is the remaining flow of the
corresponding step. As such, after c steps |X ′| ≤ |X|

(
b−1

b

)c. If |X|
(

b−1
b

)c
< 1, then

|X ′| = 0, since |X| and the weights of the removed paths belong to N. Solving for c we obtain
c > log |X|/ log b

b−1 . Therefore, greedy-weight takes (uses) at most c = ⌊log |X|/ log b
b−1⌋+ 1

steps (paths). ◀

▶ Theorem 18. Let G = (V, E) be a graph satisfying Properties 15 and 16 and X : E → N
a flow. Greedy-weight is a O(log |X|)-approximation for MFDN on (G, X).

Proof. Assume X > 0 (otherwise, replace G with G|X). Thus, b = width(G) ≤ mfdN(G, X),
since any flow-decomposition of X induces a path cover of E. If b ≤ 1 greedy-weight finds
an optimal solution. Otherwise b ≥ 2, and Lemma 17 implies that greedy-weight is a
O( log |X|

b log b
b−1

) =O(log |X|)-approximation for MFDN (b log b
b−1 = O(1) for b ≥ 2). ◀

Finally, we define series-parallel graphs, and apply Theorem 18 to them, by proving (in
[5, Appendix B]) that they satisfy Properties 15 and 16.

▶ Definition 19 (Series-parallel graph [9]). A graph is a two-terminal series-parallel ( series-
parallel for short) graph with terminal nodes s and t if:

it consists of a single edge directed from s to t, and no other nodes, or
it can be obtained from two (smaller) two-terminal series-parallel graphs G1 and G2, with
terminal nodes s1, t1, and s2, t2, respectively, by either

identifying s = s1 = s2 and t = t1 = t2 (parallel composition of G1 and G2), or
identifying s = s1, t1 = s2, and t = t2 ( series composition of G1 and G2).

▶ Corollary 20. Greedy-weight is a O(log |X|)-approximation for MFDN on series-parallel
graphs.

5 Solving the k-Flow Weight Assignment Problem

In this section, we consider a restriction of MFD from [14] (see Figure 4 for an example).

▶ Definition 21 (k-Flow Weight Assignment). Given a flow X : E → Y on a graph G = (V, E)
and a set of s-t paths {P1, . . . , Pk}, the problem of finding an assignment of weights to
the paths, such that they form a flow decomposition of (G, X), is called k-Flow Weight
Assignment (k-FWA). We write k-FWAY if we require the path weights to belong to Y.

Given k s-t paths, k-FWA can be solved by a linear system defined by Lw = X, where
Xj ∈ Y is equal to the flow X(ej) of the edge ej (we identify flows X : E → Y with vectors
X ∈ Ym) and L is the m× k 0/1 matrix with Li,j = 1 if and only if path Pj crosses edge
ei. The resulting solution w ∈ Yk is the weight assignment to each path. For a flow graph
(G, X), we denote by LY = LY(P1, . . . , Pk) = {w ∈ Yk|X =

∑k
j=1 Pkwk} the linear system

corresponding to the paths P1, . . . , Pk.
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Figure 4 Paths Ai and Bi (i ∈ {0, 1, 2, 3}), each edge being labeled with the paths it appears in.
Assign to each path Ai weight ai, and to each path Bi weight bi, such that a0 = b0 = 3, and ai = 62i+1
and bi = 62i+1 + 5 for i = 1, 2, 3. Define the flow X on G as X =

∑3
i=0 aiAi +

∑3
i=0 biBi. Note that

these weights are a solution of k-FWAN on input (G, X) with given paths Ai, Bi (i ∈ {0, 1, 2, 3}).

We shortly discuss how to solve k-FWAZ. It is possible to find an integer-weighted
solution or decide that it does not exist in polynomial time. The reason for this is that,
having no non-negativity constraint, the linear system defined by the paths is a system of
linear Diophantine equations. It is well known that integer solutions to such systems can be
found in polynomial time; see, e.g., [19, Chapter 5].

On the other hand, solving k-FWAN turns out to be more difficult. Here, the linear
system contains the inequality w ≥ 0. In fact, it was shown [14] that k-FWAN is NP-hard.
The program Toboggan [14] implements a linear FPT algorithm for MFDN. One step of the
algorithm is to solve k-FWAN using an ILP [14]. The authors state the following conjecture.

▶ Conjecture 22 ([14]). If (P1, . . . , Pk) are the paths of a minimum flow decomposition of
(G, X), then the linear system LN(P1, . . . , Pk) has full rank k.

As mentioned in the introduction, if the conjecture turned out to be true, then Toboggan
could avoid resorting to solving an ILP, since just solving the standard linear system at
hand would return its unique solution. As observed by the authors, this would decrease the
asymptotic worst case upper bound of Toboggan.

We show that this conjecture is false using a counterexample. Consider the input for
k-FWAN from Figure 4 and the solution therein. We now give another solution for k-FWAN on
this input, namely the following path weights: a0 = 5, b0 = 1, and ai = 62i + 2, bi = 62i+1 + 4,
for i = 1, 2, 3. One can easily verify that this is another solution to k-FWAN on the input in
Figure 4, thus proving that the rank of the corresponding linear system is strictly less than 8.

To disprove Conjecture 22, it remains to show that any flow decomposition contains at
least 8 paths. Due to the technicality of this proof (and its exhaustive case-by-case analysis),
in this paper we only explain the intuition behind the construction in Figure 4 and behind
the correctness proof. However, as an additional check we also ran both Toboggan [14] and a
recently developed ILP solver for MFDN [7] on this instance, both returning mfdN(G, X) = 8.

The intuition is as follows. The graph can be divided into two parts: the graph induced
by the first 5 vertices in topological order (left part) and the one induced by the last 5
(right part). The exponential growth of the paths Ai and Bi for growing i, together with
the different permutations of the paired labels AiBj on the left part, fix the choice of the
paths Ai and Bi for i = 1, 2, 3. This allows us to interpret flow decompositions of less than 8
paths as decompositions with 8 paths, where either A0 or B0 carries weight 0. Consider a
flow decomposition where we assign two paths of weights λ1 and λ2 on the edges labeled
A0B0. For any δ ≥ 0, (λ1 − δ) + (λ2 + δ) = a0 + b0 and equivalently for all other edges on
the left part. If we decrease λ1 by some δ > 0, the weights of B1 and B2 each increase by
δ/2. And thus, δ must be even. Due to the parity of a0 and b0, they can never reach 0.
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6 Conclusions

In this paper we have shown for the first time that width, a natural lower bound for MFD,
is also useful when investigating its approximability. On the one hand, using width is a key
insight in understanding where greedy path removal heuristics fail. On the other hand, graphs
where width is well-behaved (e.g., series-parallel graphs) have a guaranteed approximation
factor. Moreover, when combined with parity arguments, i.e., about parity fixing unitary flows,
and a width-sized decomposition of such flows, it guarantees an even better approximation
factor for MFDZ for all DAGs. Finally, we have corroborated the complexity gap between the
positive integer and the full integer case by disproving a conjecture from [14] (also motivating
the heuristic in [20]), which would have had sped up their FPT algorithm for MFDN.

Our results open up new avenues for further research on MFD. For example, can the
width help find larger classes of graphs for which some greedy path removal (or even some
sort of greedy path cover removal) algorithms have a guaranteed approximation factor?
Can we get Ω(n) worst case approximation ratio of greedy-weight for dense graphs without
parallel edges? Can the power-of-two decomposition approach be applied with other factors
besides two? Can better path cover-like lower bounds help (e.g., path covers which cannot
use an edge more times than its flow value, also computable in polynomial time)? How do
our algorithms perform in practice?
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Abstract
We consider the problem of space-efficiently estimating the number of simplices in a hypergraph
stream. This is the most natural hypergraph generalization of the highly-studied problem of
estimating the number of triangles in a graph stream. Our input is a k-uniform hypergraph H with
n vertices and m hyperedges, each hyperedge being a k-sized subset of vertices. A k-simplex in H is
a subhypergraph on k + 1 vertices X such that all k + 1 possible hyperedges among X exist in H.
The goal is to process the hyperedges of H, which arrive in an arbitrary order as a data stream, and
compute a good estimate of Tk(H), the number of k-simplices in H.

We design a suite of algorithms for this problem. As with triangle-counting in graphs (which is
the special case k = 2), sublinear space is achievable but only under a promise of the form Tk(H) ≥ T .
Under such a promise, our algorithms use at most four passes and together imply a space bound of

O

(
ε−2 log δ−1 polylog n · min

{
m1+1/k

T
,

m

T 2/(k+1)

})
for each fixed k ≥ 3, in order to guarantee an estimate within (1 ± ε)Tk(H) with probability ≥ 1 − δ.
We also give a simpler 1-pass algorithm that achieves O

(
ε−2 log δ−1 log n · (m/T )

(
∆E + ∆1−1/k

V

))
space, where ∆E (respectively, ∆V ) denotes the maximum number of k-simplices that share a
hyperedge (respectively, a vertex), which generalizes a previous result for the k = 2 case. We
complement these algorithmic results with space lower bounds of the form Ω(ε−2), Ω(m1+1/k/T ),
Ω(m/T 1−1/k) and Ω(m∆1/k

V /T ) for multi-pass algorithms and Ω(m∆E/T ) for 1-pass algorithms,
which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our
techniques extend and generalize several different ideas previously developed for triangle counting in
graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs.
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1 Introduction

Estimating the number of triangles in a massive input graph is a fundamental algorithmic
problem that has attracted over two decades of intense research [1, 3, 22, 8, 40, 41, 28, 35, 6,
36, 21, 7, 32, 5, 13, 25, 20]. It is easy to see why. On the one hand, the problem arises in
applications where a complex real-world network is naturally modeled as a graph and the
number of triangles is a crucial statistic of the network. Such applications are found in many
different domains, such as social networks [11, 29, 33], the web graph [4, 44], and biological
networks [38]; see [41] for a more detailed discussion of such applications. On the other
hand, a triangle is perhaps the most basic nontrivial pattern in a graph and as such, triangle
counting is a problem with a rich theory and connections to many areas within computer
science [1, 15, 18, 34, 14] and combinatorics [31, 17, 27, 37].
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In this work, we study the natural generalization of this problem to massive hypergraphs.
Just as graphs model pairwise interactions between entities in a network, hypergraphs model
higher arity interactions. For instance, in an academic collaboration network with researchers
being the vertices, it would be natural to model coauthorships on research papers and articles
using hyperedges, each of which can be incident to more than two vertices. Just as we may
use triangle counts to study clustering behaviors in graphs or even in different portions of a
single graph, we may analyze higher-order clustering behaviors in the 3-uniform hypergraph
H formed by all three-way coauthorships by counting 3-simplices in H. A 3-simplex on four
vertices {u, v, w, x} is the structure formed by the hyperedges {uvw, uvx, uwx, vwx}: it is
the natural 3-dimensional analog of a triangle in an ordinary graph.

1.1 Our Results
We design several algorithms for space-efficiently estimating the number of k-simplices in a k-
uniform hypergraph H given as a stream of hyperedges. A k-simplex is a complete k-uniform
hypergraph on k + 1 vertices. The special case k = 2 is the triangle counting problem which,
as noted, is intensely investigated. Indeed, even in this setting of streaming algorithms,
triangle counting is highly studied, with new algorithmic techniques being developed as
recently as 2021 [20]. There is also a body of work on generalizing these results to the
problem of estimating the number of occurrences of patterns (a.k.a. motifs) more complicated
than triangles, e.g., fixed-size cliques and cycles [30, 26, 36, 5, 24, 42]. Our work adds to this
literature by generalizing in a different direction: we generalize the class of inputs from graphs
to hypergraphs and focus on counting the simplest nontrivial symmetric motifs: k-simplices.

Our algorithms provide optimal space bounds (up to log factors) in certain parameter
regimes; we prove this optimality by giving a set of matching lower bounds. In certain other
parameter regimes, there remains a gap between our best upper bounds and lower bounds,
which immediately provides a goal for future work on this problem. Below are informal
statements of our major algorithmic results.

▶ Theorem 1 (Upper bounds; informal). Let H be an n-vertex k-uniform hypergraph, presented
as a stream of m hyperedges, that is promised to contain T or more k-simplices. Suppose
that each hyperedge is contained in at most ∆E such simplices and each vertex is contained
in at most ∆V of them. Then, there are algorithms for (1± ε)-estimating Tk(H), the number
of k-simplices in H, with the following guarantees:
(1.1) a 4-pass algorithm using Õ(m1+1/k/T ) space;
(1.2) a 2-pass algorithm using Õ(m/T 2/(k+1)) space, provided k ≥ 3; and
(1.3) a 1-pass algorithm using Õ(m(∆E + ∆1−1/k

V )/T ) space.
Each of these algorithms is randomized and fails with probability at most δ. 1

Formal versions of these results appear as Theorem 14 in Section 3, Theorem 16 in
Section 4.2, and in the full paper [9], respectively. Along the way, we also obtain some other
algorithmic results that, despite being dominated by the algorithms behind Theorem 1, are
technically interesting and possibly useful in future work. These are briefly described at the
start of Sections 3 and 4 with full details appearing in the full paper [9]. As we shall see, we
take several ideas from triangle-counting algorithms as inspiration, but the “correct” way to
extend these ideas to hypergraphs is far from obvious. Indeed, some of the more “obvious”
extensions lead to the less-than-best algorithms hinted at above.

1 Throughout this paper, the notation Õ(·) hides factors of O(ε−2 log δ−1 polylog n) and, in the context
of k-uniform hypergraphs, treats k as a constant. Also, “log” with an unspecified base means log2.
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Next, we informally state our lower bound results. These are not the main technical
contributions of this paper, but they play the important role of clarifying where our algorithms
are optimal and where there might be room for improvement. As in Theorem 1, we denote
the number of k-simplices in H by Tk(H).

▶ Theorem 2 (Lower bounds; informal). Let k, n, m, H, ∆E , ∆V be as above. Suppose an
algorithm makes p passes over a stream of hyperedges of H, using at most S bits of working
memory, and distinguishes between the cases Tk(H) = 0 and Tk(H) ≥ T with probability at
least 2/3. Then the following lower bounds apply.
(2.1) With T = 1 and p = O(1), sublinear space is impossible: we must have S = Ω(nk).
(2.2) With p = 1, we must have S = Ω(m∆E/T ).
(2.3) With p = O(1), we need S = Ω(min{m1+1/k/T, m/T 1−1/k}), and S = Ω(m∆1/k

V /T ).
[(2.1)] If, instead, the streaming algorithm distinguishes between the cases Tk(H) < (1− ε)T
and Tk(H) > (1 + ε)T , then the following lower bound applies.
(2.4) With p = O(1), we must have S = Ω(ε−2).
The full version of the paper [9] further discusses and proves these lower bounds.

1.2 Closely Related Previous Work
To the best of our knowledge, this is the first work to study the simplex counting problem in
hypergraphs in the setting just described (the work of [23] on counting general hypergraph
patterns is not closely related; see Section 1.3). We now summarize some highlights of
previous work on the triangle counting problem (in graphs), with a focus on streaming
algorithms, so as to provide context for our contributions.

Suppose an n-vertex m-edge graph G is given as a stream of edges and we wish to estimate
the number of triangles, T3(G). It is not hard to show that, absent any promises on the
structure of G, this problem requires Ω(n2) space, even with multiple passes, thus precluding
a sublinear-space solution. Therefore, all work in this area seeks bounds under a promise
that T3(G) ≥ T , for some nontrivial threshold T . Intuitively, the larger this threshold, the
easier the problem, so we expect the space complexity to decrease. The earliest nontrivial
streaming solution [3] reduced triangle counting to a combination of ℓ0, ℓ1, and ℓ2 estimation
and achieved Õ((mn/T )2) space by using suitable linear sketches. Almost all algorithms
developed since then have instead used some sort of sampling to extract a small portion of
G, perform some computation on this sample, and then extrapolate to estimate T3(G).

Over the years, a number of different sampling strategies have been developed, achieving
different, sometimes incomparable, guarantees. Here is a whirlwind tour through this
landscape of strategies. One could sample an edge uniformly at random (using reservoir
sampling), then count common neighbors of its endpoints [22]; or sample an edge uniformly
and sample a vertex not incident to it [8]; or sample a subset of edges by independently
picking each with a carefully adjusted probability p [28, 6]; or choose a random color for each
vertex and collect all monochromatic edges [35]; or sample a subset of vertices at random and
collect all edges incident to the sample [6]. One could collect two random subsets of vertices
at different sampling rates and further sample edges between the two subsets [25]; or, as in a
very recent algorithm, sample a subset of vertices at rate p and further sample edges incident
to this sample at rate q, for well-chosen p and q [20]. Notice that in the just-mentioned
algorithms, the sampling technique is not actively trying to “grow” a triangle around a
sampled edge. Instead, elements of the graph (vertices or edges) are sampled indiscriminately
(typically in one streaming pass) and the triangles seen inside the sample are counted in
another pass. We shall call such sampling strategies oblivious.
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32:4 Counting Simplices in Hypergraph Streams

Besides the above oblivious sampling strategies, another set of works used what we shall
call targeted sampling strategies,2 where information previously stored about the stream
guides what gets sampled subsequently. Here is another quick tour through these. One could
sample wedges (defined as length-2 paths) in the input graph, using a more sophisticated
reservoir sampling approach [21]; or sample an edge uniformly and then sample a second edge
that touches the first [36]; or sample a vertex with probability proportional to its squared
degree, then sample two neighbors of that vertex [32]; or sample an edge uniformly and then
sample a neighbor of the lower-degree endpoint of that edge [5].

There are also a handful of algorithms that add further twists on top of the sample-count-
extrapolate framework. The algorithm of [7] combines the vertex coloring idea of [35] with ℓ2
estimation sketches to obtain a solution that can handle dynamic graph streams, where each
stream update may either insert or delete an edge. The algorithm of [13] combines multiple
runs of [35] with a heavy/light edge partitioning technique: an edge is deemed “heavy” if it
participates in “too many” triangles. A key observation is that the variance of an estimator
constructed by oblivious sampling – which needs to be small in order to guarantee good
results in small space – can be bounded better if no heavy edges are involved. On the other
hand, triangles involving a heavy edge are easier to pick up (because there are many of
them!) by randomly sampling vertices at a low rate. Thus, by carefully picking the threshold
for heaviness, one can combine an algorithm that counts all-light triangles efficiently with
one that counts heavy-edged triangles efficiently for a good overall space bound. In this way,
[13] obtains a space bound of O(ε−2.5 log δ−1 polylog n ·m/

√
T ), while [32] provides a tight

dependence on ε (i.e., ε−2) by achieving Õ(m/
√

T ) space.
Separately, the aforementioned targeted sampling strategies of [32] and [5] provide 4-

pass algorithms for estimating T3(G) using space Õ(m3/2/T ). When T is large enough –
specifically, T = Ω(m) – this space bound is better than the Õ(m/

√
T ) bound obtained via

heavy/light edge partitioning. By picking the better of the two algorithms, one obtains a space
bound of Õ(min{m3/2/T, m/

√
T}). Both portions of this bound are tight, thanks to lower

bounds of Ω(m3/2/T ) and Ω(m/
√

T ) that follow by reducing from the set-disjointness
communication problem [13, 5].

The algorithm of [20] is optimal in a different sense: it runs in a single pass and
Õ((m/T )(∆E +

√
∆V )) space, where ∆E and ∆V are as defined in Theorem 1. Each

term in this bound is tight; reductions from disjointness [5] and the boolean-hidden-
matching problem [25] imply Ω(m

√
∆V /T ) lower bounds and a reduction from the index

communication problem implies an Ω(m∆E/T ) bound for 1-pass algorithms [6]. Note,
however, that this result is incomparable to the multi-pass upper bounds noted above. It
must be so: a lower bound of Ω(m3/T 2) holds for 1-pass algorithms [5].

1.3 Other Related Work
This work is focused on streams that simply list the input hypergraph’s hyperedges. This is
sometimes called the insert-only streaming model, in contrast to the dynamic or turnstile
streaming model where the stream describes a sequence of (hyper)edge insertions or deletions.
A small subset of works mentioned in Section 1.2 do provide results in a turnstile model.
Besides these, there is the recent seminal work [23] that fully settles the complexity of triangle
counting in turnstile streams for constant-degree graphs. This work also considers the very

2 To be perfectly honest, the terms “targeted sampling” and “oblivious sampling” do not have precise
technical definitions, but we hope the conceptual distinction is helpful to the reader as it was to us.
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general problem of counting copies of an arbitrary fixed-size hypergraph motif M inside
a large input hypergraph H, again in a turnstile setting. Because of the way their upper
bound results depend on the structure of M , they cannot obtain sublinear-space solutions
for counting k-simplices without a strong constant-degree assumption on the input H.

A handful of works on triangle counting consider adjacency list streams [8, 28, 32],
where the input stream provides all edges incident to each vertex contiguously. This setting
can somewhat simplify algorithm design, though the basic framework is still sample-count-
extrapolate. We do not consider adjacency list streams in this work.

There are important related algorithms that predate the now-vast literature on streaming
algorithms. In particular, [1] gives the current best run-time for exact triangle counting in
the RAM model and [10] gives time-efficient algorithms for listing all triangles (and more
general motifs). A version of the heavy/light partitioning idea appears in these early works.

More recently, a handful of works [15, 2, 16] have designed sublinear-time algorithms for
approximately counting triangles and other motifs given query access to a large input graph.
Triangle detection, listing, and counting have connections to other important problems in
the area of fine-grained complexity [18, 43]. Triangle counting has also been studied in
distributed, parallel, and high-performance computing models [40, 35, 39, 19].

2 Preliminaries

We now define our key terminology, set up notation, and establish some basic facts that we
shall refer to in the algorithms and analyses to come.

▶ Definition 3 (Hypergraph, degrees, neighborhoods). A hypergraph is a pair H = (V, E)
where V is a nonempty finite set of vertices and E ⊆ 2V is a set of hyperedges. In certain
contexts, this structure is instead called a set system over V . If |e| = k ≥ 1 for all e ∈ E,
then H is said to be k-uniform. For simplicity, we shall often shorten “k-uniform hypergraph”
to k-graph and “hyperedge” to “edge.”

For each S ⊆ V with |S| < k, the joint degree or codegree codeg(S) of S is the number
of edges that strictly extend S. The neighborhood N(S) of S is the set of non-S vertices that
share an edge with S. Formally,

codeg(S) := |{e ∈ E : e ⊋ S}| ; (1)
N(S) := {v ∈ V : v /∈ S and ∃ e ∈ E such that e ⊇ S ∪ {v}} . (2)

For a singleton set S = {u}, we define deg(u) := codeg({u}) and N(u) := N({u}). Further,
given S ⊆ V , we define the S-relative degrees of vertices x ∈ V ∖ S by

deg(x | S) := codeg(S ∪ {x}) . (3)

Note that this is meaningful only when |S| ≤ k − 2. Note, also, that deg(x) = deg(x | ∅).

Throughout the paper, hypergraphs will be k-uniform unless qualified otherwise. We
shall consistently use the notation H = (V, E) for a generic k-graph and define n := |V | and
m := |E|. We shall assume that each vertex v ∈ V has a unique ID, denoted ID(v), which is
an integer in the range [n] := {1, . . . , n}.

In general, there isn’t an equation relating |N(S)| to codeg(S). However, all k-graphs
satisfy the following useful lemmas.

▶ Lemma 4. For S ⊆ V with |S| < k, codeg(S) ≤ |N(S)| ≤ (k − |S|) codeg(S).

Proof. Each edge that extends S adds ≥ 1 and ≤ k − |S| new neighbors to the sum. ◀
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▶ Lemma 5. For 1 ≤ r < k, we have
∑

S⊆V : |S|=r codeg(S) =
(

k
r

)
m = O(m).

Proof. The sum counts each edge exactly
(

k
r

)
times. ◀

▶ Definition 6 (Simplices). A k-simplex is a k-graph on k + 1 vertices such that all possible
k-sized edges are present. If H = (V, E) is a k-graph and X ⊆ V with |X| = k + 1, we say
that H has a simplex at X if the induced subhypergraph H[X] := (X, {e ∈ E : e ⊆ X}) is a
simplex. Abusing notation, we also use X to denote this simplex.

We use Tk(H) to denote the set of all k-simplices in H and Tk(H) := |Tk(H)| to denote
the number of such simplices. We define ∆E = ∆E(H) and ∆V = ∆V (H) as follows:

∆E := max
e∈E
|{X ∈ Tk(H) : X contains edge e}| ; (4)

∆V := max
v∈V
|{X ∈ Tk(H) : X contains vertex v}| . (5)

Drawing inspiration from the link operation for abstract and simplicial complexes in
topology, we define a couple of operations that derive (k − 1)-graphs from k-graphs.

▶ Definition 7 (Neighborhood and shadow hypergraphs). Let k ≥ 3 and let H = (V, E) be
a k-graph. For each u ∈ V , the neighborhood hypergraph of H at u is the (k − 1)-graph
H ↓ u = (N(u), Eu), where

Eu := {{x1, . . . , xk−1} : {u, x1, . . . , xk−1} ∈ E} = {e ∖ u : e ∈ E and e ∋ u} .

The shadow hypergraph of H is the (k − 1)-graph H ′ = (V ′, E′) =
(⋃

u∈V V ′
u,
⋃

u∈V E′
u

)
,

where

V ′
u :=

{
x⟨u⟩ : x ∈ V

}
is a copy of V “flavored” with u, and

E′
u :=

{{
x

⟨u⟩
1 , . . . , x

⟨u⟩
k−1
}

: {u, x1, . . . , xk−1} ∈ E and ID(u) ≤ ID(xi) ∀ i ∈ [k − 1]
}

.

Note that E′
u is subtly different from Eu in that it is induced by hyperedges incident on u in

which u is the minimum-ID vertex. Observe that, as a result, |E′| = |E|.

We use neighborhood hypergraphs to analyze our first major algorithm, in Section 3. We use
shadow hypergraphs in a crucial way to obtain our second major algorithm, in Section 4.2.

In the literature on triangle counting in graphs, the structure formed by two edges sharing
a common vertex is called a wedge. It will be useful to define an analog of the notion for
hypergraphs.

▶ Definition 8 (Hyperwedge). A k-hyperwedge is the hypergraph obtained by deleting one
hyperedge from a k-simplex. Thus, if its vertex set is X, then |X| = k + 1 and it has k

hyperedges with exactly one common vertex, which we call the apex of the hyperwedge. The
only k-sized subset of X that is not present in the hyperwedge is called the base of the
hyperwedge. Adding this base as a new hyperedge produces a k-simplex.

Fix a k-graph H and a k-simplex X in H. Observe that X contains k + 1 distinct
hyperwedges; each such hyperwedge W corresponds to a (k− 1)-simplex in the neighborhood
hypergraph of H at the apex of W . On the other hand, X corresponds to exactly one
(k − 1)-simplex in the shadow hypergraph H ′, namely the simplex at {u⟨z⟩

1 , . . . , u
⟨z⟩
k }, where

z is the minimum-ID vertex in X and {u1, . . . , uk} = X ∖ {z}.

Our algorithm analyses often use the following standard boosting lemma from the theory
of randomized algorithms. A random variable Q̃ is said to be an (ε, δ)-estimate of a statistic
Q if Pr[Q̃ ∈ (1± ε)Q] ≥ 1− δ.
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▶ Lemma 9 (Median-of-Means improvement). If Q̂ is an unbiased estimator of some statistic,
then one can obtain an (ε, δ)-estimate of that statistic by suitably combining

K := C

ε2 ln 2
δ
· Var[Q̂]
E[Q̂]2

independent samples of Q̂, where C is a universal constant. ⌟

3 An Optimal Algorithm Based on Targeted Sampling

In this section, we establish Subresult (1.1) of Theorem 1 by giving a formal description of
the relevant algorithm (as Algorithm 1) followed by its analysis. This algorithm is based
on “targeted sampling,” as outlined in Section 1.2. It runs in Õ(m1+1/k/T ) space, which is
optimal in view of Subresult (2.3) in Theorem 2. It is the method of choice for the “abundant”
case, when T is large enough: specifically, in view of the guarantees of Algorithm 2 to follow
(see Theorem 16), “large enough” should be defined as T ≥ m(k+1)/(k2−k).

The full version of the paper [9] additionally gives a more straightforward targeted-
sampling algorithm, achieving a suboptimal space bound of Õ(m2−1/k). Although suboptimal,
that algorithm’s analysis contains novel ideas about the structure of hypergraphs that might
be useful in subsequent research, such as the notion of “hyperabroricity.”

3.1 The Algorithm

The basic setup is as in the algorithm of [5] for counting odd cycles in graphs (and an
analogous algorithm of [32]). We use one pass to pick an edge e ∈ E uniformly at random
and, in subsequent passes, use further sampling to estimate the number of suitable apex
vertices z at which there is a hyperwedge with base e, which would complete a simplex
together with e. In order to control the variance of the resulting unbiased estimator, we want
the vertices of a detected simplex e ∪ {z} to respect a certain ordering “by degree.”

We let the sampled edge e determine the ordering, for which we use relative degrees,
relative to certain subsets of e. Moreover, this ordering – which we call the e-relative ordering
– is only partial, as we never need to compare two vertices that both lie outside e. Let
ci(e) be the ith vertex of e according to this ordering that we shall soon define. In our
algorithm, we shall look for a suitable apex z only in the neighborhood N({c1(e), . . . , ck−1(e)}).
Furthermore, we shall require that z have a larger degree than c1(e), a larger {c1(e)}-relative
degree than c2(e), a larger {c1(e), c2(e)}-relative degree than c3(e), and so on. As we shall
see, the analysis of the resulting algorithm uses the recursive structure of k-graphs and
k-simplices through the notion of neighborhood hypergraphs (Definition 7).

These next two, somewhat elaborate, definitions formalize the above ideas.

▶ Definition 10 (e-relative ordering). Fix a hyperedge e ∈ E. The e-relative ordering, ≺e, is
a partial order on V defined as follows. Set S0(e) = ∅ and define the following, iteratively,
for i running from 1 to k.

Let ci(e) be the vertex in e ∖ Si−1(e) that minimizes deg(ci(e) | Si−1(e)), with ties
resolved in favor of the vertex with smallest ID. Set Si(e) := Si−1(e) ∪ {ci(e)} =
{c1(e), . . . , ci(e)}.
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Then declare c1(e) ≺e · · · ≺e ck(e). Further, for each z ∈ V ∖ e, declare ck(e) ≺e z if the
following two things hold: (a) for 1 ≤ i ≤ k − 1, we have deg(ci(e) | Si−1(e)) ≤ deg(z |
Si−1(e)), and (b) we also have deg(ck(e) | Sk−2(e)) ≤ deg(z | Sk−2(e)). Ties in degree
comparisons are resolved by declaring the vertex with smaller ID to be smaller.3

▶ Definition 11 (Simplex labeling). Suppose that H has a simplex at X, where X ⊆ V .
Number the vertices in X as u1, . . . , uk+1 iteratively, as follows. For i from 1 to k − 1,
let ui be the vertex in X that minimizes deg(ui | {u1, . . . , ui−1}). Let uk be the vertex
among {uk, uk+1} that minimizes deg(uk | {u1, . . . , uk−2}). This automatically determines
uk+1. Based on this, define the label of the simplex at X to be (e(X), z(X)), where e(X) :=
{u1, . . . , uk} and z(X) := uk+1.

Notice that if a simplex is labeled (e, z), then the e-relative ordering satisfies max≺e
(e) ≺e

z. Conversely, if there is a simplex at X and an edge e of this simplex such that X = e∪ {z}
and max≺e

(e) ≺e z, then the label of this simplex is (e, z).
For each e ∈ E, let τe denote the number of simplices that have a label of the form (e, ·).

Thanks to the uniqueness of labels, we immediately have∑
e∈E

τe = Tk(H) . (6)

Our algorithm is described in Algorithm 1. Our analysis will make use of the following
two combinatorial lemmas at key moments. The proofs of these lemmas can be found in the
full paper [9].

▶ Lemma 12. For every edge e ∈ E, we have τe ≤ km1/k.

▶ Lemma 13. If H is k-uniform and k ≥ 3, then
∑

e∈E codeg(Sk−1(e)) = O
(
m1+1/k

)
.

3.2 Analysis of the Algorithm
We begin by proving that the estimator Y computed by Algorithm 1 is unbiased. Let Ee

denote the event that the edge sampled in pass 1 is e. For each j ∈ [R], the vertex xj is
picked uniformly at random from N(Sk−1(e)) and exactly τe choices cause Zj to be set to
the nonzero value codeg(Sk−1(e)). Therefore,

E[Zj | Ee] = τe

|N(Sk−1(e))| · codeg(Sk−1(e)) = τe (7)

because codeg(Sk−1(e)) = |N(Sk−1(e))|, by Lemma 4. By the law of total expectation and
Equation (6),

E[Y ] = m

R

R∑
j=1

∑
e∈E

1
m
E[Zj | Ee] = 1

R

R∑
j=1

∑
e∈E

τe = Tk(H) . (8)

Next, we bound the variance of the estimator. Proceeding along similar lines, we have
E[Z2

j | Ee] = codeg(Sk−1(e)) · τe and E[Zj1Zj2 | Ee] = τ2
e for all j1 ̸= j2, because Zj1 and Zj2

are independent conditioned on Ee. So,

3 This is how ties are resolved from now on, even when not mentioned.
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Algorithm 1 Counting k-simplices in k-uniform hypergraph streams: the “abundant” case.
1: procedure k-Simplex-Count-Abundant(σ : stream of edges of k-graph H = (V, E))
2: pass 1: ▷ O(1) space
3: pick edge e = {u1, u2, . . . , uk} ∈ E u.a.r. using reservoir sampling
4: pass 2: ▷ O(2k) = O(1) space
5: compute codeg(S) for all non-trivial S ⊂ e

6: pass 3: ▷ O(R) space
7: re-arrange (if needed) u1, . . . , uk so that ui = ci(e) for i ∈ [k], using co-degrees

from pass 2
8: R←

⌈
codeg(Sk−1(e)) ·m−1/k

⌉
▷ note that codeg(Sk−1(e)) = |N(Sk−1(e))|

9: for j ← 1 to R, in parallel, do
10: Zj ← 0
11: pick vertex xj ∈ N(Sk−1(e)) u.a.r. using reservoir sampling from relevant

substream of σ

12: pass 4: ▷ O(kR) = O(R) space
13: compute the relative degrees deg(xj | Si−1(e)) for all i ∈ [k − 1] and j ∈ [R]
14: for j ← 1 to R, in parallel, do
15: if e ∪ {xj} determines a simplex with label (e, xj) then
16: Zj ← codeg(Sk−1(e))
17: return Y ← (m/R)

∑R
j=1 Zj ▷ Average out the trials and scale

E[Y 2 | Ee] = E


m

R

R∑
j=1

Zj

2 ∣∣∣∣ Ee

 = m2

R2

R∑
j=1

E[Z2
j | Ee] + m2

R2

∑
j1 ̸=j2

E[Zj1Zj2 | Ee]

≤ m2 · codeg(Sk−1(e)) · τe

R
+ m2R(R− 1)τ2

e

R2 ≤ m2+1/kτe + m2τ2
e ,

since codeg(Sk−1(e)) ≤ m1/kR by the definition of R. Using
∑

e∈E τe = Tk(H), we get

Var[Y ] ≤ E[Y 2] =
∑
e∈E

1
m
E[Y 2 | Ee] ≤ m1+1/k

∑
e∈E

τe + m
∑
e∈E

τ2
e

≤ m1+1/kTk(H) + m · (max
e∈E

τe) ·
∑
e∈E

τe = O
(

m1+1/kTk(H)
)

,

where we invoked Lemma 12 and used Equation (6) twice.
Having bounded the variance, we may apply the median-of-means technique (Lemma 9) to

the basic estimator of Algorithm 1 to obtain a final algorithm that provides an (ε, δ)-estimate.
As noted in the comments within Algorithm 1, the basic estimator uses O(R) space, where R

is a random variable. Therefore, the final algorithm, which still uses four passes, has expected
space complexity Õ(E[R] ·Var[Y ]/E[Y ]2) = E[R] · Õ(m1+1/k/Tk(H)) = E[R] · Õ(m1+1/k/T ),
thanks to the promise that Tk(H) ≥ T .

Finally, we need to bound R in expectation. We find that

E[R] = 1
m

∑
e∈E

E[R | Ee] = 1
m

∑
e∈E

⌈
codeg(Sk−1(e))

m1/k

⌉
≤ 1 + m−1−1/k

∑
e∈E

codeg(Sk−1(e)) .

Invoking Lemma 13, we conclude that E[R] = O(1), giving our first main algorithmic result.
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▶ Theorem 14. There is a 4-pass algorithm that reads a stream of m hyperedges specifying
a k-uniform hypergraph H and produces an (ε, δ)-estimate of Tk(H); under the promise that
Tk(H) ≥ T , the algorithm runs in expected space O(ε−2 log δ−1 log n ·m1+1/k/T ). ⌟

We conclude with two remarks about this algorithm. First, the space bound can easily
be made worst-case, by applying the following modification to the median-of-means boosting
process. Notice that in each instance of the basic estimator, at the end of pass 2, we know
the value of R and thus the actual space that this instance would use. For each batch of
estimators for which we compute a mean, we determine whether this batch would use more
than A times its expected space bound, for some large constant A. If so, we abort this batch
and don’t use it in the median computation. By Markov’s inequality, the probability that we
abort a batch is at most 1/A, which does not affect the rest of the standard analysis of the
quality of the final median-of-means estimator.

Second, while we have not dwelt on time complexity in our exposition, it is not hard to
convince oneself that the algorithm processes each incoming edge in Õ(R) time, which is
Õ(1) in expectation.

4 Algorithms Based on Oblivious Sampling

We now turn to our second family of algorithms, which use “oblivious sampling,” as outlined
in Section 1.2. To recap, whereas the algorithms in the previous section used an initially-
sampled edge to guide their subsequent sampling, an oblivious sampling strategy decides
whether or not to store an edge based only coin tosses specific to that edge and perhaps
its constituent vertices (and not on any edges in store). The main result of this section is
an Õ(m/T 2/(k+1))-space algorithm, given as Algorithm 2, which is the method of choice
for the “meager” case, when T is not too large (specifically, T < m(k+1)/(k2−k)). Simpler
versions of our ideas give algorithms with worse space guarantees: namely, Õ(m/T 1/k) and
Õ(m/T 2/(k+2)). The full version of the paper [9] gives the details.

The full paper additionally describes a 1-pass algorithm – also based on oblivious sampling
– whose space guarantee depends on additional structural parameters of the input hypergraph
H, proving Subresult (1.3) of Theorem 1.

4.1 A Unifying Framework for Oblivious Sampling Strategies

We find it useful to set up a framework for analyzing algorithms based on oblivious sampling
and view our eventual algorithm as an instantiation of the framework. Further, this framework
unifies a number of approaches seen in previous work on triangle counting [32, 20, 25, 6].

Suppose that we are trying to estimate the number, T (H), of copies of a target substructure
(motif) Ξ in a streamed hypergraph H . Suppose we do this by collecting certain edges into a
random sample Q, using some random process parameterized by a quantity p. The sample
Q determines which of the T (H) copies of Ξ get “detected” by the rest of the logic of the
algorithm. Let Ξ1, . . . , ΞT (H) be the copies of Ξ in H (under some arbitrary enumeration
scheme) and let Λi be the indicator random variable for the event that Ξi is detected.

In our framework, we will want to identify parameters α, β, and γ such that the following
conditions hold for all i, j ∈ [T (H)] with i ̸= j and all e ∈ E:

Pr[Λi = 1] = pα ; Pr[Λi = Λj = 1] ≤ pβ ; Pr[e ∈ Q] = pγ . (9)
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In instantiations of the framework, we will of course have β > α and further, we will
have β < 2α, which is natural because for certain pairs i, j, the variables Λi and Λj will
be positively correlated. We shall further require that our detection process satisfy the
separation property, where Ξ ∩ Ξ′ denotes the set of edges common to Ξ and Ξ′ and the
notation “X ⊥ Y ” means that random variables X and Y are independent.

Separation Property: If Ξi ∩ Ξj = ∅, then Λi ⊥ Λj . (10)

The logic of the algorithm will count the number of detected copies of Ξ in an accumulator
A :=

∑T (H)
i=1 Λi. Defining the estimator T̃ := A/pα, we see that E[T̃ ] =

∑T (H)
i=1 p−αE[Λi] =

T (H), which makes it unbiased. To establish concentration, we estimate

Var[A] = Var
T (H)∑
i=1

Λi =
T (H)∑
i=1

Var[Λi] +
∑
i̸=j

Cov[Λi, Λj ] ≤
T (H)∑
i=1

E[Λ2
i ] +

∑
i̸=j

Cov[Λi, Λj ]

≤ T (H)pα +
∑

Λi ⊥̸ Λj

E[ΛiΛj ] ≤ T (H)pα +
∑

Λi ⊥̸ Λj

pβ = T (H)pα + pβ ·
∑
e∈E

∑
Ξi∩Ξj={e}

1

︸ ︷︷ ︸
scor

, (11)

where the penultimate step uses (9) and the last step holds because of the separation property
and the reasonable structural assumption (true of simplices) that two distinct copies of the
motif Ξ can intersect in at most one edge.

The term scor captures the amount of correlation in the sampling process. Let us now
specialize the discussion to the problem at hand, where the motif Ξ is a k-simplex and so,
T (H) = Tk(H). Let Me be the number of simplices that share hyperedge e (note that this is
subtly different from τe in Section 3). Recalling the definition of ∆E in Equation (4), we see
that maxe∈E Me = ∆E . We can therefore upper bound scor as follows:

scor ≤
∑
e∈E

(
Me

2

)
≤
∑
e∈E

M2
e

2 ≤ ∆E

2
∑
e∈E

Me = (k + 1)∆ETk(H)
2 . (12)

Plugging this bound into (11) and applying Chebyshev’s inequality gives the following “error
probability” bound, where B > 0 will be chosen later.

P (B)
err
[

T̃
]

:= Pr
[
|T̃ − T (H)| ≥ εB

]
≤ Var[A]

p2αε2B2 ≤
Tk(H)
ε2pαB2 + (k + 1)∆ETk(H)

2ε2p2α−βB2 . (13)

Heavy/Light Edge Partitioning via an Oracle. Using the above estimator T̃ directly on
the input hypergraph H does not give a good bound in general, because the quantity ∆E

appearing in Equation (13) could be as large as Tk(H), making the upper bound on Perr
useless. One remedy is to apply the technique so far to a subgraph of H where ∆E is
guaranteed to be a fractional power of Tk(H) and deal separately with simplices that don’t
get counted in such a subgraph. Such a subgraph can be obtained by taking only the “light”
edges in H , where an edge e is considered to be light if Me = O(Tk(H)θ), for some parameter
γ < 1 that we will soon choose. We remark that this kind of heavy/light partitioning is a
standard technique in this area: it occurs in the triangle counting algorithms of [12, 32] and
in fact in the much earlier triangle listing algorithm of [10].

More precisely, we create an oracle to label each edge as either heavy or light. Thus:

Tk(H) = T L
k (H) + T H

k (H) , (14)
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where T L
k (H) is the number of simplices containing only light edges, and T H

k (H) is the
number of simplices containing at least one heavy edge. The key insight in the partitioning
technique is that we can estimate the two terms in Equation (14) separately, using the
estimator T̃ described above for T L

k (H) and a different estimator for T H
k (H) that we shall

soon describe. In what follows, we allow an additive error of ±εTk(H) in the estimate of
each term, leading to a multiplicative error of 1± 2ε in the estimation of Tk(H).

The oracle is implemented by running the following one-pass randomized streaming
algorithm implementing a function orcl : E → {heavy, light} to label the edges of H . Form
a random subset Z ⊆ V by picking each vertex v ∈ V , independently, with probability

q := ξε−2 ln n · T −θ , (15)

where T is the promised lower bound on Tk(H) given to the algorithm, and ξ ≥ 12k(k + 1)
is a constant. Then, in one pass over the input stream, collect all hyperedges e containing
at least one vertex from Z. Let S denote the random sample of edges thus collected. Note
that this is distinct from (and independent of) the sample Q collected by the oblivious
sampling scheme discussed above. Now, for each hyperedge e = {u1, . . . , uk} ∈ E, let
M̃e := |{z ∈ Z : e∪ {z} ∈ Tk(H)}| be the number of simplices that e completes with respect
to Z. Then we define:

orcl(e) =
{

heavy , if M̃e < qT θ ,

light , otherwise.
(16)

The next lemma (whose proof, via Chernoff bounds, we omit) says that the oracle’s
predictions correspond, with high probability, to our intuitive definition of heavy/light edges,
up to a factor of 2.

▶ Lemma 15. W.h.p., the oracle given by (16) is “correct,” meaning that it satisfies

∀ e ∈ E : orcl(e) = light ⇒ Me < 2T θ ∧ orcl(e) = heavy ⇒ Me > 1
2 T θ .

The space required to implement the oracle is that required to store the sample S. Since

E[|S|] = O

(∑
v∈V

q deg(v)
)

= O(qm) , (17)

the expected space is O(qm log n) = O(ε−2 log2 n · T −θm) = Õ(m/T θ), by Equation (15).

Counting the Light and Heavy Simplices. We can now describe our overall algorithm. We
use two streaming passes. In the first pass, we collect the samples S and Q. At the end of the
pass, we have the information necessary to prepare the heavy/light labeling oracle and using
it, we remove all heavy edges from Q. In the second pass, for each edge e encountered, we
use the oracle to classify it. If e is light, we feed it into the detection logic for the oblivious
sampling scheme (which uses Q). If e is heavy, we use S to estimate Me, the number of
simplices containing e; this requires a little care, as we explain below.

In analyzing the algorithm, we start by assuming that the oracle is correct (which happens
w.h.p., by Lemma 15). Let T̃ L be the estimator for T L

k (H) produced by the oblivious sampling
scheme. We analyze its error probability using Equation (13), noting that ∆E ≤ 2T θ in the
light-edges subgraph and choosing B = Tk(H). This leads to
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Perr[T̃ L] := Pr
[
|T̃ L − T L

k (H)| ≥ εTk(H)
]

≤ T L
k (H)

ε2pαTk(H)2 + (k + 1) · 2T θ · T L
k (H)

2ε2p2α−βTk(H)2 ≤ 1
ε2pαT

+ k + 1
ε2p2α−βT 1−θ

, (18)

where we used the inequalities T L
k (H) ≤ Tk(H) and Tk(H) ≥ T . This bound on the error

probability will inform our choices of parameters p, α, β, and θ, below.
Finally, we estimate T H

k (H). Define a simplex in Tk(H) to be i-heavy if it has exactly i

heavy edges. For each edge e and 1 ≤ i ≤ k + 1, let M i
e be the number of i-heavy simplices

containing e. Notice that

∑
e heavy

M i
e = i · |{Ξ ∈ Tk(H) : Ξ is i-heavy}| , whence T H

k (H) =
∑

e heavy

k+1∑
i=1

M i
e

i
. (19)

During our second streaming pass, we compute unbiased estimators for each M i
e as follows.

Recall that S is the set of all edges incident to some vertex in the set Z of sampled vertices.
Define M̃ i

e to be the number of vertices in Z that combine with e to form an i-heavy simplex;
we consult the oracle to test whether a simplex in question is indeed i-heavy. Notice that
M̃ i

e ∼ Bin(M i
e, q). Therefore, by Equation (19),

T̃ H := 1
q

∑
e heavy

k+1∑
i=1

M̃ i
e

i
(20)

is an unbiased estimator for T H
k (H). To establish concentration, consider the inner sum

corresponding to any particular edge e. The sum can be rewritten as a sum of Me mutually
independent indicator variables scaled by factors in {1, 1/2, . . . , 1/(k + 1)}. Since the oracle
is correct, the heaviness of e implies that Me ≥ 1

2 T θ and then a Chernoff bound gives

Pr
[

k+1∑
i=1

M̃ i
e

i
/∈ (1± ε)q

k+1∑
i=1

M i
e

i

]
≤ 2 exp

(
−1

3ε2q · 1
2T θ · 1

k + 1

)
≤ n−2k ,

where the final step uses ξ ≥ 12k(k + 1). By a union bound over the ≤ nk heavy edges,

Perr[T̃ H ] := Pr
[
|T̃ H − T H

k (H)| ≥ εTk(H)
]
≤ Pr

[
T̃ H /∈ (1± ε)T H

k (H)
]

≤ Pr

 ∨
e heavy

{
k+1∑
i=1

M̃ i
e

i
/∈ (1± ε)q

k+1∑
i=1

M i
e

i

} ≤ n−O(1) . (21)

Determining the Parameters and Establishing a Space Bound. We have now described
the overall logic of a generic algorithm in our framework. To instantiate it, we must plug in
a specific oblivious sampling scheme, whose logic will determine the parameters α, β, and
γ as given by Equation (9). Now we choose p to ensure that Perr[T̃ L] is less than a small
constant. Thanks to Equation (18), it suffices to ensure that

1
ε2pαT

+ k + 1
ε2p2α−βT 1−θ

= o(1) .
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Setting p = (log n/(ε2T ))1/α reduces the first term to 1/ log n. To make the second term
small as well, we set the threshold parameter θ used by the heavy/light partitioning oracle
to θ := β/α− 1; as we remarked after Equation (9), we will have α < β < 2α, which implies
0 < θ < 1. The second term now reduces to

(k + 1)pβ−αT θ

log n
= k + 1

(log n)1−θε2θ
= o(1) ,

for n sufficiently large. We therefore obtain Perr[T̃ L] = o(1) and, putting this together
with Equation (21) and Lemma 15, we conclude that the overall algorithm computes a
(1± 2ε)-approximation to Tk(H) with probability at least 1− o(1).

With these parameters now set, the space complexity analysis is straightforward. The
space usage is dominating by the storing of the samples S and Q. By Equation (17) and
Equation (15), we have E[|S|] = Õ(m/T θ) and by Equation (9), we have

E[|Q|] = pγm =
(

log n

ε2

)γ/α
m

T γ/α
.

It is natural that the probability of detecting a particular simplex is at most the probability
of storing one particular edge, so γ ≤ α. Therefore, E[|Q|] ≤ ε−2 log n ·m/T γ/α. Altogether,
since storing a single edge uses O(log n) bits, the total space usage is Õ(m/T λ), where

λ = min
{ γ

α
, θ
}

= min
{

γ

α
,

β

α
− 1
}

. (22)

This completes the description of our framework for designing and analyzing simplex
counting algorithms based on oblivious sampling.

4.2 Instantiation: Oblivious Sampling Using the Shadow Hypergraph
It is time to instantiate our framework with a specific sampling and simplex-detection
strategy. The simplest instantiation samples edges at rate p and detects light simplices
composed of sampled edges, leading to a Õ(m/T 1/k) space bound. We get a better bound of
Õ(m/T 2/(k+2)) algorithm by adapting the vertex-coloring-based graph algorithm of [35]: a
key insight is that we color (k − 1)-sized subsets of V and then pick fully monochromatic
edges in the sample. Coloring single vertices would have run into the technical problem that
the separation property would not hold. Our full paper [9] describes these ideas in detail.

Our best algorithm combines ideas from these initial approaches, eventually achieving a
space complexity of Õ(m/T 2/(k+1)), which is our best bound of the form Õ(m/T λ). It is
therefore our method of choice for the “meager” case. Comparing with Theorem 14, we see
that this bound wins when T < m(k+1)/(k2−k). We continue to use the coloring idea with
two added twists: we color appropriately-sized subsets of vertices, and we do so with vertices
of the shadow hypergraph H ′ = (V ′, E′), defined in Definition 7.

To be more specific, we uniformly and independently color (k−2)-sized subsets of vertices
V ′ of H ′ using N colors. Since each vertex in V ′ is essentially an ordered pair of vertices
in V , we need a coloring function that maps

(
V ×V
k−2

)
to [N ]. Recall that H ′ = (V ′, E′) is a

(k − 1)-uniform hypergraph. During the first pass, when an edge e =
{

u1, . . . , uk

}
arrives in

the stream, it implies the arrival of an edge e′ = E′ which we store in Q iff all (k − 2)-sized
subsets within e′ receive the same color. We call such an edge e′ monochromatic.

We detect simplices using this sample Q as follows. As observed after Definition 8,
each k-simplex in H corresponds to exactly one (k − 1)-simplex in H ′; we try to detect
this “shadow simplex.” In greater detail, let Ξ be a particular simplex in H. Let z be its
minimum-ID vertex, let ez be the edge of Ξ not incident to z and let Wz be the hyperwedge
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of Ξ with apex z. Note that the edges of Wz correspond to edges in H ′ that lie in E′
z (see

Definition 7) and, since Wz is a hyperwedge, these edges form a (k − 1)-simplex in the
z-flavored component of H ′. In the second pass, when ez arrives in the stream, we detect Ξ
iff this entire (k − 1)-simplex has been stored in Q, i.e., iff all its edges are monochromatic.
Algorithmically, when we see an edge e in the second pass, we go over all vertices z ∈ V ,
detecting a simplex whenever this e plays the role of ez for a simplex on the vertices in
e ∪ {z} in the manner just described.

The remaining details are as described in Section 4.1: we apply the heavy/light edge
partitioning technique on top of the above sampling scheme and proceed as in our framework.
We formalize the overall algorithm, with full details, as Algorithm 2. Note that the coloring
function need not be fully random and can be chosen from a d-wise independent hash
family for an appropriate constant d. The update logic for the accumulator AL (Section 4.2)
implements the detection method just described. The update logic for the accumulator
AH (Section 4.2) implements the estimator in Equation (20). Note that the heavy-simplex
estimator does not use the shadow hypergraph.

Algorithm 2 Simplex counting in the “meager” case using Õ
(
m/T 2/(k+1)) bits of space.

1: procedure k-Simplex-Count-Meager(σ : stream of edges of k-graph H = (V, E))
2: d← 2

(
k

k−2
)
; r ←

(
n2

k−2
)
; α←

(
k

k−2
)
− 1; p← (ε−2T −1 log n)1/α; N ← ⌈1/p⌉

3: θ ←
(
2
(

k
2
)
− k
)
/
((

k
2
)
− 1
)
; q ← ξε−2 log n · T −θ

4: ▷ ξ is a suitable constant; see Equation (15)
5: Z ← sample of V , picking each vertex independently with probability q

6: F ⊆ [N ][r] ← d-wise independent family of hash functions of the form h : [r]→ [N ]
7: select a function col( ) uniformly at random from F to color the elements of

(
V ′

k−2
)

8: pass 1:
9: (Q, S)← (∅,∅)

10: for each hyperedge e = {u1, . . . , uk} in the stream do
11: let i ∈ [k] be such that ui is the vertex in e with the smallest ID
12: if all (k − 2)-sized subsets of e ∖ {ui} ∈ Eui

are colored the same then
13: Q← Q ∪

{{
u

⟨ui⟩
1 , . . . , u

⟨ui⟩
i−1 , u

⟨ui⟩
i+1 , . . . , u

⟨ui⟩
k

}}
14: if e ∩ Z ̸= ∅ then
15: S ← S ∪ {e}
16: create heavy/light oracle based on S

17: pass 2:
18: (AL, AH)← (0, 0)
19: let QL be the set of hyperedges in Q corresponding to light hyperedges in E

20: for each hyperedge e = {u1, . . . , uk} in the stream do
21: if orcl(e) = light then
22: AL ← AL +

∣∣∣{z ∈ V :
∧k

i=1

{{
u

⟨z⟩
1 , . . . , u

⟨z⟩
i−1, u

⟨z⟩
(i+1), . . . , u

⟨z⟩
k

}
⊆ QL

}}∣∣∣
23: else
24: Let M̂ i

e :=
∣∣{z ∈ Z : e ∪ {z} a simplex with i heavy edges

}∣∣
25: AH ← AH +

∑k+1
i=1 M̂ i

e/i

26: return AL/pα + AH/q
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Analysis. We proceed in the now-established manner within our framework: we need to
work out the parameters α, β, and γ.

Consider a particular k-simplex Ξ in H and let the (k − 1)-simplex Ξ′ be its “shadow
simplex” in H ′, as in the above discussion. Then, if Ξ is light, it is detected at most once,
when the hyperedge opposite to its lowest-ID vertex arrives in the stream. For this detection
to actually happen, all edges of Ξ′ must be monochromatic, i.e., all

(
k

k−2
)

possible (k−2)-sized
subsets of vertices in Ξ′ must receive the same color. Let p = 1/N . The probability of this
event is pα, where α =

(
k

k−2
)
− 1 =

(
k
2
)
− 1

Next, we observe that for two distinct simplices Ξ1 and Ξ2 in H, the events of their
detection have nonzero correlation iff they have an edge in common. Thus, the separation
property (10) holds. Moreover, when Ξ1 ∩ Ξ2 = {e}, the correlation is in fact nonzero only
if both Ξ1 and Ξ2 have the same minimum-ID vertex and that vertex lies in e. When this
happens, the simultaneous detection event occurs iff all (k − 2)-sized subsets of shadow
vertices arising from vertices of Ξ1 and Ξ2 receive the same color. Counting the number of
such subsets shows that the probability of simultaneous detection is pβ , for

β = 2
(

k

k − 2

)
− (k − 1)− 1 = 2

(
k

2

)
− k

Finally, an edge in E′ is made monochromatic (and thus, stored in Q) with probability
pk−2 because k − 1 different subsets must all be colored identically. This gives γ = k − 2, so

λ = min
{

2
(

k
2
)
− k(

k
2
)
− 1

− 1,
k − 2(
k
2
)
− 1

}
= k − 2(

k
2
)
− 1

= 2
k + 1

for k ≥ 3. Thus, our algorithm runs in Õ(m/T λ) = Õ
(
m/T 2/(k+1)) bits of memory in the

worst case. We have therefore proved the following result.

▶ Theorem 16. There is a 2-pass algorithm that reads a stream of m hyperedges specifying
a k-uniform hypergraph H and produces an (ε, o(1))-estimate of Tk(H); under the promise
that Tk(H) ≥ T , the algorithm runs in expected space O(ε−2 log2 n ·m/T 2/(k+1)). ⌟

5 Concluding Remarks

We initiated a systematic study of the simplex counting problem in a streamed hypergraph,
a natural generalization of the much-studied triangle counting problem. We obtained several
sublinear-space algorithms: which of them is best depends on some combinatorial parameters
of the problem instance. Overall, we learned that established methods for triangle and
substructure counting in graph streams are not by themselves enough and considerable effort
is required to deal with the more intricate structures occurring in hypergraphs.

In some parameter regimes (what we called the “abundant” case), we obtained provably
space-optimal algorithms. However, in the “meager” case, seeking algorithms with space
complexity of the form m/T λ, we established an upper bound with λ = 2/(k + 1) and a lower
bound with λ = 1− 1/k. Closing this gap seems to us to be the most compelling follow-up
research question.

The simplex counting problem has the potential to impact research on pattern detection
and enumeration. As triangle counting has done in the past two decades, simplex counting
may offer new insights on how sampling techniques can exploit the structure of graphs and
hypergraphs to extract meaningful information.
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Abstract
In this paper, we consider center-based clustering problems where C, the set of points to be clustered,
lies in a metric space (X, d), and the set X of candidate centers is potentially infinite-sized. We
call such problems continuous clustering problems to differentiate them from the discrete clustering
problems where the set of candidate centers is explicitly given. It is known that for many objectives,
when one restricts the set of centers to C itself and applies an αdis-approximation algorithm for the
discrete version, one obtains a β · αdis-approximation algorithm for the continuous version via the
triangle inequality property of the distance function. Here β depends on the objective, and for many
objectives such as k-median, β = 2, while for some others such as k-means, β = 4. The motivating
question in this paper is whether this gap of factor β between continuous and discrete problems is
inherent, or can one design better algorithms for continuous clustering than simply reducing to the
discrete case as mentioned above? In a recent SODA 2021 paper, Cohen-Addad, Karthik, and Lee
prove a factor-2 and a factor-4 hardness, respectively, for the continuous versions of the k-median
and k-means problems, even when the number of cluster centers is a constant. The discrete problem
for a constant number of centers is easily solvable exactly using enumeration, and therefore, in
certain regimes, the “β-factor loss” seems unavoidable.

In this paper, we describe a technique based on the round-or-cut framework to approach
continuous clustering problems. We show that, for the continuous versions of some clustering
problems, we can design approximation algorithms attaining a better factor than the β-factor
blow-up mentioned above. In particular, we do so for: the uncapacitated facility location problem
with uniform facility opening costs (λ-UFL); the k-means problem; the individually fair k-median
problem; and the k-center with outliers problem. Notably, for λ-UFL, where β = 2 and the discrete
version is NP-hard to approximate within a factor of 1.27, we describe a 2.32-approximation for the
continuous version, and indeed 2.32 < 2 × 1.27. Also, for k-means, where β = 4 and the best known
approximation factor for the discrete version is 9, we obtain a 32-approximation for the continuous
version, which is better than 4 × 9 = 36.

The main challenge one faces is that most algorithms for the discrete clustering problems,
including the state of the art solutions, depend on Linear Program (LP) relaxations that become
infinite-sized in the continuous version. To overcome this, we design new linear program relaxations
for the continuous clustering problems which, although having exponentially many constraints, are
amenable to the round-or-cut framework.
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1 Introduction

Clustering is a ubiquitous problem arising in various areas ranging from data analysis to
operations research. One popular class of clustering problems are the so-called center-based
clustering problems where the quality of the clustering is determined by a function of the
distances of every point in C to the “centers” of the clusters they reside in. Two extensively
studied measures are the sum of these distances, with the resulting problem called the
k-median problem, and the sum of squares of these distances, with the resulting problem
called the k-means problem.

In most settings, these center-based clustering problems are NP-hard and one considers
approximation algorithms for the same. Traditionally, however, approximation algorithms for
these problems have been studied in finite/discrete metric spaces and, in fact, usually under
the constraint that the set of centers, aka facilities, can be selected only from a prescribed
subset F ⊆ X of the metric space. Indeed, this model makes perfect sense when considering
applications in operations research where the possible depot-locations may be constrained.
These discrete problems have been extensively studied [33, 45, 16, 30, 17, 15, 35, 34, 5, 37, 39,
40, 8] over the last three decades. For instance, for the k-median problem, the best known
approximation algorithm is a 2.675-approximation [9], while the best known hardness is
(1 + 2/e) ≈ 1.74 [34]. For the k-means problem, the best known approximation algorithm is
a (9 + ε)-approximation algorithm [1, 31, 37], while the best hardness is 1 + 8/e ≈ 3.94 [34].

Restricting to a finite metric space, however, makes the problem easier, and indeed many
of the above algorithms in the papers mentioned above would be infeasible to implement
if X were extremely large – for instance, if X were Rm for some large dimension m, and
the distance function were the ℓp-metric, for some p. On the other hand, it is reasonably
easy to show using triangle inequality that if one considers opening centers from C itself,
and thus reduces the problem to its discrete version, then one incurs a hit of a factor β in
the approximation factor, where β is a constant depending on the objective function. In
particular, if we look at the sum-of-distances objectives such as in k-median, then β = 2,
while if one looks at the sum-of-squared-distances such as in k-means, then β = 4. Therefore,
one immediately gets a 5.35-approximation for the continuous k-median problem and a
36 + ε-approximation for the continuous k-means problem. The question we investigate is

Is this factor β hit necessary between the continuous and discrete versions of center
based clustering problems, or can one design better approximation algorithms for the
continuous case?

It is crucial to note that when considering designing algorithms, we do not wish to make any
assumptions on the underlying metric space (X, d). For instance, we do not wish to assume
X = Rm for some m. This is important, for we really want to compare ourselves with the β

which is obtained using only the triangle-inequality and symmetry property of d. On the
other hand, to exhibit that a certain algorithm does not work, any candidate metric space
suffices.

Recently, in a thought-provoking paper [21], Cohen-Addad, Karthik, and Lee show that,
unless P = NP, the k-median and k-means problem defined on (Rm, ℓ∞) cannot have an
approximation ratio better than 2 and 4, respectively, even when k is a constant! Since the
discrete problems have trivial exact algorithms via enumeration when k is a constant, this
seems to indicate that in certain cases the above factor β hit is unavoidable. Is it possible
that the inapproximability of the continuous problem is indeed β times the inapproximability
of the discrete version?
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1.1 Our Results
Our main contribution is a direct approach towards the continuous versions of clustering
problems. We apply this to the following clustering problems where we obtain a factor better
than β · αdis, where αdis is the best known factor for the discrete version of the problem.

In the continuous λ-UFL problem, a “soft” version of the continuous k-median problem,
one is allowed to pick any number of centers but has to pay a parameter λ for each picked
center. The objective is to minimize the sum of distances of points in C to picked centers
plus the cost for opening these centers. Again, note that the centers can be opened
anywhere in X. For the discrete version, where the only possible center locations are in C,
there is a 1.488-approximation due to Li [39], and a hardness of approximation within a
factor of 1.278 is known due to Guha and Khuller [30]. We describe a 2.32-approximation
algorithm. Note that 2.32 < 2 · 1.278 and thus, for this problem, the inapproximability is
not β times that of the discrete case. We also show how the reduction of [21] carries over,
to prove a hardness of 2 for this problem.
In the continuous k-means problem, we wish to minimize the sum of squares of distances
of clients to the closest open center. Recall that for this problem we have β = 4, and
thus one gets a 36-factor algorithm for the continuous k-means using the best known
9-factor [1, 31, 37] algorithm for the discrete problem. We describe an improved 32-
approximation for the continuous k-means problem.
For the continuous k-median problem, our techniques fall short of improving 2× the best
known approximation factor for the discrete k-median problem. On the other hand, we
obtain better algorithms for the the individually fair or priority version of the continuous
k-median problem. In this problem, every point v ∈ C has a specified radius r(v) and
desires a center opened within this distance. The objective is the same as the k-median
problem: minimize the sum of all the distances. This problem arises as a possible
model [36, 13, 41, 47, 43, 7] in the study of fair clustering solutions, since the usual
k-median algorithms may place certain clients inordinately far away. At a technical level,
this problem is a meld of the k-median and the k-center problems; the latter is NP-hard,
which forces one to look at bicriterion approximations. An (α, γ)-approximation would
return a solution within α times the optimum but may connect v to a point as far as
γr(v) away. Again, any (α, γ)-approximation for the discrete version where X = C would
imply a (2α, 2γ)-approximation for the continuous version.
The best discrete approximation is (8, 3) due to Vakilian and Yalçıner [47] which would
imply an (16, 3)-approximation for the continuous version. We describe an (8, 8)-
approximation for the continuous version of the problem.
In the k-center with outliers (kCwO) problem, we are given a parameter m ≤ |C|, and we
need to serve only m of the clients. The objective is the maximum distance of a served
client to its center. The k-center objective is one of the objectives for which most existing
discrete algorithms can compare themselves directly with the continuous optimum. The 3-
approximation algorithm in [17] for the kCwO problem is one such example. However, the
best known algorithm for kCwO for the discrete case (when X = C) is a 2-approximation
by Chakrabarty, Goyal, and Krishnaswamy [11] which proceeds via LP rounding, and
does not give a 2-approximation for continuous kCwO. This was explicitly noted in a work
by Ding, Yu, and Wang (“... unclear if the resulting approximation ratio for the problem
in Euclidean space.”) [26], that describes a 2-approximation for kCwO in Euclidean space,
however, violating the number of clients served. We give a proper 2-approximation for the
continuous kCwO problem (with no assumptions on the metric space) with no violations.
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1.2 Our Technical Insight

Most state of the art approximation algorithms for center-based clustering problems are
based on LP relaxations where one typically has variables yi for every potential location of a
center. When the set X is large, this approach becomes infeasible. Our main technical insight,
underlying all our results, is to use a different style of linear program with polynomially many
variables but exponentially many constraints. We then use the round-or-cut framework to
obtain our approximation factor. More precisely, given a potential solution to our program,
we either “round” it to get a desired solution within the asserted approximation factor,
or we find a separating hyperplane proving that this potential solution is infeasible. Once
this hyperplane is fed to the ellipsoid algorithm [29], the latter generates another potential
solution, and the process continues. Due to the ellipsoid method’s guarantees, we obtain our
approximation factor in polynomial time.

For every client v ∈ C, our LP relaxation has variables of the form y(v, r), indicating
whether there is some point x ∈ X in an r-radius around v which is “open” as a center.
Throughout the paper we use r as a quantity varying “continuously”, but it can easily be
discretized, with a loss of at most 1

poly(n) , to arise from a set of size ≤ poly(n). Thus there
are only polynomially many such variables. We add the natural “monotonicity” constraints:
y(v, r) ≤ y(v, s) whenever r ≤ s. Interestingly, for one of the applications, we also need
the monotonicity constraints for non-concentric balls: if B(v, r) ⊆ B(u, s), then we need
y(v, r) ≤ y(u, s).

We have a variable Cv indicating the cost the client v pays towards the optimal solution.
Next, we connect the Cv’s and the y(v, r)’s in the following ways (when β = 1, and something
similar when β = 2). One connection states that for any r, Cv ≥ r · (1− y(v, r)) and we add
these to our LP. For the last two applications listed above, this suffices. However, one can
also state the stronger condition of Cv ≥

∫ ∞
0 (1− y(v, r))dr. Indeed, the weaker constraint is

the “Markov-style inequality” version of the stronger constraint.

Our second set of constraints restrict the y(v, r)’s to be “not too large”. For instance,
for the fair k-median or kCwO problems where we are only allowed k points from X, we
assert that for any set B of disjoint balls B(v, r), we must have the sum of the respective
y(v, r)’s to be at most k. This set of constraints is exponentially many, and this is the set of
constraints that need the round-or-cut machinery. For the λ-UFL problem, we have that the
sum of the y(v, r)’s scaled by λ plus the sum of the Cv’s should be at most optg, which is a
running guess of opt.

Once we set up the framework above, then we can port many existing rounding algorithms
for the discrete clustering problems without much hassle. In particular, this is true for
rounding algorithms which use the Cv’s as the core driving force. For the continuous λ-UFL
problem, we port the rounding algorithm from the paper [45] by Shmoys, Tardos, and Aardal.
For the continuous k-means problem, we port the rounding algorithm from the paper [16] by
Charikar, Guha, Shmoys, and Tardos. For the continuous fair k-median problem, we port
the rounding algorithm from the paper [13] by Chakrabarty and Negahbani, which itself
builds on the algorithm present in the paper [2] by Alamdari and Shmoys. For the continuous
kCwO problem, we port the rounding algorithm present in the paper [11] by Chakrabarty,
Goyal, and Krishnaswamy.

Our results fall short for the continuous k-median problem (without fairness), where we
can port the rounding algorithm from the paper [16] and get a 6.67-approximation. This,
however, does not improve upon the 5.35-factor mentioned earlier.
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1.3 Other Related Works and Discussion

The continuous k-means and median problems have been investigated quite a bit in the
specific setting when X = Rm and when d(u, v) is the ℓ2 distance. The paper [42] by Matoušek
describes an (1 + ε)-approximation (PTAS) that runs in time O(n logk n · ε−O(k2m)). This
led to a flurry of results [32, 25, 38, 18, 27] on obtaining PTASes with better dependencies
on k and m via the applications of coresets. There is a huge and growing literature on
coresets, and we refer the interested reader to the paper [24] by Cohen-Addad, Saulpic,
and Schwiegelshohn, and the references within, for more information. Another approach to
the continuous k-means problem has been local search. The paper [37] which describes a
9 + ε-approximation was first stated for the geometric setting, however it also went via the
discretization due to Matoušek [42] and suffered a running time of exponential dependency
on the dimension. More recent papers [28, 22] described local-search based PTASes for
metrics with doubling dimension D, with running time exponentially depending on D. These
doubling metrics generalize (Rm, ℓ2)-metrics. However, none of the above ideas seem to
suggest better constant factor approximations for the continuous k-median/means problem
in the general case, and indeed even when X = Rm but m is part of the input.

The k-means problem in the metric space (Rm, ℓ2), where m and k are not constants,
has been studied extensively [46, 6, 19, 23, 1, 20], and is called the Euclidean k-means
problem. The discrete version of this problem was proved APX-hard in 2000 [46], but the
APX-hardness of the continuous version was proved much later, in 2015 [6]. More recently,
the hardness results for both versions have been improved: the discrete Euclidean k-means
problem is hard to approximate to factor 1.17, while the continuous problem is hard to
approximate to factor 1.07 [19]. Moreover, under assumption of a complexity theoretic
hypothesis called the Johnson coverage hypothesis, these numbers have been improved to
1.73 and 1.36, respectively [23]. On the algorithmic side, the discrete Euclidean k-means
problem admits a better approximation ratio than the general case: a 6.36 approximation
was described in 2017 [1], which was very recently improved to 5.912 [20].

We believe that our paper takes the first stab at getting approximation ratios better than
β× the best discrete factor for the continuous clustering problems. Round-or-cut is a versatile
framework for approximation algorithm design with many recent applications [44, 10, 3, 12, 4],
and the results in our paper is yet another application of this paradigm. However, many
questions remain. We believe that the most interesting question to tackle is the continuous
k-median problem. The best known discrete k-median algorithms are, in fact, combinatorial
in nature, and are obtained via applying the primal-dual/dual-fitting based methods [35, 34,
40, 9] on the discrete LP. However, their application still needs an explicit description of the
facility set, and it is interesting to see if they can be directly ported to the continuous setting.

All the algorithms in our paper, actually still open centers from C. Even then, we are
able to do better than simply reducing to the discrete case, because we do not commit to the
β loss upfront, and instead round from a fractional solution that can open centers anywhere
in X. This raises an interesting question for the k-median problem (or any other center based
clustering problem): consider the potentially infinite-sized LP which has variables yi for all
i ∈ X, but restrict to the optimal solution which only is allowed to open centers from C.
How big is this “integrality gap”? It is not too hard to show that for the k-median problem
this is between 2 and 4. The upper bound gives hope we can get a true 4-approximation for
the continuous k-median problem, but it seems one would need new ideas to obtain such a
result.
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Organization of Extended Abstract

Due to space constraints, in this extended abstract we have decided to focus on the continuous
λ-UFL and the continuous fair k-median results since we believe that they showcase the
technical ideas in this paper. Proofs of certain statements have also been deferred to the
full version of the paper [14]. The description of the results on continuous k-means and
continuous k-center with outliers can be found in the full version [14, Appendices B and C].

2 Preliminaries

Given a metric space (X, d) on points X with pairwise distances d, we use the notation
d(v, S) = mini∈S d(v, i) for v ∈ X and S ⊆ X to denote v’s distance to the set S.
▶ Definition 1 (Continuous k-median (Cont-k-Med)). The input is a metric space (X, d),
clients C ⊆ X, |C| = n ∈ N, and k ∈ N. The goal is to find S ⊆ X, |S| = k minimizing
cost(S) :=

∑
v∈C d(v, S).

▶ Definition 2 (Continuous Fair k-median (ContFair-k-Med)). Given the Cont-k-Med input,
plus fairness radii r : C → [0,∞), the goal is to find S ⊆ X, |S| = k such that ∀v ∈ C,
d(v, S) ≤ r(v), minimizing cost(S).

In the Uncapacitated Facility Location (UFL) problem, the restriction of opening only k

facilities is replaced by having a cost associated with opening each facility. When these costs
are equal to the same value λ for all facilities, the problem is called λ-UFL.
▶ Definition 3 (Continuous λ-UFL (Cont-λ-UFL)). Given a metric space (X, d), clients
C ⊆ X, |C| = n ∈ N, and λ ≥ 0, find S ⊆ X that minimizes the sum of “connection cost”
costC(S) :=

∑
v∈C d(v, S) and “facility opening cost” costF(S) := λ|S|.

Let ∆ = maxu,v∈C d(u, v) denote the diameter of a metric (X, d). For x ∈ X, 0 ≤ r ≤ ∆,
the ball of radius r around x is B(x, r) := {x′ ∈ X | d(x′, x) ≤ r}. Throughout the paper,
we use balls of the form B(v, r) where v is a client and r ∈ R. To circumvent the potentially
infinite number of radii, the radii can be discretized into Iε = {ε, 2ε, . . . , ⌈∆/ε⌉ ε} for a small
constant ε = O(1/n2). Thereupon, we can appeal to the following lemma to bound the size
of Iε by O(n5).
▶ Lemma 4 (Rewording of Lemma 4.1, [1]). Losing a factor of

(
1 + 100

n2

)
, we can assume

that for any u, v ∈ C, 1 ≤ d(u, v) ≤ n3.
For simplicity of exposition, we present our techniques using radii in R, and observe that
discretizing to Iε incurs an additive loss of at most O(nε) = O(1/n) in our guarantees. We
also note that log opt ≤ log(n∆) = O(log n) by the above, which enables us to efficiently
binary-search over our guesses optg.

3 Continuous λ-UFL

We start this section with our 2.32-approximation for Cont-λ-UFL (Theorem 5). For this,
we introduce a new linear programming formulation, and adapt the rounding algorithm
of Shmoys-Tardos-Aardal to the new program. The resulting procedure exhibits our main
ideas, and serves as a warm-up for the remaining sections. Also, in Section 3.2, we prove
that it is NP-hard to approximate Cont-λ-UFL within a factor of 2− o(1), using ideas due
to Cohen-Addad, Karthik, and Lee [21]. This shows that the continuous version cannot be
approximated as well as the discrete version, which has a best-known approximation factor
of 1.463 [39].
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3.1 Approximation algorithm
This subsection is dedicated to proving the following theorem:

▶ Theorem 5. There is a polynomial time algorithm that, for an instance of Cont-λ-UFL
with optimum opt, yields a solution with cost at most ( 2

1−e−2 + ε)opt < 2.32 · opt. Here
ε = O( 1

n2 ).

We design the following linear program for Cont-λ-UFL. We use variables Cv for the connection
cost of each client v, and y(v, r) for the number of facilities opened within each ball of the
form B(v, r). We also use a guess of the optimum optg, which we will soon discuss how to
obtain. Throughout, we use y(B) as shorthand for y(v, r) where B = B(v, r).

λ
∑
B∈B

y(B) +
∑
v∈C

Cv ≤ optg ∀B ⊆ {B(v, r)}v∈C
r∈R

pairwise disjoint (UFL)∫ ∞

0
(1− y(v, r)) dr ≤ Cv ∀v ∈ C, r ∈ R (UFL-1)

y(v, r) ≤ y(v, r′) ∀v ∈ C, r, r′ ∈ R s.t. r ≤ r′ (UFL-2)
y(v, r) ≥ 0, Cv ≥ 0 ∀v ∈ C, r ∈ R

Observe that, given a solution S ⊆ X of cost at most optg, we can obtain a feasible solution
of UFL as follows. For client v ∈ C, we set Cv = d(v, S). For v ∈ C, r ∈ R, we set y(v, r) = 0
for r < d(v, S) and y(v, r) = 1 for r ≥ d(v, S).

Our approach is to round a solution (C, y) of UFL. Observe that there are polynomially
many constraints of the form (UFL-1) and (UFL-2); hence, we can efficiently obtain a solution
(C, y) that satisfies them. So for the remainder of this section, we assume that those
constraints are satisfied. On the other hand, there are infinitely many constraints of type
(UFL). This is why we employ a round-or-cut framework via the ellipsoid algorithm [29].
We begin with an arbitrary optg, and when ellipsoid asks us if a proposed solution (C, y) is
feasible, we run the following algorithm.

The algorithm inputs α < 1, and defines rα(v) as the minimum radius at which client
v ∈ C has at least α mass of open facilities around it. First, all clients are deemed uncovered
(U = C). Iteratively, the algorithm picks the j, i.e the uncovered client, with the smallest
rα(j). j is put into the set Reps(C,y),α. Any client v within distance rα(j) + rα(v) of j is
considered a child of j and is now covered. When all clients are covered, i.e. U = ∅, the
algorithm outputs Reps(C,y),α.

Algorithm 1 Filtering for Cont-λ-UFL.

Input: A proposed solution ({Cv}v∈C , {y(v, r)}v∈C,r∈R) for UFL, parameter α ∈ (e−2, 1)
1: rα(v)← min{r ∈ R | y(v, r) ≥ α} for all v ∈ C

2: Reps(C,y),α ← ∅ ▷ “representative” clients
3: U ← C ▷ “uncovered” clients
4: while U ̸= ∅ do
5: Pick j ∈ U with minimum rα(j)
6: child(j)← {v ∈ U | d(v, j) ≤ rα(v) + rα(j)}
7: U ← U \ child(j)
8: Reps(C,y),α ← Reps(C,y),α + j

9: end while
Output: Reps(C,y),α
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Notice that, by construction, the collection of balls {B(j, rα(j))}j∈Reps(C,y),α
is pairwise

disjoint. Hence, the following constraint, which we call Sep(C,y),α, is of the form (UFL):

λ
∑

j∈Reps(C,y),α

y(j, rα(j)) +
∑
v∈C

Cv ≤ optg (Sep(C,y),α)

We will show that

▶ Lemma 6. If (C, y) satisfies (UFL-1), (UFL-2), and Sep(C,y),α, then there exists a suitable
α ∈ (e−2, 1) for which the output of Algorithm 1 has cost at most 2

1−e−2 optg.

Thus, if we find that the desired approximation ratio is not attained, then it must be
that Sep(C,y),α was not satisfied, and we can pass it to ellipsoid as a separating hyperplane.
If ellipsoid finds that the feasible region of our linear program is empty, then we increase
optg and try again. Otherwise, we obtain a solution Reps(C,y),α that attains the desired
guarantees.

We now analyze Algorithm 1 to prove Lemma 6.

Proof of Lemma 6. For this proof, we will fix (C, y), and refer to Reps(C,y),α as Repsα.
To prove a suitable α exists, assume α is picked uniformly at random from (β, 1) for

some 0 < β < 1; we will see later that β = e−2 is optimal. Take Repsα, the output
of Algorithm 1 on (C, y). By definition of rα,

∑
j∈Repsα

y(j, rα(j)) ≥ α |Repsα|. Thus
costF(Repsα) = λ |Repsα| ≤ 1

α · λ
∑

j∈Reps y(j, rα(j)), which implies

Exp[costF(Repsα)] ≤ ln(1/β)
(1− β) λ

∑
j∈Repsα

y(j, rα(j)). (1)

To bound the expected connection cost, take v ∈ C and observe that, since all the clients
are ultimately covered in Algorithm 1, there has to exist j ∈ Repsα for which v ∈ child(j).
By construction of child, d(v, j) ≤ rα(v) + rα(j), which is at most 2rα(v) by our choice of j

in Line 5. Thus, for any client v, we get d(v, Repsα) ≤ d(v, j) ≤ 2rα(v). So we are left to
bound Exp [rα(v)] for an arbitrary client v ∈ C.

We have that

Exp [rα(v)] = 1
1− β

∫ 1

β

rα(v)dα ≤ 1
1− β

∫ 1

0
rα(v)dα .

We notice that at α = y(v, r), rα(v) = r. Also, r0(v) = 0. So given (UFL-2) for all balls
B(v, r) with r ∈ R, we can apply a change of variable to the integral to get

∫ 1
0 rα(v)dα =∫ r1(v)

r0(v) (y(v, r1(v))− y(v, r)) dr ≤
∫ ∞

0 (1− y(v, r)) dr ≤ Cv, where the last inequality is by
(UFL-1). Thus we have Exp [rα(v)] ≤ Cv

1−β . Summing d(v, Repsα) over all v ∈ C we have

Exp[costC(Repsα)] =
∑
v∈C

Exp[d(v, Repsα)] ≤ 2
∑
v∈C

Exp[rα(v)] ≤ 2
1− β

∑
v∈C

Cv. (2)

To balance costF from (1) and costC from (2), we set β = e−2. The expected Cont-λ-UFL
cost of Repsα is, using Sep(C,y),α,

Exp[costF(Repsα)+ costC(Repsα)] ≤ 2
1− e−2

λ
∑

j∈Repsα

y(j, rα(j)) +
∑
v∈C

Cv

 ≤ 2 · optg

1− e−2 .

Since the bound holds in expectation over a random α, there must exist an α ∈ (β, 1) that
satisfies it deterministically. ◀
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To obtain a suitable α, we can adapt the derandomization procedure from the discrete
version [45]. The procedure relies on having polynomially many interesting radii; for this, we
recall that while we have used r ∈ R for simplicity, our radii are actually r ∈ Iε, |Iε| = O(n5).

3.2 Hardness of approximation
Our hardness result for this problem is as follows:

▶ Theorem 7. Given an instance of Cont-λ-UFL and ε > 0, it is NP-hard to distinguish
between the following:

There exists S ⊆ X such that costF(S) + costC(S) ≤ (1 + 6ε)n
For any S ⊆ X, costF(S) + costC(S) ≥ (2− ε)n
Thus we exhibit hardness of approximation up to a factor of 2−ε

1+6ε , which tends to 2 as
ε → 0. Our reduction closely follows the hardness proof for Cont-k-Med [21]. The details
appear in the full version of this paper [14, Appendix D].

4 Continuous Fair k-Median

The main result of this section is the following theorem.

▶ Theorem 8. There exists a polynomial time algorithm for ContFair-k-Med that, for an
instance with optimum cost opt, yields a solution with cost at most 8opt + ε, in which, each
client v ∈ C is provided an open facility within distance 8r(v) + ε of itself. Here ε = O

( 1
n2

)
.

We create a round-or-cut framework, via the ellipsoid algorithm [29], that adapts the
Chakrabarty-Negahbani algorithm [13] to the continuous setting. For this, we will modify
the UFL linear program to suit ContFair-k-Med. As before, optg is a guessed optimum, Cv

is the cost share of a client v ∈ C, and y(v, r) represents the number of facilities opened in
B(v, r). There are two key modifications. First, we expand the monotonicity constraints of
the form (UFL-2) to include non-concentric balls, which are crucial for adapting the fairness
guarantee of Chakrabarty and Negahbani [13]. Second, we enforce the fairness constraints by
requiring y(v, r(v)) ≥ 1 for each client v ∈ C.

∑
v∈C

Cv ≤ optg (LP)∑
B∈B

y(B) ≤ k ∀B ⊆ {B(v, r)}v∈C
r∈R

pairwise disjoint (LP-1)∫ ∞

0
(1− y(v, r)) dr ≤ Cv ∀v ∈ C (LP-2)

y(u, r) ≤ y(v, r′) ∀u, v ∈ C, r, r′ ∈ R, B(u, r) ⊆ B(v, r′) (LP-3)
y(v, r(v)) ≥ 1 ∀v ∈ C (LP-4)

y(v, r) ≥ 0, Cv ≥ 0 ∀v ∈ C, r ∈ R

We will frequently use the following property of LP. See the full version of our paper [14,
Appendix A.2] for the proof.

▶ Lemma 9. Consider a solution (C, y) of LP. If for a client v, (C, y) satisfies all constraints
of the form (LP-2) and (LP-3) involving v, then for any r0 ∈ R, Cv ≥ r0 (1− y(v, r0)).
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As before, we will only worry about the constraints that are exponentially many. These
are (LP-1). For this, we use ellipsoid [29]. Given a proposed solution (C, y) of LP, we
construct Reps(C,y) ⊆ C, as follows.

We first perform a filtering step. For each v ∈ C, we define R(v) := min r(v), 2Cv. In
the beginning, all clients are “uncovered” (i.e. U = C). In each iteration, let j ∈ U be the
uncovered client with the minimum R(j); and add j to our set of “representatives” Reps(C,y).
Any v ∈ U within distance 2R(v) of j (including j itself) will be added to the set child(j),
and will be removed from U . After all clients are covered, i.e. U = ∅, the algorithm outputs
Reps(C,y). For a formal description of this algorithm, see the full version [14, Appendix A.1].

For a j ∈ Reps(C,y), let s(j) be the closest client to j in Reps(C,y) \ {j}. Let a(j) :=
d(j,s(j))

2 . So the collection of balls {B(j, a(j))}j∈Reps(C,y)
is pairwise disjoint, and the following

constraint, which we call Sep(C,y), is of the form (LP-1).∑
j∈Reps(C,y)

y (j, a(j)) ≤ k (Sep(C,y))

We have that

▶ Lemma 10. If (C, y) satisfies (LP-2)-(LP-4) and Sep(C,y), then
1. ∀j ∈ Reps(C,y), y (j, a(j)) ≥ 1

2

2.
∣∣∣Reps(C,y)

∣∣∣ ≤ 2k

Proof. Fix j ∈ Reps(C,y). By construction of Reps(C,y),

a(j) = d(j, s(j))
2 ≥ R(j) (3)

So if R(j) = r(j), then by (LP-3) and (LP-4), y (j, a(j)) ≥ y(j, r(j)) ≥ 1. Else R(j) = 2Cj .
By Lemma 9, Cj ≥ a(j) (1− y (j, a(j))).

If Cj = 0, then this implies y (j, a(j)) ≥ 1. Otherwise, substituting a(j) by R(j) from
(3) and setting R(j) = 2Cj gives Cj ≥ 2Cj (1− y (j, a(j))), i.e. y (j, a(j)) ≥ 1

2 . Now, by
Sep(C,y), we have k ≥

∑
j∈Reps(C,y)

y (j, a(j)) ≥ 1
2 ·

∣∣∣Reps(C,y)

∣∣∣. ◀

So if we find that
∣∣∣Reps(C,y)

∣∣∣ > 2k, then Sep(C,y) must be violated, and we can pass
it to ellipsoid as a separating hyperplane. Hence in polynomial time, we either find that
our feasible region is empty, or we get (C, y) and Reps(C,y) such that (C, y) satisfies (LP),
(LP-2)-(LP-4), and Sep(C,y). In the first case, we increase optg and try again. In the latter
case, we round (C, y) further to attain our desired approximation ratios, via a rounding
algorithm that we will now describe. This algorithm focuses on Reps(C,y) and ignores other
clients, as justified by the following lemma.

▶ Lemma 11. S ⊆ X be a solution to ContFair-k-Med. Consider a proposed solution (C, y)
of LP that satisfies (LP). Then

∑
v∈C d(v, S) ≤

∑
j∈Reps(C,y)

|child(j)| d(j, S) + 4optg.

The proof closely follows from a standard technique for the discrete version [16, 13]. We
provide the proof in the full version [14, Appendix A.3].

Our algorithm will also ignore facilities outside Reps(C,y), so our solution will be a subset
of Reps(C,y). For the remainder of this section, we fix (C, y), and refer to Reps(C,y) as
Reps. We write the following polynomial-sized linear program, DLP, where Reps are the
only clients and the only facilities. The objective function of DLP is a lower bound on∑

j∈Reps |child(j)| d(j, S), so hereafter we compare our output with DLP. We do not include
fairness constraints in this program, and we will see later that it is not necessary to do so.
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In DLP, the variables zi for each i ∈ Reps denote whether i is open as a facility. The
variables xij for i, j ∈ Reps denote whether the client j uses the facility i.

minimize
∑

j∈Reps
|child(j)|

∑
i∈Reps

xijd(j, i) (DLP)

∑
i∈Reps

zi ≤ k (DLP-1)

∑
i∈Reps

xij = 1 ∀j ∈ Reps (DLP-2)

xij ≤ yi ∀i, j ∈ Reps (DLP-3)
xij ≥ 0, zi ≥ 0 ∀i, j ∈ Reps

We will now round (C, y) to an integral solution of DLP. Our first step is to convert
(C, y) to a fractional solution (x̄, z̄) of DLP. To do this, for each j ∈ Reps, we consolidate the
y-mass in B(j, a(j)) onto j, i.e. we set z̄j = y(j, a(j)). By Lemma 10.1, each z̄j is then at
least 1

2 . This allows j to use only itself and s(j) as its fractional facilities.

Algorithm 2 Consolidation for ContFair-k-Med.

Input: A proposed solution
(
{Cv}v∈C , {y(v, r)}v∈C,r∈Iε

)
for LP, and Reps as defined above

1: for j ∈ Reps do
2: s(j)← arg minv∈Reps\j d(j, v)
3: a(j)← d(j, s(j))/2
4: z̄j ← min {y (j, a(j)) , 1}
5: x̄jj ← z̄j

6: x̄js(j) ← 1− z̄j

7: end for
Output: (x̄, z̄)

▶ Lemma 12. ∀j ∈ Reps, z̄j ≥ 1
2 , and (x̄, z̄) is a feasible solution of DLP with cost at most

2optg.

Proof. For a j ∈ Reps, if y (j, a(j)) = 1 then z̄j = 1. Otherwise, by Lemma 10.1, z̄j =
y (j, a(j)) ≥ 1

2 .
Hence 1̄− z̄j ≤ 1

2 ≤ z̄s(j), which implies feasibility by construction and Sep(C,y). It also
implies that

∑
i∈Reps x̄ijd(j, i) = (1− z̄j)d(j, s(j)). If y (j, a(j)) = 1, then the RHS above is

0 ≤ 2Cj . Otherwise
∑

i∈Reps x̄ijd(j, i) = (1− y (j, a(j))) d(j, s(j)) = 2 (1− y (j, a(j))) a(j) ≤
2Cj where the last inequality follows from Lemma 9. Multiplying by |child(j)| and summing
over all j ∈ Reps, we have by construction of Reps,∑

j∈Reps
|child(j)|

∑
i∈Reps

x̄ijd(j, i) ≤ 2
∑

j∈Reps
|child(j)|Cj ≤ 2

∑
j∈Reps

∑
v∈child(j)

Cv = 2
∑
v∈C

Cv

which is at most 2optg by (LP). ◀

Now, to round (x̄, z̄) to an integral solution, we appeal to an existing technique [16, 13]. We
state the relevant result here, and provide the proof in the full version [14, Appendix A.4].

▶ Lemma 13 ([16, 13]). Let (x̄, z̄) be a feasible solution of DLP with cost at most 2optg,
such that ∀j ∈ Reps, z̄j ≥ 1

2 . Then there exists a polynomial time algorithm that produces
S ⊆ Reps such that
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1. |S| = k;
2. If z̄j = 1, then j ∈ S;
3. ∀j ∈ Reps, at least one of j, s(j) is in S; and
4.

∑
j∈Reps

|child(j)| d(j, S) ≤ 4optg.

Thus, by Lemma 11, we have shown that
∑

v∈C d(v, S) ≤
∑

j∈Reps |child(j)|
∑

i∈S d(j, S)+
4optg ≤ 8optg. Now we show the fairness ratio, adapting a related result [13, Lemma 3]
from the discrete version. This is where we crucially require the monotonicity constraints
(LP-3) for non-concentric balls.

▶ Lemma 14. ∀v ∈ C, d(v, S) ≤ 8r(v).

Proof. Fix v ∈ C, and let j ∈ Reps such that v ∈ child(j). By construction of child(j),

d(v, j) ≤ 2R(v) ≤ 2r(v) (4)

So if j ∈ S, then we are done. Otherwise, by Lemma 13.2, z̄j < 1, i.e. by Algorithm 2,
y (j, a(j)) < 1. But by the fairness constraints (LP-4), y(v, r(v)) ≥ 1. So by the monotonicity
constraints (LP-3), B(v, r(v)) ̸⊆ B(j, a(j)), as otherwise we would have 1 ≤ y(v, r(v)) ≤
y(j, a(j)) < 1, a contradiction.

So fix w ∈ B(v, r(v)) \B (j, a(j)). We have

a(j) < d(j, w), d(v, w) ≤ r(v) (5)

By Lemma 13.3, either j ∈ S or s(j) ∈ S, so

d(j, S) ≤ d(j, s(j)) = 2a(j) < 2d(j, w) . . . by (5)
≤ 2 (d(v, j) + d(v, w)) ≤ 2 (2r(v) + r(v)) . . . by (4) and (5)
= 6r(v)

So, by (4), d(v, S) ≤ d(v, j) + d(j, S) ≤ 2r(v) + 6r(v) = 8r(v). ◀

Thus we have proved Theorem 8.
We observe here that, by the simple reduction of setting all r(v)’s to ∞, Theorem 8

implies a solution of cost 8opt + ε for Cont-k-Med. We improve this ratio via an improved
rounding procedure by Charikar, Guha, Shmoys, and Tardos [16], which rounds (x̄, z̄) such
that

∑
j∈Reps |child(j)| d(j, S) ≤ 8

3 optg, instead of the 4optg that we obtain above. This
yields:

▶ Corollary 15. There exists a polynomial time algorithm for Cont-k-Med that, on an instance
with optimum cost opt, yields a solution of cost at most 6 2

3 opt + ε.

This improved rounding, however, no longer guarantees to open either j or s(j) for each
j ∈ Reps. Such a guarantee (Lemma 13.3) is crucial to our fairness bound in Lemma 14. So
the improvement is not naively adaptable to ContFair-k-Med.
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Abstract
Given a data stream D = ⟨a1, a2, . . . , am⟩ of m elements where each ai ∈ [n], the Distinct Elements
problem is to estimate the number of distinct elements in D. Distinct Elements has been a subject
of theoretical and empirical investigations over the past four decades resulting in space optimal
algorithms for it. All the current state-of-the-art algorithms are, however, beyond the reach of an
undergraduate textbook owing to their reliance on the usage of notions such as pairwise independence
and universal hash functions. We present a simple, intuitive, sampling-based space-efficient algorithm
whose description and the proof are accessible to undergraduates with the knowledge of basic
probability theory.
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1 Introduction

We consider the fundamental problem of estimating the number of distinct elements in a
data stream (Distinct Elements problem or the F0 estimation problem). For a data stream
D = ⟨a1, a2, . . . , am⟩, where each ai ∈ [n], F0(D) is the number of distinct elements in D:
F0(D) = |{a1, a2, . . . , am}|.

▶ Problem 1. Given a stream D = ⟨a1, a2, . . . , am⟩ of m elements where each ai ∈ [n],
parameters ε, δ, output an (ε, δ)-approximation of F0(D). That is, output c such that Pr[(1−
ε) · F0(D) ≤ c ≤ (1 + ε) · F0(D)] ≥ 1− δ.

We are interested in streaming algorithms that uses poly(log m, log n, ε−1, log δ−1) bits of
memory. Since D is clear from the context, we also use F0 to refer to F0(D).

F0 estimation problem is a fundamental problem with a long history of theoretical and
practical investigations. The seminal work of Flajolet and Martin [9] provided the first
algorithm assuming the existence of hash functions with full independence. Subsequent

1 The authors decided to forgo the old convention of alphabetical ordering of authors in favor of a
randomized ordering, denoted by r⃝. The publicly verifiable record of the randomization is available at
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investigations relying on the usage of limited-independence hash functions have led to
design of algorithms with optimal space complexity O(log n + log δ−1

ε2 ). We defer detailed
bibliographical remarks to Section 3. However, all the current space-efficient algorithms are
beyond the reach of an undergraduate textbook due to their reliance on notions such as
pairwise independence and universal hash functions.

We present a very simple algorithm for the F0 estimation problem using a sampling
strategy that only relies on basic probability for its analysis. In particular, it does not use
universal hash functions. While the simplicity of the code makes it appealing to be used in
practical implementation, we believe that only using basic probability theory for the analysis
makes the algorithm presentable to undergraduates right after the introduction of basic tail
bounds. Our algorithm builds and refines ideas introduced in the recent work on estimating
the size of the union of sets in the general setting of Delphic sets [13].

2 F0-Estimator: A simple algorithm for F0 estimation

Algorithm 1 F0-Estimator.

Input Stream D = ⟨a1, a2, . . . , am⟩, ε, δ

1: Initialize p← 1; X ← ∅; thresh← 12
ε2 log( 8m

δ )
2: for i = 1 to m do
3: X ← X \ {ai}
4: With probability p, X ← X ∪ {ai}
5: if |X | = thresh then
6: Throw away each element of X with probability 1

2
7: p← p

2
8: if |X | = thresh then
9: Output ⊥

10: Output |X |
p

The algorithm F0-Estimator uses a simple sampling strategy: it keeps a set X of samples
at all times such that every element seen so far is independently in X with equal probability.
In order to keep the set of samples small, it makes sure that X does not grow beyond the
value thresh by adjusting the sampling rate p accordingly. After all the elements of the
stream are processed, it outputs |X |

p where p is the final sampling rate.

2.1 Theoretical Analysis
We present the theoretical analysis entirely based on first principles, which adds to its length.
For readers who are familiar with randomized algorithms, the proof is standard.

We state the following well-known concentration bound, Chernoff bound, for completeness.

▶ Fact 2 (Chernoff’s Bound). Let v1, ..., vk be independent random variables taking values in
{0, 1}. Let V =

∑k
i=1 vi and µ = E[V ]. Then Pr (|V − µ| ≥ δµ) ≤ 2e− δ2µ

3

The following theorem captures the correctness and space complexity guarantee of
F0-Estimator.

▶ Theorem 3. For any data stream D and any 0 < δ, ε < 1, the algorithm F0-Estimator
outputs an (ε, δ)-approximation of F0(D). The algorithm uses O( 1

ε2 · log n · (log m + log 1/δ))
space in the worst case.
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Proof. The stated space complexity bound of the algorithm follows because, from the
description, it is clear that the size of the set of samples kept by the algorithm is always
≤ thresh, and each item requires ⌈log2 n⌉ bits to store.

In order to prove the algorithm outputs the correct estimate with high probability, we
show that when the algorithm terminates, every distinct element of stream D is in X with a
probability p, where p ≥ thresh

4F0
. This guarantee, together with the Chernoff bound, implies

the correctness of the algorithm. We give a formal proof of correctness below.
Consider the following two events:

Error : ‘The algorithm F0-Estimator does not return a value in the range [(1−ε)F0, (1+ε)F0]’
Fail : “The algorithm F0-Estimator outputs ⊥.”

We will bound Pr[Error] by δ. Observe that Pr[Error] ≤ Pr[Fail] + Pr[Error ∩ Fail].

▷ Claim 4. Pr[Fail] ≤ δ
8

Proof of Claim. Let Failj denote the event that Algorithm 1 returns ⊥ when i = j. Formally,
Failj : ‘|X | = thresh and none of the elements of X are thrown away at line 6’ for i = j. The
probability that Failj happens is

( 1
2
)thresh. Therefore,

Pr[Fail] ≤
m∑

j=1
Pr[Failj ] ≤ m ·

(
1
2

)thresh
≤ δ

8 ◁

▷ Claim 5. Pr[Error ∩ Fail] ≤ δ
2 .

We give a detailed proof of this claim below. Theorem follows from the above two
claims. ◀

Proof of Claim 5
To bound Pr[Error ∩ Fail], we consider a relaxed version of Algorithm F0-Estimator, which is
stated as Algorithm 2. Algorithm 2 is nothing but F0-Estimator with lines 8 and 9 removed.
Observe that for a given input, the algorithm F0-Estimator behaves identically to Algorithm 2
as long as |X | ≤ thresh after each element of X is thrown away with probability 1

2 (i.e., the
event Fail does not happen). Now, we consider the following event:

Error2 : ‘The Algorithm 2 does not output a value in the range [(1− ε)F0, (1 + ε)F0].’

Observe that Pr[Error ∩ Fail] ≤ Pr[Error2]. In Claim 7, we obtain the desired bound on
Pr[Error2] and hence on Pr[Error ∩ Fail].

To prove an upper bound on Pr[Error2] in Claim 7, we will need the following claim. In
the following, we use Sj to denote {a1, a2, . . . , aj} – distinct elements that appear in the first
j items in the stream.

▷ Claim 6. The following loop invariant holds in the for loop (lines 2– 7) of Algorithm 2:

Every element in Sj is in X independently with probability p.

Proof. First, we show that if the loop invariant holds after execution of line 4, then it holds
after the execution of if-then-block (line 5–7). Since every element of X is thrown away
independently with probability 1

2 and p is updated to p/2, the invariant holds after the
execution of the if-then-block (line 5–7).

Now we return our attention to proving that the invariant holds after the execution of
line 4 for every iteration j. The proof proceeds via induction.
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Algorithm 2

Input Stream D = ⟨a1, a2, . . . , am⟩, ε, δ

1: Initialize p← 1; X ← ∅; thresh← 12
ε2 log( 8m

δ )
2: for i = 1 to m do
3: X ← X \ {ai}
4: With probability p, X ← X ∪ {ai}
5: if |X | = thresh then
6: Throw away each element of X with probability 1

2
7: p← p

2

8: Output |X |
p

Base Case. After line 4, Pr[a1 ∈ X ] = p. Since thresh > 1, the condition in line 5 is not
satisfied, therefore the desired invariant holds true.

Inductive Step. Let us assume by induction hypothesis, the desired invariant holds true
after iteration j − 1. Note that the execution of line 3–line 4 only affects whether aj ∈ X
independently of all ak ∈ Sj \ aj . There are two cases:

aj /∈ Sj−1, then after the execution of line 4, we have Pr[aj ∈ X ] = p.
aj ∈ Sj−1, then after line 3, we have Pr[aj ∈ X ] = 0. After line 4, we have Pr[aj ∈ X ] =
p. ◁

▷ Claim 7. Pr[Error2] ≤ δ
2

Proof. Given the loop invariant stated in Claim 6, we have that every element of Sm is in
X with probability p. In order to upper bound that the probability that |X |

p lies outside
[(1− ε)F0, (1 + ε)F0] we will use Chernoff’s bound. For this we first establish a lower bound
on p. To this end, we decompose Pr[Error2] conditioned on lower bound on p. In particular,
we define the following event:
Bad: “The value of p at line 8 in Algorithm 2 is less than thresh

4F0
.”

Let ℓ = ⌈log( thresh
4F0

)⌉. Since every value of p can be expressed as power of 2, we have that
p < 2ℓ if and only if p < thresh

4F0
. Observe that Pr[Error2] ≤ Pr[Bad] + Pr[Error2 | Bad]. We will

upper bound Pr[Bad] and Pr[Error2 | Bad] separately.

Bounding Pr[Bad]. For j ∈ [1, m], let Badj denote the event that ‘jth iteration of the for
loop is the first iteration where the value of p goes below 2ℓ’ i.e., the value of p at the end
of iteration (j − 1) is 2ℓ and the value of p is 2ℓ−1 at the end of iteration j. Therefore, by
definition of Badj , we have |X | = thresh and p = 2ℓ in line 5 of Algorithm 2. Recall that in
every iteration of the loop, the value of p can decrease at most by a factor of 1

2 and cannot
increase. Therefore, we have Pr[Bad] ≤

∑m
j=1 Pr[Badj ]. We will now compute Pr[Badj ] for a

fixed j.
For a ∈ Sm let ra denote the indicator random variable indicating whether a is in the set X .

By Claim 6 the random variables {ra}a∈Sm
are independent and for all a ∈ Sm Pr[ra = 1] = p.

Since, |X | =
∑

a∈Sj
ra we have E [|X |] = E

[∑
a∈Sj

ra

]
=

∑
a∈Sj

Pr[ra = 1] = p · |Sj | = p ·F0.
Thus,

Pr[Badj ] ≤ Pr[|X | = thresh | p = 2ℓ] ≤ Pr[|X | ≥ thresh | p = 2ℓ] ≤ 2e
− thresh2

3·pF0

= 2e
− thresh2

3·2ℓF0 ≤ δ

4m
,

the last inequality follows from the values of ℓ and thresh. Therefore, Pr[Bad] ≤ δ
4 .
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Bounding Pr[Error2 | Bad]. Similar to the above, for a ∈ Sm, let ra denote the indicator
random variable indicating whether a is in the set X . By Claim 6 the random variables
{ra}a∈Sm

are independent and for all a ∈ Sm, we have Pr[ra = 1] = p. Thus |X | =
∑

a∈D ra

and thus E[|X |] = pF0. Conditioned on Bad, we have p ≥ thresh
4F0

. Thus,

Pr[Error2 | Bad] = Pr
[
(1− ϵ)pF0 ≤ |X | ≤ (1 + ε)pF0 | Bad

]
≤ 2e− ε2thresh

12 [Using Chernoff bound with p ≥ thresh
4F0

]

≤ δ

4m
≤ δ

4 . ◁

3 Bibliographic Remarks

Distinct Elements problem (or F0 estimation problem) is one of the most investigated
problem in the data streaming model [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. While the Distinct
Elements problem has a wide range of applications in several areas of computing, it was first
investigated in the algorithms community by Flajolet and Martin [9]. They provided the first
approximation under the assumption of the existence of hash functions with full independence.
The seminal work of Alon, Matias, and Szegedy [1] that introduced the data streaming
model of computation revisited this problem as a special case of Fk estimation problem and
achieved space complexity of O(log n) for ε > 1 and constant δ. The first (ε, δ) approximation
for Distinct Elements problem was Gibbson and Tirthpura who achieved O( log n

ε2 ) space
complexity [10]. Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan improved the space
complexity bound to Õ(log n+ 1/ε2) [2]. Subsequently, Kane, Nelson, and Woodruff achieved
O(log n + 1/ε2) which is optimal in n and ε [12]. All the above bounds are for a fixed
confidence parameter δ, which can be amplified to achieve confidence bounds for arbitrary
δ by simply running log(1/δ)-estimators in parallel and returning the median. This incurs
a multiplicative factor of log(1/δ). Błasiok designed an (ε, δ) approximation algorithm for
F0 estimation problem with space complexity of O( log δ−1

ε2 + log n), thereby matching the
lower bound in all the three parameters n, ε and δ [4]. As is expected, every subsequent
improvement added to the complexity of the algorithm or the analysis, and a majority of
these work remain beyond the reach of non-experts. A crucial technical ingredient for all
the works mentioned above is their careful usage of limited-independence hash functions in
order to make space poly(log n). Monte Carlo-based approaches have been utilized in the
context of size estimation of the union of sets, but their straightforward adaptation to the
streaming setting did not seem to yield progress. Recently, a new sampling-based approach
was proposed in the context of estimating the size of the union of sets in the streaming model
that achieves space complexity with log m-dependence [13]. The algorithm we presented
adapts ideas from this work to the context of F0 estimation.
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Abstract
We investigate the complexity of approximate circular pattern matching (CPM, in short) under
the Hamming and edit distance. Under each of these two basic metrics, we are given a length-n
text T , a length-m pattern P , and a positive integer threshold k, and we are to report all starting
positions (called occurrences) of fragments of T that are at distance at most k from some cyclic
rotation of P . In the decision version of the problem, we are to check if there is any such occurrence.
All previous results for approximate CPM were either average-case upper bounds or heuristics,
with the exception of the work of Charalampopoulos et al. [CKP+, JCSS’21], who considered only
the Hamming distance. For the reporting version of the approximate CPM problem, under the
Hamming distance we improve upon the main algorithm of [CKP+, JCSS’21] from O(n + (n/m) · k4)
to O(n + (n/m) · k3 log log k) time; for the edit distance, we give an O(nk2)-time algorithm. Notably,
for the decision versions and wide parameter-ranges, we give algorithms whose complexities are
almost identical to the state-of-the-art for standard (i.e., non-circular) approximate pattern matching:

For the decision version of the approximate CPM problem under the Hamming distance, we
obtain an O(n + (n/m) · k2 log k/ log log k)-time algorithm, which works in O(n) time whenever
k = O(

√
m log log m/ log m). In comparison, the fastest algorithm for the standard counterpart

of the problem, by Chan et al. [CGKKP, STOC’20], runs in O(n) time only for k = O(
√

m).
We achieve this result via a reduction to a geometric problem by building on ideas from [CKP+,
JCSS’21] and Charalampopoulos et al. [CKW, FOCS’20].
For the decision version of the approximate CPM problem under the edit distance, the O(nk log3 k)
runtime of our algorithm near matches the O(nk) runtime of the Landau–Vishkin algorithm [LV,
J. Algorithms’89] for approximate pattern matching under edit distance; the latter algorithm
remains the fastest known for k = Ω(m2/5). As a stepping stone, we propose an O(nk log3 k)-time
algorithm for solving the Longest Prefix k′-Approximate Match problem, proposed by Landau
et al. [LMS, SICOMP’98], for all k′ ∈ {1, . . . , k}. Our algorithm is based on Tiskin’s theory of
seaweeds [Tiskin, Math. Comput. Sci.’08], with recent advancements (see Charalampopoulos et
al. [CKW, FOCS’22]), and on exploiting the seaweeds’ relation to Monge matrices.

In contrast, we obtain a conditional lower bound that suggests a polynomial separation between
approximate CPM under the Hamming distance over the binary alphabet and its non-circular
counterpart. We also show that a strongly subquadratic-time algorithm for the decision version of
approximate CPM under edit distance would refute the Strong Exponential Time Hypothesis.

© Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis,
Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.charalampopoulos@bbk.ac.uk
https://orcid.org/0000-0002-6024-1557
mailto:tomasz.kociumaka@mpi-inf.mpg.de
https://orcid.org/0000-0002-2477-1702
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:rytter@mimuw.edu.pl
https://orcid.org/0000-0002-9162-6724
mailto:walen@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
mailto:wiktor.zuba@cwi.nl
https://orcid.org/0000-0002-1988-3507
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 Approximate Circular Pattern Matching

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases approximate circular pattern matching, Hamming distance, edit distance

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.35

Related Version Full Version: http://arxiv.org/abs/2208.08915

Funding Panagiotis Charalampopoulos: Supported by Israel Science Foundation (ISF) grant 810/21
when the work that led to this paper was conducted.
Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2018/31/D/
ST6/03991.
Solon P. Pissis: Supported by the PANGAIA and ALPACA projects that have received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreements No 872539 and 956229, respectively.
Tomasz Waleń: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
Wiktor Zuba: Supported by the Netherlands Organisation for Scientific Research (NWO) through
Gravitation-grant NETWORKS-024.002.003.

Acknowledgements We thank Paweł Gawrychowski and Oren Weimann for suggesting the strategy
for the proof of Lemma 29.

1 Introduction

Pattern matching is one of the most widely-studied problems in computer science. Given a
string P of length m, known as the pattern, and a string T of length n ≥ m, known as the
text, the task is to compute all occurrences of P in T . In the standard setting, the matching
relation between P and the fragments of T assumes that the leftmost and rightmost positions
of the pattern are conceptually important. In many real-world applications, however, any
rotation (cyclic shift) of P is a relevant pattern. For instance, in bioinformatics [3, 6, 27, 33],
the position where a sequence starts can be totally arbitrary due to arbitrariness in the
sequencing of a circular molecular structure or due to inconsistencies introduced into sequence
databases as a result of different linearisation standards [3]. In image processing [2, 40, 41, 42],
the contours of a shape may be represented through a directional chain code; the latter can
be interpreted as a cyclic sequence if the orientation of the image is not important [2].

With such scenarios in mind, when matching a pattern P against a text T , one is
interested in computing all fragments of T that match some rotation of P . Let us introduce
necessary basic notation. The positions of a string U are numbered from 0 to |U | − 1, with
U [i] denoting the i-th letter, and U [i . . j] = U [i . . j + 1) denoting the substring U [i] · · · U [j],
which is empty if i > j. We now formally define the circular pattern matching problem.

Circular Pattern Matching (CPM)
Input: A text T of length n and a pattern P of length m.
Output: The set { i : T [i . . i + m) = P ′ for some rotation P ′ of P}.

A textbook solution for CPM works in O(n log σ) time (or O(n) time with randomization),
where σ is the alphabet’s size, using the suffix automaton of P · P [39]. There is a simple
deterministic O(n)-time algorithm which we discuss in the full version. Many practically
fast algorithms for CPM also exist; see [17, 23, 43] and references therein. For the indexing
version of the CPM problem (searching a collection of circular patterns), see [31, 32, 33].

https://doi.org/10.4230/LIPIcs.ESA.2022.35
http://arxiv.org/abs/2208.08915
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Figure 1 For a pattern P = UV , with |U | = x, we denote the rotation V U of P by rotx(P ).
Middle: a circular 2-mismatch occurrence of pattern P (left) at position 4 in text T . Right: a
circular 2-edit occurrence of pattern P with the same rotation at position 3 in text T ′ (note that
there is no circular 2-mismatch occurrence of P in T ′ at this position).

As in the standard pattern matching setting, a single surplus or missing letter in P or in T

may result in many occurrences being missed. In bioinformatics, this may correspond to a
single-nucleotide polymorphism; in image processing, this may correspond to data corruption.
Thus, a relatively large body of works has been devoted to practically fast algorithms for
approximate CPM; see [2, 4, 5, 7, 8, 24, 29, 30] and references therein. All previous results for
approximate CPM were either average-case upper bounds or heuristics, with the exception
of the work of Charalampopoulos et al. [14].

Here, like in the previous works on approximate CPM, we consider two well-known
approximate matching relations of two strings U and V : the Hamming distance, denoted as
δH(U, V ) (the number of mismatches for two equal-length strings, otherwise equal to ∞), and
the edit distance δE(U, V ) (the minimum number of insertions, deletions and substitutions
required to transform U to V ). For two strings U and V , an integer k > 0, and a distance
function d on strings, we write U =d

k V if d(U, V ) ≤ k and U ≈d
k V if there exists a rotation

U ′ of U such that U ′ =d
k V . We define CircOccd

k(P, T ) = { i : P ≈d
k T [i . . p) for some p ≥ i};

we call it the set of circular k-mismatch (k-edit) occurrences of P in T if d = δH (d = δE ,
respectively). We omit the d-superscript when it is clear from the context. We next formally
define four variants of k-approximate CPM; see Figure 1 for an example.

k-Approximate CPM: k-Mismatch CPM and k-Edit CPM
Input: A text T of length n, a pattern P of length m, a positive integer k, and a
distance function d: d = δH for k-Mismatch CPM and d = δE for k-Edit CPM.
Output: (Reporting) CircOccd

k(P, T ).
(Decision) Any position i ∈ CircOccd

k(P, T ), if it exists.

Our upper bounds for k-Mismatch CPM. A summary of the best previous and our new
worst-case upper bounds on approximate CPM for strings over a polynomially-bounded
integer alphabet (we omit “polynomially-bounded” henceforth) is provided in Table 1.

Table 1 Comparison of previous upper bounds and our results on k-approximate CPM.

Distance Metric Time Complexity Version Reference

Hamming distance

O(nk)
reporting [14]

O(n + (n/m) · k4)
O(n + (n/m) · k3 log log k) reporting

this work
O(n + (n/m) · k2 log k/ log log k) decision

Edit distance
O(nk2) reporting

O(nk log3 k) decision

ESA 2022
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In Section 2 we prove the following results.

▶ Theorem 1. The reporting version of k-Mismatch CPM for strings over an integer alphabet
can be solved in O(n + (n/m) · k3 log log k + Output) time.

▶ Theorem 2. The decision version of k-Mismatch CPM for strings over an integer alphabet
can be solved in O(n + (n/m) · k2 log k/ log log k) time.

Our upper bounds for k-Edit CPM. A proof of the following theorem, based on the classic
Landau–Vishkin algorithm [38], is given in Section 3.

▶ Theorem 3. The reporting version of k-Edit CPM for strings over an integer alphabet can
be solved in O(nk2) time.

We reduce the decision version of k-Edit CPM to the following problem.

Longest Prefix k-Approximate Match (k-LPAM)
Input: A text T of length n and a pattern P .
Output: An array LPrefk[0 . . n] such that LPrefk[i] is the length of the longest prefix
of P that matches a prefix of T [i . . n) with at most k edits.

Specifically, we introduce a problem called All-k-LPAM that consists in solving k′-LPAM
for all k′ ∈ [0 . . k]. We show that k-Edit CPM can be reduced to All-k-LPAM on the same
pattern and text and on the reversed pattern and text. Landau et al. [37] gave an O(nk)-time
solution to k-LPAM, which provides an O(nk2)-time solution to All-k-LPAM. In Section 4 we
show the following result for All-k-LPAM (Theorem 4) which implies Theorem 5; All-k-LPAM
can find further applications in approximate pattern matching; for example see [9].

▶ Theorem 4. All-k-LPAM for strings over an integer alphabet can be solved in O(nk log3 k)
time.

▶ Theorem 5. The decision version of k-Edit CPM for strings over an integer alphabet can
be solved in O(nk log3 k) time.

The complexities of our algorithms for the decision versions of k-Mismatch and k-Edit
CPM match, up to logO(1) k factors, the complexities of some of the fastest known algorithms
for pattern matching with up to k mismatches [12, 15, 21, 26] and edits [38], respectively.

In [37], an algorithm for a weaker problem of computing, given two strings U and V each
of length at most n, the rotation of U with the minimum edit distance to V is given. The
algorithm works in O(ne) time, where e is the minimum edit distance achieved.

Our conditional lower bounds. We reduce known problems to approximate CPM, as shown
in Table 2.

Table 2 Our conditional lower bounds for approximate CPM for alphabets of constant size.

Problem Conditioned on Complexity Reference
Mismatch-CPM (unbounded) BJI Ω(n1.5−ε) for all const. ε > 0 Theorem 30

k-Edit CPM (decision) SETH Ω(n2−ε) for all const. ε > 0 Theorem 31
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For the Hamming distance, we consider the Mismatch-CPM problem where the number of
allowed mismatches is unbounded (see Section 5 for a precise definition). The breakthrough
work constructing a Binary Jumbled Index (BJI) in O(n1.859) time [13] was very recently
improved to O(n1.5 logO(1) n) time [18]. We show that obtaining an O(n1.5−ε)-time algorithm,
for any constant ε > 0, for Mismatch-CPM over the binary alphabet would require a further
improvement to BJI. A similar problem of (non-circular) pattern matching with mismatches
has a classic O(n log n)-time solution for constant-size alphabets using convolutions [22]; and
the fastest known solution for a general alphabet works in O(n1.5√

log n) time [1, 36]. Our
conditional lower bound for k-Edit CPM is based on the conditional hardness of computing
the edit distance of two binary strings [10], which in turn is based on the Strong Exponential
Time Hypothesis (SETH) [34]. It implies conditional optimality of our algorithm for the
decision version of k-Edits CPM for a general k ≤ n up to a subpolynomial factor.

The PILLAR model. For k-Mismatch CPM, we work in the PILLAR model that was in-
troduced in [15] with the aim of unifying approximate pattern matching algorithms across
different settings. In this model, we assume that the following primitive PILLAR operations
can be performed efficiently, where the argument strings are substrings of strings in a
collection X , represented via handles:

Extract(S, ℓ, r): Retrieve string S[ℓ . . r].
LCP(S, T ), LCPR(S, T ): Compute the length of the longest common prefix/suffix of S, T .
IPM(S, T ): Assuming that |T | ≤ 2|S|, compute the starting positions of all exact occur-
rences of S in T , expressed as an arithmetic sequence.
Access(S, i): Retrieve the letter S[i].
Length(S): Compute the length |S| of the string S.

In fact, in the standard setting, where the strings are given explicitly and are over an
integer alphabet, all primitive PILLAR operations can be performed in O(1) time after a
linear-time preprocessing. The runtime of algorithms in this model can be expressed in terms
of the number of primitive PILLAR operations. (Any extra time required by our algorithms
is explicitly specified.)

In the full version we obtain fast algorithms for k-Mismatch CPM in the internal, dynamic
and fully compressed setting, by using Theorems 1 and 2 with known implementations of the
primitive PILLAR operations in these settings.

2 k-Mismatch CPM

For a string S and an integer x ≤ |S|, we denote rotx(S) = S[x . . |S|) · S[0 . . x). For
i ∈ [0 . . |S| − m], we denote S(i) = S[i . . i + m). Also, we denote the set of standard (non-
circular) k-mismatch occurrences of P in T by Occk(P, T ) = {i ∈ [0 . . n − m] : T (i) =k P}.

Let P = P1P2, where |P1| = ⌊m/2⌋. Each circular k-mismatch occurrence of P in T

implies a standard k-mismatch occurrence of at least one of P1 and P2. Henceforth, we
assume, without loss of generality, that it implies a k-mismatch occurrence of P1, as the
remaining case is symmetric. Our goal is to consider all k-mismatch occurrences of P1 in T

as anchors for computing circular k-mismatch occurrences of P in T . We call P1 the sample.
By the so-called standard trick, we will consider O(n/m) substrings of T of length O(m)

and process each of them separately. We denote one such substring by T ′. All positions
(occurrences) of the sample can be efficiently computed in such a small window T ′:

ESA 2022



35:6 Approximate Circular Pattern Matching

▶ Theorem 6 ([15, Main Theorems 5 and 8]). Given a text T ′ and a pattern P1, satisfying
|T ′| = O(|P1|), we can compute a representation of the set Occk(P1, T ′) as O(k2) pairwise
disjoint arithmetic progressions in O(k2 log log k) time plus O(k2) PILLAR operations.1

We want to find in T extensions of occurrences of P1 in T ′, which approximately match
some rotation of P . Consider only rotations of P of the form Y P1X, where P = P1XY .
Define the set of circular k-mismatch occurrences i of P in T that imply a k-mismatch
standard occurrence of P1 in a substring T ′ = T [a . . b] as follows (such occurrences are
anchored in (P1, T ′)):

Anchoredk(P, T, P1, T ′) = { i : T (i) =k Y P1X, P = P1XY, i + |Y | − a ∈ Occk(P1, T ′)}.

Our algorithms compute a superset of Anchoredk(P, T, P1, T ′) that may also contain other
circular k-mismatch occurrences of P in T (some of the ones that contain a k-mismatch
occurrence of P2). Let A = Occk(P1, T ′), and recall that this refers to standard k-mismatch
occurrences.

2.1 Few k-mismatch Occurrences of the Sample: |A| = O(k)
We assume that |A| = O(k). Let us denote by PairMatchk(T, P, i, j) the set of all circular
k-mismatch occurrences of P in T such that position i in T is aligned with position j in P :

PairMatchk(T, P, i, j) = {p ∈ [i−m+1 . . i] : T (p) =k rotx(P ), i−p ≡ j −x (mod m)}.

In particular PairMatchk(T, P, i, 0) is the set of circular k-mismatch occurrences of P such
that the first position of P is aligned with position i in T .

The following lemma was shown without explicitly mentioning the PILLAR model.

▶ Lemma 7 ([14, see Lemma 10]). PairMatchk(T, P, i, j) can be computed in O(k) time in
the PILLAR model for any given k, i, j, with the output represented as O(k) intervals.

▶ Lemma 8. Given A = Occk(P1, T ′) of size O(k), a superset of Anchoredk(P, T, P1, T ′),
represented as O(k2) intervals, can be computed in O(k2) time in the PILLAR model. The
computed superset contains only circular k-mismatch occurrences of P in T .

Proof. Suppose that T ′ = T [a . . b]. We then have

Anchoredk(P, T, P1, T ′) ⊆
⋃
i∈A

PairMatchk(T, P, i + a, 0) ⊆ CircOcck(P, T ).

By the hypothesis |A| = O(k), the result, represented as a union of O(k2) intervals, can be
computed in O(k2) time in the PILLAR model by means of Lemma 7. ◀

2.2 Many k-mismatch Occurrences of the Sample: |A| > 864k

We assume that |A| = |Occk(P1, T ′)| > 864k. By [15], these k-mismatch occurrences imply
approximate periodicity in both P1 and the portion of T ′ spanned by k-mismatch occurrences
of P1. We show that, except for O(k2) intervals of circular k-mismatch occurrences of P that
we can compute using O(k) calls to PairMatchk as in Section 2.1, our problem reduces
to matching length-m substrings of an approximately periodic substring V in T and of an

1 When referring to statements of [15], we use their numbering in the full (arxiv) version of the paper.
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approximately periodic substring U in P 2 with aligned approximate periodicity. Afterwards,
testing a match of two length-m substrings for U and V reduces to the test only on positions
breaking periodicity, called misperiods, since the equality on other positions is guaranteed
due to common approximate periodicities. The number of misperiods in U and V is only
O(k), so the complexity of our algorithms, in terms of PILLAR operations, depends only on k.

By Sp we denote the concatenation of p copies of a string S. A string Q is called primitive
if Q = Bp for a string B and a positive integer p implies that p = 1. We introduce the
following problem.

PeriodicSubstringMatch(U, V )
Input: Positive integers m, k, and q, an integer r ∈ [0 . . q), and strings U , V , and Q

such that m ≤ |U |, |V | ≤ 2m, q = |Q|, and U, V are at Hamming distance O(k) from
prefixes of Q∞, (rotr(Q))∞, respectively.
Output: The set of positions p in U for which there exists a position x in V such that
U (p) =k V (x) and p − x ≡ r (mod q).

Our goal is to reduce k-Mismatch CPM in this case to PeriodicSubstringMatch. To
this end, we use the idea of repetitive regions from [15].

▶ Definition 9. A k-repetitive region in a string S of length m is a substring R of S of
length |R| ≥ 3m/8 for which there exists a primitive string Q such that

|Q| ≤ m/(128k) and δH(R, Q∞[0 . . |R|)) = ⌈8k|R|/m⌉.

The following lemma is a simplified version of a lemma from [15] with one repetitive region.

▶ Lemma 10 ([15, see Lemma 3.11]). Given a pattern P of length m, a text T of length
n ≤ 3

2 m, and a positive integer threshold k ≤ m, if the pattern P contains a k-repetitive
region, then |Occk(P, T )| ≤ 864k.

Intuitively, in our main lemma in this section (Lemma 12), we show that if P1 has
many k-mismatch occurrences in T ′, then each circular k-mismatch occurrence of P in T

that is an element of Anchoredk(P, T, P1, T ′) is: (a) either computed in an instance of
PeriodicSubstringMatch; or (b) implies a k-mismatch occurrence of one of at most
two k-repetitive regions of P2P1P2. The occurrences of the second type can be computed
using O(k) calls to PairMatchk by viewing k-repetitive regions as samples and applying
Lemma 10 to bound the number of k-mismatch occurrences.

In the proof of Lemma 12 we use the following theorem from [15]; part 1 follows from [15,
Theorem 3.1] (existence of Q) and [15, Lemmas 3.8, 3.11, 3.14, and 4.4] (computation of Q),
whereas the remaining parts are due to [15, Main Theorem 5].

▶ Theorem 11 ([15]). Assume that we are given a pattern P of length m, a text T of length
n ≤ 3

2 m, and a positive integer threshold k ≤ m. If |Occk(P, T )| > 864k and T starts and
ends with k-mismatch occurrences of P , that is, 0, |T | − m ∈ Occk(P, T ), then:
1. there is a substring Q of P satisfying |Q| ≤ m/(128k) and δH(P, Q∞[0 . . |P |)) < 2k,

which can be computed in O(k) time in the PILLAR model;
2. each element of Occk(P, T ) is a multiple of |Q|;
3. δH(T, Q∞[0 . . n)) ≤ 6k;
4. Occk(P, T ) can be decomposed into O(k2) arithmetic progressions with difference |Q|.
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▶ Lemma 12 (Reduction to PeriodicSubstringMatch). If we have |T ′| ≤
⌊ 3

4 m
⌋

and
|Occk(P1, T ′)| > 864k, then there is a superset of Anchoredk(P, T, P1, T ′) containing circular
k-mismatch occurrences of P in T that is a union of O(k2) intervals and of the output
of PeriodicSubstringMatch with U and V being substrings of T and P 2, respectively.
The intervals and the input to the PeriodicSubstringMatch call can be computed in
O(k2 log log k) time plus O(k2) PILLAR operations.

Proof. We apply Theorem 11 to P1 and the part T ′′ of T ′ spanned by the k-mismatch
occurrences in Occk(P1, T ′), obtaining a short primitive string Q. Consider the occurrence
of P1 at position |P2| of P2P1P2. Let us extend this substring to the right, trying to
accumulate enough mismatches with a prefix of Q∞ in order to reach the threshold specified
in Definition 9, which is Θ(k). In order to compute the next mismatch, it suffices to perform
an LCP query between the remaining suffix of P2P1P2 and some rotation of Q∞. An analogous
process was described in detail in [15, Lemma 4.4], and the fact that the PILLAR model
supports the described LCP queries is shown in [15, Corollary 2.9]. If we manage to accumulate
enough mismatches, we call the resulting k-repetitive region RR. We perform the same
process by extending this occurrence of P1 to the left, possibly obtaining a k-repetitive
region RL. Then, we let V be the shortest substring (P2P1P2)[v . . v′) of P2P1P2 that spans
both RL (or P2P1 if RL does not exist) and RR (or P1P2 if RR does not exist). Let us
observe that V is at distance at most 2 · ⌈8km/m⌉ = 16k from a prefix of (rotr(P )(Q))∞,
where r(P ) = v − |P2| (mod |Q|), by the definition of k-repetitive regions and the fact that
|RR|, |RL| ≤ m. Moreover, obviously, |V | ≤ 2m.

The rotations of P that contain P1 are in one-to-one correspondence with the length-m
substrings of P2P1P2. Each such substring either contains (at least) one of RL and RR

or is contained in V . We now show that we can efficiently compute circular k-mismatch
occurrences of P that imply k-mismatch occurrences of either RL or RR (if they exist) using
the tools that developed in Section 2.1. We focus on RR as RL can be handled symmetrically.
Due to Lemma 10, RR has O(k) k-mismatch occurrences in T ′, and they can be found in
O(k2 log log k) time plus O(k2) PILLAR operations using Theorem 6. For each such occurrence
at some position i of T , we perform a call PairMatchk as in Lemma 8.

We are left with computing elements of Anchoredk(P, T, P1, T ′) corresponding to k-
mismatch occurrences of length-m substrings of V in T in the case where |V | ≥ m. Let us take
the considered occurrence T [a . . b) of T ′′ in T , which is at distance at most 6k from a prefix
of Q∞, and extend it to the right until either of the following three conditions is satisfied:
(a) we reach the end of T ; (b) we have appended ⌈m/2⌉ letters; or (c) the resulting substring
has 18k additional mismatches with the same-length prefix of Q∞. We extend the obtained
substring to the left until either of the following three conditions is satisfied: (a) we reach the
beginning of T ; (b) we have prepended ⌈m/2⌉ letters; or (c) the prepending substring has
18k mismatches with the same-length suffix of Q|T |. We set the obtained substring T [u . . u′)
of T to be U . We observe that |U | ≤ 2m (since ⌊3m/4⌋ ≥ |T ′| > 864k ⇒ m > 1152 and
|U | ≤ |T ′| + 2 ⌈m/2⌉ ≤ 7m/4 + 2) and U is at distance at most 6k + 2 · 18k = 42k from a
prefix of (rotr(T )(Q))∞, where r(T ) = u − a (mod |Q|). If |U | < m, we do not construct the
instance of PeriodicSubstringMatch.

In the call to PeriodicSubstringMatch, we set Q := rotr(T )(Q) and r := (r(P ) −
r(T )) mod |Q|. Now, since Q is primitive, it does not match any of its non-trivial rotations.
Further, as we have at least 128k − 42k − 1 (resp. 128k − 16k − 1) exact occurrences
of Q in any length-m fragment of U (resp. V ), the periodicities must be synchronized
in any circular k-mismatch occurrence. Hence, for any p ∈ Anchoredk(P, T, P1, T ′) that
corresponds to U (p) =k V (x) we must have p + r(T ) ≡ x + r(P ) (mod |Q|), and hence
p − x ≡ r(P ) − r(T ) ≡ r (mod |Q|).
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It suffices to show that there is no position i ∈ Anchoredk(P, T, P1, T ′) such that T (i)

is at distance at most k from a substring of V and [i . . i + m) ̸⊆ [u . . u′). Suppose that
this is the case towards a contradiction, and assume without loss of generality that i < u;
the other case is symmetric. We notice that this can only be the case if we stopped
extending to the left because we accumulated enough mismatches. Further, let the implied
k-mismatch occurrence of P1 start at some position t of T , let x be an integer such that
miny δH(V (y), T (i)) = δH(V (x), T (i)), and let F be the length-(t − i) suffix of Q|T |, i.e.,
Q|T |[|T | · |Q| − (t − i) . . |T | · |Q|). Then, via the triangle inequality, we have

δH(V (x), T (i)) ≥ δH(V (x)[0 . . t − i), T [i . . t))

≥ δH(T [i . . t), F ) − δH(F, V (x)[0 . . t − i)) ≥ 18k − 16k > k,

thus obtaining a contradiction. This completes the proof of this lemma. ◀

2.3 The Reporting Version of k-Mismatch CPM
In this section, we give a solution to PeriodicSubstringMatch. Let us recall the notion
of misperiods that was introduced in [14].

▶ Definition 13. A position a in S is a misperiod with respect to a substring Q of S if
S[a] ̸= Q∞[a]. We denote the set of misperiods by Misp(S, Q).

In O(k) time in the PILLAR model we can compute the sets I = Misp(U, Q) and J =
Misp(V, rotr(Q)). This is due to [15, Corollary 2.9], which allows us to answer queries of
the form LCP(S[i . . j], Q∞[a . . b]) in O(1) time in the PILLAR model. For an integer z, let us
denote Wz = [z . . z +m) (a window of size m). We define Mispers(i, j) = |Wi ∩I|+ |Wj ∩J |.

The following problem is a simpler version of PeriodicSubstringMatch that was
considered in [14]. (Actually, [14] considered a slightly more restricted problem which required
that no two misperiods in U (p) and V (x) are aligned and computed a superset of its solution
that corresponds exactly to the statement below.)

PeriodicPeriodicMatch(U, V )
Input: Same as in PeriodicSubstringMatch
Output: The set of positions p in U for which there exists a position x in V such that
U (p) =k V (x), p − x ≡ r (mod q), and Mispers(p, x) ≤ k.

For an integer set A and an integer r, let A ⊕ r = {a + r : a ∈ A}. An interval chain for
an interval I and non-negative integers a and q is a set of the form I ∪ (I ⊕ q) ∪ (I ⊕ 2q) ∪
· · · ∪ (I ⊕ aq). Here q is called the difference of the interval chain.

▶ Lemma 14 ([14, Lemma 15]). Given sets I = Misp(U, Q) and J = Misp(V, rotr(Q)), we
can compute in O(k2) time a solution to PeriodicPeriodicMatch represented as O(k2)
interval chains, each with difference q.

Next we observe that if U (p) =k V (x), then either some two misperiods in U (p) and V (x)

are aligned, or the total number of misperiods in these substrings is at most k.

▶ Observation 15. We have PeriodicSubstringMatch(U, V ) =

PeriodicPeriodicMatch(U, V ) ∪
⋃

i∈I, j∈J

PairMatchk(U, V, i, j).
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By the observation, there are O(k2) instances of PairMatchk, each taking O(k) time
in the PILLAR model, and PeriodicPeriodicMatch can be solved in O(k2) time. This
results in total time complexity O(k3) for PeriodicSubstringMatch. Together with the
previous reductions in Lemmas 8 and 12, this leads to Theorem 1. We only need to transform
the output from a union of intervals and interval chains to a list of circular k-mismatch
occurrences without duplicates. A full proof of Theorem 1 can be found in the full version.

2.4 A Faster Algorithm for the Decision Version of k-Mismatch CPM
Two aligned misperiods can correspond to zero or one mismatch, while two misaligned
misperiods always yield two mismatches. Let us recall that I = Misp(U, Q) and J =
Misp(V, rotr(Q)). We define the following mismatch correcting function:

∇(i, j) =


0 if (i, j) /∈ I × J, otherwise:
1 if U [i] ̸= V [j],
2 if U [i] = V [j].

This function corrects surplus mismatches. Let Surplus(i, j) =
∑m−1

t=0 ∇(i + t, j + t).

Decision PeriodicSubstringMatch(U, V )
Input: Same as before, with the sets I, J stored explicitly.
Output: Any position p ∈ [0 . . |U | − m] such that Mispers(p, x) − Surplus(p, x) ≤ k for
some x ∈ [0 . . |V | − m] such that p − x ≡ r (mod q).

We consider an (|U | − m + 1) × (|V | − m + 1) grid G. The δ-th diagonal in Z2 consists
of points (i, j) that satisfy i − j = δ. It is called an essential diagonal if δ = i − j for some
i ∈ I, j ∈ J and δ ≡ r (mod q). A point (i, j) on an essential diagonal is called essential if
i ∈ I and j ∈ J . Let us observe that only essential points influence the function Surplus, and
the number of these points is O(k2). This implies the following lemma using a simple 1D
sweeping algorithm.

▶ Lemma 16 (Compact representation of Mispers and Surplus). In O(k2 log log k) time we
can:
(a) Partition the grid G by O(k) vertical and O(k) horizontal lines into O(k2) disjoint

rectangles such that for each point (i, j) in a single rectangle the value Mispers(i, j) is
the same. Each rectangle stores the value Mispers(i, j) for an arbitrary point (i, j) that it
contains.

(b) Partition all essential diagonals in G into O(k2) pairwise disjoint diagonal segments,
such that for each point (i, j) in a single segment the value Surplus(i, j) is the same.
Each segment stores the value Surplus(i, j) for an arbitrary point (i, j) that it contains.

Proof. Partitioning (a): We partition the first axis (second axis) into axis segments such
that for all i in the same segment, the set Wi ∩ I (Wj ∩ J , respectively) is the same. Then
we create rectangles being Cartesian products of the segments.

Partitioning of an axis is performed with a 1D sweep; we describe it in the context of the
first axis. For each i ∈ I, we create an event at position i − m + 1 where the misperiod i is
inserted and an event at position i + 1 (if i + 1 ≤ |U | − m + 1) where it is removed. We can
now sort all events in O(k log log k) time using integer sorting [28] and process them in order,
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storing the number of misperiods. For all i in a segment without events, the set Wi ∩ I is
the same. We obtain O(k) segments on each axis which yields O(k2) rectangles. Part (a)
works in O(k2) time.

Partitioning (b): First we bucket sort essential points by (essential) diagonals using
integer sorting. On each essential diagonal, we sort the essential points bottom-up and
perform the same kind of 1D sweep as in (a), using ∇ to compute the weights of the events.
The whole algorithm works in O(k2 log log k) time. ◀

We assume that the grid G is partitioned by selected horizontal and vertical lines into disjoint
rectangles, called cells. These cells and some diagonal segments are weighted. Let us denote
by cell(i, j) and diag(i, j) the weight of the cell and the diagonal segment containing (i, j),
respectively. In the following problem, we care only about points on diagonal segments.

DiagonalSegments
Input: A grid partitioned by O(k) vertical and O(k) horizontal lines into O(k2) weighted
rectangles, called cells, and O(k2) pairwise disjoint weighted diagonal line segments, all
parallel to the line that passes through (0, 0) and (1, 1).
Output: Report a point (x, y) ∈ Z2 on some diagonal line segment with minimum
val(x, y) := cell(x, y) + diag(x, y).

Figure 2 The weight of the distinguished cell is equal to Mispers(i, j) for all points (i, j) in that
cell. The diagonals are partitioned into segments. The weight of a single diagonal segment is equal
to −Surplus(i, j) for all points (i, j) that lie on that segment. In DiagonalSegments we are to find
any point (i, j) on some diagonal that minimizes the sum of the weight of its cell and of its diagonal
segment, i.e., Mispers(i, j) − Surplus(i, j). To this end, it suffices to consider endpoints of diagonal
segments and crossings of diagonal segments with rectangles’ boundaries.

An intuition of the solution to DiagonalSegments is shown in Figure 2.

▶ Lemma 17. The DiagonalSegments problem can be solved in O(k2 log k/ log log k) time.

Proof. A sought point (x, y) that minimizes val(x, y) either (1) is an endpoint of a diagonal
segment or (2) lies on an intersection of a diagonal segment and an edge of a cell.

▷ Claim 18. Given O(p) horizontal lines and O(p) points, one can compute for each point
the nearest line above it in O(p log log p) time.

Proof. We create a list of integers containing the vertical coordinates of all queried points
and of all lines. Then we sort all of them in O(p log log p) time. The required answers can
then be retrieved by a simple traversal of the sorted list. ◁
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In case (1) it suffices to identify, for all end points of all diagonal segments, the cells
which they belong to. Let us assume that vertical and horizontal lines partition the grid into
columns and rows, respectively. Then each cell can be uniquely identified by its column and
row. With Claim 18 we can compute in O(k2 log log k) time, for all queried points, the rows
they belong to; the computation of columns is symmetric.

In case (2), let us consider intersections with horizontal edges; the intersections with
vertical edges can be handled symmetrically. Assume x is the horizontal coordinate. We
perform an affine transformation of the plane (x, y) 7→ (y − x, y) after which diagonal line
segments become vertical, but horizontal line segments remain horizontal. The sought points
can be computed using the following claim in O(k2 log k/ log log k) time.

▷ Claim 19. Given s vertical and horizontal weighted line segments such that no two line
segments of the same direction intersect, an intersection point of a vertical and a horizontal
line segment with minimum total weight can be computed in O(s log s/ log log s) time.

Proof. We perform a left-to-right line sweep. The events in the sweep are the beginnings and
endings of horizontal line segments and vertical line segments. The events can be sorted by
their x-coordinates in O(s log log s) time with integer sorting. The horizontal line segments
are stored using a dynamic predecessor data structure [46], and their weights in the same
order are stored in a dynamic RMQ data structure of size O(s) that supports insertions,
deletions, and range minimum queries in amortized O(log s/ log log s) time [11]. This way,
when considering a vertical line segment, we can compute the minimum-weight horizontal
line segment that intersects it in O(log s/ log log s) time. ◁

This concludes the solution to DiagonalSegments. ◀

▶ Theorem 2. The decision version of k-Mismatch CPM for strings over an integer alphabet
can be solved in O(n + (n/m) · k2 log k/ log log k) time.

Proof. Assume that P1 is the sample. We use the so-called standard trick that covers T by
a collection of its substrings T ′ of length

⌊ 3
4 m

⌋
starting at positions divisible by

⌊ 1
4 m

⌋
. The

following computations are performed for each T ′.
In this paragraph all complexities are stated in the PILLAR model. We use Theorem 6 to

compute a representation of the set A = Occ(P1, T ′). If |A| ≤ 864k, we can use Lemma 8 that
outputs O(k2) intervals of circular k-mismatch occurrences in O(k2) time. Otherwise, we
apply Lemma 12 which in O(k2 log log k) time outputs O(k2) intervals of circular k-mismatch
occurrences and returns an instance of PeriodicSubstringMatch. Next we use the
geometric interpretation of PeriodicSubstringMatch. The weight of a cell is the value
Mispers(i, j) common to all points (i, j) in this cell. Similarly, the weight of a diagonal
segment equals −Surplus(i, j), common to all points in this segment (it is the number of
surplus misperiods which we have to subtract). These values are computed in O(k2 log log k)
time in Lemma 16. Now, the decision version of the PeriodicSubstringMatch problem
is reduced to the computation of the minimum value of Mispers(i, j) − Surplus(i, j), which
corresponds to the sum of weights of a cell and diagonal segment meeting at the same point
(i, j). The decision version of PeriodicSubstringMatch can be reduced in O(k2 log log k)
time to one instance each of the DiagonalSegments (if the sought point is on a diagonal
segment) and PeriodicPeriodicMatch (in the opposite case) problems. The thesis follows
from Lemmas 14 and 17. ◀

▶ Remark 20. Using this geometric approach, the reporting version of k-Mismatch CPM can
also be solved in O(n + (n/m) · k2 logO(1) k + k · Output) time.
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3 k-Edit CPM

In the proof of the following lemma, we rely on the Landau–Vishkin algorithm [38]; cf.
Figure 3a for an illustration. The details can be found in the full version.

▶ Lemma 21. Given a text T of length n, a pattern P of length m, and an integer k > 0,
we can compute in O(k2) time in the PILLAR model an O(k2)-size representation of the edit
distance between all pairs of prefixes of T and P that are at edit distance at most k, that is,
the set LV := {(a, b, d) ∈ (0 . . n] × (0 . . m] × [0 . . k] : δE(T [0 . . a), P [0 . . b)) = d ≤ k}. Our
representation of LV consists of O(k2) sets of the form {(a + ∆, b + ∆, d) : ∆ ∈ [0 . . x)}.

T
a b a a a b a a

P

a
a
b
a
a
b
a
a

0
1

2
2

2
2

2
2

1
1

2
2

2
21

1
1

1
2

2
2

2
2

2

(a) Example for Lemma 21:
T = abaaabaa, P = aabaabaa, k = 2.

P2 P1

T

i j

a∆

I

I ′

b∆ α

I

|P |I ′

(b) Notation used in the proof of Lemma 22.

Figure 3 Illustrations for Lemmas 21 and 22.

▶ Lemma 22. Given a text T of length n, a pattern P of length m, an integer k > 0, and
a position j of T , after O(nk2) preprocessing we can compute in O(k2) time in the PILLAR
model all positions i ∈ CircOcck(P, T )∩[0 . . j] such that δE(T [i . . j), P2)+δE(T [j . . r], P1) ≤ k

for some position r of T and some strings P1 and P2 that satisfy P = P1P2, represented as
O(k2) intervals, possibly with duplicates.

Proof. We start with the calculation of the compact representation of LV from Lemma 21 for
the reversals of strings T [0 . . j) and P , and k. Next, for each element {(a+∆, b+∆, d) : ∆ ∈ I}
of this compact representation, we will calculate an interval I ′ ⊆ I such that positions from
{j − a − ∆ : ∆ ∈ I ′} are in CircOcck(P, T ).

From the definition of LV we know that for any ∆ ∈ I, i = j − a − ∆ and P2 =
P [m − b − ∆ . . m), we have δE(T [i . . j), P2) = d. All we have to do is to verify if there exists
P1 fulfilling requirements of the lemma.

For each k′ ∈ [0 . . k], we compute LPrefk′ in O(nk) time [37]. Then, the maximal possible
length of P1 (within our edit distance budget) is α := LPrefk−d[j]. Now, we need to define
I ′ in such a way that it corresponds to pairs (P1, P2) with total length |P |, that is, we set
I ′ := {∆ ∈ I : b+∆+α ≥ m}. The notation used in this proof is illustrated in Figure 3b. The
most time consuming part of this procedure is the calculation of the compact representation
of LV , which takes O(k2) time in the PILLAR model by Lemma 21. ◀

By applying the above lemma for P , T , and all positions j of T , and merging the obtained
O(nk2) intervals using bucket sort, we obtain Theorem 3.
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Let us now move to the decision version of k-Edit CPM. For any integer k ≥ 0, we define
array LSufk[0 . . n] such that LSufk[i] = t if and only if P [m − t . . m) is the longest suffix of P

at edit distance at most k from a suffix of T [0 . . i). We make the following easy observation.

▶ Observation 23. The pattern P has a circular k-edit occurrence in the text T if and only
if LPrefk′ [j] + LSufk−k′ [j] ≥ m holds for some j ∈ [0 . . n] and k′ ∈ [0 . . k].

Due to Observation 23, Theorem 4, which is proved in Section 4, yields Theorem 5.

4 An Algorithm for All-k-LPAM: Proof of Theorem 4

We will show how to compute, given a position p in the text, values LPrefk′ [i] for all k′ ∈ [0 . . k]
and i ∈ [p . . min{p + k, n + 1}) in O(k2 log3 k) time in the PILLAR model. This will yield the
desired solution to All-k-LPAM by taking values of p which are multiples of k.

The deletion distance δD(U, V ) of two strings U and V is the minimum number of letter
insertions and deletions required to transform U to V ; in comparison to edit distance, substi-
tutions are not allowed. For a string S, by S$ we denote the string S[0]$S[1]$ · · · S[|S|−1]$.
By the following known fact, we can easily transform the pattern and the text, doubling k,
and henceforth consider the deletion distance instead of the edit distance.

▶ Fact 24. For any two strings U and V over an alphabet Σ that does not contain $, we
have 2 · δE(U, V ) = δD(U$, V$).

Note that an LCP query on suffixes of U$ and V$ trivially reduces in O(1) time to an LCP
query on suffixes of U and V .

▶ Definition 25. For two strings U and V and an integer range I, we define the alignment
graph G(U, V, I) as the weighted undirected graph over the set of vertices Z2 with the following
edges for each (a, b) ∈ Z2:

(a, b) ↔ (a + 1, b) with weight 1, (a, b) ↔ (a, b + 1) with weight 1,
(a, b) ↔ (a + 1, b + 1) with weight 0 unless a ∈ [0 . . |U |), b ∈ [0 . . |V |), U [a] ̸= V [b], and
b − a ∈ I.

For an alignment graph G(U, V, I), there are |I| diagonals on which diagonal edges may
be missing. Intuitively, everything outside these diagonals is considered as a match.

▶ Observation 26 ([16, see Lemma 8.5]). For all fragments U [a . . a′) and V [b . . b′) of U and
V , respectively, δD(U [a . . a′), V [b . . b′)) is the length of the shortest (a, b)⇝ (a′, b′) path in
G(U, V,Z).

Let G := G(P, T, [p − k . . p + 2k)). For each t ∈ [0 . . m], we define a (3k + 2) × (3k + 2)
distance matrix Dt such that Dt[i, j] is the length of the shortest path between (0, i+p−k−1)
and (t, t + j + p − k − 1) in the alignment graph G. Let us recall that a matrix M is a Monge
matrix if for every pair of rows i < j and every pair of columns ℓ < r, M [i, ℓ] + M [j, r] ≤
M [i, r] + M [j, ℓ]. The planarity of G and the fact that all vertices of the considered shortest
paths lie in [0 . . t] × Z, imply the following.

▶ Observation 27. For every t ∈ [0 . . m], the matrix Dt is a Monge matrix.

Let us recall that a permutation matrix is a square matrix over {0, 1} that contains exactly
one 1 in each row and in each column. A permutation matrix P of size s × s corresponds to
a permutation π of [0 . . s) such that P [i, j] = 1 if and only if π(i) = j. For two permutations
π1, π2 and their corresponding permutation matrices P1, P2, by ∆(π1, π2) = ∆(P1, P2) we
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denote a shortest sequence of transpositions f1, . . . , fq of neighboring elements such that
fq ◦ · · · ◦ f1 ◦ π1 = π2. For an s × s matrix A, we denote by AΣ an (s + 1) × (s + 1) matrix
such that

AΣ[i, j] =
∑
i′≥i

∑
j′<j

A[i′, j′], for i, j ∈ [0 . . s].

The lemma below follows readily from the tools developed in [16, Sections 8, 9] which, in
turn, are based on the ideas of Tiskin [44, 45].

▶ Lemma 28.
(a) Let t ∈ [0 . . m], i ∈ [p . . p + k), j ∈ [i − k . . i + k] ∩ [i − t . . n − t], and k′ ∈ [0 . . k]. Then,

δD(T [i . . j + t), P [0 . . t)) ≤ k′ if and only if Dt[i − p + k + 1, j − p + k + 1] ≤ k′.
(b) For each t ∈ [0 . . m], there is a (3k+1)×(3k+1) permutation matrix Pt such that Dt[i, j] =

2P Σ
t [i, j] + i − j holds for all i, j ∈ [0 . . 3k + 1]. P0 is an identity permutation matrix.

A sequence ∆(P0, P1), . . . , ∆(Pm−1, Pm) contains at most 3k(3k + 1)/2 transpositions
of neighboring elements in total and all its non-empty elements can be computed in
O(k2 log log k) time plus O(k2) LCP queries on pairs of suffixes of P and T .

In the following lemma, whose proof is omitted here, we extend a known result on answering
submatrix maximum queries on Monge matrices [35] (see also [25]) to a dynamic (the matrix
changes by sub-row increments) and partially persistent (we need to be able to query all
previously created matrices) setting. Sub-column queries are sufficient for our purposes; such
queries were considered as a simpler case also in [35, 25]. We further consider minimum
queries instead of maximum queries, which is a fairly straightforward change.

▶ Lemma 29. Let M0 = M be an s × s Monge matrix such that each entry of M0 can be
retrieved in O(1) time. We consider a sequence of operations:

A sub-row increment takes the most recent matrix Mi and creates a matrix Mi+1 resulting
after this operation.
A sub-column minimum query extracts the minimum in a given sub-column of a specified
previously created matrix Mi.

The data structure for M0 can be initialized in O(s log2 s) time. If each created matrix is a
Monge matrix, then each incrementation can be performed in O(log3 s) time and each query
can be answered in O(log2 s) time.

Proof of Theorem 4. Let us recall that we make all computations for O(n/k) values of p.
We will store Dt for t ∈ [0 . . m] using the data structure of Lemma 29. The initialization of
D0 takes O(k log2 k) time; we have D0[a, b] = |a − b|. Each transposition in the maintained
matrix Pt corresponds to a sub-column increment in Dt. Note that, for each t ∈ [0 . . m], Dt

is a Monge matrix due to Observation 27. Any intermediate matrix D is also Monge as it
satisfies D[i, j] = 2P Σ[i, j] + i − j for a (maintained) permutation matrix P . Thus, for each
t such that ∆(Pt, Pt+1) ̸= ∅, we can update the maintained Monge matrix as necessary using
Lemma 29. By Lemma 28(b), the number of updates will be O(k2) and the updates can be
computed in O(k2 log log k) time after O(n)-time preprocessing for LCP queries. The updates
are performed in O(k2 log3 k) total time.

We are to compute, for all k′ ∈ [0 . . k] and i ∈ [p . . p + k), the length of the longest prefix
of P that matches a prefix of T [i . . n) with deletion distance at most k′. By Lemma 28(a)
it suffices to find the maximum t ∈ [0 . . m] such that min{Dt[i − p + k + 1, j − p + k + 1] :
j ∈ [i − k . . i + k] ∩ [i − t . . n − t]} ≤ k′. To this end, we apply binary search with
O(log k) steps on the set of all t that satisfy ∆(Pt, Pt+1) ̸= ∅, using O(log2 k)-time queries
of Lemma 29. Thus, all binary searches take O(k2 log3 k) time in total. The total time is
O(n + (n/k) · k2 log3 k) = O(nk log3 k). ◀
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5 Conditional Hardness of Approximate CPM

We consider the following problem where the number of allowed mismatches is unbounded.

Mismatch-CPM
Input: A text T of length n and a pattern P of length m.
Output: An array CPM[0 . . n − m] with CPM[i] = min{k ≥ 0 : P ≈δH

k T [i . . i + m)}.

In jumbled indexing, we are to answer pattern matching queries in the jumbled (abelian)
sense. More precisely, given a Parikh vector of a pattern that specifies the quantity of each
letter, we are to check if there is a substring of the text with this Parikh vector. In the case
of a binary text, the problem of constructing a jumbled index is known to be equivalent (up
to a log n-factor in the case where a concrete substring needs to be identified; see [20]) to
constructing the following data structure.

Given a text X of length n over alphabet {0, 1}, for each t ∈ [1 . . n] compute the values:

mint := min


i+t−1∑

j=i

X[j] : i ∈ [0 . . n − t]

 , maxt := max


i+t−1∑

j=i

X[j] : i ∈ [0 . . n − t]

 .

For a few years since its introduction [19] the problem of constructing a binary jumbled
index in O(n2−ε) time for ε > 0 was open. Chan and Lewenstein [13] settled this question
affirmatively by proposing an O(n1.859)-time randomized construction; very recently it was
improved to O(n1.5 logO(1) n) time [18]. We make the following reduction.

▶ Theorem 30. If Mismatch-CPM on binary strings can be solved in S(n) time, then the
BJI can be constructed in O(n + S(3n)) time.

Proof. We show how to compute maxt for all t ∈ [1 . . n]. For computing mint, we can negate
all the letters of X. An illustration of our reduction is provided in Figure 4.

X = 0100101001001

min1 = 0 max 1 = 1

min2 = 0 max 2 = 1

min3 = 1 max 3 = 2

min4 = 1 max 4 = 2

min5 = 1 max 5 = 2

min6 = 2 max 6 = 3

· · ·

n = 13 t = 6 i = n− t = 7

T = 111111111111100000000000000000000000000

CPM[i] = t−max t + j −max t = CPM[7] = 5

j = 5

P = 01001010010010000000000000

0 387

10100100100000000000000100rot4(P ) =

Figure 4 CPM[7] = 5 corresponds to a Hamming distance of 5 between T [7 . . 7 + |P |) and some
rotation of P , namely of rot4(P ).

It suffices to consider an instance of Mismatch-CPM with P = X0n, T = 1n02n. A
prefix of a rotation of P of length at most n is also a substring of a string 0nX0n. For each
i ∈ [0 . . n), to compute CPM[i] we need to choose a substring of 0nX0n of length t = n − i

with the most number of 1s as the prefix of some rotation of P . Indeed, if U is this prefix and
P ′ is this rotation, that is, P ′ = UV , the remaining 0s in U and 1s in V will correspond to
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mismatches between P ′ and T [i . . i + |P |). The maximum number of 1s among the substrings
of 0nX0n is the same as the maximum for X since it is never worse to choose a length-t
prefix (suffix) of X than a shorter prefix (suffix) and a part from 0n.

Thus, we have CPM[i] = t − maxt + j − maxt, where j is equal to the number of 1s in X.
Hence, maxt = (t + j − CPM[n − t])/2. These values can be recovered from the output of
Mismatch-CPM in linear time. ◀

The following theorem shows how to compute the edit distance of two strings with the
use of an algorithm for the decision version of k-Edit CPM, and thus also that a strongly
subquadratic such algorithm would refute SETH [34]. The proof is omitted in this version.

▶ Theorem 31. If k-Edit CPM on quarternary strings can be solved in O(n2−ε) time for
some constant ε > 0, then the edit distance of two binary strings each of length at most n

can be computed in O(n2−ε log n) time.
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Abstract
We investigate the Euclidean d-Dimensional Stable Roommates problem, which asks whether
a given set V of d · n points from the 2-dimensional Euclidean space can be partitioned into n

disjoint (unordered) subsets Π = {V1, . . . , Vn} with |Vi| = d for each Vi ∈ Π such that Π is stable.
Here, stability means that no point subset W ⊆ V is blocking Π, and W is said to be blocking Π
if |W | = d such that

∑
w′∈W

δ(w, w′) <
∑

v∈Π(w) δ(w, v) holds for each point w ∈ W , where Π(w)
denotes the subset Vi ∈ Π which contains w and δ(a, b) denotes the Euclidean distance between
points a and b. Complementing the existing known polynomial-time result for d = 2, we show
that such polynomial-time algorithms cannot exist for any fixed number d ≥ 3 unless P=NP. Our
result for d = 3 answers a decade-long open question in the theory of Stable Matching and Hedonic
Games [18, 1, 10, 26, 21].
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1 Introduction

We study the computational complexity of a geometric and multi-dimensional variant of the
classical stable matching problem, called Euclidean d-Dimensional Stable Roommates
(Euclid-d-SR). This problem is to decide whether a given set V of d · n agents, each
represented by a point in the two-dimensional Euclidean space R2, has a d-dimensional
stable matching (in short, d-stable matching). Here, each agent x ∈ V has a preference
list over all (unordered) size-d agent sets containing x which is derived from the Euclidean
distances between the points. More precisely, agent x prefers subset S to subset T if the
sum of Euclidean distances from x to S is smaller than the sum of the distances to T . We
call preferences over subsets of agents which are based on the sum of Euclidean distances
Euclidean preferences. A d-dimensional matching is a partition of V into n disjoint agent
subsets Π = {V1, . . . , Vn} with |Vi| = d for all i ∈ {1, . . . , n}. In this way, each agent v ∈ V

is assigned to a subset in Π. An agent subset V ′ is blocking the d-dimensional matching Π
if |V ′| = d and each agent in V ′ prefers V ′ to its “assigned” agent subset in Π. A d-stable
matchings is a d-matchings that is not blocked by a subset of agents of size d.
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When allowing agents to have arbitrary preferences, we arrive at the d-dimensional
Stable Roommates (d-SR) problem with 2-SR being equivalent to the classical Stable
Roommates problem [14, 17]. It is well-known that not every instance of Stable Room-
mates admits a 2-stable matching, but deciding whether there exists one is polynomial-time
solvable [17]. Fortunately, if we restrict the preferences to be Euclidean, then a 2-stable
matching always exists and it can be found in polynomial time: Iteratively pick two remaining
agents who are closest to each other and match them [1]. One may be tempted to apply
this greedy approach to the case when d = 3. However, this would only work if it can
find and match a triple of agents in each step such that this triple is the most preferred
one of all three. Since such a “most-preferred” triple may not always exist, the prospects
become less clear. Indeed, Arkin et al. [1] showed that not every instance of Euclid-3-SR
admits a 3-stable matching. To the best of our knowledge, nothing about the existence of
Euclid-d-SR is known for any fixed d ≥ 4. In particular, the no instance by Arkin et al. will
not work for any fixed d ≥ 4. Arkin et al. left open the computational complexity of finding a
3-stable matching. The same question has been repeatedly asked since then [18, 21, 10, 26, 6].
Nevertheless, d-SR (i.e., for general preferences) has been known to be NP-complete for
d = 3. Hence, it is of particular importance to search for natural restricted subcases, e.g.,
under Euclidean preferences, which may allow for efficient algorithms.

Our contribution. In this work, we aim at settling the computational complexity of Euclid-
d-SR for all fixed d ≥ 3. Arkin et al. [1] showed that there is always a 3-dimensional matching
which is approximately stable, which sparks hope for a polynomial-time algorithm for d = 3.
We destroy such hope by showing that Euclid-3-SR is NP-hard. We achieve this by reducing
from an NP-complete planar variant of the Exact Cover by 3 Sets problem, where we
make use of a novel chain gadget (see the orange and blue parts in Figure 3) and a star
gadget (see Figure 1) which is adapted from the no-instance of Arkin et al. See the idea part
in Section 3 for more details.

The same construction does not work for d ≥ 4 since a no-instance for Euclid-3-SR does
not remain a no-instance for Euclid-4-SR. However, we manage to derive two extended star
structures, one for odd d and the other for even d (see the right and left figures of Figure 4,
respectively), adapt the remaining component gadgets to show hardness for all fixed d ≥ 4.
Together, we show the following.

▶ Theorem 1. Euclid-d-SR is NP-complete for every fixed d ≥ 3.

Related work. Knuth [19] proposed to generalize the well-known Stable Marriage
problem (a bipartite restriction of the Stable Roommates problem) to the 3-dimensional
case. There are many such generalized variants in the literature, including the NP-complete
3-SR problem [18]. Huang [16] strengthen the result by showing that 3-SR remains NP-hard
even for additive preferences. Herein, each agent x ∈ V has cardinal preferences µx : V \
{x} → R over all other agents such that x prefers {x, s1, s2} to {x, t1, t2} if and only if
µx(s1) + µx(s2) > µx(t1) + µx(t2). Deineko and Woeginger [10] strengthen the result of
Huang by showing that 3-SR remains NP-hard even for metric preferences: µx(y) = µy(x) ≥
0 and µx(y) + µy(z) ≤ µx(z) such that x prefers {x, s1, s2} to {x, t1, t2} if and only if
µx(s1) + µx(s2) < µx(t1) + µx(t2). It is straightforward to see that Euclidean preferences
are metric preferences and metric preferences are additive. We thus strengthen the results
of Deineko and Woeginger, and Huang, by showing that the hardness remains even for
Euclidean preferences. Recently, McKay and Manlove [22] strengthen the result of Huang [16]
by showing that the NP-hardness remains even if the cardinal preferences are binary, i.e.,
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µx(y) ∈ {0, 1} for all other agents y. This result is not comparable to ours since binary
preferences and Euclidean preferences are not comparable. They also show that 3-SR becomes
polynomial-time solvable when the preferences are binary and symmetric.

Multi-dimensional stable matchings are equivalent to the so-called fixed-size stable cores
in hedonic games [12], where each coalition (i.e., a non-empty subset of agents) in the core
must have the same size, and stability only needs to be guaranteed for any other coalition
of the same size.1 Hence, our NP-hardness result also transfers to the case of finding a
fixed-size stable core in the scenario where the agents in the hedonic game have Euclidean
preferences. Hedonic games have been studied under graphical preference models [11, 24],
where there is an underlying social network (a directed graph) such that agents correspond
to the vertices in the graph. The general idea is to assume that agents prefer to be with
their own out-neighbors more than non-out-neighbors. The Euclidean preference model is
related to the graphical preference model where the underlying graph is planar. However,
the Euclidean model is more fine-grained and assumes that the intensity of the preferences
also depends on the distance of the agents. Notably, under the graphical model, a stable core
always exists and it can be found in linear time [11], but verifying whether a given partition
is stable is NP-hard [7]. Hedonic games with fixed-size coalitions have been studied for
other solution concepts such as strategy-proofness [27], Pareto optimality [9], and exchange
stability [3].

Other generalized variants include the study of 3-stable matching with cyclic prefer-
ences [13, 4, 20], with preferences over individuals [18], and the study of the higher-dimensional
case [6] and of other restricted preference domains [5]. We refer to the textbook by Man-
love [21] for more references.

Paper outline. In Section 2, besides introducing necessary concepts and notations used
throughout the paper, we describe a crucial star-structured instance of Euclid-3-SR (see
Example 2), which serves as a tool of our NP-hardness reduction. The proof of Theorem 1
is divided into two sections: In Section 3, we consider the case of d = 3 and show-case in
detail how to combine the star-structured instance with two new gadgets, one for the local
replacement and one for the enforcement, to obtain NP-hardness. In Section 4, we show how
to carefully adapt the star-structured instance (which only works for d = 3) and modify the
reduction to show hardness for any fixed d ≥ 4. We conclude in Section 5. Due to space
constraints, some figures, examples, and (part of) the proofs for results marked by ⋆ are
deferred to the full version [8].

2 Preliminaries

Given a non-negative integer t, we use “[t]” (without any prefix) to denote the set {1, . . . , t}.
Throughout the paper, if not stated explicitly, we assume that ε and εd are small fractional
values with 0 < ε < 0.001 and 0 < εd < 1

1000d , where d ≥ 3. By “close to zero” we mean a
value which is smaller than ε and εd.

For each fixed integer d ≥ 2, an instance of Euclidean d-Dimensional Stable
Roommates (Euclid-d-SR) consists of a set V = {1, . . . , d · n} of d · n agents and an
embedding E : V → R2 of the agents into 2-dimensional Euclidean space. We call a non-
empty subset V ′ ⊆ V of agents a coalition. The preference list ⪰x of each agent x ∈ V over

1 A stable core is a partition Π of the agents into disjoint coalitions such that no subset of agents would
block the partition Π by forming its own new coalition.

ESA 2022
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all possible size-d coalitions containing x is derived from the sum of the Euclidean distances
from x to the coalition. More precisely, for each two size-d coalitions S = {x, a1, . . . , ad−1}
and T = {x, b1, . . . , bd−1} containing x we say that x weakly prefers S to T , denoted as
S ⪰x T , if the following holds:∑

j∈[d−1]

δ(E(x), E(aj)) ≤
∑

j∈[d−1]

δ(E(x), E(bj)),

where δ(p, q) :=
√

(p[1] − q[1])2 + (p[2] − q[2])2. We use S ≻x T (i.e., x preferring S to T )
and S ∼x T (i.e., x indifferent between S and T ) to refer to the asymmetric and symmetric
part of ⪰x, respectively. To ease notation, for an agent x and a preference list L over a
subset F of size-d coalitions, we use L ≻x · · · to indicate that agent x prefers every size-d
coalition in F over every size-d coalition not in F and her preferences over F are according
to L. Further, we use the agent and her embedded points interchangeably, and the distance
between two agents means the distance between their embedded points. For each agent x

and each coalition S ⊆ V , we use δ(x, S) to refer to the sum of Euclidean distances from x

to each member in S: δ(x, S) =
∑

y∈S δ(x, y).
See the introduction for the definition of d-matchings, blocking coalitions, and d-stable

matchings. Given a d-matching Π and an agent x ∈ V , let Π(x) denote the coalition that
contains x. The problem studied in this paper is defined as follows:

Euclid-d-SR
Input: An agent set V = {1, . . . , d · n} and an embedding E : V → R2.
Question: Is there a d-stable matching?

Note that since stability for each fixed d can be checked in polynomial time, Euclid-d-SR is
contained in NP for every fixed d.

Not every Euclid-3-SR instance admits a 3-stable matching. Arkin et al. [1] provided a
star-structured instance which does not. In Example 2, we describe an adapted variant of
their instance, which is a decisive component of our hardness reduction.

▶ Example 2. Consider an instance which contains at least 12 agents called W = {0, . . . , 11}
where the 12 agents are embedded as given in Figure 1. In the embedding of W \ {10, 11},
the five inner-most points, namely 0 to 4, form a regular pentagon with edge length a. For
each i ∈ {0, . . . , 4}, the three points i, i + 1 mod 5, and i + 5 form a triangle with side
lengths a, b, c such that a < b < c < ℓ, where ℓ denotes the diagonal of the regular pentagon.
Moreover, the angle θ at points i + 1 mod 5, i, i + 5 is at most 90 degrees. This ensures
that the distance between points (i + 1 mod 5) + 5 and i is strictly larger than ℓ (we will use
this fact later). Except for point 5 (marked in red), the closest neighbor of each point i + 5
is i, followed by i + 1 mod 5. Point 5’s two closest neighbors are points 10 and 11 with
a < δ(5, 10) < b and a < δ(5, 11) < b, followed by points 0 and 1. The distance between 10
and 11 is close to zero, with the intention to ensure that every 3-stable matching must match
them together. The distance from 10 (resp. 11) to any agent in W \ {5, 10, 11} is larger than
the diagonal length ℓ while the distance from 10 (resp. 11) to any agent not in W is larger
than δ(5, 10) − ε. Finally, the distance between any agent from W \ {10, 11} to any agent
not from W \ {10, 11} is strictly larger than ℓ.

To specify the embedding of the agents from W , we use the polar coordinate system. We
first fix the embeddings of 5, 10, 11 to ensure the distances between them are as stated above.
Then, we fix points 0 and 1 and the centroid of the regular pentagon to ensure the distances
satisfy a < b < c < ℓ, and the angle θ at points 1, 0, 5 is at most 90 degrees, and the angle
at points 0, 5, j, j ∈ {10, 11}, is more than 90 degrees. Once these points are fixed we can
determine the other points by a simple calculation.
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Figure 1 A star-structured instance adapted from Arkin et al. [1]; see Example 2. We use different
colors to highlight the distances between the points. For instance, the smallest distance between any
two points is a (highlighted in green). We also draw a dashed circle of radius b, centered at point 5
to indicate that points both 10 and 11 are with distance smaller than b to 5.

The instance of Arkin et al. [1] embeds the two extra points 10 and 11 differently than
ours (see Example 2). Hence, their instance is a no-instance, while ours may be a yes-instance,
provided some specific triple is matched together, formulated as follows:

▶ Lemma 3. Every 3-stable matching of an instance satisfying the embedding described in
Example 2 must contain triple {5, 10, 11}.

Proof. Towards a contradiction, suppose that Π is a 3-stable matching with {5, 10, 11} /∈ Π.
We infer that {10, 11} ⊆ Π(10) since otherwise {5, 10, 11} is blocking Π due the following:
δ(5, Π(5)) ≥ min(δ(5, 10), δ(5, 11)) + b > δ(5, {5, 10, 11}), and for each x ∈ {10, 11} it holds
that δ(x, Π(x)) ≥ 2(δ(x, 5) − ε) > δ(x, 5) + δ(10, 11) for any ε > 0. This implies that
{10, 11} ∩ Π(5) = ∅. Next, we observe that there must be a triple in Π that contains the two
agents of at least one pentagon edge as otherwise {2, 3, 7} is blocking: δ(2, Π(2)) ≥ b+c > a+b,
δ(3, Π(3)) ≥ b + c > a + c, and δ(7, Π(7)) ≥ b + ℓ > b + c. Thus, at least one triple in Π
contains the agents of some pentagon edge, say {2, 3}; the other cases are analogous. Let
{2, 3, x} ∈ Π. We distinguish between three subcases:
Case 1: x /∈ {1, 4, 7, 8}. Then, one can verify that {2, 3, 7} is blocking; recall that every

agent not in W \ {2, 3} is at distance larger than ℓ to agent 7.
Case 2: x ∈ {1, 7}. Then, Π(4) = {0, 4, 9} or Π(4) = {0, 4, 8} since otherwise {3, 4, 8}

blocks Π due to: δ(3, Π(3)) ≥ a + min(δ(3, 1), δ(3, 7)) = a + c > a + b, δ(4, Π(4)) > a + c,
δ(8, Π(8)) > b + c (recall that the distance from every agent not in W \ {3, 4} to
agent 8 is larger than ℓ). However, both cases imply that {0, 1, 5} is blocking since
δ(0, Π(0)) ≥ a + c > a + b = δ(0, {0, 1, 5}), δ(1, Π(1)) ≥ a + ℓ > a + c = δ(1, {0, 1, 5}), and
δ(5, Π(5)) ≥ c + ℓ > b + c = δ(5, {0, 1, 5}); recall that Π(5) ∩ {10, 11} = ∅.

Case 3: x ∈ {4, 8}. Then, δ(2, Π(2)) ≥ a + ℓ > a + c. This implies that {0, 1, 6} ∈ Π since
otherwise {1, 2, 6} is blocking Π. However, this implies that {0, 4, 9} is blocking Π.

Since we have just shown that no agent x exists which is in the same triple as 2 and 3, no
3-stable matching exists that does not contain {5, 10, 11}. ◀

3 NP-hardness for EUCLID-3-SR

In this section, we prove Theorem 1 for the case of d = 3 by providing a polynomial reduction
from the NP-complete Planar and Cubic Exact Cover by 3 Sets problem [23], which
is an NP-complete restricted variant of the Exact Cover by 3 Sets problem [15].

ESA 2022
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Planar and Cubic Exact Cover by 3 Sets (PC-X3C)
Input: A 3n-element set X = {1, . . . , 3n} and a collection S = (S1, . . . , Sm) of
3-element subsets of X of cardinality 3n such that each element occurs in exactly
three sets and the associated graph is planar.
Question: Does S contain an exact cover for X, i.e., a subcollection K ⊆ S such
that each element of X occurs in exactly one member of K?

Herein, given a PC-X3C instance I = (X, S), the associated graph of I, denoted as G(I),
is a bipartite graph G(I) = (U ⊎ W, E) on two partite vertex sets U = {ui | i ∈ X} and
W = {wj | Sj ∈ S} such that there exists an edge e = {ui, wj} ∈ E if and only if i ∈ Sj . We
call the vertices in U and W the element-vertices and the set-vertices, respectively.

In our reduction, we crucially utilize the fact that the associated graph G of the input
instance is planar and cubic, and hence by Valiant [25] admits a specific planar embedding
in Z2, called orthogonal drawing, which maps each vertex to an integer grid point and each
edge to a chain of non-overlapping horizontal and vertical segments along the grid (except
at the endpoints). To simplify the description of the reduction, we use the following more
restricted orthogonal drawing:

▶ Proposition 4 ([2]). In polynomial time, a planar graph with maximum vertex degree three
can be embedded in the grid Z2 such that its vertices are at the integer grid points and its
edges are drawn using at most one horizontal and one vertical segment in the grid.

We call the intersection point of the horizontal and vertical segments the bending point.

3.1 The construction
The idea. Given an instance I = (X, S) of PC-X3C, we first use Proposition 4 to embed
the associated graph G(I) = (U ⊎ W, E) into a 2-dimensional grid with edges drawn using
line segments of length at least L ≥ 200, and with parallel lines at least 4L grid squares apart.
The idea is to replace each element-vertex ui ∈ U with four agents which form a “star” with
three close-by “leaves” (see Figure 2a). These leaves one-to-one correspond to the sets Sj

with i ∈ Sj . In this way, exactly one set Sj is unmatched with the center and will be chosen
to the exact cover solution. Furthermore, we replace each set-vertex wj ∈ W with three
agents wi

j , i ∈ Sj , which form an equilateral triangle (see Figure 2b). We replace each edge
in G(I) with a chain of copies of three agents, which, together with a private enforcement
gadget (the star structure with a tail in Figure 3), ensure that either all three agents wi

j are
matched in the same triple (indicating that the corresponding set is in the solution) or none
of them is matched in the same triple (indicating that the corresponding set is not in the
solution). The agents in the star structure can be embedded “far” from other agents due to
the tail.

Gadgets for the elements and the sets. For each element-vertex ui ∈ U , assume that the
three connecting edges in G(I) are going horizontally to the right (rightward), vertically
up (upward), and vertically down (downward); we can mirror the coordinate system if this
is not the case. Let wj , wk, wr denote the set-vertices on the endpoints of the rightward,
upward, and downward edge, respectively. We create four element-agents, called ui, uj

i , uk
i ,

and ur
i . We embed them into R2 in such a way that uj

i , uk
i , ur

i are on the segment of the
rightward, upward, and downward edge, respectively, and are of equal distance 8 to each
other. Agent ui is in the center of the other three agents. See Figure 2a for an illustration.
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(a) Gadget (right) for an element vertex ui

(left) s.t. element i belongs to sets Sj , Sk, Sr.
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j
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j

wq
j

(b) Gadget (right) for a set-vertex wi
j for which the

set Sj consists of three elements i, p, q.

Figure 2 Element- and set-gadgets described in Subsection 3.1.

Similarly, for each set-vertex wj ∈ W , assume that the three connecting edges in G(I) are
going rightward, leftward, and upward, connecting the element-vertices ui, up, uq, respectively.
We create three set-agents, called wi

j , wp
j , wq

j . We embed them into R2 in such a way that
wi

j , wp
j , wq

j are on the segment of the rightward, leftward, and upward edge, respectively, and
are of equidistance 10 to each other. See Figure 2b for an illustration.

The edge- and the enforcement gadget. For each edge e = {ui, wj} in G(I), we create
n̂ (a constant value to be determined later) copies of the triple Aj

i [z] = {αj
i [z], βj

i [z], γj
i [z]},

1 ≤ z ≤ n̂, of agents and embed them around the line segments of edge e in the grid
(refer to Figure 3). To connect to the set-gadget, we merge agent γj

i [n̂] and set-agent wi
j

together. For technical reasons, we also use γj
i [0] to refer to uj

i . To define the distances, let
ε1, ε2, . . . , ε2n̂ be a sequence of increasing positive values with 2(2n̂ − 1)/(2n̂ + 1) ≤ ε2n̂−1 ≤
2(2n̂ − 1)/(2n̂) < ε2n̂ = 2 − ε. Now, we embed the newly added agents so that the distances
between “consecutive agents” on the line increase with z ∈ [n̂]:

The distance between agents αj
i [z] and βj

i [z] (marked in blue) is close to zero.
The distance between agents αj

i [z] (resp. βj
i [z]) and γj

i [z] is 8 + ε2z.
The distance between αj

i [z] (resp. βj
i [z]) and γj

i [z − 1] is 8 + ε2z−1.
In this manner, we will ensure that either all Aj

i [z], z ∈ [n̂ − 1], or all {γj
i [z − 1], αj

i [z], βj
i [z]},

i ∈ [n̂] belong to a 3-stable matching (to be proved later).
To determine the value n̂, let the lengths of the segments for edge {ui, wj} in the

orthogonal drawing of graph G(I) be L1 and L2, respectively; L2 is zero if there is only one
straight segment. We set n̂ to the largest value satisfying

∑2n̂
z=1(8+0.01 ·z) ≤ L1 +L2, which

is clearly a constant. For brevity’s sake, when using n̂, we mean the constant associated
to an edge {ui, wj} in the drawing which will be clear from the context. It is also fairly
straightforward to check that one can choose the sequence εi so that the bending point of
the chain is some agent γj

i [z′], z′ ∈ [n − 1] as shown in Figure 3.
By the construction of the gadgets above, each set-agent wi

j strictly prefers triple Aj
i [n̂] to

triple {wi
j , wp

j , wq
j } since δ(wi

j , x) < 10 = δ(wi
j , y) for all x ∈ {αj

i [n̂], βj
i [n̂]} and y ∈ {wp

j , wq
j };

recall that wi
j = γj

i [n̂] and δ(x, γj
i [n̂]) = 10 − ε. To ensure that exactly one of the two triples

is chosen, we make use of the star-gadget from Example 2. More precisely, we introduce an
agent triple Hi

j = {f i
j , gi

j , hi
j} and embed them in such a way that the distances between two

“consecutive” agents on the line towards the star-gadget increase:
The distance between f i

j and gi
j is close to zero.

The distance between agent hi
j and each of {f i

j , gi
j} is 10 + 2ε.

The distance between f i
j (resp. gi

j) and each of Aj
i [n̂] is in range [10 + ε, 10 + 2ε).

This means that the most preferred triple of agent hi
j is Hi

j , while both f i
j and gi

j prefer
triple S to Hi

j where S = {f i
j , gi

j , x} and x ∈ Aj
i [n̂].
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︷ ︸︸ ︷8+ε4︸ ︷︷ ︸
8+ε3

︷ ︸︸ ︷8+ε6︸ ︷︷ ︸
8+ε5

︷ ︸︸ ︷8+ε8︸ ︷︷ ︸
8+ε7

︷ ︸︸ ︷8+ε10︸ ︷︷ ︸
8+ε9

10+2ε

10+3ε

10+4ε

uj
i

ui

αj
i [1]

βj
i [1]

γj
i [1] αj

i [z′]

βj
i [z′]

γj
i [z′]

bending point

βj
i [n̂] αj

i [n̂]

wi
j = γj

i [n̂]

wp
jwq

j

f i
j

gi
j

hi
j

10
11

b

ca

b
c

a

b
c

a

b
c

a

b c

a

ℓ

0

1

2

3

4

5

67

8

9

θ

Figure 3 Gadget for edge {ui, wj} in G(I) with Sj = {i, p, q}. Here, the fractional values εz

satisfy 0 < ε1 < · · · < εn̂ = 2 − ε. The star-gadget, adapted from Arkin et al. [1], is described in
Example 2. To highlight the distances between the points in the star-gadget, we use different colors.
For instance, the smallest distance between any two points in the star is a (highlighted in green).
We also draw a dashed circle of radius b, centered at point 5 to indicate that points both 10 and 11
are with distance smaller than b to 5.

Finally, we create 12 agents, namely, W = {0, . . . , 11}, according to Example 2 such
that agents 10 and 11’s most preferred triple is {10, 11, hi

j}, followed by {5, 10, 11}. More
precisely:

The distance between agent 10 (resp. agent 11) and hi
j is 10 + 3ε.

The distance between agent 10 (resp. agent 11) and 5 is 10 + 4ε.
The five agents from {0, . . . , 4} form a regular pentagon with edge length a. Each two
agents on the pentagon form with a private agent a triangle with edge lengths a (marked
in green), b (marked in red), and c. We set b = 10.1 and c = 10.2. The length of the
diagonal of the pentagon is ℓ.

Altogether, the lengths satisfy the relation a < b < c < ℓ and the specific angle θ is at most
90 degrees. Due to the chain, including f i

j , gi
j , and hi

j , the distance from every agent not
from W ∪ {hi

j} to every agent from W is larger than ℓ. We call the gadget, consisting of the
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star-agents and the triple Hi
j , the star-gadget for set-agent wi

j and element-agent uj
i . Figure 3

provides an illustration of how the element-gadget, the set-gadget, and the star-gadget are
embedded. Note that since the angle between any two line segments is 90 degrees and the
line segment has length at least 200, we can make sure that such embedding is feasible.

This completes the description of the construction, which clearly can be done in polynomial
time. In total, we constructed O(4 · 3n + 3 · 3n + 3 · 2n̂ · 3n + 15 · 3n) = O(n) agents. Note that
we only need to have a good approximation of the embedding of the agents in the star-gadget
and the equilateral triangle.

3.2 The correctness proof for d = 3
Before we proceed with the correctness proof, we summarize the preferences derived from
the embedding via the the following observation.

▶ Observation 5 (⋆). For each element i ∈ X and each set Sj ∈ S with Sj = {i, p, q}, let
0, . . . , 11 denote the 12 agents in the associated star-gadget. Then, the following holds.

(i) The preference list of each agent x ∈ {10, 11} satisfies {hi
j , 10, 11} ≻x · · · .

(ii) For each triple B ̸= {hi
j , f i

j , gi
j} with B ⪰hi

j
{hi

j , 10, 11} it holds that B ∩ {10, 11} ̸= ∅.
(iii) For each agent x ∈ {f i

j , gi
j} and each triple B ̸= {f i

j , gi
j , hi

j}:
If B = {f i

j , gi
j , y} (where y ∈ {αj

i [n̂], βi
j [n̂], γi

j [n̂]}), then B ≻x {f i
j , gi

j , hi
j}.

If B ⪰x {f i
j , gi

j , hi
j}, then B = {f i

j , gi
j , y} for some y ∈ {αj

i [n̂], βi
j [n̂], γi

j [n̂]}.
(iv) For each z ∈ [n̂] the preference list of agent γj

i [z] satisfies {αj
i [z], βj

i [z], γj
i [z]} ≻γj

i
[z] · · · .

(v) For each z ∈ [n̂] the preference list of each agent x ∈ {αj
i [z], βj

i [z]} satisfies {αj
i [z],

βj
i [z], γj

i [z − 1]} ≻x {αj
i [z], βj

i [z], γj
i [z]} ≻x · · · .

(vi) For each z ∈ [n̂ − 1] and each triple B ≠ {αj
i [z + 1], βj

i [z + 1], γj
i [z]} with B ⪰γj

i
[z]

{αj
i [z + 1], βj

i [z + 1], γj
i [z]} it holds that B ∩ {αj

i [z], βj
i [z]} ̸= ∅.

(vii) For each B ̸= {wi
j , wp

j , wq
j } with B ⪰wi

j
{wi

j , wp
j , wq

j } we have B ∩ {αi
j [n̂], βi

j [n̂]} ̸= ∅.

Finally, we show the correctness, i.e., “I = (X, S) admits an exact cover if and only if
the constructed instance admits a 3-stable matching” via the following lemmas. Lemma 6
shows the “only if” direction and Lemma 8 the other.

▶ Lemma 6 (⋆). If K ⊂ S is an exact cover of I, then the following 3-matching Π is stable.
For each Sj ∈ K with Sj = {i, p, q} add {wi

j , wp
j , wq

j } to Π.
For each element i ∈ X and each set Sj ∈ S with i ∈ Sj , call the agents in the associated
star-gadget along with the tail agents 0, . . . , 11, hi

j , f i
j , and gi

j.
Add Hi

j, {5, 10, 11}, {1, 6, 8}, {2, 3, 7}, and {0, 4, 9} to Π.
If Sj ∈ K, then add all triples {αj

i [z], βj
i [z], γj

i [z − 1]}, z ∈ [n̂], to Π. Otherwise, add
all triples Aj

i [z], z ∈ [n̂], to Π.
For each element i ∈ X let Sk, Sr be the two sets which contain i, but are not chosen in
the exact cover K. Add {ui, uk

i , ur
i } to Π.

The proof of the other direction is based on the following properties.

▶ Lemma 7 (⋆). Let Π be a 3-stable matching of the constructed instance. For each
element i ∈ X and each set Sj with Sj = {i, p, q}, the following holds:

(i) Hi
j ∈ Π.

(ii) Π contains either all triples {αj
i [z], βj

i [z], γj
i [z]} or all triples {αj

i [z], βj
i [z], γj

i [z − 1]},
z ∈ [n̂].
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Now, we consider the “if” direction.

▶ Lemma 8. If Π is a 3-stable matching, then the subcollection K with K = {Sj ∈ S |
{αj

i [1], βj
i [1], γj

i [0]} ∈ Π for some i ∈ Sj} is an exact cover.

Proof. First of all, for each two chosen Sj , Sk ∈ K we observe that it cannot happen that
Sj ∩Sk ̸= ∅ as otherwise {ui, uj

i , uk
i } is a blocking triple; recall that γj

i [0] = uj
i and γk

i [0] = uk
i .

It remains to show that K covers each element at least once.
Now, for each element i ∈ X, let Sj , Sk, Sr denote the three sets that contain i. We claim

that at least one of Sj , Sk, Sr belongs to K because of the following. If Sj /∈ K, then by
construction, it follows that T = {αj

i [1], βj
i [1], γj

i [0]} /∈ Π. By Lemma 7(ii), it follows that
Aj

i [1] ∈ Π. Since T is the most-preferred triple of both αj
i [1] and βj

i [1] (see Observation 5(v)),
by stability, uj

i must be matched in a triple which she weakly prefers to T . Since Aj
i [1] ∈ Π, it

follows that either {uj
i , uk

i , ur
i } ∈ Π or {uj

i , ui, v} ∈ Π for some v ∈ {uk
i , ur

i }. It cannot happen
that {uj

i , uk
i , ur

i } ∈ Π as otherwise there will be at least three blocking triples, including
{ui, uj

i , ur
i }. Hence, {uj

i , ui, v} ∈ Π for some v ∈ {uk
i , ur

i }. Without loss of generality, assume
that v = uk

i . Then, it is straightforward to check that {ur
i , αr

i [1], βr
i [1]} ∈ Π. This implies

that Sr ∈ K.
To complete the correctness proof, we show that for each element p ∈ Sr \{i} it holds that

{αr
p[1], βr

p [1], γr
p [0]} ∈ Π. Let Sr = {i, p, q}. Since Sr ∈ K, by definition and by Lemma 7(ii),

we infer that {αr
i [n̂], βr

i [n̂], γr
i [n̂−1]} ∈ Π (for some constant n̂ defined in the construction). We

infer that {wi
r, wp

r , wq
r} ∈ Π due to the following: By Lemma 7(i), we know that Hi

r ∈ Π; recall
that Hi

r = {f i
r, gi

r, hi
r}. Since both f i

r and gi
r prefer {f i

r, gi
r, wi

r} to Hi
r (see the first part of

Observation 5(iii)), it follows by stability that Π(wi
r) ⪰wi

r
{f i

r, gi
r, wi

r}. By Observation 5(vii),
we infer that Π(wi

r) = {wi
r, wp

r , wq
r} since αr

i [n̂] and βr
i [n̂] are not available anymore. This

means that Ar
p[n̂′], Ar

q[n̂′′] /∈ Π since wp
r = γr

p [n̂′] and wq
r = γr

p [n̂′′] (for some constants n̂′ and
n̂′′). Consequently, we infer by Lemma 7(ii) that {αr

p[1], βr
p [1], γr

p [0]}, {αr
q[1], βr

q [1], γr
q [0]} ∈ Π,

as desired. ◀

This concludes the proof of Theorem 1 for d = 3.

4 EUCLID-d-SR with d ≥ 4

In this section we look at the cases where d ≥ 4, and let κ := ⌊(d − 1)/2⌋. The general
idea of the reduction is similar to the case where d = 3, and we still reduce from PC-X3C.
Briefly put, we adapt the star-gadget from Example 2. However, depending on whether d is
even or not, we need to carefully revise the star-gadget from Example 2 to make sure the
enforcement gadget works. We will replace each pentagon-agent with a subset of agents of
size κ, and each further agent from the triangle with two agents if d is even. We also need to
update both the replacement and the enforcement gadget. In Subsection 4.1, we describe in
detail what the new star-gadgets and the the remaining gadgets look like, and how they are
connected to each other. In Subsection 4.2 we show the correctness.

4.1 The construction
We first describe the adapted star-gadgets through the following example (also see Figure 4).

▶ Example 9. We first consider the construction for even d, i.e., d = 2κ + 2. Consider an
instance with 7κ + 11 agents called W where 5κ agents are embedded as the five vertices of
a pentagon with κ agents at each vertex of the pentagon. We denote the five sets of points
at the five vertices of the pentagon as X0, . . . , X4. All points in each cluster Xi, 0 ≤ i ≤ 4,
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Figure 4 A star-structured instance adapted from Arkin et al. [1], similar to Example 2. The left
one is for even d, while the right one is for odd d, both described in Example 9. See the caption of
Example 2 for further explanation regarding the colors of the edges.

are embedded within an enclosing circle of radius close to zero, with the intention that a
d-matching is stable only if all agents in Xi are matched together. For each i ∈ {0, . . . , 4},
the distance between each point Xi and each point in Xi+1 mod 5 is in the range of [a, a + εd],
while the distance between each point in Xi and each point in Xi+2 mod 5 is in the range of
[ℓ, ℓ + εd]. There are 10 points {0, . . . , 9} that form a star with the pentagon, as shown in
Figure 4 (left). For each i ∈ {0, . . . , 4}, embed the points 2i and 2i + 1 as follows: point 2i is
at a distance between c and c + εd to every point in Xi, and at a distance between b′ and
b′ + εd to every point in Xi+1 mod 5. Point 2i + 1 is at a distance between c′ and c′ + εd
to every point in Xi, and at a distance between b and b + εd to every point in Xi+1 mod 5.
Finally, the distance δ(2i, 2i + 1) is close to 0. Here the mentioned values satisfy the following
relations a < b < c < ℓ, b < b′ < ℓ, c < c′ < ℓ, b + b′ < 3a, c + c′ < 3a, b + b′ < a + ℓ, and
c + c′ < b + ℓ.

The remaining 2κ + 1 points, denoted by 10, . . . , 10 + 2κ in the figure, are called Y ; note
that |Y | = 2κ + 1 = d − 1. Together, W :=

⋃
i∈{0,...,4}

Xi ∪ {0, . . . , 9} ∪ Y . All points in Y

are embedded within an enclosing ball with radius close to zero. For each point y in Y ,
it holds that b − εd ≤ δ(0, y) < b and b − εd ≤ δ(1, y) < b, and for each each point w in
W \ ({0, 1} ∪ Y ) it holds that δ(w, y) > ℓ. Points 0 and 1 are the two points from W \ Y

which are closest to the points in Y .
To specify the embedding, We first fix points 0, 1, and Y such that the distances between

them are as stated above and they are embedded roughly around a straight line. Then, we
fix the positions of X0, X1, and the centroid of the pentagon to ensure the values a, b, b′, c, c′,
and ℓ satisfy the above relations. For each i ∈ {0, 1, 2, 3, 4} and each two points x ∈ Xi and
x′ ∈ Xi+1 mod 5, the angle α (resp. β) at the points 2i, x, and x′ (resp. 2i + 1, x′, and x) is
less than 90 degrees. The angle at points y, j, and x (y ∈ Y , {i, j} = {0, 1}, x ∈ Xi) is more
than 90 degrees. After fixing X0, X1, 0, and 1, we can determine the other points by simple
calculations.

Now, we turn to odd d, i.e., d = 2κ + 1. Instead of having ten points {0, . . . , 9}, we create
five points that form a star with the pentagon. Consider an instance with 7κ+5 agents called
W where 5κ agents are embedded to replace the five vertices of a pentagon with κ agents at
each vertex of the pentagon. That is, each vertex of the pentagon is a cluster of points. note
the five clusters of points by X0, X1, X2, X3, and X4. There are five points {0, 1, 2, 3, 4} that
form a star with the pentagon, as in Example 2 (see Figure 4 (right)). Point i is at a distance
b from Xi and c from Xi+1 mod 5, for each i ∈ {0, . . . , 4} where a < b < c < ℓ and b < 2a.
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(a) Gadget (right) for an element vertex ui (left)
s.t. element i belongs to sets Sj , Sk, Sr.

wjup
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uq
wp

j

wi
j

wq
j

Wj

(b) Gadget (right) for a set-vertex wi
j for which the

set Sj consists of three elements i, p, q.

Figure 5 Element and set gadgets described in Subsection 4.1.

The remaining 2κ points are called Y . Together, W :=
⋃

i∈{0,...,4}
Xi ∪ {0, 1, 2, 3, 4} ∪ Y .

All points in Y are embedded within an enclosing circle with radius close to zero. For each
point y in Y , it holds that b − ε ≤ δ(0, y) < b, and for each each point w in W \ ({0} ∪ Y ) it
holds that δ(y, w) > ℓ. Point 0 is the only point from W \ Y which is closest to the points
in Y . The remaining unmentioned points are at distance at least b/2 to the points Y . We
specify the embeddings of the agents similarly to the one for even d.

Using a similar reasoning as to Example 2, we claim that the above embeddings are
feasible.

Since the distance between each two points in Xi is close to zero, we assume it to be 0
for ease of reasoning. The following lemma summarizes the crucial effect of the star-gadget.

▶ Lemma 10 (⋆). Every d-stable matching Π of the instance in Example 9 satisfy the
following.

If d is even, then Π(0) ∩ Y ̸= ∅ or Π(1) ∩ Y ̸= ∅.
If d is odd, then Π(0) = Y ∪ {0}.

The remaining gadgets. Let I = (X, S) be an instance of PC-X3C. Similarly to the case
with d = 3, we first embed the associated graph G(I) = (U ⊎ W, E) into a 2-dimensional grid
with edges drawn using line segments of length at least L ≥ 200, and with parallel lines at
least 4L grid squares apart. The element- and the edge-gadget are almost the same as the
ones describe in Subsection 3.1. The only difference is that we replace each element-agent ui

(for ui ∈ U) with a size-(d − 2) coalition Ui that are embedded so close to each other that
any stable matching must match them together. Similarly, for each z ∈ [n̂] (recall that n̂ is a
constant as defined in the Subsection 3.1) and wj ∈ W , we replace the two agents αj

i [z] and
βj

i [z] with a size-(d − 1) coalition Âj
i [z] such that the distance between each pair of points

in Âj
i [z] is close to zero, and define Aj

i [z] := Âj
i [z] ∪ {γj

i [z]}. For each set-vertex wj ∈ W ,
assume that the three connecting edges in G(I) are going rightward, leftward, and upward,
connecting the element-vertices ui, up, uq, respectively. We create three set-agents, called
wi

j , wp
j , wq

j , and an additional coalition Wj of size d − 3 and as before, define wi
j = γi

j [n̂].
We embed them into R2 in such a way that wi

j , wp
j , wq

j are on the segment of the rightward,
leftward, and upward edge, respectively, and are of equidistance 17.5 to each other, and the
coalition Wj is embedded in the center so that the distance between any two of them is close
to zero. Moreover, the largest distance from any agent of Wj to any agent of {wi

j , wp
j , wq

j } is
10. See Figure 5 for an illustration.

We remark that by the construction of the set-gadget and the edge-gadget, each set-
agent wi

j prefers coalition Aj
i [n̂] (recall that γj

i [z] = wi
j) to coalition {wi

j , wp
j , wq

j } ∪ Wj since
the sum of distances from wi

j to the latter coalition is 17.5+17.5+10(d−3) > (d−1) ·(10−ε).
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To ensure that one of the two coalitions is chosen, we make use of the star-gadgets from
Example 9. Define b := 22.6 and c := 22.7. We create an agent-subset F i

j of size d − 1 and
agent hi

j and a star-gadget W as described in Example 9, with Y being the extra d − 1 agents
such that the most preferred coalition of each agent in Y is Y ∪ {hi

j}. Note that F i
j has the

same role as {f i
j , gi

j} in the case for d = 3.
The distance between each two agents in F i

j is close to zero.

The distance from each agent in F i
j to each agent in Âj

i [n̂] is in the range of [10+ε, 10+2ε).
The distance from each agent in F i

j to agent wi
j is 10 + 15

d−1 .
The distance from each agent in F i

j to agent hi
j is 15 + 2ε.

The distance from agent hi
j and each agent Y is 15 + 3ε.

The distance from each agent Y to 0 (and also to 1 if d is even) is 15 + 4ε.

Finally, we create two types of garbage collector agents to match with some left over
agents. For each added star gadget corresponding to Sj and i ∈ Sj , we create O(κ) garbage
collector agents Ri

j as follows: If d is odd, set |Ri
j | := d − κ − 2. Otherwise if d ≤ 6, set

|Ri
j | := 2d − κ − 5, and otherwise set |Ri

j | := d − κ − 5. These agents have distance close
to zero to each other. For each y ∈ Ri

j it holds that ℓ < δ(y, x) < 2ℓ < δ(y, x′), where x

is an agent from the same star and x′ is an agent from neither Ri
j or the same star. It is

straightforward to see that the distance between any two agents from different star-gadgets is
larger than ℓ, and the distance from an agent in W to an agent to a set-gadget is at larger ℓ,
where a, b, b′, c′, and ℓ are as defined in Example 9. Lastly, we add m−n triples of additional
garbage collector agents. The agents in each triple have distance close to zero to each other
but is far away from the other agents. Note that each triple will be matched to some Wj

whenever Sj is not chosen to the exact cover. See Figure 6 (for even d, without the garbage
collector agents) for an illustration. This completes the description of the construction, which
clearly can be done in polynomial time.

4.2 The correctness proof for d ≥ 4

The reasoning for the correctness is similar to the one for d = 3. For the forward direction,
assume that (X, S) admits an exact cover K. Then, using a reasoning similar to the one for
d = 3, one can verify that the following d-matching Π is stable; recall that κ = ⌊(d − 1)/2⌋.

For each Sj ∈ K with Sj = {i, p, q} add {wi
j , wp

j , wq
j } ∪ Wj to Π.

For each element i ∈ X let Sk, Sr be the two sets which contain i, but are not chosen
in the exact cover K. Add Ui ∪ {uk

i , ur
i } to Π. For each Sj /∈ K, take a triple of garbage

collector agents (of the second type) and match them with Wj .
For each element i ∈ X and each set Sj ∈ S with i ∈ Sj , call the agents in the associated
star-gadget along with the tail X0 ∪ · · · ∪ X4 ∪ {0, 1, 2, 3, 4, hi

j} ∪ Y ∪ {F i
j } ∪ {5, 6, 7, 8, 9 |

if d odd}. If Sj ∈ K, then add all Âi
j [z] ∪ {γi

j [z − 1]}, z ∈ [n̂], to Π. Otherwise, add
all Aj

i [z], z ∈ [n̂], to Π. Add F i
j ∪ {hi

j} and Y ∪ {0} to Π. If d is odd, add X1 ∪ X2 ∪ {1}
and X3 ∪ X4 ∪ {3} to Π. Otherwise, add X1 ∪ X2 ∪ {2, 3} and X3 ∪ X4 ∪ {6, 7} to Π.
Next, if d ≤ 6, then match X0 with d − κ agents from (1, 8, 9, 4) (in this sequence) to Π.
In any case, match the remaining star-agents with Ri

j .

The proof for the backward direction works analogously to d = 3 and is deferred to the
full version [8].
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︷ ︸︸ ︷8+ε4︸ ︷︷ ︸
8+ε3

︷ ︸︸ ︷8+ε6︸ ︷︷ ︸
8+ε5

︷ ︸︸ ︷8+ε8︸ ︷︷ ︸
8+ε7

︷ ︸︸ ︷8+ε10︸ ︷︷ ︸
8+ε9
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Figure 6 Gadget for edge {ui, wj} in G(I) with Sj = {i, p, q} for the case when d is even, omitting
the garbage collector agents for the sake of brevity.

5 Conclusion and Outlook

Establishing the first complexity results in the study of multi-dimensional stable matchings
for Euclidean preferences, we show that d-SR remains NP-hard for Euclidean preferences
and for all fixed d ≥ 3. The gadgets in the reductions may be useful for other matching and
hedonic games problems with Euclidean preferences.

Our Euclidean preference model assumes that the preferences over coalitions are based
on the sum of distances to all individual agents in the coalition. It would be interesting
to see whether taking the maximum or the minimum distance to the coalition members
instead of the sum would change the complexity. Furthermore, it would be interesting to
see whether restricting the agents’ embedding to 1-dimensional Euclidean space could lower
the complexity. We were not able to identify the complexity for this restricted variant, but
conjecture that it can be solved in polynomial time. Note that in 1-dimensional Euclidean
space, a 3-stable matching for the maximum distance setting always exists, which can be
found by greedily finding three consecutive agents which are closest to each other and
matching them.
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Abstract
A multiplicative α-spanner H is a subgraph of G = (V, E) with the same vertices and fewer edges
that preserves distances up to the factor α, i.e., dH(u, v) ≤ α · dG(u, v) for all vertices u, v. While
many algorithms have been developed to find good spanners in terms of approximation guarantees,
no experimental studies comparing different approaches exist. We implemented a rich selection of
those algorithms and evaluate them on a variety of instances regarding, e.g., their running time,
sparseness, lightness, and effective stretch.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners; General
and reference → Experimentation

Keywords and phrases Graph spanners, experimental study, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.37

Related Version Extended Version: https://arxiv.org/abs/2107.02018

1 Introduction

Consider a directed or undirected graph G = (V, E) with n vertices and m edges. The
distance dG(u, v) is the length of a shortest path between two vertices u and v, possibly
subject to edge weights w : E → R+. A spanner is a sparse subgraph of G that preserves
these distances to some quality degree. Spanners were introduced by Peleg and Schäffer [38]
after the first mention by Awerbuch [5]. There are many spanner variants, see Ahmed et.
al [1] for a survey. In this paper we are going to focus on the probably most popular variant:

▶ Definition 1 (Multiplicative α-Spanner [38]). Given a directed or undirected graph G = (V, E)
and a stretch α ≥ 1, a multiplicative α-spanner H = (V, E′) is a subgraph of G with E′ ⊆ E

such that dH(u, v) ≤ α · dG(u, v) holds for all pairs (u, v) ∈ V × V .

For simplicity we use the term spanner for the multiplicative α-spanner in the following.
Given a graph G, finding any spanner is trivial since G is a spanner of itself. The problem

we are interested in is to find a good spanner. Next to the stretch α itself, there are three
basic measures of a spanner’s quality: the size is the number of edges |E′|; the sparseness
s(H) = |E′|

|E| is the relative size w.r.t. the original graph, with a lower value indicating a
sparser spanner; the lightness ℓ(H) = W (E′)

W (MST(G)) with W (F ) =
∑

e∈F w(e) compares the
weight of the spanner to the weight a minimum spanning tree in G.

▶ Definition 2 (Sparsest (Lightest) α-Spanner). Given a graph G = (V, E) and a stretch
α ≥ 1, find a sparsest (lightest) multiplicative α-spanner H = (V, E′) such that s(H) ≤ s(H ′)
(ℓ(H) ≤ ℓ(H ′), respectively) for all other spanners H ′ of G.

Finding good spanners is motivated by several applications, e.g., ranging from routing
problems [5, 40, 17, 43] to distributed computing [39, 18]. Also many theoretical applications
require spanners, e.g., approximate distance oracles [37, 45], almost shortest paths [25, 22],
or access control hierarchies [31, 9]. Thus, while finding a sparsest or lightest spanner is
NP-hard [38, 11], a multitude of algorithms was developed to find sparse or light spanners.
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We are interested in the computation of spanners in practice. Farshi and Gudmundsson [27]
compared specialized algorithms based on WSPD-graphs [12] and Θ-graphs [16, 32] for the
geometric case; Bouts et al. [10] presented experiments, e.g., on multilevel subset additive
spanners. Regarding exact algorithms, Sigurd and Zachariasen [44] developed in 2004 an
exact spanner algorithm based on an ILP with an exponential number of variables, each
representing a shortest path. Graphs with up to 64 vertices were tested but not all instances
could be solved within the time limit of 30 minutes. Ahmed et al. [2] published a compact
ILP based on multicommodity flow in 2019, which can be solved by standard B&B-techniques.
They tested graphs with up to 100 vertices, but the solver needed up to 40 hours to solve
the largest instances on a high-performance 400-node cluster. They did not compare the
results to [44] or other popular heuristics. Apart from these studies, there seem to be no
further experimental studies, in particular none for the arguably most prominent base case
of multiplicative α-spanners in non-geometric settings.

Contribution. Despite the multitude of applications, there is an obvious total lack of
practical experience with polynomial algorithms for non-geometric spanners. While there are
various intrinsically different algorithmic ideas known in literature, there is no understanding
which of these concepts lend themselves to fruitful practical applications. The main focus of
this paper is thus to gain some insight in the practical consequences of these algorithmically
diverse ideas. – In Sect. 2, we provide an overview of the known algorithms. We argue our
selection of algorithms and give implementation details in Sect. 3. In Sect. 4, we present the
results of our experimental study.

2 Known Algorithms

Much work and effort has been put into developing different approaches to find spanners.
We will categorize the existing literature into three main categories: greedy algorithms,
approximation algorithms, and other methods. For a rich theoretical survey of graph
spanners, their theoretical background and algorithms, see Ahmed et al. [1].

Greedy algorithms. One of the earliest algorithms is by Althöfer et al. [4] and is reminiscent
of Kruskal’s algorithm. The algorithm ADDJS, often named Basic Greedy Spanner Algorithm,
starts with a spanner without edges and adds edges {u, v} with increasing weight to the
spanner, if the shortest path between u and v is currently too long, i.e., dH(u, v) > α·w({u, v}).
For a stretch α = 2k − 1 (k ∈ N≥1), this algorithm creates a spanner of size O(n1+1/k) and
lightness O(n/k). The running time is mostly dominated by a Dijkstra run for each edge:
O(m(n1+1/k + n log n)). – Roditty and Zwick [42] sped up to the distance calculation in the
spanner by incrementally maintaining a shortest-path tree, but lose any lightness guarantee
in the process. Thorup and Zwick [45] explored approximate distance oracles, yielding a
spanner algorithm as a byproduct, but as before, no lightness guarantee can be given.

To further improve the quality measures, more refined analyses using ε-parameterized
algorithms were introduced. Thereby, one allows the spanner to violate the stretch requirement
by a factor of up to 1 + ε, while the approximation ratio of the sparsity and lightness is
measured against the best spanner not violating this requirement. Chandra et al. [13], Elkin
and Solomon [26] and Elkin et al. [24] use various techniques (e.g., dynamic shortest-path
trees, further auxillary graphs, and distance oracles) and refined analyses to create a spanner
with guarantees for size and lightness as well as maintaining a low running time. Alstrup et
al. [3] provide the currently best guarantees; their algorithm creates a ((2k−1)(1+ε))-spanner
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with size Oε(n1+1/k) and lightness Oε(n1/k) within a running time of O(n2+1/k+ε′). Thereby,
Oε ignores polynomial factors depending on 1/ε. However, ADDJS still has the best lightness
guarantee while strictly providing an α = 2k − 1 stretch and is existentially optimal, see
Ahmed et al. [1, Chapter 4] for a more thorough theoretical insight. Additionally, most above
modifications lead to very complex algorithms that are often not practically implementable
due to the intricate additionally required data structures mentioned above.

Clustering algorithms. Baswana and Sen [6] (BS) gave a method based on growing clusters
around sampled vertices. It is special compared to all other algorithms as it does not do
any local or global distance calculation. It computes an α = 2k − 1 spanner for a weighted,
undirected graph in two phases. First, there are k − 1 rounds of growing clusters by sampling
vertices and successively adding nearest neighbors to each cluster. Then, clusters are joined
by adding all non-clustered vertices to the nearest adjacent cluster and interconnecting all
clusters. This yields a spanner of size O(kn1+1/k) in an expected running time of O(km),
but no lightness guarantee. For an unweighted graph, the size is bounded by O(n1+1/k + kn).

Approximation algorithms. An early O(log(m/n))-approximation in terms of size by Kort-
sarz and Peleg [34] was published in 1994 for the special case of a 2-spanner for unweighted
and undirected graphs (algorithm KP). An edge e is covered, if it is not part of the spanner,
but part of a triangle in the original graph and both other edges are in the spanner, so the
spanner property holds for e. The idea is to cover a large number of edges while not adding
too many edges to the spanner by finding dense subsets of vertices and adding connecting
edges to the spanner. KP calculates dense subsets Uv of neighboring vertices N(v) for each
vertex v and continues with the densest subset, say Uw. The star {{u, w}|u ∈ Uw} is added
to the spanner. The edges within the dense subset are now covered and finding the densest
subgraph allows for covering the most edges. This is repeated while there exists a dense subset
with a density larger than 1. The running time is bounded by O(nm · MDS(n, m)) where
MDS(n, m) is the running time of the algorithm to solve the maximum density subgraph
problem. Using Goldberg’s algorithm [30], the resulting time complexity is O(m2n3 log n).
There exist more advanced algorithms for the maximum density problems so the theoretical
running time can be lowered to O(m2n2 log(n2/m)) [28].

For undirected graphs we know of no explicit further approximation results. One reason
may be that ADDJS already has an O(n1+1/k) guarantee for the spanner size. For a connected
original graph, a spanner must have at least n−1 edges, as it has to be connected as well. This
lower bound for an optimal solution thus results in a straight-forward O(n1/k)-approximation
in terms of size for every undirected graph.

For directed graphs, Elkin and Peleg [25] gave the first Õ(n2/3)-approximation in the
special case α = 3. For general α ≥ 3, Bhattacharyya et al. [9] published an Õ(n1−1/α)-
approximation combining two techniques: The spanner is the union of the arc sets of two
graphs. The first graph is obtained by solving an LP relaxation and rounding the solution.
The second one is created by sampling vertices and growing BFS arborescences from them.
Dinitz and Krauthgamer [20] improved the techniques and Berman et al. [8] gave the currently
best solution for general stretch α ≥ 1 (algorithm BBMRY): They introduced an O(n1/2 log n)-
approximation for weighted, directed graphs. For the special case α = 3 (later extended to
α = 4 by Dinitz and Zhang [21]) a slightly modified approach can be taken to achieve an
Õ(n1/3)-approximation for directed and unweighted graphs. The techniques used are similar
to the approach of Bhattacharyya et al. [9]: The arcs of the original graphs are categorized
as either thin or thick by the number of shortest paths connecting the endpoints of the
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Table 1 Considered algorithms. The letters G, A, C and P in the second column stand for greedy,
approximation, clustering, and probabilistic, respectively. *Assume α = 2k − 1, k ∈ N≥1.

Algorithm w(e) Stretch Spanner Properties* Running time

ADDJS [4] G ✓ α ∈ R≥1
s(H) ∈ O(n1+1/k)

ℓ(H) ∈ O(n/k) [see text] O(m(n1+1/k + n log n))

KP [34] A × α = 2 O(log(m/n))-approx. in size O(m2n3 log n)

BBMRY [8] A ✓ α ∈ R≥1 O(n1/2 log n)-approx. in size poly

BS [6] C × α ∈ N≥3, odd s(H) ∈ O(n1+1/k + kn) expected O(km)

BS [6] C ✓ α ∈ N≥3, odd s(H) ∈ O(kn1+1/k) expected O(km)

EN [23] P × α ∈ N≥1, odd s(H) ∈ O(n1+1/k/ε)
0 < ε < 1

expected O(m),
success prob. ≥ 1 − ε

arc. An LP rounding covers all thin arcs, and growing arborescences from sampled vertices
cover all thick arcs. For the (I)LP, antispanners were introduced. Given an arc (u, v), an
antispanner is an arc set A, such that no shortest path with a distance less then α · dG(u, v)
exists between u and v in G \ A. A is a minimal antispanner for (u, v) if no A′ ⊂ A is an
antispanner for (u, v). The ILP tries to cover arcs so that at least one arc of each minimal
antispanner is used. If this is achieved, the selected arcs resemble a feasible solution. Due to
the exponential number of minimal antispanners, we require a separation oracle to solve the
LP relaxation of this ILP with cutting planes. The separation oracle has an exponentially
small probability in n of failing.

Randomized Algorithms. A probabilistic method was presented by Elkin and Neiman [23]
to calculate a spanner with stretch 2k − 1 for undirected, unweighted graphs (algorithm EN).
They built upon Miller et al. [36, 35] and improved the size to O(n1+1/k/ε). For each vertex
u, a random value ru is drawn from an exponential distribution. Each vertex broadcasts
a message with ru as the content to all vertices within distance k. A vertex x, receiving
messages from some vertices U ⊂ V , stores mu(x) = ru − dG(u, x) for each vertex u ∈ U

together with an edge adjacent to x that lies on a shortest path between u and x. The edges
belonging to the messages with mu(x) ≥ maxu∈V {mu(x)} − 1 are added to the spanner.
Since the algorithm has a success probability of at least 1 − ε, we can obtain an expected
running time of O(m) by iterating.

3 Considered Algorithms and Implementation Details

As motivated in Sect. 1, we aim at covering very diverse algorithmic approaches and
investigating their relative merits, rather than several algorithmic variants finetuning a
common idea. Only once an understanding on the most worthwhile algorithmic concepts has
been achieved, deeper comparisons of algorithmic variants would seem worthwhile.

Thus, we select five, intrinsically different, algorithmic approaches to analyze; Table 1
provides an overview of the characteristics of each algorithm. With the goal of small running
times and larger instances, we decided against reestablishing the performance of the exact
algorithms [44, 2]; as summarized in Sect. 1, their running times are nowhere competitive
on the instances we aim to consider. As the representative for the fundamental greedy
algorithms, we selected ADDJS. While the algorithms of Thorup and Zwick [45] and Roditty
and Zwick [42] improve the running time, ADDJS promises better results w.r.t. size and
lightness. As such, there was no good argument to consider these or the algorithmically
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and implementationwise much more involved ε-parameterized variants at this stage of the
scientific knowledge discovery (but see Sect. 5). This argument is further amplified by the
fact that many of these variants require very sophisticated subalgorithms (see above) which
are by themselves unknown territory from the algorithm engineering viewpoint.

From the approximation algorithms we selected KP and BBMRY as they are the state-of-the-
art. For BBMRY, we implemented the variant for arbitrary α, not the special improvements
for α = 3 and α = 4. In the following, we list some implementation specific details; all our
implementations guarantee the running time of the algorithmic descriptions.

Althöfer et al. (ADDJS). We include a straightforward observation to speed-up the compu-
tation: We bound the shortest-path search for each pair of vertices by α · w({u, v}) since
finding a longer path (or no path at all) results in adding the edge {u, v} to the spanner. Note
that one is not limited to a stretch α ∈ Nodd; the algorithm works for arbitrary α ≥ 1 ∈ R,
but may only provide the size and lightness guarantees for the next odd integer.

Baswana and Sen (BS). We broadly follow the detailed algorithmic description of [6]. We
changed only one small aspect: The second and third step of the first phase can be combined
in a single pass. After sampling clusters, it is not necessary to first calculate the nearest
neighboring sampled cluster for each vertex and store it in some data structure because the
third step can directly follow and does not depend on other vertices.

Kortsarz and Peleg (KP). The algorithm mainly depends on an implementation for the
maximum density subgraph problem. We use Goldberg’s algorithm [30] due to its simplicity of
implementation. It resembles a binary search with O(log n) steps: A source and target vertex
(s, t) are added to the graph and connected to all original vertices. In each step the weights
of the new edges are chosen depending on the current search value. A minimum s-t-cut is
calculated and based on the resulting cut it is decided, whether the lower or upper half of
the search interval is used. To solve the minimum s-t-cut problem we use Goldberg-Tarjan’s
max-flow algorithm [29] with global relabeling and gap relabeling heuristic requiring O(n2m)
time. This results in a running time for Goldberg’s maximum density subgraph algorithm of
O(n2m log n) and, as described above, in a complete running time of O(m2n3 log n) for KP.

The algorithm has to maintain three sets Hs, Hc, and Hu for the spanner edges, covered
edges, and uncovered edges. In the implementation it is sufficient to only use the original
graph’s edge set E = Hu (by shrinking G on the fly) and the spanner’s edge set E′ = Hs.
There is no need to explicitly store covered edges Hc in some data structure. For each
maximum dense subset Uw, the star edges are added to E′. The star edges and the edges
of the implied dense subset graph E(Uw) = {{u, v} ∈ E|u, v ∈ Uw}, which are the covered
edges, are removed from E, so that the covered edges are simply entirely removed. Since
we have to calculate the density of the maximum density subset, we have E(Uw) already
available, so no extra work is required to calculate the edges induced by the subset of vertices.

Berman et al. (BBMRY). The original algorithmic description leaves some implementation
details open. First, the property of an arc (s, t) being thin or thick has to be efficiently
evaluated [8, Definition 2.2]. The definition uses a local graph Gs,t = (V s,t, Es,t) induced
by all vertices belonging to paths from s to t with a length of at most α · dG(s, t). An
arc (s, t) is thick, if |V s,t| ≥ n1/2. Calculating all possible paths is not an option, so in- and
out-arborescenses can be used. First, we precalculate these arborescences since we need them
for evaluating the local graphs and during sampling afterwards. For each vertex r, an in-
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and out-arborescense rooted at r is calculated. The distances to other vertices x are saved
in din(r, x) (dout(r, x), respectively) together with the respective predecessor to be able to
access the actual trees during sampling. To check if |V s,t| ≥ n1/2 holds, we can use the
equivalence: x ∈ V s,t ⇐⇒ dout(s, x) + din(t, x) ≤ α · dG(s, t). Checking each vertex x, we
count |V s,t| and decide the property for each arc. This could be done by using either an
in- or out-arborescence, but both types are needed for the sampling, so we can precalculate
both anyhow. Consequently, the subsequent sampling does not involve any shortest-path
calculations and can be done by looking up predecessor relations.

Next, given an arc (s, t) it must be checked, if a set R ⊆ E settles the arc [8, Definition 2.3],
i.e., R satisfies the α-spanner property for (s, t). This is done by running a bounded Dijkstra
on R with a running time of O(|R| + n log n). The check whether an arc is settled is done
quite often, e.g., during the separation method and in the minimization of an antispanner.

Finally, let us focus on the separation method and the creation of antispanners. The
former is straightforward: After rounding the fractional solution, obtaining R, we check every
thin arc, whether it is settled by R. For an unsettled thin arc (s, t), we create an antispanner
w.r.t. R (see [8, Claim 2.4]). Similar to the thin arc property where the vertices V s,t are
required, we need the arc set Es,t, as A = Es,t \ R is an antispanner. An arc (u, v) is an
element of Es,t if and only if dout(s, u) + w(u, v) + din(t, v) ≤ α · dG(s, t); this check can reuse
the precalculated arborescences. After finding the antispanner it has to be minimized. We
greedily remove arcs from A, while the unsettled thin arc remains unsettled. If no further
arc can be removed, A is a minimal antispanner.

Elkin and Neiman (EN). Provided the very compact description of the algorithm and no
explicit pseudocode, one has to be very careful not to gloss over intricate important details.
We implemented the algorithm in the standard centralized model. The authors also highlight
the distributed and PRAM models (as the algorithm can be parallelized well), but we aim to
keep it comparable to all other algorithms.

To start, remember that the edges saved together with the received messages must belong
to some shortest u-x-path. Naturally, we store the edge where x received the message from.
To ensure that the messages travel along shortest paths, we use a breadth-first-search (BFS)
starting at u with a depth limit of k, without the need of a Dijkstra computation.

The algorithm includes two feasibility checks. If one fails, the algorithm does not provide
a feasible solution. The first check, that ru < k holds for all u ∈ V , can be done directly
while generating values ru to let the algorithm fail quickly if the property does not hold.
The second check at the end of the algorithm asserts that there are sufficiently many edges.
Elkin and Neiman state that the spanner must have at least n − 1 edges and the algorithm
fails, if |E′| < n − 1. This is only correct if the original graph is connected. If it has c ≥ 2
components, we can use the condition |E′| < n − c instead.

A major improvement in terms of memory consumption can be made when reversing the
way the algorithm is formulated. The original formulation can chiefly be described as:
1. For each u ∈ V , broadcast messages mu(x) to every vertex x within distance k.
2. For each receiving x ∈ V : Calculate maxu∈V {mu(x)} and add edges to the spanner.
Following this order, one has to save two n × n matrices containing the message values mu(x)
and the edge where the messages are received. In a pilot study, this resulted in out-of-memory
errors for very sparse graphs (m ≈ 2n) with n ≈ 40, 000, which other algorithms can handle.
To lower the memory consumption, we reversed the logic to focus on each receiving vertex x:
A BFS starting at x identifies all vertices u that can broadcast a message to x. Then, the
aggregation and edge addition can directly be done afterwards, before proceeding with the
next x. To summarize all improvements, the code is provided in [15, Appendix A].
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We note that it is possible to provide values for ε that are not in the interval (0, 1).
Especially ε ≥ 1 can produce good spanners in practice with the downside of an increasing
possibility to fail. For results of a pilot study to choose ε, see [15, Appendix B].

4 Experimental Results

We are now ready to present the main content of this paper. The considered algorithms are
tested with a variety of instances and parameter settings, as described in the following. In
Sect. 4.1 we take a look at the running time of each algorithm. We compare the quality of
the resulting spanners in Sect. 4.2. Finally, in Sect. 4.3, we propose and briefly investigate
two further graph measures we deem interesting in their own right: We ask about the mean
degrees and the mean lengths of the shortest paths in weighted spanners (compared to the
input graphs). Investigating these measures can help us to better understand the different
behaviors and results of the various algorithms.

Setup. Since BBMRY is the only algorithm that would work (with known quality guarantees)
on directed graphs, we consider only undirected graphs. Edge weights are often a requirement
in applications, but not all algorithms can take weighted graphs as inputs; thus we use each
graph twice, once with and once without weights. In the following we will use the absolute
density ϱa(G) = m/n and the relative density ϱr(G) = m/

(
n
2
)

to categorize graphs. In the
experiments we consider integer stretches 2, 3, 4, 5, and 7. To test a variety of graph types,
three instance libraries are used:
1. Steinlib [33]: This well-known library was originally created for the Steiner tree problem,

but has also been used in many studies for related problems. Since several application
areas of Steiner trees and spanners overlap, it seems judicious to consider this set. It
contains 1207 graphs in 44 subsets. Over 62% of the graphs have ϱr = m/

(
n
2
)

< 2.5%
(mostly sparse). On average, the graphs have 1189 vertices and 8549 edges; the largest
graph has 38418 vertices.

2. Tsplib [41]: The well-established Tsplib contains complete weighted graphs. We omitted
27 of the 122 graphs as they have edge weights 0 or are directed. About half of the
graphs have <200 vertices; the largest graph has 7397 vertices. The graphs have 771
(250) vertices on average (median).

3. Random: We generated random Erdős-Rényi graphs with |V | ∈ {10, 20, 50, 100, 200,

500, 1000, 2000}, a relative density of i/10 for i ∈ {1, 2, . . . , 9} and 10 graphs of each
combination. Apart from the unweighted instances, we also consider two different random
weight function: weights in the range 1 ± 1/3 (W1), and integer weights between 1 and n

(W2). The former ensures that each edge is a shortest path between its end vertices, as
is the case for unweighted instances, whereas the latter includes “obviously superfluous”
edges. All graphs are available at [7].

All implementations are freely available and will be part of the next release of the open
source C++ Open Graph algorithms and Datastructures Framework [14] (www.ogdf.net).
All experiments were performed on an Intel Xeon Gold 6134 with 256 GB RAM under Debian
10.2 using gcc 8.3.0-6 (-O3). For BBMRY, we use CPLEX 20.1 [19] as the LP solver. When
conducting an experimental study, and i.p. due to the page restriction, one has to decide
between in-depth analyses of a smaller set of certain aspects or a broader approach of reporting
the overall algorithmic behaviors over a larger field of questions and parameterizations. As our
goal herein is to broadly assess competing algorithmic ideas, the second option makes more
sense. However, all detailed data of our experiments is available at [7] for other researchers
(or a subsequent longer journal version) to investigate further.
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Table 2 Solved instances per algorithm and average time for successful cases.

Library ADDJS BS KP BBMRY EN

Random 98.62% (2.96 s) 100.00% (0.03 s) 66.67% (2.46 s) 70.16% (3.07 s) 100.00% (3.10 s)
Steinlib 99.88% (0.48 s) 100.00% (0.11 s) 91.55% (1.91 s) 83.79% (5.32 s) 100.00% (0.37 s)
Tsplib 81.75% (4.98 s) 98.71% (1.47 s) 33.01% (14.75 s) 60.74% (5.70 s) 76.05% (3.11 s)

All 98.46% (0.92 s) 99.91% (0.21 s) 86.02% (2.30 s) 80.91% (5.21 s) 98.20% (0.66 s)
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Figure 1 Instances solved by KP within the
time limit for each instance library. There are no
further solved instances for larger ϱa.
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Figure 2 Comparing ADDJS, BS, and EN for
n = 500 (×) and n = 1000 (+). BBMRY cannot
solve any of these instances.

Parameterizing the Randomized Algorithms. To fairly evaluate the randomized algorithms
BS and EN, we first need to investigate their parameterizations. We report on these additional
experiments in [15, Appendix B]. In the following, we use the most competitive settings of
1000 iterations for BS and 200 iterations for EN with ε = 0.8.

4.1 Running Time
We start with investigating the running times of our algorithms. We set a time limit of 60
seconds for each calculation: ADDJS, BS, and EN can solve the majority of all instances within
this limit (cf. Table 2), and an additional pilot study shows that higher limits of 90 or 120
seconds do not significantly increase the number of solved instances. Before comparing the
algorithms, we discuss their runtime behavior individually. In the following, when speaking
about averages we consider the standard arithmetic mean, unless specified otherwise.

ADDJS. The running time is linear in m for fixed n. Almost all Steinlib instances can be
solved within 6 seconds and all Tsplib instances with n ≤ 1200 within the time limit. The
densest instances over all libraries with ϱr ≥ 90% and n ≈ 1000 can barely be solved within
the time limit. The running time shows a dependency on the graph weights: unweighted
graphs can be solved 33.45% faster than weighted ones. Furthermore, higher stretches are
faster to compute. There is one peculiar outlier: while all other combinations of weights and
stretches allow all Random instances to be solved within the time limit, α = 2 for weighted
(and W1-weighted, see also Sect. 4.2) instances is drastically slower and only achieves a
success rate of 89%. This is also the only case where W1 yields higher running times than
W2 and the unweighted case. Over the solved unweighted instances, α = 2 is 42.61% slower
than α = 3 (while, e.g., α = 3 is only 6.19% slower than α = 4).
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BS. The clustering approach is very fast. Every instance from Random is solved in under
0.6 seconds. The running time behaves linearly in m, as expected. Analogous to ADDJS,
unweighted instances are faster, but in contrast, a lower stretch is faster as well. For Random,
the running times for W1 are in-between those of W2 and unit weights. Almost all instances
of the Tsplib can be solved; only the two largest instances (n = 5915, 7397) exceed the
time limit for α ≥ 5. The majority of the Steinlib instances can be solved within a second.
Generally, BS seems to have difficulties with large, very sparse graphs; for these graphs with
ϱr ≤ 0.01%, the running time is up to 17.5 seconds (cf. [15, Appendix, Figure 8]). These are
Steinlib instances from the subsets LIN, ALUT, and ALUE (grid graphs with holes, n ≥ 20000).

KP. Surprisingly, there is no clear relationship between the running time and n, m, or ϱr;
however the absolute density is limiting: For instances with 40 ≲ ϱa ≲ 60, the running time
drastically starts to increase in comparison to ϱa ≲ 40 and no instances with ϱa ≳ 60 can be
solved in time (cf. Fig. 1). This behavior is consistent over all three libraries except for a
handful of outliers from Tsplib. Regarding Steinlib, the sets 2R, I320, C, PUC and the largest
instances of LIN require higher running times due to the very large n. The complete graphs
of Tsplib can be solved with up to 120 vertices, which corresponds to ϱa = 59.5.

BBMRY. Its running time depends on α and the weights: Similar to ADDJS, unweighted
graphs are slightly faster (by 10.28%), but a higher stretch results in a lower running time.
It also shares the performance degradation for α = 2 on unweighted graphs. Overall, both
the timeout rates and the running times are very high. Regarding the instance sizes, the
number of edges has a disproportionate impact on the running time, i.e., only Steinlib
instances with m ≤ 5000 edges can be solved, regardless of the number of vertices. This
is not surprising since the antispanner creation and minimization depends on the original
graph’s edges. Graphs from Random and Tsplib can only be solved if they have less than
250 nodes. Even though BBMRY has a probability of failing, we never observed any failure
during the experiments.

EN. We observe a linear running time in m. We measured the time until the first success,
so previous failures are included in the running times. EN can solve graphs with up to 1000
vertices for Random and Tsplib, with a smaller stretch being slightly faster, as the BFS
depth depends on α. The maximum time for Steinlib is 14 seconds.

Comparison. Table 3 shows the percentage of instances an algorithm can solve strictly
faster than another algorithm, as well as the average relative speed-up factor in these cases.
An example is provided in Fig. 2 for unweighted instances and α = 5. Clearly, BBMRY is
the slowest of the considered algorithms. Only KP was sometimes slower (in 8.2% of the
cases, roughly 14-fold); but when KP was faster, it was so by a factor of over 116. BS shows a
significant number of instances where it is fastest, as it benefits from traversing adjacency lists
instead of calculating distances. Also, its speed-up factor in these cases is rather strong. EN
and ADDJS both share a similar number of instances each can solve faster. This is no surprise
since EN’s BFS for each node is similar to the Dijkstra runs for ADDJS in the unweighted
setting. Only for large or dense instances, ADDJS gets noticeably faster than EN (cf. Fig. 2).
If these values were to be restricted to larger or denser graphs (e.g. n ≥ 100 or ϱr ≥ 5%), the
results would be even clearer due to the fact that all small/sparse instances can be solved
within fractions of seconds by most algorithms.

ESA 2022
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Table 3 Percentage of instances where A was strictly faster than B. “–” denotes that the
algorithms cannot be directly compared due to their incompatible stretch restrictions (2 vs. odd),
see Table 1. The speed-up factor is given in parentheses. Only instances both algorithms can solve
are included.

A
B ADDJS BS KP BBMRY EN

ADDJS 14.83% (1.45) 51.23% (123.61) 93.24% (210.88) 19.38% (1.07)
BS 36.07% (24.71) – 92.99% (188.60) 28.70% (30.23)
KP 1.19% (1.27) – 86.65% (116.61) –

BBMRY 0.00% (–) 0.00% (–) 8.20% (14.17) 0.00% (–)
EN 27.10% (2.68) 11.52% (0.45) – 93.37% (170.12)

4.2 Quality
We may now consider the standard measures for spanners: their lightness and sparseness.

Weight functions for the Random instances. A key observation from the running times
above also holds true for the solutions’ quality: The unweighted instances and the weighting
W1 behave very similarly. In any measure, W1 lies between W2 and the unweighted case,
but is always very close to the latter; with increasing graph size, the sparseness of W1
converges to that of the latter. Thus, in the following discussions regarding Random, we focus
on unweighted instances and W2; all statements about the former are also true for W1.

Lightness. As a concept different from size, the lightness is only relevant for weighted
instances. BBMRY and BS do not provide any guarantees, and indeed, both yield arbitrarily
high lightness values in practice across all instance libraries (cf. Fig. 3). BBMRY’s lightness is
on average 33.5 times higher than ADDJS’s; and BS’s lightness is 11.8 times higher. BS and
BBMRY never yield a lower lightness than ADDJS on any instance. In summary, there is no
alternative to ADDJS for applications requiring a lightness guarantee.

Sparseness. First, consider α = 2 and unweighted graphs. Surprisingly, KP yields a lower
sparseness than ADDJS for ϱr ≳ 50% (cf. Fig. 4). BBMRY yields only high sparseness in
comparison to those algorithms. On Tsplib (i.e., complete graphs), KP always finds the trivial
optimal solution of a star due to the way the algorithm works. In contrast, KP can only
sparsify 22% of the Steinlib instances in comparison to 78% by ADDJS and 62% by BBMRY.
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Figure 3 Lightness for ADDJS, BBMRY and BS.
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Figure 6 Sparseness for weighted graphs.
BBMRY and BS have significantly higher sparse-
ness than ADDJS.

For unweighted instances with odd stretch, ADDJS, BS, and EN behave similarly, see Fig. 5.
For dense graphs, the sparseness converges and higher stretches unsurprisingly result in lower
sparseness. ADDJS generally yields the lowest sparseness, followed by BS and then EN. E.g.,
over all libraries for α = 5, BS yields 37% higher sparseness than ADDJS, and EN 47% higher
than BS. Although BBMRY’s sparseness seems stretch-independent, it is very high compared to
all other algorithms. EN shows a higher variance of the sparseness; e.g. for α = 3 its standard
deviation is about 4 times that of ADDJS. With higher stretches, the variance decreases.

On weighted graphs, BBMRY and BS yield comparable sparseness; both are, however,
significantly worse than ADDJS, see Fig. 6. All algorithms except for ADDJS cannot significantly
sparsify the already sparse graphs (ϱr ≤ 10%) from Steinlib too much: ADDJS’s average
sparseness is 71.7%, while the sparsenesses of all other algorithms are between 92% and 97%.

Effective stretch. For instances with n ≤ 1000 (n ≤ 11000 for Steinlib), we computed an
APSP on the input graphs and the resulting spanners to calculate the effective stretches.
More precisely, for each vertex pair (u, v), we can compare the length of the shortest path in
the input graph to that in the spanner, and obtain an effective stretch specific to (u, v). We
can aggregate over the effective stretches for all vertex pairs. Table 4 provides an overview
of the effective mean, mean maximum, and maximum stretches over all instances. ADDJS
gives the overall highest mean stretch and thus always utilizes the limit provided by α.
Interestingly, BBMRY, BS, and EN never use the available stretch of 7 for unweighted graphs.
For unweighted complete graphs, EN does not yield a mean stretch over 2 (cf. [15, Appendix,
Figure 11]), regardless of α. KP behaves similar to ADDJS and even yields a higher mean
stretch on those instances both ADDJS and KP could solve. BBMRY and BS yield lower mean
stretches in comparison to ADDJS for weighted graphs. In summary, these results directly
correlate to the previous observations. By having a low mean stretch and not utilizing the
allowed stretch, it is clear that some potential for sparsification is not fully exploited, so the
lightness and sparseness are also worse.

4.3 Further Properties for Weighted Spanners
Finally, we want to touch on the graph structure of spanners particularly on weighted graphs.
We are interested in their mean degrees, and the number of edges in the shortest paths.

ESA 2022
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Table 4 Effective mean (mean max, max) stretch for multiple configurations.

α ADDJS BS BBMRY KP/EN

un
w

ei
gh

te
d 2 1.36 (1.98, 2.00) – 1.10 (1.86, 2.00) KP: 1.36 (1.87, 2.00)

3 1.77 (2.94, 3.00) 1.53 (2.77, 3.00) 1.12 (2.06, 3.00) EN: 1.43 (2.61, 3.00)
4 2.16 (3.89, 4.00) – 1.13 (2.13, 4.00) –
5 2.47 (4.77, 5.00) 1.77 (3.68, 5.00) 1.13 (2.11, 4.00) EN: 1.59 (3.13, 5.00)
7 2.86 (6.43, 7.00) 1.83 (4.16, 6.00) 1.13 (2.12, 5.00) EN: 1.73 (3.52, 6.00)

w
ei

gh
te

d

2 1.03 (1.85, 2.00) – 1.00 (1.19, 2.00) –
3 1.07 (2.70, 3.00) 1.01 (1.16, 2.61) 1.00 (1.65, 3.00) –
4 1.11 (3.49, 4.00) – 1.01 (1.99, 4.00) –
5 1.16 (4.20, 5.00) 1.01 (1.37, 3.26) 1.01 (2.30, 5.00) –
7 1.25 (5.44, 7.00) 1.01 (1.60, 3.49) 1.01 (2.69, 7.00) –

Degree. For α = 3, BS yields a higher mean degree by 30% than BBMRY, but is slightly lower
for α ≥ 5; BS is the only algorithm where a higher stretch results in lower mean degrees.
Overall, BBMRY and BS yield very high mean degrees (similar to the lightness and sparseness)
while ADDJS has mean degrees around 3–5. For the Steinlib instances, ADDJS’s spanners yields
a mean degree of (on average) 57% of the mean degree of the input graph. In contrast to
this, all other algorithms’ spanners have more than 96% of the original mean degree, see [15,
Appendix, Figure 10]. All algorithms show a constant or moderately (linearly) increasing
dependency between mean degrees of the original graph and the spanner, except for KP.
There, the spanners’ mean degrees first increase together with the original mean degree, but
for instances with ϱr ≳ 50% the former decrease again. Analogous to the sparseness, the
mean degrees become lower than ADDJS’s for large relative densities.

Hops. Lastly, we take a look at the number of edges (hops) of all shortest paths (again
considering the instances described for the effective stretch). Overall, the mean hop difference
is always positive, i.e., shortest paths in the spanner on average use more edges than in the
original graph. Only 2.27% of all vertex pairs have shortest paths with fewer hops in the
spanner than in the original graph; 58.90% retain their hop count, and 38.82% gain at least
one hop. ADDJS has a higher average mean hop difference of 3.98 than BS (0.26) and BBMRY
(0.15). The tendency for all algorithms is to yield a higher hop difference with higher stretch.

5 Conclusions and Questions

We conducted the first experimental evaluation of polynomial spanner approximations. We
can provide a rough guideline on which algorithm to use. If one has the special case of α = 2
and no edge weights, KP may be used for graphs with ϱr ≳ 50 as long as it can solve the
instances in feasible time. In all other cases ADDJS (the oldest and most simplistic approach!)
should be the algorithm of choice, as long as the graphs have reasonable sizes. It provides
the sparsest and lightest spanners within a reasonable running time. Especially for weighted
graphs, no other algorithm can calculate spanners of comparable quality. Only for very large
unweighted graphs, BS is a good alternative to ADDJS due to its low running time. BBMRY’s
subpar performance makes its only sensible for directed graphs, as it is the only algorithm
capable of handling such instances. Lastly, while EN can produce good spanners, it is never
strictly better in running time nor quality than ADDJS or BS.

Overall, the practical strength of the algorithmic idea of ADDJS seems to be established.
Based thereon, it now seems worthwhile to investigate the practical performance of proposed
improvements. In particular, this includes the mentioned implementation-wise more intricate
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but theoretically faster variants [42, 45] which lose the lightness guarantees. Furthermore,
we may ask whether ADDJS can be improved for unweighted graphs by using a specific edge
order. Formally, an arbitrary order suffices, but using a BFS or DFS order, or sequentially
considering sets of independent edges, may further decrease the spanner size in practice. It
may also be interesting to investigate the algorithmic reasons for the significant running time
degradation of ADDJS (and BBMRY) for α = 2 on unweighted graphs, and to find theoretical
results complementing the practical findings on the measures considered in Sect. 4.3.

References
1 Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi

Jebelli, Stephen Kobourov, and Richard Spence. Graph spanners: A tutorial review. Computer
Science Review, 37:100253, 2020. doi:10.1016/j.cosrev.2020.100253.

2 Reyan Ahmed, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen Kobourov,
Faryad Darabi Sahneh, and Richard Spence. Approximation algorithms and an integer
program for multi-level graph spanners. In Proc. SEA 2019, volume 11544 of LNCS, pages
541–562. Springer, 2019. doi:10.1007/978-3-030-34029-2.

3 Stephen Alstrup, Sören Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen.
Constructing light spanners deterministically in near-linear time. In Proc. ESA 2019, volume
144 of LIPIcs, pages 4:1–4:15. LZI Dagstuhl, 2019. doi:10.4230/LIPIcs.ESA.2019.4.

4 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete Computational Geometry, 9:81–100, 1993. doi:10.
1007/BF02189308.

5 Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM, 32(4):804–823,
1985. doi:10.1145/4221.4227.

6 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–
563, 2007. doi:10.1002/rsa.20130.

7 Benchmark and experimental data. Url. https://tcs.uos.de/research/spanner, 2022.
8 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and

Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed Steiner
forest. Information and Computation, 222:93–107, 2013. doi:10.1016/j.ic.2012.10.007.

9 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. In Proc. SODA 2009, pages 932–941. ACM SIAM,
2009. doi:10.1137/110826655.

10 Quirijn W. Bouts, Alex P. ten Brink, and Kevin Buchin. A framework for computing the greedy
spanner. In Proc. SoCG 2014, pages 11–19. ACM, 2014. doi:10.1145/2582112.2582154.

11 Leizhen Cai. NP-completeness of minimum spanner problems. Discrete Applied Mathematics,
48(2):187–194, 1994. doi:10.1016/0166-218X(94)90073-6.

12 Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67–90, 1995. doi:10.1145/200836.200853.

13 Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness results
on graph spanners. In Proc. SoCG 1992, pages 192–201. ACM, 1992. doi:10.1145/142675.
142717.

14 Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten Klein, and
Petra Mutzel. The open graph drawing framework (ogdf). In Roberto Tamassia, editor,
Handbook of graph drawing and visualization, chapter 17. CRC press, 2014.

15 Markus Chimani and Finn Stutzenstein. Spanner approximations in practice. arXiv, 2022.
arXiv:2107.02018.

16 Kenneth Lee Clarkson. Approximation algorithms for shortest path motion planning. In Proc.
STOC 1987, pages 56–65. ACM, 1987. doi:10.1145/28395.28402.

ESA 2022

https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1007/978-3-030-34029-2
https://doi.org/10.4230/LIPIcs.ESA.2019.4
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1145/4221.4227
https://doi.org/10.1002/rsa.20130
https://tcs.uos.de/research/spanner
https://doi.org/10.1016/j.ic.2012.10.007
https://doi.org/10.1137/110826655
https://doi.org/10.1145/2582112.2582154
https://doi.org/10.1016/0166-218X(94)90073-6
https://doi.org/10.1145/200836.200853
https://doi.org/10.1145/142675.142717
https://doi.org/10.1145/142675.142717
http://arxiv.org/abs/2107.02018
https://doi.org/10.1145/28395.28402


37:14 Spanner Approximations in Practice

17 Lenore J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38(1):170–
183, 2001. doi:10.1006/jagm.2000.1134.

18 Lenore J. Cowen and Christopher G. Wagner. Compact roundtrip routing in directed networks.
Journal of Algorithms, 50(1):79–95, 2004. doi:10.1016/j.jalgor.2003.08.001.

19 IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines
Corporation, 46(53):157, 2009. URL: https://www.ibm.com/analytics/cplex-optimizer.

20 Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs.
arXiv, 2010. arXiv:1011.3701.

21 Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In Proc. SODA 2016,
pages 821–840. ACM SIAM, 2016. doi:10.1137/1.9781611974331.ch59.

22 Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM Journal on Computing, 36(2):433–456,
2006. doi:10.1137/S0097539704441058.

23 Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners
and emulators. ACM Transactions on Algorithms, 15(1), 2018. doi:10.1145/3274651.

24 Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. SIAM Journal on Discrete
Mathematics, 29(3):1312–1321, 2015. doi:10.1137/140979538.

25 Michael Elkin and David Peleg. Approximating k-spanner problems for k>2. Theoretical
Computer Science, 337(1):249–277, 2005. doi:10.1016/j.tcs.2004.11.022.

26 Michael Elkin and Shay Solomon. Fast constructions of lightweight spanners for general graphs.
ACM Transactions on Algorithms, 12(3), 2016. doi:10.1145/2836167.

27 Mohammad Farshi and Joachim Gudmundsson. Experimental study of geometric t-spanners.
ACM Journal on Experimental Algorithmics, 14, 2010. doi:10.1145/1498698.1564499.

28 Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tarjan. A fast parametric maximum
flow algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989. doi:
10.1137/0218003.

29 Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

30 Andrew Vladislav Goldberg. Finding a maximum density subgraph. Technical Report
UCB/CSD-84-171, EECS Department, University of California, Berkeley, 1984.

31 Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions
with applications to data privacy. SIAM Journal on Computing, 42(2):700–731, 2013. doi:
10.1137/110840741.

32 J. Mark Keil. Approximating the complete Euclidean graph. In Proc. SWAT 1988, volume
318 of LNCS, pages 208–213. Springer, 1988.

33 Thorsten Koch, Alexander Martin, and Stefan Voß. SteinLib: An updated library on Steiner
tree problems in graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für
Informationstechnik Berlin, 2000. URL: http://steinlib.zib.de/steinlib.php.

34 Guy Kortsarz and David Peleg. Generating sparse 2-spanners. Journal of Algorithms, 17(2):222–
236, 1994. doi:10.1006/jagm.1994.1032.

35 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Proc. SPAA 2015, pages 192–201. ACM, 2015. doi:10.1145/
2755573.2755574.

36 Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random
shifts. In Proc. SPAA 2013, pages 196–203. ACM, 2013. doi:10.1145/2486159.2486180.

37 David Peleg. Proximity-preserving labeling schemes and their applications. In Proc. WG 1999,
volume 1665 of LNCS, pages 30–41. Springer, 1999.

38 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989. doi:10.1002/jgt.3190130114.

39 David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. In Proc.
PODC 1987, pages 77–85. ACM, 1987. doi:10.1145/41840.41847.

https://doi.org/10.1006/jagm.2000.1134
https://doi.org/10.1016/j.jalgor.2003.08.001
https://www.ibm.com/analytics/cplex-optimizer
http://arxiv.org/abs/1011.3701
https://doi.org/10.1137/1.9781611974331.ch59
https://doi.org/10.1137/S0097539704441058
https://doi.org/10.1145/3274651
https://doi.org/10.1137/140979538
https://doi.org/10.1016/j.tcs.2004.11.022
https://doi.org/10.1145/2836167
https://doi.org/10.1145/1498698.1564499
https://doi.org/10.1137/0218003
https://doi.org/10.1137/0218003
https://doi.org/10.1145/48014.61051
https://doi.org/10.1137/110840741
https://doi.org/10.1137/110840741
http://steinlib.zib.de/steinlib.php
https://doi.org/10.1006/jagm.1994.1032
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1145/2486159.2486180
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1145/41840.41847


M. Chimani and F. Stutzenstein 37:15

40 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. Journal
of the ACM, 36(3):510–530, 1989. doi:10.1145/65950.65953.

41 Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991. doi:10.1287/ijoc.3.4.376.

42 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61:389–401,
2011.

43 H. Shpungin and M. Segal. Near optimal multicriteria spanner constructions in wireless
ad-hoc networks. In IEEE INFOCOM 2009, pages 163–171, 2009. doi:10.1109/INFCOM.2009.
5061918.

44 Mikkel Sigurd and Martin Zachariasen. Construction of minimum-weight spanners. In Proc.
ESA 2004, volume 3221 of LNCS, pages 797–808. Springer, 2004.

45 Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,
2005. doi:10.1145/1044731.1044732.

ESA 2022

https://doi.org/10.1145/65950.65953
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1109/INFCOM.2009.5061918
https://doi.org/10.1109/INFCOM.2009.5061918
https://doi.org/10.1145/1044731.1044732




Determinants from Homomorphisms
Radu Curticapean #

IT University of Copenhagen, Denmark
Basic Algorithms Research Copenhagen, Denmark

Abstract
We give a new combinatorial explanation for well-known relations between determinants and traces
of matrix powers. Such relations can be used to obtain polynomial-time and poly-logarithmic space
algorithms for the determinant. Our new explanation avoids linear-algebraic arguments and instead
exploits a classical connection between subgraph and homomorphism counts.
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1 Introduction

The determinant of n × n matrices is, up to scaling, the unique function from n × n matrices
to scalars that is linear and alternating in the rows and columns. It admits the well-known
Leibniz formula

det(A) =
∑

π∈Sn

sgn(π)
n∏

i=1
ai,π(i), (1)

where Sn denotes the set of permutations of {1, . . . , n} and sgn : Sn → {−1, 1} denotes the
permutation sign. Writing σ(π) for the number of cycles in π, the permutation sign can be
expressed as sgn(π) = (−1)n+σ(π).

When presented with only the right-hand side of (1), unaware of the connection to the
determinant, one would likely struggle to evaluate this sum of n! terms efficiently. For
comparison, it is #P-hard to compute the similarly defined permanent [8], which is obtained
by omitting the sign factors from the expression.

Yet, determinants can be evaluated efficiently, e.g., via Gaussian elimination in O(n3) field
operations, including divisions. Asymptotically optimal algorithms achieve O(nω) operations,
where ω < 3 is the exponent of matrix multiplication [2, Exercise 28.2-3]. Note that det(A)
is defined over any ring containing the entries of A; there are also algorithms computing
determinants with a polynomial number of ring operations, i.e., excluding divisions [6, 1, 7].

Determinants from matrix powers

It is classically known in linear algebra that det(A) for n × n matrices A can be computed
from the matrix traces tr(Ak) for 1 ≤ k ≤ n. In the following, assume that A is defined
over an algebraically closed field F, such that A has eigenvalues λ1, . . . , λn ∈ F. The idea
is to express det(A) and tr(Ak) for 1 ≤ k ≤ n as particular polynomials in the eigenvalues
λ1, . . . , λn and then relate these polynomials.
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The determinant can be expressed as det(A) = λ1 . . . λn; this is the n-th elementary
symmetric polynomial in the eigenvalues. Generally, the k-th elementary symmetric
polynomial ek(x1, . . . , xn) in n variables is the sum of monomials

∑
S

∏
i∈S xi, where S

ranges over all k-subsets S ⊆ {1, . . . , n}.
The matrix trace satisfies tr(A) = λ1 + . . .+λn, and more generally, tr(Ak) = λk

1 + . . .+λk
n.

This is the k-th power-sum polynomial in the eigenvalues. Generally, the k-th power sum
polynomial is pk(x1, . . . , xn) = xk

1 + . . . + xk
n.

The Girard–Newton identities then allow us to relate the power-sum and elementary symmetric
polynomials. They state that, for all 1 ≤ k ≤ n,

kek(x1, . . . , xn) =
k∑

i=1
(−1)i−1ek−i(x1, . . . , xn)pi(x1, . . . , xn).

For F of characteristic 0, a recursive application of these identities allows us to compute
det(A) = en(λ1, . . . , λn) from the values pk(λ1, . . . , λn) = tr(Ak) for 1 ≤ k ≤ n. Csanky’s
algorithm [4, Chapter 31] implements this approach with an arithmetic circuit of bounded
fan-in, O(log2 n) depth, and polynomial size. In other words, it shows that determinants can
be computed with O(log2 n) operations on a polynomial number of parallel processors.

Our result

The main result of this paper is a novel and self-contained derivation of a known and
algorithmically useful formula that expresses the determinant of n × n matrices A as a
polynomial combination of traces of matrix powers:

det(A) = (−1)n
∑
λ⊢n

(−1)|λ|
n∏

ℓ=1

tr(Aℓ)sℓ(λ)

sℓ(λ)! · ℓsℓ(λ) . (2)

Some remarks on the notation are in order. The sum ranges over partitions λ of n, which
are multi-sets of positive numbers summing to n. We write λ ⊢ n to indicate that λ is a
partition of n and write |λ| for its number of parts. For ℓ ∈ N, we write sℓ(λ) ∈ N for the
number of occurrences of ℓ in λ.

The previous subsection essentially gives a proof of (2) by appropriately expanding the
recursive applications of the Girard–Newton identities. The new proof we present in this
paper bypasses notions like eigenvalues, symmetric polynomials, and the Girard–Newton
identities, and instead relies on ideas from the theory of graph homomorphism counts.

Our proof of (2) is contained in Section 2. We then sketch in Section 3 how this formula
can be used to obtain polynomial-time and parallel algorithms for the determinant.

2 Proof of Equation (2)

In the following, let [n] = {1, . . . , n} and let A = (ai,j)i,j∈[n] be a matrix. We will study the
determinant of A using graph-theoretic language. The graphs G we consider are directed
and may feature self-loops, and some graphs may feature parallel edges between the same
pair of vertices. We write V (G) and E(G) for the vertices and edges of G.

2.1 Determinants are sums of cycle covers
The matrix A induces an edge-weighted complete directed graph with self-loops on the
vertex set V (A) = [n]. Abusing notation, we also write A for this weighted graph. In this
view, permutations correspond to cycle covers, which are edge-sets C ⊆ E(A) inducing
vertex-disjoint cycles that cover all vertices of A.
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We require the more general notion of a k-partial cycle cover for 0 ≤ k ≤ n, which is a
collection of vertex-disjoint cycles with k edges in total. We write σ(C) for the number of
cycles in C, define the sign of C analogously to the permutation sign as sgn(C) = (−1)|C|+σ(C),
and define the format of C as the partition λ ⊢ k induced by the multi-set of cycle lengths.
Finally, let C(n, k) be the set of k-partial cycle covers of the complete directed graph on
vertex set [n].

Partial cycle covers are connected to k-partial determinants. Up to sign, these are the
coefficients of characteristic polynomials, and they can be defined as

detk(A) =
∑

S⊆[n] of size k

det(A[S]),

where A[S] is the square sub-matrix of A defined by restricting to the rows and columns
contained in S. From the Leibniz formula (1), it follows that

detk(A) =
∑

C∈C(n,k)

sgn(C)
∏

uv∈C

au,v. (3)

Given λ ⊢ k, let Cλ ∈ C(n, k) be any fixed cycle cover of format λ. We can regroup terms in
(3) to obtain

detk(A) =
∑
λ⊢k

sgn(Cλ)
∑

C∈C(n,k) of
format λ

∏
uv∈C

au,v

︸ ︷︷ ︸
=:sub(Cλ→A)

. (4)

Note that the quantity sub(Cλ → A) defined above is a weighted sum over the cycle covers
C isomorphic to Cλ, weighted by the product of the edge-weights in C.

2.2 Relating subgraphs, embeddings and homomorphisms
Let L be a graph, possibly containing parallel edges. The weighted homomorphism and
embedding counts from L into A are defined as

hom(L → A) =
∑

f :V (L)→[n]

∏
e∈E(L)

with e=uv

af(u),f(v), (5)

emb(L → A) =
∑

f :V (L)→[n]
injective

∏
e∈E(L)

with e=uv

af(u),f(v). (6)

For example, if Cℓ denotes the directed ℓ-cycle for ℓ ∈ N, then hom(Cℓ → A) = tr(Aℓ).
Moreover, for λ ⊢ k, recall that sℓ(λ) counts the occurrences of part ℓ in λ. We have

hom(Cλ → A) =
k∏

ℓ=1
tr(Aℓ)sℓ(λ), (7)

since homomorphisms from a disjoint union of graphs can be chosen independently for the
individual components; this implies that hom(Cλ → A) is the product of homomorphism
counts for the individual cycles in Cλ.

Given a graph P without parallel edges, an automorphism of P is an isomorphism into
itself. We write aut(P ) for the number of automorphisms of P . For example,

aut(Cλ) =
k∏

ℓ=1
sℓ(λ)! · ℓsℓ(λ), (8)
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since any automorphism of Cλ (i) permutes the set of sℓ(λ) cycles for any fixed length ℓ,
which gives rise to a factor of sℓ(λ)! in the above product, and (ii) independently applies an
automorphism to each cycle, giving rise to a factor of ℓ for every cycle of length ℓ.

With these notions set up, we can successively express subgraph counts from cycle covers,
as defined in (4), via homomorphism counts. First, we transition from subgraph to embedding
counts: As every subgraph isomorphic to Cλ gives rise to aut(Cλ) many embeddings with
the same image, we obtain

sub(Cλ → A) = emb(Cλ → A)
aut(Cλ) . (9)

Next, we transition from embedding to homomorphism counts. Roughly speaking,
embedding counts from a graph H are equal to homomorphism counts from H plus “lower-
order terms” involving only homomorphism counts from graphs F with strictly less vertices
than H . This follows directly from [5, (5.18)] and we include a simple proof for completeness,
also contained in [3].

▶ Lemma 1. For any fixed graph H, there are coefficients βF ∈ Z for all graphs F with
|V (F )| < |V (H)| such that

emb(H → A) = hom(H → A) +
∑

graphs F with
|V (F )|<|V (H)|

βF hom(F → A).

Proof. Given a partition ρ of the set1 V (H), the quotient H/ρ is the multigraph obtained by
identifying the vertices within each block of ρ while keeping all possibly emerging self-loops
and multi-edges. We have

hom(H → A) =
∑

partition ρ
of V (H)

emb(H/ρ → A), (10)

since any homomorphism f : V (H) → [n] induces a partition ρ = {f−1(i) | i ∈ [n]} by which
f may be viewed as an embedding from H/ρ to A.

Write ⊥ for the finest partition of the set V (H), that is, the partition consisting of |V (H)|
singleton parts. By rearranging (10) and using H/⊥ = H, we obtain

emb(H → A) = hom(H → A) −
∑

partition ρ̸=⊥
of V (H)

emb(H/ρ → A). (11)

Note that all graphs H/ρ with ρ ̸= ⊥ have strictly less vertices than H . We can therefore apply
(11) again to express each term emb(H/ρ → A) on the right-hand side as hom(H/ρ → A)
minus embedding counts from smaller graphs. This process can be iterated until reaching
single-vertex graphs, from which homomorphism and embedding counts coincide trivially.
Upon termination of this process, all occurrences of embedding counts have been replaced by
homomorphism counts. ◀

Combining (4), (9), and Lemma 1, it follows that the k-partial determinant is a linear
combination of homomorphism counts from k-partial cycle covers plus “lower-order terms”.

1 Note that ρ here is a partition of a set, not a partition of a number.
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▶ Corollary 2. For any fixed k ∈ N, there are coefficients αF ∈ Q for all graphs F with
|V (F )| < k such that, for any n × n matrix A,

detk(A) =
(∑

λ⊢k

sgn(Cλ)
aut(Cλ) hom(Cλ → A)

)
+

∑
F with

|V (F )|<k

αF hom(F → A). (12)

2.3 Lower-order terms vanish
As it turns out, the “lower-order terms” in (12) vanish. To show this, we use Kronecker
products to lift this equality to a polynomial identity and then compare coefficients. For
t ∈ N, the Kronecker product2 A ⊗ Jt of A with the t × t all-ones matrix Jt is an nt × nt

matrix with row and column indices from [n] × [t], such that the entry at row (i, r) and
column (j, r′) equals ai,j . In other words, each entry ai,j of A is replaced in A ⊗ Jt by a t × t

matrix that contains only ai,j .
It turns out that (12) “reacts polynomially” to this operation: When fixing k = n and

replacing A by A ⊗ Jt for varying t in (12), the homomorphism counts hom(S → A ⊗ Jt) for
graphs S on the right-hand side become polynomials in t. In fact, each such homomorphism
count contains only a single monomial:

▷ Claim 3. For any graph S, we have hom(S → A ⊗ Jt) = t|V (S)| hom(S → A).

Proof. Every function f : V (S) → [n] induces t|V (S)| functions f ′ : V (S) → [n] × [t], all
of the same edge-weight product, by choosing an index rv ∈ [t] for each vertex v ∈ V (S).
Conversely, every such function is induced by the function that forgets the second component
of the images. ◁

Applying Claim 3 on (12) with k = n, and with A ⊗ Jt instead of A, we obtain

detn(A ⊗ Jt) = tn

(∑
λ⊢n

sgn(Cλ)
aut(Cλ) hom(Cλ → A)

)
+

∑
F with

|V (F )|<n

t|V (F )|αF hom(F → A). (13)

We now observe that detn(A ⊗ Jt) is proportional to tn. This will allow us to ignore the
lower-order graphs F in (13).

▷ Claim 4. We have detn(A ⊗ Jt) = tndet(A).

Proof. By definition of the partial determinant, we have

detn(A ⊗ Jt) =
∑

S⊆[n]×[t]
with |S|=n

det((A ⊗ Jt)[S]).

If S contains two pairs that agree in the first component, then the n × n matrix (A ⊗ Jt)[S]
contains two equal columns and its determinant vanishes. We can therefore restrict the
summation to index sets of the form S = {(1, r1), . . . , (n, rn)} for r1, . . . , rn ∈ [t]. There are
tn sets S of this form, each with (A ⊗ Jt)[S] = A. The claim follows. ◁

2 The Kronecker product A ⊗ B can be defined for general A and B, but we only require B = Jt.
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Now consider the polynomial identity (13) again. By Claim 4, the left-hand side equals
tndet(A). Then comparing the coefficients of tn on both sides yields

det(A) =
∑
λ⊢n

sgn(Cλ)
aut(Cλ) hom(Cλ → A) (14)

=
∑
λ⊢n

(−1)n+|λ|
n∏

ℓ=1

tr(Aℓ)sℓ(λ)

sℓ(λ)! · ℓsℓ(λ) . (15)

For the last equation, we expanded hom(Cλ → A) via (7) and aut(Cλ) via (8), and we used
the definition of sgn(Cλ). This proves (2).
▶ Remark. The above argument applies more generally. Consider any function F : Qk×k → Q
that admits a set H of k-vertex graphs and coefficients αH ∈ Q for H ∈ H such that

F (A) =
∑

H∈H
αH emb(H → A).

By Lemma 1, every emb(H → A) is a sum of hom(H → A) and lower-order homomorphism
counts; this yields an analogue of (12). If F vanishes on k × k matrices with two identical
rows/columns, then an analogue of Claim 4 holds, and it follows as above that the lower-order
homomorphism counts vanish.

3 Algorithmic applications

Equation (2) does not directly imply a polynomial-time algorithm for the determinant, as
the sum over partitions λ ⊢ n involves a super-polynomial number of terms. Nevertheless,
this sum can be computed in polynomial time via dynamic programming or polynomial
multiplication, as shown below.

▶ Lemma 5. Given tr(Aℓ) for all 1 ≤ ℓ ≤ n, we can compute det(A) with O(n3) operations.

Proof. Let X be a formal indeterminate. For 1 ≤ ℓ ≤ n, define the polynomial

pℓ(X) =
⌊n/ℓ⌋∑
i=0

(−1)i tr(Aℓ)i

i! · ℓi
Xℓi.

We observe first that the coefficient of Xn in the product (−1)np1 . . . pn is the desired sum
in (2), and then focus on computing that coefficient.

For the first part, note that the coefficient of Xn can be viewed as a weighted count of
all ways to choose a power Xiℓ from each polynomial pℓ, subject to

∑
ℓ ℓ · iℓ = n. These

choices yield a partition (1i1 , . . . nin) ⊢ n that is weighted by
∏n

ℓ=1(−1)iℓ tr(Aℓ)iℓ

iℓ!·ℓiℓ
. Thus, the

coefficient of Xn in (−1)np1 . . . pn can be viewed as a sum over partitions λ ⊢ n whose terms
correspond to those in (2).

We compute the first n + 1 coefficients of (−1)np1 . . . pn, including the coefficient of Xn,
by iteratively multiplying pt onto p1 . . . pt−1 and truncating the intermediate result to the
first n + 1 coefficients. Using standard polynomial multiplication, each of the n iterations
takes O(n2) operations. Overall, this procedure requires O(n3) operations. ◀

By naively iterating matrix multiplication, we can compute tr(Aℓ) for all 1 ≤ ℓ ≤ n with
O(nω+1) overall operations, where ω is the exponent of matrix multiplication. This implies:

▶ Theorem 6. The determinant det(A) can be computed with O(nω+1) operations.
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The traces and subsequent application of (2) can also be computed with arithmetic
circuits of constant fan-in and poly-logarithmic depth: Any product of two matrices can
be computed trivially in O(log n) depth and O(n3) size. Repeated squaring allows us to
compute all matrix powers Aℓ and their traces tr(Aℓ) for 1 ≤ ℓ ≤ n in O(log2 n) depth and
Õ(n4) overall size.

After all traces are computed, the polynomial multiplications from the proof of Lemma 5
can be performed in O(log2 n) depth and Õ(n3) size: A single polynomial multiplication can
be computed in O(log n) depth and Õ(n2) size. The truncation of the product (−1)np1 . . . pn

to the first n + 1 coefficients can then be computed as an O(log n)-depth binary tree, with
p1, . . . , pn at the leaves, and each internal node performing a polynomial multiplication
followed by truncating to the first n + 1 coefficients. This implies:

▶ Theorem 7. The determinant det(A) can be computed with an arithmetic circuit of
constant fan-in, O(log2 n) depth, and Õ(n4) size.
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Abstract
We give new polynomial lower bounds for a number of dynamic measure problems in computational
geometry. These lower bounds hold in the Word-RAM model, conditioned on the hardness of either
3SUM, APSP, or the Online Matrix-Vector Multiplication problem [Henzinger et al., STOC 2015]. In
particular we get lower bounds in the incremental and fully-dynamic settings for counting maximal
or extremal points in R3, different variants of Klee’s Measure Problem, problems related to finding
the largest empty disk in a set of points, and querying the size of the i’th convex layer in a planar set
of points. We also answer a question of Chan et al. [SODA 2022] by giving a conditional lower bound
for dynamic approximate square set cover. While many conditional lower bounds for dynamic data
structures have been proven since the seminal work of Pătraşcu [STOC 2010], few of them relate to
computational geometry problems. This is the first paper focusing on this topic. Most problems we
consider can be solved in O(n log n) time in the static case and their dynamic versions have only
been approached from the perspective of improving known upper bounds. One exception to this is
Klee’s measure problem in R2, for which Chan [CGTA 2010] gave an unconditional Ω(

√
n) lower

bound on the worst-case update time. By a similar approach, we show that such a lower bound also
holds for an important special case of Klee’s measure problem in R3 known as the Hypervolume
Indicator problem, even for amortized runtime in the incremental setting.
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1 Introduction

In 1995, Gajentaan and Overmars [30] introduced the notion of 3SUM hardness, showing
that a number of problems in computational geometry can not be solved in subquadratic
time, assuming the so-called 3SUM problem can not be solved in subquadratic time.1 The
general approach of proving polynomial lower bounds based on a few conjectures about key
problems has since grown into its own subfield of complexity theory known as fine-grained

1 In 2014, Grønlund and Pettie [31] showed that the 3SUM problem can be solved in (slightly) subquadratic
time. The modern formulation thus replaces “subquadratic” with “truly subquadratic”, i.e. O(n2−ε) for
some constant ε > 0.
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complexity. The most popular of these conjectures concern the aforementioned 3SUM problem,
All-Pairs-Shortest-Paths (APSP), Boolean Matrix Multiplication (BMM), Triangle finding
in a graph, Boolean Satisfiability (SAT) and the Orthogonal Vectors problem (2OV) (see
for example the introductory surveys by Bringmann [13] and V. V. Williams [55]). Another
problem which crops up as a bottleneck in computational geometry is Hopcroft’s problem
(see the recent paper by Chan and Zheng [24]).

Pătraşcu [50] launched the study of such polynomial lower bounds for dynamic problems,
where instead of simply computing a function on a single input, we want to be able to
update that input and get the corresponding output of the function without having to
recompute it from scratch. In particular, he introduced the Multiphase problem and
showed a polynomial lower bound on its complexity, conditioned on the hardness of the
3SUM problem. Using the Multiphase problem as a stepping stone, he showed conditional
hardness results for a variety of dynamic problems. Improvements and other conditional
lower bounds for dynamic problems (data structure problems) have since appeared in the
literature [1–3, 5–7, 9, 11, 12, 25, 27, 34, 35, 38, 40, 41, 49, 53]. Of particular interest for the
purpose of this work is a paper by Kopelowitz et al. [41] where the approach of Pătraşcu
is improved by showing a tighter reduction from 3SUM to the so-called Set Disjointness
problem (an intermediate problem between 3SUM and the Multiphase problem), as well
as a paper by V. V. Williams and Xu [56], which obtains a similar reduction from the
so-called Exact Triangle problem. Also particularly relevant here is the work of Henzinger
et al. [34], who show that many of the known bounds on dynamic problems can be derived
(and even strengthened) by basing proofs on a hardness conjecture about the Online Boolean
Matrix-Vector Multiplication (OMv) problem which they introduce.

While computational geometry was one of first fields where conditional lower bounds for
algorithms were applied, for example by showing that determining if a point set is in general
position is 3SUM hard [30], the progress in conditional lower bounds for dynamic problems
has not found widespread application to computational geometry; recent work has been
largely confined to improved upper bounds. The only examples before the first version of this
paper2 relate to (approximate) nearest-neighbor search under different metrics (see the paper
by Rubinstein [51], the introductory article by Bringmann [14] as well as a preprint by Ko
and Song [39]), a paper by Lau and Ritossa [44] with results for orthogonal range update on
weighted point sets and an (unconditional) lower bound by Chan [17] for a dynamic version
of Klee’s Measure Problem. After a previous version of the present paper appeared on arXiv,
and independent of our work, Jin and Xu [37] studied generalized versions of the OMv and
BMM problems and proved polynomial lower bounds for various dynamic problems based
on their hardness, among which Dynamic 2D Orthogonal Range Color Counting, Counting
Maximal Points, Dynamic Klee’s measure problem for unit hypercubes and Chan’s Halfspace
Problem.

In this work, we exploit the results of Pătraşcu, Kopelowitz et al., V. V. Williams and Xu,
and Henzinger et al. to give conditional polynomial lower bounds for a variety of dynamic
problems in computational geometry, based on the hardness of 3SUM, APSP and Online
Boolean Matrix-Vector Multiplication. Almost all the problems we study here share the
common characteristic of being about computing a single global metric for a set of objects in
space subject to updates. Moreover, in the static case (where there are no updates) most of
these metrics can be computed in worst-case O(n log n) time using standard computational

2 We exclude from this list examples where (conditional) bounds on the static case trivially imply
polynomial bounds on the dynamic case.
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geometry results. In particular, we show conditional hardness results for orthogonal range
marking, maintaining the number of maximal or extremal points in a set of points in R3,
dynamic approximate square set cover, problems related to Klee’s Measure Problem, problems
related to finding the largest empty disk in a set of points, testing whether a set of disks
covers a given rectangle, and querying for the size of the i’th convex layer of a set of points
in the plane. We also give an unconditional lower bound for the incremental Hypervolume
Indicator problem in R3, where the goal is to maintain the volume of the union of a set of
axis-aligned boxes which all have the origin as one of their vertices.

The most basic of these problems, and the one we present first, is Square Range Marking:
given a set of n initially unmarked points in the plane, preprocess them to allow marking of
the points in any given axis-aligned square and testing if there is any unmarked point. This
encompasses the idea of augmenting a range query structure where augmentations can be
applied to all data in a query range; a mark is the simplest such augmentation. While many
variants of augmented orthogonal range queries have been studied (especially in the static
case) [4,21,22,32,33,36,42,45,46,52], this natural variant has been given little attention. This
is perhaps no coincidence, as we show that the straightforward polynomial-time solution based
on kd-trees is likely almost optimal, in contrast to standard 1-D range marking and other
augmentation problems which are easily handled by suitable variants of BSTs [26, Ch. 14].

Lau and Ritossa [44] give similar lower bounds for data structures on weighted points,
conditioned on the hardness of Online Boolean Matrix-Vector Multiplication, but explicitly
leave open questions on points which have a color or a “category.” They show for example a
lower bound for a data structure which allows to increment the weight of all points in an
orthogonal range and to query the sum of weights for all points in a given range, as well as
for variants of this problem.

1.1 Setting and computational model
We work in the standard Word RAM model, with words of w = Θ(log n) bits unless otherwise
stated, and for randomized algorithms we assume access to a perfect source of randomness.
We will base our conditional lower bounds on the following well known hardness conjectures.

▶ Conjecture 1 (3SUM conjecture). The following problem (3SUM) requires n2−o(1) expected
time to solve: given a set of n integers in {−n3, . . . n3}, decide if three of them sum up to 0.3

▶ Conjecture 2 (APSP conjecture). The following problem (APSP) requires n3−o(1) expected
time to solve: given an integer-weighted directed graph G on n vertices with no negative
cycles, compute the distance between every pair of vertices in G.

The 3SUM problem can easily be solved in O(n2) time, while APSP can be solved in
cubic time by the Floyd–Warshall algorithm, for example. The best known methods improve
these runtimes by subpolynomial factors [19,54].

In addition to being the basis for these standard conjectures in fine-grained complexity,
the 3SUM problem and the APSP problem are related in other ways (see [56]). In particular,
they both fine-grained reduce to the Exact Triangle problem, meaning that if either the
3SUM conjecture or the APSP conjecture is true, then the following conjecture is true.

3 The assumption that the integers are in {−n3, . . . n3} is done without loss of generality. In the model
we consider one can always reduce the problem to this setting while preserving the expected run-time,
via known hashing methods [8].
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▶ Conjecture 3 (Exact Triangle conjecture). The following problem (Exact Triangle) requires
n3−o(1) expected time to solve: given an integer-weighted graph G and a target weight T ,
determine if there is a triangle in G whose edge weights sum to T .

Thus, any bound conditioned on this conjecture also holds conditioned on the 3SUM
conjecture or the APSP conjecture. We also consider a conjecture introduced by Henzinger
et al. [34], which can be thought of as a weakening of the informal conjecture which says
that “combinatorial” matrix multiplication on n × n matrices requires essentially cubic time
(note that the term “combinatorial” is not well defined).

▶ Conjecture 4 (OMv conjecture). The following problem (OMv) requires n3−o(1) expected
time to solve:
We are given a n × n boolean matrix M . We can preprocess this matrix, after which we are
given a sequence of n boolean column-vectors of size n denoted by v1, ..., vn, one by one. After
seeing each vector vi, we must output the product Mvi before seeing vi+1.

The OMv problem can be solved in total time O(n3) by the naive algorithm. Here the
best known method improves this runtime by a subpolynomial factor [43]. The conjecture
was originally introduced in the Monte-Carlo setting (i.e. algorithms with a deterministic
runtime but which are allowed to err with a small enough probability). We state it in the
Las Vegas setting for the sake of uniformity of presentation. All the results of Henzinger et
al. carry over to that setting with no difficulty.

While Henzinger et al. showed that most known lower bounds on dynamic problems
derived from the 3SUM conjecture can be derived from the OMv conjecture (and often even
strengthened), it is not known whether one conjecture implies the other. For most of our
problems we derive polynomial lower bounds from both the OMv conjecture and the Exact
Triangle conjecture. In such cases, we still get such lower bounds if at least one of the four
considered conjectures is true. Moreover, the reductions used here could also give bounds in
the case some of these conjecture fail by a small enough polynomial factor (for example if
3SUM requires Ω(n4/3) time).

Note also that recent work by Chan et al. [23] directly implies that the lower bounds we
obtain from the APSP conjecture also hold in the so-called Real RAM model (conditioned
on the analogous Real-APSP conjecture) and in restricted versions of the model. For the
real versions of the 3SUM and Exact Triangle conjectures, combining our reductions with
theirs would also imply polynomial lower bounds for many of the problems considered here,
although weaker than the ones we obtain in the Word RAM model.

1.2 Main results
In the full version of this paper we obtain (conditional) polynomial lower bounds for a
variety of dynamic geometric problems, and an unconditional bound for the incremental
Hypervolume Indicator problem in R3. Our bounds are stated as inequalities which imply
trade-offs between achievable update and query times. The lower bounds we get on the
maximum of both are summarized in Table 1, together with known upper bounds. Note
that the bounds we get for squares or square ranges imply the same bounds for rectangles or
general orthogonal ranges, although we sometimes get better trade-offs in these cases. Here
we focus on some results for Square Range Marking, Counting Extremal Points in R3 and
unweighted Square Set Cover, in the fully-dynamic setting. The other results can be found
in the full version [28].
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Table 1 Non-trivial known upper bounds and new (at the time of the first version of this paper
being made public) lower bounds on the maximum over update and query time derived from the
Exact Triangle conjecture, the OMv conjecture or (in the case of the Hypervolume Indicator problem)
unconditionally. The Õ notation hides polylog factors, while the O∗ notation hides factors which
are o(nε) for an arbitrarily small constant ε > 0. All upper bounds are for data structures with at
most O∗(n) preprocessing. Note that the lower bounds for Square Range Marking also hold in the
case of a static set of points (with some assumptions on preprocessing time) and that the lower
bound for the Depth Problem derived from the OMv conjecture also holds for amortized runtime
in the incremental setting. The lower bound obtained for counting maximal points has since been
superseded by the more general result of Jin and Xu [37] who obtain lower bounds also in higher
dimension.

Problem Upper Bound Lower Bound

From Exact Triangle:
n1/4−o(1) †

From OMv:
n1/2−o(1) †

Square Range Marking [§2.2,28] Õ(n1/2) †,‡ [15]

Counting Extremal Points in R3 [§3,28]
O∗(n7/8) † [16]

O∗(n11/12) ‡ [18]

From Exact Triangle:
n1/5−o(1) †,‡

n1/4−o(1) ‡,$

From OMv:
n1/2−o(1) †,‡

Largest Empty Disk in Query Region [28]

Largest Empty Disk in a Set of Disks [28]

Rectangle Covering with Disks [28]

Square Covering with Squares [28] Õ(n1/2) ‡ [57]

Convex Layer Size in R2 [28]

From Exact Triangle:
n1/4−o(1) †

n1/3−o(1) ‡

From OMv:
n1/2−o(1) †,‡

Counting Maximal Points in R3 [§3,28] Õ(n2/3) ‡ [18]

O(nα)-approx. Weighted Square Set Cover [28]

Klee’s Measure Problem with Squares [28] Õ(n1/2) ‡ [57]

Discrete KMP with Squares [28] O(n1/2) †,‡ [58]

From Exact Triangle:
n1/3−o(1) †,‡

From OMv:
n1/2−o(1) †,‡

Depth Problem with Squares [28] Õ(n1/2) ‡ [57]

From OMv:
n1/3−o(1) †,‡O(1)-approximate Square Set Cover [§4,28] O∗(n1/2) ‡ [20]

Hypervolume Indicator in R3 [28] Õ(n2/3) ‡ [18] Ω(
√

n) #

† per-operation runtime in the incremental setting.
‡ amortized runtime in the fully-dynamic setting.
$ assuming n1+o(1) expected preprocessing time.

# unconditional lower bound in the incremental setting on amortized time, assuming at most
polynomial time preprocessing, or on worst-case time without preprocessing assumptions.

ESA 2022



39:6 Conditional Lower Bounds for Dynamic Geometric Measure Problems

Some of the lower bounds reveal interesting separations between geometric dynamic
problems whose operations can be supported in subpolynomial or O(nε) time and similar
problems which require polynomial time with a fixed exponent (under the hardness conjectures
we consider).

Orthogonal range queries with dynamic updates on single points can be done with polylog
time operations, while dynamic updates on orthogonal ranges of points require polynomial
time.
Dynamically maintaining maximal points in a point set can be done in polylog time in
R2, while maintaining only their number in R3 already requires polynomial time.
The same separation between dimensions 2 and 3 applies for maintaining (the number of)
extremal points.
Related to the previous point, the ability to query for the size of any convex layer on a
dynamic set of points in R2 requires polynomial time (compared to polylog time when
we are only interested in the first convex layer, i.e. the convex hull).
Maintaining a O(1)-approximation for the size of dynamic unit square set cover can
be done in 2O(

√
log n) amortized time per update [20], while maintaining the size of a

O(nα)-approximation (for a constant 0 ≤ α < 1) requires polynomial time for arbitrarily
sized squares (with an exponent dependent on α).
In the weighted case of the previous problem, we also get such a separation: O(1)-
approximate weighted unit square set cover can be done in O(nε) time [20] while O(nα)-
approximate weighted dynamic square set cover requires polynomial time, with an
exponent independent of α.

2 The general approach

In all the problems we consider, we have a data structure D which maintains a set S of
O(n) geometric objects, supporting some form of update and query (a query is any operation
which never impacts the result of any subsequent operation). We say that a data structure
(or that the set of objects it maintains) is incremental when it allows updates which consist
of inserting a new object in S. We use the term fully-dynamic when both insertions and
deletions are allowed. The set S can be initialized in a preprocessing phase.

2.1 General reduction schemes

All our reductions have the same basic structure based on a geometric view of Pătraşcu’s
Multiphase problem [50], where we encode a family F = {F1, . . . Fk} of subsets of {1, . . . , m}
as a grid of objects where the presence (or absence) of an object at the grid coordinates
(x, y) encodes x ∈ Fy. We can then select some of the columns I ∈ {1, . . . , k} and a row
j ∈ {1, . . . , m}, allowing us to test if I ∩ Fj ≠ ∅ efficiently. We abstract some of the
commonalities of the reductions in the following “general” reduction schemes, so we can focus
on the specifics of each problem and avoid repetitions later on. Rather than give the original
definition of the Multiphase problem, let us define what it means for a data structure to
solve it, as this will make the statements of reductions easier, more uniform, and makes the
required constraints on the data structure we consider explicit.
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▶ Definition 5 (Solving the Multiphase problem). Let F = {F1, . . . , Fk} be a family of k

subsets of {1, 2, . . . m}. Let sF =
∑

F ∈F |F |. Consider a data structure D with an undo
operation4 which maintains a set S of O(n) objects with expected preprocessing time O(tp),
expected amortized update time O(tu) and expected amortized query time O(tq). Suppose it
allows us to do the following.

(Step 1) First, we read F and store a set of n objects in S using only the preprocessing
operation of D.
(Step 2) Then, we receive a subset J ⊂ {1, 2, . . . m} and perform uJ updates on S.
(Step 3) Finally, we are given an index 1 ≤ i ≤ k and after O(1) updates and queries on
S we decide if J ∩ Fi ̸= ∅.

Assume that the time of each of these three steps is dominated by the time of the operations
on D and that in each step, the only information available from the previous steps is what
is accessible through D. Let tuq = tq if only queries are performed in Step 3, otherwise let
tuq = tu + tq.

We say that such a data structure solves the Multiphase problem.

As mentioned in the introduction, Pătraşcu gave lower bounds on the time required to solve
the Multiphase problem conditioned on the 3SUM conjecture and reduced this problem to
various dynamic problems. His reduction from 3SUM has since been tightened by Kopelowitz
et al. [41] and reductions from the Exact Triangle and OMv conjectures have been found by
Vassilevska Williams and Xu [56] and Henzinger et al. [34] respectively.

We summarize the implications from these works for different parameters in the following
theorems. While this results in somewhat verbose statements, we chose this approach in
order to streamline the reductions in this paper and to make the lower bounds we obtain
explicit in terms n.

▶ Theorem 6. Let D be a data structure which solves the Multiphase problem. If the Exact
Triangle conjecture is true (or in particular if either the 3SUM or APSP conjecture is true),
then for any 0 < γ < 1:

(Scenario 1) If n = O(m · k) and uJ = O(m), we have

tp + tu · n + tuq · n
1+γ

3−2γ = Ω
(

n
2

3−2γ −o(1)
)

.

(Scenario 2) If n = O(m · k) and uJ = O(|J |), we have

tp + tu · n
2−γ

3−2γ + tuq · n
1+γ

3−2γ = Ω
(

n
2

3−2γ −o(1)
)

.

(Scenario 3) If n = O(sF ) and uJ = O(m), we have

tp + tu · n
3−2γ
2−γ + tuq · n

1+γ
2−γ = Ω

(
n

2
2−γ −o(1)

)
.

(Scenario 4) If n = O(sF ) and uJ = O(|J |), we have

tp + tu · n + tuq · n
1+γ
2−γ = Ω

(
n

2
2−γ −o(1)

)
.

Note that for incremental (or fully-dynamic) data structures where we can insert objects, we
can always assume tp = O(tu · n) by inserting the O(n) initial objects individually.

4 A data structure is said to have an undo operation if for any update U there is complementary update
U ′ so that if U and U ′ are executed sequentially the results of subsequent operations are identical to
the case where U and U ′ were never executed. This requirement is easily satisfied in structures that
maintain a set and have insertion and deletion update operations.
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The results of Henzinger et al. [34] imply that whenever we have such lower bounds from
the hardness of Exact Triangle, we can get stronger bounds if we assume hardness of the
OMv problem instead.

▶ Theorem 7. Let D be a data structure which solves the Multiphase problem. Assume
n = O (mc1 · kc2) for some constants c1, c2 > 0, uJ = O(m), and the expected preprocessing
time tp is at most polynomial in n. If the OMv conjecture is true, then for any 0 < γ < 1,

tu · nγ + tuq · n
1−c1γ

c2 = Ω
(

n
1+(c2−c1)γ

c2
−o(1)

)
.

In particular if n = O(m · k) (as is the case in the four scenarios of Theorem 6), for
any 0 < γ < 1 we have tu · nγ + tuq · n1−γ = Ω

(
n1−o(1)) . For γ = 1/2, we thus have

tu + tq = Ω
(
n1/2−o(1)).

These results follow from straightforward adaptations of Pătraşcu’s proofs [50] together
with the more recent results from Williams and Xu [56] and Henzinger et al. [34], and are
implicit in the two latter papers. To apply these theorems, we need data structures with an
undo operation. When considering structures in the fully-dynamic setting where updates
consist of inserting or deleting an object, then this requirement is automatically satisfied. For
structures with guarantees on the runtime per operation (rather than amortized guarantees),
we can use the following standard technique (see for example [47, Theorem 2.1]).

▶ Lemma 8. Any data structure with guarantees on the runtime per operation (non-amortized)
can be augmented to support an undo operation with the same guarantees.

From now on, whenever we consider a structure with per-operation runtime guarantees,
we assume (without loss of generality) that it has been augmented to support undo.

2.2 An example: Square Range Marking
We illustrate the use of these theorems on the following problem.

Square Range Marking. Preprocess a static set of n initially unmarked points, where an
update consists of marking all points in a given axis-aligned square range and a query returns
if there is any unmarked point in the set.

Here the dynamic part of the problem is rather limited as only the markings of the points
can change after an update, the set of points itself is static. The updates are even monotone
in the sense that once a point has been marked it is never unmarked (in particular, the
number of unmarked points can never increase). Even for this seemingly simple problem, we
can use Theorems 6 and 7 to get the following (conditional) polynomial lower bounds.

▶ Theorem 9. Let D be a data structure for Square Range Marking with tp expected
preprocessing time and tu expected time per update (i.e. non-amortized). If the Exact
Triangle conjecture holds, then

tp + tu · (n
3−2γ
2−γ + n

1+γ
2−γ ) + tq · n

1+γ
2−γ = Ω

(
n

2
2−γ −o(1)

)
.

If the OMv conjecture holds and tp is at most polynomial then for any 0 < γ < 1

tu · (n1−γ + nγ) + tq · n1−γ = Ω
(

n1−o(1)
)

.

In particular, by setting γ = 1/2, we have tu + tq = Ω
(
n1/2−o(1)).
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Proof. It suffices to show that such a data structure fits the conditions of Scenario 3 in
Theorem 6. Let F = {F1, . . . , Fk} be a family of k subsets of {1, 2, . . . m}.

We perform Step 1 by initializing D with the following points: for each 1 ≤ i ≤ k and
1 ≤ j ≤ m for which j ∈ Fi, we put a point pi,j at coordinates ((k + 2)j + 1, i + 1). The total
number of points is n = sF .

To perform Step 2 when given J ⊂ {1, 2, . . . m}, we mark the points inside a square range
of side-length k + 2 whose lower-left corner has coordinates ((k + 2)j, 1), for all j ̸∈ J . This
requires O(m) updates on D. The unmarked points are exactly the pi,j ’s such that j ∈ J .

In Step 3, when given an index 1 ≤ i′ ≤ k, we mark the points inside the two squares of side-
length (k+2)m whose lower-left corners lie at coordinates (0, i′+1/2) and (0, i′−(k+2)m−1/2)
respectively. Now there is an unmarked point if and only if there is some point pi,j such
that j ∈ J and pi,j was not marked by these two last updates. This is the case if and only
if i = i′. By construction, such a point exists if and only if there is some j ∈ J such that
j ∈ Fi′ (i.e. J ∩ Fi′ ̸= ∅). Thus, we can answer a Step 3 query after two more updates to D.

By applying Theorems 6 and 7 we get the result. ◀

If we assume truly subquadratic expected preprocessing time we get polynomial lower
bounds on tu or tq from the Exact Triangle conjecture. The bounds from the OMv conjecture
are almost tight, as an upper bound can easily be obtained by taking a two-dimensional
kd-tree [10] and augmenting it by adding markers to the nodes indicating if the points in the
corresponding subtrees are marked. We then get a data structure with O(n log n) worst-case
preprocessing time and O(

√
n) worst-case time per update. As noted by Cardinal et al. [15],

using standard dynamization techniques such a data structure can even be made to support
insertion and deletion of points in O(log2 n) worst-case time.

3 Counting the number of extremal points in R3

We show polynomial lower bounds for the following problem, which in the plane can be
solved in polylog worst-case time per operation by known techniques [48].

Counting Extremal Points in R3. Maintain a dynamic set of O(n) points in R3 and allow
for queries counting the number of extremal points in the set.

▶ Theorem 10. Let D be a fully-dynamic data structure for Extremal Points in R3 with tp

expected preprocessing time, tu expected amortized update time and tq expected amortized
query time. If the Exact Triangle conjecture holds, then

tp + tu ·
(

n
2−γ

3−2γ + n
1+γ

3−2γ

)
+ tq · n

1+γ
3−2γ = Ω

(
n

2
3−2γ −o(1)

)
.

If the OMv conjecture holds, then for any 0 < γ < 1, tu ·(n1−γ +nγ)+tq ·n1−γ = Ω
(
n1−o(1)) .

In particular, by setting γ = 1/2, we have tu + tq = Ω
(
n1/2−o(1)).

Because we can assume tp = O(tu · n) this also implies that under the Exact Triangle
conjecture we have tu = Ω

(
n1/5−o(1)).

Before proving this theorem, let us introduce some notation. We let F = {F1, . . . , Fk} be
a family of k subsets of {1, . . . m}, where m, k ≥ 5. Here we work in cylindrical coordinates
(r, θ, z) (where this would denote the point (r cos θ, r sin θ, z) in Cartesian coordinates).

Let R = 4k2m2. For all 0 ≤ i ≤ k and 1 ≤ j ≤ m, let qi,j be the point with cylindrical
coordinates (R − (2i + 1)2, 2π

m j, 2i + 1). Similarly, for all 1 ≤ j ≤ m and 1 ≤ i ≤ k such
that j ∈ Fi, let pi,j be the point with cylindrical coordinates (R − (2i)2, 2π

m j, 2i). We let SF
denote the set consisting of all these points.
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Figure 1 Illustration (not to scale) of the set of points obtained for m = k = 5 and the family of
sets F = {{1}, {2}, . . . , {5}}. The points q•,• are represented in white, the points p•,• in black and
all these points lie on the translucent gray surface. The points b• are represented with a cross in a
white circle and are above the translucent gray surface. The asterisks represent the points of the
form t• and lie on the axis of rotational symmetry of the translucent gray surface.

For all 1 ≤ j ≤ m, we let bj denote the point with cylindrical coordinates (R−1, 2π
m j, 2k+2).

For all 1 ≤ i ≤ k + 1, we let ti denote the point lying on the longitudinal axis (the z-axis) at
height R+(2i−1)2

2(2i−1) . Note that for all 1 ≤ i1 ≤ i2 ≤ k + 1, the point ti1 is higher on the z-axis
than ti2 and that all points t• have a larger z-coordinate than all other previously defined
points. See Figure 1 for an illustration.

▶ Lemma 11. Let S be a set of points such that SF ⊂ S ⊂ SF ∪ {bj | 1 ≤ j ≤ m} ∪ {ti | 1 ≤
i ≤ k}. Let 1 ≤ j′ ≤ m and 1 ≤ i′ ≤ k. Then:

The point q0,j′ is extremal.
The point qi′,j′ is extremal if and only if bj′ ̸∈ S and for all 1 ≤ i ≤ i′, ti ̸∈ S. If pi′,j′ ∈ S

(i.e. j′ ∈ Fi′), then the same holds for pi′,j′ .
If ti′ ∈ S, then ti′ is extremal if and only if for all 1 ≤ i < i′, ti ̸∈ S.

Moreover, this remains true even if all points are arbitrarily perturbed by moving them a
distance of at most 1/R2.

See the full version of the paper [28] for the proof of this lemma.

Proof of Theorem 10. It suffices to show that such a data structure fits the conditions of
Scenario 2 in Theorem 6. Let F = {F1, . . . , Fk} be a family of k subsets of {1, 2, . . . m}. We
use the notation of Lemma 11. We first describe the procedure without discussing issues of
finite precision and later show how this can be carried out on a Word RAM machine with
words of O(log n) bits.

We perform Step 1 by initializing D with all points of the form q•,•, p•,• and b•. This
costs tu expected time, for a total number of points n = Θ(m · k).

To perform Step 2 when given J ⊂ {1, 2, . . . m}, we delete the points bj for all j ∈ J .
This requires O(|J |) updates on D.
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In Step 3, when given an index 1 ≤ i′ ≤ k we start by inserting the point ti′+1 to D and
getting the count c of extremal points. By Lemma 11, the extremal points of S at this point
are exactly those of the following 6 types:
1. the point ti′+1,
2. the points bj for all j such that j ̸∈ J ,
3. the points qi,j for all i, j such that j ∈ J and i < i′,
4. the points pi,j for all i, j such that j ∈ Fi, j ∈ J and i < i′.
5. the points qi′,j for all j such that j ∈ J ,
6. the points pi′,j for all j such that j ∈ Fi′ and j ∈ J .
To answer the query, we want to know if the number of points of the last type is greater than
0. We know that the number of points of the fifth category is exactly |J |. Notice that if we
now insert ti′ to D and get the new count c′ of extremal points, we are counting exactly the
first four categories of points, where we have replaced ti′+1 with ti′ . Thus, we can test if
the number of points of the last category is 0 simply by testing if c − c′ = |J |. We can thus
perform Step 3 with O(1) updates.

We can adapt this to work on a Word RAM machine with words of length w ≥ log n

by moving the points to vertices of the integer lattice (after appropriate scaling). This is
detailed in the full version of the paper [28]. By applying Theorems 6 and 7 we get the
result. ◀

In the fully-dynamic setting, Chan [18] gives a data structure for this problem with O(n1+ε)
preprocessing time and O(n11/12+ε) amortized update and query time, for an arbitrary ε > 0.
In the more restricted semi-online setting (which generalizes the incremental case), another
paper by the same author [16] gives a data structure with O(n1+ε) preprocessing time and
O(n7/8+ε) worst-case time per operation.

4 Dynamic geometric Set Cover with squares

In this section we answer a question by Chan et al. [20], by giving a conditional polynomial
lower bound on the time required to approximately maintain (the size of) a dynamic square
set cover in the plane under range updates.

Dynamic Square Set Cover. Maintain a set S of n points and axis-aligned squares in the
plane to support queries asking for the size of the smallest subset of squares which covers all
points.

Even the static version of this problem with unit squares is NP-complete [29], thus the
focus on approximations. Chan et al. [20] recently gave a O(1)-approximate solution in
the fully dynamic case where both squares and points may be inserted or deleted. This
(Monte Carlo randomized) solution achieves O(n1/2+ε) amortized update and query time.
The authors ask if there is a conditional polynomial lower bound for this problem. We show
the following.

▶ Theorem 12. Let 0 ≤ α < 1 be an efficiently computable5 constant. If there is a fully-
dynamic data structure for O(nα)-approximate Dynamic Square Set Cover with tu expected
amortized update time and tq expected query time, then the Multiphase problem can be solved
with n = O

(
k1/(1−α) · m2/(1−α)2

)
, tuq = tu + tq and uJ = O(m).

5 We say that a number α is efficiently computable if there is an algorithm which, for any k ≥ 0, can
output the first k bits of α in O(poly(k)) time.
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Figure 2 Illustration (not to scale) of the instance obtained after Step 2 in the proof of Theorem
12, for a data structure with a constant approximation ratio of β = 3/2. The illustrated instance
has m = 4, k = 3, F = {{1, 2, 3}, {2, 4}, {2}}, J = {1, 4} and c = 10.

Together with Theorem 7 this implies polynomial lower bounds under the OMv conjecture,
for all 0 ≤ α < 1. In particular, for α = 0 (i.e. for a constant approximation factor) it implies
tu + tq = Ω

(
n1/3−o(1)).

Proof. We first prove the result in the case of arbitrary axis-aligned rectangles and then
show how to adapt it to use only squares. Let F = {F1, . . . , Fk} be a family of k subsets of
{1, 2, . . . m}. Suppose D achieves an approximation ratio of at most β · nα for some constant
integer β > 1 (we can assume this without loss of generality). Let c be an integer value
which we specify later.

We perform Step 1 by initializing D with the following points and rectangles:
for each 1 ≤ i ≤ k and 1 ≤ j ≤ m for which j ∈ Fi, we put a point pa

i,j at coordinates
(c · j + a, i) for each 0 ≤ a < c;
for each 1 ≤ j ≤ m and each 0 ≤ a < c, we put a thin vertical rectangle which covers
exactly the points of the form pa

•,j .

The total number of points and rectangles at this point is n1 = sF + m · c ≤ m · (k + 1) · c.
Set c to be the smallest integer such that c > β(n1 + m + 2)α · (m + 2) (note that the value of
n1 depends on c, but c is nonetheless well defined and can be computed in O(polylog(m · k))
time). We then have n1 = O

(
k1/(1−α) · m2/(1−α)2

)
.

To perform Step 2 when given J ⊂ {1, 2, . . . m}, we insert a rectangle covering all points
of the form p•

•,j for each j ̸∈ J . This requires O(m) updates on D. See Figure 2 for an
illustration of the first two steps.

In Step 3, when given an index 1 ≤ i′ ≤ k, we insert two rectangles: the first covers all
points p•

i,• with i < i′ and the second covers all points p•
i,• with i > i′. The total number of

points and rectangles at this point is n ≤ n1 +m+2. Now, if J ∩Fi′ = ∅ then all points can be
covered with at most m + 2 rectangles: the (at most) m rectangles inserted in step 2 together
with the two rectangles inserted in Step 3. On the other hand, if there is some j ∈ J ∩ Fi′ ,
then the points of the form p•

i,j can only be covered by choosing c thin rectangles created in
Step 1. Thus, any approximation of the set cover with a ratio better than c

m+2 suffices to
distinguish between the two cases. Moreover, we have c

m+2 > β · (n1 + m + 2)α m+2
m+2 ≥ β · nα.

We can then answer a Step 3 query by asking the data structure for a β · nα approximation
of the size of the minimum set cover.

To see how to adapt this reduction using only squares, notice that we can increase
the height of any rectangle without affecting the results. Thus, we can stretch the whole
configuration of points and rectangles horizontally until the thinnest vertical rectangles
become squares, and adjust the heights of the other rectangles to make them squares as
well. ◀

Contrast this lower bound with the case of unit axis-aligned squares, for which Chan et
al. [20] give a data structure for O(1)-approximation achieving 2O(

√
log n) amortized update

and query time.
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Abstract
We study the classical scheduling problem of minimizing the makespan of a set of unit size jobs
with precedence constraints on parallel identical machines. Research on the problem dates back to
the landmark paper by Graham from 1966 who showed that the simple List Scheduling algorithm
is a (2 − 1

m
)-approximation. Interestingly, it is open whether the problem is NP-hard if m = 3

which is one of the few remaining open problems in the seminal book by Garey and Johnson.
Recently, quite some progress has been made for the setting that m is a constant. In a break-
through paper, Levey and Rothvoss presented a (1 + ϵ)-approximation with a running time of
n(log n)O((m2/ϵ2) log log n)

[STOC 2016, SICOMP 2019] and this running time was improved to quasi-
polynomial by Garg [ICALP 2018] and to even nOm,ϵ(log3 log n) by Li [SODA 2021]. These results
use techniques like LP-hierarchies, conditioning on certain well-selected jobs, and abstractions like
(partial) dyadic systems and virtually valid schedules.

In this paper, we present a QPTAS for the problem which is arguably simpler than the previous
algorithms. We just guess the positions of certain jobs in the optimal solution, recurse on a set of
guessed subintervals, and fill in the remaining jobs with greedy routines. We believe that also our
analysis is more accessible, in particular since we do not use (LP-)hierarchies or abstractions of the
problem like the ones above, but we guess properties of the optimal solution directly.
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1 Introduction

A classical problem in scheduling theory is the problem to schedule jobs on parallel machines
in order to minimize the makespan, while obeying precedence constraints between the jobs.
It goes back to the 1966 when Graham proved in his seminal paper [5] that the simple
List Scheduling algorithm yields a is a (2 − 1

m )-approximation algorithm. Formally, the
input consists of a set J of n jobs, a number of machines m ∈ N, and each job j ∈ J is
characterized by a processing time pj ∈ N. We seek to schedule them non-preemptively on
m machines in order to minimize the time when the last job finishes, i.e., to minimize the
makespan. Additionally, there is a precedence order ≺ which is a partial order between the
jobs. Whenever j ≺ j′ for two jobs j, j′ ∈ J then job j′ can only be started when j has
already finished. Given that the List Scheduling algorithm is essentially a simple greedy
routine, one may imagine that one can achieve a better approximation ratio with more
sophisticated algorithmic techniques. However, Svensson showed that even for unit size
jobs (i.e., pj = 1 for each j ∈ J) there can be no (2 − ϵ)-approximation algorithm for any
ϵ > 0 [9], assuming a variant of the Unique Games Conjecture. Hence, under this conjecture
List Scheduling is the essentially best possible algorithm. Slight improvements are known for
unit size jobs: there is an algorithm by Coffman and Graham [1] which computes an optimal
solution when m = 2, and a which is a (2 − 2

m )-approximation algorithm for general m, as
shown by Lam and Sethi [6]. Also, there is an (2 − 7

3m+1 )-approximation algorithm known
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due to Gangal and Ranade [2]. In fact, the setting of unit-size jobs is interesting since then
the complexity of the problem stems purely from the precedence constraints and not from
the processing times of the jobs (which might encode problems like Partition). We assume
this case from now.

In practical settings m might be small, e.g., m might be the number of processors in
a system, or the number of cores of a CPU. Thus, it is a natural question whether better
approximation ratios are possible when m is a constant. Note that the mentioned lower
bound of 2− ϵ [9] does not hold if m = O(1). For m = 2 the mentioned algorithm by Coffman
and Graham [1] computes an optimal solution; however, even if m = 3 it is not known
whether the problem is NP-hard! In fact, it is one of the few remaining open problems in the
book by Garey and Johnson [3].

In a break-through result, Levey and Rothvoss presented a (1 + ϵ)-approximation with
a running time of n(log n)O((m2/ϵ2) log log n) [7]. Subsequently, the running time was improved
by Garg [4] to nOm,ϵ(logO(m2/ϵ2) n) which is quasi-polynomial. Both algorithms are based
on the natural-LP relaxation of the problem, (essentially) lifted by a certain number r of
rounds of the Sherali-Adams hierarchy, and it can be solved in time nO(r). Given the optimal
LP-solution x∗, they condition on certain variables in the support of x∗, which effectively
fixes time slots for the corresponding jobs. Each conditioning operation changes not only the
variable that one conditions on, but possibly also other variables in the support. After a
well-chosen set of conditioning operations, they recurse into smaller subintervals and give
each of them a copy of the current LP-solution (which might be different from x∗ due to the
conditioning operations). Intuitively, in each recursive call for some subinterval I they seek
to schedule jobs that can only be scheduled during I according to the previous conditionings
and the precedence constraints; they call these jobs bottom jobs and the other jobs top and
middle jobs. The middle jobs can be discarded. For the top jobs, they first use a matching
argument to show that most of the top jobs can be inserted if one can ignore the precedence
constraints between top jobs. Knowing this, they insert most of the top jobs with a variation
of Earliest-Deadline-First (EDF), such that all precedence constraints are satisfied; some of
the top jobs are discarded in the process. The discarded jobs are later inserted in a greedy
manner which is affordable since they are very few.

A different approach is used by Li [8] who improved the running time further to
nOm,ϵ(log3 log n). Instead of working with an LP, he guesses directly certain properties of
the optimal solution. While in the above argumentation each conditioning step costs a
factor nO(1) in the running time, he argues that – roughly speaking – most of the time the
information he guesses is binary and hence costs only a factor of 2 in the running time. More
precisely, he guesses properties of a technical abstraction based on dyadic systems, partial
dyadic systems, and virtually valid schedules. On a high level, he shows that based on the
optimal schedule one can define a corresponding dyadic system and a virtually valid schedule
for it, at the cost of discarding a few jobs. His algorithm then searches for the dyadic system
and a virtually valid schedule for it that discards as few jobs as possible. Then, he shows
that based on them, he can construct an actually valid schedule, which discards only few
additional jobs.

1.1 Our Contribution

In this paper we present a QPTAS for the makespan minimization problem with unit size jobs
on a constant number of machines along with precedence constraints (Pm|prec, pj = 1|Cmax
in the three-field notation) which is arguably simpler than the (1+ϵ)-approximation algorithms
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sketched above. We do not use an LP-formulation and in particular no LP-hierarchy or a
similar approach based on conditioning on variables. Instead, we guess properties of the
optimal solution directly, similarly as Li [8]. However, we do not use the reduction to dyadic
systems or a similar abstraction but work with the optimal solution directly. We believe
that this makes the algorithm and the analysis easier to understand. Our running time is
nOm,ε((log n)m/ε) so it is asymptotically better than the running time by Garg [4] up to hidden
constants.

Our algorithm is actually pretty simple. Let T be the optimal makespan (which we guess).
For a parameter k = (log n)O(1) we guess the placement of k jobs in OPT and a partition
of [0, T ) into at most k intervals. For each interval I, there are some jobs that need to be
scheduled during I according to our guesses and the precedence constraints. We recurse on
each interval I and its corresponding jobs. Then, we add all remaining jobs with a simple
variant of EDF where the release dates and deadlines are defined such that the precedence
constraints between these jobs and the other jobs (that we recursed on) are satisfied. For
the correct guesses, we show that the resulting schedule discards at most O(ϵT ) jobs, and we
add those jobs at the end with a simple greedy routine.

In our analysis, we use a hierarchical decomposition of intervals, like the previous
results [8, 7, 4]. In contrast to those, we define the decomposition such that each interval
is subdivided into O(log n/ε) subintervals (instead of 2 subintervals) since this makes the
analysis easier. Based on the optimal solution, for each level we identify certain jobs that
we want to guess in that level later. Also, we assign a level to each job. Via a shifting step,
we show that we can discard the jobs from intuitively every (m/ϵ)-th level. Based on these
levels, we argue that there are guesses for our algorithm that yield a small total number
of discarded jobs. Intuitively, we guess the jobs from the first m/ϵ levels that we identified
above and the intervals of the (m/ϵ + 1)-th level. We recurse on the latter intervals. When
we insert the jobs of the first m/ϵ levels via EDF (those jobs that we did not guess already),
the jobs from our recursion and their precedence constraints dictate for each inserted job j a
time window [rj , dj). It might happen that the position of j in the optimal solution is not
contained in [rj , dj), but we show that it is always contained in the larger time window of
[rj − λ, dj + λ] for a small value λ > 0. We show that we need to discard at most O(mT ϵ

log n )
jobs to compensate for this error and due to the precedence constraints between the inserted
jobs. We analyze EDF directly and do not need to go via a matching argumentation as done
in [7]. It turns out that our algorithm recurses for at most O( ε

m log n) levels and hence this
yields O( ε log n

m · mT ϵ
log n ) = O(ϵ2T ) discarded jobs in total.

While our analysis borrows ideas from the mentioned previous results [8, 7, 4] we believe
that our algorithm and our analysis are simpler and more accessible.

2 Algorithm

We present a simple QPTAS for the problem Pm|prec, pj = 1|Cmax. Let ϵ > 0 and assume
w.l.o.g. that 1/ϵ ∈ N. We guess T := OPT and assume w.l.o.g. that T is a power of 2 (if this
is not the case, then we can add some dummy jobs that need to be processed after all other
jobs; note that a (1+ϵ)-approximate solution for this larger instance is a (1+2ϵ)-approximate
solution for the original instance). Also, w.l.o.g. we assume that in OPT each job starts and
ends at an integral time point, i.e., during a time interval of the form [t, t + 1) for some t ∈ N.
We will refer to such a time interval as a time slot. Furthermore, we assume that w.l.o.g.
that the precendence constraints are transitive, i.e., if j ≺ j′ and j′ ≺ j′′ then also j ≺ j′′.
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Our algorithm works on a “guess and recurse” framework. Define a parameter k :=
(m log n/ε)m/ϵ+1. The reader can think of the parameter k as Om,ε((log n)m/ε+1), where
Om,ε() hides constants that are only dependent on m, ε. Our algorithm has three steps. First,
we guess up to k jobs from OPT and their time slots in OPT, i.e., we try all combinations of
up to k input jobs and all combinations for their time slots to schedule them. Then, we guess
a partition of [0, T ) into at most k intervals, i.e., we try all combinations of partitioning
[0, T ) into at most k intervals. By allowing empty intervals, we assume w.l.o.g. that we guess
exactly k intervals and denote them by I1, ..., Ik. Let Jguess denote the guessed jobs. There
might be precedence constraints between jobs in Jguess and jobs in J \ Jguess. In particular,
these precedence constraints might dictate that some job j ∈ J \ Jguess needs to be scheduled
within some interval Ij . In this case, we say that j is a bottom job. Let Jbottom ⊆ J \ Jguess

denote the set of all bottom jobs. We call each job j ∈ J \ (Jguess ∪ Jbottom) =: Jtop a top job.
Given our guess for the jobs Jguess and their time slots and our guessed partitioning of

[0, T ), we make k recursive calls: one for each interval Ii with i = 1, 2, · · · , k. Let us denote
by J

(i)
bottom the subset of jobs in Jbottom that need to be scheduled within Ii according to our

guesses above, and let J
(i)
guess denote the jobs in Jguess for which we guessed a time slot within

Ii. We make a recursive call on the interval Ii whose input are the jobs J
(i)
bottom ∪ J

(i)
guess and

the guessed time slots for the jobs in J
(i)
guess. In this recursive call, we want to compute a

schedule in which
all jobs in J

(i)
guess are scheduled in the time slots that we had guessed for them,

a (hopefully very large) subset of the jobs in J
(i)
bottom are scheduled; we denote by

J
(i)
disc ⊆ J

(i)
bottom the jobs in J

(i)
bottom that were not scheduled, we call them the discarded

jobs, and
we obey the precedence constraints between the jobs in J

(i)
bottom ∪ J

(i)
guess. We ignore all

precedence constraints that involve the jobs in J
(i)
disc.

Suppose that we are given a solution from each recursive call. We define Jdisc :=
⋃k

i=1 J
(i)
disc.

We ignore these discarded jobs for now. We want to schedule the jobs in Jtop. Recall that
these are jobs in J \ Jbottom ∪ Jguess. To this end, for each job j ∈ Jtop we define an artificial
release date rj and an artificial deadline dj . Let j ∈ Jtop. We define rj to be the earliest
start time of an interval Ii at which each job j′ ∈ Jguess ∪ Jbottom with j′ ≺ j has completed;
we define rj := 0 if there is no such job j′. Similarly, we define dj to be the latest end time of
an interval Ii at which no job j′′ ∈ Jguess ∪ Jbottom with j ≺ j′′ has already started; again, if
there is no such job j′′ we define dj := T . In order to find slots for the jobs in Jtop we use the
following variation of the Earliest Deadline First (EDF) algorithm. We sweep the time axis
from left to right. For each time t = 0, 1, 2, ... we consider the not yet scheduled jobs j ∈ Jtop

with rj ≤ t whose predecessors in Jguess ∪ Jbottom \ Jdisc we have already scheduled before
time t. We sort these jobs non-decreasingly by their deadlines (breaking ties arbitrarily) and
add them in this order to the machines that are idle during [t, t + 1). We do this until no
more machine is idle during [t, t + 1). It might happen that a job j ∈ Jtop misses its deadline
at the current time t, i.e., it holds that t = dj but j has not been scheduled by us at any
slot rj ≤ t′ ≤ t and during [t′, t′ + 1) all machines are busy. In this case we add j to the set
Jdisc. Among all our guesses for the jobs and the partition into intervals, we output the
solution in which at the very end the smallest number of jobs is in the set Jdisc (breaking
ties arbitrarily).

Each recursive call for an interval works similarly as the main call of the recursion
described above. The (straightforward) differences are the following: the input of each
recursive call consists of the interval Ī, a set of jobs J̄guess which were guessed in previous
levels in the recursion, together with their guessed time slots, and a set of (not yet scheduled)
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jobs J̄ . We guess the time slots for up to k guessed jobs Jguess ⊆ J̄ , and we require that these
guesses do not violate the precedence constraints with the jobs in J̄guess. Also, we guess a
partition of I into k intervals (rather than a partition of [0, T )). The input for each recursive
call for a subinterval Īi of Ī consists of Īi, J̄guess ∪ Jguess, and the jobs in J̄ that need to be
scheduled within Īi according to our guesses for J̄guess ∪ Jguess. We return the computed
schedule for Ī for a subset of the jobs J̄guess ∪ J̄ and the discarded jobs in J̄guess ∪ J̄ .

If the algorithm is called on an interval of length 1 then we skip the step of partitioning
the interval further into at most k subintervals (and in particular we do not recurse anymore).
We will show later that there are guesses that lead to an (1 + ϵ)-approximate solution such
that the recursion depth is ε

m log n. In order to enforce that the recursion depth is ε
m log n

(limiting the running time of the algorithm), we define that a recursive call at recursion
depth ε

m log n + 1 simply outputs a solution in which all of the jobs in J̄ are discarded and
the algorithm does not recurse further.

After running the recursive algorithm described above, we need to schedule the jobs in
Jdisc. Intuitively, for each such job j ∈ Jdisc we create an empty time slot that we add into
our schedule and inside which we schedule j. This will increase our makespan by |Jdisc|.
Formally, we consider the jobs j ∈ Jdisc in an arbitrary order. For each job j ∈ Jdisc we
determine a time t such that all its predecessors in our current schedule have finished by
time t, but none of its successors in our current schedule have started yet. Such a time t

always exists since we show later that we obtain a feasible schedule for all jobs in J \ Jdisc

and we assumed that the precedence constraints are transitive. We insert an empty time slot
[t, t + 1] into our schedule, i.e., we move all jobs scheduled during [t, ∞) by one unit to the
right, and we schedule j during [t, t + 1]. This completes the description of our algorithm.

3 Analysis

In this section, we prove that the above algorithm is a QPTAS.

▶ Lemma 1. The above algorithm runs in time n(log n)Om,ε(m/ϵ) .

Proof. For the running time, we observe that there are at most nO(k) choices for the guessed
k jobs, at most T O(k) = (n)O(k) = nO(k) choices for their time slots, and similarly nO(k)

choices for the at most k intervals that we guess. Since we bound the recursion depth to be
at most log n + 1, this yields a running time of nO(k log n) = n(log n)Om,ε(m/ϵ) . ◀

Now we prove the approximation ratio of our algorithm. To this end, we define guesses
for jobs and their time slots and intervals in each call of our recursion, such that for these
guesses our algorithm outputs a schedule with makespan at most 1 + 6ϵ.

3.1 Laminar family of intervals
For this, we define a laminar family L of intervals. Recall that we assumed that T , the
guessed makespan, is a power of 2. We define that the entire interval [0, T ) forms the (only)
interval of level 0. Let us define ρ = ⌈log(log n/ε)⌉. Consider an interval I of some level
ℓ = 0, 1, 2, · · · (we will argue the number of levels later). If |I| ≥ 2ρ then I is partitioned into
2ρ = Θ(log n/ε) equal-sized intervals of length |I|/2ρ. These intervals constitute the level
ℓ + 1 of the family L. For each interval I ∈ L, we denote by ℓ(I) the level of I.

If 1 < |I| < ρ then I is partitioned into |I| intervals of level ℓ + 1 of length 1 each. If
|I| = 1 then I is not partitioned further.

ESA 2022



40:6 A Simpler QPTAS for Scheduling Jobs with Precedence Constraints

▶ Lemma 2. The total number of levels in the laminar family L is at most log n/ log(log n/ε)+
1.

Proof. By construction, each interval at a particular level ℓ = 0, 1, 2, · · · is of equal length.
Hence the length of an interval at level ℓ is at most T/(log n/ε)ℓ. Further, once the length
of intervals of a level becomes less than 2ρ ≤ 2 log n/ε, there could only be one additional
level where every interval is of length 1. Hence the total number of levels could be at most
log T/ log(log n/ε) + 1 ≤ log n/ log(log n/ε) + 1 ◀

3.2 Guessed, top, and bottom jobs
Next, we assign the jobs to levels. More precisely, for each level ℓ we define a set of guessed
jobs J

(ℓ)
guess and a set of top jobs J

(ℓ)
top. The intuition is that later we want to guess the jobs in⋃ℓ

ℓ′=0 J
(ℓ′)
guess and the jobs in

⋃ℓ
ℓ′=0 J

(ℓ′)
top will form top jobs. We say that a chain of jobs is a

set of jobs J ′ = {j1, j2, ..., jc} for some s ∈ N such that ji ≺ ji+1 for each i ∈ {1, ..., c − 1},
and we say that c is the length of the chain.

We define these sets J
(ℓ)
guess and J

(ℓ)
top level by level in the order ℓ = 0, 1, 2, ... . Consider a

level ℓ. Let I be an interval of level ℓ. We initialize J
(ℓ)
guess = J

(ℓ)
top = ∅. Our plan is that we

add jobs to J
(ℓ)
guess step by step. Let JI denote the jobs that can only be scheduled during

I, assuming that we schedule the jobs in J
(0)
guess ∪ · · · ∪ J

(ℓ−1)
guess exactly as in OPT. We say

that a job j ∈ JI is flexible if it can still be scheduled in more than one subinterval of level
ℓ + 1 of I, assuming that we schedule the jobs in J

(0)
guess ∪ ... ∪ J

(ℓ)
guess exactly as in OPT.

Suppose that there is a chain J ′ ⊆ JI \ J
(ℓ)
guess of length at least ε|I|/2⌈log log n⌉ that contains

only flexible jobs. Then for each interval I ′ of level ℓ + 1 we add to J
(ℓ)
guess the first and the

last job from J ′ that is scheduled during I ′ in OPT. If we guess these jobs in our algorithm,
the effect is that each job in J ′ that we did not add to J

(ℓ)
guess can be scheduled only during

one interval of level ℓ + 1. Hence, one way to think of this procedure is that we push these
jobs one level down. We do this operation until there is no more chain J ′ of length at least
ε|I|/2⌈log log n⌉ that contains only flexible jobs. We define that J

(ℓ)
top,I contains all remaining

flexible jobs in JI . We do this procedure for each interval I of level ℓ, and define at the end
J

(ℓ)
top :=

⋃
I J

(ℓ)
top,I .

▶ Proposition 3. For every job j ∈ J , there exists a unique ℓ ∈ {0, 1, 2, · · · , ρ} such that
j ∈ Jℓ

top.

3.3 Few rejected jobs
With the preparation above, we will show that there are guesses of our algorithm for the
guessed jobs and the intervals that lead to few discarded jobs overall, at most O(ϵT ) many.
Since the algorithm selects the guesses that lead to the minimum total number of discarded
jobs, we will show that it computes a solution with at most O(ϵT ) discarded jobs. We need
some preparation for this. First, we establish that we can afford to discard all jobs in sets
J

(a+r·m/ϵ)
top for r ∈ N0, for some offset a.

▶ Lemma 4. There is an offset a ∈ {0, 1, ..., m
ϵ − 1} such that

∣∣∣⋃r∈N0
J

(a+r·m/ϵ+1)
top

∣∣∣ ≤ ϵT .

Proof. For every a ∈ {0, 1, ..., m
ϵ − 1}, we define La = {ℓ : ℓ = (a + r · m/ϵ + 1), r ∈ N0}

and the set
⋃

ℓ∈La
Jℓ

top. Now Proposition 3 implies that the resulting sets
⋃

ℓ∈La
Jℓ

top are
pairwise disjoint. Since T is the optimal makespan, the total number of jobs cannot exceed
mT . Hence, there exists some a ∈ {0, 1, ..., m

ϵ − 1} such that |
⋃

ℓ∈La
Jℓ

top| ≤ εT . ◀
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For the root problem of the recursion, we will show that the following guesses lead to few
discarded jobs overall: the guessed subintervals are the subintervals of the laminar family at
level a + 1 where a which is the offset as identified by the above lemma. The guessed jobs
are all jobs in

⋃a
ℓ=0 J

(ℓ)
guess and we guess their time slots in OPT. We recurse on the guessed

intervals of level a+1 of the laminar family. Suppose that in some level r ∈ N of the recursion
we are given as input an interval Ī of some level ℓr = a + (r − 1) · m/ϵ of the laminar family,
together with a set of jobs of the form J̄ = J̄bottom∪̇J̄guess such that for each job j ∈ J̄guess

we are given a (guessed) time slot that equals the time slot in OPT during which j is executed,
but we are not given a time slot for any job in J̄bottom. We will show that the following
guesses lead to few discarded jobs overall: we guess the intervals of level ℓr+1 =a + r · m/ϵ + 1
of the laminar family; the guessed jobs are all jobs in J̄bottom ∩

⋃a+r·m/ϵ
ℓ=a+(r−1)·m/ϵ+1 J

(ℓ)
guess that

are scheduled in Ī in OPT and we guess their time slots in OPT.
With the next lemma, we prove inductively that there are few discarded jobs. We define

rmax := ⌈ϵ(log n/ log log n + 1)/m⌉ which is an upper bound on the number of recursion
levels that we need in this way.

▶ Lemma 5. Consider a recursive call of our algorithm in which the input is of the following
form:

an interval Ī such that Ī = [0, T ) (we define r = 0 in this case) or Ī is an interval of
some level ℓr = a + (r − 1) · m/ϵ of the laminar family, for some r ∈ N,

a set of jobs J̄ = J̄bottom∪̇J̄guess such that
for each job j ∈ J̄guess we are given a time slot that coincides with the time slot during
which j is scheduled in OPT,
each job j ∈ J̄bottom is scheduled during Ī in OPT.

Then our algorithm returns a schedule for J̄ in which at most∑
ℓ′∈La

∑
Ī′∈L:ℓ(Ī′)=ℓ′∧Ī′⊊Ī

∣∣∣J (ℓ′)
top,Ī′

∣∣∣ + 5mϵ

log n
(rmax − r)|Ī| (1)

jobs are discarded.

Our goal is now to prove Lemma 5. Consider a recursive call of our algorithm of the form
specified in Lemma 5 for some r ∈ N. If r = rmax then our algorithm simply enumerates
over all possible schedules for J̄bottom and thus finds a schedule in which no job is discarded
(since this is the case in OPT). Suppose by induction that the claim is true for all r ≥ r∗ + 1
for some r∗. We want to prove that it is true also for r = r∗ so we consider such a recursive
call. Let J̃guess denote the guessed jobs and let Ĩ1, ..., Ĩk denote the guessed partition of
Ī into subintervals, according to our description right before Lemma 5. Let J̃top ⊆ J̄

and J̃bottom ⊆ J̄ denote the resulting set of top and bottom jobs, respectively (thus, the
sets J̄ , J̄guess, J̄bottom are part of the input, while the sets J̃guess, J̃top, J̃bottom and intervals
Ĩ1, ..., Ĩk stem from our guesses). Recall that for each job j ∈ J̃top we define a release time rj

and a deadline dj in our algorithm. Let λ denote the length of each interval Ĩi (note that
they all have the same length), i.e., the length of the intervals of level ℓr+1 =a + r · m/ϵ + 1
(where r = 0 in the root problem of the recursion). Note that λ ≤ |Ī|/(log n/ε)m/ε+1. We
show in the next lemma that in OPT each job j ∈ J̃top is essentially scheduled during [rj , dj)
and thus rj and dj are almost consistent with OPT.

▶ Lemma 6. For each job j ∈ J̃top it holds that in OPT the job j is scheduled during
[rj − λ, dj + λ).

ESA 2022
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Proof. Let us recall that for each job j ∈ J̄top the release time rj is defined to be the earliest
start time of an interval Ĩi, i = 1, 2, 3, · · · k such that every job j′ ∈ J̄guess ∪ J̄bottom with
j′ ≺ j is completed before rj . We want to prove in OPT the job j does not start before time
rj −λ. Let Î = [t1, t2] denote the interval of level ℓr+1 =a + r ·m/ϵ + 1 for which t2 = rj (and
observe that t2 = t1 + λ). By definition of rj , there exists a job j′ ∈ J̄guess ∪ J̃guess ∪ J̃bottom

with j′ ≺ j that completes in Î in the schedule that we obtained from the recursive call in Î.
Since we assumed that our guessed time slots for the jobs in J̄guess ∪ J̃guess are identical to
the corresponding time slots in OPT, we conclude that also in OPT the job j′ is scheduled
during Î. Thus, in OPT the job j cannot start before time t1 = rj − λ. An analogous
argument shows that j cannot be scheduled in OPT after dj + λ. ◀

We want to show now that our variant of EDF discards only few jobs from J̃top. To
this end, we partition J̃top into the sets J̃top,1 := J̃top ∩

⋃a+r·m/ϵ
ℓ=a+(r−1)·m/ϵ+1 J

(ℓ)
top and J̃top,2 :=

J̃top ∩ J
(a+r·m/ϵ+1)
top . We can afford to discard all jobs in J̃top,2, see (1), but we need to bound

the number of discarded jobs in J̃top,1. For a job j ∈ J̃top it can happen that rj = dj . In this
case we say that j is degenerate. Note that a degenerate job is always discarded.

▶ Lemma 7. There are at most 2mε|Ī|/ log n degenerate jobs in J̃top,1.

Proof. Consider any job j ∈ J̃top,1. By definition, there exist two adjacent intervals I ′ =
[t′

1, t′
2), I ′′ = [t′

2, t′
3) such that ℓ(I ′) = ℓ(I ′′) = a + r · m/ε such that j can be potentially

scheduled during both the intervals as dictated by the guessed jobs J̄guess. Thus, if j is
degenerate, then rj = dj = t′

2. Further, by Lemma 6, all jobs j ∈ J̃top,1, rj = dj = t′
2 must

be scheduled in OPT in the interval [t′
2 − λ, t′

2 + λ]. Hence the total number of such jobs is
upper bounded by

m · 2λ|{I ′ : I ′ ∈ L ∧ ℓ(I ′) = a + r · m/ε ∧ I ′ ⊂ Ī}|

≤ 2m · (log n/ε)m/ε · |Ī|
(log n/ε)m/ε+1

= 2mε|Ī|/ log n ◀

Our goal now is to bound the number of discarded non-degenerate jobs in J̃top,1. We
partition Ī into meta-intervals Î1, Î2, ...Îk′ with k′ ≤ k with the properties that each interval
Îi ∈ {Î1, Î2, ...} is of the form Îi = [t1, t2) for some t1, t2 ∈ N such that

each value t1, t2 is the start or the end point of some interval in Ĩ1, ..., Ĩk,
at time t2 there is no (non-degenerate) job j ∈ J̃top pending that was released before t2,
for each t ∈ [t1, t2) such that t is the start or end point of some interval in Ĩ1, ..., Ĩk, some
non-degenerate job j ∈ J̄top is pending at time t.

Now the intuition is that during each meta-interval Îi = [t1, t2) EDF tries to schedule only
jobs that OPT schedules during [t1 − λ, t2 + λ) (due to Lemma 6), so essentially we have
enough space on our machines to schedule all these jobs. We might waste space due to the
precedence constraints. However, this space is bounded via the following lemma.

▶ Lemma 8. Let Ĩi be an interval such that at each time t ∈ Ĩi some job j ∈ J̃top is pending.
Then during Ĩi there are at most

∣∣Ĩi

∣∣ ϵ
log n time slots [t, t + 1) with t ∈ N such that some

machine is idle during [t, t + 1).

Proof. For the interval Îi = [t1, t2), let JÎi
denote the subset of jobs in j ∈ J̄top,1 such that

rj ≤ t1. We now create a partition of JÎi
according to the precedence constraints. Let

J0 ⊆ JÎi
denote the jobs whose preceding jobs have been either scheduled or discarded
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before t1. For every p = 1, 2, · · · η (where η is some positive integer), let Jp denote the set
of jobs j ∈ JÎi

for which there exists a job j′ ∈ Jp−1 such that j′ ≺ j and there is no job
j′′ ∈ JÎi

\ Jp−1 such that j′′ ≺ j.
Let τ1, τ2, τ3, · · · , τη′ be defined such that the time slots [τ1, τ1 +1), [τ2, τ2 +1), ..., [τη′ , τη′ +

1) are exactly the time slots during Îi such that some machine is idle for the entire respective
time slot. We claim that any job j′ ∈ J̃top that is pending at the end of a time slot
[τq, τq + 1) with q = {1, 2, 3, · · · } must belong to Jp for some p > q. We prove this by
induction. Since no jobs are released inside Îi, no job in J0 is pending at time τ0 + 1 since
otherwise this would contradict the definition of our variant of EDF and the fact that a
machine is idle during [τ0, τ0 + 1). Now assume the hypothesis to be true for the time slots
[τ1, τ1 + 1), [τ2, τ2 + 1), ..., [τq, τq + 1) for some q and consider the time slot [τq+1, τq+1 + 1).
If a job j′ ∈ J̃top is pending at time τq + 1 then j′ ∈ Jp′ for some p′ > q by the induction
hypothesis. This means that all jobs in

⋃q
p=0 Jp have completed before time τq + 1. Hence,

the jobs in Jq+1 can be scheduled at any time after time τq + 1. Suppose that there is a
pending job j at time τq+1 + 1. Since a machine is idle during [τq+1, τq+1 + 1) we have that
j ∈ Jp′ for some p′ > q + 1 since otherwise our variant of EDF would have scheduled j during
[τq+1, τq+1 + 1). By our construction of the guessed, top and bottom jobs in Section 3.2 the
length of the longest chain of the jobs in J̃top is at most ε|Ĩi|/2⌈log log n⌉ ≤

∣∣Ĩi

∣∣ ϵ
log n . Therefore,

η′ ≤ η ≤
∣∣Ĩi

∣∣ ϵ
log n which completes our proof. ◀

Also, we show that there are only few meta-intervals which – together with the argument-
ation above – yields the following lemma.

▶ Lemma 9. The total number of discarded non-degenerate jobs in J̃top,1 is at most
m|Ī|

(
2ε

log2 n
+ ε

log n

)
.

Proof. Consider a meta-interval Îi. Let j be the last non-degenerate job in J̄top,1 that is
discarded during Îi. Let t1 denote the beginning of the interval Îi. We know that dj is the
end point of some interval Ĩi′ . Since j is non-degenerate we know that [rj , dj) ̸= ∅ and by
definition of Îi this implies that at each time t ∈ [t1, dj) there is some job from J̄top pending.
Using Lemma 8, the total number of (wasted) idle slots across all machines during [t1, dj) is
at most mε|[t1, dj)|/m log n.

We further invoke Lemma 6 to argue that all jobs in J̃top that we schedule or discard
during [t1, dj) are scheduled in OPT during [t1 − λ, dj + λ). The maximum number of jobs
that OPT could have scheduled during [t1 − λ, dj + λ) is hence m(dj − t1 + 2λ). Since our
wasted space during [t1, dj) is at most mε|[t1, dj)|/m log n, we conclude that we discard at
most

m(dj − t1 + 2λ) − m(dj − t1) + ϵ

log n
(dj − t1) = 2λm + ϵ

log n
(dj − t1)

jobs during [t1, dj). By definition, for each job j ∈ J̄top,1 we have that j ∈ J
(ℓ)
top for some level

ℓ with ℓ ≤ a + (r + 1) · m/ϵ − 1. Thus, for such a job j we have that rj and dj lie in different
intervals of level a + (r + 1) · m/ϵ of L. Thus, if during a meta-interval Îi a job j ∈ J̄top,1 is
discarded, then Îi has non-empty intersection with at least two different intervals of level
a + (r + 1) · m/ϵ of L. Hence, there can be at most (log n/ε)m/ϵ−1 such meta-intervals. We
conclude that in total we discard at most

(log n/ε)m/ϵ−1 ·2λm+ ϵ

log n
|Ī| ≤ m

2|Ī|(log n/ε)m/ϵ−1

(log n/ε)m/ε+1 + ϵ

log n
|Ī| ≤ m|Ī|

(
2ε

log2 n
+ ε

log n

)
jobs in J̄top,1. ◀
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Now we are ready to bound the total number of discarded jobs using Lemmas 7, 9, and the
induction hypothesis.

Proof of Lemma 5. We shall prove the lemma for the input interval Ī at level ℓr∗ = a +
(r∗ −1) ·m/ε. By induction hypothesis, suppose (1) is true for all r ≥ r∗ +1. Hence, applying
our recursive algorithm with the input intervals Ĩi, i = 1, 2, · · · k returns a schedule where
number of discarded jobs is at most∑

ℓ′∈La

∑
Ī′∈L:ℓ(Ī′)=ℓ′∧Ī′⊊Ĩi

∣∣∣J (ℓ′)
top,Ī′

∣∣∣ + 5mϵ

log n
(rmax − (r∗ + 1)|Ĩi| (2)

Summing (2) over all i = 1, 2, · · · k and observing that Ī =
⋃̇k

i=1Ĩi yields that the total
number of discarded jobs is at most∑

ℓ′∈La

∑
Ī′∈L:ℓ(Ī′)=ℓ′∧Ī′⊊Ī

∣∣∣J (ℓ′)
top,Ī′

∣∣∣ + 5mϵ

log n
(rmax − (r∗ + 1))|Ī| (3)

We would now like to prove the statement for r = r∗. Now at the recursive call at level
r = r∗ with the input subinterval |Ī| consider the guesses as described in the preceding
discussion. Using Lemmas 9 and 7, the total number of jobs rejected from J̃top,1 under these
guesses is at most

2εm|Ī|/ log n + m|Ī|
(

2ε

log2 n
+ ε

log n

)
≤ 5mε|Ī|/ log n (4)

Further, we could have potentially rejected all the jobs in J̃top,2. The total number of
such jobs is

|J̃top,2| =
∑

Ī′∈L:ℓ(Ī′)=ℓ′,ℓ′=a+r∗·m/ε

∣∣∣J (ℓ′)
top,Ī

∣∣∣ (5)

Adding the above two quantities (4) and (5) to the quantity (3) and observing that our
recursive algorithm selects the guesses at a particular level that minimizes the number of
discarded jobs, the lemma holds for a recursive call at level r∗. ◀

▶ Lemma 10. Our algorithm computes a solution with a makespan of at most (1 + 6ϵ)T .

Proof. The input at the top level recursive call in our algorithm is an interval Ī = [0, T )
and the entire set of jobs J . Plugging in r = 0 in Lemma 5 and using Lemma 4, the first
term in (1) is bounded by

∑
ℓ′∈La

|Jℓ
top| ≤ εT . Since rmax := ⌈ϵ(log n/ log log n + 1)/m⌉,

the second term for r = 0 in (1) bounded by 5ε2T/(log log n + 1).
Hence, the number of discarded jobs in our algorithm is upper bounded by 6εT . All

the other jobs are scheduled within the interval [0, T ). We potentially need to introduce
one additional time-slot of the form [t, t + 1) for each discarded job. We observe that for
each discarded job j we can find a position to insert a time-slot for j since we assumed
the precendence constraints to be transitive and we obtained a feasible schedule for all
non-discarded jobs. Hence, the total length of the schedule is at most (1 + 6ε)T . ◀

Combining Lemma 10 and Lemma 1 gives us the following theorem.

▶ Theorem 11. There exists an algorithm for the precedence constrained scheduling on
identical parallel machines that is a (1 + ε)-approximation and runs in time nOm,ε((log n)m/ε).
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Abstract
Since the celebrated PPAD-completeness result for Nash equilibria in bimatrix games, a long line of
research has focused on polynomial-time algorithms that compute ε-approximate Nash equilibria.
Finding the best possible approximation guarantee that we can have in polynomial time has been a
fundamental and non-trivial pursuit on settling the complexity of approximate equilibria. Despite a
significant amount of effort, the algorithm of Tsaknakis and Spirakis [36], with an approximation
guarantee of (0.3393+δ), remains the state of the art over the last 15 years. In this paper, we propose
a new refinement of the Tsaknakis-Spirakis algorithm, resulting in a polynomial-time algorithm that
computes a ( 1

3 + δ)-Nash equilibrium, for any constant δ > 0. The main idea of our approach is to go
beyond the use of convex combinations of primal and dual strategies, as defined in the optimization
framework of [36], and enrich the pool of strategies from which we build the strategy profiles that
we output in certain bottleneck cases of the algorithm.
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1 Introduction

The notion of Nash equilibrium has been undoubtedly a fundamental solution concept in
strategic games, ever since the seminal result of Nash [33], on the existence of equilibria
for all finite games. Nash’s theorem however is only existential; it only shows that such an
equilibrium always exists, but it does not provide an efficient algorithm to find one. In fact,
many years after the work of Nash, in a series of breakthrough results, it was proven that
computing a Nash equilibrium is PPAD-complete [16], even for bimatrix games [10], which
provides strong evidence that computing an equilibrium is an intractable problem.

These negative results have naturally led to the study of approximate Nash equilibria. In
an ε-approximate Nash equilibrium (ε-NE), no player can increase her payoff more than ε,
by unilaterally changing her strategy. In contrast to exact Nash equilibria, the relaxation
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to ϵ-NE does admit subexponential algorithms. More precisely, the quasi polynomial-time
approximation scheme (QPTAS) of [27] can find an ε-NE in time nO(log n/ϵ2), for a game
with n available pure strategies per player. One can then wonder whether the QPTAS could
be improved to a PTAS or even a FPTAS. Unfortunately this does not seem to be the case,
as the result of Chen, Deng, and Teng [10] already ruled out the existence of an FPTAS,
unless PPAD=P. Some years later, in another breakthrough result, Rubinstein [35] showed
that, assuming the exponential-time hypothesis for PPAD, there exists a very small, yet
unspecified, constant ε⋆ such that finding an ε-NE requires quasi polynomial time for every
constant ε < ε∗. This would rule out a PTAS too.

Although it seems unlikely to have a polynomial time algorithm for any ϵ > 0, it is
still important to identify the best constant ϵ for which we can have an efficient algorithm.
In fact, this has been one of the fundamental questions of algorithmic game theory, that
is still unresolved. Soon after the initial PPAD-hardness results of [10, 16], there was a
flourish of works along this direction. Kontogiannis, Panagopoulou, and Spirakis [23] derived
a polynomial-time algorithm for ε = 3/4; Daskalakis, Mehta, and Papadimitriou [17, 18]
improved it to ε = 1/2 and ε ≈ 0.382; Bosse, Byrka, and Markakis [7] achieved ε = 0.364;
and finally Tsaknakis and Spirakis [36] attained a bound of ε = 0.3393 + δ, for any constant
δ > 0. Ever since this last work however, the progress on this front has stalled, and the result
of Tsaknakis and Spirakis (referred to as the TS algorithm from now on) remains the state of
the art over the last 15 years. It is particularly puzzling that so far, it has remained an open
problem to even improve the approximation to 1/3 + δ (even though it has been conjectured
that such an approximation should be feasible). To make things worse, in the very recent
work of [12], it was shown that the TS algorithm and its analysis are tight.

In order to beat the 0.3393-guarantee of the TS algorithm, it is instructive to understand
first its bottleneck cases. At a high level, we can think of the algorithm as consisting of
two phases: the Descent phase and the Strategy-construction phase. In the Descent phase,
it performs “gradient descent” on the maximum regret among the two players, i.e., the
maximum additional gain that a player can have by a unilateral deviation to another strategy.
This process terminates at an approximate “stationary” point, i.e., a strategy profile such
that any local change does not decrease the value of the maximum regret. When we reach a
δ-stationary point for some small constant δ, the Strategy-construction phase begins. This
phase performs a case analysis, based on certain relevant parameters of the game, and tries
to decide which strategy profile to output in each of the five cases that arise.

In doing so, the algorithm has at its disposal the δ-stationary profile, along with a “dual”
strategy profile (produced by solving the dual of the linear program used in the Descent
phase). A close inspection reveals that one of these two profiles suffices to guarantee a
( 1

3 + δ)-NE in three out of the five cases. In the remaining two cases, the algorithm outputs a
convex combination of the stationary and the dual strategies, and this is where the bottleneck
occurs, causing the algorithm to output a (0.3393 + δ)-NE.

Our contribution

We improve upon the state of the art and provide a polynomial-time algorithm for computing
a ( 1

3 + δ)-NE in bimatrix games, for any constant δ > 0. More specifically, we modify
sufficiently the TS algorithm by designing an improved Strategy-construction phase to handle
the problematic cases of TS. Our main insights in doing so are as follows:

Apart from convex combinations between primal (stationary) and dual strategies, we
also consider best response strategies to such convex combinations. Hence, we enrich the
pool of strategies, out of which we choose the profile to output in each case. As a result,
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in the cases where the δ-stationary point or the dual profile (or their combinations) do
not have the desired guarantee, we have one of the players use a carefully chosen convex
combination between our newly defined strategies and her dual strategy.
We produce a more refined case analysis, that is based on the values of some new auxiliary
parameters (e.g., the quantities vr, tr and µ̂, defined in Section 4). These parameters
encode payoff differences or regrets of the players for using specific strategies, and they
help us in two ways. First, they are used to obtain improved upper bounds on the
maximum regret of the δ-stationary profile (Section 4.1). Secondly, their values greatly
help us in decomposing our analysis into convenient subcases in order to establish the
approximation guarantee.

Further related work

A different notion of approximation of NE is that of ε-well-supported NE (ε-WSNE). In
an ε-WSNE every player is required to place positive probability only to actions that are
within ε of being best responses. Hence, ε-WSNE are more constrained than ε-NE, where
the players can place a positive probability on any strategy. After a series of papers on the
topic [24, 21], the currently best approximation is for ε = 0.6528 due to [14].

Another line of research has focused on more structured classes of bimatrix games such
as: constant-rank games, where the matrix defined by the sum of the two payoff matrices has
constant rank [1, 22, 31]; win-lose games, where the payoff for every pure action is either 0
or 1 [11, 13, 28]; sparse games, where there are only “a few” outcomes that yield a non-zero
payoff for each player [9], imitation games, where the payoff matrix for one of the players
is the identity matrix [29, 30, 32]; random games, where the payoff entries are drawn from
certain distributions [4, 34]; symmetric games, where the payoff matrix of one player is
the transpose of the other [15, 25]. In most of these classes, it has been possible to obtain
improved approximation guarantees and have a better understanding of how to construct
approximate equilibria.

Concerning quasi-polynomial algorithms, in addition to the QPTAS of [27], three new
QPTASs have been obtained, which contain the original result of [27] as a special case: [5]
gave a refined, parameterized, approximation scheme; [3] gave a QPTAS that can be applied
to multi-player games as well; [19] gave a more general approach for approximation schemes
for the existential theory of the reals. More recently, more negative results for ε-NE were
derived: [26] gave an unconditional lower bound, based on the sum of squares hierarchy; [6]
proved PPAD-hardness in the smoothed analysis setting; [8, 20, 2] gave quasi-polynomial
time lower bounds for constrained ε-NE, under the exponential time hypothesis.

2 Preliminaries

In what follows, let [n] := {1, 2, . . . , n}, and let ∆n denote the (n− 1)-dimensional simplex.
We focus on n× n bimatrix games, where n denotes the number of available pure strategies
per player. Such games are defined by a pair (R, C) ∈ [0, 1]n×n of two matrices: R and C

are the payoff matrices for the row player and the column player respectively. We follow
the usual assumption in the relevant literature that the matrices are normalized, so that all
entries are in [0, 1]. It is also assumed without loss of generality, that both players have the
same number of pure strategies, since otherwise one can add dummy strategies to equalize
the rows and columns. The semantics of the payoff matrices are that when the row player
picks a row i ∈ [n], and the column player picks a column j ∈ [n], then they receive a payoff
of Rij and Cij respectively.
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A mixed strategy is a probability distribution over [n]. We use x ∈ ∆n to denote a mixed
strategy for the row player and xi to denote the probability the player assigns to the pure
strategy i. For the column player, we use y ∈ ∆n and yi, respectively. If x and y are mixed
strategies for the row and the column player, then we call (x, y) a (mixed) strategy profile. It
is often also convenient to represent pure strategies as vectors. Hence, we will use the vector
ei, which has 1 at index i and zero elsewhere, to denote the i-th pure strategy, in other words
the distribution where a player assigns probability one to play the pure strategy i.

Given a strategy profile (x, y), the expected payoff of the row player is R(x, y) := xT Ry,
and the expected payoff of the column player is C(x, y) := xT Cy. Thus, for a pure strategy
ei, the term R(ei, y) :=

∑
j Rijyj , denotes the expected payoff of the row player, when she

plays the pure strategy i against strategy y of the column player. Similarly, C(x, ej) is the
expected payoff of the column player when she plays the pure strategy j against x. We say
that a pure strategy is a best-response strategy for a player if it maximizes her expected payoff
against a chosen strategy of her opponent. So, under a strategy profile (x, y), the set of pure
best responses for the row player is Br(y) := {i ∈ [n] : R(ei, y) = maxi′∈[n]R(ei′ , y)}, and
for the column player, it is Bc(x) := {j ∈ [n] : C(x, ej) = maxj′∈[n] C(x, ej′)}.

The regret of the row player at a profile (x, y), is regr(x, y) = maxiR(ei, y) −R(x, y)
and the regret of the column player is regc(x, y) = maxj C(x, ej) − C(x, y). The strategy
profile (x, y) is an ε-Nash equilibrium, or ε-NE, if the regret of both players is bounded by
ε ∈ [0, 1], formally max{regr(x, y), regc(x, y)} ≤ ε. If ε = 0, then the strategy profile (x, y)
is an exact Nash equilibrium.

3 The Tsaknakis-Spirakis algorithm

In this section we give a description of the algorithm by [36] and we highlight the bottleneck
cases, where it fails to provide a ( 1

3 + δ)-approximation. In order to have a self-contained
exposition, we also present some of the lemmas that are used in the analysis of [36], which
are needed for our work as well.

The core of the algorithm is to consider the function g(x, y) = max{regr(x, y), regc(x, y)},
i.e., the maximum regret among the two players. Clearly, if we arrive at a profile (x, y) such
that g(x, y) ≤ ε, then (x, y) is an ε-Nash equilibrium. At a high level, one can think of TS
as consisting of two phases: the Descent phase, and the Strategy-construction phase.

Descent Phase. During this phase, TS performs “gradient descent” on the function g(x, y),
until it reaches a “stationary” point, i.e., a strategy profile such that any local change does
not decrease the value of g. More concretely, every iteration of the Descent phase performs
a series of steps: given the current profile under consideration, it equalizes the regrets of
the players, then it solves an appropriate linear program to identify a feasible direction,
and finally depending on the solution of the LP, it either updates the strategy profile, or it
decides that it has reached an approximate stationary point.

The first step runs the RegretEqualization procedure described below. This procedure is
based on solving a single linear program to equalize the regrets of the two players, and most
importantly, it guarantees that the maximum regret does not increase.
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RegretEqualization(x0, y0)

Input: A strategy profile (x0, y0).
Output: A strategy profile (x, y) such that regr(x, y) = regc(x, y) ≤ g(x0, y0).
1. If regr(x0, y0) ≥ regc(x0, y0), keep y0 fixed and solve the following linear program:

Minimize regr(x, y0)
Such that regr(x, y0) ≥ regc(x, y0) and x ∈ ∆n.

Return (x, y0), where x is the solution of the linear program.
2. If regr(x0, y0) < regc(x0, y0), keep x0 fixed and solve the following linear program:

Minimize regc(x0, y)
Such that regc(x0, y) ≥ regr(x0, y) and y ∈ ∆n.

Return (x0, y), where y is the solution of the linear program.

Given the output (x, y) of RegretEqualization, the next step is to either find a feasible
direction to follow so as to decrease the maximum regret, or to decide that (x, y) is an
approximate stationary point. This is enforced by solving the following linear program.

Primal Linear Program: Primal(x, y)

minimize γ

s.t. γ ≥ R(ei, y′) − R(x, y′) − R(x′, y) + R(x, y), ∀i ∈ Br(y),
γ ≥ C(x′, ej) − C(x′, y) − C(x, y′) + C(x, y), ∀j ∈ Bc(x),
x′ ∈ ∆n, y′ ∈ ∆n.

It is proved in [36] that the solution of Primal(x, y) guarantees one of the following:
1. it either identifies a strategy profile (x′, y′) such that the maximum regret can be strictly

decreased by a constant fraction, if we move from (x, y) towards (x′, y′);
2. or it decides that (x, y) is a δ-stationary point1, which is the termination criterion of the

descent.
Putting everything together, the Descent phase of the TS algorithm is described below,
starting from some arbitrary initial strategy profile, and its main properties are captured by
the following lemma.

▶ Lemma 1 ([36]). For any constant δ > 0, the Descent phase computes a δ-stationary point,
in time polynomial in 1/δ and in the size of the game.

Descent Phase

Input: A strategy profile (x, y), a small constant δ > 0 (δ << 1/3).
Output: A δ-stationary profile (xs, ys) with equal regrets.
1. Equalize the regrets of the two players, i.e., set (x, y)← RegretEqualization(x, y).
2. Solve Primal(x, y) and compute x′, y′, and γ.
3. If γ − g(x, y) ≥ −δ, set xs ← x, ys ← y and stop.
4. Else, set x← (1− δ

δ+2 ) · x + δ
δ+2 · x

′, y← (1− δ
δ+2 ) · y + δ

δ+2 · y
′ and go to Step 1.

1 This means that the directional derivative of g(x, y) is at least −δ. For the definition of directional
derivative, see [36].

ESA 2022



41:6 A Polynomial-Time Algorithm for 1/3-NE in Bimatrix Games

Strategy-construction Phase. In this phase, the algorithm utilizes the dual linear program
of Primal(x, y), in order to identify some alternative candidate strategies for the players.

Dual Linear Program: Dual(x, y)

maximize P · R(x, y) + Q · C(x, y) + a + b

s.t. pi ≥ 0, i ∈ Br(y),
qj ≥ 0, j ∈ Bc(x),
P =

∑
i∈Br(y) pi, Q =

∑
j∈Bc(x) qj ,

P + Q = 1,
a ≤

∑
i∈Br(y) −R(ek, y) · pi +

∑
j∈Bc(x)[−C(ek, y) + Ckj ] · qj , 1 ≤ k ≤ n

b ≤
∑

j∈Bc(x) −C(x, el) · qj +
∑

i∈Br(y)[−R(x, el) + Ril] · pi, 1 ≤ l ≤ n.

Given the δ-stationary profile (xs, ys) from the Descent phase, the algorithm solves
Dual(xs, ys) and computes the following (from the optimal dual variables).

The dual strategy w for the row player, where wi = pi/
∑

j∈Br(ys) pj , for i ∈ Br(ys), and
0 elsewhere; note that by construction, w is a best-response strategy against ys.
The dual strategy z for the column player, where zi = qi/

∑
j∈Bc(xs) qj , for i ∈ Br(xs),

and 0 elsewhere; by construction, z is a best-response strategy against xs.
The dual variables P, Q ∈ [0, 1], that are useful for the approximation analysis.

In addition, we define the following two quantities λ and µ, that help in parameterizing
the maximum regret bound. These quantities are equal to the payoff difference of a player
between the dual and the primal strategies, when the other player uses her dual strategy:

λ = R(w, z)−R(xs, z), µ = C(w, z)− C(w, ys). (1)

Fact. Obviously, λ ≤ 1, and µ ≤ 1 and furthermore, R(w, z) ≥ λ, and C(w, z) ≥ µ.
The algorithm then constructs and outputs a strategy profile as follows.

Strategy-Construction Phase

Input: A δ-stationary strategy profile (xs, ys) from the Descent phase, the dual
strategies w, z, and the parameters λ, µ.
1. If min{λ, µ} ≤ 1

2 , then return (xs, ys).
2. If min{λ, µ} ≥ 2

3 , then return (w, z).
3. If min{λ, µ} > 1

2 and max{λ, µ} ≤ 2
3 , then return (xs, ys).

4. Else if λ ≥ µ, then return the strategy profile with the minimum regret between(
1

1+λ−µ ·w + λ−µ
1+λ−µ · xs, z

)
and (xs, ys).

5. Else if λ < µ, then return the strategy profile with the minimum regret between(
w, 1

1+µ−λ · z + µ−λ
1+µ−λ · ys

)
and (xs, ys).

▶ Theorem 2 ([36]). For any constant δ > 0, the TS algorithm computes in polynomial time
a (0.3393 + δ)-NE.

▶ Remark 3. One could also check all the proposed profiles of this phase at every iteration
of the Descent phase, as presented in [36], and stop if we have reached already the desired
approximation. But this does not affect the worst-case running time, which occurs when the
Descent phase terminates at a δ-stationary point.

We present below some important lemmas from [36] that are needed in our analysis too.
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The first, and most important, lemma below shows how Primal(xs, ys) and Dual(xs, ys)
can be used to bound the value of the maximum regret, g(xs, ys).

▶ Lemma 4 (implied by [36]). Let (xs, ys) be a δ-stationary point produced by the Descent
Phase, for a constant δ > 0. Let also w, z and P , be derived by an optimal solution to
Dual(xs, ys), as seen before. Then, for any strategy profile (x′, y′), it holds that

g(xs, ys) ≤ P · (R(w, y′)−R(x′, ys)−R(xs, y′) +R(xs, ys))+
(1− P ) · (C(x′, z)− C(x′, ys)− C(xs, y′) + C(xs, ys)) + δ.

Lemma 4 plays a crucial role as it allows us to bound g(xs, ys) in terms of λ, µ and P ,
by making appropriate choices for x′ and y′. This is used both in the following lemma and
in Lemma 11 of Section 4.

▶ Lemma 5 ([36]). Let (xs, ys) be a δ-stationary point produced by the Descent phase, for a
constant δ > 0, and let P be obtained by an optimal solution of Dual(xs, ys). It holds that
g(xs, ys) ≤ min{P · λ, (1− P ) · µ}+ δ ≤ λ·µ

λ+µ + δ ≤ λ+µ
4 + δ.

One may worry that the bound λ·µ
λ+µ is not well-defined when λ + µ = 0. However, as we

explain below, this is not a concern.

▶ Corollary 6. We can assume that both λ > 0 and µ > 0, otherwise (xs, ys) is a δ-Nash
equilibrium.

The definitions of λ and µ, along with Lemma 5 can immediately be used to prove that
Cases 1-3 from the Strategy-construction phase return a ( 1

3 + δ)-Nash equilibrium. Hence,
the bottleneck of the TS algorithm comes from Cases 4 and 5. In fact, it was also recently
shown in [12] that the analysis of these cases in [36] is tight, and therefore one needs to come
up with a different construction in order to obtain an improvement.

▶ Lemma 7 ([36]). Cases 1-3 from the Strategy-construction phase return a ( 1
3 + δ)-Nash

equilibrium.

Proof. We will consider every case independently.
If min{λ, µ} ≤ 1

2 , by Lemma 5 we have that g(xs, ys) ≤ λ·µ
λ+µ + δ ≤ min{λ,µ}

min{λ,µ}+1 + δ ≤
1/2

1/2+1 + δ ≤ 1
3 + δ. Here, the second inequality comes from the fact that λ·µ

λ+µ is an
increasing function of max{λ, µ}, and also max{λ, µ} ≤ 1.
If min{λ, µ} ≥ 2

3 , then g(w, z) ≤ max{1−R(w, z), 1− C(w, z)}. But since R(w, z) ≥ λ

and C(w, z) ≥ µ, we have that the regret is at most 1−min{λ, µ} ≤ 1
3 .

If min{λ, µ} > 1
2 and max{λ, µ} ≤ 2

3 , by Lemma 5 we have g(xs, ys) ≤ λ·µ
λ+µ + δ ≤

2
3 · 2

3
2
3 + 2

3
+ δ ≤ 1

3 + δ, since λ·µ
λ+µ is an increasing function of λ and µ.

◀

Thus, in the next section, we will focus on the remaining cases, when min{λ, µ} ∈ ( 1
2 , 2

3 ]
and max{λ, µ} ∈ ( 2

3 , 1].

4 Improved Strategy-construction Phase

In this section we replace Cases 4 and 5 from the original TS algorithm in order to bypass
the bottleneck in the approximation. To do so, we utilize the δ-stationary point (xs, ys),
the dual strategies w, z, their convex combinations and best-response strategies to such
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combinations. We then perform a more refined analysis and prove that in every case we can
efficiently construct a tailored strategy profile that is a ( 1

3 + δ)-Nash equilibrium. We note
that all missing proofs from this section can be found in the full version of our work.

Our new Strategy-construction phase works as follows.

Improved Strategy-construction Phase

Input: A δ-stationary point (xs, ys) from the Descent phase, the dual strategies w,
z, and the parameters λ, µ.
1. If min{λ, µ} ≤ 1

2 , then return (xs, ys).
2. If min{λ, µ} ≥ 2

3 , then return (w, z).
3. If min{λ, µ} > 1

2 and max{λ, µ} ≤ 2
3 , then return (xs, ys).

4. If 1
2 < λ ≤ 2

3 < µ:
Set ŷ = 1

2 · ys + 1
2 · z.

Find a best response ŵ against ŷ.
Set tr = R(ŵ, ŷ)−R(w, ŷ); vr = R(w, ys)−R(ŵ, ys); µ̂ = C(ŵ, z)−C(ŵ, ys).

4.1 If vr + tr ≥ µ−λ
2 and µ̂ ≥ µ− vr − tr, then set p = 2·(vr+tr)−(µ−λ)

2·(vr+tr) and return
the strategy profile with the minimum regret among (p ·w + (1− p) · ŵ, z) and
(xs, ys).

4.2 Else, set q = 1−µ/2−tr

1+µ/2−λ−tr
and return the strategy profile with the minimum

regret among (w, (1− q) · ŷ + q · z) and (xs, ys).

5. If 1
2 < µ ≤ 2

3 < λ (symmetric to Case 4):
Set x̂ = 1

2 · xs + 1
2 ·w.

Find a best response ẑ against x̂.
Set tc = C(x̂, ẑ)− C(x̂, z); vc = C(xs, z)− C(xs, ẑ); λ̂ = R(w, ẑ)−R(xs, ẑ).

5.1 If vc + tc ≥ λ−µ
2 and λ̂ ≥ λ− vc − tc, then set p = 2·(vc+tc)−(λ−µ)

2·(vc+tc) and return
the strategy profile with the minimum regret among (w, p · z + (1− p) · ẑ) and
(xs, ys).

5.2 Else, set q = 1−λ/2−tc

1+λ/2−µ−tc
and return the strategy profile with the minimum

regret among ((1− q) · x̂ + q ·w, z) and (xs, ys).

Note that Cases 1-3 are identical to the Strategy-construction phase of the TS algorithm.
Thus, by Lemma 7 they return a ( 1

3 + δ)-Nash equilibrium. The new part concerns Cases 4
and 5. The analysis in both cases is based on certain auxiliary parameters (vr, tr and µ̂ for
Case 4 and analogously for Case 5), that we define in the statement of the algorithm. These
parameters encode payoff differences or regrets of the players for using specific strategies,
and they help us decompose the problem into convenient subcases, so as to obtain better
upper bounds on the maximum regret.

Our main result is as follows:

▶ Theorem 8. For any constant δ > 0, we can compute in polynomial-time a ( 1
3 + δ)-Nash

equilibrium.

To prove the theorem, it suffices to analyze Case 4, where 1
2 < λ ≤ 2

3 < µ, since Case 5 is
symmetric to Case 4 and is analyzed in exactly the same way.
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Intuition and Roadmap. The overall analysis in the sequel looks rather technical, therefore,
we will first provide some elaboration on the choices that the algorithm makes in Case 4.
The first crucial component in the design of the new algorithm is that the upper bounds on
the regret of the δ-stationary point (xs, ys), obtained in Lemma 5, can be further refined
based on the values of the parameters λ, µ, µ̂, vr. This is precisely implemented in Section 4.1
with Lemmas 11, 12, and 13. Once this is done, we then try to answer the following
question: Whenever (xs, ys) does not provide a ( 1

3 + δ)-approximation, which profiles can
form alternative candidates for a better performance? One idea is to exploit the dual
strategies w, and z, as was also done in [36]. However, the profile (w, z) may not be a
( 1

3 + δ)-equilibrium either (in most cases). A next attempt then is to consider appropriate
convex combinations of the primal and the dual strategy for each player, i.e., a combination
of xs and w for the row player and ys and z for the column player. Unfortunately, this again
does not work in all cases. But one next step is to also take into consideration best-response
strategies against such convex combinations. E.g., the strategy ŵ defined in Case 4 is a best
response to the equiprobable combination of ys and z. This completes our weaponry, and at
the end, in all subcases of Case 4, we consider profiles where the row player uses a convex
combination of w and ŵ, and the column player selects a combination between her primal
and dual strategies, ys and z. Analogous profiles with the roles of the players reversed are
constructed for Case 5 too. Finally, we also know that whenever (xs, ys) does not attain
a ( 1

3 + δ)-approximation, this restricts the relation between the parameters λ, µ, µ̂ and vr

due to the lemmas of Section 4.1. This is exploitable for us in the sense that it allows us to
construct the exact coefficients for the convex combinations that we use so as to have the
desired approximation.

To proceed, we start with two helpful observations, which are used repeatedly for the
analysis of Cases 4.1 and 4.2.

▶ Lemma 9. It holds that R(ŵ, z) ≥ λ + vr + 2tr.

Proof. By the definition of tr, inside Case 4, we have that it holds thatR(ŵ, ŷ) = R(w, ŷ)+tr.
Hence,

R(ŵ, ys)
2 + R(ŵ, z)

2 = R(ŵ, ŷ) = R(w, ys)
2 + R(w, z)

2 + tr ⇒

R(ŵ, z) = (R(w, ys)−R(ŵ, ys)) +R(w, z) + 2tr ≥ λ + vr + 2tr,

since R(w, ys)−R(ŵ, ys) = vr, and R(w, z) ≥ λ (by the fact after Equation (1)). ◀

▶ Corollary 10. It holds that vr ≤ 1− λ− 2tr, or equivalently tr ≤ 1−λ−vr

2 .

Proof. By the previous lemma we have R(ŵ, z) ≥ λ + vr + 2tr ⇒ vr ≤ 1 − λ − 2tr, since
R(ŵ, z) ≤ 1. ◀

4.1 Bounding the regret of δ-stationary points
In this subsection, we establish three important lemmas that provide different ways of
bounding the maximum regret of any δ-stationary point. The first of these lemmas is an
improvement over [36], where we add a third upper bound for the δ-stationary point, in
addition to the bounds stated in Lemma 5 from Section 3.

▶ Lemma 11. Let (xs, ys) be a δ-stationary point with δ ≥ 0, and let P be obtained by an
optimal solution of Dual(xs, ys), as the sum of the dual variables: P =

∑
i∈Br(ys) pi. It holds

that g(xs, ys) ≤ min{P · λ, (1− P ) · µ, P · vr + (1− P ) · µ̂}+ δ.
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Proof. By Lemma 5 it holds that g(xs, ys) ≤ min{P ·λ, (1−P )·µ}+δ. So, it suffices to prove
that g(xs, ys) ≤ P ·vr+(1−P )·µ̂+δ. This follows from Lemma 4 when we set (x′, y′) = (ŵ, ys).
Indeed, in this case we have g(xs, ys) ≤ P · (R(w, ys)−R(ŵ, ys)−R(xs, ys) +R(xs, ys)) +
(1−P ) · (C(ŵ, z)−C(ŵ, ys)−C(xs, ys)+C(xs, ys)) = P ·vr +(1−P ) · µ̂+δ, by the definitions
of vr and µ̂. ◀

The remaining two lemmas help in attaining a more fine-grained analysis on upper
bounding the regret of the players, under the restrictions on the values of λ and µ in Case 4.

▶ Lemma 12. Let (xs, ys) be a δ-stationary point with δ ≥ 0, and let µ̂ ≥ vr, and λ > 1
2 .

Then, it holds that g(xs, ys) ≤ µ̂·λ
λ+µ̂−vr

+ δ.

Proof. By Lemma 11 we have g(xs, ys) ≤ min{P ·λ, P · vr + (1−P ) · µ̂}+ δ. Note that P ·λ
is an increasing linear function of P , and P · vr + (1− P ) · µ̂ is a decreasing linear function
of P , because µ̂ ≥ vr. Therefore, the maximum of the minimum of these two functions is
achieved at the point where they are equal, which is for P ′ = µ̂

λ+µ̂−vr
, as long as P ′ ∈ [0, 1]

(recall that P is constrained to belong to this interval). To check that P ′ is a valid point,
observe first that since λ > 1

2 and µ̂ ≥ vr, the denominator of P ′ is positive. Also, again
using that λ > 1

2 , Corollary 10 implies that vr ≤ 1− λ ≤ 1
2 , hence λ > vr, which means that

P ′ ∈ [0, 1]. Thus, g(xs, ys) ≤ λ · P ′ + δ = µ̂·λ
λ+µ̂−vr

+ δ. ◀

▶ Lemma 13. Let (xs, ys) be a δ-stationary point with δ ≥ 0, and let µ̂ < vr, λ > 1
2 , and

µ > 2
3 . Then, it holds that g(xs, ys) ≤ vr·µ

µ−µ̂+vr
+ δ.

4.2 Case 4.1 of the Improved Strategy-construction Phase

We now analyze the approximation we obtain, when we fall into Case 4.1 of the algorithm.
We establish that either the δ-stationary point has the desired approximation or otherwise,
this is achieved by having the row player use an appropriate convex combination of w and ŵ
and the column player play the dual strategy z.

▶ Lemma 14. If vr + tr ≥ µ−λ
2 , and µ̂ ≥ µ− vr − tr, then for the strategy profile (p ·w +

(1− p) · ŵ, z), with p = 2·(vr+tr)−(µ−λ)
2·(vr+tr) , the payoff of both the row and the column player is

at least λ+µ
2 .

Proof. Note first that under the assumptions of the lemma, and since µ > λ, the parameter
p is a valid probability. For the row player, we have that her payoff is

R(p ·w + (1− p) · ŵ, z) = p · R(w, z) + (1− p) · R(ŵ, z)
≥ p · λ + (1− p) · λ + (1− p) · (vr + tr) (from Lemma 9)
= λ + (1− p) · (vr + tr)

= λ + (µ− λ)
2

(
since 1− p = µ− λ

2 · (vr + tr)

)
= λ + µ

2 .
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For the column player we have that her payoff is

C(p · w + (1 − p) · ŵ, z) = p · C(w, z) + (1 − p) · C(ŵ, z)
≥ p · µ + (1 − p) · µ̂ (Since µ̂ = C(ŵ, z) − C(ŵ, ys) ≤ C(ŵ, z))
≥ p · µ + (1 − p) · µ − (1 − p) · (vr + tr) (Since µ̂ ≥ µ − vr − tr)

= µ − (µ − λ)
2

(
since 1 − p = µ − λ

2 · (vr + tr)

)
= µ + λ

2 . ◀

▶ Lemma 15. Let p ∈ [0, 1], be such that R(p ·w + (1− p) · ŵ, z) ≥ λ+µ
2 , and C(p ·w + (1−

p) · ŵ, z) ≥ λ+µ
2 . Then, either (xs, ys) is a ( 1

3 + δ)-Nash equilibrium, or (p ·w + (1− p) · ŵ, z)
is a 1

3 -Nash equilibrium.

Proof. The regret of either player at the strategy profile (p ·w + (1− p) · ŵ, z) is at most
1− λ+µ

2 , since the payoff of any player is no less than λ+µ
2 and the best-response payoff is

at most 1. On the other hand, by Lemma 5 the regret of each player at the δ-stationary
point (xs, ys) is at most λ+µ

4 + δ. Thus, if λ + µ ≤ 4
3 , then g(xs, ys) ≤ 1

3 + δ. Otherwise,
the maximum regret at the profile (p ·w + (1− p) · ŵ, z) is at most 1− λ+µ

2 ≤ 1
3 . ◀

4.3 Case 4.2 of the Strategy-construction phase
In this case it holds that either vr + tr < µ−λ

2 or µ̂ < µ− vr − tr. It turns out that this is a
technically more intriguing case, and the reason is that the parameters are less constrained,
compared to Case 4.1. As a result, we need to consider different subcases in order to have
tighter upper bounds. We recall that the algorithm in this case outputs either (xs, ys), or a
profile where the row player selects her dual strategy w, which is a best response against ys,
and the column player plays a convex combination between ŷ and z, which by the definition
of ŷ, is a convex combination of her primal strategy ys and her dual strategy z.

▶ Lemma 16. The regret of the row player at (w, ŷ) is tr, and the regret of the column
player is at most 1− µ

2 .

Proof. By definition, the regret of the row player is tr, since ŵ is a best-response strategy
against ŷ. On the other hand, recall by the definition of µ, that C(w, z) ≥ µ. So, we have
that C(w, ŷ) = C(w,ys)

2 + C(w,z)
2 ≥ C(w,z)

2 ≥ µ
2 . Thus, since the maximum payoff is less than

or equal to 1, we have that the regret of the column player is at most 1− µ
2 . ◀

We now quantify the regret of the players at the profile (w, (1 − q) · ŷ + q · z), that is
considered by the algorithm. In particular, we obtain an upper bound as a function of the
parameters λ, µ, and tr.

▶ Lemma 17. Consider the strategy profile (w, (1− q) · ŷ + q · z) with q = 1−µ/2−tr

1+µ/2−λ−tr
. Then,

the regret of each player is no greater than q · (1− λ) + (1− q) · tr = 1−µ/2−tr−λ+µ·λ/2+µ·tr

1+µ/2−λ−tr
.

We now come to the core of the proof and establish that either the δ-stationary point, or
the strategy profile (w, (1− q) · ŷ + q · z) yields a good approximation. This is established by
the following lemma.

▶ Lemma 18. Under the assumptions of Case 4.2, either (xs, ys) is a ( 1
3 +δ)-Nash equilibrium,

or (w, (1− q) · ŷ + q · z) with q = 1−µ/2−tr

1+µ/2−λ−tr
, is a 1

3 -Nash equilibrium.
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Proof. Since we are in Case 4.2, where either vr + tr < µ−λ
2 , or µ̂ < µ − vr − tr, we will

split the analysis into further subcases, so that we have a more concrete relation between
the relevant parameters in each subcase. More precisely, we will consider the following three
subcases.

4.2(i) vr + tr < µ−λ
2 .

4.2(ii) µ̂ < µ− vr − tr, and µ̂ ≥ vr.
4.2(iii) µ̂ < µ− vr − tr, and µ̂ < vr.

So far, we have not been able to have a unifying argument for all these different subcases.
Consequently, we need to proceed with a separate analysis for each of them. Due to space
constraints, we defer the first two subcases to the full version of this work, and we present
here only Subcase 4.2(iii). We note also that among them, it was Subcase 4.2(ii) that turned
out to be the lengthier and technically most subtle in obtaining the approximation bound.

Subcase 4.2(iii). Let us begin by observing that if vr ≤ 1
3 , then the strategy profile (xs, ys)

is a ( 1
3 + δ)-NE. Indeed, from Lemma 13, and since µ̂ < vr, we get that the approximation

guarantee of the stationary strategy profile is vr·µ
µ−µ̂+vr

+ δ ≤ vr + δ ≤ 1
3 + δ. Hence, in what

follows, we will assume that vr > 1
3 . So, from Corollary 10 we have that

tr ≤
1− λ− vr

2 <
2
3 − λ

2 = 1
3 −

λ

2 . (2)

Assume now for the sake of contradiction, that (w, (1− q) · ŷ + q · z) is not a 1
3 -NE, i.e., the

maximum regret is higher than 1/3. Combining this with the bound of Lemma 17 on the
regret, and by simplifying the resulting expression, we get the following inequality:

λµ

2 −
2µ

3 −
2λ

3 +
(
µ− 2

3
)
· tr + 2

3 > 0. (3)

We will focus on the LHS of (3) and we will upper bound it by a non-positive value. Suppose
that the regret at the stationary point (xs, ys) is greater than ( 1

3 + δ). This means from
Lemma 5 that λ·µ

λ+µ > 1
3 , which implies that µ > λ

3λ−1 . In addition, observe that since
µ > 2/3, the LHS of (3) is increasing with tr. Hence, if we use Inequality (2), we get that
the LHS of (3) is upper bounded by

λµ

2 −
2µ

3 −
2λ

3 + (µ− 2
3) · (1

3 −
λ

2 ) + 2
3 = −µ

3 −
λ

3 + 4
9

< − λ

9λ− 3 −
λ

3 + 4
9

(
since µ >

λ

3λ− 1

)
.

It is easy to verify though that this quantity is non-positive for every λ ∈ [ 1
2 , 2

3 ], which in
turn contradicts Inequality (3). ◀

5 Discussion

Our algorithm is the first improvement for a foundational problem after 15 years, during
which progress had stalled. We hope that our result will again ignite the spark for actively
studying ε-NE in bimatrix games. There is still a large gap between the quasi polynomial-time
lower bound for some very small constant ε⋆ from [35], and our newly-established upper
bound of 1/3. We conjecture that closing this gap requires radically new ideas.
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Our result has some extra positive consequences for games with more than two players.
In [7] it was shown that if we have an algorithm that finds an α-Nash equilibrium in a
(k − 1)-player game, then in polynomial time we can compute a ( 1

2−α )-NE for any k-player
game. Thus, our algorithm improves the state of the art for k-player normal-form games,
for any k > 2. Namely, we get a (0.6 + δ)-NE for three-player games, a (5/7 + δ)-NE for
four-player games, and so on.
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Abstract
In a graph G with a source s, we design a distance oracle that can answer the following query:
Query(s, t, e) – find the length of shortest path from a fixed source s to any destination vertex
t while avoiding any edge e. We design a deterministic algorithm that builds such an oracle in
Õ(m

√
n) time1. Our oracle uses Õ(n

√
n) space and can answer queries in Õ(1) time. Our oracle is

an improvement of the work of Bilò et al. (ESA 2021) in the preprocessing time, which constructs
the first deterministic oracle for this problem in Õ(m

√
n + n2) time.

Using our distance oracle, we also solve the single source replacement path problem (Ssrp
problem). Chechik and Cohen (SODA 2019) designed a randomized combinatorial algorithm to
solve the Ssrp problem. The running time of their algorithm is Õ(m

√
n + n2). In this paper, we

show that the Ssrp problem can be solved in Õ(m
√

n + |R|) time, where R is the output set of
the Ssrp problem in G. Our Ssrp algorithm is optimal (upto polylogarithmic factor) as there is a
conditional lower bound of Ω(m

√
n) for any combinatorial algorithm that solves this problem.
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1 Introduction

Real-life graph networks are prone to failures, e.g., nodes or links can fail. Thus, algorithms
developed for these networks must be resilient to failures. For example, there may be some
edges or links which are not working in the network and we want to avoid them. In this
paper, we present an algorithm to create an oracle for the single source shortest path problem
in a fault-prone graph. Such algorithms are also called fault-tolerant algorithms.

Consider an undirected and unweighted graph G with a source s. We want to build an
oracle that can find the length of shortest path from s to any other vertex in the presence of
faulty edges – such an oracle is also called a fault-tolerant distance oracle. Formally,

▶ Definition 1. A fault-tolerant distance oracle answers the following query in a graph G:

Query(s, t, F ): Find the length of shortest path from s to t avoiding the set F of edges.
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The time it takes to answer a query is called the query time. If the query is always from
a fixed source s and |F | ≤ f , then the distance oracle is called a f -edge fault tolerant single
source distance oracle, or Sdo(f) in short. If all vertices can be sources, the oracle is called
f -edge fault tolerant distance oracle, or Do(f). We list some results related to distance
oracles:

Demetrescu et al. [12] designed a Do(1) with Õ(n2) space and O(1) query time. Bernstein
and Karger[3] showed that this oracle can be built in Õ(mn) time. Pettie and Duan [15]
extended the result of Demestrescu et al. to two faults. They designed a Do(2) with Õ(n2)
space and Õ(1) query time. Gupta and Singh [20] designed a Sdo(1) with Õ(n

√
n) space and

Õ(1) query time. Recently Bilò et al. [5] built the Sdo(1) (described in [20]) in Õ(m
√

n+n2)
time. They also showed that, the lower bound of size for such an oracle is O(n

√
n) Many

different aspects of distance oracles have been studied in literature [4, 3, 6, 9, 10, 14, 29]. In
the line of k simple shortest paths the some important works are [27, 28, 2]

In this paper, we will focus our attention on building Sdo(1). Due to Bilò et al. [5],
the time to build Sdo(1) is Õ(m

√
n + n2). Chechik and Cohen [8] showed that, the first

term in this running time is a conditional lower bound for Ssrp problem. But it is not clear
if the second term is necessary. In this paper, we build a Sdo(1) in Õ(m

√
n) time – this

preprocessing algorithm has a better runtime than [5] for sparse graphs, which is state of the
art for this problem till now. Using our Sdo(1) data structure, we are able to reduce the
runtime of the algorithm solving Ssrp problem too. Our distance oracle is quite different
from the distance oracle of Gupta and Singh [20] – though we use the main technical idea
of [20] crucially in our paper too. The construction of this new oracle is the main technical
result of this paper.

▶ Theorem 2. For undirected, unweighted graphs there is a deterministic algorithm that can
build a Sdo(1) of size Õ(n

√
n) and query time Õ(1) in Õ(m

√
n) time.

1.1 Application: Single Source Replacement Path Problem
Let us first look at the replacement path problem. In this problem, we are given a source s

and a destination t. We assume that there is a unique shortest path from s to t, denoted
by st.

▶ Definition 3 (Replacement Path Problem). Let s be a source and vertex t be the destination
in G. For each e ∈ st path, output the length of the shortest path from s to t avoiding e.

The replacement path problem was first investigated due to its relation with auction
theory [21, 24] and has been studied extensively. For an undirected graph with non-negative
edge weights, the replacement path problem can be solved in Õ(m + n) time[22, 21, 23]. We
look at the generalization of the replacement path problem – the single source replacement
path problem.

▶ Definition 4 (Ssrp problem). Let s be a source in a graph G which is undirected and
unweighted. For each vertex t ∈ G and each e ∈ st path, output the length of the shortest
path from s to t avoiding e.

Chechik and Cohen [8] designed a randomized combinatorial algorithm that solves the Ssrp
problem in Õ(m

√
n + n2) time. They also showed a matching conditional lower bound via

Boolean Matrix Multiplication.
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▶ Lemma 5 ([8]). Let Bmm(n, m) be the time taken to multiply two n× n boolean matrices
with a total of m ones. Under the assumption that any combinatorial algorithm for Bmm(n, m)
requires mn1−o(1) time2, any combinatorial algorithm for Ssrp problem requires Ω(m

√
n)

time.

It may seem that the algorithm of Chechik and Cohen [8] is nearly optimal. It is indeed
the case if the output size is O(n2). However, for a low-diameter graph, this extra additive
factor seems unnecessary. If the graph is dense (m ≥ n3/2), then the n2 factor is subsumed
by the first term m

√
n. Thus, when m < n3/2 and the graph has a low diameter, can we

improve the running time of the Ssrp problem? For such a graph, the algorithm of Chechik
and Cohen [8] is not optimal. Similar to [8], Gupta et al. [18] also designed an algorithm for
the Ssrp problem. Even this algorithm has the running time Õ(m

√
n + n2) – though it uses

an entirely different approach compared to [8]. Thus, the main question is: can we remove
this extra additive factor of n2 from the running time of the Ssrp problem? In this paper,
we design such an algorithm:

▶ Theorem 6. There is a deterministic algorithm for Ssrp problem with a running time of
Õ(m

√
n + |R|) where |R| is the output size of Ssrp problem in G.

In the above theorem, |R| is the output size, thus an implicit lower bound on the
Ssrp problem. Using Lemma 5, we conclude that our algorithm is nearly optimal up to a
polylogarithmic factor.

To build an algorithm for the Ssrp problem, we first build a Sdo(1). Then, for each
t ∈ G and each e ∈ st path, we call Query(s, t, e) and output the answer. Thus, we claim
the following lemma:

▶ Lemma 7. If we can build a Sdo(1) with query time q in time T , then there is an algorithm
for Ssrp problem with a running time O(T + q|R|), where |R| is the output size in G.

The above lemma, along with Theorem 2 implies Theorem 6.

1.2 Related Work
Other related problems include the fault-tolerant subgraph problem. In this problem, we
want to find a subgraph of G such that the shortest path from s is preserved in the subgraph
after any edge deletion. Parter and Peleg [26] designed an algorithm to compute a single
fault-tolerant subgraph with O(n3/2) edges. They also showed that their result could be
easily extended to multiple sources. This result was later extended to dual fault by Parter
[16] with O(n5/3) edges. Gupta and Khan [19] extended the above result to multiple sources.
All the above results are optimal due to a result by Parter [25] which states that a multiple
source f -fault tolerant subgraph requires Ω

(
n2− 1

f+1

)
edges. Bodwin et al. [7] showed the

existence of a f -fault tolerant subgraph of size O
(

fn2− 1
2f

)
.

2 Preliminaries

Let G(V, E) be an undirected unweighted graph with a source s. Given two vertices u and v

in a graph H, unless otherwise stated, (uv)H denotes the shortest path from u to v in H. If
H = G, we will remove the subscript and the brackets – we will apply this policy for all the

2 In a RAM model with words of O(log n) bits.
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notations below. |uv|H denotes the length of the shortest path in H. Some of our graphs
will be weighted, even though G is unweighted. If H is weighted, then we will abuse notation
and use |uv|H to denote the weight of the shortest path from u to v in H. The edges and
vertices of H will be denoted by EH and VH , respectively. Additionally, mH and nH will
denote the number of edges and vertices in H, respectively. SptH(s) denotes the shortest
path tree from s in H. We can view the SptH(s) to be drawn from top to bottom with the
top vertex being s. For any two vertices u, v on the st path in SptH(s), we say that u is
before / above v if |su|H < |sv|H . Similarly, we say that u is after/below v if |su|H > |sv|H .
For an edge e in a weighted graph H, wtH(e) will denote the weight of e. Given two paths
(uv)H and (vw)H , the path (uv)H + (vw)H denotes their concatenation. P [u, v] denotes a
contiguous subpath of P starting at u and ending at v. Sometimes, we may also write the
interval [u, v] of P to denote P [u, v]. We say u comes before v on a path R starting from s,
if |R[s, u]| < |R[s, v]|. Similarly, we can define the term u comes after v on path R.

A replacement path R is the shortest path from s to t avoiding an edge e on st path.
There can be many replacement paths of the same length avoiding e. To ensure uniqueness,
we will use the following definition of replacement path3.

s

t

e

u

v

Figure 1 Replacement path with detour uv and detour point u.

▶ Definition 8 (Replacement Path). A path R from s to t avoiding e is called a replacement
path if (1) it diverges from and merges to the st path just once (2) its divergence point from
the st path is as close to s as possible. (3) it is the lexicographically smallest4 shortest
path in G satisfying (1) and (2).

We now define some terms related to replacement paths. (st⋄e)H denotes the replacement
path from s to t avoiding the edge e in H. We can generalize this notation to a replacement
path that avoids a set of edges. Thus, (st ⋄ F )H denotes the replacement path from s to t in
H avoiding a set F of edges. In our algorithm, after we find the replacement path (st ⋄ e)H ,
we will store its length in dH(s, t, e). Sometimes, we also want to store the length of (st⋄F )H .
In that case, we will store it in dH(s, t, F ).

▶ Definition 9 (Detour and Detour point of a replacement path). Let R = st ⋄ e. Then, the
detour of R is R \ st. That is, let us assume that R leaves st above e at a vertex u, and
merges back on st at vertex v after e, then detour of R is R[u, v]. Also, the vertex at which
the detour starts is called the detour point of R. So, u is the detour point of R or in short
Dp(R) = u.

3 This was referred to as preferred replacement path in [19].
4 Let P and P ′ first diverge from each other to x ∈ P and x′ ∈ P ′ respectively. If the index of x is lower

than x′, then P is said to be lexicographically smaller than P ′.
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Lastly, in our algorithm, we will need to find least common ancestor of any two vertices u

and v in SptH(s). Let LcaH(u, v) denotes the least common ancestor of u and v in SptH(s).
To find the Lca, we will use the following result:

▶ Lemma 10 (See [1] and its references). Given a tree T on n vertices, we can build a
data structure of size O(n) in O(n) time such that the least common ancestor query can be
answered in O(1) time.

3 Overview of our algorithm to build SDO(1)

We will use divide and conquer approach to build Sdo(1). This strategy has been previously
used for directed graphs in [16, 11]. However, simply using this strategy will not get us close
to our desired bound of Õ(m

√
n). For that, we need to combine this divide and conquer

strategy with an idea of Gupta and Singh [20]. This combination is one of the technical
contributions of the paper.

Like [16, 11], we use the following separator lemma to divide the graph G.

▶ Theorem 11 (Separator Lemma [16, 11]). Given a tree T with n nodes rooted at a source
s, one can find in O(n) time a vertex r that separates the tree T into edge disjoint sub-trees
M, N such that EM ∪ EN = ET , VM ∩ VN = {r} and n

3 ≤ |VM |, |VN | ≤ 2n
3 .

Without loss of generality, we will assume that s ∈ VM . Thus, r is the root of N . Also,
note that s and r may or may not be the same. Let GM and GN be the graph induced by
the vertices of M and N , respectively. There is one more important term that we will use in
our paper:

▶ Definition 12 (Primary Path P). Using the separator lemma, Spt(s) can be divided into
two sub-trees M and N with roots s and r. The path from s to r is called the primary path
and is denoted by P.

We now describe our data structure that we will build recursively. We can view the data
structure as a binary tree T . The root contains data structure for the entire graph G. We
will abuse notation and say the root is the graph G.

The left child of the root will contain the graph GM and some weighted edges – we will
describe the utility of these weighted edges in the next section. These weighted edges are not
in G but are added by our algorithm. We will then build a data structure for GM recursively.
The right child of the root will contain the graph GN , again with some weighted edges.

At the root of T , we store the following data structures. For each v ∈ G, set d(s, v) = |sv|.
Similarly, set d(r, v) = |rv|. For each v ∈ GN , set d(s, v, GN ) = |sv ⋄GN |. Similarly, for each
v ∈ GM , set d(s, v, GM ) = |sv ⋄GM |. All these quantities can be computed using a single
source shortest path algorithm in Õ(m + n) time. Additionally, we will find the length of all
replacement paths from s to r avoiding edges on the primary path P. This can be done in
Õ(m + n) time using5 [21]. We will set d(s, r, e) = |sr ⋄ e| for each edge e ∈ P .

We store the above data-structure in each node of T . If a node of T contains graph H,
then we can contruct the above data-structures in Õ(mH + nH) time. We now describe our
algorithm that finds replacements paths using T .

Let us see how we find and store lengths of the replacement paths at the root of T , that
contains graph G. First, we find the replacement paths for edges on the primary path. Let
R = st ⋄ e where e ∈ P . We define R to be either jumping or departing depending on whether
it merges back to the primary path or not.

5 This algorithm work for graphs with non-negative edge weights. And our graph may have weighted
edges.
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▶ Definition 13 (Jumping and Departing paths [11, 17]). Let R = st ⋄ e where e ∈ P . R is
called a jumping path if it uses some vertex u ∈ P after e. If the path is not jumping then it
is a departing path. If a replacement path is jumping, then it is called jumping replacement
path. Similarly, we define departing replacement path. See Figure 2 for a visualization of
these two kinds of paths.

s

r

t

e

P
GM

GN

(a) Departing Replacement Path.

s

r

GM

GN

e

t

P

t

(b) Jumping Replacement Path.

Figure 2 Departing and Jumping Replacement Path.

Note that, jumping or departing path is defined only when the edge fault is on the primary
path. Also, if a replacement path is departing, then the destination t cannot lie on P. In
Section 4, we will find all jumping replacement paths.

In Section 5, we design a new algorithm for finding and storing all departing replacement
paths. To this end, we will use the main idea in the paper of Gupta and Singh [20]. In [20],
the authors sampled a set of vertices with probability of O( 1√

n
). Then, for a vertex t ∈ G,

they find a sampled vertex near t on the st path. They call this vertex ts. Then, they show
the following important lemma, which is the main idea of their paper:

▶ Lemma 14 (Lemma 11 in [20]). The number of replacement paths from s to t that avoid
edges in sts path and also avoid ts is O(

√
n).

An astute reader can see that the definition of replacement paths in the above definition
looks very similar to departing replacement paths. We prove that this is indeed the case.
Thus, we can transfer the result in Lemma 14 to departing replacement paths. This is the
main novelty of the paper. The main technical result of Section 5 is as follows:

▶ Lemma 15. For each t ∈ G, all departing replacement paths to t can be found in
deterministic Õ(m

√
n) time. Moreover, the length of all such departing paths can be stored

in a data structure of size Õ(n
√

n) and can be queried in Õ(1) time.

4 Algorithm to build SDO(1): Replacement paths that are not
departing

In Section 5, we will find all and store all departing replacement paths. Thus, we just need
to concentrate on the replacement paths that are either jumping or the faulty edge e /∈ P.
We now divide remaining replacement paths depending on where the destination t and faulty
edge e lies. There are following cases:
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s

r

w

GM

GN

e

P

t

(a) e ∈ P.

r

t

e
P

GM

GN

(b) e /∈ P.

Figure 3 e ∈ GM and t ∈ GN .

4.1 e ∈ GM and t ∈ GN

This case itself can be divided into two cases depending on whether e lies on the primary
path or not.
1. e ∈ P (See Figure 3(a))

Let R = st ⋄ e. If R is departing then we will see how to find it in Section 5. So, assume
that R is jumping . This implies that R merges back to P at a vertex, say w, after
the edge e. Since t ∈ GN , st = sw + wr + rt. Thus, after merging with P at w, the
replacement path passes through r. In that case, |st ⋄ e| = |sr ⋄ e|+ |rt|. We can easily
find the right hand side of the above equality as we have stored d(s, r, e) = |sr ⋄ e| and
d(r, t) = |rt|.

2. e /∈ P (See Figure 3(b))
In this case, we claim that st ⋄ e = st. The st path has P as its prefix. Since P lies in
GM and survives after the deletion of e, st path remains intact.

4.2 e ∈ GM and t ∈ GM

Since both e and t lie in GM , one may think that we can recurse our algorithm in GM to
find st ⋄ e. If st ⋄ e completely lies inside GM , this is indeed the case. However, st ⋄ e may
also use edges of GN . To handle such cases, before recursing in GM , we will add weighted
edges to it. For each v ∈ GM , we will add an edge from r to v with a weight |rv ⋄GM |. We
have already calculated this weight, it is stored in d(r, v, GM ). Let the set of weighted edges
added to GM be called X. We now look at two cases, (1) e ∈ P and (2) e /∈ P.

4.2.1 e ∈ P
Let R = st ⋄ e be a jumping replacement path. We will show that st ⋄ e = sr ⋄ e + rt. As we
have calculated the length of both the paths in the right-hand side of the above equality,
there is no need to even recurse in this case. To prove the above equality, we first prove the
following simple lemma:

▶ Lemma 16. Let e ∈ P, t ∈ GM . Assume that the jumping replacement path R = st ⋄ e

uses some edges of GN . Then st ⋄ e passes through r.

Proof. Since R is jumping, it merges with P. There are two ways in which R can merge
with P.
1. R merges with P and then visits the edges of GN .

Let us assume that u is the last vertex of GN in the path R and R merges with P at
w. Since R first merges with P and then visits the edges of GN , u comes after w on R.
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s

r

GM

GN

e

P

t

(a) e ∈ P, t ∈ GM and the
jumping replacement path uses
GN .

r

t e

P

s

GM

GN

(b) e ∈ GM \P, t ∈ GM and the
replacement path uses GN .

Figure 4 e ∈ GM and t ∈ GM .

Since w is below e on P, we claim that the sub-path wu of su survives in G \ e and is
also the shortest path from w to u. But wu path passes through r. Thus, st ⋄ e passes
through r by construction in Theorem 11.

2. R visits an edge of GN and then merges with P (See Figure 4(a))
In this case, we will show that R merges with P at r. For contradiction, let w be the vertex
at which R merges with P such that w ̸= r. Let u be the first vertex of GN visited by R.
Also, w lies after u on path R. Thus, the replacement path R = R[s, u]+R[u, w]+R[w, t].
Since w lies below e on P , wu sub-path of su does not contain e and is also the shortest
path from w to u. Thus, R[u, w] = uw. But uw path passes through r. This implies that
R merges with P at r contradicting our assumption that w ̸= r. ◀

We are now ready to prove the main lemma in this subsection.

▶ Lemma 17. Let e ∈ P and t ∈ GM . Assume that the jumping replacement path R = st ⋄ e

uses some edges of GN . Then |st ⋄ e| = |sr ⋄ e|+ |rt|.

Proof. Using Lemma 16, R passes through r. So, we have R = R[s, r] + R[r, t]. The first
summand on the right hand side of the above equality represent a path from s to r avoiding
e. Thus, |R[s, r]| = |sr ⋄ e|.

We will now show that |R[r, t]| = |rt|. Clearly |R[r, t]| ≥ |rt| as the first path avoid e

and the second path may or may not. We will now show that the second path also avoids
e which will imply that both paths are of same length. For contradiction, assume that rt

passes through e. Let us assume that there is a vertex w before the edge e on path P such
that rt = rw + wt. Thus, rw passes through e but wt avoids e. But then, there is a path R′

such that R′ = sw + wt which avoids e. We claim that |R′| < |R| contradicting the fact that
R is the replacement path from s to t avoiding e.

To this end,

|R|= |sr ⋄ e|+ |R[r, t]|
≥ |sr ⋄ e|+ |rt|
= |sr ⋄ e|+ |rw|+ |wt|
≥ |sr ⋄ e|+ |wt|

Since |sw| < |sr|, |sw| < |sr ⋄ e|
> |sw|+ |wt|
= |R′|.

This completes the proof of the lemma. ◀
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4.2.2 e /∈ P
In this case, we will show a path in GM ∪X such that it avoids e and has the same length
as st ⋄ e. Please see Figure 4(b) for a visualization of this case.

▶ Lemma 18. Let e ∈ GM \ P and t ∈ GM . Assume that the replacement path R = st ⋄ e

uses some edges of GN . Then there is a path in GM ∪X that avoids e and has length |st ⋄ e|.

Proof. Let us first prove that R can alternate between edges of GN and GM just once. To
this end, let u be the last vertex of GN visited by R. Thus, R = R[s, u] + R[u, t]. But the
shortest path su remains intact in G \ e as e /∈ P and the shortest su path passes through
r. This implies that R = R[s, u] + R[u, t] = R[s, r] + R[r, u] + R[u, t]. By construction,
the first path R[s, r] = sr and it completely lies in GM . The second path R[r, u] = ru and
it completely lies in GN . Let v be the vertex just after u in R. So, v ∈ GM . So we have
R = sr + ru + (u, v) + R[v, t]. By construction, R[v, t] completely lies in GM . Thus, R

alternates from edges of GN to GM just once.
From the above discussion R = R[s, r]+R[r, u]+(u, v)+R[v, t] = R[s, r]+R[r, v]+R[v, t].

The first and the last paths of the above equality completely lies in GM . By construction,
R[r, v] does not contain any edge of GM . Thus, R[r, v] is the shortest path from r to v

avoiding edges of GM , that is |R[r, v]| = |rv ⋄GM | = d(r, v, GM ).
Since we have added an edge from r to v with weight d(r, v, GM ), we will now show that

there is a path in GM ∪ X that avoids e and has same weight as R. Consider the path
R′ = R[s, r] + (r, v) + R[v, t]. The reader can check all the three subpaths lie completely
in GM ∪X. Moreover, (r, v) ∈ X is a weighted edge. Thus the weight of |R′| = |R[s, r]|+
wt(GM ∪X)(r, v) + |R[v, t]| = |R[s, r]|+ d(r, v, GM ) + |R[v, t]| = |R[s, r]|+ |R[r, v]|+ |R[v, t]| =
|R|. This completes the proof. ◀

4.3 e ∈ GN and t ∈ GM

In this case, st path completely lies in GM and thus survives. Thus, |st ⋄ e| = |st| = d(s, t).

4.4 e ∈ GN and t ∈ GN

In this case, we will recurse in GN . However, GN may not contain the source s if s ̸= r. In
that case, before recursing, we add a new source sN in GN . We also add some weighted edges
to GN . For each v ∈ GN , we add an edge from sN to v with a weight d(s, v, GN ) = |sv ⋄GN |.
Let this set of edges be called Y . Let us now show that we will find all the replacement paths
if we recurse in GN ∪ Y .

▶ Lemma 19. Let e ∈ GN and t ∈ GN . There is a path from sN to t in GN ∪ Y that avoids
e and has weight |st ⋄ e|.

Proof. Let R = st ⋄ e. Let us first prove that once R visits an edge of GN , it cannot visit
an edge of GM anymore. Let u be the last vertex of GM visited by R and v be the vertex
after u in R. Thus, v ∈ GN . Thus, R = R[s, u] + (u, v) + R[v, t]. By construction, R[v, t]
completely lies in GN . The shortest path su remains intact in G \ e as e ∈ GN and the
path su completely lies in GM . Thus, R[s, u] = su . So, the path R first visits only edges
of GM (in R[s, u]), then goes to GN (by taking the edge (u, v)) and then remains in GN (in
R[v, t]). Thus, R does not visit any edge of GM once it visits an edge of GN .

By the above discussion, R = R[s, u] + (u, v) + R[v, t] = R[s, v] + R[v, t] such that R[v, t]
completely lies in GN . Also, R[s, v] completely lies in GM except the last edge which has
one endpoint in GM and other endpoint v ∈ GN . Thus, R[s, v] = |sv ⋄ GN | = d(s, v, GN )
and we have R = sv ⋄GN + R[v, t].
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Now consider a path R′ that avoids e from sN to t in GN ∪ Y . We construct this path as
follows: we will first take the weighted edge sN → v and then the path R[v, t]. The reader
can check that these two subpaths completely lie in GN ∪ Y . The weight of this path is
|R′| = |sv ⋄GN |+ |R[v, t]| = d(s, v, GN ) + |R[v, t]| = |R[s, v]| + |R[v, t]| = |R|. ◀

4.5 One endpoint of e is in GM and the other is in GN and t ∈ G

This is an easy case as the st path survives in G \ e as st does not contain e. Thus, st ⋄ e = st

5 Departing Replacement paths

In the previous section, we have already found out a replacement path if it is jumping or
if the edge failure is not on the primary path. In this section, we will try to find the best
departing path after an edge failure. To this end, we define the following:

▶ Definition 20 (Candidate departing paths). Let e ∈ P and let D be the set of all path
avoiding e that do not use any vertex of P after e. P ∈ D is called the candidate departing
path for e, if among paths in D, P has the minimum length. In case there are many departing
paths avoiding same edge with same length, we will break ties using Definition 8.

Note that, a candidate departing path may or may not be a replacement path. In case it
is, we call it a departing replacement path. Also, P may be a candidate departing path for
all edges in an interval, say yz ∈ P , but may be a replacement path for a sub-interval of yz.
With this definition in hand, we will now find all candidate departing paths.

5.1 Finding all candidate departing paths
In the previous section, we added some weighted edges in the graph when we recurse. Thus,
there might be two types of edges in the graph – weighted and unweighted. The weighted
edges represent paths in the graph G, and the unweighted edges are present in G. G contains
only unweighted edges. However, the graph at an internal node of T , say graph Ĝ, may have
weighted as well as unweighted edges.

In the ensuing discussion, let Ĝ be the graph processed by our algorithm at some internal
node of T . In the graph Ĝ, we will assume that there is a source s. Let G be the parent of
Ĝ. In our algorithm, we partition G into two disjoint graphs and then recurse on it. If Ĝ is
the left child of G, then it includes a set X of weighted edges added by us in Section 4.2.
Similarly, if Ĝ is the right child of G then it includes a set Y of weighted edges added by us
in Section 4.4. Using the separator lemma, we will find the vertex r that partitions Spt

Ĝ
(s)

. Also, the primary path P = sr.
We now give an overview of our method to find candidate departing paths in Ĝ. To this

end, we will use the main idea in the paper of Gupta and Singh [20]. In [20], the authors
proved Lemma 14. Though they did not mention it, the paths in the Lemma 14 look very
much like the departing paths. Indeed, that lemma is more general than what the authors
originally intended it to be. The authors show the above lemma for a specific vertex ts, but
a careful reading of the paper suggests that the above lemma is true for any vertex on the st

path. We now generalise this lemma. However, there is one problem. The above result holds
only for an unweighted graph, whereas Ĝ is weighted. Thus, we cannot prove the above
lemma as it is. However, we will prove the following weaker lemma:
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▶ Lemma 21. Let Ĝ be the graph at an internal node in the binary tree T . Let s be the source
of Ĝ. For a destination t ∈ Ĝ, let p be any vertex on st path. The number of replacement
paths from s to t that avoid edges on sp path and also avoid p is O(

√
n).

Some discussion is in order. In an ideal case, the number of replacement paths that avoid
edges on sp and also avoid p should have been O(√n

Ĝ
). This result would have been similar

to Lemma 14. Unfortunately, we cannot prove this result as Ĝ is weighted. However, if we
just expand the weighted edge in the graph Ĝ, then we will get an unweighted graph. By
expanding, we mean that for each weighted edge, add the path that represents that weighted
edge. However, this process may increase the number of vertices in the graph to n. Now, we
can adapt Lemma 14. For an unweighted graph with n vertices, this lemma guarantees that
the number of replacement paths avoiding p will be at most

√
n. Indeed, this is our result in

Lemma 21. Interested reader can find the proof of this in the full version of the paper [13] as
it is an extension of the proof in [20].

Lemma 21 implies that there are only O(
√

n) replacement paths that have some special
properties which are similar to the properties of departing paths. So, our plan of action is as
follows:
1. Show that there are only O(

√
n) candidate departing paths to t in Ĝ. This will be done

by showing the similarity between the replacement paths in Lemma 21 and candidate
departing paths.

2. Show that we can find the lengths of all the candidate departing paths in Ĝ in O(m
Ĝ

√
n)

time. Additionally, we show that we can store the lengths in a compact data structure of
size O(n

Ĝ

√
n). Given any query Query(s, t, e) to this data-structure such that s, t ∈ Ĝ

and e is on the primary path of Ĝ, we can find the length of corresponding candidate
departing path in Õ(1) time.

This completes the overview of our algorithm for finding candidate departing paths.

5.2 Similarity between candidate departing paths and replacement paths
in Lemma 21

Let us first prove some simple results that will help us prove this section’s main idea.

▶ Lemma 22. Let t ∈ Ĝ and p = Lca(t, r). All the candidate departing paths from s to t

avoiding edges on sp path also avoid p. For any edge e on pr path , st ⋄ e = st.

Proof. Let R = st ⋄ e where e ∈ sp and R is departing. The detour of R must start above e

on P. Since R is departing, it can not merge with the path P again. So, it avoids p also.
The st path passes through p and does not use any vertex of P below p. So, removing

any edge on pr path does not disturb st path. So, for any edge e ∈ pr , st ⋄ e = st. ◀

We now show that the candidate departing paths and the replacement paths in Lemma 21
have the same property.

▶ Lemma 23. For any vertex t ∈ Ĝ, there are O(
√

n) candidate departing paths to t.

Proof. The proof of the lemma can be derived using Lemma 22 and Lemma 21 together.
For complete proof please see the full version [13]. ◀

Given the above lemma, we need to store O(
√

n) candidate departing paths to t in Ĝ. Before
designing an algorithm to find candidate departing paths, we first see how we plan to store
these paths in a compact data structure.
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5.3 The data-structure at each node of T
Let us first discuss a small technical detail that may be perceived as a problem but is not.
Our graph Ĝ is weighted. It stands to reason that even the primary path P in Ĝ maybe
weighted. Since candidate departing paths are only for the faults on the primary path, it
may not be clear what happens if the edge on the primary path is weighted. To this end, we
show that on any st path in Ĝ, all edges except may be the first one, are unweighted.

▶ Lemma 24. For t ∈ Ĝ, except may be the first edge of (st)
Ĝ

, all other edges of (st)
Ĝ

are
unweighted.

Proof. We will prove using induction on the nodes of T . In the root of T , we have the graph
G. Clearly, the graph G satisfies the property of the lemma. Let us assume using induction
that the parent of the graph Ĝ satisfies the property of the lemma. Let G be the parent of Ĝ.
Let s be the source in G. Thus, in the graph G, using the separator lemma, we find a r that
divides G into two parts. The path from s to r, say P is the primary path. By induction,
only the first edge of the primary path may be weighted. There are two cases:
1. Ĝ is the left child of G.

In this case, the source of Ĝ is also s. For each t ∈ Ĝ, it can be observed that the path
(st)G = (st)

Ĝ
. Using induction hypothesis, since (st)G satisfies the statement of lemma,

so does (st)
Ĝ

.
2. Ĝ is the right child of G.

There are two cases. When s = r, then we fall back in point(1). So, let us look at the
case when s ̸= r.
For a t ∈ Ĝ, by construction, (st)G passes through r. Thus, (st)G = (s̄r̄)G + (rt)G. In Ĝ,
we add a new source s. Also, we add a weighted edge from s to r in Ĝ. The weight of
this edge is |s̄r̄ ⋄ Ĝ|G. Also, (rt)G = (rt)

Ĝ
. This implies that there is path in Ĝ from s to

t, (s, r) + (rt)
Ĝ

. By induction, we claim that on this path except (s, r), all the edges are
unweighted. ◀

Using the above lemma, all except the first edge of the primary path are unweighted.
The weighted edges represent edges for which we have already found candidate departing
paths at the parent or an ancestor of Ĝ. Thus, we will only find candidate departing paths
for unweighted edges in P . In the ensuing discussion, whenever we mention a path avoiding
an edge on the primary path, it will always refer to an unweighted edge.

We now prove some simple lemmas that will help us build data structures for candidate
departing paths.

▶ Lemma 25. Let R and R′ be two different candidate departing paths from s to t avoiding
edges e and e′ respectively on the path P. If e lies above e′ on P, then |R| > |R′|.

Proof. The detour of the candidate departing R starts before e, and once it departs, it does
not merge with P again. As e lies above e′ on P, R also avoids e′. If |R| ≤ |R′|, then by
Definition 8, R must be the candidate departing path avoiding e′, leading to a contradiction.
So, it must be the case that |R| > |R′|. ◀

▶ Lemma 26. Let R be a candidate departing path. Let yz be the maximal subpath of P
such that R is the candidate departing path for edges in yz. Then Dp(R) = y.

Proof. For complete proof of the lemma please see the full version [13]. ◀

The above lemma states that if R avoids edges in yz, then the detour of R necessarily starts
from y. We will now prove the contrapositive of the Lemma 25.
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▶ Lemma 27. Let R and R′ be two different candidate departing paths from s to t. If
|R| > |R′|, then Dp(R) lies above Dp(R′) on P.

Proof. For complete proof of the lemma please see the full version [13]. ◀

We will now use the above lemmas and our deduction to build a compact data-structure
for all candidate departing paths. To this end, we will store an array Dep(t) for each
t ∈ Ĝ. Dep(t) will store candidate departing paths from s to t in increasing order of their
lengths. By Lemma 23, there are O(

√
n) such paths. let us denote them by R1, R2, . . . , Rk

where k = O(
√

n). For any two consecutive candidate departing paths Ri and Ri+1, using
Lemma 27 and Lemma 26, we claim that Ri+1 is the candidate departing path avoiding
edges in [Dp(Ri+1), Dp(Ri)] on the primary path P . Since the size of Dep(t) = O(

√
n), the

total size of Dep data-structure is bounded by O(n
Ĝ

√
n).

▶ Lemma 28.
∑

t∈Ĝ
size of Dep(t) = O(n

Ĝ

√
n)

5.4 Finding and storing all candidate departing paths efficiently
Let us first describe the setting that will be used throughout this section. At an internal
node Ĝ of T , we are planning to find all candidate departing paths from the source s. To
this end, we will find a vertex r that will divide Spt

Ĝ
(s) roughly equally. Also, P = sr.

To find all candidate departing path, we will build an auxiliary graph G which we will
build incrementally. The source in this graph is (s). All other vertices in G are tuples of the
form (v, |R|), where v ∈ Ĝ\P and R is a candidate departing path to v. During initialization,
we will add (v, |sv|

Ĝ
) in G for each v ∈ Ĝ \ P. Also, there will be an edge from (s) to

(v, |sv|
Ĝ

) with weight |sv|
Ĝ

. We will show the following property at the end of our analysis.

▶ Property 29. Let R be the candidate departing path to v avoiding edge on the subpath yz

of P. Then, there is a vertex (v, |R|) in G. Moreover the shortest path from (s) to (v, |R|) in
the graph G is of length |R|, that is |R| = |(s)(v, |R|)|G

In Lemma 30, we will show that Property 29 is true for all the nodes added during
initialization. Also, we will create Dep(v) for each v during intialization. We will store
candidate departing paths in Dep(v) in increasing order of lengths. Given a departing path
R, we will assume that we will store the following information about R in Dep().
1. The endpoints of R.
2. The weight of path R.
3. The last edge of R and its weight.
4. Dp(R).

After initialization, we will run a variant of Dijkstra’s algorithm in G. To this end, we
will construct a min-heap H in which we will store all the departing paths that we have
discovered at any point in the algorithm. We use the first two points of Definition 9 to
select the minimum element from H,i.e., given two candidate departing paths R and R′, R

is smaller than R′ if |R| < |R′| or |R| = |R′| and Dep(R) is closer to s than Dep(R′). If
Dep(R) = Dep(R′), then we can break ties arbitrarily.

We now explain the adaptation of Dijkstra’s algorithm. After initialization,for each
(v, |sv|), and for each neighbor neighbor w of v, we add the departing path sv + (v, w) in H

if w /∈ P . Then, we go over all the elements of the heap till it is empty. Let us assume that
R is the minimum element of the heap and it ends at v and (u, v) ∈ Ĝ is the last edge of R.
This implies that R was added in H while processing a candidate departing path for u. Let
this path be Ru. Thus, there is a node (u, |Ru|) in G. We now need to decide whether R is
a candidate departing path for v.
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To this end, we look at the last candidate departing path added by us in Dep(v), let it
be Q. We then check if the d

Ĝ
(s, Dp(R)) is less than d

Ĝ
(s, Dp(Q)). If yes, then we have

found a new candidate departing path to v that avoids all edges in [Dp(R), Dp(Q)] of P.
Thus, we will add the vertex (v, |R|) in the graph with an edge of weight wt

Ĝ
(u, v) from

(u, |Ru|). Also, for each neighbor w of v, we will add the departing path R + (v, w) to the
heap if w /∈ P . For the formal pseudocode, see the full version [13] of this paper.

5.5 Correctness and running time of the algorithm storing candidate
departing paths

We claim that, the time taken to construct the Dep() data-structure at a node of the binary
tree with graph Ĝ is O(m

Ĝ

√
n). Moreover, the size of the data-structure is O(n

Ĝ

√
n). At

first, we prove that our algorithm stores correct lengths of all candidate departing paths.

▶ Lemma 30. Let R be a candidate departing path to v where v ∈ Ĝ \ P. Let yz be the
maximal subpath of P such that R is the candidate departing path for edges in yz. Then
(v, |R|) ∈ G and satisfies Property 29.

Proof. We will prove the above lemma using induction on the weighted distance of a vertex
from (s) in G. During initialization, for each v ∈ G \ P, we add a vertex (v, |sv|

Ĝ
) ∈ G.

Also, the weight of the edge from (s) to (v, |sv|
Ĝ

) is |sv|
Ĝ

. We claim that the statement of
the lemma is true for the smallest candidate departing path to v. Indeed, using Lemma 22,
(sv)

Ĝ
is the a replacement path for the edges in subpath pr on P where p = Lca

Ĝ
(v, r).

Also, (sv)
Ĝ

is the smallest replacement path because it is the shortest path from s to v in Ĝ.
Thus, the base case is true for all v ∈ Ĝ \ P.

Let us now assume that the statement of the lemma is true for all candidate departing
paths to v with length < |R|. Let the second last vertex of R be u. Since R is a candidate
departing path, even R \ (u, v) is a candidate departing path. Since R[s, u] has length less
than R, by induction hypothesis, there is a vertex (u, |R \ (u, v)|) in G. Also there is at least
one replacement path in Dep(v) of weight less than |R| – as we have added (sv)

Ĝ
in Dep(v).

Let Q be a candidate departing path of largest weight less than the weight of R. Let us also
assume that Q avoids edge on subpath zz′ ∈ P . Thus, using Lemma 26, Dp(Q) = z. Since
|Q| < |R|, using Lemma 27, Dp(R) lies above Dp(Q) on P . Using the induction hypothesis,
there is a vertex (v, |Q|) in G.

We will now show that our algorithm will add (v, |R|) in G. There are four cases:
1. Our algorithm does not add any vertex for v after (v, |Q|)

But our algorithm does process the vertex (u, |R \ (u, v)|). Thus, it will check each
neighbour of u. When it checks the neighbor v, it will add the departing path R in the
heap H. Thus, we will add the vertex (v, |R|) in G while processing R, leading to a
contradiction.

2. Our algorithm adds a vertex (v, |R′|) where Dp(R) lies above Dp(R′) on P
We claim that the weight of R′ cannot be less than the weight of R as then R is not
the candidate departing path for all the edges in Dp(R′)z subpath, contradicting the
statement of the lemma. So let us assume that |R| = |R′|. But then Dp(R) lies above
Dp(R′) on P. Thus, the min-heap will give preference to the replacement path R first,
and our algorithm will make the vertex (v, |R|). Again a contradiction.

3. Our algorithm adds a vertex (v, |R′|) where Dp(R) lies below Dp(R′) on P
Again, we claim that the weight of R′ cannot be less than the weight of R as then it R is
not the replacement path for all edges in yz subpath, contradicting the statement of the



D. Dey and M. Gupta 42:15

lemma. So let us assume that |R| = |R′|. But Dp(R′) is closer to s than Dp(R). Thus,
R′ should be the candidate departing path avoiding edges of yz. This contradicts our
assumption that R is the candidate departing path for all edges in yz.

4. Our algorithm adds a vertex (v, |R′|) where Dp(R) = Dp(R′)
|R′| cannot be less than |R| as otherwise our algorithm will give preference to path R.
But, if |R| = |R′|, then there is a vertex (v, |R′|) = (v, |R|) in G.

So, we add the node (v, |R|) in the graph G. At that moment, we also adds an edge from
(u, R \ (u, v)) to (v, |R|) in G with weight wt

Ĝ
(u, v). Using induction, |(s)(u, R \ (u, v))|G =

|R \ (u, v)|. Thus, |(s)(v, |R|)|G = |R \ (u, v)| + wt
Ĝ

(u, v) = |R|. This completes our
proof. ◀

Let’s determine the running time of our algorithm. Using Lemma 23, for each v ∈ Ĝ, we
make O(

√
n) entries in Dep(v). In other words, we make O(

√
n) nodes of type (v, )̇ in G.

Whenever we add a node (v, |R|) in G, we see all the edges of v. This implies that the total
time taken to process all the vertices of v in G is O(

√
n deg

Ĝ
(v)). Summing it over all the

vertices gives us the bound of O(m
Ĝ

√
n). Using a similar calculation, the total size of our

data-structure for Ĝ is O(n
Ĝ

√
n). Thus, we claim the following lemma:

▶ Lemma 31. The time taken to construct the Dep() data-structure at a node of the binary
tree with graph Ĝ is O(m

Ĝ

√
n). Moreover, the size of the data-structure is O(n

Ĝ

√
n).

5.6 Querying for a candidate departing path
In this section, we describe how to find a candidate departing path using our data-structure
Dep(). Let t ∈ Ĝ \ P and e ∈ P be an edge on st path. Let st ⋄ e be a candidate departing
path, then we can find it using the algorithm given in the full version of this paper [13].

In this algorithm, we perform a binary search in Dep(t) to find two consecutive paths
R and Q such that e lies in the interval [Dep(R), Dep(Q)] of P. Using Lemma 27 and
Lemma 26, R is the candidate departing path avoiding e.

6 Construction time, size and query time of the SDO(1)

In this section, we show that the construction time of our algorithm is Õ(m
√

n). We also
bound the size of the data-structure of our algorithm by Õ(n

√
n). We also design a query

algorithm with a query time Õ(1). This proves the main result of the paper.
At the root of T , except for the recursions, we claim that constructing all other data-

structures take O(m
√

n) time. This is beacuse, the construction time is dominated by the
time to construct Dep(), which using Lemma 31, is O(m

√
n). At the second level of the

tree T , we have two nodes. In the left child, we have the graph GM ∪ X. This graph
has mGM

+ nGM
edges and nGM

vertices. Again applying Lemma 31, the time taken to
construct all the data-structures in the left child of root is (mGM

+ nGM
)
√

n. In the right
child of the root, we have the graph GN ∪ Y . This graph has mGN

+ nGN
edges and nGN

+ 1
vertices. The +1 is for the new root in GN . Again applying Lemma 31, the time taken to
construct all the data-structures in the right child of root is (mGN

+ nGN
)
√

n. Thus, the
total time taken at the second level of T is = (mGM

+ nGM
)
√

n + (mGN
+ nGN

)
√

n. Since
mGM

+ mGN
≤ m and nGM

+ nGN
= n + 1, the total time taken is ≤ (m + n + 1)

√
n. Note

that nGM
+ nGN

= n + 1 because r is shared both by GM and GN . Since, the number of
nodes in T is O(n), we claim that the number of vertices shared by sibling graphs at any
level of T is O(n). Similar to the second level, we claim that the time taken at level ℓ is
Õ((m + n+ #nodes shared at level ℓ)

√
n) = Õ((m + n)

√
n). We can assume that our graph
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G is connected as we need not even process a component that is not reachable from our
source s. Thus, the previous running time bound is equal to Õ(m

√
n). Since the height of

the tree is Õ(1), the total time taken to construct our data-structure is Õ(m
√

n). Using the
same argument, we can bound the size of the data-structure of our algorithm by Õ(n

√
n).

6.1 The Query Algorithm
In this section, we will design our query algorithm that will take s, t, e as its parameter.
Additionally, it also takes the root of the tree T as a parameter which contains data structures
of the main graph G. The algorithm then basically goes over all the possible cases described
in Section 4 (Please see algorithm 3). Also, the algorithm compares that output with the
best candidate departing path given by and return the minimum among them.

Algorithm 1 Query(s, t, e, T ).

1 mindist←−∞;
/* Section 4.1 */

2 if e ∈ GM , t ∈ GN then
3 if e ∈ P then

/* if st ⋄ e happens to be departing */
4 mindist← Query-DEP(s, t, e) using Dep() data-structure at T ;

/* if st ⋄ e happens to be jumping */
5 mindist←− min{mindist, |sr ⋄ e|+ |rt|}
6 else
7 mindist← |st|

/* Section 4.2 */
8 if e ∈ GM , t ∈ GM then

/* Section 4.2.1 */
9 if e ∈ P then

/* if st ⋄ e happens to be departing */
10 mindist← Query-DEP(s, t, e) using Dep() data-structure at T ;

/* if st ⋄ e happens to be jumping */
11 mindist←− min(mindist, |sr ⋄ e|+ |rt|)

/* Section 4.2.2 */
12 if e ∈ GM \ P then
13 mindist←− Query(s, t, e, left child of T )

/* Section 4.3 */
14 if e ∈ GN , t ∈ GM then
15 mindist← |st|;

/* Section 4.4 */
16 if e ∈ GN , t ∈ GN , then
17 mindist← Query(s, t, e, right child of T );

/* Section 4.5 */
18 if one endpoint of e is in GM and other in GN then
19 mindist← |st|;
20 return mindist;
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The reader can see that the time taken by the algorithm (excluding recursion) is Õ(1).
Since, at each step in this algorithm, we either go to the left child of a node in the tree
T or to the right child, the number of recursive steps in this algorithm is Õ(1) or to be
specific O(log n). Then for each child the call to Query-DEP(s, t, e) takes O(log n) time.
This implies that the running time of the query algorithm is O(log2 n) or Õ(1). Thus, we
have proven the main theorem of the paper.

References

1 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN 2000:
Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay, April 10-14,
2000, Proceedings, pages 88–94, 2000.

2 Aaron Bernstein. A nearly optimal algorithm for approximating replacement paths and k
shortest simple paths in general graphs. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’10, pages 742–755, USA, 2010. Society for
Industrial and Applied Mathematics.

3 Aaron Bernstein and David Karger. A nearly optimal oracle for avoiding failed vertices and
edges. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages
101–110. ACM, 2009.

4 Aaron Bernstein and David R. Karger. Improved distance sensitivity oracles via random
sampling. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January
20-22, 2008, pages 34–43. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.
1347087.

5 Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Near-optimal deterministic
single-source distance sensitivity oracles. In Accepted in Annual European Symposium on
Algorithms, ESA 2021, 2021.

6 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant
approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 18:1–18:14, 2016.

7 Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Preserving
distances in very faulty graphs. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 73:1–73:14, 2017.

8 Shiri Chechik and Sarel Cohen. Near optimal algorithms for the single source replacement
paths problem. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2090–2109,
2019.

9 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + ϵ)-approximate f -sensitive
distance oracles. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
1479–1496, 2017.

10 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for
general graphs. SIAM J. Comput., 39(7):3403–3423, 2010. doi:10.1137/090758039.

11 Shiri Chechik and Ofer Magen. Near optimal algorithm for the directed single source replace-
ment paths problem. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 81:1–81:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

12 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.

ESA 2022

http://dl.acm.org/citation.cfm?id=1347082.1347087
http://dl.acm.org/citation.cfm?id=1347082.1347087
https://doi.org/10.1137/090758039


42:18 Near Optimal Fault Tolerant Distance Oracle and SSRP Problem

13 Dipan Dey and Manoj Gupta. Near optimal algorithm for fault tolerant distance oracle and
single source replacement path problem. CoRR, abs/2206.15016, 2022. doi:10.48550/arXiv.
2206.15016.

14 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages
506–515, USA, 2009. Society for Industrial and Applied Mathematics.

15 Ran Duan and Seth Pettie. Approximating maximum weight matching in near-linear time.
In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, FOCS ’10, pages 673–682, Washington, DC, USA, 2010. IEEE Computer Society.
doi:10.1109/FOCS.2010.70.

16 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles
via fast single-source replacement paths. In Foundations of Computer Science (FOCS), 2012
IEEE 53rd Annual Symposium on, pages 748–757. IEEE, 2012.

17 Fabrizio Grandoni and Virginia Vassilevska Williams. Faster replacement paths and distance
sensitivity oracles. ACM Trans. Algorithms, 16(1), December 2019. doi:10.1145/3365835.

18 Manoj Gupta, Rahul Jain, and Nitiksha Modi. Multiple source replacement path problem. In
Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium on Principles of
Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 339–348. ACM, 2020.

19 Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, pages 127:1–127:15, 2017.

20 Manoj Gupta and Aditi Singh. Generic single edge fault tolerant exact distance oracle. In
45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, pages 72:1–72:15, 2018.

21 John Hershberger and Subhash Suri. Vickrey prices and shortest paths: What is an edge
worth? In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17
October 2001, Las Vegas, Nevada, USA, pages 252–259, 2001.

22 Kavindra Malik, Ashok K Mittal, and Santosh K Gupta. The k most vital arcs in the shortest
path problem. Operations Research Letters, 8(4):223–227, 1989.

23 Enrico Nardelli, Guido Proietti, and Peter Widmayer. Finding the most vital node of a shortest
path. Theor. Comput. Sci., 296(1):167–177, 2003.

24 Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35(1-2):166–196, 2001.

25 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21
- 23, 2015, pages 481–490, 2015.

26 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA 2013 -
21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings,
pages 779–790, 2013.

27 Liam Roditty. On the k shortest simple paths problem in weighted directed graphs. SIAM J.
Comput., 39:2363–2376, January 2010. doi:10.1137/080730950.

28 Liam Roditty and Uri Zwick. Replacement paths and k simple shortest paths in unweighted
directed graphs. In Proceedings of the 32nd International Conference on Automata, Languages
and Programming, ICALP’05, pages 249–260, Berlin, Heidelberg, 2005. Springer-Verlag. doi:
10.1007/11523468_21.

29 Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles via
fast matrix multiplication. ACM Trans. Algorithms, 9(2), March 2013. doi:10.1145/2438645.
2438646.

https://doi.org/10.48550/arXiv.2206.15016
https://doi.org/10.48550/arXiv.2206.15016
https://doi.org/10.1109/FOCS.2010.70
https://doi.org/10.1145/3365835
https://doi.org/10.1137/080730950
https://doi.org/10.1007/11523468_21
https://doi.org/10.1007/11523468_21
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2438645.2438646


Fast Computation of Zigzag Persistence
Tamal K. Dey #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Tao Hou #

School of Computing, DePaul University, Chicago, IL, USA

Abstract
Zigzag persistence is a powerful extension of the standard persistence which allows deletions of
simplices besides insertions. However, computing zigzag persistence usually takes considerably more
time than the standard persistence. We propose an algorithm called FastZigzag which narrows
this efficiency gap. Our main result is that an input simplex-wise zigzag filtration can be converted
to a cell-wise non-zigzag filtration of a ∆-complex with the same length, where the cells are copies
of the input simplices. This conversion step in FastZigzag incurs very little cost. Furthermore, the
barcode of the original filtration can be easily read from the barcode of the new cell-wise filtration
because the conversion embodies a series of diamond switches known in topological data analysis.
This seemingly simple observation opens up the vast possibilities for improving the computation
of zigzag persistence because any efficient algorithm/software for standard persistence can now be
applied to computing zigzag persistence. Our experiment shows that this indeed achieves substantial
performance gain over the existing state-of-the-art softwares.
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1 Introduction

Standard persistent homology defined over a growing sequence of simplicial complexes is
a fundamental tool in topological data analysis (TDA). Since the advent of persistence
algorithm [18] and its algebraic understanding [30], various extensions of the basic concept
have been explored [6, 8, 12, 13]. Among these extensions, zigzag persistence introduced by
Carlsson and de Silva [6] is an important one. It empowered TDA to deal with filtrations where
both insertion and deletion of simplices are allowed. In practice, allowing deletion of simplices
does make the topological tool more powerful. For example, in dynamic networks [15, 21] a
sequence of graphs may not grow monotonically but can also shrink due to disappearance of
vertex connections. Furthermore, zigzag persistence seems to be naturally connected with
the computations involving multiparameter persistence, see e.g. [16, 17].

Zigzag persistence possesses some key differences from standard persistence. For example,
unlike standard (non-zigzag) modules which decompose into only finite and infinite intervals,
zigzag modules decompose into four types of intervals (see Definition 2). Existing algorithms
for computing zigzag persistence from a zigzag filtration [8, 22, 23, 24] are all based on
maintaining explicitly or implicitly a consistent basis throughout the filtration. This makes
these algorithms for zigzag persistence more involved and hence slower in practice than
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algorithms for the non-zigzag version though they have the same time complexity [25]. We
sidestep the bottleneck of maintaining an explicit basis and propose an algorithm called
FastZigzag, which converts the input zigzag filtration to a non-zigzag filtration with an
efficient strategy for mapping barcodes of the two bijectively. Then, we can apply any efficient
algorithm for standard persistence on the resulting non-zigzag filtration to compute the
barcode of the original filtration. Considering the abundance of optimizations [2, 3, 4, 5, 10, 11]
of standard persistence algorithms and a recent GPU acceleration [29], the conversion in
FastZigzag enables zigzag persistence computation to take advantage of any existing or
future improvements on standard persistence computation. Our implementation, which uses
the Phat [4] software for computing standard persistence, shows substantial performance
gain over existing state-of-the-art softwares [26, 28] for computing zigzag persistence (see
Section 3.5). We make our software publicly available through: https://github.com/
taohou01/fzz.

To elaborate on the strategy of FastZigzag, we first observe a special type of zigzag
filtrations called non-repetitive zigzag filtrations in which a simplex (or more generally, a
cell) is never added again once deleted. Such a filtration admits an up-down filtration as its
canonical form that can be obtained by a series of diamond switches [6, 7, 8]. The up-down
filtration can be further converted into a non-zigzag filtration again using diamond switches
as in the Mayer-Vietoris pyramid presented in [8]. Individual switches are atomic tools that
help us to show equivalence of barcodes, but we do not need to actually execute them in
computation. Instead, we go straight to the final form of the filtration quite easily and
efficiently. Finally, we observe that any zigzag filtration can be treated as a non-repetitive
cell-wise filtration of a ∆-complex [20] consisting of multisets of input simplices. This means
that each repeatedly added simplex is treated as a different cell in the ∆-complex, so that we
can apply our findings for non-repetitive filtrations to arbitrary filtrations. The conversions
described above are detailed in Section 3.

1.1 Related works
Zigzag persistence is essentially an An-type quiver [14] in mathematics which is first introduced
to the TDA community by Carlsson and de Silva [6]. In their paper [6], Carlsson and de
Silva also study the Mayer-Vietoris diamond used in this paper and propose an algorithm
for computing zigzag barcodes from zigzag modules (i.e., an input is a sequence of vector
spaces connected by linear maps encoded as matrices). Carlsson et al. [8] then propose an
O(mn2) algorithm for computing zigzag barcodes from zigzag filtrations using a structure
called right filtration. In their paper [8], Carlsson et al. also extend the classical sublevelset
filtrations for functions on topological spaces by proposing levelset zigzag filtrations and show
the equivalence of levelset zigzag with the extended persistence proposed by Cohen-Steiner
et al. [12]. Maria and Outdot [22, 23] propose an alternative algorithm for computing zigzag
barcodes by attaching a reversed standard filtration to the end of the partial zigzag filtration
being scanned. Their algorithm maintains the barcode over the Surjective and Transposition
Diamond on the constructed zigzag filtration [22, 23]. Maria and Schreiber [24] propose
a Morse reduction preprocessing for zigzag filtrations which speeds up the zigzag barcode
computation. Carlsson et al. [9] discuss some matrix factorization techniques for computing
zigzag barcodes from zigzag modules, which, combined with a divide-and-conquer strategy,
lead to a parallel algorithm for computing zigzag persistence. Almost all algorithms reviewed
so far have a cubic time complexity. Milosavljević et al. [25] establish an O(mω) theoretical
complexity for computing zigzag persistence from filtrations, where ω < 2.37286 is the matrix
multiplication exponent [1]. Recently, Dey and Hou [15] propose near-linear algorithms for
computing zigzag persistence from the special cases of graph filtrations, with the help of
representatives defined for the intervals and some dynamic graph data structures.

https://github.com/taohou01/fzz
https://github.com/taohou01/fzz
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(a) (b) (c) (d)

Figure 1 Examples of ∆-complexes with two triangles sharing 0, 1, 2, or 3 edges on their
boundaries.

2 Preliminaries

∆-complex. In this paper, we build filtrations on ∆-complexes which are extensions of
simplicial complexes described in Hatcher [20]. These ∆-complexes are derived from a set of
standard simplices by identifying the boundary of each simplex with other simplices while
preserving the vertex orders. For distinction, building blocks of ∆-complexes (i.e., standard
simplices) are called cells. Motivated by a construction from the input simplicial complex
described in Algorithm 3.1, we use a more restricted version of ∆-complexes, where boundary
cells of each p-cell are identified with distinct (p − 1)-cells. Notice that this makes each
p-cell combinatorially equivalent to a p-simplex. Hence, the difference of the ∆-complexes in
this paper from the standard simplicial complexes is that common faces of two cells in the
∆-complexes can have more relaxed forms. For example, in Figure 1, two “triangles” (2-cells)
in a ∆-complex having the same set of vertices can either share 0, 1, 2, or 3 edges in their
boundaries; note that the two triangles in Figure 1d form a 2-cycle.

Formally, we define ∆-complexes recursively similar to the classical definition of CW-
complexes [20] though it need not be as general; see Hatcher’s book [20] for a more general
definition. Note that simplicial complexes are trivially ∆-complexes and therefore most
definitions in this section target ∆-complexes.

▶ Definition 1. A ∆-complex is defined recursively with dimension:
1. A 0-dimensional ∆-complex K0 is a set of points, each called a 0-cell.
2. A p-dimensional ∆-complex Kp, p ≥ 1, is a quotient space of a (p − 1)-dimensional

∆-complex Kp−1 along with several standard p-simplices. The quotienting is realized by
an attaching map h : ∂(σ)→ Kp−1 which identifies the boundary ∂(σ) of each p-simplex σ

with points in Kp−1 so that h is a homeomorphism onto its image. We term the standard
p-simplex σ with boundary identified to Kp−1 as a p-cell in Kp. Furthermore, we have
that the restriction of h to each proper face of σ is a homeomorphism onto a cell in Kp−1.

Notice that the original (more general) ∆-complexes [20] require specifying vertex orders
when identifying the cells. However, the restricted ∆-complexes defined above do not require
specifying such orders because we always identify the boundaries of cells by homeomorphisms
and hence the vertex orders for identification are implicitly derived from a vertex order of a
seeding cell.

Homology. Homology in this paper is defined on ∆-complexes, which is defined similarly
as for simplicial complexes [20]. All homology groups are taken with Z2-coefficients and
therefore vector spaces mentioned in this paper are also over Z2.

ESA 2022
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Zigzag filtration and barcode. A zigzag filtration (or simply filtration) is a sequence of
∆-complexes

F : K0 ↔ K1 ↔ · · · ↔ Km,

in which each Ki ↔ Ki+1 is either a forward inclusion Ki ↪→ Ki+1 or a backward inclusion
Ki ←↩ Ki+1. For computational purposes, we only consider cell-wise filtrations in this paper,
i.e., each inclusion Ki ↔ Ki+1 is an addition or deletion of a single cell; such an inclusion is
sometimes denoted as Ki

σ←→ Ki+1 with σ indicating the cell being added or deleted.
We call F as non-repetitive if whenever a cell σ is deleted from F , the cell σ is never added

again. We call F an up-down filtration [8] if F can be separated into two parts such that
the first part contains only forward inclusions and the second part contains only backward
ones, i.e., F is of the form F : K0 ↪→ K1 ↪→ · · · ↪→ Kℓ ←↩ Kℓ+1 ←↩ · · · ←↩ Km. Usually in
this paper, filtrations start and end with empty complexes, e.g., K0 = Km = ∅ in F .

Applying the p-th homology functor on F induces a zigzag module:

Hp(F) : Hp(K0)↔ Hp(K1)↔ · · · ↔ Hp(Km),

in which each Hp(Ki)↔ Hp(Ki+1) is a linear map induced by inclusion. It is known [6, 19]
that Hp(F) has a decomposition of the form Hp(F) ≃

⊕
k∈Λ I [bk,dk], in which each I [bk,dk]

is a special type of zigzag module called interval module over the interval [bk, dk]. The
(multi-)set of intervals denoted as Persp(F) := {[bk, dk] | k ∈ Λ} is an invariant of F and is
called the p-th barcode of F . Each interval in Persp(F) is called a p-th persistence interval
and is also said to be in dimension p. Frequently in this paper, we consider the barcode of F
in all dimensions Pers∗(F) :=

⊔
p≥0 Persp(F).

▶ Definition 2 (Open and closed birth/death). For a zigzag filtration F : ∅ = K0 ↔ K1 ↔
· · · ↔ Km = ∅, the start of any interval in Pers∗(F) is called a birth index in F and the
end of any interval is called a death index. Moreover, a birth index b is said to be closed
if Kb−1 ↪→ Kb is a forward inclusion; otherwise, b is open. Symmetrically, a death index
d is said to be closed if Kd ←↩ Kd+1 is a backward inclusion; otherwise, d is open. The
types of the birth/death ends classify intervals in Pers∗(F) into four types: closed-closed,
closed-open, open-closed, and open-open.

▶ Remark 3. If F is a levelset zigzag filtration [8], then the open and closed ends defined
above are the same as for levelset zigzag.
▶ Remark 4. An inclusion Ki ↔ Ki+1 in a cell-wise filtration either provides i + 1 as a birth
index or provides i as a death index (but cannot provide both).

Mayer-Vietoris diamond. The algorithm in this paper draws upon the Mayer-Vietoris
diamond proposed by Carlsson and de Silva [6] (see also [7, 8]), which relates barcodes of
two filtrations differing by a local change:

▶ Definition 5 (Mayer-Vietoris diamond [6]). Two cell-wise filtrations F and F ′ are related
by a Mayer-Vietoris diamond if they are of the following forms (where σ ̸= τ):

F : Kj

K0 · · · Kj−1 Kj+1 · · · Km

F ′ : K ′
j

τσ

τ σ
(1)
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In the above diagram, F and F ′ differ only in the complexes at index j and F ′ is derived
from F by switching the addition of σ and deletion of τ . We also say that F ′ is derived from
F by an outward switch and F is derived from F ′ by an inward switch.

▶ Remark 6. In Equation (1), we only provide a specific form of Mayer-Vietoris diamond
which is sufficient for our purposes; see [6, 8] for a more general form. According to [6],
the diamond in Equation (1) is a Mayer-Vietoris diamond because Kj = Kj−1 ∪Kj+1 and
K ′

j = Kj−1 ∩Kj+1.
We then have the following fact:

▶ Theorem 7 (Diamond Principle [6]). Given two cell-wise filtrations F ,F ′ related by a
Mayer-Vietoris diamond as in Equation (1), there is a bijection from Pers∗(F) to Pers∗(F ′)
as follows:

Pers∗(F) Pers∗(F ′)

[b, j − 1]; b ≤ j − 1 7→ [b, j]

[b, j]; b ≤ j − 1 7→ [b, j − 1]

[j, d]; d ≥ j + 1 7→ [j + 1, d]

[j + 1, d]; d ≥ j + 1 7→ [j, d]

[j, j] of dimension p 7→ [j, j] of dimension p − 1

[b, d]; all other cases 7→ [b, d]

Note that the bijection preserves the dimension of the intervals except for [j, j].

▶ Remark 8. In the above bijection, only an interval containing some but not all of {j −
1, j, j + 1} maps to a different interval or different dimension.

3 FASTZIGZAG algorithm

In this section, we show that computing barcodes for an arbitrary zigzag filtration of simplicial
complexes can be reduced to computing barcodes for a certain non-zigzag filtration of ∆-
complexes. The resulting algorithm called FastZigzag is more efficient considering that
standard (non-zigzag) persistence admits faster algorithms [2, 3, 4, 5, 10, 11, 29] in practice.
We confirm the efficiency with experiments in Section 3.5.

3.1 Overview
Given a simplex-wise zigzag filtration

F : ∅ = K0
σ0←−→ K1

σ1←−→ · · · σm−1←−−−→ Km = ∅

of simplicial complexes as input, the FastZigzag algorithm has the following main procedure:
1. Convert F into a non-repetitive zigzag filtration of ∆-complexes.
2. Convert the non-repetitive filtration to an up-down filtration.
3. Convert the up-down filtration to a non-zigzag filtration with the help of an extended

persistence filtration.
4. Compute the standard persistence barcode, which is then converted to the barcode for

the input filtration based on rules given in Proposition 15 and 19.
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a b

c0

c1

Figure 2 The ∆-complex resulting from performing an inward switch around K̂4 for the example
shown in Figure 5.

Step 1 is achieved by simply treating each repeatedly added simplex in F as a new cell
in the converted filtration (see also [25]). Throughout the section, we denote the converted
non-repetitive, cell-wise filtration as

F̂ : ∅ = K̂0
σ̂0←−→ K̂1

σ̂1←−→ · · · σ̂m−1←−−−→ K̂m = ∅.

Notice that each K̂i in F̂ is homeomorphic to Ki in F , and hence Pers∗(F) = Pers∗(F̂).
However, we get an important difference between F and F̂ by treating the simplicial complexes
as ∆-complexes. For example, in Figure 5 presented later in this section, the first addition
of edge c in F corresponds to a cell c0 in F̂ and its second addition in F corresponds to a
cell c1. Performing an inward switch around K̂4 (switching c0←−−↩ and c1

↪−−→) turns K̂4 into a
∆-complex as shown in Figure 2. However, we cannot perform such a switch in F which
consists of simplicial complexes, because diamond switches require the switched simplices or
cells to be different (see Definition 5).

In Section 3.2 and 3.3, we provide details for Step 2 and 3 as well as propositions for
converting barcodes mentioned in Step 4. We summarize the filtration converting process in
Section 3.4 by providing pseudocodes (Algorithm 3.1) and examples (Figure 5 and 6).

3.2 Conversion to up-down filtration
▶ Proposition 9. For the filtration F̂ , there is a cell-wise up-down filtration

U : ∅ = L0 ↪→ L1 ↪→ · · · ↪→ Ln ←↩ Ln+1 ←↩ · · · ←↩ L2n = ∅

derived from F̂ by a sequence of inward switches. Note that m = 2n

Proof. Let K̂i
σ̂i←−−↩ K̂i+1 be the first deletion in F̂ and K̂j

σ̂j

↪−−→ K̂j+1 be the first addition
after that. That is, F̂ is of the form

F̂ : K̂0 ↪→ · · · ↪→ K̂i
σ̂i←−−↩ K̂i+1

σ̂i+1←−−−↩ · · ·
σ̂j−2←−−−−↩ K̂j−1

σ̂j−1←−−−−↩ K̂j

σ̂j

↪−−→ K̂j+1 ↔ · · · ↔ K̂m.

Since F̂ is non-repetitive, we have σ̂j−1 ̸= σ̂j . So we can switch
σ̂j−1←−−−−↩ and

σ̂j

↪−−→ (which is
an inward switch) to derive a filtration

K̂0 ↪→ · · · ↪→ K̂i
σ̂i←−−↩ K̂i+1

σ̂i+1←−−−↩ · · ·
σ̂j−2←−−−−↩ K̂j−1

σ̂j

↪−−→ K̂ ′
j

σ̂j−1←−−−−↩ K̂j+1 ↔ · · · ↔ K̂m.

We then continue performing such inward switches (e.g., the next switch is on
σ̂j−2←−−−−↩ and

σ̂j

↪−−→) to derive a filtration

F̂ ′ : K̂0 ↪→ · · · ↪→ K̂i

σ̂j

↪−−→ K̂ ′
i+1

σ̂i←−−↩ · · ·
σ̂j−3←−−−−↩ K̂ ′

j−1
σ̂j−2←−−−−↩ K̂ ′

j

σ̂j−1←−−−−↩ K̂j+1 ↔ · · · ↔ K̂m.

Note that from F̂ to F̂ ′, the up-down “prefix” grows longer. We can repeat the above
operations on the newly derived F̂ ′ until the entire filtration turns into an up-down one. ◀
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Throughout the section, let

U : ∅ = L0
τ0

↪−−→ · · ·
τn−1

↪−−−−→ Ln
τn←−−↩ · · ·

τ2n−1←−−−−↩ L2n = ∅

be the up-down filtration for F̂ as described in Proposition 9, where m = 2n. We also let
K̂ = Ln.

In a cell-wise filtration, for a cell σ, let its addition (insertion) be denoted as ↓σ and
its deletion (removal) be denoted as ↑σ. From the proof of Proposition 9, we observe the
following: during the transition from F̂ to U , for any two additions ↓σ and ↓σ′ in F̂ (and
similarly for deletions), if ↓σ is before ↓σ′ in F̂ , then ↓σ is also before ↓σ′ in U . We then
have the following fact:

▶ Fact 10. Given the filtration F̂ , to derive U , one only needs to scan F̂ and list all the
additions first and then the deletions, following the order in F̂ .

▶ Remark 11. Figure 3 gives an example of F̂ and its corresponding U , where the additions
and deletions in F̂ and U follow the same order.

▶ Definition 12 (Creator and destroyer). For any interval [b, d] ∈ Pers∗(F̂), if K̂b−1
σ̂b−1←−−−→ K̂b

is forward (resp. backward), we call ↓σ̂b−1 (resp. ↑σ̂b−1) the creator of [b, d]. Similarly, if
K̂d

σ̂d←−→ K̂d+1 is forward (resp. backward), we call ↓σ̂d (resp. ↑σ̂d) the destroyer of [b, d].

By inspecting the interval mapping in the Diamond Principle, we have the following fact:

▶ Proposition 13. For two cell-wise filtrations L,L′ related by a Mayer-Vietoris diamond,
any two intervals of Pers∗(L) and Pers∗(L′) mapped by the Diamond Principle have the same
set of creator and destroyer, though the creator and destroyer may swap. This observation
combined with Proposition 9 implies that there is a bijection from Pers∗(U) to Pers∗(F̂) s.t.
every two corresponding intervals have the same set of creator and destroyer.

▶ Remark 14. The only time when the creator and destroyer swap in a Mayer-Vietoris
diamond is when the interval [j, j] for the upper filtration in Equation (1) turns into the
same interval (of one dimension lower) for the lower filtration.

Consider the example in Figure 3 for an illustration of Proposition 13. In the example,
[1, 2] ∈ Pers1(F̂) corresponds to [1, 4] ∈ Pers1(U), where their creator is ↓a and their
destroyer is ↑d. Moreover, [4, 6] ∈ Pers0(F̂) corresponds to [4, 5] ∈ Pers1(U). The creator of
[4, 6] ∈ Pers0(F̂) is ↑e and the destroyer is ↓c. Meanwhile, [4, 5] ∈ Pers1(U) has the same set
of creator and destroyer but the roles swap.

For any ↓σ or ↑σ in F̂ , let idF̂ (↓σ) or idF̂ (↑σ) denote the index (position) of the addition
or deletion. For example, for an addition K̂i

σ̂i
↪−−→ K̂i+1 in F̂ , idF̂ (↓σ̂i) = i. Proposition 13

indicates the following explicit mapping from Pers∗(U) to Pers∗(F̂):

▶ Proposition 15. There is a bijection from Pers∗(U) to Pers∗(F̂) which maps each [b, d] ∈
Persp(U) by the following rule:

Type Condition Type Interval in Pers∗(F̂) Dim

closed-open - 7→ closed-open
[
idF̂ (↓τb−1) + 1, idF̂ (↓τd)

]
p

open-closed - 7→ open-closed
[
idF̂ (↑τb−1) + 1, idF̂ (↑τd)

]
p

closed-closed
idF̂ (↓τb−1) < idF̂ (↑τd) 7→ closed-closed

[
idF̂ (↓τb−1) + 1, idF̂ (↑τd)

]
p

idF̂ (↓τb−1) > idF̂ (↑τd) 7→ open-open
[
idF̂ (↑τd) + 1, idF̂ (↓τb−1)

]
p−1
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Figure 3 An example of filtration F̂ and its corresponding up-down filtration U . For brevity, F̂
does not start and end with empty complexes (which can be treated as a truncated case).

▶ Remark 16. Notice that Pers∗(U) contains no open-open intervals. However, a closed-closed
interval [b, d] ∈ Persp(U) turns into an open-open interval in Persp−1(F̂) when idF̂ (↓τb−1) >

idF̂ (↑τd). Such a change happens when a closed-closed interval turns into a single point
interval [j, j] during the sequence of outward switches, after which the closed-closed interval
[j, j] becomes an open-open interval [j, j] with a dimension shift (see Theorem 7).
▶ Remark 17. Although it may take O(m2) diamond switches to go from F̂ to U or from U
to F̂ as indicated in Proposition 9, we observe that these switches do not need to be actually
executed in the algorithm. To convert the intervals in Pers∗(U) to those in Pers∗(F̂), we only
need to follow the mapping in Proposition 15, which takes constant time per interval.

We can take the example in Figure 3 for the mapping in Proposition 15. The interval
[4, 5] ∈ Pers1(U) is a closed-closed one whose creator is ↓c and destroyer is ↑e. We have that
idF̂ (↓c) = 6 > idF̂ (↑e) = 3. So the corresponding interval in Pers0(F̂) is

[idF̂ (↑e) + 1, idF̂ (↓c)] = [4, 6].

3.3 Conversion to non-zigzag filtration
We first convert the up-down filtration U to an extended persistence [12] filtration E , which is
then easily converted to an (absolute) non-zigzag filtration using the “coning” technique [12].

Inspired by the Mayer-Vietoris pyramid in [8], we relate Pers∗(U) to the barcode of the
filtration E defined as:

E : ∅ = L0 ↪→ · · · ↪→ Ln = (K̂, L2n) ↪→ (K̂, L2n−1) ↪→ · · · ↪→ (K̂, Ln) = (K̂, K̂)

where Ln = K̂ = (K̂, L2n = ∅). When denoting the persistence intervals of E , we let the
increasing index for the first half of E continue to the second half, i.e., (K̂, L2n−1) has index
n + 1 and (K̂, Ln) has index 2n. Then, it can be verified that an interval [b, d] ∈ Pers∗(E) for
b < n < d starts with the complex Lb and ends with (K̂, L3n−d).
▶ Remark 18. A filtration in extended persistence [12] is originally defined for a PL function
f , where the first half is the lower-star filtration of f and the second half (the relative part) is
derived from the upper-star filtration of f . The filtration E defined above is a generalization
of the one in [12].

▶ Proposition 19. There is a bijection from Pers∗(E) to Pers∗(U) which maps each [b, d] ∈
Pers∗(E) of dimension p by the following rule:
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Type Condition Type Interv. in Pers∗(U) Dim

Ord d < n 7→ closed-open [b, d] p

Rel b > n 7→ open-closed [3n − d, 3n − b] p−1

Ext b ≤ n ≤ d 7→ closed-closed [b, 3n − d − 1] p

▶ Remark 20. The types “Ord”, “Rel”, and “Ext” for intervals in Pers∗(E) are as defined
in [12], which stand for intervals from the ordinary sub-barcode, the relative sub-barcode,
and the extended sub-barcode.
▶ Remark 21. The above proposition can also be stated by associating the creators and
destroyers as in Proposition 13 and 15. The association of additions in the first half of U and
E is straightforward and the deletion of a σ in U is associated with the addition of σ (to the
second complex in the pair) in E . Then, corresponding intervals in Pers∗(E) and Pers∗(U)
in the above proposition also have the same set of creators and destroyers. Combined with
Proposition 13, we further have that intervals in Pers∗(F) and Pers∗(E) can be associated by
a bijection where corresponding intervals have the same pairs of simplices though they may
switch roles of being creators and destroyers.

Proof. We can build a Mayer-Vietoris pyramid relating the second half of E and the second
half of U similar to the one in [8]. A pyramid for n = 4 is shown in Figure 4, where the
second half of E is along the left side of the triangle and the second half of U is along the
bottom. In Figure 4, we represent the second half of E and U in a slightly different way
considering that L4 = K̂ and L8 = ∅. Also, each vertical arrow indicates the addition of a
simplex in the second complex of the pair and each horizontal arrow indicates the deletion of
a simplex in the first complex.

To see the correctness of the mapping, we first note that each square in the pyramid is a
(more general version of) Mayer-Vietoris diamond as defined in [8]. Then, the mapping stated
in the proposition can be verified using the Diamond Principle (Theorem 7). However, there
is a quicker way to verify the mapping by observing the following: corresponding intervals
in Pers∗(E) and Pers∗(U) have the same set of creator and destroyer if we ignore whether
it is the addition or deletion of a simplex. For example, an interval in Pers∗(E) may be
created by the addition of a simplex σ in the first half of E and destroyed by the addition of
another simplex σ′ in the second half of E . Then, its corresponding interval in Pers∗(U) is
also created by the addition of σ in the first half but destroyed by the deletion of σ′ in the
second half. Note that the dimension change for the case b > n is caused by the swap of
creator and destroyer. ◀

By Proposition 15 and 19, we only need to compute Pers∗(E) in order to compute Pers∗(F).
The barcode of E can be computed using the “coning” technique [12], which converts E into
an (absolute) non-zigzag filtration Ê . Specifically, let ω be a vertex different from all vertices
in K̂. For a p-cell σ of K̂, we let ω · σ denote the cone of σ, which is a (p + 1)-cell having
cells {σ} ∪ {ω · τ | τ ∈ ∂σ} in its boundary. The cone ω ·Li of a complex Li consists of three
parts: the vertex ω, Li, and cones of all cells of Li. The filtration Ê is then defined as [12]:

Ê : L0 ∪ {ω} ↪→ · · · ↪→ Ln ∪ {ω} = K̂ ∪ ω · L2n ↪→ K̂ ∪ ω · L2n−1 ↪→ · · · ↪→ K̂ ∪ ω · Ln

We have that Pers∗(E) equals Pers∗(Ê) discarding the only infinite interval [12]. Note that if
a cell σ is added (to the second complex) from (K̂, Li) to (K̂, Li−1) in E , then the cone ω · σ
is added from K̂ ∪ ω · Li to K̂ ∪ ω · Li−1 in Ê .
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Figure 4 A Mayer-Vietoris pyramid relating the second half of E and U for n = 4.

3.4 Summary of filtration conversion
We summarize the filtration conversion process described in this section in Algorithm 3.1, in
which we assume that each simplex in F is given by its set of vertices. The converted standard
filtration Ê is represented by its boundary matrix D, whose columns (and equivalently the
chains they represent) are treated as sets of identifiers of the boundary cells. Algorithm 3.1
also maintains the following data structures:

cid denotes the map from a simplex σ to the identifier of the most recent copy of cell
corresponding to σ.
del_list denotes the list of cell identifiers deleted in the input filtration.
cone_id denotes the map from the identifier of a cell to that of its coned cell.

Subroutine CellBoundary in Line 8 converts boundary simplices of σi to a column of
cell identifiers based on the map cid. Subroutine ConedCellBoundary in Line 16 returns
boundary column for the cone of the cell identified by del_id.

We provide an example of the up-down cell-wise filtration U built from a given simplex-
wise filtration F in Figure 5. In the example, edge c and triangle t are repeatedly added
twice in F , and therefore each correspond to two copies of cells in U . We provide another
example of a complete conversion from a given zigzag filtration to a non-zigzag filtration in
Figure 6.

With the ConvertFilt subroutine, Algorithm 3.2 provides a concise summary of
FastZigzag. Given that for a filtration F of length m, ConvertFilt takes O(m) time and
ConvertBarcode takes O(1) time per bar, we now have the following conclusion:

▶ Theorem 22. Given a simplex-wise zigzag filtration F with length m, FastZigzag
computes Pers∗(F) in time T (m) + O(m), where T (m) is the time used for computing the
barcode of a non-zigzag cell-wise filtration with length m.

▶ Remark 23. Theoretically, T (m) = O(mω) [25], where ω < 2.37286 is the matrix multiplic-
ation exponent [1]. So the theoretical complexity of FastZigzag is O(mω).
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Algorithm 3.1 Pseudocode for converting input filtration.

1: procedure ConvertFilt(F)
2: initialize boundary matrix D, cell-id map cid, deleted cell list del_list as empty
3: append an empty column to D representing vertex ω for coning
4: id← 1 ▷ variable keeping track of id for cells
5: for each Ki

σi←−→ Ki+1 in F do
6: if σi is being inserted then
7: cid[σi] = id ▷ get a new cell as a copy of simplex σi

8: col← CellBoundary(σi, cid)
9: append col to D

10: id← id + 1
11: else
12: append cid[σi] to del_list

13: initialize map cone_id as empty ▷ cone_id tracks id for coned cells
14: for each del_id in del_list (accessed reversely) do
15: cone_id[del_id]← id ▷ get a new coned cell
16: col← ConedCellBoundary(del_id, D, cone_id)
17: append col to D

18: id← id + 1
19: return D
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Figure 5 An example of an up-down cell-wise filtration U built from a given simplex-wise filtration
F . For brevity, F does not start and end with empty complexes. The final conversion to Ê is not
shown for this example due to page-width constraint. A complete conversion for a smaller example
is shown in Figure 6.

Algorithm 3.2 Pseudocode for FastZigzag.

1: procedure FastZigzag(F)
2: D ← ConvertFilt(F)
3: B ← ComputeBarcode(D)
4: B′ ← ConvertBarcode(B)
5: return B′
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Figure 6 An example of converting a zigzag filtration F̂ to a non-zigzag filtration.

3.5 Experiments
We implement the FastZigzag algorithm described in this section and compare the perform-
ance with Dionysus2 [26] (implementing the algorithm in [8]) and Gudhi1 [28] (implementing
the algorithm in [22, 24]). When implementing FastZigzag, we utilize the Phat [4] software
for computing non-zigzag persistence. Our implementation is publicly available through:
https://github.com/taohou01/fzz.

To test the performance, we generate eleven simplex-wise filtrations of similar lengths
(5∼6 millions; see Table 1). The reason for using filtrations of similar lengths is to test the
impact of repetitiveness on the performance for different algorithms, where repetitiveness
is the average times a simplex is repeatedly added in a filtration (e.g., repetitiveness being
1 means that the filtration is non-repetitive). We utilize three different approaches for
generating the filtrations:

The two non-repetitive filtrations (No. 1 and 2) are generated by first taking a simplicial
complex with vertices in R3, and then taking the height function h along a certain axis.
After this, we build an up-down filtration for the complex where the first half is the
lower-star filtration of h and the second half is the (reversed) upper-star filtration of
h. We then randomly perform outward switches on the up-down filtration to derive a
non-repetitive filtration. Note that the simplicial complex is derived from a triangular
mesh supplemented by a Vietoris-Rips complex on the vertices; one triangular mesh
(Dragon) is downloaded from the Stanford Computer Graphics Laboratory.
Filtration No. 3 – 8 are generated from a sequence of edge additions and deletions, for
which we then take the clique complex (up to a certain dimension) for each edge set in
the sequence. The edge sequence is derived by randomly adding and deleting edges for a
set of points.
The remaining filtrations (No. 9 – 11) are the oscillating Rips zigzag [27] generated from
point clouds of size 2000 – 4000 sampled from some triangular meshes (Space Shuttle
from an online repository2; Bunny and Dragon from the Stanford Computer Graphics
Laboratory).

1 The code is shared by personal communication.
2 Ryan Holmes: http://www.holmes3d.net/graphics/offfiles/

https://github.com/taohou01/fzz
http://www.holmes3d.net/graphics/offfiles/
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Table 1 lists running time of the three algorithms on all filtrations, where the length,
maximum dimension (D), repetitiveness (Rep), and maximum complex size (MaxK) are also
provided for each filtration. From Table 1, we observe that FastZigzag (TFZZ) consistently
achieves the best running time across all inputs, with significant speedups (see column “SU”
in Table 1). The speedup is calculated as the min-time of Dionysus2 and Gudhi divided by
the time of FastZigzag. Notice that since Gudhi only takes a sequence of edge additions
and deletions as input (and builds clique complexes on-the-fly), we do not run Gudhi on the
first two inputs in Table 1, which are only given as simplex-wise filtrations. We also observe
that the speedup of FastZigzag tends to be less prominent as the repetitiveness increases.
This is because higher repetitiveness leads to smaller max/average complex size in the input
zigzag filtration, so that algorithms directly working on the input filtration could have less
processing time [8, 22, 24]. On the other hand, the complex size in the converted non-zigzag
filtration that FastZigzag works on is always increasing.

Table 1 Running time of Dionysus2, Gudhi, and FastZigzag on different filtrations of similar
lengths with various repetitiveness. All tests were run on a desktop with Intel(R) Core(TM) i5-9500
CPU @ 3.00GHz, 16GB memory, and Linux OS.

No. Length D Rep MaxK TDio2 TGudhi TFZZ SU

1 5,260,700 5 1.0 883,350 2h02m46.0s − 8.9s 873

2 5,254,620 4 1.0 1,570,326 19m36.6s − 11.0s 107

3 5,539,494 5 1.3 1,671,047 3h05m00.0s 45m47.0s 3m20.8s 13.7

4 5,660,248 4 2.0 1,385,979 2h59m57.0s 29m46.7s 4m59.5s 6.0

5 5,327,422 4 3.5 760,098 43m54.8s 10m35.2s 3m32.1s 3.0

6 5,309,918 3 5.1 523,685 5h46m03.0s 1h32m37.0s 19m30.2s 4.7

7 5,357,346 3 7.3 368,830 3h37m54.0s 57m28.4s 30m25.2s 1.9

8 6,058,860 4 9.1 331,211 53m21.2s 7m19.0s 3m44.4s 2.0

9 5,135,720 3 21.9 11,859 23.8s 15.6s 8.6s 1.9

10 5,110,976 3 27.7 11,435 36.2s 39.9s 8.5s 4.3

11 5,811,310 4 44.2 7,782 38.5s 36.9s 23.9s 1.5

Table 2 lists the memory consumption of the three algorithms. We observe that FastZig-
zag tends to consume more memory than the other two on the non-repetitive filtrations (No.
1 and 2) and the random clique filtrations (No. 3 – 8). However, FastZigzag is consistently
achieving the best memory footprint on the oscillating Rips filtrations (No. 9 – 11) despite
the high repetitiveness.

4 Conclusions

In this paper, we propose a zigzag persistence algorithm called FastZigzag by first treating
repeatedly added simplices in an input zigzag filtration as distinct copies and then converting
the input filtration to a non-zigzag filtration. The barcode of the converted non-zigzag
filtration can then be easily mapped back to barcode of the input zigzag filtration. The
efficiency of our algorithm is confirmed by experiments. This research also brings forth the
following open questions:
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Table 2 Memory consumption (in gigabytes) of the three algorithms on all filtrations.

No. Length Rep MaxK MDio2 MGudhi MFZZ

1 5,260,700 1.0 883,350 3.23 − 0.59

2 5,254,620 1.0 1,570,326 3.93 − 0.61

3 5,539,494 1.3 1,671,047 15.52 13.49 9.76

4 5,660,248 2.0 1,385,979 7.64 8.43 11.04

5 5,327,422 3.5 760,098 3.27 3.40 6.22

6 5,309,918 5.1 523,685 4.94 5.27 10.23

7 5,357,346 7.3 368,830 4.03 3.91 8.19

8 6,058,860 9.1 331,211 2.12 1.48 3.68

9 5,135,720 21.9 11,859 0.92 0.47 0.50

10 5,110,976 27.7 11,435 0.88 0.48 0.47

11 5,811,310 44.2 7,782 0.95 0.60 0.51

Parallel versions [9, 29] of the algorithms for computing standard and zigzag exist. While
the computation of standard persistence in our FastZigzag algorithm can directly utilize
the existing parallelization techniques, we ask if the conversions done in FastZigzag can
be efficiently parallelized. Such an extension can provide further speedups by harnessing
multi-cores.
While persistence intervals are important topological descriptors, their representatives
also reveal critical information (e.g., a recently proposed algorithm [16] for updating
zigzag barcodes over local changes uses representatives explicitly). Can the FastZigzag
algorithm be adapted so that representatives for the input zigzag filtration are recovered
from representatives for the converted non-zigzag filtration?
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Abstract
Bounded expansion and nowhere-dense classes of graphs capture the theoretical tractability for
several important algorithmic problems. These classes of graphs can be characterized by the so-called
weak coloring numbers of graphs, which generalize the well-known graph invariant degeneracy
(also called k-core number). Being NP-hard, weak-coloring numbers were previously computed on
real-world graphs mainly via incremental heuristics. We study whether it is feasible to augment such
heuristics with exponential-time subprocedures that kick in when a desired upper bound on the weak
coloring number is breached. We provide hardness and tractability results on the corresponding
computational subproblems. We implemented several of the resulting algorithms and show them
to be competitive with previous approaches on a previously studied set of benchmark instances
containing 86 graphs with up to 183831 edges. We obtain improved weak coloring numbers for over
half of the instances.
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1 Introduction

A degeneracy ordering of a graph G can be obtained by iteratively removing an arbitrary
vertex of minimum degree from G and putting it in front of the current ordering [30]. The
degeneracy of a graph is the largest degree of a vertex encountered at removal. Degeneracy
orderings are immensely useful when solving various tasks on graphs both in theory and
practice [8, 18, 27, 37, 22, 6]. A key observation is that many graphs in practice have small
degeneracy (e.g., in the order of hundreds for millions of edges) [18]. Thus, when looking for,
e.g., maximum-size cliques, it is sufficient to look within the small number of neighbors in
front of each vertex in the degeneracy ordering.
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However, degeneracy is not robust under local changes: e.g., contracting edges in a
graph may arbitrarily increase its degeneracy. This property makes problems intractable on
graphs that have small degeneracy if these problems are less local than finding maximum-
size cliques. For example, detecting mild clique relaxations is hard on graphs of bounded
degeneracy [27, 23]. Hence, we are searching for robust sparsity measures within the
framework of structural sparsity [33].

We can obtain a robust variant of the class of graphs with bounded degeneracy by using
the family of measures called weak r-coloring numbers [26]. For an integer r, the weak
r-coloring number (wcolr) of a graph G is the least integer k such that there is a vertex
ordering with the property that, for each vertex v, there are at most k vertices u that are
reachable from v by a path P of length at most r such that P does not use vertices that
come before u in the ordering. The integer r, also called radius, interpolates between the
degeneracy plus one (r = 1) and the so-called treedepth of G (r = |V (G)| [20]), a measure of
tree-likeness [3, 4, 25] and target of a recent implementation challenge [28].

It is important to compute the wcolr of real-world graphs for two reasons. First, the
wcolr plays an important role in algorithmic and combinatorial techniques in structural
sparsity (e.g., [2, 7, 15, 16, 17, 24, 29, 34, 36, 40]). For instance, a central concept therein is
nowhere denseness and a subgraph-closed class of graphs is nowhere dense if and only if for
each fixed integer r and ϵ > 0 each graph G in the class has wcolr at most O(|V (G)|ϵ) [42].
Thus, obtaining the wcolrs of real-world graphs will help us gauge how well this theory fits
practice. Second, there is a prospect that wcolrs will help us solve other computational
problems on real-world graphs more efficiently: On nowhere-dense graph classes each problem
expressible in first-order logic can be solved in near-linear time [21]. There is indeed
indication that relevant classes of real-world networks, including certain scale-free networks,
are nowhere dense [10]. Thus, wcolrs may help us transfer the above theoretical near-linear-
time algorithms into something practically useful. For example, this work is underway for
counting subgraphs [35, 39], which is the underlying computational problem of computing
graph motifs or graphlets in biological and social networks [31, 38].

Computing the wcolr of a graph is an algorithmically challenging task: for each r ≥ 2 it
is NP-complete [20, 5]. So far, there is but one work that studies computing upper bounds
for wcolrs in real-world graphs: Nadara et al. [32] used greedy heuristics that build the
associated vertex ordering by iteratively choosing a yet unordered vertex that seems favorable
and putting it at the front (or the back) of the current subordering (an ordering of a subset
of all vertices). Afterwards, they apply local-search techniques that make local shifts in the
ordering that decrease the associated weak r-coloring number. This yields upper bounds;
to date the true weak r-coloring numbers of the studied graphs are unknown, even for the
smallest part of Nadara et al.’s dataset that contains graphs with 62 to 930 edges.

In this work, we study a paradigm that has previously been successfully applied to improve
the quality of the results computed by greedy heuristics: turbocharging [41, 14, 1, 19]. The
basic idea is that we pre-specify an upper bound k ∈ N on the wcolr of the ordering that we
want to compute. We carry out the greedy heuristic that computes the ordering iteratively.
If at some point it can be detected that the ordering will yield wcolr larger than k – the
point of regret – we start a turbocharging algorithm. This algorithm tries to modify the
current ordering, by reordering or replacing certain vertices, so as to make it possible to
achieve wcolr at most k again. Then we continue with the greedy heuristic.

Our contribution is to develop the turbocharging algorithms applied at the point of
regret, obtaining running-time guarantees and lower bounds, and to implement, engineer,
and evaluate these algorithms on Nadara et al.’s dataset. The two main approaches that we
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study are as follows. We fix a reconstruction parameter c ∈ N. At the point of regret, in
order to obtain a subordering of wcolr at most k we either (a) replace the last c vertices of
the current subordering with new, yet unordered vertices or (b) take c vertices out of the
ordering and merge them into the subordering at possibly different positions. The formal
definitions are given in Section 2. We show that both approaches are NP-hard in general (see
Section 3) and hence we also consider the influence of small parameters on the achievable
running-time guarantees. That is, we aim to show fixed-parameter tractability by giving
algorithms with f(p) · nO(1) running time for a small parameter p and input size n. On the
negative side, approach (a) is W[1]-hard with respect to even both c and k (Theorem 2).
That is, an algorithm with running time f(c, k) · poly(n) is unlikely, where n is the number
of vertices. This stands in contrast to Gaspers et al. [19] who obtained such an algorithm
when the goal is to compute the treewidth of the input graph instead of its wcolr. On
the positive side, approach (a) is trivially tractable in polynomial time for constant c. For
approach (b), we obtain a fixed-parameter algorithm with respect to c + k (Theorem 4). We
implemented a set of algorithms including the two previously mentioned ones and report on
implementation considerations and results in Section 4. The results indicate that on average
the weak r-coloring numbers achieved by Nadara et al. [32] can be improved by 5 % by using
our turbocharging algorithms. Using turbocharging we obtain smaller weak coloring numbers
than all previous approaches on 181 of the in total 334 instances used by Nadara et al. [32].

Due to space constraints, we defer some details of proofs, implementations, and evaluations
to a full version [13].

2 Preliminaries and turbocharging problems

General preliminaries. We only consider undirected, unweighted graphs G without loops.
By V (G) and E(G) we denote the vertex set and edge set of G, respectively. For S ⊆
V (G), G[S] is the induced subgraph on vertices in S. A path P = (v1, . . . , vn) in G is a
non-empty sequence of vertices, such that consecutive vertices are connected by an edge. The
length of a path is |V (P )| − 1. In particular, a path of length 0 consists of a single vertex.
We use distG(u, v) to denote the length of the shortest path between vertices u and v in G.

A vertex ordering L of a graph G is a linear ordering of V (G). We write u ≺L v if
vertex u precedes vertex v in L. In this case we say that u is left of v w.r.t. L. Equivalently,
we write u ⪯ v if u ≺ v or u = v. We also denote vertex orderings L as sequences of its
elements, that means L = (v1, . . . , vn) represents the vertex ordering where vi ≺L vj iff.
i < j. We denote by Π(G) the set of all vertex orderings of G. A subordering is a linear
ordering of a subset S ⊆ V (G). The notation LS shall always denote a subordering where S

is the set of vertices ordered in the subordering. We call the vertices in V (G) \ S free with
respect to LS . Usually we will denote the set of free vertices with respect to a subordering
by T . For a subordering LS and S′ ⊆ S we denote by LS [S′] the subordering that agrees
with LS on S′, that is, for all u, v ∈ S′ we have that u ≺LS [S′] v iff. u ≺LS

v, and all vertices
in V (G) \ S′ are free w.r.t. LS [S′]. For a subordering LS and S′ ⊇ S, a subordering LS′ is a
right extension of LS if LS′ [S] = LS and u ≺LS′ v for all u ∈ S and v ∈ S′ \ S. If S′ = V ,
then LS′ is called full right extension.

Weak coloring numbers. For a vertex ordering L of G and r ∈ N, a vertex u is weakly
r-reachable from a vertex v w.r.t. L if there exists a path P of length ℓ with 0 ≤ ℓ ≤ r

between u and v such that u ⪯L w for all w ∈ V (P ). Let Wreachr(G, L, v) be the set of
vertices that are weakly r-reachable from v in G w.r.t. L. The weak r-coloring number
wcolr(G, L) of a vertex ordering L is wcolr(G, L) = maxv∈V (G) |Wreachr(G, L, v)|, and the
weak r-coloring number wcolr(G) of G is wcolr(G) = minL∈Π wcolr(G, L).
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Turbocharging. Our goal is to find a vertex ordering L of a given graph G with small
wcolr(G, L) by applying turbocharging. We start with two well-known iterative greedy
heuristics (descriptions will follow) of Nadara et al. [32] that build vertex orderings with
small weak r-coloring number from left to right. That is, these heuristics start with the
empty subordering LS = ∅ and in each step compute a right extension of LS that contains
one more vertex. This process is continued until the constructed subordering contains all
vertices. A key observation about this process that we can use for turbocharging is that the
size of the weakly reachable set of each vertex cannot decrease:

▶ Observation 1. Let LS be a subordering, u, v ∈ V (G), and L be a full right extension
of LS. If u = v, or u ∈ S and there exists a path P of length ℓ with 0 ≤ ℓ ≤ r between u

and v such that u ⪯LS
w for all w ∈ V (P ) ∩ S, then u ∈Wreachr(G, L, v).

For u and v as in Observation 1 we extend the definition of weak r-reachability
to suborderings LS by defining u ∈ Wreachr(G, LS , v) and wcolr(G, LS) =
maxv∈V (G) |Wreachr(G, LS , v)|. We immediately obtain that wcolr(G, LS) is a lower bound;
that is, if L is a full right extension of LS (such as obtained by one of the heuristics), then
wcolr(G, L) ≥ wcolr(G, LS).

The two heuristics of Nadara et al. that we apply are:
The Degree-Heuristic: This heuristic orders vertices by descending degree, ties are broken
arbitrarily.
The Wreach-Heuristic: For a subordering LS , this heuristic picks the free vertex v with
the largest Wreachr(G, LS , v). Ties are broken by descending degree.

Nadara et al. proposed several other heuristics, but those heuristics do not build vertex
orderings from left to right, but in different orders. Additionally, the above heuristics
are among the best-performing ones with regard to computed weak coloring numbers and
runtime.

In what follows, let us assume that we want to compute a vertex ordering L of a graph G

with wcolr(G, L) ≤ k where k ∈ N. We might apply one of the heuristics until we obtain
a subordering LS such that wcolr(G, LS) > k. We call such a subordering non-extendable
(and otherwise the subordering is extendable); we also say that this point in the execution of
the heuristic is the point of regret. We then consider two exact turbocharging problems that
try to locally augment LS , such that it is extendable again. If the turbocharging algorithms
for these problems that we later propose are successful in making LS extendable, then we
continue applying the heuristic until we have to repeat this process (trying to find a vertex
order L with wcolr(G, L) ≤ k).

Motivated by a turbocharging algorithm for computing tree-decompositions by Gaspers
et al. [19] we consider replacing a bounded-length suffix of the current subordering. That
is, we specify a reconstruction parameter c ∈ N in advance and, at the point of regret, we
remove the last c vertices from LS and then try to add c (possibly) different vertices. This
leads to the following turbocharging problem.

Incremental Conservative Weak r-coloring (IC-WCOL(r))
Instance: A graph G, a subordering LS , and positive integers k and c.
Question: Is there an extendable right extension LS′ of LS such that |S′ \ S| = c?

Our second turbocharging approach is based on a vertex v with |Wreachr(G, LS , v)| > k.
Therein, instead of the suffix of the current order, we choose a set S2 of vertices related to
the weakly r-reachable set of v (details follow in Section 4). We remove the vertices in S2
from LS , leaving us with the subordering LS1 , and then we try to reinsert the vertices in S2
while decreasing the weak coloring number.
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WCOL-Merge(r)
Instance: A graph G, an integer k, two disjoint sets S1 and S2 such that S1, S2 ⊆ V (G),

and a subordering LS1 .
Question: Is there an extendable subordering LS1∪S2 such that LS1∪S2 [S1] = LS1?

Herein, we put the reconstruction parameter c equal to |S2| and denote by T the set of free
vertices V (G) \ (S1 ∪ S2).

3 Algorithms and running-time bounds

We continue by providing algorithmic upper and lower bounds for Incremental Con-
servative Weak r-coloring (IC-WCOL(r)) and WCOL-Merge(r), starting with
IC-WCOL(r).

3.1 IC-WCOL(r)
The first theoretical result that we want to present is the NP-hardness of Incremental
Conservative Weak r-coloring for each r ≥ 1 by giving a reduction from Independent
Set. Independent Set takes as input a graph G and a positive integer p and asks if there
is a set of vertices I of size at least p such that {u, v} ̸⊆ I for all {u, v} ∈ E(G).

▶ Theorem 2. For each fixed r ≥ 1, Incremental Conservative Weak r-coloring is
NP-hard and W [1]-hard when parameterized by k + c.

The proof can be found in the full version of this paper [13] and gives a polynomial reduction
from of Independent Set which is NP-complete to an instance of IC-WCOL(r). The
idea is that the parameter p – the desired independent set size of a given Independent Set
instance – is transformed to the parameters c = p and k = 2 of IC-WCOL(r), giving us a
parameterized reduction from Independent Set to IC-WCOL(r). Independent Set is
W[1]-hard when parameterized by p, and thus we obtain the stated W [1]-hardness.

On the other hand, it is not hard to see that Incremental Conservative Weak
r-coloring is in XP: We can simply try placing any of the vertices from V (G) \ S into the
next free position right of LS . As there are c free positions the overall algorithm runs in
O(|V (G) \ S|c · |V (G)|O(1)) ⊆ O(|V (G)|c · |V (G)|O(1)) time.

▶ Proposition 3. Incremental Conservative Weak r-coloring parameterized by the
reconstruction parameter c is in XP.

Our algorithm for Incremental Conservative Weak r-coloring is based on Proposi-
tion 3, we will go into more detail in Section 4.

3.2 WCOL-Merge(r)
It is easy to see that WCOL-Merge(r) is NP-hard for r ≥ 2: Given a graph G, we
can decide wcolr(G) ≤ k by creating an instance (H, S1, S2, LS1) of WCOL-Merge(r),
setting S1 = LS1 = ∅, H = G, and S2 = V (G). As deciding wcolr(G) ≤ k is NP-hard for
r ≥ 2 [20, 5], so is WCOL-Merge(r). On the positive side, we can show fixed-parameter
tractability of WCOL-Merge(r) parameterized by k and |S2|.

▶ Theorem 4. WCOL-Merge(r) is solvable in time O(|S2|!·k|S2|·|V (G)|O(1)). In particular,
WCOL-Merge(r) is fixed-parameter tractable when parameterized by k + |S2|.
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Intuitively, the algorithm behind Theorem 4 tries to place each vertex v in S2 one by one
by trying all relevant positions. The key insight is that only few positions are relevant
(called breakpoints below). Namely those positions that correspond to vertices that are
weakly r-reachable from v when placed at the end of the ordering. As only few vertices can
be reachable from v when placed in the correct position, we only need to try the first k

corresponding positions.
To describe the algorithm we need definitions for two operations that we use throughout.

▶ Definition 5. Let G be a graph, LS = (s1, . . . , sn) a subordering, and v ∈ V (G) \ S.
We denote by placeafter(LS , si, v) the subordering of vertices S ∪ {v} that is obtained by
placing v directly after si. To be precise, placeafter(LS , si, v) := (s1, . . . , si, v, si+1, . . . , sn).
Equivalently, placebefore(LS , si, v) := (s1, . . . , si−1, v, si, . . . , sn).

This leads to the definitions of breakpoints, which are crucial for the proof of Theorem 4.

▶ Definition 6. Let G be a graph, LS = (s1, . . . , sn) a subordering, and v ∈ V (G) \
S. A vertex s ∈ S is called breakpoint of v if Wreachr(G, placebefore(LS , s, v), v) ̸=
Wreachr(G, placeafter(LS , s, v), v). Let bp(G, LS , v) ⊆ S be the set of breakpoints of v.

We also notice another useful property of breakpoints, which is proved in the full version of
this paper [13].

▶ Lemma 7. Let v ∈ V (G) \ S. We have s ̸∈ bp(G, LS , v) if and only if for all u ∈ V (G)

Wreachr(G, placebefore(LS , s, v), u) = Wreachr(G, placeafter(LS , s, v), u).

If we add a vertex v to a subordering LS to obtain a new subordering LS∪{v}, then the
weakly reachable vertices Wreachr(G, LS∪{v}, v) consist of v and a subset of bp(G, LS , v).
We formalize this as follows.

▶ Lemma 8. Let G be a graph, LS = (s1, . . . , sn) be a subordering, and v ∈ V (G) \ S.
Furthermore, let LS∪{v} be a subordering such that LS∪{v}[S] = L. Then

Wreachr(G, LS∪{v}, v) \ {v} = {s ∈ bp(G, LS , v) | s ⪯LS∪{v} v}.

Proof. Let X be the set {s ∈ bp(G, LS , v) | s ⪯LS∪{v} v}, we prove both inclusions of the
equation Wreachr(G, LS∪{v}, v) \ {v} = X.

Assume that s ∈ (Wreachr(G, LS∪{v}, v) \ {v}). As s is weakly r-reachable from v,
there is a path P = (v, u1, . . . , uℓ, s) of length of at most r that does not go left of s w.r.t.
to LS∪{v}. Consider the same path P in placeafter(LS , s, v). Clearly, s is also weakly
r-reachable in this subordering because of the same path. Contrary to that, s cannot be
weakly r-reachable from v in placebefore(LS , s, v) because v is left of s in that subordering.
Hence, s ∈ bp(G, LS , v) and Wreachr(G, LS∪{v}, v) \ {v} ⊆ X.

Assume that s ∈ X. Then s must be weakly r-reachable from v w.r.t. placeafter(LS , s, v)
through a path P of length at most r. But s is also weakly r-reachable from v w.r.t. LS∪{v}
through the same path P . Hence, X ⊆Wreachr(G, LS∪{v}, v) \ {v} also holds. ◀

Using the above tools, we can now formally describe Algorithm 1, which obtains the
stated runtime of Theorem 4 and is given as a recursive function Recursive-merge. As
alluded to before, the intuition is that for each vertex v ∈ S2 we only have to consider
placing it before its breakpoints w.r.t. LS1 . As the breakpoints of a vertex will be in its
weakly r-reachable set, only the leftmost k breakpoints are relevant. A detailed proof of the
correctness and the runtime can be found in the full version of this paper [13].
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Algorithm 1 Recursive FPT-algorithm for WCOL-Merge(r).

1 Recursive-merge(S1, S2, T , LS1):
2 if |S2| = 0 ∧ ∀v ∈ V (G) : |Wreachr(G, LS1 , v)| ≤ k then return LS1 ;
3 for v ∈ S2 do
4 for s ∈ bp(G[S1 ∪ T ∪ {v}], LS1 , v) do
5 LS1∪{v} ← placebefore(LS1 , s, v);
6 if |Wreachr(G[S1 ∪ T ∪ {v}], LS1∪{v}, v)| ≤ k then
7 answer← Recursive-merge(S1 ∪ {v}, S2 \ {v}, T, LS1∪{v});
8 if answer ̸= false then return answer;
9 end

10 end
11 s←rightmost vertex of S1 w.r.t. LS1 ;
12 LS1∪{v} ← placeafter(LS1 , s, v);
13 if |Wreachr(G[S1 ∪ T ∪ {v}], LS1∪{v}, v)| ≤ k then
14 answer← Recursive-merge(S1 ∪ {v}, S2 \ {v}, T, LS1∪{v});
15 if answer ̸= false then return answer;
16 end
17 end
18 return false

4 Implementation and experiments

This section contains implementation details for the heuristics and both turbocharging
algorithms. Furthermore, we give the experimental setup and experimental results.

4.1 Algorithm implementations and heuristic improvements
Interesting details are omitted from the algorithmic results of Section 3. We want to give some
implementation details for IC-WCOL(r) and WCOL-Merge(r), and how the algorithms for
these problems are combined with the heuristics. Additionally, we give a third turbocharging
approach called IC-WCOL-RL(r) in this section.

In our implementations of heuristics and turbocharging algorithms we store and update the
current subordering LS in a simple array. We also store and update the sets Wreachr(G, LS , v)
and Wreach−1

r (G, LS , v) = {w ∈ V (G) : v ∈Wreachr(G, LS , w)} (see below for their usage).
Updating weakly r-reachable sets during placements and removals of vertices v is done by
computing the set Wreach−1

r (G, LS , v) via a breadth-first search that respects the order LS ,
and updating the corresponding weakly r-reachable sets.

Additionally, we slightly adapt the Degree-Heuristic: We aim for vertex orderings L with
wcolr(G, L) ≤ k. Consider a subordering LS that was created by the heuristic and needs
to be extended. To obtain weak coloring number k it would intuitively make sense to place
a free vertex v with wcolr(G, LS) = k immediately to the right of that subordering s.t. its
weakly r-reachable set cannot increase anymore. This is indeed always correct – if there is
a full right extension L of LS with wcolr(G, L) ≤ k, then there is another one that starts
by placing v immediately to the right of LS (for a formal statement and a proof we refer to
the full version of this paper [13]). In our implementation of the Degree-Heuristic we apply
this observation and place such a vertex v immediately. The Wreach-Heuristic does this
implicitly.
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We continue by explaining individual details for IC-WCOL(r) and WCOL-Merge(r),
and how they are applied to a non-extendable subordering LS with free vertices T .

IC-WCOL(r). We have implemented the XP-algorithm for Incremental Conservative
Weak r-coloring as outlined in Proposition 3. Given a subordering LS , we have to
extend LS to the right by c vertices, that means that we have c positions to fill. We
implement a search tree algorithm that fills these positions from left to right recursively.
That is, in a search tree node we try all possibilities of placing a free vertex into the leftmost
free position i and recurse into search tree nodes that try placing the remaining free vertices
into position i + 1, and so on, until all c positions are filled.

If after a placement of a vertex we obtain a non-extendable subordering, we can cut off
this branch of the search tree, as weakly r-reachable sets of vertices can only increase in
this branch. We also store edges of G[T ] separately as an array of hash sets. This enables,
in a search tree node, to update the sets Wreach−1

r (G, LS , v) on placement/removal by a
simple depth-r breadth-first-search in G[T ]. This decreases the number of enumerated edges
compared to the trivial approach.

Free vertices T are placed into a position i in a specific order inside a search tree
node: let LS be the non-extendable subordering that triggered turbocharging and let v be
the rightmost vertex of LS . We try placing u1 ∈ T before u2 ∈ T into the free slot i if
distG(u1, v) < distG(u2, v). Preliminary experiments suggested that this order is preferable
to a random one. We compute distG(u, v) for all u, v with Johnson’s Algorithm [9] for sparse
graphs once in the beginning.

WCOL-Merge(r). We apply WCOL-Merge(r) to a non-extendable subordering LS in the
following way. Let U = {v ∈ V (G) : |Wreachr(G, LS , v)| > k} be the set of overfull vertices.
Let c be a positive integer and let X be a random subset of

⋃
v∈U Wreachr(G, LS , v) of size

min(c, |
⋃

v∈U Wreachr(G, LS , v)|). If the size of X is less than c, we randomly add additional
vertices from V (G) to X, until the size of X is c. We try to fix LS by defining an instance
of WCOL-Merge(r). Namely, we set S1 = S \X, S2 = X, and LS1 = LS [S1]. We then
solve this instance using Algorithm 1. By Theorem 4 we obtain a turbocharging algorithm
that has fixed-parameter tractable running time when parameterized by the desired coloring
number k and reconstruction parameter c.

In our implementation we apply WCOL-Merge(r) multiple times with different randomly
selected sets X as defined above, until we obtain an extendable subordering. Preliminary
experiments showed that choosing the whole set

⋃
v∈U Wreachr(G, LS , v) as X leads to

timeouts often whereas random subsets still allowed us to fix LS . If we do not find an
extendable subordering after the 10th application of WCOL-Merge(r), we report that
turbocharging was not successful.

We now discuss the implementation of Algorithm 1. Consider the vertex v in Algorithm 1.
We only have to iterate over the k leftmost breakpoints of v due to Lemma 8, which can
be easily done by storing and maintaining Wreach−1

r (G[S1 ∪ T ∪ {v}], LS1∪T , v). Let s be a
breakpoint of v and let LS1∪{v} = placeafter(LS1 , s, v). The leftmost s′ ∈Wreach−1

r (G[S1 ∪
T ∪ {v}], LS1∪{v}, v) that is not v is the next possible breakpoint of v. Additionally, we do
not need to recurse if the size of some set Wreachr(G[S1 ∪ T ], LS1 , v) exceeds k for some
v ∈ S1 ∪ T , as these sets can only increase in subsequent recursion calls.

We also know that subsets of some weakly r-reachable sets of vertices T are already fixed.
Namely, for all vertices v in the r-neighborhood of u in G[T ∪ {u}] with u ∈ S2, vertex u will
always be in the weakly r-reachable set of v if u is placed somewhere into the subordering LS1 .
We take this into account when calculating lower bounds for the sizes of weakly r-reachable
sets of vertices in T (and break the search if they exceed size k).
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IC-WCOL-RL(r). We also implemented a turbocharging algorithm that is not discussed
above. It is based on the Sreach-Heuristic, which builds a vertex ordering of low weak coloring
number from right to left (instead of from left to right as above) [32]. It starts with an empty
subordering LS and, during each step, the heuristic adds to the left front of LS a free vertex v

that minimizes the number of so-called potentially strongly r-reachable vertices after being
placed. Herein, a vertex u is potentially strongly r-reachable w.r.t. LS from a vertex v ∈ S if
u ∈Wreachr(G[S], LS , v) or there is a path P of length at most r from v to u in G such that
V (P )∩ T = {u}. It can be shown (refer to a formal statement and a proof in the full version
of this paper [13]) that the set of potentially strongly r-reachable vertices of v only grows
when extending LS to the left and that, when S = V (G), this set equals Wreachr(G, LS , v).
Thus, we define a point of regret for this heuristic as a point in the execution where there is
a vertex v such that the size of its potentially strongly r-reachable set exceeds the desired
weak coloring number k. Accordingly, we say that LS is non-extendable, and otherwise it
is extendable. We then solve the turbocharging problem in which we aim to replace the c

leftmost vertices of LS with arbitrary free vertices in order to make LS extendable again.
We do this using a search-tree algorithm analogous to IC-WCOL(r). We also use the above
turbocharging approach with a heuristic that chooses the next vertex among the free vertices
based on the smallest degree. We call this heuristic Degree-Heuristic1.

We tried further heuristic optimizations, mainly for the left-to-right approaches, based on
lower bounds (for early search termination), guided branching (towards faster decomposition
into trivial instances), and ordered adjacency lists (to speed up computation of weakly
reachable sets) but they did not improve the resulting coloring numbers.

4.2 Experiments setup
Computation environment. All experiments were performed on a cluster of 20 nodes. Each
node is equipped with two Intel Xeon E5-2640 v4, 2.40GHz 10-core processors and 160 GB
RAM. The optimization for each instance and an algorithm was pinned to a specific core of
a cluster node (simultaneous multithreading was disabled). All implementations of heuristics
and turbocharging algorithms were done in C++17, and made use of the Boost library2,
version 1.77.0. The code was compiled on Linux with g++ version 7.5.0 and with the flags
-std=c++17 -O2. The optimization process (see application of turbocharging below) that
calls the heuristics combined with the turbocharging algorithms (implemented in C++) was
implemented in Python3 and executed with Python 3.7.13. A memory limit of 16 GB was set
(a process only starts if the required memory is free). The source code is available online [12].

Instances. Each instance in our data set is a tuple consisting of a graph G and a radius r ∈ N.
The radii r are between 2 and 5, as also used by Nadara et al. [32]. The graphs G form a
subset of the graphs used by Nadara et al. This enables us to use weak coloring numbers
of orderings computed by Nadara et al. as a baseline. Furthermore, we can compare for a
heuristic, the improvement achieved by the local search of Nadara et al. to the improvement
achieved by our turbocharging algorithms.

The graphs consist of real-world data, the PACE 2016 Feedback Vertex Set problems,
random planar graphs, and random graphs with bounded expansion. Nadara et al. classified
the graphs into four classes based on the number of edges – small (up to 1k edges), medium
(up to 10k edges), big (up to 48k edges), and huge. For a detailed explanation and references

1 The name is the same as in the left-to-right setting; there will be no confusion between the two because
the direction will be clear from the context.

2 https://www.boost.org/
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Algorithm 2 Algorithm for iteratively decreasing the weak coloring number by tur-
bocharging.

Input: A graph G, an integer r, a heuristic H, and a turbocharged heuristic TC-H
Output: An ordering L of vertices V

1 L← ordering of vertices V computed by the heuristic H;
2 k ← wcolr(G, L);
3 Start a timer; after t seconds abort the program, and return the current value of L

4 while true do
5 c← 1;
6 while true do
7 Try to compute an ordering of vertices V with weak r-coloring number k − 1

using TC-H with reconstruction parameter c;
8 If successful, assign this ordering to L, set k ← wcolr(G, L), and break;
9 Otherwise, set c← c + 1;

10 end
11 end

for all input graphs we refer to Nadara et al. [32]; the instances are available online3. We
considered all instances except those where one of the three heuristics of Nadara et al.
that we also consider did not yield a result (the Degree-Heuristic, Wreach-Heuristic, and
Sreach-Heuristic). That is, they timed out after 300 seconds or ran into a memory limit (16
GB). In total, our dataset contains 334 instances.

Application of turbocharging. Our application of turbocharging with a heuristic H works
as follows. Given a graph G and a radius r, we start with a run of H without turbocharging
to produce a vertex ordering for G with a baseline weak r-coloring number k. We then start
a timer that runs for t seconds, aborting the rest of the algorithm when it terminates. We
then iteratively decrease k and apply H together with the turbocharging approach to try
and find a vertex ordering for G with weak r-coloring number at most k. In each such try,
we start with the reconstruction parameter c = 1. If no ordering with the desired weak
r-coloring number was produced by the turbocharged heuristic, we increase c by one and try
again. If an ordering with weak r-coloring number k′ ≤ k was produced, we set k = k′ − 1
and repeat the process. The precise algorithm is given in Algorithm 2.

For our experiments we applied all compatible combinations of heuristics and the tur-
bocharged versions to each instance. Furthermore, we computed orderings for radii ranging
from 2 to 5, motivated by Nadara et al. who used the same values. We run all experiments
twice, once with timeout t = 300s and once with t = 3600s. Results with t = 300s are
directly compared with the results of Nadara et al. who used 300 seconds as timeout. Results
with t = 3600s give us the ability to investigate the potential of turbocharging over longer
periods of time.

3 https://kernelization-experiments.mimuw.edu.pl/

https://kernelization-experiments.mimuw.edu.pl/
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Figure 1 Line plot of the cumulative absolute improvements over time achieved by the turbocharg-
ing approaches broken down by the underlying heuristics. The x-axis (time) is scaled logarithmically.

4.3 Results

We now show to which extent our turbocharging approaches improve the results of heuristics,
compare the achieved weak coloring numbers to the ones of Nadara et al., and provide
observations about the performance of turbocharging.

Impact of turbocharging. Turbocharging has the advantage that investing gradually more
time will yield gradually better results – setting the reconstruction parameter to c = |V (G)|,
we (in theory) even can provably obtain the optimum. Figure 1 shows the cumulative sum
of absolute improvements over time when comparing each turbocharged heuristic with the
underlying plain heuristic. That is, for a specific time t, the cumulative sum of absolute
improvements for a turbocharging algorithm A and a heuristic H is

∑
I∈instances(kI,H −

kI,A,H,t), where kI,H is the coloring number achieved by the heuristic and kI,A,H,t is the
coloring number achieved by the turbocharged heuristic after time t. Note that the y-axes
do not have the same ranges as the underlying heuristics have different performance levels.
All plots exhibit logarithmic or similar to logarithmic growth, which means that the gained
absolute improvement is approximately logarithmic in the invested time in the most cases.
WCOL-Merge(r) clearly yields faster and larger improvements than IC-WCOL(r), and
it also supersedes IC-WCOL-RL(r) for the Degree-Heuristic. One reason may be that
WCOL-Merge(r) is fixed-parameter tractable and the associated parameters are small.

Further evaluations of the executions of turbocharging algorithms are analysed in detail
in the full version of this paper [13]. Some observations therein are that the number of
applications of turbocharging per run of a heuristic ranges in the order of at most hundreds
for IC-WCOL(r) and WCOL-Merge(r) and on average in the single digits; for IC-WCOL-
RL(r) these numbers are one to two orders of magnitude larger. Successful applications of a
turbocharged heuristic (those where the weak coloring number could be improved) mostly
only use very little time and search tree nodes, and have small reconstruction parameters –
mostly c = 1. That is, it is mostly the case that a heuristic wants to place a vertex that is
“suboptimal”, while placing nearly any other vertex will achieve lower weak coloring number.
The fraction of time spent on turbocharging is also low, which means that most of the time
when we can improve the weak coloring number achieved by a heuristic, this can be done
easily and in little time.
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Table 1 IC-WCOL(r): White columns give relative improvements, light gray columns give
quality ratios, dark gray columns give average/maximum absolute improvements. For improvements,
we compare to the underlying heuristic without turbocharging and without local search. Time limit:
300 s.

tests r Wreach IC-WCOL(r) Degree IC-WCOL(r)

small

2 -6.2% 0.8/5

7.2%

-7.3% 3.2/14

18.4%3 -7.3% 1.0/6 -9.3% 4.3/20
4 -11.3% 1.7/7 -11.2% 4.2/15
5 -15.8% 1.9/8 -16.8% 3.9/12

medium

2 -5.6% 0.6/2

3.7%

-7.1% 5.0/14

17.4%3 -9.2% 1.0/11 -9.7% 9.0/35
4 -11.6% 0.3/2 -15.8% 9.9/31
5 -16.8% 1.3/15 -20.6% 9.9/41

big

2 -9.6% 0.1/1

0.7%

-21.6% 7.2/31

12.0%3 -9.5% 0.4/3 -20.8% 15.3/47
4 -12.7% 0.3/2 -32.5% 14.5/42
5 -38.3% 0.2/1 -30.4% 13.7/38

huge

2 -2.0% 0.1/1

0.2%

-39.1% 2.8/16

0.9%3 -21.4% 0.1/1 -35.0% 1.9/6
4 -6.9% 0.0/0 -29.9% 1.8/5
5 -8.9% 0.3/1 -16.5% 1.7/4

By dataset group and radius. Next, we fix a time threshold of 300s (same as Nadara et al.)
that we might reasonably invest in practice for computing weak coloring numbers. We present
the improvements in weak coloring numbers gained by turbocharging over the plain heuristics
broken down according to the instance group (small, medium, big, huge) and the radius r.
We again provide absolute improvements when comparing with the underlying heuristic,
and we also consider the average relative improvement of the weak r-coloring number when
comparing the turbocharged heuristic to the plain heuristic; that is, the relative improvement
is 1− kI,A,H,t/kI,H for t = 300s. For each turbocharging algorithm we show results for both
turbocharged heuristics. For IC-WCOL(r) and WCOL-Merge(r) these are the Wreach-
and Degree-Heuristic, and for IC-WCOL-RL(r) these are the Sreach- and Degree-Heuristic.
The results are given in three tables corresponding to the three turbocharging approaches.

We furthermore compare the achieved coloring numbers of each approach to the best
coloring numbers computed by Nadara et al.: For each instance I, let bestNadara(I) be
the smallest weak r-coloring number of an ordering of vertices of instance I achieved by
an approach of Nadara et al. Note that they implemented seven different heuristics and
for each computed ordering they applied a local search to iteratively reduce the weak
r-coloring number. To evaluate one of our approaches, we take the weak r-coloring number
kI,A,H,t for instance I obtained by our approach for t = 300s and compute the average
1− kI,A,H,t/bestNadara(I) (in percent) taken over all instances I in the corresponding data
set. We call this value quality ratio. Note that positive values mean that the approach
achieves lower weak coloring numbers on average when compared to the best weak coloring
numbers achieved by Nadara et al.
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Table 2 WCOL-Merge(r): White columns give relative improvements, light gray columns give
quality ratios, dark gray columns give average/maximum absolute improvements. For improvements,
we compare to the underlying heuristic without turbocharging and without local search. Time limit:
300 s.

tests r Wreach WCOL-Merge(r) Degree WCOL-Merge(r)

small

2 -1.0% 1.4/5

19.1%

0.3% 4.1/11

33.7%3 3.3% 2.8/8 2.9% 6.3/25
4 0.7% 4.2/11 2.3% 7.2/23
5 -1.2% 5.4/14 -0.2% 8.0/19

medium

2 2.4% 1.6/7

15.0%

1.1% 6.4/16

32.7%3 0.4% 2.7/15 0.6% 11.6/46
4 -0.2% 2.9/13 -1.9% 13.3/36
5 -5.3% 4.2/16 -5.5% 15.5/50

big

2 -0.3% 1.7/7

9.4%

-7.5% 11.0/32

24.2%3 -1.8% 2.1/9 -8.1% 23.4/65
4 -4.2% 2.8/11 -19.3% 26.6/63
5 -27.2% 4.9/26 -20.5% 26.6/67

huge

2 -0.6% 1.7/5

1.0%

-14.9% 28.4/84

12.2%3 -20.5% 1.8/5 -21.9% 27.4/49
4 -6.7% 0.5/2 -27.6% 11.2/20
5 -8.7% 1.0/2 -15.5% 6.0/14

In Table 1 we present the performance of the IC-WCOL(r) approach. It is evident that
the relative and absolute improvements achieved for the Degree-Heuristic is significantly
higher than for the Wreach-Heuristic, although this is partly due to the fact that the Degree-
Heuristic achieves worse results than the Wreach-Heuristic before turbocharging. Relative
and absolute improvements decrease for larger instances.

Table 2 contains the results for WCOL-Merge(r). Here, turbocharging achieves positive
quality ratios for some instance classes and radii. The relative and absolute improvements
are much larger than for IC-WCOL(r), especially for the huge instances and the Degree-
Heuristic. It is also interesting that while the Degree-Heuristic generally computes orderings
of higher weak coloring number than the Wreach-Heuristic, the turbocharged version of the
Degree-Heuristic computes orderings of similar or even lower weak coloring numbers than the
turbocharged version of the Wreach-Heuristic for the small and medium instances. We do not
see an obvious reason for that, but it could again indicate the power of the fixed-parameter
algorithm.

Table 3 contains the results for IC-WCOL-RL(r). Although the relative and absolute
improvements of turbocharging the Degree-Heuristic are slightly higher, the quality ratios
for the turbocharged version of the Sreach-Heuristic are significantly better. This could
imply that IC-WCOL-RL(r) struggles to turbocharge slightly worse heuristics such as the
Degree-Heuristic. Furthermore, we see that for the Sreach-Heuristic the quality ratios are
better for larger radii. The reason for this could be that the Sreach-Heuristic performs well
for larger radii even before turbocharging. We also notice that for the medium graph class
the quality ratios get worse. The reason is that the implementation of IC-WCOL-RL(r) is
slightly more computationally expensive than for the other approaches.

ESA 2022



44:14 Turbocharging Heuristics for Weak Coloring Numbers

Table 3 IC-WCOL-RL(r): White columns give relative improvements, light gray columns give
quality ratios, dark gray columns give average/maximum absolute improvements. For improvements,
we compare to the underlying heuristic without turbocharging and without local search. Time limit:
300 s.

tests r Sreach IC-WCOL-RL(r) Degree IC-WCOL-RL(r)

small

2 -2.1% 3.2/28

15.9%

-7.5% 3.1/11

22.0%3 1.6% 2.7/10 -7.4% 4.4/19
4 3.6% 2.5/7 -7.9% 5.2/21
5 3.3% 3.2/8 -8.9% 6.3/26

medium

2 -8.8% 3.1/12

10.7%

-14.8% 3.0/8

15.5%3 -3.8% 3.8/16 -12.6% 5.7/25
4 -0.6% 3.8/14 -16.4% 5.8/17
5 1.4% 4.3/11 -18.5% 7.6/22

big

2 -14.8% 3.0/10

6.4%

-29.8% 4.2/12

10.1%3 -13.4% 7.1/26 -25.8% 8.8/23
4 -7.7% 7.4/19 -28.2% 13.1/60
5 -3.1% 6.5/19 -28.2% 12.2/31

huge

2 -22.8% 14.4/47

5.4%

-26.3% 22.1/76

7.1%3 -16.2% 11.5/21 -29.6% 12.4/20
4 -17.2% 5.5/13 -27.4% 8.2/16
5 2.0% 4.3/12 -14.4% 4.0/10

Achieved coloring numbers in comparison to Nadara et al. Figure 2 illustrates the
distribution of results for all turbocharging algorithms in a scatter plot. Data points below
y-value zero mean that the turbocharging algorithm improves a bound on the weak r-coloring
number of an instance. Among our approaches, we see that while WCOL-Merge(r) performs
well for small radii, IC-WCOL-RL(r) performs well for larger radii. Together with the
analysis from above we can conclude that Nadara et al.’s approaches yield lower weak coloring
numbers on average but there is fraction of roughly one half instances where our approaches
supersede Nadara et al.’s, in particular if the computed weak coloring numbers are small.
Overall, we improved bounds for 172 of the 334 considered instances after t = 300s. The
resulting new bounds are lower by 5% on average over all instances. Follow-up investigations
also showed that the relative improvement of turbocharging negatively correlates with the
average degree of the graph, suggesting that our turbocharging algorithms work better for
particularly sparse graphs.

As mentioned, our approach has the advantage that investing more time yields gradually
better results. Figure 3 shows the number of instances for which a turbocharging approach
improve weak coloring numbers compared to Nadara et al. after a specific time. That
is, for a time t, the y-value of a line corresponds to the number of instances I such that
kI,A,H,t < bestNadara(I). The values for the line best are determined by taking the number
of instances I where any of the turbocharging approaches is better than bestNadara(I).
Interestingly, IC-WCOL-RL(r) starts off with more improved instances, however, after 3600
seconds, WCOL-Merge(r) achieved more instances with smaller coloring numbers than
Nadara et al. After 3600 seconds, IC-WCOL(r) was able to improve 24 instances compared
to Nadara et al., WCOL-Merge(r) 144 instances, and IC-WCOL-RL(r) 115 instances.
Overall, we could improve upper bounds for 181 of the 334 instances with t = 3600s. These
are nine more than for t = 300s.
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Figure 2 Scatter plot of the results for turbocharging algorithms broken down by radius. Each
data point corresponds to an instance and a turbocharging algorithm. The x-value is the best
weak coloring number achieved by Nadara et al. for this instance, the y-value is the difference of
coloring numbers between the best weak coloring number achieved by Nadara et al. and the weak
coloring number kI,A achieved by the turbocharging algorithm A (minimum over both turbocharged
heuristics). The x-axis is scaled logarithmically and the y-axis is scaled pseudo-logarithmically.
Time limit: 300 s.
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Figure 3 Line plot of the number of instances where a turbocharging approach achieves better
coloring numbers than Nadara et al. over time. The time is scaled logarithmically.

5 Conclusion

On the theoretical side, we determined obstructions (running-time lower bounds) and
promising avenues (a fixed-parameter algorithm) for applying the turbocharging framework
to computing vertex orderings of small weak coloring numbers. On the experimental side,
on a diverse set of instances each of the turbocharging approaches we use yields large
improvements over the plain heuristics. This is most pronounced for the fixed-parameter
turbocharging WCOL-Merge(r). Then we compared turbocharging to the best results
gained by the seven heuristics that Nadara et al. [32] employed together with local search
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procedures. Turbocharging so far yields on average larger weak coloring numbers than the
best of the previous approaches. However, for 173 of the in total 334 instances, turbocharging
outperforms all of the previous approaches combined. It works particularly well for small
computed coloring numbers and sparse input instances.
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Abstract
Motivated by a real-world vehicle routing application, we consider the maximum-weight independent
set problem: Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes
whose node-weight sum is maximum. Some of the graphs arising in the vehicle routing application
are large, having hundreds of thousands of nodes and hundreds of millions of edges.

To solve instances of this size, we develop a new local search algorithm, which is a metaheuristic
based on the greedy randomized adaptive search (GRASP) framework. This algorithm, named
METAMIS, uses a wider range of simple local search operations than previously described in the
literature. We introduce data structures that make these operations efficient. A new variant of
path-relinking is introduced to escape local optima and so is a new alternating augmenting-path
local search move that improves algorithm performance.

We compare an implementation of our algorithm with a state-of-the-art publicly available code
on public benchmark sets, including some large instances. Our algorithm is, in general, competitive
and outperforms this openly available code on large vehicle routing instances of the maximum
weight independent set problem. We hope that our results will lead to even better maximum-weight
independent set algorithms.
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1 Introduction

Given an undirected graph G = (V, E), where V is the set of nodes and E the set of edges,
an independent set S ⊆ V is a set of mutually non-adjacent nodes of graph G. If each node
v ∈ V is assigned a weight wv, a maximum-weight independent set (MWIS) of nodes S∗ ⊆ V

is an independent set whose sum of weights, W (S∗) =
∑

v∈S∗ wv is maximum. We denote
n = |V | and m = |E|.
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A simple way to state MWIS is as an Integer Linear Program (ILP). Let xv be a binary
decision variable such that xv = 1 if node v ∈ S ⊆ V and xv = 0 otherwise, where S is an
independent set of nodes. A simple integer programming (IP) formulation for selecting a
maximum-weight independent set of nodes is

max
∑
v∈V

wvxv

subject to
xu + xv ≤ 1, ∀ (u, v) ∈ E

xv ∈ {0, 1}, ∀ v ∈ V.

A well-known way to strengthen the formulation is to add clique inequalities. Let C be a
subset of all cliques in the input graph. We add the constraints∑

v∈Q

xv ≤ 1 ∀Q ∈ C.

While these constraints are redundant for the ILP problem, they strengthen the linear
programming relaxation of the problem.

MWIS is a classical optimization problem that has been extensively studied and has
many applications [2]. Solving the MWIS problem is hard. It is one of Karp’s original
NP-complete problems [10, 12]. The problem is also hard to approximate [11]. Over the years,
heuristics have been the workhorse for solving large instances of the maximum independent
set problem approximately [18]. In particular, the most successful heuristics have been the
ones based on metaheuristic algorithms, such as GRASP [8], tabu search [9], and iterated
local search [1, 17].

In this paper we introduce METAMIS, a new metaheuristic algorithm for the MWIS prob-
lem. METAMIS is based on the greedy randomized adaptive search procedure – GRASP [20],
with truncated path-relinking [19]. GRASP is a procedure consisting of iterations made
up from successive constructions of a greedy randomized solution and subsequent iterative
improvements of it through a local search, and path-relinking is a technique for escaping
local optima by generating intermediate solutions along a path that connects two known
high-quality solutions. Our motivation is a long-haul vehicle routing (VR) application that
yields large MWIS problems, some with close to 900 thousand nodes. Compared to bench-
mark instances used in previously published work, the VR-MWIS instances are often larger
and have a very different structure. We conduct experiments with METAMIS on MWIS
instances arising in different applications, including on our VR-MWIS instances and on other
publicly available ones. Due to page limit, we omit some of the details of our implementation.
See the full version of the paper [4] for details.

We start with known local search moves and perturbation techniques and introduce new
local search moves with data structures to make these moves efficient. We also introduce
improved perturbation technique variants. Although our algorithm is a general-purpose
heuristic, our motivation comes from the VR problem. A variant of our algorithm takes
advantage of the application-specific features. In this application, we have a good initial
solution which can be used to for warm-start. In addition, graphs from this application come
with a large set of known cliques. This allows us to get a good relaxed LP solution, which
we use to guide local search.

Due to the page limit, we omit some of the algorithm and implementation details and
focus only on the benchmark from our motivating vehicle routing application. We also omit
some intuition and discussions. The full paper [4] covers this material.
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2 High Level Description

The MWIS algorithm is an iterative local search algorithm based on the Greedy Randomized
Adaptive Search Procedure (GRASP) metaheuristic, which is a general metaheuristic for
combinatorial optimization [6, 7, 20]. The algorithm also uses path-relinking to escape local
optima [15, 20].

Algorithm 1 Algorithm Overview.
1: procedure MWIS(G = (V, E, w), maxTime, S0)
2: S ← localSearch(G, S0)
3: ES ← {} ▷ Empty set of elite solutions
4: ES.add(S)
5: while t ≤ maxTime do
6: SG ← findRandomizedGreedySolution(G)
7: if LsBeforeRelinking then ▷ Optional local search
8: SG ← localSearch(G, SG)
9: end if

10: Se ← ES.randomEliteSolution()
11: S′ ← pathRelinking(G, SG, Se)
12: S′ ← localSearch(G, S′)
13: ES.tryToAddAndEvict(S′) ▷ Add solution to elite set, if full evict similar

solution of lesser value (or don’t insert if no worse elite solution exists)
14: end while
15: return ES.bestSolution()
16: end procedure

Algorithm 1 gives a high-level view of the algorithm. In addition to the graph, the input
to the algorithm includes a stopping criterion, e.g., a time limit, and an initial solution.
When no such solution is available, one can find a solution using the randomized greedy
algorithm described later in this section. The algorithm applies local search to improve the
initial solution and enters the main loop. At termination of the local search procedure, we
are at a local optimum.

The algorithm maintains a set of elite solutions ES, which are the best solutions we
have seen so far. We add a solution to ES immediately after a local search, so the elite
solutions are always locally optimal. At each iteration of the loop, we first attempt to escape
the local optimum corresponding to the elite solution. In this process, we can decrease the
objective function. To escape a local optimum, we first find a randomized greedy solution
SG. Optionally, we apply local search to improve SG. Then we apply path-relinking to SG

and a random elite solution from ES to find a new solution S′. Then we apply local search
to improve S′, and update S∗ if we find a better solution.

For the VR-MWIS instances, the algorithm variant without the optional local search
(on line 8) works better, so we omit the search for these instances. We also set the size of
the elite set ES to 1, so we only retain the best solution. This setting works best for the
VR-MWIS instances. For other problem families, different parameter choices were found to
work better [13, 14].

ESA 2022
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2.1 Greedy Algorithm
The GRASP framework needs a randomized greedy procedure that produces diverse initial
solutions.

2.2 Local Search

Algorithm 2 Local Search Procedure
1: procedure LocalSearch(G = (V, E, w), S, numIterations)
2: i← 1
3: S∗ ← S

4: while i ≤ numIterations do
5: Si ← {} ▷ Empty solution
6: while w(Si) < w(S) do ▷ Repeat until no improvement is found
7: Si ← S

8: S ← starOneMoves(G, S)
9: S ← AAPMoves(G, S)

10: S ← oneStarMoves(G, S)
11: if w(Si) < w(S) then break ▷ Solution improved
12: end if
13: S ← twoStarMoves(G, S)
14: end while
15: if w(S) > w(S∗) then
16: S∗ ← S

17: i← 1
18: else
19: S ← perturb(S)
20: end if
21: end while
22: return S∗

23: end procedure

The local search procedure, outlined in Algorithm 2, repeatedly performs local moves with
positive gain. We aim to find positive gain (improving) moves until we reach a local optimum,
and then we perform a random perturbation of the solution. If we find an improving move,
we apply it immediately. We use a subset of (x, y) moves and alternating augmenting path
moves (AAP-moves). While the (x, y) moves have been studied previously, the AAP moves
are new. We describe the moves at a high level in this section, and give a detailed description
in Section 3.

An (x, y) move removes x nodes from the solution and adds y nodes to it while maintaining
solution independence. We use ∗ instead of x or y to denote an arbitrary positive integer.
Note that the number of applicable moves increases significantly as x and y increase. Previous
algorithms used (x, y) moves for small values of x and y. In particular, the algorithm of [17]
uses (∗, 1) and (1, ∗) moves. Our algorithm uses (∗, 1), (1, ∗), and (2, ∗) moves. The number
of (2, ∗) moves is large. We use data structures and operation ordering that make improving
moves more likely, which makes our algorithm more efficient. If an (x, y) move renders S

non-maximal, we add nodes without a neighbor in S to the independent set in random
order until S becomes maximal. Note that through this update sequence, S remains an
independent set.
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A (∗, 1) move inserts a single node u into the current solution S and removes its neighbors
from S. Procedure starOneMoves(G, S) applies the (∗, 1) moves until these is no such
improving move.

A (1, ∗) move removes a node v from S and adds to S an independent subset I of the
nodes whose only neighbor in S before the removal is v. Usually one has multiple choices of
independent sets to add. A good heuristic is to add a maximum weight set of the neighbors
that maintains independence. This is done when the number of neighbors is small (at
most seven in our experiments). We use a naive recursive algorithm: Pick a node u in the
neighborhood and recursively solve two subproblems. The first subproblem results by adding
u to S and deleting its neighbors from the graph. We get the second subproblem by deleting u

without adding it to S. The better of the two corresponding solutions is returned. Procedure
oneStarMoves(G, S) applies the (1, ∗) moves until there is no such improving move.

A (2, ∗) move removes two nodes, u and v, from S and adds to S an independent subset
I of the nodes whose only neighbors in S before the removal is u, or v, or both u and v.
Generally, this set is significantly larger than the corresponding set for the (1, ∗) moves, and
the recursive operation used for the (1, ∗) moves is too expensive. One could use greedy
addition, but in our experiments a random addition, that adds to S a random node from
I that has no neighbors in S, was better. Procedure twoStarMoves(G, S) applies the (2, ∗)
moves until it finds an improving move or there is no improving (2, ∗) move. Note that unlike
the corresponding procedures for other moves, twoStarMoves exits as soon as it finds an
improving move.

Our idea for AAP moves comes from matching algorithms [5], although we use a somewhat
different definition. Given an independent set S, we define an AAP P as follows. Let I = S∩P

and O = P − S be nodes of P that are in and out of S, respectively.
1. if v ∈ I, then the neighbors of v on P are in O,
2. if v ∈ O, then the neighbors of v on P are in I,
3. if we flip the path, i.e., set S = S − I + O, S remains an independent set.
An AAP move finds an alternating augmenting path, flips it, and looks at the change in
w(S). If the change is positive, we accept the AAP move; otherwise we reject the move. For
efficiency, we apply a limited number of AAP moves. Procedure AAPMoves(G, S) applies
the AAP moves until there is no such improving move or we reach the limit on the number
of AAP moves.

During an execution of the algorithm, most local search moves do not improve solution
quality and thus do not change the solution. Note that complexity of evaluating (2, ∗)
moves is significantly higher than those for the other moves. Our local search repeatedly
applies starOneMoves, AAPMoves, and oneStarMoves procedures while these procedures find
improving moves. If we find an improving move, an immediate application of these procedures
may find additional improvements due to neighborhood changes, so we iterate. Only when
these procedures fail to find improving moves we call twoStarMoves. If twoStarMoves fails
to improve the solution, we perform a random perturbation.

The perturbation adds a small set of random nodes to S and removes their neighbors.
After perturbing, we resume local search. The local search algorithm terminates if there has
been no improvement to the best solution after a predefined number of iterations.

2.3 Using the Relaxed LP Solution
In our VR application, we use clique information and get a relaxed LP solution to the relaxed
problem. The solution assigns a value xv ∈ [0, 1] to each node v. We use these values to
bias random node selection in the perturbation step of the local search. When performing

ESA 2022
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a random perturbation in Algorithm 2, we add a node v to the solution with probability
proportional to xv + ϵ. Here ϵ is a positive value (set to ϵ = 0.005) that ensures that each
node can be picked, even if xv = 0. This guides the local search by biasing route selection
toward nodes with higher fractional relaxed solution value. Using prefix sums we can pick a
random node in time O(log |V |): We draw a random floating-point number z ∈ [0,

∑
v∈V xv)

and use binary search on the prefix sum array to pick a node such that the sum up to but
excluding the node is less than z, and the sum up to and including the node is greater or
equal to z.

2.4 Adaptive Path-relinking
Path-relinking is a technique for escaping local optima by generating intermediate solutions
along a path that connects two known high-quality solutions. We discuss this technique in the
context of MWIS and reversible local search moves. Define an undirected graph associated
with the search space MWIS, where the nodes correspond to feasible solutions and the edges
correspond to local search moves that transform the solution corresponding to the tail of
the edge to the solution corresponding to the head. A path in this graph corresponds to a
sequence of the moves that transform the solution at one end of the path into a solution
at the other end. Note that the moves need not improve the objective function value. The
underlying assumption of path-relinking is that if the end-points of a path correspond to high
quality solutions, then the path will contain previously undiscovered high-quality solutions.

For our local search, given two solutions S and T , we can transform S into T as follows.
Initialize S′ = S. At every step, we do either a (∗, 1) move or a (1, ∗) move. In the former
case, pick a node v ∈ T − S′, add v to S′, and remove neighbors of v from S′. In the latter
case, pick a node v ∈ S′, v ̸∈ T and remove v from S′. Let N(v) denote the set of neighbors
of v. Then we iterate over nodes u in N(v) ∩ T . If N(u) ∩ S′ = ∅, we add u to S′.

For large graphs, finding good solutions is expensive. Instead of combining two good
solutions, we apply path-relinking to combine the randomized greedy solution SG with the
current best solution S∗, which is locally optimal. While S∗ is a good solution, SG may not
be good, and the solutions on the path far from S∗ are usually not good either. We modify
path-relinking so that it examines only a prefix of the path close to S∗. The prefix is small
enough so that the solution quality remains good, yet big enough so that the subsequent local
search will not end up with a locally optimal solution equivalent to S∗. This an adaptive
variant of the truncated greedy path-relinking described in [19].

The first modification is to choose the node x to add to S or to remove from S greedily.
We pick a node that maximizes the weight of the solution we get after the move. A second
modification is to do a truncated path-relinking: we stop the process after a certain number
of steps, which we adjust adaptively. We start with a small limit on the number of steps and
increase the limit if the algorithm gets stuck in a local optimum of weight w(S∗).

3 Data Structures and Optimizations

For large graphs, the choice of data structures is important for the efficiency of the algorithm.
When making trade-offs between performance on sparse and dense graphs we favor the former
because our motivating application yields relatively sparse graphs.

Several of our data structures use sets of objects. We use a representation of sets based
on hashing. This representation allows constant time addition, deletion, and membership
query, and linear time iteration over all set elements. We also assume that if we add an
element to the set that already contains the element, the set does not change. Similarly, if
we delete an element not in the set, the set does not change.
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3.1 Input Graph

The input graph is static: it does not change throughout the execution. We assign to the
nodes of the graph integer IDs from [0, . . . , n− 1] and place them in an array, with node i in
position i. Each node has an array of edges incident to it. This places the edges incident to
a node in contiguous memory locations, assuring that a common operation of scanning an
edge list has a good memory locality. We sort edges by IDs of the head node. This allows us
to do neighborhood queries (e.g., “Is v in N(u)?”) in time logarithmic in the degree of u

using binary search.
Note that using sets to represent neighborhoods would give constant neighborhood queries

and linear time edge list scan. However, the constant factors, both in terms of running time
and memory consumption, associated with hashing are large. In addition, we lose the locality
in edge list scans. For graphs arising from our motivating application, the array-based
implementation is significantly faster than the one based on sets.

3.2 Interstate Graph

The interstate graph makes the local search operations more efficient. To describe this graph,
we need a few definitions.

For a node u ∈ S, (u, v) ∈ E, we say that v is a 1-tight neighbor of u if N(v) ∩ S = {u}
[1]. Note that if we remove u from S, we can add to S any 1-tight neighbor of u.

Two nodes u, v ∈ S are mates if for at least one node w ̸∈ S, w has exactly two neighbors
in S: N(w) ∩ S = {u, v}. We call the node w a 2-tight neighbor of u and v. We say that w

is a 2-tight neighbor of u if u has a mate v such that w is a 2-tight neighbor of u and v. If
we delete u and v from S, we can replace them by an independent set of the union of three
sets: the set of the 1-tight neighbors of u, the set of 1-tight neighbors of v, and the set of the
shared 2-tight neighbors of u and v.

Our main data structure is the interstate graph GIS = (V, EIS , w). For GIS , the nodes
and node weights are the same as in the input graph G. The edge set EIS is changed
dynamically depending on the nodes in the current independent set S. EIS has three types
of edges:
1. e = (u, v) ∈ E, where u ∈ S and v is a 1-tight neighbor of u;
2. e = (u, w) ∈ E, where u ∈ S and w is a 2-tight neighbor of u;
3. e = (u, v), where u, v ∈ S are mates.
We represent the three edge types separately.
1. For every u ∈ S, we represent its 1-tight neighbors as sets. For v ̸∈ S that is a 1-tight

neighbor of u we add the 1-tight edge (v, u).
2. For every pair of mates u and v, we maintain a set of 2-tight neighbors of u and v. For

every 2-tight neighbor w ̸∈ S, we add the pair of 2-tight edges (w, u) and (w, v).
3. For every node v in S, we maintain a set Mv of its mates. Every mate w ∈Mv corresponds

to a mate edge (v, w).

3.3 Efficient Implementation of (x, y) Moves

In this section we show how to efficiently implement (x, y) moves using the interstate graph
and two additional optimizations, one for the (1, ∗) moves and another for (∗, y) moves. We
discuss maintenance of the interstate graph in Section 3.2.

ESA 2022
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To implement (∗, 1) operations efficiently, we use an idea from [17]. For every u ̸∈ S, we
maintain a value

∆(u) = w(u)−
∑

v∈S∩N(u)

w(v)

to speed up the (∗, 1) moves. Such a move is an improving move when ∆(u) > 0. We keep
a set S+ of the nodes u with ∆(u) > 0. Note that for an efficient implementation of (∗, 1)
moves, we need to update the vector ∆(·) and the set S+. We do this as follows. Every
time we add a node u to S, we remove u from S+. Then for each v ∈ N(u), v ̸∈ S, we
set ∆(v) = ∆(v) − w(u). Every time we remove u from S, we scan the edge list of u and
compute ∆(u). If ∆(u) > 0, we add u to S+. Also during the scan, for every neighbor v of u

such that v ̸∈ S, we increase ∆(v) by w(u), and if ∆(v) becomes positive, we add v to S+.
We have an improving (∗, 1) move if and only if S+ is non-empty. In this case, we can pick a
node u from S+ and apply the (∗, 1) move to it.

Since for every u ∈ S we maintain a set of its 1-tight neighbors as a hash set, we can
efficiently run the recursive or the greedy algorithm described in Section 2 on this set.
Similarly, since for every u ∈ S we maintain the set of its mates, we can iterate over all
mates of u. Furthermore, for a pair of mates u and v, we have the set of the common 2-tight
neighbors, and we can apply the randomized algorithm to this set.

Next we describe an optimization that prunes (1, ∗) and (2, ∗) moves that are unlikely
to improve the solution. For the (1, ∗) move that removes u, we evaluate the move only
if the 1-tight neighborhood of u changed since the last time we evaluated the move but
failed to improve the solution. We say that the neighborhood changed if we add u to S and
u has a non-trivial 1-tight neighborhood. Since our implementation of the (1, ∗) move is
deterministic and depends only on the 1-tight neighborhood, we know that the move will fail.
We maintain the set S1 of nodes u ∈ S whose 1-tight neighborhood changed but is not empty.
We pick nodes for (1, ∗) moves from S1. While initializing GIN , we initialize S1 to include
all nodes with non-trivial 1-tight neighborhoods. When we update GIN , we also update S1
(see Section 3.5).

For the (2, ∗) move, we maintain a set S2 of mate pairs {u, v} which are eligible for the
move. We delete a pair from S2 and evaluate the move that removes this pair from S. We
add a pair {u, v} to S2 when they become 2-tight mates, or when {u, v} are 2-tight mates
and their 2-tight neighborhood changes, or when they are 2-tight mates and the 1-tight
neighborhood of either u or v changes. Our implementation of the (2, ∗) move depends
only on the 2-tight neighborhood of the mates. However, the implementation is randomized.
Although it is possible that one evaluation of the move succeeds and another fails when
the 2-tight neighborhood stays the same, we assume this is unlikely and prune the move.
We maintain the set S2 of mates whose 2-tight neighborhood changed. We pick mates for
(2, ∗) moves from S2. While initializing GIN , we initialize S2 to all pairs of mates. When we
update GIN , we update S2 as well.

3.4 AAP Moves
For efficiency, we only look for alternating augmenting paths (AAPs) in the interstate graph.
The only edges on any AAP are either edges from members of S to their 1-tight and 2-tight
neighbors (as edges between 2-tight mates would not yield an alternating path). To limit the
number of AAP move evaluations, we start a search for an AAP from a 1-tight neighbor of
v ∈ S1 (S1 was introduced in Section 3.3). This way we guarantee that the move will not
decrease the cardinality of S, making the move more likely to succeed. The alternating path
initially contains v and its single neighbor u ∈ S. We grow the path as follows. Let u ∈ S be
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the last node on the current AAP, and let U be the set of nodes on the AAP that are in S

and Ū be the set of nodes on the AAP that are not in S. We pick a mate w and a 2-tight
neighbor x of u such that

x is not a neighbor of any node of Ū in the input graph (so that the extended path will
be an AAP),
neither x nor w are already in AAP,
the gain of flipping the extended path is maximized.

If we succeed in finding such a {w, x} pair, we add w and x to the path. Then we redefine u

to be x and continue growing the path. To introduce additional randomness, we increase the
gain for every {w, x} pair by a random real number ϵ ∈ [−δ, δ] and maximize the perturbed
gains. We use δ = 50 in our experiments. We terminate the search if the length of the path
exceeds a threshold or the gain of flipping the path falls below a (negative) threshold. We
then perform the highest positive gain move that flips a prefix of the final path. If no positive
gain move is encountered, we do nothing (the move fails).

3.5 Maintaining the Interstate Graph
The vast majority of the local search moves we evaluate do not improve the solution and
GIN does not change. We need to update the graph only when a move succeeds, which
happens rarely. Our data structures speed up move evaluations and support move pruning.
The added overhead is in data structure initialization and updates. The update complexity
is non-trivial, but for sparse graphs the complexity is much smaller than the time we save
due to the improved move efficiency and pruning.

Let ρ(u) = |N(u) ∩ S| denote the number of the neighbors of u in S. Note that for nodes
u ∈ S, ρ(u) = 0. We maintain ρ(u) for all nodes u ∈ V .

Given an initial solution S, we build GIN , S1, and S2 as follows. We process all nodes
u ̸∈ S. For each u, we scan its edge list in G and initialize ρ(u). If ρ(u) = 1, we let
N(u)∩S = {v}, add the 1-tight edge (u, v) to the edge list of u in GIN , and add u to the set
of 1-tight neighbors of v. If ρ(u) = 2, we let N(u) ∩ S = {v, w}, add v to the set of mates of
w and add w to the set of mates of v. We also add the pair of 2-tight edges (u, v) and (u, w)
to GIN . Finally, we add u to the set of 2-tight neighbors of the mates {v, w}. We initialize
S1 to the set of all nodes u ∈ S with non-empty set of 1-tight neighbors. We initialize S2 to
the set of all mate pairs {u, v}. The initialization takes linear time.

Our algorithm updates S by removing a set of nodes S− and adding a set of nodes S+.
We break the update into a sequence of single-node updates: first we remove nodes of S−

one by one, then we add nodes of S+ one by one. We update GIN after each individual
update of S.

After removing a node u from S, we empty its set of 1-tight neighbors and remove u from
S1. For each mate v of u, we set the corresponding set of 2-tight neighbors to empty and
remove u from the set of mates of v. We also remove the pair {u, v} from S2. Afterwards,
we empty the set of mates of u. We then visit its neighbors v ∈ V \ S. For each neighbor v,
we decrement ρ(v). We need to update GIN if ρ(v) becomes zero, one, or two.

Cases for zero and two are simpler. If the value is zero, we set the 1-tight neighbor of v

to null. If the value is two, let N(v) ∩ S = {a, b}. We can find a and b by scanning the edge
list of v in G. We add a to the set of mates of b and vice versa. We also add v to the set of
2-tight neighbors of {a, b}. Finally, we add the 2-tight pair of edges (v, a) and (v, b) to GIN .

If the value is one, we have to update both the old 2-tight neighborhood and the new
1-tight neighborhood. For the latter, we set the 1-tight neighbor of v to the unique neighbor
w ∈ S, and add v to the 1-tight neighbor set of v. For the former update, note that v was a
2-tight neighbor for mates {v, w} for some w ∈ S before the removal of v. We remove v from
the set of 2-tight neighbors of w and delete the 2-tight edge pair (v, u) and (v, w) from GIN .
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Now consider the addition of a node u to S that maintains the independence of S. We
scan the edge list of u and for all neighbors v (guaranteed not to be in S) and increment
ρ(v). We need to update GIN if ρ(v) becomes one, two, or three.

Cases for one and three are simpler. If the value is one, we add the 1-tight edge (v, u) to
GIN , add v to the set of 1-tight neighbors of u, and add u to S1. If the value is three, v has
a pair of 2-tight edges (v, a) and (v, b), where a and b are mates. We delete (v, a) and (v, b)
from GIN . Then we remove v from the set of 2-tight neighbors of a and b. If the set becomes
empty, a and b are no longer mates, so we remove a from the set of mates of b, remove b

from the list of mates of a, and remove {a, b} from S2.
If the value is two, we have to update both the old 1-tight neighborhood and the new

2-tight neighborhood. For the former, let (v, w) be the 1-tight edge. We remove the edge
and remove v from the set of 1-tight neighbors of w. If the set becomes empty, we remove
w from S1. In the latter case, N(v) ∩ S = {v, w} for some w ∈ S. We add u to the set of
mates of w and vice versa. We also add v to the set of 2-tight neighbors of v and w. Finally,
we add {a, b} to S2.

Note that since when we add or remove u to or from S, we may need to scan edge lists of
multiple neighbors of u, updating GIN when G is dense may be expensive.

4 Experimental results

4.1 Algorithms and Computational Environment
We implemented our algorithm, which we call METAMIS, in Java because it is used in
a production system at Amazon and Java is a requirement. For the same reason, we use
doubles for node weights. Furthermore, due to licensing restrictions, we use only standard
Java libraries. We compiled our code using Java 8.

Although one can tune our algorithm for specific problem families, we use fixed parameter
settings in all experiments.

We compare our implementation to the ILSVND algorithm of [17]. The publicly available
code of [17] is implemented in C++ and represents weights using integers. We made one
modification to ILSVND: added the ability to warm start from an initial solution. Given a
solution in the input, we initialize the current solution of ILSVND to the input solution. We
compiled ILSVND using full optimization (-O3).

For a given instance, algorithm time-quality plots give a lot of information about relative
performance of the algorithms. For example, one algorithm may dominate another, or one
can converge to a better solution but take longer to converge, etc. The algorithms we
compare are stochastic and algorithm performance depends on the pseudo-random seed
we use. Furthermore, the algorithms we compare do not know if and when they reach an
optimal solution. Usually there is a chance that a solution may improve. However, the
algorithms converge in a sense that it may reach a point of diminishing returns when a
substantial improvement becomes unlikely. To compare the two algorithms, we put a time
limit T on their executions. For different problem families, the limit may be different. We
run each instance with five different pseudo-random seeds and report the best solution value
the algorithm finds. In many cases the algorithms converge. However, for harder problems
this may take too long, and the algorithms do not converge within the time limit.

For representative instances, we give the time-quality plots, but we have too many
instances to give all the plots. Therefore, we report solution quality at times T/10 and T/2.
In addition, we report the time t∗ defined as follows. For a given problem instance, consider
the set of final solution values over all algorithms and seed values. Let s be the smallest one
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of these values. For a given algorithm, consider the run producing the best final solution
value. For this algorithm, we define t∗ to be the earliest time this run reaches the value of s

or higher, Intuitively, we are comparing best runs of the algorithms being evaluated.
For graph algorithms, C++ is usually faster than Java by a factor from three to six. We

expect this to hold for our algorithm as well, especially since we make heavy use of standard
Java hash set library, which incurs significant overhead compared to C++. Although we do
not adjust the runtimes we report, one has to keep this in mind that if re-implemented in
C++, our algorithm would be faster.

We run our experiments on an AWS r3.4xlarge instance with 122GiB RAM and 16 virtual
CPUs on Intel Xeon Ivy Bridge processors.

4.2 Computational Results
Our full study [4] uses three benchmark families, but due to the page limit we focus on the
benchmark from our motivating application, vehicle routing [3]. In this application, the
MWIS problem comes up in several contexts, and we have several instances for each of these
contexts.

Tables and plots appear in the appendix. Table 1 lists the VR instances with their sizes.
The number of nodes in these instances ranges from 979 to 883,238; the number of edges
ranges from 3,140 to 389,304,424. The instances are moderately sparse, but the density tends
to grow with the problem size. The average degree is below 4 on some small instances and
over 400 on some large ones.

Table 1 has additional information: values for the initial solutions we use and upper
bounds on optimal solution values. We obtain the upper bounds by solving the corresponding
LP relaxation problems to optimality. The initial solution are good: their values are close to
the upper bound. Note that an optimal solution may not achieve the upper bound.

For VR instances, we have additional information: relaxed LP solutions and initial
solutions. We use this information in practice as it yields better results. In our experiments,
we give results both for runs with and runs without initial solutions. We also run our
algorithm with initial solutions but without the relaxed solutions to see how much a good
initial solution matters, and to have an apples to apples comparison with ILSVND, which
does not use this information.

In this section we discuss VR Instances [3], which motivated our work. Plot for 2-hour
runs of all algorithms on one of the largest instances, CR-S-L-4, given in Figure 1, provides
insight into relative algorithm performance. All codes converge, and METAMIS dominates
corresponding ILSVND runs. Without warm start, ILSVND solution is worse than the initial
solution while METAMIS finds a better solution. With warm start, both algorithms find
better solutions. Although plots for METAMIS with and without LP data look very close.
However, Table 3 shows that the best solution value with LP was 1% better than without
LP: 5, 775, 704 vs. 5, 715, 256.

Next we discuss performance of VR instances in detail. Here we set the time limit T =
3 600 seconds. Table 2 gives results for MWIS with no additional data. For each instance in
the table, column w10% shows the best solution value found at time point T/10, column w50%
shows the best solution value found at time point T/2, and column w shows the best solution
value found when the process is finished at time T . METAMIS finds better solutions than
ILSVND except for three instances. For two instances, MT-D-01 and MT-W-01, solution
quality is the same. On MW-W-01, the ILSVND solution is better, but only by 0.8%. All
three exceptions happen on smaller instances and both algorithms converge quickly. There is
no improvement after time T/10.
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An interesting observation is that on MT-D-01 and MT-W-01, solution values match the
corresponding upper bounds given in Table 1, so the solutions are optimal. Since the upper
bound need not be tight, it is possible that we solve other instances to optimality, but do
not have a proof.

On larger instances, METAMIS has better final values as well as better values at times
T/10 and T/2. On the problem with the highest number of nodes, CR-S-L-3, the difference
in the final values is 2.1%. Note that on large instances, neither algorithms converged in
time T .

Table 3 shows results for the VR instances for METAMIS+LP, METAMIS, and ILSVND.
Note that on three instances, MT-D-FN, MW-D-FN, and MW-W-FN, ILSVND fails to improve the
initial solution and t∗ is undefined. METAMIS improves the solution on these instances,
probably due to a more sophisticated set of local search operations. While both algorithms
allow a warm start from a given solution, the METAMIS+LP version of our algorithm uses
clique information to compute the relaxed LP solution, and uses it to guide local search., We
evaluate both versions of METAMIS to see how much the LP relaxation helps. As in the
case of no initial solution, the algorithms converge on most of the small instances and do not
converge on larger instances.

Recall that with no initial solution, we found optimal solutions for MT-D-01 and MT-
W-01. With the initial solution, METAMIS+LP finds an optimal solution for two more
instances, MT-W-FN and MR-W-FN. METAMIS finds an optimal solution for the latter
instance, but not for the former. ILSVND does not find any new optimal solutions.

Next we discuss the effect of a good initial solution, comparing results for METAMIS and
ILSVND from Tables 2 and 3. Comparing initial solution values from Table 1 with solutions
obtained by solving the problems from scratch, we see that in many cases, the initial solution
is better than the solution computed from scratch. In fact, for ILSVND, most solutions are
worse than the corresponding initial solution. This confirms that our initial solutions are
good.

With the warm start, both variants of our algorithm, METAMIS and METAMIS+LP,
dominate ILSVND, producing same or (in most cases) better quality solutions. ILSVND is
also slower on all instances except one.

To evaluate the benefit of using LP relaxation, we compare METAMIS+LP with
METAMIS. On most instances, METAMIS+LP dominates METAMIS. The latter never
finds a better solution. For about 1/3 of the instances, solution quality is the same, and for
the remaining 2/3, METAMIS+LP performs better. The same holds for intermediate times
T/10 and T/2 except for one instance at T/2 where METAMIS solution value is slightly
better.

5 Concluding remarks

We developed METAMIS for a real-world VR application for which even a small improvement
in solution quality yields substantial cost reduction. Our study is the first to include the
benchmark of VR instances [3]. We show that METAMIS works well on the VR instances.
We also observed that the VR instances have a structure that is different from that of
computer, road, and social network (CRS) instances [16]. The main result of Lamm [16]
are local transformations which reduce a MWIS problem to an equivalent problem that is
much smaller. On the VR instances, the transformations failed to reduce the problem size
significantly.
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Our full paper shows that METAMIS works well of the CRS instances. The algorithm of
Lamm [16] solves these instances to optimality. Instances of Lamm [16] are hard to reproduce
due to weight randomization. In the full paper, we define weights so that they are easy
to reproduce. It would be interesting to run the algorithm of Lamm [16] and compare the
results.

METAMIS uses a more sophisticated set of local search moves and introduces data
structures and lazy evaluation techniques that facilitate efficient implementation of these
moves. We also introduce a new variation of path-relinking tailored to large problems. In
addition, we show how to use a good relaxed solution to guide local search. These techniques
add to the metaheuristic design toolset. We hope that our ideas will lead to even more
efficient MWIS algorithms. The ideas may also prove useful in metaheuristic algorithms for
other problems.

References
1 D.V. Andrade, M.G.C. Resende, and R.F. Werneck. Fast local search for the maximum

independent set problem. J. of Heuristics, 18:525–547, 2012.
2 S. Butenko. Maximum independent set and related problems with applications. PhD thesis, U.

of Florida, Gainesville, Florida, 2003.
3 Y. Dong, A.V. Goldberg, A. Noe, N. Parotsidis, M.G.C. Resende, and Q. Spaen. New instances

for maximum weight independent set from a vehicle routing application. Operations Research
Forum, 2(48), 2021. doi:10.1007/s43069-021-00084-x.

4 Y. Dong, A.V. Goldberg, A. Noe, N. Parotsidis, M.G.C. Resende, and Q. Spaen. A Meta-
heuristic Algorithm for Large Maximum Weight Independent Set Problems. Technical Report
arXiv:2203.15805, arXiv.org, 2022.

5 J. Edmonds. Paths, trees, and flowers. Can. J. Math., 17:449–467, 1965.
6 T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set

covering problem. Operations Research Letters, 8:67–71, 1989.
7 T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6:109–133, 1995.
8 T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search procedure

for maximum independent set. Operations Research, 42:860–878, 1994.
9 C. Friden, A. Hertz, and D. de Werra. STABULUS: A technique for finding stable sets in

large graphs with tabu search. Computing, 42:35–44, 1989.
10 M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory of

NP-completeness. W.H. Freeman and Company, San Francisco, 1979.
11 J. Håstad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182:105–142, 1999.
12 R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher,

editors, Complexity of Computer Computations, pages 85–103. Plenum, New York, 1972.
13 A.F. Kummer. Personal communication, 2020.
14 A.F. Kummer, M.G.C. Resende, and M. Souto. Automatic algorithm configuration and

selection of MetaMIS for maximum independent set. Technical report, Amazon MMPROS,
Seattle, 2020.

15 M. Laguna and R. Martí. GRASP and path relinking for 2-layer straight line crossing
minimization. INFORMS Journal on Computing, 11:44–52, 1999.

16 S. Lamm, C. Schulz, D. Strash, R. Williger, and Huashuo Zhang. Exactly solving the maximum
weight independent set problem on large real-world graphs. In Proceedings of the Twenty-First
Workshop on Algorithm Engineering and Experiments, ALENEX 2019, pages 144–158. SIAM,
2019. doi:10.1137/1.9781611975499.12.

17 B. Nogueira, R.G.S. Pinheiro, and A. Subramanian. A hybrid iterated local search heuristic
for the maximum weight independent set problem. Optimization Letters, 12(3):567–583, 2018.

ESA 2022

https://doi.org/10.1007/s43069-021-00084-x
https://doi.org/10.1137/1.9781611975499.12


45:14 A Local Search Algorithm for Large Maximum Weight Independent Set Problems

18 M. Pelillo. Heuristics for maximum clique and independent set. In C.A. Floudas and P.M.
Pardalos, editors, Encyclopedia of Optimization, pages 1508–1520. Springer US, Boston, MA,
2009.

19 M.G.C. Resende, R. Martí, M. Gallego, and A. Duarte. GRASP and path relinking for the
max-min diversity problem. Computers & Operations Research, 37:498–508, 2010.

20 M.G.C. Resende and C.C. Ribeiro. Optimization by GRASP: Greedy Randomized Adaptive
Search Procedures. Springer, New York, 2016.

A Appendix: Tables and Plots

Table 1 VR instances.

Graph |V | |E| Initial Sol. LP bound
MT-D-01 979 3 841 228 874 404 238 166 485
MT-D-200 10 880 547 529 286 750 411 287 228 467
MT-D-FN 10 880 645 026 290 723 959 290 881 566
MT-W-01 1 006 3 140 299 132 358 312 121 568
MT-W-200 12 320 554 288 383 620 215 384 099 118
MT-W-FN 12 320 593 328 390 596 383 390 869 891
MW-D-01 3 988 19 522 465 730 126 477 563 775
MW-D-20 10 790 718 152 522 485 254 531 510 712
MW-D-40 33 563 2 169 909 533 938 531 543 396 252
MW-D-FN 47 504 4 577 834 542 182 073 549 872 520
MW-W-01 3 079 48 386 1 268 370 807 1 270 311 626
MW-W-05 10 790 789 733 1 328 552 109 1 334 413 294
MW-W-10 18 023 2 257 068 1 342 415 152 1 360 791 627
MW-W-FN 22 316 3 495 108 1 350 675 180 1 373 020 454
MR-D-01 14 058 60 738 1 664 446 852 1 695 332 636
MR-D-03 21 499 168 504 1 739 544 141 1 763 685 757
MR-D-05 27 621 295 700 1 775 123 794 1 796 703 313
MR-D-FN 30 467 367 408 1 794 070 793 1 809 854 459
MR-W-FN 15 639 267 908 5 386 472 651 5 386 842 781
CW-T-C-1 266 403 162 263 516 1 298 968 1 353 493
CW-T-C-2 194 413 125 379 039 933 792 957 291
CW-T-D-4 83 091 43 680 759 457 715 463 672
CW-T-D-6 83 758 44 702 150 457 605 463 946
CW-S-L-1 411 950 316 124 758 1 622 723 1 677 563
CW-S-L-2 443 404 350 841 894 1 692 255 1 759 158
CW-S-L-4 430 379 340 297 828 1 709 043 1 778 589
CW-S-L-6 267 698 191 469 063 1 159 946 1 192 899
CW-S-L-7 127 871 89 873 520 589 723 599 271
CR-T-C-1 602 472 216 862 225 4 605 156 4 801 515
CR-T-C-2 652 497 240 045 639 4 844 852 5 032 895
CR-T-D-4 651 861 245 316 530 4 789 561 4 977 981
CR-T-D-6 381 380 128 658 070 2 953 177 3 056 284
CR-T-D-7 163 809 49 945 719 1 451 562 1 469 259
CR-S-L-1 863 368 368 431 905 5 548 904 5 768 579
CR-S-L-2 880 974 380 666 488 5 617 351 5 867 579
CR-S-L-4 881 910 383 405 545 5 629 351 5 869 439
CR-S-L-6 578 244 245 739 404 3 841 538 3 990 563
CR-S-L-7 270 067 108 503 583 1 969 254 2 041 822
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Figure 1 Time-quality plot for CR-S-L-4.
Note that the plots for METAMIS+Init and
METAMIS+Init+LP are very close.
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Table 2 Results on VR instances with no additional information.

METAMIS ILSVND
Name w10% w50% w t∗[s] w10% w50% w t∗[s]
MT-D-01 238 166 485 238 166 485 238 166 485 0.948 238 166 485 238 166 485 238 166 485 1.290
MT-D-200 286 976 422 287 048 909 287 048 909 188.1 286 838 210 286 838 210 286 943 799 2 276
MT-D-FN 290 866 943 290 866 943 290 866 943 104.4 290 393 532 290 666 380 290 666 380 561.6
MT-W-01 312 121 568 312 121 568 312 121 568 0.278 312 121 568 312 121 568 312 121 568 0.080
MT-W-200 383 818 136 383 961 099 383 961 323 1 433 383 865 836 383 896 403 383 896 403 1 036
MT-W-FN 390 688 944 390 830 057 390 854 593 568.1 390 715 890 390 798 842 390 798 842 709.2
MW-D-01 476 099 262 476 164 209 476 334 711 267.9 475 653 439 475 906 790 475 906 790 1 173
MW-D-20 524 255 389 525 036 493 525 124 575 85.40 520 854 115 522 415 092 523 138 978 2 685
MW-D-40 533 934 442 535 707 479 536 520 199 81.36 530 227 261 532 272 896 532 400 878 1 830
MW-D-FN 539 754 400 541 372 345 541 918 916 98.34 532 663 872 537 238 784 537 674 129 2 466
MW-W-01 1 270 305 952 1 270 305 952 1 270 305 952 0.500 1 246 949 460 1 246 949 460 1 246 949 460 23.66
MW-W-05 1 328 958 047 1 328 958 047 1 328 958 047 19.96 1 327 687 399 1 328 707 787 1 328 707 787 984.8
MW-W-10 1 340 878 388 1 342 899 725 1 342 899 725 1 204 1 331 002 512 1 341 482 310 1 342 067 985 1 876
MW-W-FN 1 349 369 736 1 350 818 543 1 350 818 543 527.7 1 334 835 589 1 348 128 240 1 350 159 705 3 584
MR-D-01 1 689 074 331 1 689 520 690 1 689 781 114 15.52 1 683 529 331 1 686 091 786 1 687 842 856 2 906
MR-D-03 1 753 188 475 1 753 968 167 1 754 110 286 20.34 1 743 429 914 1 747 269 072 1 749 972 580 3 257
MR-D-05 1 784 519 403 1 785 664 042 1 786 342 921 19.56 1 770 832 093 1 774 407 092 1 777 876 780 3 595
MR-D-FN 1 795 912 642 1 797 284 091 1 797 573 192 22.65 1 779 897 201 1 785 545 729 1 788 331 878 3 388
MR-W-FN 5 357 026 363 5 358 386 615 5 358 386 615 1 442 5 352 347 338 5 370 471 580 5 371 649 721 461.6
CW-T-C-1 1 310 223 1 315 122 1 317 775 94.52 1 290 974 1 299 279 1 302 478 3 585
CW-T-C-2 924 664 929 626 931 802 189.7 914 736 921 021 922 858 3 599
CW-T-C-4 454 769 456 565 457 185 324.4 452 035 453 741 454 544 2 365
CW-T-D-6 455 823 457 382 457 790 70.48 452 366 454 254 454 254 1 582
CW-S-L-1 1 623 280 1 630 417 1 634 950 261.9 1 603 051 1 615 247 1 620 756 3 597
CW-S-L-2 1 695 131 1 704 424 1 708 820 225.3 1 670 836 1 685 870 1 690 536 3 596
CW-S-L-4 1 712 553 1 722 542 1 725 591 173.7 1 689 318 1 701 309 1 706 264 3 599
CW-S-L-6 1 150 229 1 156 916 1 158 925 138.4 1 136 356 1 142 720 1 145 694 3 086
CW-S-L-7 582 925 585 929 587 288 125.2 577 087 581 583 581 583 1 278
CR-T-C-1 4 617 204 4 644 635 4 654 419 58.16 4 508 901 4 558 780 4 576 695 3 598
CR-T-C-2 4 834 040 4 863 054 4 874 346 62.29 4 715 023 4 772 847 4 789 909 3 600
CR-T-D-4 4 778 868 4 808 490 4 817 281 56.91 4 663 588 4 716 258 4 734 674 3 598
CR-T-D-6 2 945 721 2 964 007 2 970 011 94.09 2 896 260 2 921 540 2 929 671 3 574
CR-T-D-7 1 431 915 1 438 896 1 440 281 148.4 1 411 061 1 423 279 1 426 400 3 581
CR-S-L-1 5 547 038 5 575 602 5 588 489 72.42 5 400 658 5 464 532 5 487 254 3 595
CR-S-L-2 5 652 928 5 680 688 5 691 892 57.91 5 491 814 5 561 766 5 586 973 3 580
CR-S-L-4 5 634 886 5 671 369 5 681 336 65.09 5 477 340 5 550 943 5 572 856 3 573
CR-S-L-6 3 833 391 3 851 432 3 859 513 92.45 3 751 019 3 793 995 3 808 314 3 599
CR-S-L-7 1 977 161 1 986 354 1 989 879 90.90 1 940 573 1 957 872 1 963 579 3 584
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Abstract
For several decades, much effort has been put into identifying classes of CNF formulas whose
satisfiability can be decided in polynomial time. Classic results are the linear-time tractability of
Horn formulas (Aspvall, Plass, and Tarjan, 1979) and Krom (i.e., 2CNF) formulas (Dowling and
Gallier, 1984). Backdoors, introduced by Williams, Gomes and Selman (2003), gradually extend
such a tractable class to all formulas of bounded distance to the class. Backdoor size provides a
natural but rather crude distance measure between a formula and a tractable class. Backdoor depth,
introduced by Mählmann, Siebertz, and Vigny (2021), is a more refined distance measure, which
admits the utilization of different backdoor variables in parallel. Bounded backdoor size implies
bounded backdoor depth, but there are formulas of constant backdoor depth and arbitrarily large
backdoor size.

We propose FPT approximation algorithms to compute backdoor depth into the classes Horn
and Krom. This leads to a linear-time algorithm for deciding the satisfiability of formulas of bounded
backdoor depth into these classes. We base our FPT approximation algorithm on a sophisticated
notion of obstructions, extending Mählmann et al.’s obstruction trees in various ways, including
the addition of separator obstructions. We develop the algorithm through a new game-theoretic
framework that simplifies the reasoning about backdoors.

Finally, we show that bounded backdoor depth captures tractable classes of CNF formulas not
captured by any known method.
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1 Introduction

Deciding the satisfiability of a propositional formula in conjunctive normal form (CnfSat) is
one of the most important NP-complete problems [4, 16]. Despite its theoretical intractability,
heuristic algorithms work surprisingly fast on real-world CnfSat instances [7]. A common
explanation for this discrepancy between theoretical hardness and practical feasibility is the
presence of a certain “hidden structure” in realistic CnfSat instances [14]. There are various
approaches to capturing the vague notion of a “hidden structure” with a mathematical
concept. One widely studied approach is to consider the hidden structure in terms of
decomposability. For instance, CnfSat can be solved in quadratic time for classes of CNF
formulas of bounded branchwidth [2] or bounded treewidth [24].
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A complementary approach proposed by Williams et al. [26] considers the hidden structure
of a CnfSat instance in terms of a small number of key variables, called backdoor variables,
that when instantiated move the instance into a polynomial-time solvable class. More
precisely, a backdoor1 of size k of a CNF formula F into a polynomial-time solvable class C is
a set B of k variables such that for all partial assignments τ to B, the instantiated formula
F [τ ] belongs to C. In fact, CnfSat can be solved in linear time for any class of CNF formulas
that admit backdoors of bounded size into the class of Horn, dual Horn or Krom (i.e., 2CNF)
formulas 2.

The size of a smallest backdoor of a CNF formula F into a class C is a fundamental
but rather simple distance measure between F and C. Mählmann, Siebertz, and Vigny [17]
proposed to consider instead the smallest depth over all backdoors of a formula F into a class
C as distance measure. It is recursively defined as follows:

depthC(F ) :=


0 if F ∈ C
1 + min

x∈var(F )
max

ϵ∈{0,1}
depthC(F [x = ϵ]) if F /∈ C and F is connected

max
F ′∈Conn(F )

depthC(F ′) otherwise
(1)

Conn(F ) denotes the set of connected components of F ; precise definitions are given in
Section 2. We can certify depthC(F ) ≤ k with a component C-backdoor tree of depth ≤ k

which is a decision tree that reflects the choices made in the above recursive definition.
Backdoor depth is based on the observation that if an instance F decomposes into

multiple connected components of F [x = 0] and F [x = 1], then each component can be
treated independently. This way, one is allowed to use in total an unbounded number of
backdoor variables. However, as long as the depth of the component C-backdoor tree is
bounded, one can still utilize the backdoor variables to solve the instance efficiently. In the
context of graphs, similar ideas are used in the study of tree-depth [19, 20] and elimination
distance [3, 6]. Bounded backdoor size implies bounded backdoor depth, but there are classes
of formulas of unbounded backdoor size but bounded backdoor depth.

The challenging algorithmic problem C-Backdoor Depth is to find for a fixed base
class C and a given formula F , a component C-backdoor tree of F of depth ≤ k. Mählmann
et al. [17] gave an FPT-approximation algorithm for this problem, with k as the parameter)
where C is the trivial class Null for formulas without variables. A component Null-backdoor
tree must instantiate all variables of F .

New Results. In this paper, we give the first positive algorithmic results for backdoor depth
into nontrivial classes. A minimization problem admits a standard fixed-parameter tractable
approximation (FPT-approximation) [18] if for an instance of size n and parameter k there
is an FPT-algorithm, i.e., an algorithm running in time f(k)nO(1), that either outputs a
solution of size at most g(k) or outputs that the instance has no solution of size at most k,
for some computable functions f and g; g(k) is also referred to as the performance ratio of
the algorithm.

▶ Main Result 1 (Theorem 15). C-Backdoor Depth admits an FPT-approximation
algorithm if C is any of the Schaefer classes Horn, dual Horn, or Krom.

1 We focus only on strong backdoors, as weak backdoors only apply to satisfiable formulas.
2 According to Schaefer’s Theorem [25], these three classes are the largest nontrivial classes of CNF

formulas defined in terms of a property of clauses, for which CnfSat can be solved in polynomial time.
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Since our FPT algorithms have linear running time for fixed backdoor depth k, we obtain
the following corollary:

▶ Main Result 2 (Corollary 16). CnfSat can be solved in linear time for formulas of bounded
backdoor depth into the Schaefer classes Horn, dual Horn, and Krom.

Backdoor depth is a powerful parameter that is able to capture and exploit structure in
CnfSat instances that is not captured by any other known method. We list some well-known
parameters which render CnfSat fixed-parameter tractable (the list is not complete but
covers some of the most essential parameters). For all these parameters, there exist CNF
formulas with constant backdoor depth (into Horn, dual Horn, and Krom) but where the
other parameter is arbitrarily large: (i) backdoor size into Horn, dual Horn, and Krom [21];
(ii) number of leaves of backdoor trees into Horn, dual Horn, and Krom [23, 22]; (iii) backdoor
depth into the class of variable-free formulas [17]; (iv) backdoor treewidth to Horn, dual
Horn, and Krom [9, 8]; (v) backdoor size into heterogeneous base classes based on Horn, dual
Horn, and Krom [11]; (vi) backdoor size into scattered base classes based on Horn, dual Horn,
and Krom [10]; (vii) deletion backdoor size into the class of quadratic Horn formulas [12];
(viii) backdoor size into bounded incidence treewidth [13]. We give definitions and separation
proofs in the full version.

Approach and Techniques. A common approach to construct backdoors is to compute
in parallel both an upper bound and a lower bound. The upper bounds are obtained by
constructing the backdoor itself, and lower bounds are usually obtained in the form of
so-called obstructions. These are parts of an instance that are proven to be “far away” from
the base class. Our results and techniques build upon the pioneering work by Mählmann
et al. [17], who introduce obstruction trees for backdoor depth. A main drawback of their
approach is that it is limited to the trivial base class Null, where the obstructions are
rather simple because they can contain only boundedly many variables. Our central technical
contribution is overcoming this limitation by introducing separator obstructions.

Separator obstructions allow us to algorithmically work with obstruction trees containing
an unbounded number of variables, an apparent requirement for dealing with nontrivial
base classes different form Null. In the context of backdoor depth, it is crucial that an
existing obstruction is disjoint from all potential future obstructions, so they can later be
joined safely into a new obstruction of increased depth. Mählmann et al. [17] ensure this by
placing the whole current obstruction tree into the backdoor – an approach that only works
for the most trivial base class because only there the obstructions have a bounded number of
variables. As one considers more and more general base classes, one needs to construct more
and more complex obstructions to prove lower bounds. For example, as instances of the base
class no longer have bounded diameter (of the incidence graph of the formula) or bounded
clause length, neither have the obstructions one needs to consider. Such obstructions become
increasingly hard to separate. Our separator obstructions can separate obstruction trees
containing an unbounded number of variables from all potential future obstruction trees. We
obtain backdoors of bounded depth by combining the strengths of separator obstructions
and obstruction trees. We further introduce a game-theoretic framework to reason about
backdoors of bounded depth. With this notion, we can compute winning strategies instead
of explicitly constructing backdoors, greatly simplifying the presentation of our algorithms.

We provide the proofs of statements marked with ⋆ in the full version.
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2 Preliminaries

Satisfiability. A literal is a propositional variable x or a negated variable ¬x. A clause
is a finite set of literals that does not contain a complementary pair x and ¬x of literals.
A propositional formula in conjunctive normal form, or CNF formula for short, is a set of
clauses. We denote by CNF the class of all CNF formulas. Let F ∈ CNF and c ∈ F . We
denote by var(c) the set of all variables occurring in c, i.e., var(c) = { x | x ∈ c ∨ ¬x ∈ c }
and we set var(F ) =

⋃
c∈F var(c). For a set of literals L, we denote by L = { ¬l | l ∈ L },

the set of complementary literals of the literals in L. The size of a CNF formula F is
∥F∥ =

∑
c∈F |c|.

Let τ : X → {0, 1} be an assignment of some set X of propositional variables. If
X = {x} and τ(x) = ϵ, we will sometimes also denote the assignment τ by x = ϵ for
brevity. We denote by true(τ) (false(τ)) the set of all literals satisfied (falsified) by τ ,
i.e., true(τ) = { x ∈ X | τ(x) = 1 } ∪ { ¬x ∈ X | τ(x) = 0 } (false(τ) = true(τ )). We
denote by F [τ ] the formula obtained from F after removing all clauses that are satisfied
by τ and from the remaining clauses removing all literals that are falsified by τ , i.e.,
F [τ ] = { c \ false(τ) | c ∈ F and c ∩ true(τ) = ∅ }. We say that an assignment satisfies F

if F [τ ] = ∅. We say that F is satisfiable if there is some assignment τ : var(F ) → {0, 1}
that satisfies F , otherwise F is unsatisfiable. CnfSat denotes the propositional satisfiability
problem, which takes as instance a CNF formula, and asks whether the formula is satisfiable.

The incidence graph of a CNF formula F is the bipartite graph GF whose vertices are
the variables and clauses of F , and where a variable x and a clause c are adjacent if and
only if x ∈ var(c). We identify a subgraph G′ of the incidence graph GF with the formula F ′

consisting of all the clauses of F that are in G′, each restricted to the adjacent variables in
G′. With slight abuse of notation, we define var(F ′) to be the variables occuring in G′. Via
incidence graphs, graph theoretic concepts directly translate to CNF formulas. For instance,
we say that F is connected if GF is connected, and F ′ is a connected component of F if F ′ is
a maximal connected subset of F . Conn(F ) denotes the set of connected components of F .
We will also consider the primal graph of a CNF formula F , which has as vertex set var(F ),
and has pairs of variables x, y ∈ var(F ) adjacent if and only of x, y ∈ var(c) for some c ∈ F .

Base classes. Let α ⊆ {+, −} with α ̸= ∅, let F ∈ CNF and c ∈ F . We say that a literal
l is an α-literal if is a positive literal and + ∈ α or it is a negative literal and − ∈ α. We
say that a variable v α-occurs in in a clause c, if v or ¬v is an α-literal that is contained
in c. We denote by varα(c) the set of variables that α-occur in c. For α ⊆ {+, −} with
α ̸= ∅ and s ∈ N, let Cα,s be the class of all CNF formulas F such that every clause of F

contains at most s α-literals. For C ⊆ CNF , we say that a clause c is C-good if {c} ∈ C.
Otherwise, c is C-bad. Let τ be any (partial) assignment of the variables of F . We will
frequently make use of the fact that Cα,s is closed under assignments, i.e., if F ∈ Cα,s, then
also F [τ ] ∈ Cα,s. Therefore, whenever a clause c ∈ F is Cα,s-good it will remain Cα,s-good in
F [τ ] and conversely whenever a clause is Cα,s-bad in F [τ ] it is also Cα,s-bad in F .

The classes Cα,s capture (according to Schaefer’s Dichotomy Theorem [25]) the largest
syntactic classes of CNF formulas for which the satisfiability problem can be solved in
polynomial time: The class C{+},1 = Horn of Horn formulas, the class of C{−},1 = dHorn
of dual Horn formulas, and the class C{+,−},2 = Krom of Krom (or 2CNF) formulas. Note
also that the class Null of formulas containing no variables considered by Mählmann et
al. [17] is equal to C{+,−},0. We follow Williams et al. [26] and focus on classes that are
closed under assignments and therefore we do not consider the classes of 0/1-valid and affine
formulas.
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Note that every class Cα,s (and therefore also the classes of Krom, Horn, and dual Horn
formulas) is trivially linear-time recognizable, i.e., membership in the class can be tested in
linear-time. We say that a class C of formulas is tractable or linear-time tractable, if CnfSat
restricted to formulas in C can be solved in polynomial-time or linear-time, respectively. The
classes Horn, dHorn, Krom are linear-time tractable [1, 5].

3 Backdoor Depth

A binary decision tree is a rooted binary tree T . Every inner node t of T is assigned a
propositional variable, denoted by var(t), and has exactly one left and one right child, which
corresponds to setting the variable to 0 or 1, respectively. Moreover, every variable occurs
at most once on any root-to-leaf path of T . We denote by var(T ) the set of all variables
assigned to any node of T . Finally, we associate with each node t of T , the truth assignment
τt that is defined on all the variables var(P ) \ {var(t)} occurring on the unique path P from
the root of T to t such that τt(v) = 0 (τt(v) = 1) if v ∈ var(P ) \ {var(t)} and P contains
the left child (right child) of the node t′ on P with var(t′) = v. Let C be a base class, F be a
CNF formula, and T be a decision tree with var(T ) ⊆ var(F ). Then T is a C-backdoor tree
of F if F [τt] ∈ C for every leaf t of T [23].

Component backdoor trees generalize backdoor trees as considered by Samer and Szeider
[23] by allowing an additional node type, component nodes, where the current instance is split
into connected components. More precisely, let C be a base class and F a CNF formula. A
component C-backdoor tree for F is a pair (T, φ), where T is a rooted tree and φ is a mapping
that assigns each node t a CNF formula φ(t) such that the following conditions are satisfied:
1. For the root r of T , we have φ(r) = F .
2. For each leaf ℓ of T , we have φ(ℓ) ∈ C.
3. For each non-leaf t of T , there are two possibilities:

a. t has exactly two children t0 and t1, where for some variable x ∈ var(φ(t)) we have
φ(ti) = φ(t)[x = i]; in this case we call t a variable node.

b. Conn(φ(t)) = {F1, . . . , Fk} for k ≥ 2 and t has exactly k children t1, . . . , tk with
φ(ti) = Fi; in this case we call t a component node.

Thus, a backdoor tree is just a component backdoor tree without component nodes. The
depth of a C-backdoor is the largest number of variable nodes on any root-to-leaf path. The
C-backdoor depth depthC(F ) of a formula F into a base class C is the smallest depth over all
component C-backdoor trees of F . Alternatively, we can define C-backdoor depth recursively
as in equation (1) from the introduction. For a component backdoor tree (T, φ) let var(T, φ)
be the set of all variables x such that some variable node t of T branches on x. We observe
that one can use component C-backdoor trees to decide the satisfiability of a formula.

▶ Lemma 1 (⋆). Let C ⊆ CNF be tractable, let F ∈ CNF , and let (T, φ) be a compo-
nent C-backdoor tree of F of depth d. Then, we can decide the satisfiability of F in time
(2d∥F∥)O(1). Moreover, if C is linear-time tractable, then the same can be done in time
O(2d∥F∥).

Let C ⊆ CNF and F ∈ CNF . A (strong) C-backdoor of F is a set B ⊆ var(F ) such that
F [τ ] ∈ C for each τ : B → {0, 1}. Assume C is closed under partial assignments (which is the
case for many natural base classes and the classes Cα,s) and (T, φ) a component C-backdoor
tree of F . Then var(T, φ) is a C-backdoor of F .
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4 Technical Overview

We present all our algorithms in this work within a game-theoretic framework. This framework
builds upon the following equivalent formulation of backdoor depth using splitter games.
Similar games can be used to describe treedepth and other graph classes [15].

▶ Definition 2. Let C ⊆ CNF and F ∈ CNF . We denote by Game(F, C) the so-called
C-backdoor depth game on F . The game is played between two players, the connector and
the splitter. The positions of the game are CNF formulas. At first, the connector chooses a
connected component of F to be the starting position of the game. The game is over once a
position in the base class C is reached. We call these positions the winning positions (of the
splitter). In each round the game progresses from a current position J to a next position as
follows:

he splitter chooses a variable v ∈ var(J).
The connector chooses an assignment τ : {v} → {0, 1} and a connected component J ′ of
J [τ ]. The next position is J ′.

In the (unusual) case that a position J contains no variables anymore but J is still not in C,
the splitter looses. For a position J , we denote by τJ the assignment of all variables assigned
up to position J .

The following observation follows easily from the definition of the game and the fact that
the (strategy) tree obtained by playing all possible plays of the connector against a given
d-round winning strategy for the splitter forms a component backdoor tree of depth d, and
vice versa. In particular, the splitter choosing a variable v at position J corresponds to a
variable node and the subsequent choice of the connector for an assignment τ of v and a
component of J [τ ] corresponds to a component node (and a subsequent variable or leaf node)
in a component backdoor tree.

▶ Observation 3. The splitter has a strategy for the game Game(F, C) to reach within at
most d rounds a winning position if and only if F has C-backdoor depth at most d.

Using backdoor depth games, we no longer have to explicitly construct a backdoor.
Instead, we present so called splitter-algorithms that play the backdoor depth game from the
perspective of the splitter. The algorithms will have some auxiliary internal state that they
modify with each move. Formally, a splitter-algorithm for the C-backdoor depth game to a
base class C is a procedure that

gets as input a (non-winning) position J of the game, together with an internal state
and returns a valid move for the splitter at position J , together with an updated internal
state.

We will usually use the internal state to hold an obstruction that the splitter will periodically
increase in size. Assume we have a game Game(F, C) and some additional input S. For a
given strategy of the connector, the splitter-algorithm plays the game as one would expect: In
the beginning, the internal state is initialized with S (if no additional input is given, the state
is initialized empty). Whenever the splitter should make its next move, the splitter-algorithm
is queried using the current position and internal state, and afterwards the internal state is
updated accordingly.

▶ Definition 4. We say a splitter-algorithm implements a strategy to reach for a game
Game(F, C) and input S within at most d rounds a position and internal state with some
property if and only if initializing the internal state with S and then playing Game(F, C)
according to the splitter-algorithm leads – no matter what strategy the connector is using –
after at most d rounds to a position and internal state with said property.
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The following observation converts splitter-algorithms into algorithms for bounded depth
backdoors. It builds component backdoor trees by trying all moves of the connector.

▶ Lemma 5 (⋆). Let C ⊆ CNF and fC : N → N. Assume there exists a splitter-algorithm
that implements a strategy to reach in each play in the game Game(F, C) and non-negative
integer d within at most fC(d) rounds either:

i) a winning position, or
ii) (an internal state representing) a proof that the C-backdoor depth of F is at least d.

Further assume this splitter-algorithm always takes at most O(∥F∥) time to compute its next
move. Then there is an algorithm that, given F and d, in time at most 3fC(d)O(∥F∥) either:

i) returns a component C-backdoor tree of depth at most fC(d), or
ii) concludes that the C-backdoor depth of F is at least d.

For the sake of readability, we may present splitter-algorithms as continuously running
algorithms that periodically output moves (via some output channel) and always immediately
as a reply get the next move of the connector (via some input channel). Such an algorithm
can easily be converted into a procedure that gets as input a position and internal state and
outputs a move and a modified internal state: The internal state encodes the whole state
of the computation, (e.g., the current state of a Turing machine together with the contents
of the tape and the position of the head). Whenever the procedure is called, it “unfreezes”
this state, performs the computation until it reaches its next move and then “freezes” and
returns its state together with the move.

Our main result is an approximation algorithm (Theorem 15) that either concludes that
there is no backdoor of depth d, or computes a component backdoor tree of depth at most
22O(d) . By Lemma 5, this is equivalent to a splitter-algorithm that plays for 22O(d) rounds to
either reach a winning position or a proof that the backdoor depth is larger than d.

Following the approach of Mählmann et al. [17], our proofs of high backdoor depth come
in the form of so-called obstruction trees. These are trees in the incidence graph of a CNF
formula. Their node set therefore consists of both variables and clauses. Obstruction trees of
depth d describe parts of an instance for which the splitter needs more than d rounds to win
the backdoor depth game. For depth zero, we simply take a single (bad) clause that is not
allowed by the base class. Roughly speaking, an obstruction tree of depth d > 0 is built from
two “separated” obstruction trees T1, T2 of depth d − 1 that are connected by a path. Since
the two obstruction trees are separated but in the same component, we know that for any
choice of the splitter (i.e., choice of a variable v), there is a response of the connector (i.e.,
an assignment of v and a component) in which either T1 or T2 is whole. Then the splitter
needs by induction still more than d − 1 additional rounds to win the game.

▶ Definition 6. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. We
inductively define C-obstruction trees T for F of increasing depth.

Let c be a C-bad clause of F . The set T = {c} is a C-obstruction tree in F of depth 0.
Let T1 be a C-obstruction tree of depth i in F . Let β be a partial assignment of the
variables in F . Let T2 be an obstruction tree of depth i in F [β] such that no variable
v ∈ var(F [β]) occurs both in a clause of T1 and T2. Let further P be (a CNF formula
representing) a path that connects T1 and T2 in F . Then T = T1 ∪ T2 ∪ var(P ) ∪ P is a
C-obstruction tree in F of depth i + 1.

▶ Lemma 7 (⋆). Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α ≠ ∅, and s ∈ N. If there is
a C-obstruction tree of depth d in F , then the C-backdoor depth of F is larger than d.
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Our splitter-algorithm will construct obstruction trees of increasing depth by a recursive
procedure (Lemma 14) that we outline now. We say a splitter-algorithm satisfies property i if
it reaches in each game Game(F, C) within gC(i, d) rounds (for some function gC(i, d)) either
1) a winning position, or
2) a position J and a C-obstruction tree T of depth i in F such that no variable in var(J)

occurs in a clause of T , or
3) a proof that the C-backdoor depth of F is at least d.
If we have a splitter algorithm satisfying property d+1 then our main result, the approximation
algorithm for backdoor depth, directly follows from Lemma 7 and Lemma 5. Assume we
have a strategy satisfying property i − 1, let us describe how to use it to satisfy property i.
If at any point we reach a winning position, or a proof that the C-backdoor depth of F is at
least d, we are done. Let us assume this does not happen, so we can focus on the much more
interesting second case.

We use property i − 1 to construct a first tree T1 of depth i − 1, and reach a position
J1. We use it again, starting at position J1 to construct a second tree T2 of depth i − 1
that is completely contained in position J1. Since in the beginning the connector selected a
connected component, T1 and T2 are in the same component of F and we can find a path P

connecting them. Let β be the assignment that assigns all the variables the splitter chose
until reaching position J1. Then T2 is an obstruction tree not only in J1 but also in F [β]. In
order to join both trees together into an obstruction of depth i, we have to show, according
to Definition 6 that no variable v ∈ var(F [β]) occurs both in a clause of T1 and T2. Since no
variable in var(J1) occurs in a clause of T1 (property i − 1), and T2 was built only from J1,
this is the case. The trees T1 and T2 are “separated” and can be safely joined into a new
obstruction tree T of depth i (see also Figure 3 on page 15 and the proof of Lemma 14 for
details).

The last thing we need to ensure is that we reach a position J such that no variable in
var(J) occurs in a clause of T . This then guarantees that T is “separated” from all future
obstruction trees that we may want to join it with to satisfy property i + 1, i + 2 and so
forth. This is the major difficulty and main technical contribution of this paper.

It is important to note here, that the exact notion of “separation” between obstruction
trees plays a crucial role for our approach and is one of the main differences to Mählmann
et al. [17]. Mählmann et al. solve the separation problem in a “brute-force” manner: If
we translate their approach to the language of splitter-algorithms, then the splitter simply
selects all variables that occur in a clause of T . For their base class – the class Null of
formulas without variables – there are at most 2O(d) variables that occur in an obstruction
tree of depth d. Thus, in only 2O(d) rounds, the splitter can select all of them, fulfilling the
separation property. This completes the proof for the base class Null.

However, already for backdoor depth to Krom, this approach cannot work since instances
in the base class have obstruction trees with arbitrarily many clauses. Moreover, the situation
becomes even more difficult for backdoors to Horn, since additionally clauses are allowed to
contain arbitrary many literals. Mählmann et al. acknowledge this as a central problem and
ask for an alternative approach to the separation problem that works for more general base
classes.

5 Separator Obstructions

The main technical contribution of this work is a separation technique that works for the
base classes C = Cα,s. The separation technique is based on a novel form of obstruction,
which we call separator obstruction. Obstruction trees are made up of paths, therefore, it is
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sufficient to separate each new path P that is added to an obstruction. Note that P can be
arbitrarily long and every clause on P can have arbitrary many variables and therefore the
splitter cannot simply select all variables in (clauses of) P . Instead, given such a path P

that we want to separate, we will use separator obstructions to develop a splitter-algorithm
(Lemma 12) that reaches in each game Game(F, C) within a bounded number of rounds
either
1) a winning position, or
2) a position J such that no variable in var(J) occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.

Informally, a separator obstruction is a sequence ⟨P1, . . . , Pℓ⟩ of paths that form a tree Tℓ

together with an assignment τ of certain important variables occurring in Tℓ. The variables
of τ correspond to the variables chosen by the splitter-algorithm and the assignment τ

corresponds to the assignment chosen by the connector. Each path Pi adds at least one C-bad
clause bi to the separator obstruction, which is an important prerequisite to increase the
backdoor depth by growing the obstruction. Moreover, by choosing the important variables
and the paths carefully, we ensure that for every outside variable, i.e., any variable that is
not an important variable assigned by τ , there is an assignment and a component (which
can be chosen by the connector) that leaves a large enough part of the separator obstruction
intact. Thus, if a separator obstruction is sufficiently large, the connector can play such
that even after d rounds a non-empty part of the separator obstruction is still intact. This
means a large separator obstruction is a proof that the backdoor depth is larger than d.

To illustrate the growth of a separator obstruction (and motivate its definition) suppose
that our splitter-algorithm is at position J of the game Game(F, C) and has already built a
separator obstruction X = ⟨⟨P1, . . . , Pi⟩, τ⟩ (with corresponding tree Ti) containing C-bad
clauses b1, . . . , bi; note that τ is compatible with τJ (i.e., τ and τJ agree on the common
assigned variables). If J is already a winning position, then property i is satisfied. Therefore,
J has to contain a C-bad clause. If no C-bad clause has a path to Ti in J , then J satisfies 2)
of property i and we are also done. Otherwise, let bi+1 be a C-bad clause in J that is closest
to Ti and let Pi+1 be a shortest path from bi+1 to Ti in J . Then, we extend our separator
obstruction X by attaching the path Pi+1 to Ti (and obtain the tree Ti+1). Our next order
of business is to choose a bounded number of important variables occurring on Pi+1 that we
will add to X. Those variables need to be chosen such that no outside variable can destroy
too much of the separator obstruction. Apart from destroying the paths of the separator
obstruction, we also need to avoid that assigning any outside variable makes too many of the
C-bad clauses b1, . . . , bi+1 C-good. Therefore, a natural choice would be to add all variables
of bi+1 to X, i.e., to make those variables important. Unfortunately, this is not possible since
bi+1 can contain arbitrarily many literals. Instead, we will only add the variables of bi+1 to
X that α-occur in bi+1. By the following lemma, the number of those variables is bounded.

▶ Lemma 8 (⋆). Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. If F

has C-backdoor depth at most some integer d, then every clause of F contains at most d + s

α-literals.

While this still allows for outside variables to occur in many of the C-bad clauses
b1, . . . , bi+1, it already ensures that no outside variable can α-occur in any of these clauses.
This helps us, since when |α| = 1 (i.e., the only case where α-occurs means something
different then just occurs), it provides us with an assignment of any such outside variable
that the connector can play without making the C-bad clauses in which it occurs C-good.
For instance, if α = {+}, then any outside variable v can only occur negatively in a C-bad
clause and moreover setting v to 0 ensures that the C-bad clauses remain C-bad.
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Figure 1 A separator obstruction containing three paths P1, P2, and P3. The figure shows
vertices and edges of the incidence graph. Only the colorful edges are part of separator obstruction’s
tree. Gray variables and clauses are mentioned under the names bi, e, and c in Definition 9.

Next, we need to ensure that any outside variable cannot destroy too many paths. By
choosing a shortest path Pi+1, we have already ensured that no variable occurs on more than
two clauses of Pi+1 (such a variable would be a shortcut, meaning Pi+1 was not a shortest
path). Moreover, because Pi+1 is a shortest path from bi+1 to Ti, every variable that occurs
on Ti and on Pi+1 must occur in the clause c in Pi+1 that is closest to Ti but not in Ti itself.
Similarly, to how we dealt with the C-bad clauses, we will now add all variables that α-occur
in c to X. This ensures that no outside variable can α-occur in both Ti and Pi+1 , which (by
induction over i) implies that every outside variable α-occurs in at most two clauses (either
from Ti or from Pi+1) and therefore provides us with an assignment for the outside variables
that removes at most two clauses from X. However, since removing any single clause can be
arbitrarily bad if the clause has a high degree in the separator obstruction, we further need
to ensure that all clauses of the separator obstruction in which outside variables α-occur
have small degree. We achieve this by adding the variables α-occurring in any clause as
soon as its degree (in the separator obstruction) becomes larger than two, which happens
whenever the endpoint of Pi+1 in Ti is a clause. Finally, if the endpoint of Pi+1 in Ti is a
variable, we also add this variable to the separator obstruction to ensure that no variable
has degree larger than three in Ti+1. This leads us to the following definition of separator
obstructions (see also Figure 1 for an illustration).

▶ Definition 9. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. A
C-separator obstruction for F is a tuple X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ (where P1, . . . , Pℓ are paths in
F and τ is an assignment of variables of F ) satisfying the following recursive definition.

P1 is a shortest path between two C-bad clauses b0 and b1 in F . Let B1 = {b0, b1}, let V1
be the set of all variables that α-occur in any clause in B1, let τ1 : V1 → {0, 1} be any
assignment of the variables in V1, and let T1 = P1.
For every i with 1 < i ≤ ℓ, let bi be a C-bad clause in F [τi−1] of minimal distance to Ti−1
in F [τi−1]. Then, Pi is a shortest path (of possibly length zero) in F [τi−1] from Ti−1 to
bi and Ti = Ti−1 ∪ Pi. Moreover, let e be the variable or clause that is both in Ti−1 and
Pi. We define Bi and Vi by initially setting Bi = Bi−1 ∪ {bi} and Vi = Vi−1 ∪ varα(bi)
and distinguishing two cases:

If e is a variable, then let c be the clause on Pi incident with e (note that it is possible
that c = bi). Then, we add c to Bi and we add {e} ∪ varα(c) to Vi.
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If e is a clause, then either e = bi or e ≠ bi and there is a clause c that is closest to e

on Pi (it may be that c = bi). In the former case we leave Bi and Vi unchanged and in
the latter case, we add e and c to Bi and we add varα(e) ∪ varα(c) to Vi.

τi : Vi → {0, 1} is any assignment of the variables in Vi that is compatible with τi−1.

We set τ = τℓ. The size of X is the number of paths in T = Tℓ, i.e., ℓ + 1.

The assignment τ is a central part of the definition, guiding the connector in Lemma 11
and thereby establishing a lower bound on the backdoor depth. We start by observing some
simple but important properties of separator obstructions.

▶ Lemma 10 (⋆). Let F ∈ CNF , C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N, and let
X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a C-separator obstruction in F , then for every i ∈ [ℓ]:
(C1) Ti is a tree.
(C2) Every variable v ̸∈ Vi occurs in at most two clauses of Pj for every j with 1 ≤ j ≤ i

and moreover those clauses are consecutive in Pj.
(C3) Every variable v ̸∈ Vi α-occurs in at most two clauses of Ti and moreover those clauses

are consecutively contained in one path of Ti.
(C4) Every variable v ∈ Vi \ Vi−1 α-occurs in most four clauses of Ti.
(C5) If a variable v ̸∈ Vi α-occurs in a clause c of Ti, then c has degree at most two in Ti.
(C6) Every variable of F has degree at most three in T .
(C7) If every clause of F contains at most x α-literals, then |Vi \ Vi−1| ≤ 2s + x + 1.

We now show the main result of this subsection, namely, that also separator obstructions
can be used to obtain a lower bound on the backdoor depth of CNF formulas.

▶ Lemma 11. Let C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N and F ∈ CNF . If F has a
C-separator obstruction of size at least ℓ = (8d(142 + 2d))2d , then F has C-backdoor depth at
least d.

Proof. Let X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a C-separator obstruction for F of size at least ℓ with
Vi, Bi, Ti, T as in Definition 9. Let J be a position in the game Game(F, C). We say that a
subtree T ′ of T = Tℓ is contained in J if every variable and clause of T ′ occurs in J . Let T ′

be a subtree of T that is contained in J . Let Pj be a path of X. We say that Pj is active
in T ′ if either V (Pj) = {bj} and T ′ contains bj or T ′ contains a vertex in V (Pj) \ V (Tj−1).
Moreover, we say that Pj is intact in T ′ at position J if V (Pj) ⊆ V (T ′) and bj is a C-bad
clause in J . Otherwise, we say that Pj is broken in T ′ at position J .

We show by induction on the number of rounds that there is a strategy S for the connector
such that the following holds for every position J reached after i rounds in the game
Game(F, C) against S: At position J , there is a subtree T ′ of T contained in J that contains
at least ℓi = (ℓ(1/2)i

/8i) intact paths and at most zi = 2i broken paths of X. This then
shows the statement of the lemma because ℓd = ℓ1/2d

/8d = 142 + 2d ≥ 1 and therefore any
position J reached after d rounds in the game Game(F, C) contains at least one clause that
is C-bad in J .

The claim clearly holds for i = 0 since ℓ0 = ℓ and z0 = 0 and the connector can choose the
component of F containing T . Assume now that i > 0 and let J be the position reached after
i − 1 rounds. By the induction hypothesis, at position J there is a subtree T ′ of T contained
in J containing at least ℓi−1 = ℓ(1/2)i−1

/8i−1 intact paths and at most zi−1 = 2(i − 1) broken
paths of X. Suppose that the splitter chooses variable v as its next move. Moreover, let o be
the smallest integer such that v ∈ Vo; if v /∈ Vℓ we set o = ℓ + 1. Note that v /∈ Vj for every
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i < o. Let I be the set of all paths Pj of X that are intact in T ′ at position J and let I<o

(I>o) be the subset of I containing only the paths Pj with j < o (j > o). Finally, let T ′
<o be

the subtree of T ′ restricted to the paths Pj of X with j < o. Note that at position J , T ′
<o

is connected and the paths in I<o are intact also in T ′
<o. Then, the connector chooses the

assignment β : {v} → {0, 1} such that:

β(v) =


τ(v) |I<o| <

√
ℓi−1,

1 |I<o| ≥
√

ℓi−1 and + ∈ α,

0 otherwise.

As we will show below, β is defined in such a manner that the position J ′ = J [β] reached
after the next round of the game Game(F, C) contains a subtree T ′′ of T ′ containing at least
ℓi =

√
ℓi−1/8 paths that are intact in J ′ and at most zi = zi−1 + 2 broken paths, which

completes the proof since the connector can now chose the component of J ′ containing T ′′

to fulfill the induction invariant. We distinguish the following cases; refer also to Figure 2 for
an illustration of the two cases.

Case 1: |I<o| ≥
√

ℓi−1. We will show that T ′′ can be obtained as a subtree of T ′
<o.

Note first that all clauses bj with j < o that are C-bad in J are also C-bad in J ′. This is
because v /∈ Vj (because j < o and v /∈ Vo−1) and therefore v cannot α-occur in bj , which
implies that bj remains C-bad and not satisfied after setting v to β(v).

The tree T ′
<o in J may decompose into multiple components in J ′. We will argue that

one of these components contains many intact paths and only at most two more broken
paths than T ′

<o. Since the C-bad clauses of an intact path remain C-bad in J ′, the only way
in which an intact path can become broken is if parts of the path get removed, i.e., either v

or clauses satisfied by setting v to β(v).
If β(v) = 1 then + ∈ α. If β(v) = 0 then + ̸∈ α, and since α ̸= ∅, then − ∈ α. Thus, in

J ′ = J [β], the only elements that are removed are the variable v as well as clauses in which
v α-occurs. By Lemma 10 (C3), v α-occurs in at most two clauses of T ′

<o and because of
(C5) those clauses have degree at most two in T ′

<o. Therefore, setting v to β(v) removes at
most two clauses from T ′

<o, each of which having degree at most two. Moreover, according
to Lemma 10 (C6), v itself has degree at most three in T ′

<o. This implies that setting v to
β(v) splits T ′

<o into at most 2 · 2 + 3 = 7 components.
Moreover, because of Lemma 10 (C3), the at most two clauses of T ′

<o in which v α-
occurs are located on the same path Pj . Therefore, at most two paths that are complete
in T ′

<o, i.e., the path Pj and the at most one path containing v, can become broken.
Therefore, there is a component of J ′ that contains a subtree of T ′

<o that contains at least
|I<o|/7 − 2 ≥

√
ℓi−1/7 − 2 intact paths and at most zi−1 + 2 ≤ 2i = zi broken paths of X.

Note that
√

ℓi−1 ≥ ℓd ≥ 142 + 2d ≥ 142 and therefore
√

ℓi−1/7 − 2 ≥
√

ℓi−1/8 = ℓi.

Case 2: |I<o| <
√

ℓi−1. This means β(v) = τ(v). In this case, we will build the subtree
T ′′ by picking only one path from T ′

<o and the remaining paths from Po+1, . . . , Pℓ. Let A

be the set of all paths of X that are active in T ′ and let A>o (A<o) be the subset of A

containing only the paths Pj with j > o (j < o). We say that a path Pa of X is attached to
a path Pb of X if a > b, V (Pa) ∩ V (Pb) ̸= ∅ and there is no b′ < b with V (Pa) ∩ V (Pb′) ̸= ∅.
We say that a path Pa in A>o is weakly attached to a path Pb in A<o if either:

Pa is attached to Pb or
Pa is attached to a path Pc in A>o that is in turn weakly attached to Pb.
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P

v

v

: clauses that are removed

T ′′


T ′
<o


T ′
<o

 I>o

T ′′

Figure 2 Left: Case 1. The set I<o is large. Assigning v to β(v) decomposes the tree T ′
<o into

at most seven components. The largest component T ′′ is still large. Right: Case 2. The set I<o is
small. There is a path P to which many paths are weakly attached, forming a tree TP . Assigning v

to β(v) splits TP in at most three parts. The largest component T ′′ of TP is still large.

Note that because T ′ is a tree, every path in A>o is weakly attached to exactly one path in
A<o. Moreover, for the same reason any path in A<o together with all paths in A>o that
are weakly attached to it forms a subtree of T ′.

Therefore, there is a path P in A<o such that at least |I>o|/|A<o| paths in I>o are weakly
attached to P . Moreover, the union TP of P and all paths in A>o that are weakly attached to
P is a subtree of T ′. Note that TP has at least |I>o|/|A<o| paths that are intact in TP and at
most zi−1 paths that are broken in TP at position J . Since

√
ℓi−1 ≥ ℓd = 142 + 2d ≥ 2d and

zi−1 ≤ zd = 2d, it holds that |I<o| + zi−1 ≤ 2
√

ℓi−1 (because also |I<o| ≤
√

ℓi−1). Therefore,

|I>o|/|A<o| ≥ (ℓi−1 − |I<o|)/(|I<o| + zi−1)
≥ (ℓi−1 − |I<o|)/(2|I<o|)
≥ (ℓi−1)/(2

√
ℓi−1) − 1/2

≥
√

ℓi−1/2 − 1/2
= 8ℓi/2 − 1 ≥ 3ℓi.

Because β(v) = τ(v), all paths Pj with j > o that are active in TP are still contained in J ′

and moreover if Pj is intact in J , then it is still intact in J ′. Moreover, because of Lemma 10
(C2), v occurs in at most two clauses of P and because β(v) = τ(v) all paths Po+1, · · · , Pℓ

that are attached to P are still attached to P after setting v to β(v). It follows that setting
v to β(v) removes at most two clauses and at most one variable (i.e., the variable v) from P

and also from TP . Therefore, J ′ = J [β] contains a component that contains a subtree T ′′ of
TP with at least 3ℓi/3 = ℓi paths that are intact in T ′′ and at most zi−1 + 1 ≤ zi paths that
are broken in T ′′. ◀

6 Winning Strategies and Algorithms

We are ready to present our algorithmic results. Earlier, we discussed that separator
obstructions are used to separate existing obstruction trees from future obstruction trees. As
all obstruction trees are built only from shortest paths, it is sufficient to derive a splitter-
algorithm that takes a shortest path P and separates it from all future obstructions. By
reaching a position J such that no variable in var(J) occurs in a clause of P , we are
guaranteed that all future obstructions are separated from P , as future obstructions will only
contain clauses and variables from J .
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▶ Lemma 12 (⋆). Let C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. There exists
a splitter-algorithm that implements a strategy to reach for each game Game(F, C), non-
negative integer d, and shortest path P between two C-bad clauses in F within at most
(3s + d + 1)(8d(142 + 2d))2d rounds either:
1) a winning position, or
2) a position J such that no variable in var(J) occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.
This algorithm takes at most O(∥F∥) time per move.

Since selecting more variables can only help the splitter in archiving their goal, we
immediately also get the following statement from Lemma 12.

▶ Corollary 13. Consider C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N, a game Game(F, C)
and a position J ′ in this game, a non-negative integer d and shortest path P between two
C-bad clauses in F . There exists a splitter-algorithm that implements a strategy that continues
the game from position J ′ and reaches within at most (3s + d + 1)(8d(142 + 2d))2d rounds
either:
1) a winning position, or
2) a position J such that no variable in var(J) occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.
This algorithm takes at most O(∥F∥) time per move.

As described at the end of Section 4, we can now construct in the following lemma
obstruction trees of growing size, using the previous corollary to separate them from potential
future obstruction trees.

▶ Lemma 14. Let C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. There is a splitter-algorithm
that implements a strategy to reach for a game Game(F, C) and non-negative integers i, d

with 1 ≤ i ≤ d within at most (2i − 1)(3s + d + 1)(8d(142 + 2d))2d rounds either:
1) a winning position, or
2) a position J and a C-obstruction tree T of depth i in F such that no variable in var(J)

occurs in a clause of T , or
3) a proof that the C-backdoor depth of F is at least d.
This algorithm takes at most O(∥F∥) time per move.

Proof. We will prove this lemma by induction over i. Our splitter-algorithm will try construct
an obstruction tree of depth i by first using the induction hypothesis to build two obstruction
trees T1 and T2 of depth i − 1 and then joining them together. After the construction of
the first tree T1, we reach a position J1 and by our induction hypothesis no variable in
var(J1) occurs in a clause of T1. This encapsulates the core idea behind our approach, as it
means that T1 is separated from all potential future obstruction trees T2 that we build from
position J1. Therefore, we can compute the next tree T2 in J1 and join T1 and T2 together
in accordance with Definition 6 by a path P . At last, we use Corollary 13 to also separate
this path from all future obstructions. If at any point of this process we reach a winning
position or a proof that the C-backdoor depth of F is at least d, we can stop. Let us now
describe this approach in detail.

For convenience, let x = (3s + d + 1)(8d(142 + 2d))2d . We start our induction with i = 1.
If there is no C-bad clause in F , then it is a winning position and we can stop. Assume there
is exactly one C-bad clause c in F . By Lemma 8, if c contains more then d + s α-literals,
we have a proof that the C-backdoor depth of F is at least d and we archive case 3) of the
lemma. On the other hand, if c contains at most d + s α-literals, the splitter can obtain a
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T1 T2

P

F

J1

J2

J

Figure 3 Overview of the construction in Lemma 14. First, T1 is chosen in F , yielding J1. Then,
T2 is chosen in J1, yielding J2. In the end the connecting path P is chosen yielding J . A gray
doublesided arrow between a position Ĵ and structure T̂ symbolizes that no variable v ∈ var(Ĵ)
occurs in a clause of T̂ .

winning position in Game(F, C) after at most d + s ≤ (2i − 1)x rounds by choosing a new
variable α-occurring in c at every round. Assume there is more than one C-bad clause in
F . Thus, we pick C-bad clauses c1 and c2 and compute a shortest path P between c1 and
c2 in F . By Definition 6, T = {c1} ∪ {c2} ∪ var(P ) ∪ P is a C-obstruction tree of depth 1
in F . We then continue the game using Corollary 13 (for the path P ) to reach a position J ′

satisfying (1), (2), or (3) after at most x ≤ (2i − 1)x rounds, with each round taking at most
O(∥F∥) time.

We now assume the statement of this lemma to hold for i − 1 and we show it also
holds for i. To this end, we start playing the game Game(F, C) according to the existing
splitter-algorithm for i−1. If we reach (within at most (2i−1 −1)x rounds) a winning position
or a proof that the C-backdoor depth of F is at least d then we are done. Assuming this is
not the case, we reach a position J1 and a C-obstruction tree T1 of depth i − 1 in F such
that no variable v ∈ var(J1) occurs in a clause of T1.

We continue playing the game at position J1 according to the existing splitter-algorithm
for Game(J1, C) and i − 1. The C-backdoor depth of F is larger or equal to the C-backdoor
depth of J1. Thus again (after at most (2i−1 − 1)x rounds) we either are done (because we
reach a winning position or can conclude that the C-backdoor depth of J1 is at least d) or we
reach a position J2 and a C-obstruction tree T2 of depth i − 1 in J1 such that no variable
v ∈ var(J2) occurs in a clause of T2.

We pick two clauses c1 ∈ T1 and c2 ∈ T2 that are C-bad in F and compute a shortest
path P between c1 and c2 in F . We now argue that T = T1∪T2∪var(P )∪P is a C-obstruction
tree of depth i in F . Let β = τJ1 be the assignment that assigns all the variables the splitter
chose until reaching position J1 to the value given by the connector. Note that J1 is a
connected component of F [β].

Since all variables and clauses belonging to T2 induce a connected subgraph of J1, T2 is a
C-obstruction tree of depth i − 1 not only in J1, but also in F [β]. Let v ∈ var(F [β]). We
show that v does not occur both in some clause of T1 and of T2. To this end, assume v is
contained in a clause of T2. Since all clauses of T2 are in J1 and J1 is a connected component
of F [β], we further have v ∈ var(J1). On the other hand (as discussed earlier), no variable
v ∈ var(J1) is contained in a clause of T1. By Definition 6, T = T1 ∪ T2 ∪ var(P ) ∪ P is a
C-obstruction tree of depth i in F .

We use Corollary 13 to continue playing the game at position J2. Again, if we reach a
winning position or a proof that the C-backdoor depth of F is at least d we are done. So
we focus on the third case that we reach (within at most x rounds) a position J such that
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no variable v ∈ var(J) is contained in a clause of P . We know already that no variable
v ∈ var(J1) is contained in a clause of T1 and no variable v ∈ var(J2) is contained in a clause
of T2. Since var(J) ⊆ var(J2) ⊆ var(J1), and T = T1 ∪ T2 ∪ var(P ) ∪ P , we can conclude
that no variable v ∈ var(J) is contained in a clause of T .

In total, we played for (2i−1 − 1)x + (2i−1 − 1)x + x = (2i − 1)x rounds. The splitter-
algorithm in Corollary 13 takes at most O(∥F∥) time per move. The same holds for the
splitter-algorithm for i − 1 that we use as a subroutine. Thus, the whole algorithm takes at
most O(∥F∥) time per move. ◀

The main results now follow easily by combining Lemmas 1, 5, 7, and 14.

▶ Theorem 15 (⋆). Let C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. We can, for a given
F ∈ CNF and a non-negative integer d, in time at most 222O(d)

∥F∥ either
1) compute a component C-backdoor tree of F of depth at most 22O(d) , or
2) conclude that the C-backdoor depth of F is larger than d.

▶ Corollary 16. Let C ∈ {Horn, dHorn, Krom}. The CnfSat problem can be solved in
linear time for any class of formulas of bounded C-backdoor depth.

7 Conclusion

We show that CnfSat can be solved in linear-time for formulas of bounded C-backdoor
depth whenever C is any of the well-known Schaefer classes. We achieve this by showing that
C-backdoor depth can be FPT-approximated for any class C = Cα,s. This allows us to extend
the results of Mählmann et al. [17] for the class of variable-free formulas to all Schaefer
classes. Our results provide an important milestone towards generalizing and unifying the
various tractability results based on variants of C-backdoor size (see also future work below)
to the only recently introduced and significantly more powerful C-backdoor depth.

Let us finish with some natural and potentially significant extensions of backdoor depth
that can benefit from our approach based on separator obstructions. Two of the probably
most promising ones that have already been successfully employed as extensions of backdoor
size are the so-called scattered and heterogeneous backdoor sets [11, 10].

Interestingly, while those two notions lead to orthogonal tractable classes in the context
of backdoor size, they lead to the same tractable class for backdoor depth. Therefore, lifting
these two extensions to backdoor depth, would result in a unified and significantly more
general approach. While we are hopeful that our techniques can be adapted to this setting,
one of the main remaining obstacles is that obstructions of depth 0 no longer are single
(bad) clauses. For instance, consider the heterogeneous class C = Horn ∪ Krom. Here, a
CNF formula may not be in C due to a pair of clauses, one in Horn \ Krom and another
one in Krom \ Horn. Finally, an even more general but also more challenging tractable
class to consider for backdoor depth is the class of Q-Horn formulas, which generalizes the
heterogeneous class obtained as the union of all considered Schaefer classes.
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1 Introduction

We consider two formulations of the fundamental problem of finding a sufficiently large
cluster in incomplete data [2, 3, 18, 24]. In the setting under consideration, the input is a
multiset M of d-dimensional Boolean vectors – regarded as the rows of a matrix, some of
whose entries might be missing – and two parameters k, r ∈ N. In the first problem under
consideration, referred to as Diam-Cluster-Completion, the goal is to decide whether
there is a completion of M that admits a multiset of k vectors (which we call a k-cluster)
of diameter at most r; that is, a k-cluster such that the Hamming distance between any
two cluster-vectors is at most r. In the second problem, referred to as Rad-Cluster-
Completion, the goal is to decide whether there is a completion of M that admits a
k-cluster of radius at most r; that is, a k-cluster such that there is a center vector s⃗ ∈ {0, 1}d

with Hamming distance at most r to each cluster-vector.
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The cluster-diameter and cluster-radius are among the most widely used measures for
intra-cluster similarity [5, 8, 12, 15, 16, 17, 18]. Our interest in studying these problems
stems from the recent relevant research within the theory community [9, 14, 19, 20, 21], as
well as the ubiquitous presence of incomplete data in relevant areas, such as recommender
systems, machine learning, computer vision, and data science [1, 10, 11, 28].

We study the parameterized complexity of the above problems with respect to the two
parameters k, r, and a third parameter that captures the occurrence of missing vector
entries. Naturally, parameterizing by the number of missing entries alone is not desirable
since one would expect that number to be rather large. In their recent related works on
clustering problems, Koana, Froese, and Niedermeier [20, 21] restricted the occurrence of
missing entries by using the maximum number of missing entries per row as the parameter.
Another parameter for restricting the occurrence of missing entries is the minimum number
of vectors plus coordinates needed to “cover” all missing entries, which was proposed and
used by Eiben et al. [9] and Ganian et al. [14], who studied various data completion and
clustering problems. In this paper, we propose and use a parameter that unifies and subsumes
both previous parameterizations: the “deletion distance to near-completion”, denoted λ(M),
which is the minimum integer p such that at most p vectors can be removed from M so that
every remaining vector contains at most p missing entries. Clearly, the parameter λ(M) is
computable in polynomial time and is not larger than any of (and hence subsumes) the two
parameters considered by Koana et al. [20, 21], Eiben et al. [9], and Ganian et al. [14].

Results and Techniques. We perform an in-depth analysis of the two considered data
completion problems w.r.t. the aforementioned parameterizations. We obtain results that
provide a nearly complete complexity landscape of these problems. An overview of our
results is provided in Table 1. As a byproduct, our results establish that both problems
under consideration are fixed-parameter tractable parameterized by k + r when the data is
complete, which answers an open question in the literature [2, 3].

Table 1 Overview of the results obtained in this paper.

k r k + r k + λ r + λ k + r + λ

Diam-Cluster-C. W[1]-h/XP paraNP-c W[1]-h/XP W[1]-h/XP FPT FPT
Rad-Cluster-C. W[1]-h/XP paraNP-c W[1]-h/XP ?/XP ?/XP FPT

We summarize the new results obtained in this paper below.
1. We show that Diam-Cluster-Completion is fixed-parameter tractable (FPT)

parameterized by r + λ(M) (Theorem 9). The significance of the above result is in
removing the dependency on the cluster size k in the running time of the algorithm, thus
showing that finding a large cluster in incomplete data can be feasible when both the
cluster diameter and the parameter λ(M) are small. This result is the pinnacle of our
technical contributions and relies on two ingredients: a fixed-parameter algorithm for
the same problem parameterized by k + r + λ(M) (Theorem 1), which is then used as a
subroutine in the main algorithm, and a new technique that we dub iterative sunflower
harvesting. Crucial to this new technique is a general structural lemma, allowing us to
represent a family of sets in a succinct manner in terms of sunflower cores, which we believe
to be interesting in its own right. We note that the use of sunflowers to obtain a succinct
set representation (leading to a kernel) is not uncommon in such settings [20, 21, 22, 25].
What makes the sunflower harvesting technique novel is that it allows us to (1) show
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that each solution can be covered by a small number of sunflowers, and to (2) iteratively
“harvest” these sunflowers to obtain a solution in boundedly-many (in the parameter)
branching steps.

2. We give an XP-algorithm for Diam-Cluster-Completion parameterized by k alone
(Theorem 10). Together with Theorem 11 (showing the W[1]-hardness of Diam-Cluster
w.r.t. k) and Theorem 12 (showing the W[1]-hardness for Diam-Cluster-Completion
w.r.t. k even for r = 0), this gives a complete complexity landscape for Diam-Cluster-
Completion parameterized by any combination of the parameters k, r, and λ(M).

3. We show that Rad-Cluster-Completion is FPT parameterized by k + r + λ(M)
(Theorem 15); this result answers open questions in the literature [2, 3], which asked
about the fixed-parameter tractability of the easier complete version of the problem (i.e.,
when λ(M) = 0).

4. We provide an XP-algorithm for Rad-Cluster-Completion parameterized by r + λ(M)
in which the degree of the polynomial in the runtime has only a logarithmic dependence
on r (Theorem 16). We remark that the problem is in XP parameterized by k alone
(Observation 13).

5. We provide an accompanying W[1]-hardness result for Rad-Cluster-Completion that
rules out its fixed-parameter tractability when parameterized by k + r (Theorem 12).
Since the problem is NP-hard for fixed r (as also follows from Theorem 12), this leaves
only two questions open for the considered parameterizations: whether Rad-Cluster-
Completion is FPT when parameterized by either k + λ(M) or by r + λ(M).

6. We give an FPT-approximation scheme for the optimization version (w.r.t. the cluster
size) of Rad-Cluster-Completion.

Related Work
The Rad-Cluster problem (i.e., Rad-Cluster-Completion for complete data) and
variants of it were studied as early as the 1980’s, albeit under different names. Dyer and
Frieze presented a heuristic algorithm for approximating a variant of Rad-Cluster, referred
to as the p-Center problem, where the goal is to compute p ∈ N clusters, each of radius
at most r, that contain all vectors of M ; hence, Rad-Cluster corresponds to the case
of p-Center where p = 1 and k = |M | (i.e., when the cluster contains all vectors in M).
Cabello et al. [4] studied the parameterized complexity of the geometric p-Center Problem
in Rd.

Frances and Litman [13] studied the complexity of Rad-Cluster with k = |M |, in the
context of computing the radius of a binary code; they referred to it as the Covering Radius
problem and showed it to be NP-hard. Ga̧sieniec et al. [15, 16] studied (the optimization
versions of) Rad-Cluster and Diam-Cluster with k = |M | and obtained polynomial-time
algorithms as well as lower bounds for a number of cases. They also obtained 2-approximation
algorithms for these problems by extending an earlier algorithm by Gonzalez [17].

The Rad-Cluster problem restricted to the subcase of k = |M | was also extensively
studied under the nomenclature Closest String. Li et al. [24] showed that the problem
admits a polynomial time approximation scheme if the goal is to minimize r. Gramm et
al. [18] studied Closest String from the parameterized complexity perspective and showed
it to be fixed-parameter tractable parameterized by r. Following this naming convention,
Boucher and Ma [2], and Bulteau and Schmid [3] studied the parameterized complexity of
Rad-Cluster under the nomenclature Closest String with Outliers. They considered
several parameters, including some of the parameters under consideration in this paper.
Notably, the restriction of our fixed-parameter algorithm for Rad-Cluster parameterized
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by k + r + λ to the subcase where λ = 0 answers an open question in [2, see, e.g., Table 1].
Moreover, our XP algorithm for Rad-Cluster-Completion provided in Theorem 16 that
has a run-time in which the degree of the polynomial has only a logarithmic dependence
on r, immediately implies an algorithm of the same running time for Closest String with
Outliers, as a special case.

For incomplete data, Hermelin and Rozenberg [19] studied the parameterized complexity
of Rad-Cluster-Completion for k = |M | under the nomenclature Closest String
with Wildcards problem, with respect to several parameterizations. Very recently, Koana
et al. [20] revisited the earlier work of Hermelin and Rozenberg [19] and obtained, among
other results, a fixed-parameter algorithm for the problem parameterized by r plus the
maximum number of missing entries per row. Even more recently, the same group [21] also
studied a problem related to Diam-Cluster-Completion for k = |M |. They obtain a
classical-complexity classification w.r.t. constant lower and upper bounds on the diameter
and the maximum number of missing entries per row.

2 Preliminaries

We assume basic familiarity with parameterized complexity, including the classes W[1], FPT,
XP, as well as Turing kernelization and FPT-approximation schemes [7, 6, 27].

Vector Terminology. Let a⃗ and b⃗ be two vectors in {0, 1,□}d, where □ is used to represent
coordinates whose value is unknown (i.e., missing entries). We denote by ∆(⃗a, b⃗) the set of
coordinates in which a⃗ and b⃗ are guaranteed to differ, i.e., ∆(⃗a, b⃗) = { i | (⃗a[i] = 1 ∧ b⃗[i] =
0) ∨ (⃗a[i] = 0 ∧ b⃗[i] = 1) }, and we denote by δ(⃗a, b⃗) the Hamming distance between a⃗

and b⃗ measured only between known entries, i.e., |∆(⃗a, b⃗)|. Moreover, for a subset D′ ⊆ [d]
of coordinates, where [d] = {1, . . . , d}, we denote by a⃗[D′] the vector a⃗ restricted to the
coordinates in D′.

There is a one-to-one correspondence between vectors in {0, 1}d and subsets of coordinates,
i.e., for every vector, we can associate the unique subset of coordinates containing all its
one-coordinates and vice-versa. It will be useful to represent a vector by the set of coordinates
where the vector has the value 1. We introduce the following notation for vectors to switch
between their set-representation and vector-representation. We denote by ∆(⃗a) the set
∆(⃗0, a⃗). We extend this notation to sets of vectors as follows: for a set N of vectors in
{0, 1,□}d, we denote by ∆(N) the set { ∆(v⃗) | v⃗ ∈ N }. We say that a vector a⃗ ∈ {0, 1,□}d

is a t-vector if |∆(⃗a)| = t and we say that a⃗ contains a subset S of coordinates if S ⊆ ∆(⃗a).
We say that a multiset1 M∗ ⊆ {0, 1}d is a completion of a multiset M ⊆ {0, 1,□}d if

there is a bijection α : M → M∗ such that for all a⃗ ∈ M and all i ∈ [d] it holds that either
a⃗[i] = □ or α(⃗a)[i] = a⃗[i]. For a multiset M of vectors over {0, 1,□}d, we let the deletion
distance to near-completion, λ(M), denote the minimum integer such that there exists a
subset DM ⊆ M with the following properties: (a) |DM | ≤ λ(M), and (b) every vector in
M \ DM contains at most λ(M) missing entries. We call DM the deletion (multi-)set, and
observe that λ(M) along with a corresponding deletion set can be trivially computed from
M in linear time.

A sunflower in a set family F is a subset F ′ ⊆ F such that all pairs of elements in
F ′ have the same intersection. We will say that a multiset P is a DIAM-Cluster (or |P |-
DIAM-Cluster) if δ(p⃗, q⃗) ≤ r for every pair p⃗, q⃗ ∈ P . Similarly, P is a RAD-Cluster (or
|P |-RAD-Cluster) if there exists a vector c⃗ ∈ {0, 1}d such that δ(c⃗, p⃗) ≤ r for every p⃗ ∈ P .

1 We remark that, in the interest of brevity and when clear from context, we will sometimes use standard
set notation such as A ⊆ B in conjunction with multisets.
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In all problems under consideration, the input size is considered to be |M |, i.e., the size
of the matrix including multiplicities.

3 Finding a DIAM-Cluster in Incomplete Data

In this section, we present our results for Diam-Cluster-Completion. Our main
algorithmic results are that Diam-Cluster-Completion is FPT parameterized by r +λ(M)
and is in XP parameterized by k alone. Together with Theorem 11 (showing the W[1]-hardness
of Diam-Cluster parameterized by k) and Theorem 12 (showing the W[1]-hardness of
Diam-Cluster-Completion parameterized by k even for r = 0), this gives a complete
complexity landscape for Diam-Cluster-Completion parameterized by any combination
of the parameters k, r, and λ(M).

3.1 DIAM-CLUSTER-COMPLETION Parameterized by k + r + λ(M)
We start by showing that Diam-Cluster-Completion parameterized by k + r + λ(M)
is FPT. We will later show a stronger result, namely that the same result already holds if
we only parameterize by r + λ(M). Showing the weaker result here is important for the
following reasons: (1) we use the algorithm presented here as a subroutine in our result for
the parameterization r + λ(M), (2) the techniques developed here can also be employed for
Rad-Cluster-Completion, and (3) we obtain a Turing kernel of size polynomial in k.

The main approach behind the Turing kernel is to guess two vectors of maximum distance
in the desired cluster. This will allow us to pre-process the instance such that if the resulting
instance contains too many vectors, then it has a solution. Note that this approach only
works for the case that a solution contains at least two vectors from M \ DM (recall that
DM denotes the deletion set); otherwise, we can guess the at most one vector from M \ DM

that is in the solution and remove all the other vectors from M \ DM . Therefore, in all cases,
we end up with a reduced instance with boundedly many vectors and we will then show that
we can remove all but boundedly many coordinates while preserving solutions.

▶ Theorem 1. Diam-Cluster-Completion parameterized by k + r + λ(M) has a Turing-
kernel containing at most n = k32λ(M)+r + λ(M) + 2 vectors, each having at most max{r(n −
1) + λ(M),

(
λ(M)

2
)
(r + 1)} coordinates.

3.2 DIAM-CLUSTER-COMPLETION Parameterized by r + λ(M)
With Theorem 1 in hand, we can move on to establishing the fixed-parameter tractability of
Diam-Cluster-Completion parameterized by r + λ(M). At the heart of our approach
lies a new technique for analyzing the structure of vectors through sunflowers in their set
representations, which we dub iterative sunflower harvesting. We first preprocess the instance
to establish some basic properties. We then show a general result about sunflowers that
allows us to derive a succinct representation of the solution cluster – in particular, this
guarantees that the hypothetical solution can be described by a bounded number of sunflower
cores. Finally, we proceed to “harvesting” these sunflowers cores using a branching procedure,
thus computing the solution cluster.

3.2.1 Preprocessing the Instance
Let (M, k, r) be an instance of Diam-Cluster-Completion, let M∗ be a completion of
M that contains a maximum size DIAM-Cluster, and fix P ∗ to be such a maximum size
DIAM-Cluster in M∗. We also fix DM to be a λ(M)-deletion set. The goal of the algorithm
is to find M∗ and P ∗.
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If k < λ(M) + 2, then we can use the algorithm in Theorem 1 to obtain a Turing kernel
whose size is a function of r + λ(M), which, in turn, would imply that Diam-Cluster-
Completion if FPT parameterized by r + λ(M), thus giving the desired result. We assume
henceforth that P ∗ contains the completion of at least two vectors in M \ DM . We can guess
the subset PR of DM that will be completed to vectors in P ∗, and restrict our attention to
finding a DIAM-Cluster in M \ DM of size |P ∗ \ DM |. We will do so by enumerating all such
DIAM-Cluster’s in M \ DM and at the end check whether one of them, together with PR,
can be extended into a DIAM-Cluster.

Therefore, we will focus on what follows on finding a cluster in M \ DM . We first guess
two vectors v⃗ and u⃗ in M \ DM , together with their completions v⃗∗ and u⃗∗, respectively,
such that v⃗∗ and u⃗∗ are both in P ∗ and are the farthest vectors apart in P ∗ \ DM ; fix
rmax = δ(v⃗∗, u⃗∗). We remove all other vectors that can be completed into v⃗∗ or u⃗∗, and
reduce k accordingly; hence, we do not keep duplicates of the two vectors that we already
know to be in P ∗. We then normalize all vectors in M so that v⃗∗ becomes the all-zero vector,
i.e., we replace v⃗∗ by the all-zero vector, and for every other vector w⃗ ̸= v⃗, we replace it
with the vector w⃗′ such that w⃗′[i] = 0 if v⃗∗[i] = w⃗[i], w⃗′[i] = □ if w⃗[i] = □, and w⃗′[i] = 1,
otherwise. Finally, for each vector w⃗ ∈ M \ DM , we compute the set Λ(w⃗) of all completions
of w⃗ at distance at most rmax from both v⃗∗ and u⃗∗. Note that Λ(w⃗) can be computed in
O(2λ(M) · d) time for each vector in M \ DM , where d is the dimension of the vectors in M .
We then remove all vectors w⃗ with Λ(w⃗) = ∅ from M \ DM .

We will extend the notation Λ(w⃗) to ΛC(w⃗), for a multiset C of vectors in {0, 1}d, such
that ΛC(w⃗) is the set of all completions of a vector w⃗ at distance at most rmax to all vectors
in C. We are now ready to show that after normalizing the vectors in P ∗, the multiset
P ∗ \ DM satisfies certain structural properties that we refer to as an r-saturated subset (of
M∗); these structural properties allow for a succinct representation of P ∗.

3.2.2 Sunflower Fields or Representing Sets by Cores of Sunflowers

In this subsection, we provide the central component for our algorithm based on the iterative
sunflower harvesting technique. Crucial to this component is a general structural lemma that
allows us to represent a family of sets in a succinct manner in terms of sunflower cores, which
we believe to be interesting in its own right. We first state the result in its most general form
(for sets), and then show how to adapt it to our setting.

▶ Definition 2. Let U be a universe, B a family of subsets of U and A ⊆ B. We say that A
is an r-saturated subfamily of B (for r ∈ N) if the following holds for every t ∈ N and every
sunflower S ⊆ A containing at least r + 1 sets of cardinality t with core C: A contains every
set B ∈ B of cardinality t such that C ⊆ B.

Intuitively, this property states that A contains all sets in B which are super-sets of cores
of every sufficiently-large sunflower in A (with sets of the same cardinality).

The connection of this set property to clusters is as follows. We will show that every
maximal cluster is an r-saturated subset of M∗. Since P ∗ contains the all-zero vector v⃗∗, any
vector in P ∗ contains at most r ones. Fix t ∈ [r], and consider the set of all vectors in P ∗

containing exactly t ones. The above notion will allow to draw the following assumption: if
the aforementioned set of vectors is large, then it must contain a large sunflower and all the
vectors in M whose completions share the core of this sunflower must be in P . This property
will subsequently allow us to represent every hypothetical solution using a bounded number
of sunflowers, as we show next.
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The crucial insight now is that every r-saturated subfamily containing only sets of bounded
size admits a succinct representation, where we can completely describe the set via a bounded
number of sunflower cores. This is made precise in the following lemma.

▶ Lemma 3. Let A and B be two families of sets of cardinality at most r′ over universe U

such that A ⊆ B. If A is an r-saturated subset of B, then there is a set S of at most (rr′)r′

subsets of U such that A is equal to the set of all sets B in B satisfying that S ⊆ B for some
S ∈ S. Moreover, for each set S ∈ S, S is either the core of a sunflower in A with at least
r + 1 petals, or |S| = r′.

We will now show how Lemma 3 can be employed in our setting. Let M, M ′ ⊆ {0, 1}d

with M ′ ⊆ M . Then M ′ is an r-saturated subset of M if ∆(M ′) is an r-saturated subset of
∆(M). Herein, one can think of M as being (a part of) the input matrix and M ′ as being
an inclusion-wise maximal cluster; we will later show that this property guarantees that
M ′ is an r-saturated subset of M . Using this definition, the following corollary now follows
immediately from Lemma 3.

▶ Corollary 4. Let r′, r ∈ N and M, M ′ ⊆ {0, 1}d be sets of r′-vectors such that M ′ is an
r-saturated subset of M . There is a set S of at most (rr′)r′ subsets of [d] such that M ′ is
equal to the set of all vectors m⃗ in M satisfying S ⊆ ∆(m⃗) for some S ∈ S. Moreover, for
each set S ∈ S, S is either a core of a sunflower in ∆(M ′) with at least r + 1 petals, or
|S| = r′.

We now can show that after normalizing the vectors in P ∗, the multiset P ∗ \ DM is an
r-saturated subset of M∗.

▶ Lemma 5. Let (M, k, r) be an instance of Diam-Cluster-Completion, let M∗ be a
completion of M and let P ∗ be a DIAM-Cluster in M∗ of maximum size such that 0⃗ ∈ P ∗.
Then for every N ⊆ M∗, P ∗ \ N is an r-saturated subset of M∗ \ N .

Since P ∗ \ N is an r-saturated subset of M∗ \ N , by Corollary 4, applied separately for
each r′ ∈ [r], there exists a set S = {(S1, r1), . . . , (Sℓ, rℓ)}, with ℓ ≤

∑
r′∈[r](rr′)r′ ≤ r2r+1,

such that P ∗ \ N contains precisely all the vectors w⃗ in M∗, such that for some (Si, ri),
i ∈ [ℓ], Si ∈ ∆(w⃗) and |∆(w⃗)| = ri.

We call the pair (Si, ri) an ri-center (of P ∗ \ N in M∗ \ N). We say that a vector
w⃗ ∈ {0, 1,□}d is compatible with ri-center (Si, ri) if there is a completion w⃗∗ ∈ {0, 1}d of
w⃗, called witness of compatibility, such that Si ⊆ ∆(w⃗∗) and |∆(w⃗∗)| = ri. We say that
w⃗ ∈ {0, 1,□}d is compatible with S if it is compatible with some (Si, ri) ∈ S.

The size of an ri-center is the number of vectors that are compatible with it in M .
Moreover, for a set S = {(S1, r1), . . . , (Sℓ, rℓ)} and a multiset C of vectors from {0, 1}d, we
say that S defines C, if every vector c⃗ ∈ C is compatible with S and for every (Si, ri) ∈ S there
is a vector in C compatible with (Si, ri). We say that S properly defines C, if |S| ≤ r2r+1, S
defines C, and for every (Si, ri) ∈ S either:

|Si| = ri and the unique vector that is compatible with (Si, ri) is in C; or
|Si| < ri and C contains a set N of r + 1 ri-vectors such that ∆(N) forms a sunflower
with core Si.

Note that if every vector in C has at most rmax 1’s, then since C is an r-saturated subset of
C, it follows from Corollary 4 that there always exists a set S that properly defines C.

▶ Observation 6. Let C be a multiset of vectors from {0, 1}d, with maxc⃗∈C |∆(c⃗)| ≤ r. Then
there exists a set S of at most r2r+1 ri-centers that properly defines C.
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Suppose that we have a correct guess for S, then we can already solve the problem as
follows. For each (Si, ri) ∈ S such that |Si| = ri, there is only one possible ri-vector that
contains Si. If our guess is correct, then P ∗ contains at least one vector that can be completed
to this particular ri-vector, and by maximality of P ∗, P ∗ has to contain all such vectors. If
(Si, ri) ∈ S such that |Si| < ri, then P ∗ contains a sunflower containing ri-vectors of size at
least r + 1 whose core is Si. Clearly, P ∗ contains all the vectors that can be completed to an
ri-vector containing Si, since Lemma 5 holds for any completion M∗ of M that contains P ∗

as a subset. The following lemma shows that all such vectors can be completed arbitrarily
since all that matters is that their completion is compatible with S.

▶ Lemma 7. Let (M, k, r) be an instance of Diam-Cluster-Completion, M∗ a completion
of M , P ∗ a DIAM-Cluster in M∗ of maximum size with 0⃗ ∈ P ∗, and N ⊆ M∗. If S properly
defines P ∗ \ N , then for every pair of vectors w⃗1, w⃗2 ∈ {0, 1}d compatible with S it holds that
δ(w⃗1, w⃗2) ≤ r.

It is easy to see that there are at most dr+1 choices for a pair (Si, ri) (i.e., a ri-center), and
hence we have at most (dr+1)r2r+1 = dO(r2r+2) possible choices for the set S that properly
defines P ∗. This bound already implies an XP-algorithm. To obtain a fixed-parameter
algorithm, it suffices to find the correct guess for S in FPT-time, which is our next goal.

3.2.3 Iterative Sunflower Harvesting
We are now ready to describe the iterative sunflower harvesting procedure, which allows us
to obtain the desired FPT-algorithm. Namely, we show that instead of enumerating all dr2r+2

possible sets S of ri-centers to find the one that properly defines P ∗ \ DM , it suffices to
enumerate only f(r, λ(M))-many “important” ri-centers for each choice of v⃗∗ and u⃗∗ (recall
that v⃗∗ and u⃗∗ are the two fixed vectors in P ∗ \ DM that were guessed), where f is some
function that depends only on r and λ(M). Moreover, we can enumerate these possibilities
in FPT-time.

We compute S by iteratively adding ri-centers one by one. The main idea is to show that,
for any partial solution S ′, there is a bounded number of choices for the next ri-center to
add. As a first step in this direction, the following lemma shows that for S ′, there is always
a “large” ri-center (Si, ri) that can be added to S ′, i.e., of size at least a (2rr2r+1)-fraction
of the remaining vectors. Before we state the lemma, we introduce the following notations.
If w⃗ is compatible with S, we will denote by ζS(w⃗) the set of witnesses of compatibility for
w⃗ and S. Recall that, for a vector w⃗ ∈ {0, 1,□}d and multiset C of vectors from {0, 1}d,
ΛC(w⃗) denotes the set of all completions of vector w⃗ at distance at most rmax to all vectors
in C, i.e., maxc⃗∈C{δ(c⃗, c⃗w)} ≤ rmax.

▶ Lemma 8. Let P ∗ be a maximum DIAM-Cluster in (M, k, r), S the set of ri-centers
that properly define P ∗ \ DM , and S ′ ⊆ S. Moreover, let C ′ be the multiset of vectors w⃗

in M \ DM with ζS′(w⃗) ̸= ∅ and C the multiset containing a vector w⃗c ∈ ζS′(w⃗) for every
w⃗ ∈ C ′. Finally, let M ′ be the multiset consisting of all the vectors w⃗ ∈ M \ (C ∪ DM ) with
ΛC(w⃗) ̸= ∅. Then there exists (Si, ri) ⊆ S \ S ′ such that at least (|M ′|/2rmax − |DM |)/r2r+1

vectors in M ′ are compatible with (Si, ri).

Note that each normalised vector w⃗ can be compatible with at most 2r+λ(M) ri-centers
(Si, ri), since Si ⊆ ∆(w⃗∗) for some completion w⃗∗ of w⃗. Now it follows from a counting
argument that the number of large ri-centers is at most 2r+λ(M)(2rr2r+1) = 22r+λ(M)r2r+1

and those can be enumerated in time O(2r+λ(M)|M |). By Observation 6, |S| and hence the
depth of the branching algorithm, is at most r2r+1, which implies the following theorem.

▶ Theorem 9. Diam-Cluster-Completion is fixed-parameter tractable parameterized by
r + λ(M).
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3.3 DIAM-CLUSTER-COMPLETION Parameterized by k

Here, we use an Integer Linear Programming subroutine to show that Diam-Cluster-
Completion parameterized by k is in XP.

Moreover, we also observe in Theorem 11 that, unless W[1]=FPT, this cannot be improved
to an FPT-algorithm even for complete data.

▶ Theorem 10. Diam-Cluster-Completion is in XP parameterized by k.

Proof. Let (M, k, r) be an instance of Diam-Cluster-Completion. The algorithm works
by enumerating all potential clusters C of size exactly k, and then uses a reduction to an
ILP instance with f(k) variables to check whether C can be completed into a cluster. Since
there are at most |M |k many potential clusters of size exactly k, it only remains to show
how to decide whether a given set C of exactly k vectors in M can be completed into a
DIAM-Cluster. Let MC be the submatrix of M containing only the vectors in C. Then MC

has at most 3k distinct columns, and moreover, each of those columns can be completed in
at most 2k possible ways. Let T be the set of all columns occurring in MC and for a column
t⃗ ∈ T , let F (⃗t) be the set of all possible completions of t⃗, and let #(⃗t ) denote the number of
columns in Mc equal to t⃗. For a vector f⃗ ∈ {0, 1}k (representing the completion of a column),
let T (f⃗) denote the subset of T containing all columns t⃗ with f⃗ ∈ F (⃗t). Moreover, for every
i and j with 1 ≤ i < j ≤ k (representing the i-th and the j-th vectors in C), we denote by
FD(i, j) the set of all vectors (completions of columns) f⃗ ∈ {0, 1}k such that f⃗ [i] ̸= f⃗ [j].

We are now ready to construct an ILP instance I with at most 3k2k variables that is
feasible if and only if C can be completed into a DIAM-Cluster. I has one variable xt⃗,f⃗ for
every t⃗ ∈ T and every f⃗ ∈ F (⃗t) whose value (in a feasible assignment) represents how many
columns of type t⃗ in MC will be completed to f⃗ . Moreover, I has the following constraints:

One constraint for every t⃗ ∈ T stipulating that every column of type t⃗ in MC is completed
in some manner:∑

f⃗∈F (t⃗)

xt⃗,f⃗ = #(⃗t ).

For every i and j with 1 ≤ i < j ≤ k (representing the i-th and the j-th vectors in C),
one constraint stipulating that the Hamming distance between the i-th and the j-th
vectors in C does not exceed r:∑

f⃗∈F D(i,j)t⃗∈T (f⃗)

xt⃗,f⃗ ≤ r.

This completes the construction of I and it is straightforward to verify that I has a feasible
assignment if and only if C can be completed to a DIAM-Cluster. Since I has at most 3k2k

variables, and since it is well known that ILP can be solved in FPT-time w.r.t. the number
of variables [23], I can be solved in FPT-time w.r.t. k. ◀

▶ Theorem 11. Diam-Cluster-Completion is W[1]-hard parameterized by k even if
λ(M) = 0.

We note that our second result also establishes the W[1]-hardness of Rad-Cluster-
Completion (since both problems coincide when r = 0).

▶ Theorem 12. Diam-Cluster-Completion and Rad-Cluster-Completion are both
W[1]-hard parameterized by k even if r = 0.
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4 Finding a RAD-Cluster in Incomplete Data

In this section, we present our results for Rad-Cluster-Completion. We will show
that Rad-Cluster-Completion is FPT parameterized by k + r + λ(M), and is in XP
parameterized by r + λ alone. Notably, the degree of the polynomial in the run-time of our
XP algorithm grows only logarithmically in r and the algorithm can be employed to solve
the Closest String with Outliers problem [2, 3].

Before proceeding to the main contributions of this section, we observe that, by combining
the trivial branching procedure, in which we branch over all sets of k vectors from M (where
in each branch we proceed under the assumption that all vectors outside of the set can be
deleted), with a previous result of Hermelin and Rozenberg [19, Theorem 2], which solves
the special case of Rad-Cluster-Completion for k = |M |, we obtain:

▶ Observation 13. Rad-Cluster-Completion parameterized by k is in XP.

Together with the previously-established Theorem 12 (showing the W[1]-hardness for
Rad-Cluster-Completion w.r.t. k even for r = 0), this gives us an almost complete
picture of the parameterized complexity of Rad-Cluster-Completion for any combination
of the parameters k, r, λ(M). The only two questions that remain open are whether the XP
result for r + λ(M) can be improved to an FPT-result (as this has been the case for Diam-
Cluster-Completion), and whether it is possible to obtain an FPT-algorithm either for
parameter k or k + λ(M). As a first step in this direction, we present an FPT-approximation
scheme for parameter r + λ(M) in Section 4.3. The following observation will be useful:

▶ Observation 14. Given a (complete) vector s⃗ ∈ {0, 1}d, in time O(|M |d) we can decide if
s⃗ is the center of a Rad-Cluster of k vectors in M .

Observation 14 is straightforward since we can find all vectors w⃗ ∈ M that can be
completed to a vector w⃗∗ at distance at most r from s⃗ by letting w⃗∗[i] = s⃗[i] wherever
w⃗∗[i] = □, and then decide whether w⃗∗ is such a vector by computing δ(w⃗∗, s⃗).

4.1 RAD-CLUSTER-COMPLETION Parameterized by k + r + λ(M)
We start by showing that, as in the case of Diam-Cluster-Completion, Rad-Cluster-
Completion parameterized by k + r + λ(M) has a Turing kernel. The approach is similar
to that in Subsection 3.1.

▶ Theorem 15. Rad-Cluster-Completion parameterized by k + r + λ(M) has a Turing-
kernel containing at most n = k3λ(M)+2r +λ(M)+2 vectors, each having at most max{2r(n−
1) + λ(M),

(
λ(M)

2
)
(2r + 1)} coordinates.

4.2 RAD-CLUSTER-COMPLETION Parameterized by r + λ(M)
While, it is relatively easy to see that Rad-Cluster-Completion parameterized by r+λ(M)
can be solved in time f(λ(M), r)nO(r), here we provide a more efficient algorithm by reducing
the degree of the polynomial in the run-time from O(r) to log r. Moreover, our algorithm
can be applied to the Closest String with Outliers problem [3].

▶ Theorem 16. Rad-Cluster-Completion can be solved in time O(|M |2λ(M)(|M |(22r +
d))log r+1) and is therefore in XP parameterized r + λ(M).

Proof Sketch. The main ideas behind the algorithm are captured by the following definition
and discussions. Let F ⊆ [d] and let t be an integer, where 0 ≤ t ≤ r. We say that a vector
v⃗ ∈ {0, 1}d is an (F, t)-seed for a center c⃗ ∈ {0, 1}d of a solution for (M, k, r) if it satisfies:
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(C1) c⃗ agrees with v⃗ on all coordinates in F ; and
(C2) c⃗ differs from v⃗ on at most t coordinates outside of F .
We can show the following statement. If v⃗ is an (F, t)-seed for c⃗, then either v⃗ is the center
of a solution for (M, k, r), or there is a vector m⃗ ∈ M with r < δ(v⃗, m⃗) ≤ 2r and a subset
C ⊂ D \ F , where D = ∆(v⃗, m⃗), such that the vector v⃗′ obtained from v⃗ by complementing
all coordinates in C is an (F ∪ D, t/2)-seed for c⃗. Note that testing the former possibility,
that is, whether a vector v⃗ ∈ {0, 1}d is a center of a solution for (M, k, r), can be done in
time O(|M |d) by Observation 14.

Since there at most M22r possibilities for m⃗ and C, we can use the above statement to
obtain a (F ∪ D, t/2)-seed from a given (F, t)-seed. This can be employed within a recursive
procedure that, given a (∅, r)-seed for some center c⃗ of a solution either obtains a center of a
solution or obtains a (F ′, 0)-seed (which itself is the center of a solution), in at most log r

recursive steps. It only remains to find a (∅, r)-seed for some center c⃗ of a solution, which
can be achieved by guessing the completion v⃗ of any vector in M \ DM that will be in a
solution. Note that if M \ DM does not contain a vector in the solution, then k ≤ λ(M) and
the result follows from Theorem 15. ◀

We note that the algorithm provided by the above theorem generalizes a previous
algorithm of Marx [26, Lemma 3.2] for Closest Substring to strings that may contain
unknown characters. In particular, it lifts the concept of “generators” to strings with unknown
characters by showing that there are log r vectors that can be computed efficiently and that
define at most r log r “important” coordinates for the center of some solution.

4.3 FPT Approximation Scheme Parameterized by r + λ(M)
In this subsection we give an algorithm that, for a given instance (M, k, r) of Rad-Cluster-
Completion and ε ∈ R, where 0 < ε < 1, computes in FPT-time parameterized by
r + λ(M) + 1

ε a center of a Rad-cluster of size at least (1 − ε)k, or it correctly concludes
that no RAD-Cluster of size k exists.

▶ Theorem 17. Given an instance (M, k, r) of Rad-Cluster-Completion and ε ∈ R,
where 0 < ε < 1, there exists an FPT algorithm A, parameterized by r + λ(M) + 1

ε , such that
A either computes a RAD-Cluster of size at least (1 − ε)k, or correctly concludes that M

does not contain a RAD-Cluster of size k.

Proof Sketch. The algorithm starts by performing a similar branching and pre-processing
to the FPT algorithm for Diam-Cluster-Completion parameterized by r + λ(M). Fix
M∗ to be a completion of M that contains a maximum size RAD-Cluster, let P ∗ be such a
maximum size RAD-Cluster in M∗, and let s⃗∗ be a center of P ∗. The goal of the algorithm
is to find s⃗∗, as given s⃗∗, by Observation 14, we can decide the instance in time O(|M |d).

If k < 2λ(M)
ε + 2, then we use the algorithm in Theorem 15 to obtain a Turing kernel.

Otherwise, we can guess two vectors u⃗ and v⃗ in M \ DM , together with their respective
completions u⃗∗ and v⃗∗, such that u⃗∗ and v⃗∗ are the farthest vectors apart in P ∗ \ DM ; fix
rmax = δ(v⃗∗, u⃗∗).We normalize all the vectors in M so that v⃗∗ becomes the all-zero vector.
Finally, for each vector w⃗ ∈ M , we can in time rmax · d, where d is the dimension of the
vectors in M , check if there is a completion w⃗∗ of w⃗ such that the distance from w⃗∗ to both
v⃗∗ and u⃗∗ is at most rmax; we remove all vectors w⃗ that do not have such a completion.
Note here that some vectors in P ∗ ∩ DM could have been removed from M at this step.
However, we did not remove any vector from P ∗ \ DM . Hence, after the preprocessing, M

contains a RAD-Cluster with center s⃗∗ and at least k′ = (1 − ε
2 )k vectors. Our goal is to
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find a center for a RAD-Cluster with at least (1 − ε
2 )k′ = (1 − ε

2 )2k ≥ (1 − ε)k vectors. For
ease of exposition, we let ε′ = ε

2 and we let k′ ≥ (1 − ε′)k be the number of vectors of P ∗

still in M . Now we can show the following statement: After the above pre-processing, in
time O(2rmax · |M |), we can find a center for a RAD-Cluster of size |M |

2rmax .
Therefore, we can assume henceforth that k′ ≥ |M |

2rmax . Now the algorithm sets s⃗∗
0 = v⃗∗ = 0⃗

and the goal is to iteratively compute s⃗∗
1, s⃗∗

2, s⃗∗
3, . . . , s⃗∗

r′ , r′ ≤ r, such that:
1. for all i ∈ [r′], we have ∆(s⃗∗

i ) = ∆(s⃗∗
i−1) ∪ {ci} for some coordinate ci ∈ ∆(s⃗∗) \ ∆(s⃗∗

i−1);
2. for all j ∈ [r′ − 1], the number of vectors w⃗ with δ(w⃗, s⃗∗

j ) ≤ r is less than (1 − ε′)k′; and
3. the number of vectors w⃗ with δ(w⃗, s⃗∗

r′) ≤ r is at least (1 − ε′)k′.

Let s⃗∗
i be such that ∆(s⃗∗

i ) ⊆ ∆(s⃗∗) for some i ∈ [r′ −1]. The number of vectors at distance
at most r from s⃗∗

i , i < r′, is less than (1−ε′)k′. This means that at least ε′k′ ≥ ε′|M |
2rmax vectors

whose completions are in P ∗ are at distance at least r + 1 from s⃗∗
i . For every such vector w⃗,

it is easy to see that, since ∆(s⃗∗
i ) ⊆ ∆(s⃗∗), it must be the case that (∆(s⃗∗) ∩ ∆(w⃗)) \ ∆(s⃗∗

i )
is nonempty. Note that |∆(s⃗∗)| ≤ r, and hence there exists ci+1 ∈ ∆(s⃗∗) such that, for at
least ε′|M |

2rmax ·r vectors w⃗ in M at distance at least r + 1 from s⃗∗
i , it holds that ci+1 ∈ ∆(w⃗).

Moreover, for every vector w⃗ ∈ M , we have |∆(w⃗)| ≤ rmax. It follows–by a straightforward
counting argument–that there are at most 2rmax ·r

ε · rmax coordinates c ∈ [d] such that, for
at least ε′|M |

2rmax ·r vectors w⃗, it holds that c ∈ ∆(w⃗). Therefore, to obtain s⃗∗
i+1 such that

∆(s⃗∗
i+1) ⊆ ∆(s⃗∗), we only need to branch on one of at most 2rmax ·r

ε · rmax coordinates. The
statement of the theorem follows since we can exhaustively branch on the coordinates that
are set to 1 in at least ε′|M |

2rmax ·r many vectors in M , until either the number of vectors at
distance at most r from s⃗∗

i is at least (1 − ε′)k′ or i ≥ r. ◀

5 Concluding Remarks

We studied the parameterized complexity of two fundamental problems pertaining to
incomplete data that have applications in data analytics. In most cases, we were able
to provide a complete landscape of the parameterized complexity of the problems w.r.t. the
parameters under consideration. It is worth noting that all algorithmic upper bounds obtained
in this paper can also be directly generalized to vectors (i.e., matrices) over a domain whose
size is bounded by the parameter value by using the encoding described by Eiben et al. [9].

Two important open questions ensue from our work, namely determining the parameterized
complexity of Rad-Cluster-Completion w.r.t. each of the two parameterizations k + λ

and r + λ. In particular, the restrictions of these two problems to complete data (i.e., λ = 0)
remain open, resulting in two important questions about the parameterized complexity of
Rad-Cluster parameterized by the cluster size k or the cluster radius r.
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Lyndon Arrays Simplified
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Abstract
A Lyndon word is a string that is lexicographically smaller than all of its proper suffixes (e.g., airbus
is a Lyndon word; amtrak is not a Lyndon word because its suffix ak is lexicographically smaller
than amtrak). The Lyndon array (sometimes called Lyndon table) identifies the longest Lyndon
prefix of each suffix of a string. It is well known that the Lyndon array of a length-n string can be
computed in O(n) time. However, most of the existing algorithms require the suffix array, which
has theoretical and practical disadvantages. The only known algorithms that compute the Lyndon
array in O(n) time without the suffix array (or similar data structures) do so in a particularly space
efficient way (Bille et al., ICALP 2020), or in an online manner (Badkobeh et al., CPM 2022). Due
to the additional goals of space efficiency and online computation, these algorithms are complicated
in technical detail. Using the main ideas of the aforementioned algorithms, we provide a simpler
and easier to understand algorithm that computes the Lyndon array in O(n) time.
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1 Related Work

A Lyndon word is a string that is lexicographically smaller than all of its proper suffixes
(e.g., airbus is a Lyndon word; amtrak is not a Lyndon word because its suffix ak is
lexicographically smaller than amtrak). The Lyndon array (sometimes called Lyndon table)
identifies the longest Lyndon prefix of each suffix of a string (a precise definition follows
later). It has both theoretical and practical applications related to repetitiveness in strings.
Most notably, it is a crucial component for showing that a length-n string contains less
than n maximal repetitions (the “Runs” theorem by Bannai et al. [3]), and it is useful for
computing all of these maximal repetitions in optimal time [8]. Other applications of the
Lyndon array include text compression and indexing [16].

There is a close relation [12] between the Lyndon array and the suffix array (one of
the most fundamental data structures in string algorithmics [15]). This inspired research
focused on computing the Lyndon array from the suffix array [9], computing both arrays
simultaneously [2, 13], and also using properties of the Lyndon array to compute the suffix
array [2, 4]. One of the conceptually simplest methods for computing the Lyndon array
combines the (inverse) suffix array with a folklore algorithm for the computation of nearest
smaller values [9, Algorithm ISA-NSV] (we will discuss this algorithm in Section 4).

However, using the suffix array is both a theoretical and practical drawback. From a
theoretical point of view, computing the suffix array of a length-n string over a general
ordered alphabet takes Ω(n lg n) time. This is due to the well-known information-theoretic
lower bound on the number of comparisons for sorting. We can only compute the suffix array
in optimal O(n) time, if the alphabet can be sorted in O(n) time (e.g., a polynomial integer
alphabet Σ = {1, . . . , nO(1)} on a word RAM of width w ≥ log2 n). This is not a concern
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in practice, where this requirement is virtually always met. Nevertheless, even the fastest
algorithms for the suffix array are relatively slow in practice, and the computation appears
to be somewhat excessive for the seemingly simpler task of computing the Lyndon array.

There are two known algorithms that compute the Lyndon array by mere symbol
comparisons, without using the suffix array, and in optimal O(n) time. The first one [5]
computes the Lyndon array using only O(1) words of additional working space, or the
succinct 2n-bit version of the Lyndon array using only o(n) bits of additional working space.
The second one [1] is an online algorithm that computes the Lyndon array from right to
left. The technical details of these algorithms are rather intricate, and many of the used
techniques are only needed due to the goals of space efficiency and online computation.

Contributions. We present a simple O(n) time and space algorithm that computes the
Lyndon array of a length-n string in the comparison model (i.e., the only elementary
operations allowed on symbols of the string are comparisons of the form less-greater-equal).
It requires no precomputed data structures (like the suffix array), and works by exploiting
the powerful combinatorial properties of Lyndon words. Many of the used techniques are
simpler versions of what was done in [5, 1]. The final trick used to achieve linear time is
similar to Manacher’s classic algorithm for longest palindromic substrings [14].

The proof of correctness is still rather technical, but the resulting algorithm is incredibly
easy to implement. The provided C++ implementation consists of not even 50 lines of code,
and uses neither external nor standard libraries.

2 Preliminaries

We use the interval notations [i, j] = [i, j + 1) = (i − 1, j] = (i − 1, j + 1) to denote the
integer set {i, i + 1, . . . , j} (or ∅ if i > j). A string x = x[1..n] over an ordered alphabet Σ
is a sequence x = x[1]x[2] · · ·x[n] of symbols drawn from some totally ordered set Σ. We
write |x| = n to denote the length of the string. The set Σ∗ contains all strings over Σ,
including the empty string ϵ of length 0. The concatenation of two strings x[1..n] and y[1..m]
is the sequence x[1] . . . x[n]y[1] . . . y[m], and simply written as xy (or x · y). The total order
of symbols from Σ induces the lexicographical order of strings from Σ∗. We say that x is
lexicographically smaller than y and write x ≺ y, if and only if either y = xw for some
non-empty string w, or x = urv and y = usw for (possibly empty) strings u, v, w and symbols
r < s. We write x ⪯ y to denote x = y ∨ x ≺ y.

For i, j ∈ [1, n] with i ≤ j, the substring x[i..j] = x[i..j + 1) = x(i− 1..j] = x(i− 1..j + 1)
of x[1..n] is the sequence x[i]x[i + 1] · · ·x[j]. If i > j, then x[i..j] equals the empty string
denoted by ϵ. If x[i..j] ̸= x then x[i..j] is a proper substring. A substring of the form x[1..j] is
called prefix of x, while x[i..n] is called suffix of x. We use the simplified notation xi = x[i..n]
for the suffix starting at position i. The longest common extension (LCE) of two suffixes
xi and xj is defined as the length of the longest common prefix of the suffixes, formally
lce(i, j) = max{|u| | u, v, w ∈ Σ∗ ∧ xi = uv ∧ xj = uw}.

Sentinel Symbols. Throughout this work, we often compare two suffixes xi, xj of the same
string x[1..n]. The special case where one suffix is a prefix of another, e.g., i < j and xi =
xjxi+|xj |, often complicates the notation of definitions and algorithms. This can be avoided
by assuming that the text starts and ends with special sentinel symbols x[1] = # and x[n] = $.
The sentinels are smaller than all other symbols, i.e., ∀k ∈ (1, n) : x[k] > $ > #. In definitions
and lemmas we emphasize the presence of sentinels by writing x = x[1..n] = #x(1..n)$. (Note
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that n is the length of the string including the sentinels.) The usage of sentinels is of purely
cosmetic nature. Particularly, they do not affect the lexicographical order of suffixes, i.e., it
holds x[i..n)$ ≺ x[j..n)$ if and only if x[i..n) ≺ x[j..n). In practice, we can add sentinels to
any string by either physically prepending and appending them, or by using an appropriate
wrapper function1 when accessing the string.

Lyndon Words and Arrays

There are multiple equivalent definitions of Lyndon words. We use Duval’s characterization
based on the lexicographical order of suffixes:

▶ Definition 1 ([7, Proposition 1.2]). A string x[1..n] is a Lyndon word, if and only if it is
lexicographically smaller than all of its proper non-empty suffixes, i.e., ∀i ∈ [2, n] : x ≺ xi.

The Lyndon array of a string and its close relatives, the nearest smaller suffix arrays,
capture the combinatorial structure of Lyndon substrings. We denote the Lyndon array by
λ, which was also done in [5, 9]. Other notations are Lyn in [6, 1], l in [3], and L in [10, 11].

▶ Definition 2. The Lyndon array λ[1..n], the previous smaller suffix array prev[1..n], and
the next smaller suffix array next[1..n] of a string x = #x(1..n)$ are defined as:

(i) ∀i ∈ [1, n] : λ[i] = max{m | m ∈ [1, n− i + 1] ∧ x[i..i + m) is a Lyndon word },
i.e., x[i..i + λ[i]) is the longest Lyndon prefix of suffix xi

(ii) ∀i ∈ (1, n) : prev[i] = max{j | j ∈ [1, i) ∧ xj ≺ xi}, prev[1] = 0, prev[n] = 1,
i.e., xprev[i] is the nearest suffix starting left of i that is lex. smaller than xi

(iii) ∀i ∈ (1, n) : next[i] = min{j | j ∈ (i, n] ∧ xj ≺ xi}, next[1] = n + 1, next[n] = n + 1,
i.e., xnext[i] is the nearest suffix starting right of i that is lex. smaller than xi

Figure 1a shows an example of these arrays. In drawings, we use a directed edge from
position i to position j of a string to indicate that either prev[i] = j (whenever the edge is
directed from right to left) or next[i] = j (whenever the edge is directed from left to right).
We refer to these edges as PSS and NSS edges. It is no coincidence that in the example
it holds next[i] = i + λ[i] for all i. In fact, this is a fundamental combinatorial property
of the Lyndon array, which was first (indirectly in a different form) shown by Hohlweg
and Reutenauer [12]. Subsequently, Franek et al. [9, Lemma 15] and Franek and Liut [11,
Lemma 1]2 proved the property in the form stated below.

▶ Lemma 3 ([12, 9, 11]). Let x = #x(1..n)$ be a string with Lyndon array λ and next
smaller suffix array next, then it holds ∀i ∈ [1, n] : next[i] = i + λ[i].

Another property shown by Bille et al. [5] relates prev and Lyndon words:

▶ Lemma 4 ([5, Lemma 4]). Let x = #x(1..n)$ be a string with previous smaller suffix array
prev. For every i ∈ [2, n], the string x[prev[i]..i) is a Lyndon word.

1 see, e.g., lines 4–5 in file https://github.com/jonas-ellert/simple-lyndon/blob/main/lyndon.hpp
2 Lemma 1 (b) in [11] should state “x[i..j] is proto-Lyndon” rather than “x[i..n] is proto-Lyndon”
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3 Key Properties of Nearest Smaller Suffixes

#
1

a
2

m
3

t
4

r
5

a
6

k
7

a
8

i
9

r
10

b
11

u
12

s
13

$
14

14 4 3 1 1 2 1 6 2 1 3 1 1 1

15 6 6 5 6 8 8 14 11 11 14 13 14 15
0 1 2 3 3 1 6 1 8 9 8 11 11 1

x =

λ

prev
next

(a) Example of arrays λ, next and prev.

x =

ℓ1
↓

ℓ2
↓

r1
↓

r2
↓

# $

E

(b) Drawing for Lemma 5.
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(d) Drawing for Lemma 7(ii).

x = u

ℓ = prev[k]
↓

u

k
↓

w

r = next[k]
↓

s
w t w t

(e) Drawing for Lemma 7(iii).

Figure 1 Examples and technical drawings for Sections 2 and 3. PSS edges are solid and red.
NSS edges are dashed and blue. Dotted black edges are either NSS or PSS edges.

In this section, we show combinatorial properties of prev and next that are essential for
all algorithms presented in this paper. Some of the properties have been shown (in a similar
form) in [5, 1]. Proving Lemmas 5–7 is helpful for truly understanding the mechanisms
at play. The reader is encouraged to do so on their own, with the help of the provided
supplementary drawings. The full proofs are given in Section 7.

Naming of variables. Throughout the remainder of the paper, we use the variables ℓ and r

to denote positions of the string. The intended meaning of these variables is left and right,
i.e., whenever we use ℓ and r it holds ℓ < r.

PSS and NSS edges are intersection-free. The first property that we show is that, when
drawn underneath the text as in the previous example, none of the PSS and NSS edges
intersect. This is formally expressed by the following lemma (see also Figure 1b).

▶ Lemma 5. Let x = #x(1..n)$ be a string with previous and next smaller suffix array prev
and next. Let ℓ1, ℓ2, r1, r2 ∈ [1, n] be indices with either next[ℓ1] = r1 or prev[r1] = ℓ1, and
also either next[ℓ2] = r2 or prev[r2] = ℓ2. Then it does not hold ℓ1 < ℓ2 < r1 < r2.
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Chains of previous smaller suffixes. For arbitrary index r ∈ [1, n] and integer e ≥ 0, we
recursively define prev0[r] = r and preve+1[r] = preve[prev[r]]. We write ℓ = prev∗[r] to denote
that there is some integer e ≥ 0 with ℓ = preve[r]. Note that generally 1 = prev∗[r] (due to
the sentinel x[1] = #) and r = prev∗[r]. In drawings, ℓ = preve[r] means that there is a chain
of PSS edges from r to ℓ. The following lemma states useful properties of PSS chains, which
we will later use to compute the arrays prev and next. The lemma is visualized in Figure 1c.

▶ Lemma 6. Let x = #x(1..n)$ be a string with previous and next smaller suffix arrays prev
and next, and let ℓ, r ∈ [1, n] be arbitrary indices.

(i) It holds prev[r] = prev∗[r − 1].
(ii) It holds next[ℓ] = r if and only if ℓ = prev∗[r − 1] and ℓ > prev[r].

Finally, for some indices that are related via next and prev, we can deduce LCEs. The
following lemma is visualized in Figures 1d and 1e.

▶ Lemma 7. Let x = #x(1..n)$ be a string with previous and next smaller suffix arrays prev
and next. Let k ∈ (1, n) be an arbitrary index, and let ℓ = prev[k] and r = next[k].

(i) If lce(ℓ, k) = lce(k, r), then lce(ℓ, r) ≥ lce(k, r) and either prev[r] = ℓ or next[ℓ] = r.
(ii) If lce(ℓ, k) < lce(k, r), then lce(ℓ, r) = lce(ℓ, k) and prev[r] = ℓ.
(iii) If lce(ℓ, k) > lce(k, r), then lce(ℓ, r) = lce(k, r) and next[ℓ] = r.

4 Algorithms to Compute the Lyndon Array

Due to Lemma 3, instead of designing algorithms that compute the Lyndon array λ, we
can design algorithms that compute the next smaller suffix array next. This has been done,
e.g., by Bille et al. [5] and Crochemore et al. [1], and is also the general approach used in
this paper. All of the presented algorithms are based on a simple folklore algorithm for
nearest smaller values, where instead of comparing values we lexicographically compare
suffixes (Algorithm 1(a)). We obtain three different versions of this algorithm depending
on how the lexicographical comparisons are implemented: Algorithm 1(b) uses the inverse
suffix array and is only shown because it is a standard solution for computing the Lyndon
array. Algorithm 1(c) implements lexicographical comparisons with naively computed LCEs.
Algorithm 1(d) refines the LCE computation such that it is more time efficient. In the
remainder of this section, we explain each version of the algorithm in detail.

Algorithms 1(c) and 1(d) require super-linear time, but they can be seen as incremental
stepping stones towards the final solution. In Section 5, we modify Algorithm 1(d) such that
it runs in O(n) time.

Algorithm 1: The general approach. Due to the sentinels, we can directly assign prev[1],
next[1], and next[n] (lines 1–2). We compute the arrays next and prev in n− 1 iterations of a
simple for-loop (line 4). The goal of iteration r is to compute prev[r], while also identifying
all indices ℓ with next[ℓ] = r. A simple strategy for this is dictated by Lemma 6, which states
that all the relevant indices lie on the chain of PSS edges that starts at position r − 1. We
thus inspect the positions ℓ = prev∗[r − 1] one at a time, starting with ℓ = r − 1 (line 5). As
long as xℓ ≻ xr, we assign next[ℓ]← r, and then continue with the next index ℓ← prev[ℓ] on
the chain of PSS edges (lines 6–8). As soon as xℓ ≺ xr, we break out of the inner loop and
finish the current iteration of the outer loop by assigning prev[r]← ℓ (line 9). (The sentinel
x[1] = # ensures that 1 = prev∗[r] and x1 ≺ xr; thus we are guaranteed to reach some ℓ with
xℓ ≺ xr eventually.) The correctness of the algorithm follows directly from Lemma 6. An
example of an outer loop iteration is provided in Figure 2 (the arrays lexrank, plce, and nlce
will be relevant later and can be ignored for now).

ESA 2022
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Algorithm 1 Various algorithms for computing nearest smaller suffixes.

Require: string x = x[1..n] = #x(i..n)$
Ensure: previous and next smaller suffix arrays prev and next
1: prev[1..n]← new array with prev[1] = 0
2: next[1..n]← new array with next[1] = next[n] = n + 1

(a) Folklore

3: —
4: for r = 2 to n do
5: ℓ← r − 1
6: while xℓ ≻ xr do
7: next[ℓ]← r

8: ℓ← prev[ℓ]
9: prev[r]← ℓ

(b) ISA-NSV

3: lexrank← inverse suffix array of x

4: for r = 2 to n do
5: ℓ← r − 1
6: while lexrank[ℓ] > lexrank[r] do
7: next[ℓ]← r

8: ℓ← prev[ℓ]
9: prev[r]← ℓ

(c) Naive LCE-NSS

3: plce[1..n]← array filled with 0
4: nlce[1..n]← array filled with 0

5: for r = 2 to n do
6: ℓ← r − 1
7: m← lce-scan(ℓ, r)

8: while x[ℓ + m] > x[r + m] do
9: next[ℓ], nlce[ℓ]← r, m

10: m← lce-scan(prev[ℓ], r)
11: —
12: —
13: —

14: ℓ← prev[ℓ]

15: prev[r], plce[r]← ℓ, m

(d) Improved LCE-NSS

3: plce[1..n]← array filled with 0
4: nlce[1..n]← array filled with 0

5: for r = 2 to n do
6: ℓ← r − 1
7: m← lce-scan(ℓ, r)

8: while x[ℓ + m] > x[r + m] do
9: next[ℓ], nlce[ℓ]← r, m

10: if m = plce[ℓ] then
11: m← lce-extend(prev[ℓ], r, m)
12: else if m > plce[ℓ] then
13: m← plce[ℓ]

14: ℓ← prev[ℓ]

15:

to achieve O(n) time, substitute:
line 7: m← smart-lce(ℓ, r, 0)
line 11: m← smart-lce(prev[ℓ], r, m)
(see Algorithm 2)

prev[r], plce[r]← ℓ, m

(e) LCE Functions for (c) and (d)

function lce-extend(ℓ, r, m)
while x[ℓ + m] = x[r + m] do

m← m + 1
return m

function lce-scan(ℓ, r)
return lce-extend(ℓ, r, 0)
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Figure 2 For any of the Algorithms 1(a)–(d), we perform six suffix comparisons in outer loop
iteration r = 22. We evaluate xℓ ≻ xr for each of the values ℓ = 21, 20, 17, 12, 5, 2 (precisely in this
order). For the first five values ℓ = 21, 20, 17, 12, 5, we enter the body of the inner loop and thus
assign next[ℓ]← 22. We break out of the inner loop by discovering that x2 ≺ x22, after which we
assign prev[22]← 2. By design of the algorithm, and following Lemma 6, the values assumed by ℓ

form a consecutive chain of PSS edges starting at position r − 1 = 21 (dashed edges).

Whenever we perform the lexicographical comparison of suffixes in line 6, we correctly
assign either next[ℓ] ← r or prev[r] ← ℓ immediately afterwards. Since each entry of prev
and next gets assigned exactly once, we perform exactly 2n − 3 suffix comparisons; we
enter the body of the inner loop exactly n − 2 times (once per entry of next, but not for
next[1] = next[n] = n + 1), and break out of the inner loop exactly n − 1 times (once per
outer loop iteration, or equivalently once per entry of prev, but not for prev[1] = 0). It follows
that the algorithm takes O(n) time, plus the time needed to perform the suffix comparisons.
Next, we discuss three possible implementations of these comparisons.

Algorithm 1(b): Using the inverse suffix array. The inverse suffix array lexrank[1..n]
of x[1..n] is the unique permutation of [1, n] that satisfies ∀ℓ, r ∈ [1, n] : xℓ ≺ xr ⇐⇒
lexrank[ℓ] < lexrank[r] (an example is provided in Figure 2). Algorithm 1(b) precomputes the
inverse suffix array, and then uses it to perform the lexicographical suffix comparisons. This
idea was first proposed by Franek et al. [9, Algorithm NSVISA]. As discussed in Section 1,
the precomputation takes O(n lg n) time for general ordered alphabets, or O(n) time for
linearly-sortable alphabets. The remainder of the algorithm takes O(n) time because we
perform O(n) suffix comparisons, each of which takes constant time when using lexrank.

Algorithm 1(c): Using LCEs with simple scanning. If ℓ ̸= r and x[n] = $, then it holds
xℓ ≺ xr ⇐⇒ x[ℓ + lce(ℓ, r)] < x[r + lce(ℓ, r)] (both of the conditions are satisfied for the
comparisons performed by our algorithms). The LCE can be computed by simple scanning,
as shown in Algorithm 1(e). Due to the sentinel x[n] = $, no suffix is prefix of another
suffix, and we always find a mismatching symbol eventually. Algorithm 1(c) implements the
lexicographical suffix comparisons with LCEs (lines 7, 8, and 10). Additionally, it stores the
computed LCEs in two arrays nlce and plce (lines 3–4, 9, and 15), where after termination it
holds plce[i] = lce(prev[i], i) and nlce[i] = lce(i, next[i]) for all i ∈ (1, n). These arrays are
of independent interest. For example, nlce is useful when computing maximal repetitions [8].

Computing some lce(ℓ, r) by scanning takes lce(ℓ, r) + 1 symbol comparisons: lce(ℓ, r)
comparisons with outcome “equal”, and one comparison with outcome “not equal”. For the
example iteration in Figure 2, we compute lce(21, 22) = 0, lce(20, 22) = 1, lce(17, 22) = 2,

ESA 2022



48:8 Lyndon Arrays Simplified

lce(12, 22) = 2, lce(5, 22) = 6 and lce(5, 22) = 2, and thus we perform 19 symbol
comparisons. In the worst case, a single LCE scan takes O(n) time, and thus Algorithm 1(c)
takes O(n2) time (the bound is tight, e.g., for the string x = #an−2$). If the string x is
drawn uniformly at random from the set of length-n strings over Σ, where |Σ| > 1, then the
expected running time of Algorithm 1(c) is O(n) (see [1, Theorem 7]).

Algorithm 1(d): Using LCEs with improved scanning. In a single outer loop iteration
r of Algorithm 1(c), we may compute lce(ℓ, r) for multiple different values of ℓ. So far,
we always scanned each new LCE entirely from scratch (line 10). For many of the LCEs,
we can avoid (a part of) the scan by utilizing Lemma 7. This is done in Algorithm 1(d),
which is identical to Algorithm 1(c), except for the highlighted computation of the LCE
in lines 10–13. At the point in time at which we reach line 10, let k′ = ℓ, ℓ′ = prev[ℓ], and
r′ = r. Note that ℓ′ = prev[k′] and r′ = next[k′], and thus we can use ℓ′, k′, and r′ to invoke
Lemma 7. We already computed lce(ℓ′, k′) = plce[k′] (due to the iteration order of the
algorithm) and lce(k′, r′) = nlce[k′] = m (this is the most recently computed LCE). Now
we compute lce(ℓ′, r′) according to the cases of Lemma 7:

If lce(ℓ′, k′) = lce(k′, r′) then Lemma 7(i) implies lce(ℓ′, r′) ≥ lce(k′, r′). We compute
lce(ℓ′, r′) by scanning, but we skip m = lce(k′, r′) symbol comparisons (lines 10–11).
If lce(ℓ′, k′) < lce(k′, r′) then Lemma 7(ii) implies lce(ℓ′, r′) = lce(ℓ′, k′). Since
plce[k′] = lce(ℓ′, k′), we can simply assign m ← plce[k′] (lines 12–13). Note that
Lemma 7(ii) also implies prev[r′] = ℓ′, which means that we will immediately break out
of the inner loop and finish the current iteration of the outer loop.
If lce(ℓ′, k′) > lce(k′, r′) then Lemma 7(iii) implies lce(ℓ′, r′) = lce(k′, r′). It already
holds m = lce(k′, r′), and thus there is no need to do anything.

For the example iteration in Figure 2, we entirely skip the computation of lce(12, 22) due
to Lemma 7(iii), as well as the computation of lce(2, 22) due to Lemma 7(ii). Additionally, we
skip two symbol comparisons when computing lce(5, 22), and one symbol comparison when
computing lce(17, 22). The number of symbol comparisons for iteration 22 is 10 (significantly
less than the 19 comparisons needed by Algorithm 1(c)). However, Algorithm 1(d) still takes
O(n2) time in the worst case. In the next section, we slightly modify the algorithm such
that it achieves linear time.

A note on the space complexity. Algorithms 1(c) and 1(d) require 4n ⌈log2 n⌉ bits to store
the arrays next, prev, nlce and plce. For a small practical improvement, it is possible to
remove the array prev. This is because the only access to prev[ℓ] occurs at the same time at
which we assign next[ℓ] (see lines 9 and 14). Thus, we only need to maintain access to the
values prev[ℓ] for positions with uninitialized next[ℓ], which means that we can use a single
array for storing both PSS and NSS information. The total working space (without the input
string) then becomes 3n ⌈log2 n⌉+O(lg n) bits.

5 Achieving Linear Time

In order to achieve linear time, we use the function smart-lce (Algorithm 2) to more
efficiently compute LCEs. A call to smart-lce(ℓ, r, m) means that we want to compute
lce(ℓ, r), and we have already established lce(ℓ, r) ≥ m. We modify Algorithm 1(d) by
replacing line 7 with m← smart-lce(ℓ, r, 0), and line 11 with m← smart-lce(prev[ℓ], r, m)
(and leave everything else unchanged). In the remainder of the section, we show that
smart-lce works correctly, and that the total time spent for all invocations of smart-lce
is O(n). Then, it directly follows that the modified version of Algorithm 1(d) takes O(n)
time. Note that Algorithm 2 is tailored to (and thus only works as a part of) Algorithm 1(d).
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Algorithm 2 Efficient LCE computation (only works in conjunction with Algorithm 1(d)).

Require: string x = x[1..n] = #x(i..n)$ with x[ℓ..ℓ + m) = x[r..r + m).
Ensure: longest common extension lce(ℓ, r)

1: global variable c← 0
2: global variable d← 0
3: function smart-lce(ℓ, r, m)
4: if r + m < c then
5: if next[ℓ− d] = r − d then m← nlce[ℓ− d]
6: if next[ℓ− d] = r − d thenelse m← plce[r − d]
7: if r + m < c then return m

8: m← c− r

9: while x[ℓ + m] = x[r + m] do
10: m← m + 1

11: c, d← r + m, r − ℓ

12: return m

In the following description, whenever we use the variables ℓ, r, and m, we mean the
arguments of the function smart-lce (rather than the identically named variables from
Algorithm 1(d)). Now we explain how the new LCE function works. Generally speaking, it
computes LCEs with two different methods: naive scanning (as done before), and deduction
from previously computed LCEs. Sometimes, a combination of both is necessary. Both
methods rely on a global variable c (persistent between the function calls) that stores at all
times the rightmost position of the string that we have already inspected (line 2).

Scanning LCEs. We start by explaining the simpler method of naive scanning. If at the
beginning of the function call it holds r + m ≥ c (line 4), then we simply scan the remainder
of the LCE (lines 9–10; identical to what we did in lce-extend). Let m′ be the initial value
of m before the scan, and let m′′ = lce(ℓ, r) be the final value of m after performing the
scan. After the scan, the rightmost inspected position is r + m′′, and we update c accordingly
(line 11; the variable d is not relevant for now). Since we only perform the scan if r + m′ ≥ c,
the assignment c ← r + m′′ increases c by at least m′′ − m′. Note that m′′ − m′ is also
exactly the number of times we execute line 10. Since c never exceeds n, we execute line 10
no more than n times during all the calls to smart-lce that initially satisfy r + m ≥ c. It
follows that, for all of these calls together, we spend at most O(n) time.

Deducing LCEs. If at the beginning of the function call it holds r + m < c, then we try
to deduce lce(ℓ, r) from previously computed LCEs (lines 4–8). Let rc be the rightmost
position for which we already computed some lce(ℓc, rc) with rc + lce(ℓc, rc) = c (such a
position must exist because otherwise we would not have inspected x[c] yet). The global
variable d contains at all times the distance rc − ℓc (line 2; we update d together with c, see
line 11). Let ℓ∗ = ℓ− d and r∗ = r − d. The example in Figure 3 helps with understanding
the notation. Later, we will show that (as suggested by the examples)

(i) it holds rc ≤ ℓ < r < c, and thus ℓc ≤ ℓ∗ < r∗ < ℓc + lce(ℓc, rc), and
(ii) either prev[r∗] = ℓ∗ (and thus plce[r∗] = lce(ℓ∗, r∗))

or next[ℓ∗] = r∗ (and thus nlce[ℓ∗] = lce(ℓ∗, r∗)).

ESA 2022
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# a b a b c a b b c c a b b d a b a b c a b b c c a b b c c $
1 2 3 4 5 6 7 8 9 0 1 2 3 1 5 16 7 18 9 0 21 2 3 4 5 6 7 8 29 0 1

1 ℓc 3 ℓ∗ 5 6 r∗ 8 9 0 1 2 3 1 5 rc 7 ℓ 9 0 r 2 3 4 5 6 7 8 c 0 1

(a)

# a b a d a c c c a d a b a d a $
1 2 3 4 5 6 7 8 9 0 11 2 3 1 15
1 2 3 4j−(i−j) 6 j 8 i 0 1 5 c

rad[5]=2 rad[11]=2

rad[8]=6

(b)

# a b a b c a b b c c a b b d a b a b c a b b c c a b b c c $
1 2 3 4 5 6 7 8 9 0 1 12 3 14 5 16 7 8 9 0 21 2 3 4 5 26 7 8 29 0 1

1 ℓc 3 4 5 6 ℓ∗ 8 9 0 1 r∗ 3 1 5 rc 7 8 9 0 ℓ 2 3 4 5 r 7 8 c 0 1

(c)

# a b a d a c c c a d a b a d a $
1 2 3 4 5 6 7 8 9 0 11 2 13 1 15
3 4j−(i−j)6 j 8 i 5 c

rad[3]=2 rad[8]≥2

rad[8]=6

(d)

Figure 3 Deducing LCEs with Algorithm 2 in (a) and (c), and deducing longest palindromes
with Manacher’s algorithm in (b) and (d). Boxes of equal color indicate equal substrings. In (b) and
(d), boxes of equal color sometimes indicate substrings that are the reverse of each other.

When deducing LCEs, we first use (ii) to obtain lce(ℓ∗, r∗) (lines 5–6). Note that, by the
definition of ℓ∗ and r∗, the relative positions of ℓ∗ and r∗ within x[ℓc..ℓc + lce(ℓc, rc)) are
the same as the relative positions of ℓ and r within x[rc..rc + lce(ℓc, rc)) (and the positions
are indeed within these intervals due to (i)). If r + lce(ℓ∗, r∗) < c then

x[r..r + lce(ℓ∗, r∗)] = x[r∗..r∗ + lce(ℓ∗, r∗)] and
x[ℓ..ℓ + lce(ℓ∗, r∗)] = x[ℓ∗..ℓ∗ + lce(ℓ∗, r∗)],

where both equalities follow from x[ℓc..ℓc + lce(ℓc, rc)) = x[rc..rc + lce(ℓc, rc)). This
implies lce(ℓ, r) = lce(ℓ∗, r∗), and we return lce(ℓ∗, r∗) in constant time (line 7). Since
it holds r + lce(ℓ, r) < c, there is no need to update c and d. In Figure 3a, we have
21 + lce(4, 7) = 23 < 29 = c, and thus lce(18, 21) = lce(4, 7) = 2.

If, however, r + lce(ℓ∗, r∗) ≥ c then we cannot immediately deduce the exact value of
lce(ℓ, r) (as is the case in Figure 3c). We can still obtain some useful information because of

x[r..r + c− r) = x[r∗..r∗ + c− r) = x[ℓ∗..ℓ∗ + c− r) = x[ℓ..ℓ + c− r),

where the first and the third equality follow from x[ℓc..ℓc+lce(ℓc, rc)) = x[rc..rc+lce(ℓc, rc)),
and the second equality follows from r + lce(ℓ∗, r∗) ≥ c, which is equal to lce(ℓ∗, r∗) ≥ c− r.
The equation implies lce(ℓ, r) ≥ c− r, and we update m accordingly (line 8). In Figure 3c,
we have 26 + lce(7, 12) = 29 = c, and thus lce(21, 26) ≥ 29− 26 = 3.

We compute the remaining part of lce(ℓ, r) by scanning (lines 9–10), and then update
c and d (line 11). Since we assign m ← (c − r) immediately before starting the scan, we
can use the same argument as in the previous paragraph about scanning LCEs: For every
symbol comparison of the scan (except for the last one), we will increase c by one. Therefore,
the total number of symbol comparisons for all calls of smart-lce is O(n). In Figure 3c,
the scan extends the LCE by two more positions, and we obtain lce(21, 26) = 5. We then
have to update c← 26 + 5 = 31 and d← 26− 21 = 5.

The correctness of the algorithm follows from its description and the properties (i) and
(ii), which we will show in the next paragraphs.
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Showing Property (i). The property states that, if we call smart-lce(ℓ, r, m) with r+m <

c, then rc ≤ ℓ < r < c. Since trivially ℓ < r ≤ r + m < c, we only have to show rc ≤ ℓ. The
property is readily proven for the call smart-lce(ℓ, r, 0) in line 7 of Algorithm 1(d). It holds
ℓ = r − 1, and this is the first LCE that we compute between r and any smaller index. Since
we already computed lce(ℓc, rc), it holds r > rc and ℓ = r − 1 ≥ rc.

Now we consider the call smart-lce(ℓ, r, m) in line 11. As seen in the description of
Algorithm 1(d), for this call it holds m = lce(ℓ, k) = lce(k, r), where k ∈ (ℓ, r) with
prev[k] = ℓ and next[k] = r. For every h ∈ (ℓ, r), the definition of prev and next implies that
xh ⪰ xk ≻ xr. This also means that m = lce(k, r) ≥ lce(h, r). If r = rc then, because we
already computed lce(ℓc, r), and due to the iteration order of the algorithm, it holds ℓ < ℓc.
Then, however, ℓc ∈ (ℓ, r) and thus m = lce(k, r) ≥ lce(ℓc, r) = c − r, which contradicts
r + m < c. We have shown that r > rc, which also implies r∗ > ℓc. If ℓ < r∗ then r∗ ∈ (ℓ, r)
and thus m ≥ lce(r∗, r) = c− r, which contradicts r + m < c. It follows that ℓ ≥ r∗ > ℓc.
Finally, if ℓ ∈ (ℓc, rc) then ℓc < ℓ < rc < r, which contradicts Lemma 5. The only remaining
possibility is ℓ ≥ rc, which is what we wanted to show.

Showing Property (ii). The property states that either prev[r∗] = ℓ∗, or next[ℓ∗] = r∗. By
the definition of ℓ∗ and r∗, and due to (i) and x[ℓc..ℓc + lce(ℓc, rc)) = x[rc..rc + lce(ℓc, rc)),
it holds x[ℓ..r) = x[ℓ∗..r∗). Since we want to compute lce(ℓ, r), it holds either next[ℓ] = r

or prev[r] = ℓ. Therefore, either Lemma 3 or Lemma 4 implies that x[ℓ..r) = x[ℓ∗..r∗) is a
Lyndon word. Due to Lemma 3, we know that next[ℓ∗] ≥ r∗. If next[ℓ∗] = r∗ or prev[r∗] = ℓ∗,
then there is nothing left to show. Thus, assume that next[ℓ∗] > r∗ and prev[r∗] > ℓ∗ (it
cannot be that prev[r∗] < ℓ∗ because then prev[r∗] < ℓ∗ < r∗ < next[ℓ∗] contradicts Lemma 5).
Let pr = r − (r∗ − prev[r∗]). Due to Lemma 4, the substring x[prev[r∗]..r∗) = x[pr..r) is
a Lyndon word, and Lemma 3 implies next[pr] ≥ r. Since pr ∈ (ℓ, r) it holds next[pr] ≤ r

(otherwise we contradict Lemma 5), and the only possible option is next[pr] = r.
We have shown that next[pr] = r and thus xpr ≻ xr. By the definition of prev, it also

holds xprev[r∗] ≺ xr∗ . Since we chose rc to be the rightmost index with rc + lce(ℓc, rc) = c, it
holds r + lce(pr, r) < c (otherwise we would have updated rc already). Therefore, we have

x[prev[r∗]..prev[r∗] + lce(pr, r)] = x[pr..pr + lce(pr, r)], and
x[r∗..r∗ + lce(pr, r)] = x[r..r + lce(pr, r)].

This, however, means that xprev[r∗] ≺ xr∗ ⇐⇒ xpr
≺ xr, which contradicts our previous

observation that xpr ≻ xr and xprev[r∗] ≺ xr∗ . It follows that the assumption next[ℓ∗] > r∗
and prev[r∗] > ℓ∗ was wrong, and it holds next[ℓ∗] = r∗ or prev[r∗] = ℓ∗.

6 Similarity to Manacher’s Algorithm

In this section, we want to briefly highlight the similarity between the technique of Section 5
and Manacher’s algorithm for computing maximal palindromes [14]. For simplicity, we only
consider odd palindromes. An odd palindrome of radius |w|+ 1 is a string of the form wsw,
where s is a symbol, w is some possibly empty string, and w is the reverse string of w defined
by |w| = |w| and ∀i ∈ [1, |w|] : w[i] = w[|w| − i + 1]. For a string x[1..n], the presented
version of Manacher’s algorithm computes an array rad[1..n], where ∀i ∈ [1, n] :

rad[i] = max{m | m ∈ [1, min(i, n− i + 1)] and x(i−m..i + m) is an odd palindrome}.

If we compute the entries of rad in left-to-right order, then we can sometimes fully or partially

ESA 2022
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Algorithm 3 Manacher’s algorithm for odd palindromes.

Require: string x = x[1..n] = #x(1..n)$.
Ensure: array rad containing the radii of the

longest odd palindromes

1: rad[1..n]← new array initialized
with rad[1] = rad[n] = 1

2: global variable c← 0
3: global variable j ← 0

4: for i = 2 to n− 1 do
5: rad[i]← smart-palindrome(i, 1)

1: function smart-palindrome(i, m)
2: if i + m < c then
3: m← rad[j − (i− j)]
4: if i + m < c then return m

5: m← c− i

6: while x[i−m] = x[i + m] do
7: m← m + 1

8: c, j ← i + m, i

9: return m

deduce an entry, see Figures 3b and 3d. This is highly similar to our observations for LCEs
in Figures 3a and 3c. A possible implementation of Manacher’s algorithm is provided in
Algorithm 3. It computes rad from left to right, while keeping track of the rightmost inspected
position of the string. Whenever possible, the function smart-palindrome partially or fully
deduces rad[i]. Note that the functions smart-lce and smart-palindrome are structurally
identical and use the same algorithmic ideas. Due to space constraints, we omit further
details on how and why Algorithm 3 functions as intended, and why it takes O(n) time.
(However, we invite the reader to produce a proof of correctness on their own. This is much
easier for Algorithm 3 than for Algorithm 1(d) and Algorithm 2. Particularly, it requires no
complicated technicalities like properties (i) and (ii) in Section 5.)

7 Proofs for Section 3

▶ Lemma 5. Let x = #x(1..n)$ be a string with previous and next smaller suffix array prev
and next. Let ℓ1, ℓ2, r1, r2 ∈ [1, n] be indices with either next[ℓ1] = r1 or prev[r1] = ℓ1, and
also either next[ℓ2] = r2 or prev[r2] = ℓ2. Then it does not hold ℓ1 < ℓ2 < r1 < r2.

Proof. Assume ℓ1 < ℓ2 < r1 < r2. Since ℓ2 ∈ (ℓ1, r1) and either next[ℓ1] = r1 or prev[r1] = ℓ1,
Definition 2 implies xℓ2 ≻ xr1 . However, it also holds r1 ∈ (ℓ2, r2) and either next[ℓ2] = r2 or
prev[r2] = ℓ2. Thus, Definition 2 also implies xℓ2 ≺ xr1 , which is a contradiction. ◀

▶ Lemma 6. Let x = #x(1..n)$ be a string with previous and next smaller suffix arrays prev
and next, and let ℓ, r ∈ [1, n] be arbitrary indices.

(i) It holds prev[r] = prev∗[r − 1].
(ii) It holds next[ℓ] = r if and only if ℓ = prev∗[r − 1] and ℓ > prev[r].

Proof. For (i), assume that prev[r] ̸= prev∗[r− 1]. Then there must be some r′ = prev∗[r− 1]
with prev[r] ∈ (prev[r′], r′). However, prev[r′] < prev[r] < r′ < r contradicts Lemma 5.

For (ii), we show both directions separately. Assume that next[ℓ] = r then ∀k ∈ [ℓ, r) :
xk ≻ xr, which means prev[r] /∈ [ℓ, r) and thus prev[r] < ℓ. Assume that ℓ ̸= prev∗[r−1], then
there must be some r′ = prev∗[r−1] with ℓ ∈ (prev[r′], r′). However, then prev[r′] < ℓ < r′ < r

and Lemma 5 contradict the assumption that next[ℓ] = r. Thus ℓ ̸= prev∗[r − 1].
For the counter direction, assume that prev[r] < ℓ and ℓ = prev∗[r − 1]. By the definition

of prev, and due to ℓ ∈ (prev[r], r), it holds xℓ ≻ xr. It is easy to see that ℓ = prev∗[r − 1]
implies ∀k ∈ (ℓ, r) : xk ≻ xℓ (when following a chain of PSS edges, by definition of prev, the
visited suffixes are lexicographically decreasing, and all suffixes skipped by a PSS edge are
lexicographically larger). From xℓ ≻ xr and ∀k ∈ (ℓ, r) : xk ≻ xℓ follows next[ℓ] = r. ◀



J. Ellert 48:13

▶ Lemma 7. Let x = #x(1..n)$ be a string with previous and next smaller suffix arrays prev
and next. Let k ∈ (1, n) be an arbitrary index, and let ℓ = prev[k] and r = next[k].

(i) If lce(ℓ, k) = lce(k, r), then lce(ℓ, r) ≥ lce(k, r) and either prev[r] = ℓ or next[ℓ] = r.
(ii) If lce(ℓ, k) < lce(k, r), then lce(ℓ, r) = lce(ℓ, k) and prev[r] = ℓ.
(iii) If lce(ℓ, k) > lce(k, r), then lce(ℓ, r) = lce(k, r) and next[ℓ] = r.

Proof. We start with (i). Definition 2 implies ∀i ∈ (ℓ, k) ∪ (k, r) : xk ≺ xi. Since ℓ = prev[k]
we have xℓ ≺ xk and thus ∀i ∈ (ℓ, r) : xℓ ≺ xi. Analogously, due to r = next[k] we have
∀i ∈ (ℓ, r) : xr ≺ xi. Thus, if xℓ ≺ xr then prev[r] = ℓ, and if xℓ ≻ xr then next[ℓ] = r.

For showing (ii), let u = x[ℓ..ℓ + lce(ℓ, k)), s = x[ℓ + lce(ℓ, k)], and t = x[k + lce(ℓ, k)].
By the definition of LCEs, it holds s ̸= t. Due to ℓ = prev[k] we have us · xℓ+|us| = xℓ ≺
xk = ut · xk+|ut|, and therefore s < t. Because of lce(ℓ, k) < lce(k, r), suffix xr has prefix
ut. Thus, it holds xℓ = us · xℓ+|us| ≺ ut · xr+|ut| = xr. Due to (i), this means next[ℓ] = r.
The proof of (iii) works analogously to the one for (ii). ◀
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Abstract
We study how to utilize (possibly erroneous) predictions in a model for computing under uncertainty
in which an algorithm can query unknown data. Our aim is to minimize the number of queries needed
to solve the minimum spanning tree problem, a fundamental combinatorial optimization problem
that has been central also to the research area of explorable uncertainty. For all integral γ ≥ 2, we
present algorithms that are γ-robust and (1 + 1

γ
)-consistent, meaning that they use at most γOPT

queries if the predictions are arbitrarily wrong and at most (1 + 1
γ

)OPT queries if the predictions are
correct, where OPT is the optimal number of queries for the given instance. Moreover, we show that
this trade-off is best possible. Furthermore, we argue that a suitably defined hop distance is a useful
measure for the amount of prediction error and design algorithms with performance guarantees that
degrade smoothly with the hop distance. We also show that the predictions are PAC-learnable in
our model. Our results demonstrate that untrusted predictions can circumvent the known lower
bound of 2, without any degradation of the worst-case ratio. To obtain our results, we provide new
structural insights for the minimum spanning tree problem that might be useful in the context of
query-based algorithms regardless of predictions. In particular, we generalize the concept of witness
sets – the key to lower-bounding the optimum – by proposing novel global witness set structures
and completely new ways of adaptively using those.
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1 Introduction

We introduce learning-augmented algorithms to the area of optimization under explorable
uncertainty and focus on the fundamental minimum spanning tree (MST) problem under
explorable uncertainty. We are given a (multi)graph G = (V, E) with unknown edge weights
we ∈ R+, for e ∈ E. For each edge e, an uncertainty interval Ie is known that contains we.
A query on edge e reveals the true value we. The task is to determine an MST, i.e., a tree
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that connects all vertices of G, of minimum total weight w.r.t. the true values we. A query
set is called feasible if it reveals sufficient information to identify an MST (not necessarily its
exact weight). As queries are costly, the goal is to find a feasible query set of minimum size.

We study adaptive strategies that make queries sequentially and utilize the results of
previous steps to decide upon the next query. As there exist input instances that are
impossible to solve without querying all edges, we evaluate our algorithms in an instance-
dependent manner: For each input, we compare the number of queries made by an algorithm
with the best possible number of queries for that input, using competitive analysis. For a
given problem instance, let OPT denote an arbitrary optimal query set (we later give a formal
definition of OPT). An algorithm is ρ-competitive if it executes, for any problem instance, at
most ρ · |OPT| queries. While MST under explorable uncertainty is not a classical online
problem where the input is revealed passively over time, the query results are uncertain
and, to a large degree, dictate whether decisions to query certain edges were good or not.
For analyzing an algorithm, it is natural to assume that the query results are determined
by an adversary.This gives the problem a clear online flavor and prohibits the existence of
1-competitive algorithms even if we have unlimited running time and space [24]. We note
that competitive algorithms in general do not have any running time requirements, but all
our algorithm run in polynomial time.

The MST problem is among the most widely studied problems in the research area of
explorable uncertainty [35] and has been a cornerstone in the development of algorithmic
approaches and lower bound techniques [21, 22, 24, 27, 43, 44]. The best known deterministic
algorithm for MST with uncertainty is 2-competitive, and no deterministic algorithm can be
better [24]. A randomized algorithm with competitive ratio 1.707 is known [43]. Further
work considers the non-adaptive problem, which has a very different flavor [44].

In this paper, we assume that an algorithm has, for each edge e, access to a prediction
we ∈ Ie for the unknown value we. For example, machine learning (ML) methods could be
used to predict the value of an edge. Given the tremendous progress in artificial intelligence
and ML in recent decades, we can expect that those predictions are of good accuracy, but
there is no guarantee and the predictions might be completely wrong. This lack of provable
performance guarantees for ML often causes concerns regarding how confident one can be
that an ML algorithm will perform sufficiently well in all circumstances. We address the very
natural question whether the availability of such (ML) predictions can be exploited by query
algorithms for computing with explorable uncertainty. Ideally, an algorithm should perform
very well if predictions are accurate, but even if they are arbitrarily wrong, the algorithm
should not perform worse than an algorithm without access to predictions. To emphasize
that the predictions can be wrong, we refer to them as untrusted predictions.

We note that the availability of both uncertainty intervals and untrusted predictions is
natural in many scenarios. For example, the quality of links (measured using metrics such as
throughput and reliability) in a wireless network often fluctuates over time within a certain
interval, and ML methods can be used to predict the precise link quality based on time-series
data of previous link quality measurements [1]. The actual quality of a link can be obtained
via a new measurement. If we wish to build a minimum spanning tree using links that
currently have the highest link quality and want to minimize the additional measurements
needed, we arrive at an MST problem with uncertainty and untrusted predictions.

We study for the first time the combination of explorable uncertainty and untrusted
predictions. Our work is inspired by the vibrant recent research trend of considering untrusted
(ML) predictions in the context of online algorithms, a different uncertainty model where the
input is revealed to an algorithm incrementally. Initial work on online caching problems [40]
has initiated a vast growing line of research on caching [5, 49, 53], rent-or-buy problems
[31,48,54], scheduling [4, 9, 38,45,48], graph problems [19,37,39] and many more.
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We adopt the following notions introduced in [40,48]: An algorithm is α-consistent if it
is α-competitive when the predictions are correct, and it is β-robust if it is β-competitive no
matter how wrong the predictions are. Furthermore, we are interested in a smooth transition
between the case with correct predictions and the case with arbitrarily incorrect predictions.
We aim for performance guarantees that degrade gracefully with increasing prediction error.

Given predicted values for the uncertainty intervals, it is tempting to simply run an
optimal algorithm under the assumption that the predictions are correct. This is obviously
optimal with respect to consistency, but might give arbitrarily bad solutions in the case
when the predictions are faulty. Instead of blindly trusting the predictions, we need more
sophisticated strategies to be robust against prediction errors. This requires new lower
bounds on an optimal solution, new structural insights, and new algorithmic techniques.

Main results

In this work, we show that, in the setting of explorable uncertainty, it is in fact possible
to exploit ML predictions of the uncertain values and improve the performance of a query
strategy when the predictions are good, while at the same time guaranteeing a strong bound
on the worst-case performance even when the predictions are arbitrarily bad.

We give algorithms for the MST problem with uncertainty that are parameterized by a
hyperparameter γ that reflects the user’s confidence in the accuracy of the predictor. For
any integral γ ≥ 2, we present a (1 + 1

γ )-consistent and γ-robust algorithm, and show that
this is the best possible trade-off between consistency and robustness. In particular, for
γ = 2, we obtain a 2-robust, 1.5-consistent algorithm. It is worth noting that this algorithm
achieves the improved competitive ratio of 1.5 for accurate predictions while maintaining the
worst-case ratio of 2. This is in contrast to many learning-augmented online algorithms where
the exploitation of predictions usually incurs an increase in the worst-case ratio (e.g., [6, 48]).

Our main result is a second and different algorithm with a more fine-grained performance
analysis that obtains a guarantee that improves with the accuracy of the predictions. Very
natural, simple error measures such as the number of inaccurate predictions or the ℓ1-norm
of the difference between predictions and true values turn out to prohibit any reasonable
error-dependency. Therefore, we propose an error measure, called hop distance kh, that
takes structural insights about uncertainty intervals into account and may also be useful for
other problems in computing with uncertainty and untrusted predictions. We give a precise
definition of this error measure later. We also show in the full version [20] that the predictions
are efficiently PAC-learnable with respect to kh. Our main result is a learning-augmented
algorithm with a competitive ratio with a linear error-dependency min{(1+ 1

γ )+ 5·kh

|OPT| , γ +1},
for any integral γ ≥ 2. All our algorithms have polynomial running-times. We describe our
techniques and highlight their novelty in the following section.

The integrality requirement for γ comes from using γ to determine set sizes and can be
removed by randomization at the cost of a slightly worse consistency guarantee; for a proof
we refer to the full version.

Further related work

There is a long history of research on the tradeoff between exploration and exploitation when
coping with uncertainty in the input data. Often, stochastic models are assumed, e.g., in
work on multi-armed bandits [16, 28, 52], Weitzman’s Pandora’s box [55], and query-variants
of combinatorial optimization problems; see, e.g., [32,41,51] and many more. In our work, we
assume no knowledge of stochastic information and aim for robust algorithms that perform
well even in a worst case.

ESA 2022
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The line of research on explorable uncertainty has been initiated by Kahan [35] in
the context of selection problems. Subsequent work addressed finding the k-th smallest
value in a set of uncertainty intervals [26,33], caching problems [47], computing a function
value [36], sorting [34], and classical combinatorial optimization problems. Some of the major
aforementioned results on the MST problem under explorable uncertainty have been extended
to general matroids [23,43,44]. Further problems that have been studied are the shortest path
problem [25], the knapsack problem [29] and scheduling problems [2, 3, 7, 10,18]. Although
optimization under explorable uncertainty has been studied mainly in an adversarial model,
recently first results have been obtained for stochastic variants for sorting [17] and selection
type problems (hypergraph orientation) [11].

There is a significant body of work on computing in models where information about a
hidden object can be accessed only via queries. The hidden object can, for example, be a
function, a matrix, or a graph. In the graph context, property testing [30] has been studied
extensively and there are many more works, see [8, 12, 13, 42, 46, 50]. The bounds on the
number of queries made by an algorithm are typically absolute (as a function of the input)
and the resulting correctness guarantees are probabilistic. This is very different from our
work, where we aim for a comparison to the minimum number of queries needed for the
given graph.

2 Overview of techniques and definition of error measure

We assume that each uncertainty interval is either open, Ie = (Le, Ue), or trivial, Ie = {we},
and we refer to edge e as non-trivial or trivial, respectively; a standard assumption to avoid
a simple lower bound of |E| on the competitive ratio [24,33].

Before we give an overview of the used techniques, we formally define feasible and optimal
query sets. We say that a query set Q ⊆ E is feasible if there exists a set of edges T ⊆ E

such that T is an MST for the true values we of all e ∈ Q and every possible combination of
edge weights in Ie for the unqueried edges e ∈ E \Q. That is, querying a feasible query set Q

must give us sufficient information to identify a spanning tree T that is an MST for the true
values no matter what the true values of the unqueried edges E \Q actually are. We call a
feasible query set Q optimal if it has minimum cardinality |Q| among all feasible query sets.
Thus, the optimal solution depends only on the true values and not on the predicted values.

As Erlebach and Hoffmann [21] give a polynomial-time algorithm that computes an
optimal query set under the assumption that all query results are known upfront, we can use
their algorithm to compute the optimal query set under the assumption that all predicted
values match the actual edge weights and query the computed set in an arbitrary order. If
the predicted values are indeed correct, this yields a 1-consistent algorithm. However, such an
algorithm may have an arbitrarily bad performance if the predictions are incorrect. Similarly,
the known deterministic 2-competitive algorithm for the MST problem with uncertainty
(without predictions) [24] is 2-robust and 2-consistent. The known lower bound of 2 rules
out any robustness factor less than 2. It builds on the following simple example with two
intersecting intervals Ia, Ib that are candidates for the largest edge weight in a cycle. No
matter which interval a deterministic algorithm queries first, say Ia, the realized value could
be wa ∈ Ia ∩ Ib, which requires a second query. If the adversary chooses wb /∈ Ia ∩ Ib,
querying just Ib would have been sufficient to identify the interval with larger true value.
See also [24, Example 3.8] and [43, Section 3] for an illustration of the lower bound example.



T. Erlebach, M. S. de Lima, N. Megow, and J. Schlöter 49:5

Algorithm overview

We aim for (1 + 1
γ )-consistent and γ-robust algorithms for each integral γ ≥ 2. The algorithm

proceeds in two phases: The first phase runs as long as there are prediction mandatory edges,
i.e., edges that must be contained in every feasible query set under the assumption that the
predictions are correct; we later give a formal characterization of such edges. In this phase,
we exploit the existence of those edges and their properties to execute queries with strong
local guarantees, i.e., each feasible query set contains a large portion of our queries. For
the second phase, we observe and exploit that the absence of prediction mandatory queries
implies that the predicted optimal solution is a minimum vertex cover in a bipartite auxiliary
graph. The challenge here is that the auxiliary graph can change with each wrong prediction.
To obtain an error-dependent guarantee (our error measure kh is discussed below) we need
to adaptively query a dynamically changing minimum vertex cover.

Novel techniques

During the first phase, we generalize the classical witness set analysis. In computing with
explorable uncertainty, the concept of witness sets is crucial for comparing the query set of
an algorithm with an optimal solution (a way of lower-bounding). A witness set [15] is a
set of elements for which we can guarantee that any feasible solution must query at least
one of these elements. Known algorithms for the MST problem without predictions [24,43]
essentially follow the algorithms of Kruskal or Prim and only identify witness sets of size 2
in the cycle or cut that is currently under consideration. Querying disjoint witness sets of
size 2 (witness pairs) ensures 2-robustness but does not lead to an improved consistency.

In our first phase, we extend this concept by considering strengthened witness sets of
three elements such that any feasible query set must contain at least two of them. Since we
cannot always find strengthened witness sets based on structural properties alone (otherwise,
there would be a 1.5-competitive algorithm for the problem without predictions), we identify
such sets under the assumption that the predictions are correct. Even after identifying such
elements, the algorithm needs to query them in a careful order: if the predictions are wrong,
we lose the guarantee on the elements, and querying all of them might violate the robustness.
In order to identify strengthened witness sets, we provide new, more global criteria to identify
additional witness sets (of size two) beyond the current cycle or cut. These new ways to
identify witness sets are a major contribution that may be of independent interest regardless
of predictions. During the first phase, we repeatedly query γ − 2 prediction mandatory edges
together with a strengthened witness set, which ensures (1 + 1

γ )-consistency. We query the
elements in a carefully selected order while adjusting for errors to ensure γ-robustness.

For the second phase, we observe that the predicted optimal solution of the remaining
instance is a minimum vertex cover V C in a bipartite auxiliary graph representing the
structure of potential witness pairs (edges of the input graph correspond to vertices of the
auxiliary graph). For instances with this property, we aim for 1-consistency and 2-robustness;
the best-possible trade-off for such instances. If the predictions are correct, each edge of the
auxiliary graph is a witness pair. However, if a prediction error is observed when a vertex
of V C is queried, the auxiliary graph changes. This means that some edges of the original
auxiliary graph are not actually witness pairs. Indeed, the size of a minimum vertex cover
can increase and decrease and does not constitute a lower bound on |OPT|; we refer to the
full version for an example.

If we only aim for consistency and robustness, we can circumvent this problem by selecting
a distinct matching partner h(e) ̸∈ V C for each e ∈ V C applying Kőnig-Egerváry’s Theorem
(duality of maximum matchings and minimum vertex covers in bipartite graphs, see e.g. [14]).

ESA 2022
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By querying the elements of V C in a carefully chosen order until a prediction error is observed
for the first time, we can guarantee that {e, h(e)} is a witness set for each e ∈ V C that is
already queried. In the case of an error, this allows us to extend the previously queried
elements to disjoint witness pairs to guarantee 2-robustness. Then, we can switch to an
arbitrary (prediction-oblivious) 2-competitive algorithm for the remaining queries.

If we additionally aim for an error-sensitive guarantee, however, handling the dynamic
changes to the auxiliary graph, its minimum vertex cover V C and matching h requires
substantial additional work, and we see overcoming this challenge as our main contribution.
In particular, querying the partner h(e) of each already queried e ∈ V C in case of an error
might be too expensive for the error-dependent guarantee. However, if we do not query
these partners, the changed instance still depends on them, and if we charge against such a
partner multiple times, we can lose the robustness. Our solution is based on an elaborate
charging/counting scheme and involves:

keeping track of matching partners of already queried elements of V C;
updating the matching and V C using an augmenting path method to bound the number
of elements that are charged against multiple times in relation to the prediction error;
and querying the partners of previously queried edges (and their new matching partners) as
soon as they become endpoints of a newly matched edge, in order to prevent dependencies
between the (only partially queried) witness sets of previously queried edges.

The error-sensitive algorithm achieves a competitive ratio of 1 + 1
γ + 5kh

|OPT| , at the price
of a slightly increased robustness of γ + 1 instead of γ.

Hop distance as error metric

When we aim for a fine-grained performance analysis giving guarantees that depend on the
quality of predictions, we need a metric to measure the prediction error. A very natural,
simple error measure is the number of inaccurate predictions k# = |{e ∈ E |we ̸= we}|.
However, we can show that even for k# = 1 the competitive ratio cannot be better than the
known bound of 2 (see Lemma 19 in the full version). The reason for the weakness of this
measure is that it completely ignores the interleaving structure of intervals. Similarly, an ℓ1
error metric such as

∑
e∈E |we − we| would not be meaningful because only the order of the

values and the interval endpoints matters for our problems.
We propose a refined error measure, which we call hop distance. It is very intuitive

even though it requires some technical care to make it precise. If we consider only a single
predicted value we for some e ∈ E, then, in a sense, this value predicts the relation of the true
value we to the intervals of edges e′ ∈ E \ {e}. In particular, w.r.t. a fixed e′ ∈ E \ {e}, the
value we predicts whether we is left of Ie′ (we ≤ Le′), right of Ie′ (we ≥ Ue′), or contained
in Ie′ (Le′ < we < Ue′). Interpreting the prediction we in this way, the prediction is “wrong”
(w.r.t. a fixed e′ ∈ E \ {e}) if the predicted relation of the true value we to interval Ie′ is
not actually true, e.g., we is predicted to be left of Ie′ (we ≤ Le′) but the actual we is either
contained in or right of Ie′ (we > Le′). Formally, we define the function ke′(e) that indicates
whether the predicted relation of we to Ie′ is true (ke′(e) = 0) or not (ke′(e) = 1). With the
prediction error k+(e) for a single e ∈ E, we want to capture the number of relations between
we and intervals Ie′ with e′ ∈ E \ {e} that are not accurately predicted. Thus, we define
k+(e) =

∑
e′∈E\{e} ke′(e). For a set of edges E′ ⊆ E, we define k+(E′) =

∑
e∈E′ k+(e).

Consequently, with the error for the complete instance we want to capture the total number
of wrongly predicted relations and, therefore, define it by kh = k+(E). We call this error
measure kh the hop distance; see Figure 1 for an illustration.
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Figure 1 Example of a single cycle (left) with uncertain edge weights from intersecting intervals
Ie1 , Ie2 , Ie3 , Ie4 (middle). Circles illustrate true values and crosses illustrate the predicted values.

Symmetrically, we can define k−(e) =
∑

e′∈E\{e} ke(e′) and k−(E′) =
∑

e∈E′ k−(e) for
subset E′ ⊆ E. Then k+(E) = kh = k−(E) follows by reordering the summations.

3 Structural results

In this section, we introduce some known concepts and prove new structural results on MST
under explorable uncertainty, which we use later to design learning-augmented algorithms.

Witness sets and mandatory queries

Witness sets are the key to the analysis of query algorithms. They allow for a comparison
of an algorithm’s query set to an optimal solution. A subset W ⊆ E is a witness set if
W ∩ Q ̸= ∅ for all feasible query sets Q. An important special case are witness sets of
cardinality one, i.e., edges that are part of every feasible query set. We call such edges
mandatory. Similarly, we call edges that are mandatory under the assumption that the
predictions are correct prediction mandatory.

For an example, consider Figure 2. In the example, we see the uncertainty intervals,
predicted values and true values of four edges that form a simple cycle. We can observe that
both e1 and e2 are mandatory for this example. To see this, assume that e1 is not mandatory.
Then, there must be a feasible query set Q with e1 ̸∈ Q for the instance, which implies that
Q = {e2, e3, e4} must be feasible. But even after querying Q to reveal the true values of e2,
e3 and e4, it still depends on the still unknown true value of e1 whether there exists an MST
T with e1 ∈ T (only if we1 ≤ we2) and/or e1 ̸∈ T (only if we2 ≤ we1). Even after querying
Q there is no spanning tree T that is an MST for each possible edge weight in Ie1 of the
unqueried edge e1 and, thus, Q is not feasible. This implies that e1 is mandatory, and we
can argue analogously that e2 is mandatory as well.

To argue whether an edge is prediction mandatory, on the other hand, we assume that
all queries reveal the predicted values as true values. Under this assumption, a query to e1
in the example would reveal a value that is larger than all upper limits Uei

with i ∈ {2, 3, 4},
which implies that e1 cannot be part of any MST and that T = {e2, e3, e4} is an MST no
matter what the true values of e2, e3 and e4 actually are. Therefore, under the assumption
that all predicted values match the true values, Q = {e1} is a feasible query set and, thus,
e2 is not prediction mandatory despite being mandatory. However, we can use a similar
argumentation as above to argue that e1 is also prediction mandatory.

We continue by giving properties that allow us to identify (prediction) mandatory edges.
To that end, let the lower limit tree TL ⊆ E be an MST for values wL with wL

e = Le + ϵ

for an infinitesimally small ϵ > 0. Analogously, let the upper limit tree TU be an MST for
values wU with wU

e = Ue− ϵ. This concept has been introduced in [43] to identify mandatory
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e1e4

e3 e2
Ie2

Ie1

Ie3
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Ie4

Figure 2 Example of a single cycle (left) with uncertain edge weights from intersecting intervals
Ie1 , Ie2 , Ie3 , Ie4 (right). Circles illustrate true values and crosses illustrate the predicted values. For
the example, {e1, e2} is the set of all mandatory edges and {e1} is the set of all prediction mandatory
edges.

queries; it is shown that every non-trivial e ∈ TL \TU is mandatory. Thus, we may repeatedly
query edges in TL \ TU until TL = TU without worsening the competitive ratio. We can
extend this preprocessing to achieve uniqueness for TL and TU and, thus, may assume unique
TL = TU .

▶ Lemma 1. By querying only mandatory elements we can obtain an instance with TL = TU

such that TL and TU are the unique lower limit tree and upper limit tree, respectively.

Given an instance with unique TL = TU , we observe that each e ∈ TL that is not part of
the MST for the true values is mandatory. Similarly, each e ̸∈ TL that is part of the MST
for the true values is mandatory as well. A stronger version of this observation is as follows.

▶ Lemma 2. Let G be an instance with unique TL = TU and let G′ be an instance with
unique T ′

L = T ′
U obtained from G by querying set Q, then e ∈ TL∆T ′

L = (TL \ T ′
L)∪ (T ′

L \ TL)
implies e ∈ Q.

Next we establish a relation between the set EM ⊆ E of mandatory queries, the set
EP ⊆ E of prediction mandatory queries, and the hop distance kh.

▶ Lemma 3. Consider a given problem instance G = (V, E) with predicted values w. Each
e ∈ EM ∆EP satisfies k−(e) ≥ 1. Consequently, kh ≥ |EM ∆EP |.

For a formal proof, we refer to the full version. Intuitively, if e ∈ EP \ EM , then it is
possible to solve the instance without querying e. Thus, the relation of the true values we′

with e′ ∈ E \ {e} to interval Ie must be such that querying E \ {e} allows us to verify that e

is either part or not part of the MST. If the predicted relations of the true values we′ with
e′ ∈ E \ {e} to interval Ie were the same, then querying E \ {e} would also allow us to verify
that e is either part or not part of the MST. Thus, the predicted relation of at least one we′

to interval Ie must be wrong. We can argue analogously for e ∈ EM \ EP .

Identifying witness sets

We introduce new structural properties to identify witness sets. Existing algorithms for
MST under uncertainty [24, 43] essentially follow the algorithms of Kruskal or Prim, and
only identify witness sets in the cycle or cut that is currently under consideration. Let
f1, . . . , fl denote the edges in E \ TL ordered by non-decreasing lower limit. Then, Ci with
i ∈ {1, . . . , l} denotes the unique cycle in TL ∪ {fi}.

For each e ∈ TL, let Xe denote the set of edges in the cut of the two connected components
of TL \ {e}. Existing algorithms for MST under explorable uncertainty repeatedly consider
(the changing) C1 or Xe, where e is the edge in TL with maximum upper limit, and identify
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the maximum or minimum edge in the cycle or cut by querying witness sets of size two, until
the problem is solved. For our algorithms, we need to identify witness sets in cycles Ci ̸= C1
and cuts Xe′ ̸= Xe.

▶ Lemma 4. Consider cycle Ci with i ∈ {1, . . . , l}. Let li ∈ Ci \ {fi} such that Ili
∩ Ifi

̸= ∅
and li has the largest upper limit in Ci \ {fi}, then {fi, li} is a witness set. If wfi

∈ Ili
, then

li is mandatory.

Characterization of prediction mandatory free instances

We say an instance is prediction mandatory free if it contains no prediction mandatory
elements. A key part of our algorithms is to transform instances into prediction mandatory
free instances while maintaining a competitive ratio that allows us to achieve the optimal
consistency and robustness trade-off overall. We give the following characterization of
prediction mandatory free instances, (cf. Figure 3). Then, we show that prediction mandatory
free instances remain so as long as we ensure TL = TU .

Ifi

Ili

..
.

Figure 3 Intervals in a prediction mandatory free cycle with predictions indicated as red crosses.

▶ Lemma 5. An instance G is prediction mandatory free if and only if wfi ≥ Ue and
we ≤ Lfi

holds for each e ∈ Ci \ {fi} and each cycle Ci with i ∈ {1, . . . , l}. Once an instance
is prediction mandatory free, it remains so even if we query further elements, as long as we
maintain unique TL = TU .

Making instances prediction mandatory free

In the full version, we give a powerful preprocessing algorithm that transforms arbitrary
instances into prediction mandatory free instances.

▶ Theorem 6. There is an algorithm that makes a given instance prediction mandatory
free and satisfies |ALG| ≤ min{(1 + 1

γ ) · (|(ALG ∪D) ∩OPT|+ k+(ALG) + k−(ALG)), γ ·
|(ALG ∪D) ∩OPT|+ γ − 2} for the set of edges ALG queried by the algorithm and a set
D ⊆ E \ALG of unqueried edges that do not occur in the remaining instance after executing
the algorithm.

The set D are edges that, even without being queried by the algorithm, are proven to be
maximal in a cycle or minimal in a cut. Thus, they can be deleted or contracted w.l.o.g. and
do not exist in the instance remaining after executing the preprocessing algorithm. This
is an important property as it means that the remaining instance is independent of D and
ALG (as all elements of ALG are already queried). Since the theorem compares |ALG| with
|(ALG∪D)∩OPT| instead of just |OPT|, this allows us to combine the given guarantee with
the guarantees of dedicated algorithms for prediction mandatory free instances. However, we
have to be careful with the additive term γ − 2, but we will see that we can charge this term
against the improved robustness of our algorithms for prediction mandatory free instances.
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4 An algorithm with optimal consistency and robustness trade-off

We give a bound on the best achievable tradeoff between consistency and robustness.

▶ Theorem 7. Let β ≥ 2 be a fixed integer. For the MST problem under explorable
uncertainty with predictions, there is no deterministic β-robust algorithm that is α-consistent
for α < 1 + 1

β . And vice versa, no deterministic α-consistent algorithm, with α > 1, is
β-robust for β < max{ 1

α−1 , 2}.

The main result of this section is an optimal algorithm w.r.t. this tradeoff bound.

▶ Theorem 8. For every integer γ ≥ 2, there exists a (1 + 1
γ )-consistent and γ-robust

algorithm for the MST problem under explorable uncertainty with predictions.

To show this result, we design an algorithm for prediction mandatory free instances
with unique TL = TU . We run it after the preprocessing algorithm which obtains such
special instance with the query guarantee in Theorem 6. Our new algorithm achieves the
optimal trade-off.

▶ Theorem 9. There exists a 1-consistent and 2-robust algorithm for prediction mandatory
free instances with unique TL = TU of the MST problem under explorable uncertainty with
predictions.

In a prediction mandatory free instance G = (V, E), each fi ∈ E \ TL is predicted to be
maximal on cycle Ci, and each l ∈ TL is predicted to be minimal in Xl (cf. Lemma 5). If
these predictions are correct, then TL is an MST and the optimal query set is a minimum
vertex cover in a bipartite graph Ḡ = (V̄ , Ē) with V̄ = E (excluding trivial edges) and
Ē = {{fi, e} | i ∈ {1, . . . , l}, e ∈ Ci \ {fi} and Ie ∩ Ifi ̸= ∅} [21, 43]. We refer to Ḡ as the
vertex cover instance. Note that if a query reveals that an fi is not maximal on Ci or an
l ∈ TL is not minimal in Xl, then the vertex cover instance changes. Let V C be a minimum
vertex cover of Ḡ. Non-adaptively querying V C ensures 1-consistency but might lead to an
arbitrarily bad robustness. Indeed, the size of a minimum vertex cover can increase and
decrease drastically as we show in the full version. Thus, the algorithm has to be more
adaptive.

The idea of the algorithm (cf. Algorithm 1) is to sequentially query each e ∈ V C and
charge for querying e by a distinct non-queried element h(e) such that {e, h(e)} is a witness
set. Querying exactly one element per distinct witness set implies optimality. To identify h(e)
for each element e ∈ V C, we use the fact that Kőnig-Egerváry’s Theorem (e.g., [14]) on the
duality between minimum vertex covers and maximum matchings in bipartite graphs implies
that there is a matching h that maps each e ∈ V C to a distinct e′ ̸∈ V C. While the sets
{e, h(e)} with e ∈ V C in general are not witness sets, querying V C in a specific order until
the vertex cover instance changes guarantees that {e, h(e)} is a witness set for each already
queried e. The algorithm queries in this order until it detects a wrong prediction or solves
the problem. If it finds a wrong prediction, it queries the partner h(e) of each already queried
edge e, and continues to solve the problem with a 2-competitive algorithm (e.g., [24, 43]).
The following lemma specifies the order in which the algorithm queries V C.

▶ Lemma 10. Let l′
1, . . . , l′

k be the edges in V C ∩ TL ordered by non-increasing upper limit
and let d be such that the true value of each l′

i with i < d is minimal in cut Xl′
i
, then

{l′
i, h(l′

i)} is a witness set for each i ≤ d. Let f ′
1, . . . , f ′

g be the edges in V C \ TL ordered
by non-decreasing lower limit and let b be such that the true value of each f ′

i with i < b is
maximal in cycle Cf ′

i
, then {f ′

i , h(f ′
i)} is a witness set for each i ≤ b.
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Algorithm 1 1-consistent and 2-robust algorithm for prediction mandatory free instances.

Input: Prediction mandatory free graph G = (V, E) with unique TL = TU .
1 Compute maximum matching h and minimum vertex cover V C for Ḡ;
2 Set W = ∅, and let f ′

1, . . . , f ′
g and l′

1, . . . , l′
k be as described in Lemma 10;

3 for e chosen sequentially from the ordered list f ′
1, . . . , f ′

g, l′
1, . . . , l′

k do
4 Query e and add h(e) to W ;
5 if k+(e) ̸= 0 then query set W and solve the instance with a 2-competitive

algorithm;

Proof. Here, we show the first statement and refer to the full version for the proof of the
second statement. Consider an arbitrary l′

i and h(l′
i) with i ≤ d. By definition of h, the edge

h(l′
i) is not part of the lower limit tree. Consider Ch(l′

i
), i.e., the cycle in TL ∪ {h(l′

i)}, then
we claim that Ch(l′

i
) only contains h(l′

i) and edges in {l′
1, . . . , l′

k} (and possibly irrelevant
edges that do not intersect Ih(l′

i
)). To see this, recall that l′

i ∈ V C, by definition of h, implies
h(l′

i) ̸∈ V C. For V C to be a vertex cover, each e ∈ Ch(l′
i
) \ {h(l′

i)} must either be in V C or
not intersect h(l′

i). Consider the relaxed instance where the true values for each l′
j with j < d

and j ̸= i are already known. By assumption each such l′
j is minimal in its cut Xl′

j
. Thus,

we can w.l.o.g. contract each such edge. It follows that in the relaxed instance l′
i has the

highest upper limit in Ch(l′
i
) \ {h(l′

i)}. According to Lemma 4, {l′
i, h(l′

i)} is a witness set. ◀

Proof of Theorem 9. We first show 1-consistency. Assume that all predictions are correct,
then V C is an optimal query set and k+(e) = 0 holds for all e ∈ E. It follows that Line 5
never executes queries and the algorithm queries exactly V C. This implies 1-consistency.

Further, if the algorithm never queries in Line 5, then the consistency analysis implies
1-robustness. Suppose Line 5 executes queries. Let Q1 denote the set of edges that are queried
before the queries of Line 5 and let Q2 = {h(e) | e ∈ Q1}. Then Q2 corresponds to the set
W as queried in Line 5. By Lemma 10, each {e, h(e)} with e ∈ Q1 is a witness set. Further,
the sets {e, h(e)} are pairwise disjoint. Thus, |Q1 ∪Q2| ≤ 2 · |OPT∩ (Q1 ∪Q2)|. Apart from
Q1 ∪ Q2, the algorithm queries a set Q3 in Line 5 to solve the remaining instance with a
2-competitive algorithm. So, |Q3| ≤ 2 · |OPT \ (Q1 ∪Q2)| and, adding up the inequalities,
|ALG| ≤ 2 · |OPT|. ◀

A careful combination of Theorems 6 and 9 implies Theorem 8. Full proof in the full version.

5 An error-sensitive algorithm

In this section, we extend the algorithm of Section 4 to obtain error sensitivity. First, we
note that k# = 0 implies kh = 0, so Theorem 7 implies that no algorithm can simultaneously
have competitive ratio better than 1 + 1

β if kh = 0 and β for arbitrary kh. In addition, we
can give the following lower bound on the competitive ratio as a function of kh.

▶ Theorem 11. Any deterministic algorithm for MST under explorable uncertainty with
predictions has a competitive ratio ρ ≥ min{1 + kh

|OPT| , 2}, even for edge disjoint prediction
mandatory free cycles.

Again, we design an algorithm for prediction mandatory free instances with unique
TL = TU and use it in combination with the preprocessing algorithm (Theorem 6) to prove
the following.
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▶ Theorem 12. For every integer γ ≥ 2, there exists a min{1 + 1
γ + 5·kh

|OPT| , γ + 1}-competitive
algorithm for the MST problem under explorable uncertainty with predictions.

We actually show a robustness of max{3, γ + 1
|OPT|} which might be smaller than γ + 1.

Our algorithm for prediction mandatory free instances asymptotically matches the error-
dependent guarantee of Theorem 11 at the cost of a slightly worse robustness.

▶ Theorem 13. There exists a min{1+ 5·kh

|OPT| , 3}-competitive algorithm for prediction manda-
tory free instances with unique TL = TU of the MST problem under explorable uncertainty
with predictions.

We follow the same strategy as before. However, Algorithm 1 just executes a 2-competitive
algorithm once it detects an error. This is sufficient to achieve the optimal trade-off as we,
if an error occurs, only have to guarantee 2-competitiveness. To obtain an error-sensitive
guarantee however, we have to ensure both, |ALG| ≤ 3 · |OPT| and |ALG| ≤ OPT + 5 · kh

even if errors occur. Further, we might not be able to afford queries to the complete set W

(Algorithm 1, Line 5) in the case of an error as this might violate |ALG| ≤ OPT + 5 · kh.
We adjust the algorithm to query elements of f ′

1, . . . , f ′
g and l′

1, . . . , l′
k as described in

Lemma 10 not only until an error occurs but until the vertex cover instance changes. That
is, until some fi that at the beginning of the iteration is not part of TL becomes part of
the lower limit tree, or some li that at the beginning of the iteration is part of TL is not
part of the lower limit tree anymore. Once the instance changes, we recompute both, the
bipartite graph Ḡ as well as the matching h and minimum vertex cover V C for Ḡ. Instead of
querying the complete set W , we only query the elements of W that occur in the recomputed
matching, as well as the new matching partners of those elements. And instead of switching
to a 2-competitive algorithm, we restart the algorithm with the recomputed matching and
vertex cover. Algorithm 2 formalizes this approach. In the algorithm, h denotes a matching
that matches each e ∈ V C to a distinct h(e) ̸∈ V C; we use the notation {e, e′} ∈ h to
indicate that h matches e and e′. For a subset U ⊆ V C let h(U) = {h(e) | e ∈ U}. For
technical reasons, the algorithm does not recompute an arbitrary matching h but follows the
approach of Lines 10 and 11. Intuitively, an arbitrary maximum matching h might contain
too many elements of W , which would lead to too many additional queries.

Let ALG denote the queries of Algorithm 2 on a prediction mandatory free instance with
unique TL = TU . We show Theorem 13 by proving ALG ≤ OPT + 5 · kh and ALG ≤ 3 ·OPT.

Before proving the two inequalities, we state some key observations about the algorithm.
We argue that an element e′ can never be part of a partial matching h̄ in an execution
of Line 10 after it is added to set W . Recall that the vertex cover instances only contain
non-trivial elements. Thus, if an element e is queried in Line 5 and the current partner
e′ = h(e) is added to set W , then the vertex cover instance at the next execution of Line 10
does not contain the edge {e, e′} and, therefore, e′ is not part of the partial matching h̄ of
that line. As long as e′ is not added to the matching by Line 11, it, by definition, can never
be part of a partial matching h̄ in an execution of Line 10. As soon as the element e′ is
added to the matching in some execution of Line 11, it is queried in the following execution
of Line 12. Therefore, e′ can also not be part of a partial matching h̄ in an execution of
Line 10 after it is added to the matching again. This leads to the following observation.

▶ Observation 14. An element e′ can never be part of a partial matching h̄ in an execution
of Line 10 after it is added to set W . Once e′ is added to the matching again in an execution
of Line 11, it is queried directly afterwards in Line 12, and cannot occur in Line 5 anymore.
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Algorithm 2 Error-sensitive algorithm for prediction mandatory free instances.

Input: Prediction mandatory free graph G = (V, E) with unique TL = TU .
1 Compute maximum matching h and minimum vertex cover V C for Ḡ and set W = ∅;
2 Let f ′

1, . . . , f ′
g and l′

1, . . . , l′
k be as described in Lemma 10 for V C and h;

3 L← TL, N ← E \ TL ; /* recompute the actual TL after each query */
4 for e chosen sequentially from the ordered list f ′

1, . . . , f ′
g, l′

1, . . . , l′
k do

5 If e is non-trivial, i.e., has not been queried yet, query e and add h(e) to W ;
6 Apply Lemma 1 to ensure unique TL = TU . For each query e′, if

∃a s.t. {e′, a} ∈ h, query a ;
7 Let Ḡ′ = (V̄ ′, Ē′) be the vertex cover instance for the current instance;
8 if some e′ ∈ L is not in TL or some e′ ∈ N is in TL then
9 repeat

10 Let Ḡ = Ḡ′ and h̄ = {{e′, e′′} ∈ h | {e′, e′′} ∈ Ē′};
11 Compute h and V C by completing h̄ with an augmenting path algorithm;
12 Query R = (V C ∪ h(V C)) ∩ (W ∪ {e′ | ∃e ∈W with {e, e′} ∈ h}) ;
13 Ensure unique TL = TU . For each query e′, if ∃a s.t. {e′, a} ∈ h, query a;
14 Let Ḡ′ = (V̄ ′, Ē′) be the vertex cover instance for the current instance;
15 until R = ∅;
16 Restart at Line 2. In particular, do not reset W ;

We first analyze the queries that are not executed in Line 12. Let Q1 ⊆ ALG denote
the queries of Line 5. For each e ∈ Q1 let h∗(e) be the matching partner of e at the time it
was queried, and let h∗(Q1) =

⋃
e∈Q1
{h∗(e)}. Finally, let Q2 denote the queries of Lines 6

and 13 to elements of h∗(Q1), and let Q3 denote the remaining queries of those lines.

▶ Lemma 15. |Q1 ∪Q3 ∪ h∗(Q1)| ≤ 2 · |OPT ∩ (Q1 ∪Q3 ∪ h∗(Q1))| and |Q1 ∪Q2 ∪Q3| ≤
|OPT ∩ (Q1 ∪Q3 ∪ h∗(Q1))|+ k−(Q2 ∪Q3).

Proof. First, consider Q1 and h∗(Q1). By Lemma 5, the instance is prediction mandatory
free at the beginning of each restart of the algorithm. By Lemma 10, each {e, h∗(e)} with
e ∈ Q1 is a witness set. We claim that all such {e, h∗(e)} are pairwise disjoint, which implies
|Q1 ∪ h∗(Q1)| ≤ 2 · |OPT ∩ (Q1 ∪ h∗(Q1))|. Otherwise, an element of {e, h∗(e)} must occur
a second time in Line 5 after e is queried and h∗(e) is added to W . Thus, either e or h∗(e)
must become part of a recomputed matching in line 10. By Observation 14 and since e

becomes trivial, this cannot happen.
Consider an e ∈ Q2 ⊆ h∗(Q1) and let e′ ∈ Q1 with h∗(e′) = e. Since e′ ∈ Q1, it was

queried in Line 5. Observe that e must have been queried after e′, as otherwise either e′ would
not have been queried in Line 5 (but together with e in Line 6 or 13), or e would not have been
the matching partner of e′ when it was queried by Observation 14; both contradict e′ ∈ Q1
and h∗(e′) = e. This and Observation 14 imply that, at the time e is queried, its current
matching partner is either the trivial e′ or it has no partner. So, e must have been queried
because it was mandatory and not as the matching partner of a mandatory element. Thus,
each query of Q2 is mandatory but, by Lemma 5, not prediction mandatory at the beginning
of the iteration in which it is queried. Therefore, Lemma 3 implies that all mandatory
elements e of Q2 have k−(e) ≥ 1. It follows |Q1 ∪Q2| ≤ |OPT ∩ (Q1 ∩ h∗(Q1))|+ k−(Q2).

By the argument above, no element of Q3 was queried as the matching partner to an
element of Q2 ∪Q1. Thus, by Lemma 1 and the definition of the algorithm, at least half the
elements of Q3 are mandatory, and we have |Q3| ≤ 2 · |OPT∩Q3| (and 1

2 |Q3| ≤ |OPT∩Q3|),
which implies |Q1 ∪Q3 ∪ h∗(Q1)| ≤ 2 · |OPT ∩ (Q1 ∪Q3 ∪ h∗(Q1))|.
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By the same argument as for Q2, all mandatory elements e of Q3 have k−(e) ≥ 1. Thus,
k−(Q3) ≥ 1

2 · |Q3|. Combining k−(Q3) ≥ 1
2 · |Q3| and 1

2 |Q3| ≤ |OPT ∩ Q3| implies |Q3| ≤
|OPT∩Q3|+ k−(Q3). So, |Q1 ∪Q2 ∪Q3| ≤ |OPT∩ (Q1 ∪Q3 ∪h∗(Q1))|+ k−(Q2 ∪Q3). ◀

The first part of Lemma 15 captures all queries outside of Line 12 and all queries of
Line 12 to elements of W = h∗(Q1). Let Q′

4 be the remaining queries of Line 12. By definition
of the algorithm, |Q′

4| ≤ |W |. Since |W | ≤ |OPT|, we can conclude the next lemma.

▶ Lemma 16. |ALG| ≤ 3 · |OPT|.

Next, we show |ALG| ≤ |OPT| + 5 · kh. Lemma 15 implies |Q1 ∪ Q2 ∪ Q3| ≤ |OPT ∩
(Q1 ∪ Q3 ∪ h∗(Q1))| + k−(Q2 ∪ Q3). Hence, it remains to upper bound |Q4| with Q4 =
ALG \ (Q1 ∪Q2 ∪Q3) by 4 · kh. By definition, Q4 only contains edges that are queried in
Line 12. Thus, at least half the queries of Q4 are elements of W that are part of the matching
h. By Observation 14, no element of W is part of the partial matching h̄ in Line 10. Hence,
in each execution of Line 12, at least half the queries are not part of h̄ in Line 10 but added
to h in Line 11. Our goal is to bound the number of such elements.

We start with some definitions. Define Gj as the problem instance at the j’th execution
of Line 11, and let G0 denote the initial problem instance. For each Gj , let Ḡj = (V̄j , Ēj),
T j

L and T j
U denote the corresponding vertex cover instance and lower and upper limit trees.

Observe that each Gj has unique T j
L = T j

U , and, by Lemma 5, is prediction mandatory free.
Let Yj denote the set of queries made by the algorithm to transform instance Gj−1 into
instance Gj . We partition Q4 into subsets Sj , where Sj contains the edges of Q4 that are
queried in the j’th execution of Line 12. We claim |Sj | ≤ 4 · k+(Yj) for each j, which implies
|Q4| ≤

∑
j |Sj | ≤ 4 ·

∑
j k+(Yj) ≤ 4 · kh. To show the claim, we rely on the following lemma.

▶ Lemma 17. Let l, f be non-trivial edges in Gj such that {l, f} ∈ Ēj−1∆Ēj, then
k−(l), k−(f)≥ 1. Furthermore, k+(Yj) ≥ |U | for the set U of all endpoints of such edges
{l, f}.

▶ Lemma 18. |ALG| ≤ |OPT|+ 5 · kh.

Proof. We show |Sj | ≤ 4 · k+(Yj) for each j, which, in combination with Lemma 15, implies
the lemma. Consider an arbitrary Sj and the corresponding set Yj . Further, let hj−1 denote
the maximum matching computed and used by the algorithm for vertex cover instance Ḡj−1,
and let h̄j−1 = {{e, e′} ∈ hj−1 | {e, e′} ∈ Ēj}. Finally, let hj denote the matching that the
algorithm uses for vertex cover instance Ḡj . That is, hj is computed by completing h̄j−1
with a standard augmenting path algorithm. As already argued, at least half the elements of
Sj are not matched by h̄j−1 but are matched by hj (cf. Observation 14).

We bound the number of such elements by exploiting that hj is constructed from h̄j−1
via a standard augmenting path algorithm. By definition, each iteration of the augmenting
path algorithm increases the size of the current matching (starting with h̄j−1) by one and, in
doing so, matches two new elements. In total, at most 2 · (|hj |− |h̄j−1|) previously unmatched
elements become part of the matching. Thus, |Sj | ≤ 4 · (|hj | − |h̄j−1|).

We show (|hj | − |h̄j−1|) ≤ k+(Yj). According to Kőnig-Egerváry’s Theorem (e.g., [14]),
the size of hj is equal to the size |V Cj | of the minimum vertex cover for Ḡj . We show
|V Cj | ≤ |h̄j−1|+ k+(Yj), which implies (|hj | − |h̄j−1|)=|V Cj | − |h̄j−1| ≤ k+(Yj), and, thus,
the claim. Let V Cj−1 = {e ∈ V Cj−1 | ∃e′ s.t. {e, e′} ∈ hj−1}, then |V Cj−1| = |hj−1|.

We prove that we can construct a vertex cover for Ḡj by adding at most k+(Yj) elements
to V Cj−1, which implies |V Cj | ≤ |hj−1|+ k+(Yj). Consider vertex cover instance Ḡj and
set V Cj−1. By definition, V Cj−1 covers all edges that are part of partial matching h̄j−1.
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Consider the elements of V̄j that are an endpoint of an edge in {e, f} ∈ Ēj∆Ēj−1 with
e, f non-trivial in Gj . By Lemma 17, k−(e) ≥ 1 for each such e and k+(Yj) ≥ |U | for the set
U of all such elements. Thus, we can afford to add U to the vertex cover.

Next, consider an edge {e, f} ∈ Ēj that is not covered by V Cj−1 ∪ U . Since {e, f} is
not covered by U , it must hold that {e, f} ∈ Ēj ∩ Ēj−1. Thus, {e, f} was covered by V Cj−1
but is not covered by V Cj−1. This implies {e, f} ∩ V Cj−1 ̸= ∅ but {e, f} ∩ V Cj−1 = ∅.
Assume w.l.o.g. that e ∈ V Cj−1. Then, there must be an e′ such that {e, e′} ∈ hj−1 but
{e, e′} ̸∈ h̄j−1. It follows that {e, e′} ̸∈ Ēj . As {e, f} is not covered by U , the endpoint
e′ must be trivial in Gj but non-trivial in Gj−1. Thus, e′ must have been queried (i) as
a mandatory element (or a matching partner) in Line 6 or 13, (ii) as part of V Cj−1 in
Line 5 or (iii) in Line 12. Case (ii) implies e′ ∈ V Cj−1, contradicting e ∈ V Cj−1. Cases (i)
or (iii) imply a query to the matching partner e of e′, which contradicts {e, f} ∈ Ēj (as e

would be trivial). Thus, {e, f} is covered by V Cj−1 ∪ U , which implies that V Cj−1 ∪ U is a
vertex cover for Ḡj . Lemma 17 implies |U | ≤ k+(Yj). So, |V Cj | ≤ |h̄j−1| + k+(Yj) which
concludes the proof. ◀

Lemmas 16 and 18 imply Theorem 13. Combining Theorems 6 and 13, we show Theo-
rem 12.

6 Further research directions

Plenty other (optimization) problems seem natural in the context of explorable uncertainty
with untrusted predictions. For our problem, it would be nice to close the gap in the
robustness. We expect that our results extend to all matroids as it does in the classical
setting. While we ask for the minimum number of queries to solve a problem exactly, it
is natural to ask for approximate solutions. The bad news is that for the MST problem
there is no improvement over the robustness guarantee of 2 possible even when allowing an
arbitrarily large approximation of the exact solution [43, Section 10]. However, it remains
open whether an improved consistency or an error-dependent competitive ratio are possible.
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Abstract
We generalize the monotone local search approach of Fomin, Gaspers, Lokshtanov and Saurabh
[J.ACM 2019], by establishing a connection between parameterized approximation and exponential-
time approximation algorithms for monotone subset minimization problems. In a monotone subset
minimization problem the input implicitly describes a non-empty set family over a universe of size
n which is closed under taking supersets. The task is to find a minimum cardinality set in this
family. Broadly speaking, we use approximate monotone local search to show that a parameterized
α-approximation algorithm that runs in ck · nO(1) time, where k is the solution size, can be used to
derive an α-approximation randomized algorithm that runs in dn · nO(1) time, where d is the unique
value in

(
1, 1 + c−1

α

)
such that D

(
1
α

∥∥ d−1
c−1

)
= ln c

α
and D (a∥b) is the Kullback-Leibler divergence.

This running time matches that of Fomin et al. for α = 1, and is strictly better when α > 1, for
any c > 1. Furthermore, we also show that this result can be derandomized at the expense of a
sub-exponential multiplicative factor in the running time.

We use an approximate variant of the exhaustive search as a benchmark for our algorithm. We
show that the classic 2n · nO(1) exhaustive search can be adapted to an α-approximate exhaustive
search that runs in time

(
1 + exp

(
−α · H

(
1
α

)))n · nO(1), where H is the entropy function. Further-
more, we provide a lower bound stating that the running time of this α-approximate exhaustive
search is the best achievable running time in an oracle model. When compared to approximate
exhaustive search, and to other techniques, the running times obtained by approximate monotone
local search are strictly better for any α ≥ 1, c > 1.

We demonstrate the potential of approximate monotone local search by deriving new and faster
exponential approximation algorithms for Vertex Cover, 3-Hitting Set, Directed Feedback
Vertex Set, Directed Subset Feedback Vertex Set, Directed Odd Cycle Transversal
and Undirected Multicut. For instance, we get a 1.1-approximation algorithm for Vertex Cover
with running time 1.114n · nO(1), improving upon the previously best known 1.1-approximation
running in time 1.127n · nO(1) by Bourgeois et al. [DAM 2011].
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50:2 Approximate Monotone Local Search

1 Introduction

A lot of interesting problems are computationally hard as they do not admit polynomial-time
algorithms. Still, many of them can be solved significantly faster than exhaustive search.
The area of exact exponential algorithms studies the design of such techniques. Typically, for
subset problems, where the goal is to find a subset of a given n-sized universe U that satisfies
some property Π, a solution can be found by enumerating all 2n subsets of U . Therefore, the
goal is to design algorithms that beat this exhaustive search and run in time O∗ (cn)1 for as
small 1 < c < 2 as possible.

Exact Monotone Local Search. In a seminal work Fomin, Gaspers, Lokshtanov and
Saurabh [13] showed that one can derive faster exact exponential algorithms for subset
problems using a parameterized extension algorithm for the problem at hand. A parameterized
extension algorithm for a subset problem additionally takes as input a parameter k and a set
X ⊆ U , runs in time O∗(f(k)), and outputs a set S ⊆ U of size at most k such that S ∪X

is a solution, if such a set exists. Fomin et al. [13, Theorem 1.1] showed that if a subset
problem admits a parameterized extension algorithm that runs in time O∗(ck) for some
absolute constant c > 1, then it admits a randomized exact exponential algorithm that runs
in time O∗ ((emls(c))n), where emls(c) = 2− 1

c . Their algorithm, called Exact Monotone
Local Search (Exact-MLS), is simple and is based on monotone local search: it samples a set
X of t elements at random, and then extends the set X to an optimum solution using the
parameterized extension algorithm. The non-trivial part of the proof of [13, Theorem 1.1] is
to analyze the value of t that optimizes the running time. This simple algorithm outperforms
the exhaustive search for all subset problems that have parameterized extension algorithms
running in O∗(ck) time. Moreover, given the existence of a large number of problems that
admit the desired parameterized extension algorithm, it yields the state-of-the-art exact
exponential algorithms for several problems [13, Table 1].

Exponential Approximation. Another important algorithmic paradigm which deals with
NP-hardness is the design of approximation algorithms, which are typically polynomial-time
algorithms that compute a solution which is not necessarily optimum but has a worst-case
guarantee on its quality. Though several NP-hard problems admit such algorithms with
constant approximation ratios [30], there are many that do not, under reasonable complexity
assumptions, for example Directed Feedback Vertex Set [28]. Also, there are many
for which the approximation guarantees cannot be improved beyond a fixed constant. For
example, Vertex Cover admits a 2-approximation but no (2− ε)-approximation under the
Unique Games Conjecture [17].

For problems where some hardness of approximation has been established, a natural
question is to determine the smallest c such that the barriers of this hardness can be broken
by taking O∗(cn) time. Such algorithms are called exponential approximation algorithms and
this topic has received attention in, e.g., [1, 2, 3, 7, 25].

Consider subset minimization problems where the goal is to find a subset of the n-sized
universe U of minimum cardinality, also called an optimum solution, that satisfies some
additional property Π. For any approximation ratio α ≥ 1, we say that a subset S ⊆ U

satisfying the property Π is an α-approximate solution if |S| ≤ α · |OPT|, where OPT ⊆ U is
an optimum solution. An exponential α-approximation algorithm for a subset minimization
problem returns an α-approximate solution and runs in O∗(cn) time for some 1 < c < 2.

1 The O∗ notation hides polynomial factors in the input.
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Parameterized Approximation. A parameterized α-approximation algorithm for a subset
minimization problem additionally takes as input the parameter k, runs in time O∗(f(k)),
and outputs a solution of size at most α · k, if there exists a solution of size at most k.
Analogous to parameterized algorithms, one can define the notion of extension algorithms
here (see Section 2). The design of parameterized α-approximation algorithms has been an
active area of research in the last few years, yielding a plethora of results for problems that
exhibit some hardness either in the parameterized setting or in the approximation setting
[4, 5, 8, 10, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 26, 27, 29].

Approximate Monotone Local Search (Approximate-MLS). In this paper, we show that
one can extend the idea of Exact-MLS [13] to derive faster exponential approximation
algorithms from parameterized approximation algorithms. Let amls(α, c) be the unique value
in
(
1, 1 + c−1

α

)
such that D

(
1
α

∥∥∥ amls(α,c)−1
c−1

)
= ln c

α where D (a∥b) is the Kullback-Leibler

divergence defined as D (a∥b) = a ln
(

a
b

)
+ (1− a) ln

(
1−a
1−b

)
(see, e.g., [6]). Our main result

can be informally stated as follows.

If a monotone subset minimization problem admits a parameterized extension α-
approximation algorithm that runs in O∗(ck), then one can derive a randomized
α-approximation algorithm that runs in time O∗((amls(α, c))n) (see Theorem 2.1).

Since amls(1, c) = emls(c) = 2 − 1
c for every c > 1, our running time matches that of

Exact-MLS when α = 1.
Recall the Exact-MLS algorithm described earlier. The non-trivial part of the proof

of [13, Theorem 1.1] is the analysis of the probability that the sampled set is contained in
an optimum solution. To obtain our result, we use the same algorithm and show that if we
allow the sampled set to also contain some items from outside the optimum solution, then
one can speed-up the resulting exponential α-approximation algorithm. Since our analysis
need to take into account the calculations for error in the sampled set, this makes analyzing
the choice of t more difficult.

In order to better appreciate the running time of our algorithm, that does not seem to
have a closed-form formula, we give a mathematical comparison of amls(α, c) with various
benchmark exponential approximation algorithms, showing that our algorithm outperforms
all of them.

Benchmark 1: Brute-Force for Exponential Approximation. Since exhaustive search is
a trivial benchmark against which the running times of (exact) exponential algorithms are
measured, an important question to address is: how much time does exhaustive search take
to find an α-approximate solution?

Consider a subset minimization problem that is also monotone, that is, for every S ⊆ T ⊆
U , if S is a solution, then T is also a solution. We show that for monotone subset minimization
problems, the classic brute-force approach can be generalized to an α-approximation brute-
force algorithm running in time O∗(brute(α)n), where brute(α) = 1 + (α−1)α−1

αα = 1 +
exp

(
−α · H

( 1
α

))
and H(α) = −α ln α− (1−α) ln(1−α) denotes the entropy function2. The

running time essentially follows by showing that a uniformly sampled set of α · |OPT| items is
an α-approximate solution with probability at least brute(α)−n (up to polynomial factors,

2 We adopt the convention that 00 = 1.
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see Theorem 5.1). We complement this result by showing that this running time is best
possible, given only membership oracle access to the problem (Theorem 5.1). For example,
for α = 2, this brute-force algorithm runs in time O∗(1.25n). For α = 1.1, it runs in time
O∗(1.716n) (see also Table 1).

Benchmark 2: Naive conversion from parameterized approximation to exponential
approximation. Yet another upper bound on the running time of exponential approximation
algorithms can be given as follows. Suppose there is a parameterized α-approximation for a
monotone subset minimization problem that runs in O∗(ck) time. Run the parameterized
algorithm for every value of the parameter k between 0 to n

α , and return the solution of
minimum cardinality among the solutions returned by the parameterized algorithm. If no
solution was found by the parameterized algorithm, then return the whole universe. It
can be easily verified that this indeed yields an α-approximation algorithm with running
time O∗((naive(α, c))n), where naive(α, c) = c

1
α . Observe that for large values of c and

appropriate α, naive(α, c) could be much larger than even 2. But for smaller values of c, it
could sometimes beat the brute-force approximation (see Section 2.4).

Benchmark 3: Exact-MLS in the approximate setting. From the description of the
Exact-MLS algorithm, it is not difficult to deduce that given a parameterized extension
α-approximation for a monotone subset minimization problem that runs in time O∗(ck), one
can derive an exponential α-approximation for the problem that runs in time O∗((emls(c))n).
This trivial generalization of Exact-MLS to the approximate setting already performs better
than the naive conversion in cases when c is small. For example, Vertex Cover has a
parameterized (extension) 1.1-approximation algorithm that runs in time O∗(1.1652k) [3].
Exact-MLS gives a 1.1-approximation running in time O∗(1.1417n) whereas the naive conver-
sion gives a running time of O∗(1.1462n).

Comparisons. As stated earlier, we show that (see Lemma 1.1) Approximate-MLS is strictly
faster than the brute-force algorithm (Benchmark 1) or the naive-conversion approach
(Benchmark 2) described earlier, for every α ≥ 1 and c > 1. In fact, Lemma 1.1 shows that
amls(α, c) converges to brute(α) as c→∞, which would be the expected behavior, because
as the parameterized algorithm becomes “less useful”, the running time of our algorithm
gets closer to the running time possible without the use of any problem-specific algorithm.
Since amls(1, c) = emls(c) = 2− 1

c , Lemma 1.1 also shows that the running time is strictly
better than that of Exact-MLS (Benchmark 3) when α > 1.

▶ Lemma 1.1 (⋆3). For every c > 1 the following holds:
1. amls(α, c) < min{brute(α), naive(α, c)} for every α ≥ 1. In fact, amls(α, c) −−−→

c→∞
brute(α).

2. amls(α, c) < emls(c) for every α > 1. In fact, amls(α, c) is a strictly decreasing function
of α.

Applications and Derandomization. We show in Section 2.4 that Approximate-MLS can be
used to derive new and faster exponential approximation algorithms for Vertex Cover, 3-
Hitting Set, Directed Feedback Vertex Set, Directed Subset Feedback Vertex
Set, Directed Odd Cycle Transversal and Undirected Multicut. We also show in
Section 4 that, as in [13], our algorithm can be derandomized at the expense of a multiplicative
sub-exponential factor in the running time.

3 The proofs of statements marked with ⋆ appear in the full version of the paper [9].
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2 Definitions and Our Results

2.1 Formal Definitions

We now give some formal definitions that will be required to formally state and describe our
main results. An implicit set system is a function Φ that takes as input a string I ∈ {0, 1}⋆,
called an instance, and returns a set system (UI ,FI) where UI is a universe and FI is a
collection of subsets of UI . We use n to denote the size of the universe, that is, n := |UI |. We
say that an implicit set system Φ is polynomial-time computable if there are two polynomial-
time algorithms, the first one, given I ∈ {0, 1}⋆, computes the set UI , and the second one,
given S ⊆ UI , correctly decides if S ∈ FI . A family F ⊆ 2U is called monotone if U ∈ F
and for every S ⊆ T ⊆ U , if S ∈ F , then T ∈ F . We say that an implicit set system Φ is
monotone if FI is monotone for every input I. Throughout the remainder of this work, we
only deal with implicit set systems that are polynomial-time computable and monotone. So
for the sake of convenience, we refer to a polynomial-time computable and monotone implicit
set system simply as an implicit set system.

For an implicit set system Φ, the problem Φmin-Subset takes as input a string I ∈ {0, 1}⋆

and asks to find S ∈ FI such that |S| is minimum. We refer to the sets in FI as solutions
of I and we call the sets in FI of minimum cardinality as minimum solutions or optimal
solutions of I. For α ≥ 1, we say that an algorithm is a (randomized) α-approximation
algorithm for Φmin-Subset if on input I, it returns a set S ∈ FI such that |S| ≤ α · |OPT|
(with a constant probability), where OPT is an optimum solution of Φmin-Subset.

One can observe that many fundamental graph problems, such as Vertex Cover,
Feedback Vertex Set, Directed Feedback Vertex Set, etc., can be cast as a
Φmin-Subset problem. Consider for example the Vertex Cover problem. Given a graph
G = (V, E) we say a subset S ⊆ V is a vertex cover if for every (u, v) ∈ E it holds that u ∈ S

or v ∈ S. The input for the Vertex Cover problem is a graph G and the objective is to
find a vertex cover S of G such that |S| is minimum. We can cast Vertex Cover as a
Φmin-Subset problem for the implicit set system ΦVC defined as follows. The instance of
the problem is interpreted as a graph G = (V, E). We define the universe UG as the set of
vertices V and the set of solutions FG = {S ⊆ V | S is a vertex cover of G} is the set of all
vertex covers of G. Finally, we define ΦVC(G) = (UG,FG). It can be easily verified that ΦVC
is an implicit set system (i.e., it is polynomial-time computable and monotone).

We say an algorithm is a parameterized (randomized) α-approximate Φ-extension if, given
an instance I ∈ {0, 1}⋆, X ⊆ UI and a parameter k ∈ N, it returns a set Y ⊆ UI which
satisfies the following property (with a constant probability): if there exists a set S ⊆ UI

such that S∪X ∈ FI and |S| ≤ k, then it holds that Y ∪X ∈ FI and |Y | ≤ α ·k. We use the
shorthand (randomized) (α, Φ)-extension algorithm to refer to a parameterized (randomized) α-
approximate Φ-extension algorithm. Observe that a parameterized α-approximation algorithm
for Vertex Cover can be turned into an (α, ΦVC)-extension algorithm with the same running
time, by taking the instance (G, X, k) of the (α, ΦVC)-extension algorithm, and running the
parameterized α-approximation algorithm on the instance (G−X, k). Observe that this way
of converting parameterized α-approximation algorithms to (α, Φ)-extension algorithms holds
for various implicit set systems Φ, for example, when Φ corresponds to a vertex deletion
problem to a hereditary graph class.
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2.2 Our results
Given an (α, Φ)-extension algorithm with running time O∗(ck) we design an α-approximation
algorithm for Φmin-Subset with running time O∗(amls(α, c)n) where amls is defined as
the unique value γ ∈

(
1, 1 + c−1

α

)
such that D

(
1
α

∥∥∥γ−1
c−1

)
= ln c

α . Note that amls(α, c) is
indeed well-defined because for every α ≥ 1, the function f(δ) := D

( 1
α

∥∥δ
)

is monotonically
decreasing in the interval δ ∈

(
0, 1

α

)
as well as f(δ) −−−→

δ→0
∞ and f(δ) −−−→

δ→ 1
α

0.

▶ Theorem 2.1 (Approximate Monotone Local Search). Let Φ be an implicit set system
and α ≥ 1. If there is a randomized (α, Φ)-extension algorithm that runs in time O∗(ck),
then there is a randomized α-approximation algorithm for Φmin-Subset that runs in time
O∗((amls(α, c))n).

The formula for amls(α, c) (which describes the running time of Theorem 2.1) is not a
closed-form formula, and we do not expect a closed-form formula for general α, c to exist.
However, it represents a tight analysis of our algorithm. Despite being represented as an
implicit formula, its basic properties can be deduced (see Lemma 1.1). Also, amls can be
easily evaluated for every α, c > 1. Indeed, for every α ≥ 1, the function f(γ) = D

(
1
α

∥∥∥γ−1
c−1

)
is monotonically decreasing in the interval

(
1, 1 + c−1

α

)
. This means that amls(α, c) can

be evaluated to an arbitrary precision, for every α ≥ 1 and c > 1, using binary search. In
particular, the running time implied by Theorem 2.1 can be evaluated.

Theorem 2.1 can be used to obtain faster (than the state-of-art) exponential approx-
imation algorithms for some Φmin-Subset problems. For example, the brute-force 1.1-
approximation algorithm runs in time O∗(brute(1.1)n) = O∗(1.716n). The best parameter-
ized 1.1-approximation for Vertex Cover runs in time O∗(1.1652k) [18], where k is the
parameter. Using the naive conversion, we obtain a 1.1-approximation that runs in time
O∗(naive(1.1, 1.1652)n) = O∗(1.149n). The previously known fastest 1.1-approximation
algorithm for Vertex Cover runs in time O∗(1.127n) [3]. Using Theorem 2.1 in conjunction
with the O∗(1.1652k) algorithm of [18], we get a 1.1-approximation algorithm for Vertex
Cover with running time O∗(1.114n), improving over all of the above. We provide additional
applications in Section 2.4.

In Section 4, we show that the algorithm of Theorem 2.1 can be derandomized, at the
cost of a sub-exponential factor in the running time, by generalizing the construction of set
inclusion families from [13].

▶ Theorem 2.2 (Derandomization Approximate Monotone Local Search). Let Φ be an im-
plicit set system and α ≥ 1. If there is an (α, Φ)-extension algorithm that runs in time
O∗(ck), then there is an α-approximation algorithm for Φmin-Subset that runs in time
O∗
(

(amls(α, c))n+o(n)
)

.

2.3 Approximate Monotone Local Search
We now present the algorithm underlying Theorem 2.1 and give a sketch for its analysis.
Recall Φ is the implicit set family and α ≥ 1 is the approximation ratio. Let Aext denote
the (α, Φ)-extension algorithm that runs in time O∗(ck) where k is the parameter. Given
an instance I ∈ {0, 1}⋆, let Φ(I) = (UI ,FI). The algorithm for Theorem 2.1 is described
in Algorithm 2, and it is denoted by Approximate-MLS. It uses the subroutine Sample
(Algorithm 1) which samples a random set from UI , which is subsequently extended, using
Aext, to yield the solution. Algorithm 2 coincides with the algorithm of [13, Theorem 1.1]
when α = 1.
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Algorithm 1 Sample(I, k, t).
Input: I ∈ {0, 1}⋆, k ∈ N, t ∈ N

1: Sample a set X of size t from UI uniformly at random.
2: Y ← Aext

(
I, X, k −

⌈
t
α

⌉)
.

3: Z ← X ∪ Y .
4: If Z ∈ FI and |Z| ≤ α · k, then return Z, otherwise return UI .

Let OPT be an optimum solution of the instance I of Φmin-Subset. Consider the execution
of Sample on the instance (I, k, t) where k = |OPT|. In Step 1 of Sample if |X∩OPT| ≥ t

α then
|OPT \X| ≤ k− t

α . Therefore, in Step 2 Aext must return a set Y such that X ∪ Y ∈ FI and
|Y | ≤ α · (k− t

α ) = αk− t. Thus, the set Z = X ∪Y computed in Step 3 is an α-approximate
solution of I. Let hyper(n, k, t, x) be the probability that a uniformly random set X of t

items out of [n] := {1, . . . , n} satisfies |X ∩ [k]| ≥ x. The distribution of |X ∩ [k]| is commonly
referred as hyper-geometric. Since Pr

(
|X ∩ OPT| ≥ t

α

)
= hyper(n, k, t, t

α ), Sample returns
an α-approximate solution of I with probability hyper(n, k, t, t

α ). Observe that the running
time of the Sample subroutine is proportional (up to polynomial factors) to the running time
of the call to Aext in Step 2. Thus, the Sample subroutine runs in time O∗(ck− t

α ).

Algorithm 2 Approximate-MLS(I).
Input: I ∈ {0, 1}⋆

1: Define n = |UI | and S ← ∅.
2: for k from 0 to n

α do

3: t← argmin
t∈[0,αk]∩N

(
ck− t

α

hyper
(
n, k, t, t

α

)).

4: Run S = S ∪ {Sample(I, k, t)} for
(
hyper

(
n, k, t, t

α

))−1 times.
5: Return a minimum sized set in S.

Now, let us consider the execution of Approximate-MLS on input I. The analysis of
Approximate-MLS focuses on the iteration of Step 2 when k = |OPT|. In this iteration, each
call to Sample(I, k, t) returns an α-approximate solution with probability hyper(n, k, t, t

α )
(as argued above). Since in Step 4, Sample is invoked

(
hyper(n, k, t, t

α )
)−1 times, at the end

of the execution of Step 4, the set S contains an α-approximate solution of I with a constant
probability.

The running time of a fixed iteration in Step 2 of Approximate-MLS is (hyper(n, k, t, t
α ))−1

times the running time of Sample, that is, ck− t
α

hyper(n,k,t, t
α ) . Let us denote iterationn,k,c(t) =

ck− t
α

hyper(n,k,t, t
α ) . Observe that the value of t selected in Step 3 minimizes iterationn,k,c(t).

From the algorithmic perspective the selection of the optimal value of t is straightforward as
iterationn,k,c(t) can be computed in polynomial time for each value of t (given n and k).
However, the asymptotic analysis of iterationn,k,c(t), and hence the overall running time,
requires an in-depth understanding of the random process and serves as the main technical
contribution of this paper.

As described earlier, when α = 1, Algorithm 2 coincides with the algorithm of [13,
Theorem 1.1]. The analysis of [13, Theorem 1.1] lower bounds the probability that the set X

sampled on Step 1 of Sample satisfies X ⊆ OPT. The analysis of our algorithm lower bounds
the probability that |X∩OPT|

|X| ≥ 1
α . In particular, the sampling step may select items which
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50:8 Approximate Monotone Local Search

are not in OPT, though the number of such items is restricted. This allows for an improved
running time in comparison to that of [13] (see Lemma 1.1), but renders the analysis of the
running time to be more involved.

For the analytical estimation of t, which is selected in Step 3 of Approximate-MLS, the
question that one needs to understand is how many items should the algorithm sample
before it decides to use Aext to extend the sampled set. Assume that the algorithm already
sampled a set X of t items such that |X ∩ OPT| ≈ t

α . Let ε > 0 be some small number.
Observe that UI \X contains ≈ k − t

α items from OPT, and thus |(UI \X)∩OPT|
|UI \X| ≈ k− t

α

n−t . The
algorithm now has two options: it can either further sample a set A of additional ε · n items
or, use Aext with the parameter k − t

α to extend X to a final solution. In the first case,
the time taken to sample a set A of ε · n items such that |A ∩ OPT| ≥ |A|

α = ε·n
α holds with

constant probability, is
(
Pr
(
|A ∩ OPT| ≥ ε·n

α

))−1. In the second case, the algorithm spends
an additional factor of c

ε·n
α time to extend the set X, instead of X ∪A, to the final solution.

Thus, if Pr
(
|A ∩ OPT| ≥ ε·n

α

)
> c− ε·n

α , it is better to continue sampling, and otherwise, it is
better to run Aext on the instance (I, X, k − t

α ). Therefore, to understand the analytics of
the chosen t, one needs to upper bound Pr

(
|A ∩ OPT| ≥ ε·n

α

)
.

We view the sampling of A as an iterative process in which the items are sampled one
after the other. When sampling the ℓ-th item, the ratio between the remaining items in OPT
and the available items is ≈ k− t

α −∆
n−t−ℓ , where ∆ is the number of items from OPT sampled in

previous iterations and 0 ≤ ∆ ≤ ℓ ≤ ε · n. As ε · n is small, we estimate k− t
α −∆

n−t−ℓ ≈
k− t

α

n−t .
Therefore, the probability that the ℓ-th sampled item is in OPT is roughly k− t

α

n−t . Thus,
|A ∩ OPT| can be estimated as the sum of ε · n Bernoulli random variables x1, . . . , xε·n with
probability k− t

α

n−t . Thus,

Pr
(
|A ∩ OPT| ≥ ε · n

α

)
≈ Pr

(
ε·n∑
i=1

xi ≥
ε · n

α

)
≈ exp

(
−ε · n · D

(
1
α

∥∥∥∥k − t
α

n− t

))
,

where the last estimation follows from a large deviation property of binomial distributions [6,
Theorem 11.1.4] and assumes |OPT| ≤ n

α .
Therefore, the (optimal) selection of t which minimizes iterationn,k,c(t) is the largest t

which satisfies exp
(
−ε · n · D

(
1
α

∥∥∥k− t
α

n−t

))
> c− ε·n

α , or equivalently, D
(

1
α

∥∥∥k− t
α

n−t

)
≈ ln c

α . We
use this value of t to bound the running time of an iteration of Step 2, that is, to upper bound

min
t∈[0,αk]∩N

iterationn,k,c(t). This analytical estimation of t forms the crux in analyzing the

overall running time of Algorithm 2.

2.4 Applications of Approximate-MLS

In this section we use Theorem 2.1 to get faster randomized exponential approximation
algorithms for Vertex Cover, 3-Hitting Set, Directed Feedback Vertex Set
(DFVS), Directed Subset Feedback Vertex Set (Subset DFVS), Directed Odd
Cycle Transversal (DOCT) and Undirected Multicut. One can observe that all
these problems can be described as some Φmin-Subset problem. Since all these problems can
be interpreted as vertex deletion problems to some hereditary graph class, any parameterized
α-approximation algorithm for these problems can be used as an (α, Φ)-extension algorithm,
for the respective Φ.
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(a) Vertex Cover.
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(b) 3-Hitting Set.
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Figure 1 Results for Vertex Cover and 3-Hitting Set. A dot at (α, d) means that the
respective algorithm outputs an α-approximation in time O∗(dn).

Vertex Cover (VC). In [3] Bourgeois, Escoffier and Paschos designed several exponential
approximation algorithms for VC for approximation ratios in the range (1, 2). For any
α ∈ (1, 2) the best known running time of a parameterized randomized α-approximation
algorithm for VC is attained in [18] if α ≳ 1.03, and in [5] if α ≲ 1.03. We use these algorithms
in conjunction with Theorem 2.1 to obtain faster randomized exponential α-approximation
algorithms for VC for values of α in the range (1, 2). We compare our running times to the
running times obtained by the naive conversion (Benchmark 2) and to the running times
in [3].4 We present the running time for selected approximation ratios in Table 1 and give a
graphical comparison in Figure 1a.

Table 1 Results for Vertex Cover and 3-Hitting Set. A value d at the column of an
approximation ratio α means that the respective algorithm outputs an α-approximation in time
O∗(dn).

Vertex Cover

ratio 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
brute(α) 1.716 1.583 1.496 1.433 1.385 1.347 1.317 1.291 1.269
BEP [3] 1.127 1.099 1.083 1.069 1.056 1.043 1.032 1.021 1.01

[18]+Naive Conv. 1.149 1.079 1.044 1.0236 1.0110 1.00469 1.00162 1.000406 1.0000432
[18]+Theorem 2.1 1.114 1.064 1.036 1.0203 1.0099 1.00435 1.00156 1.000397 1.0000428

3-Hitting Set
ratio 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

brute(α) 1.583 1.433 1.347 1.291 1.251 1.220 1.196 1.177 1.162
[18]+Naive Conv. 1.471 1.196 1.105 1.0582 1.0326 1.0173 1.00831 1.00324 1.000903
[18]+Theorem 2.1 1.240 1.119 1.0698 1.0417 1.0248 1.0140 1.00711 1.00292 1.000853

4 The result of [3] provides an α-approximation algorithm for every α ∈ (1, 2). As the evaluation of these
running times is not trivial, we only provide the running times which were explicitly given in [3] for
selected approximation ratios.
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3-Hitting Set (3-HS). The problem admits a simple polynomial-time 3-approximation
algorithm which cannot be improved assuming UGC [17]. For any α ∈ (1, 3) the best
known running time of a parameterized α-approximation algorithm for 3-HS is attained
by either [12] if α ≲ 1.08, or [18] if α ≳ 1.08. Using these algorithms as parameterized
extension algorithms, we calculate the running times of α-approximation algorithms for 3-HS
attained using the naive conversion (Benchmark 2) and Theorem 2.1, for values of α ∈ (1, 3).
We provide the running times for selected approximation ratios in Table 1 and a graphical
comparison in Figure 1b.

DFVS, Subset DFVS, DOCT, Undirected Multicut. For all these problems [22] gave
parameterized 2-approximation algorithms that run in time O∗(ck), for some constant c > 1.
One can easily observe from the description of the DFVS algorithm in [22] that it runs in time
O∗(1024k). Using Theorem 2.1 we get that DFVS admits an exponential 2-approximation
algorithm that runs in time O∗(1.2498n). This running time is significantly better than the
running time derived using the naive conversion (Benchmark 2) of the algorithm of [22],
which does not give anything meaningful for this problem. It is also significantly better than
using Exact-MLS with the algorithm of [22], which gives O∗((emls(1024))n) = O∗(1.9991n).
It is also qualitatively better than the brute-force 2-approximation algorithm (Benchmark 1),
which runs in time O∗(1.25n).

Using Lemma 1.1, we can show that we get faster 2-approximation algorithms for all
mentioned problems compared to the brute-force 2-approximation algorithm, or the naive
conversion of the parameterized algorithms in [22] or the application of Exact-MLS with the
algorithms of [22]. Note that even though the algorithms derived from Theorem 2.1 are only
qualitatively better than brute-force approximation, we emphasize that Approximate-MLS is
always strictly better than brute-force approximation (and the other benchmarks described
earlier). Also, it reflects Part 1 of Lemma 1.1, that as c increases (that is, as the param-
eterized extension algorithm becomes slower), our algorithm converges to the brute-force
approximation.

3 Analysis of Approximate Monotone Local Search

This section is dedicated to the proof of Theorem 2.1. As explained earlier, the algorithm
promised in Theorem 2.1 is Approximate-MLS (Algorithm 2). In Lemma 3.1 we prove the
correctness of Algorithm 2 and in Lemma 3.2 we provide a formula for its running time.
Finally, in Lemma 3.4 we upper bound the running time of the formula obtained in Lemma 3.2
with O∗(amls(α, c)n), thereby proving Theorem 2.1.

▶ Lemma 3.1 (Correctness ⋆). Approximate-MLS (Algorithm 2) is a randomized α-approxi-
mation algorithm for Φmin-Subset.

▶ Lemma 3.2 (Running time). Approximate-MLS (Algorithm 2) runs in time fα,c(n) · nO(1)

where

fα,c(n) :=
⌊n

α⌋∑
k=0

min
t∈[0,αk]∩N

ck− t
α

hyper
(
n, k, t, t

α

) . (1)

Proof. For each choice of k, Algorithm 2 chooses in Step 3 a number t that minimizes
ck− t

α

hyper(n,k,t, t
α ) . Clearly, this step can be performed in time nO(1). Afterwards, the algorithm

calls Algorithm 1 hyper
(
n, k, t, t

α

)−1 times which takes ck− t
α

hyper(n,k,t, t
α ) · n

O(1) time in total.
So overall, the running time is upper bounded by fα,c(n) · nO(1). ◀
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We now proceed with the main part of the analysis which is to bound fα,c(n) by
amls(α, c)n up to some polynomial factors. We remark at this point (without giving a proof)
that our analysis is in fact tight, that is, it can be shown that fα,c(n) is equal to amls(α, c)n

up to some polynomial factors in n.
Recall that H(p) = −p ln p− (1− p) ln(1− p) denotes the entropy function. We will use

the following bound on binomial coefficients (see, e.g., [6, Example 11.1.3]):

1
n + 1 · exp

(
n · H

(
k

n

))
≤
(

n

k

)
≤ exp

(
n · H

(
k

n

))
(2)

for all n, k ∈ N such that 0 ≤ k ≤ n.
Moreover, we also need the following technical lemma. Intuitively speaking, it says that

small perturbations to the values of a and b do not change the value of a · H
(

b
a

)
by a large

amount.

▶ Lemma 3.3 (⋆). For 0 ≤ b ≤ a ≤ n and ε, δ ∈ [−1, 1] such that a + ε ≥ 0 and
0 ≤ b + δ ≤ a + ε, we have

∣∣∣a · H ( b
a

)
− (a + ε) · H

(
b+δ
a+ε

)∣∣∣ = O(log(n)).

Finally, recall that D (a∥b) = a ln a
b +(1−a) ln 1−a

1−b denotes the Kullback-Leibler divergence
(see, e.g., [6]).

▶ Lemma 3.4. It holds that

fα,c(n) = O∗(amls(α, c)n).

Proof. Recall that hyper
(
n, k, t, t

α

)
denotes the probability that a uniformly random set X

of t elements out of [n] satisfies that |X ∩ [k]| ≥ t
α . Thus, we have that

hyper
(

n, k, t,
t

α

)
=

∑
y≥⌈ t

α⌉

(
k
y

)(
n−k
t−y

)(
n
t

) ≥

(
k
⌈ t

α⌉
)( n−k

t−⌈ t
α⌉
)(

n
t

) =

(
t
⌈ t

α⌉
)( n−t

k−⌈ t
α⌉
)(

n
k

) , (3)

where the last equality holds since the distribution of |X ∩ [k]|, where X ⊆ [n] is a uniformly
random set of cardinality t, is identical to the distribution of |Y ∩ [t]| where Y ⊆ [n] is a
uniformly random set of cardinality k.

Using (3) we have

fα,c(n) =
⌊n

α⌋∑
k=0

min
t∈[0,αk]∩N

ck− t
α

hyper
(
n, k, t, t

α

) ≤ ⌊n
α⌋∑

k=0
min

t∈[0,αk]∩N

ck− t
α ·
(

n
k

)(
t
⌈ t

α⌉
)( n−t

k−⌈ t
α⌉
)

≤nO(1) ·
⌊n

α⌋∑
k=0

(
n

k

)
exp

(
min

t∈[0,αk]∩N

((
k − t

α

)
ln(c)− t · H

(⌈
t
α

⌉
t

)
− (n− t) · H

(
k −

⌈
t
α

⌉
n− t

)))

≤nO(1) ·
⌊n

α⌋∑
k=0

(
n

k

)
exp

(
min

t∈[0,αk]∩N

((
k − t

α

)
ln(c)− t · H

(
1
α

)
− (n− t) · H

(
k − t

α

n− t

)))
(4)

where the second inequality follows from (2) and the third inequality follows from Lemma 3.3.
Define

gn,k(t) :=
(

k − t

α

)
ln(c)− t · H

(
1
α

)
− (n− t) · H

(
k − t

α

n− t

)
.
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By Lemma 3.3 it holds that |gn,k(t) − gn,k(t − ε)| = O(log n) for any t ∈ [0, αk] and
0 ≤ ε ≤ min{1, t}. Using this observation and (4) we get

fα,c(n) ≤ nO(1) ·
⌊n

α⌋∑
k=0

(
n

k

)
exp

(
min

t∈[0,αk]∩N
gn,k(t)

)

≤ nO(1) ·
⌊n

α⌋∑
k=0

(
n

k

)
exp

(
min

t∈[0,αk]
gn,k(t)

)
.

(5)

Observe that in the last term the range of t is not restricted to integral values.
Let δ∗ = amls(α,c)−1

c−1 . By the definition of amls it holds that δ∗ ∈ (0, 1
α ) and D

( 1
α

∥∥δ∗) =
ln(c)

α . Define t∗(n, k) := k−nδ∗
1
α −δ∗ , thus k− t∗(n,k)

α

n−t∗(n,k) = δ∗ and D
(

1
α

∥∥∥∥ k− t∗(n,k)
α

n−t∗(n,k)

)
= ln c

α for every

n ∈ N and k ∈ N. It can be verified that gn,k(t) is convex and has a global minimum at
t∗(n, k), though this observation is not directly used by our proof.

For any n ∈ N and k ∈
[
0, n

α

]
∩ N it holds that t∗(n, k) = αk( 1

α −δ∗)+αkδ∗−nδ∗

1
α −δ∗ ≤ αk since

αk ≤ n. Furthermore, t∗(n, k) ≥ 0 if and only if k ≥ nδ∗. Following this observation we
partition the summation in (5) into two parts. Define

A(n) =
⌊n·δ∗⌋∑

k=0

(
n

k

)
exp

(
min

t∈[0,αk]
gn,k(t)

)
and B(n) =

⌊n
α⌋∑

k=⌊n·δ∗⌋+1

(
n

k

)
exp

(
min

t∈[0,αk]
gn,k(t)

)
.

Thus, fα,c(n) ≤ nO(1) · (A(n) + B(n)). We bound each of the sums A(n) and B(n) separately.
In order to bound B(n) we use the following algebraic identity.

▷ Claim 3.5 (⋆). It holds that

gn,k(t) =
(

k − t

α

)
ln(c) + t ·D

(
1
α

∥∥∥∥k − t
α

n− t

)
+ k · ln

(
k − t

α

n− t

)
+ (n−k) · ln

(
1−

k − t
α

n− t

)
.

For any n ∈ N and k ∈
[
nδ∗, n

α

]
∩ N it holds that 0 ≤ t∗(n, k) ≤ αk. Thus,

min
t∈[0,αk]

gn,k(t) ≤ gn,k (t∗(n, k))

=
(

k − t∗(n, k)
α

)
ln(c) + t∗(n, k) · D

(
1
α

∥∥∥∥δ∗
)

+ k · ln(δ∗) + (n− k) · ln(1− δ∗)

= k · ln(c) + k · ln(δ∗) + (n− k) · ln(1− δ∗)

= k · ln
(

c · δ∗

1− δ∗

)
+ n · ln(1− δ∗),

where the first equality uses Claim 3.5 and the second equality follows from D
( 1

α

∥∥δ∗) = ln(c)
α .

Therefore,

B(n) =
⌊n

α⌋∑
k=⌈nδ∗⌉+1

(
n

k

)
· exp

(
min

t∈[0,αk]
gn,k(t)

)
≤

n∑
k=0

(
n

k

)(
c · δ∗

1− δ∗

)k

(1− δ∗)n

= (1− δ∗)n

(
c · δ∗

1− δ∗ + 1
)n

= ((c− 1)δ∗ + 1)n

(6)

using the Binomial Theorem.
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We now proceed to bound A(n). For every n ∈ N and 0 ≤ k ≤ δ∗n it holds that

min
t∈[0,αk]

gn,k(t) ≤ gn,k(0) = k · ln(c)− n · H
(

k

n

)
≤ k · ln c− ln

(
n

k

)
,

where the last inequality follows from (2). Therefore,

A(n) =
⌊nδ∗⌋∑
k=0

(
n

k

)
· exp

(
min

t∈[0,αk]
gn,k(t)

)
≤

⌊nδ∗⌋∑
k=0

ck ≤ n · (cδ∗
)n. (7)

Finally, by using (6) and (7), we get

fα,c(n) ≤ nO(1) · (A(n) + B(n)) ≤ nO(1) ·
(

(cδ∗
)n + ((c− 1)δ∗ + 1)n

)
≤ nO(1) · ((c− 1)δ∗ + 1)n

,

where the third inequality uses cδ∗ ≤ (c−1)δ∗ +1 which holds because f(x) := cx−(c−1)x−1
is convex and has two roots at 0 and 1. By the definition of δ∗ it holds that (c− 1)δ∗ + 1 =
amls(α, c) and thus, fα,c(n) ≤ nO(1) · amls(α, c)n. ◀

Finally, Theorem 2.1 is implied by Lemmas 3.1, 3.2 and 3.4.

4 Derandomization

In this section, we show how to derandomize Algorithm 2. In particular, we prove Theorem 2.2.
As usual, let (UI ,FI) be a set system and let k, t, n ∈ N be the variables from Algorithm 2
and let α ≥ 1. In order to derandomize the algorithm, it is sufficient to find a collection
C of subsets of UI of size t such that, for every possible solution set S ⊆ UI of size k,
there is some set X ∈ C such that |X ∩ S| ≥ t

α . We refer to such a family C as an
(n, k, t, t

α )-set-intersection-family which is formally defined below.

▶ Definition 4.1. Let U be a universe of size n and let p, q, r ≥ 1 such that n ≥ p ≥ r

and n− p + r ≥ q ≥ r. A family C ⊆
(

U
q

)
is a (n, p, q, r)-set-intersection-family if for every

T ∈
(

U
p

)
there is some X ∈ C such that |T ∩X| ≥ r.

Given a (n, k, t, t
α )-set-intersection-family C we can derandomize Algorithm 2 by iterating

over all choices X ∈ C instead of repeatedly sampling a set X uniformly at random. Observe
that the derandomized algorithm (for a fixed k, t) runs in time O∗(|C| · ck− t

α ). Now, we
define

κ(n, p, q, r) :=
(

n
q

)(
p
r

)
·
(

n−p
q−r

) .

The following theorem computes the desired set-intersection-family of small size.

▶ Theorem 4.2 (⋆). There is an algorithm that, given a set U of size n and p, q, r ≥ 1 such
that n ≥ p ≥ r and n− p + r ≥ q ≥ r, computes an (n, p, q, r)-set-intersection-family of size
κ(n, p, q, r) · 2o(n) in time κ(n, p, q, r) · 2o(n).

For the proof of Theorem 4.2 we extend the arguments from [13] which provide such a
result for the special case when q = r (which corresponds to the case α = 1).
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Proof of Theorem 2.2. We proceed analogously to the proof of Theorem 2.1 with the
following changes. In Algorithm 2, Step 3 we define

t := argmin
t∈[0,αk]∩N

κ

(
n, k, t,

⌈
t

α

⌉)
ck− t

α

and then compute an (n, k, t, t
α )-set-intersection-family C of size κ(n, p, q, r) · 2o(n) using

Theorem 4.2. Afterwards, we repeatedly execute Algorithm 1 for every X ∈ C (instead of
sampling X uniformly at random). Repeating the analysis of Lemma 3.2 the running time is
bounded by O∗(fα,c(n)) where,

fα,c(n) =
⌊n

α⌋∑
k=0

min
t∈[0,αk]∩N

κ

(
n, k, t,

⌈
t

α

⌉)
ck− t

α · 2o(n).

As we already proved in Lemma 3.4 it holds that

⌊n
α⌋∑

k=0
min

t∈[0,αk]∩N
κ

(
n, k, t,

⌈
t

α

⌉)
ck− t

α =
⌊n

α⌋∑
k=0

min
t∈[0,αk]∩N

ck−⌈ t
α⌉ ·

(
n
t

)(
k
⌈ t

α⌉
)( n−k

t−⌈ t
α⌉
)

=
⌊n

α⌋∑
k=0

min
t∈[0,αk]∩N

ck−⌈ t
α⌉ ·

(
n
k

)(
t
⌈ t

α⌉
)( n−t

k−⌈ t
α⌉
) ≤ amls(α, c)n · nO(1)

which results in the running time stated in the theorem. ◀

5 The Brute-Force Approximation Algorithm

In this section we describe an α-approximate variant of exhaustive search that runs in time
O∗ ((brute(α))n), where brute(α) = 1 + exp(−α · H

( 1
α

)
). We complement this result by

showing that O∗ ((brute(α))n) is the best possible running time of an α-approximation
algorithm for a subset minimization problem in the oracle model defined below.

A (randomized) oracle α-approximation minimum subset algorithm takes as input a
universe U and receives a membership oracle to a monotone family F ⊆ 2U . The algorithm
returns a set S ∈ F such that |S| ≤ α ·min

{
|T |

∣∣ T ∈ F
}

(with constant probability).

▶ Theorem 5.1. For any α ≥ 1, there is a deterministic oracle α-approximation minimum
subset algorithm which runs in time O∗((brute(α))n). Moreover, there is no randomized
oracle α-approximation minimum subset algorithm which uses O∗(cn) oracle queries for any
c < brute(α).

The proof of Theorem 5.1 utilizes the technical bound proved in Lemma 5.2. The proof
of Lemma 5.2 uses arguments that similar to the ones used in the proof of Lemma 3.4.

▶ Lemma 5.2 (⋆). For any n ∈ N and α ≥ 1 it holds that

n−O(1) · (brute(α))n ≤ max
k∈[0, n

α )∩N

(
n
k

)(⌊αk⌋
k

) ≤ nO(1) · (brute(α))n

To obtain the claimed algorithm of Theorem 5.1 the basic idea is to sample
O∗((brute(α))n) random sets (of some size k) and show that the desired approximate
solution is found with constant probability. This algorithm can be derandomized by using
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Theorem 4.2 for the special case when p = r. However, this introduces another sublinear
term in the exponent of the running time. Instead, in this special case, we can rely on
existing results on covering families [19].

Let k < t < n be natural numbers and recall [n] := {1, 2, . . . , n}. An (n, t, k)-covering
is a family C ⊆ {X | X ⊆ [n], |X| = t} such that, for every S ⊆ [n] of size |S| = k, there
is some X ∈ C such that S ⊆ X. To construct the algorithm for Theorem 5.1, we exploit
known constructions of (n, t, k)-coverings of almost optimal size.

▶ Theorem 5.3 (Kuzjurin [19]). There is an algorithm that, given k < t < n, computes an
(n, t, k)-covering C of size (1 + o(1)) ·

(
n
k

)
/
(

t
k

)
in time |C| · nO(1).

Proof of Theorem 5.1. We first show the algorithmic part. By renaming elements, we may
assume U = [n]. For every k ≤ n/α we computes a (n, ⌊αk⌋, k)-covering Ck using Theorem
5.3 and check for every set X ∈ Ck whether it is contained in F using the oracle. We return
the smallest set that is contained in F . If no such set is found, we return the entire universe.

It is easy to see that this algorithm is an α-approximation algorithm. Indeed, let OPT ⊆ U

be a solution set of minimum cardinality and let k := |OPT|. If k ≥ n/α, then the algorithm is
clearly correct since even returning the entire universe gives the desired approximation ratio.
So suppose that k ≤ n/α. By definition of an (n, ⌊αk⌋, k)-covering there is some X ∈ Ck

such that OPT ⊆ X and |X| = ⌊αk⌋ ≤ αk. Since F is monotone we get that X ∈ F and the
algorithm returns a solution set of size at most |X| ≤ αk.

By Theorem 5.3, the algorithm runs in time maxk∈[0, n
α )∩N

(
n
k

)
/
(⌊αk⌋

k

)
· nO(1). From

Lemma 5.2 we get that the running time is bounded by (brute(α))n · nO(1).
Next, we prove the lower bound. For n ∈ N define κ(n) = argmaxk∈[0, n

α )∩N
(

n
k

)
/
(⌊αk⌋

k

)
.

For every n ∈ N we define Fadv(n) = {S ⊆ [n] | |S| > ακ(n)}. Also, for every n ∈ N and
X ⊆ [n] we define F(n, X) = {S ⊆ [n] | X ⊆ S} ∪ Fadv(n). It can be easily observed that
F(n, X) and Fadv(n) are monotone set families. Our bound is based on the difficulty that
algorithms have to distinguish between Fadv(n) and F(n, X).

Let A be a randomized oracle α-approximation minimum subset algorithm. Without loss
of generality we assume A only returns a set S if it queried the oracle with that set (and got
back a positive answer). Let q(n) be the maximal number of oracle queries the algorithm
uses given a universe of size n. As the algorithm is randomized, we use R to denote the
random sequence of bits used by the algorithm.

Fix n ∈ N. For any j ∈ [q(n)] the j-th query to the oracle is a function of the previous
answers the algorithm received from the oracle and the sequence of random bits the algorithm
uses. Thus, there is a function Sj(R) which returns the j-th query the algorithm sends to
the oracle, given that the algorithm gets an oracle to Fadv(n). If the algorithm does not issue
the j-th query given R we arbitrarily define Sj(R) = ∅.

Let X ⊆ [n] be a random set of size κ(n) which is sampled uniformly (and independently
of R). Consider the execution of A with the universe [n] and an oracle for F(n, X). Define

C(R) =
q(n)⋃
j=1

{
{T ⊆ [n] | |T | = κ(n), T ⊆ Sj(R)} if |Sj(R)| ≤ α · κ(n)
∅ otherwise

. (8)

If X /∈ C(R) then the answers the algorithm receives to its queries are identical to the answers
it would have received if it was given an oracle Fadv(n). It therefore asks the same queries,
and must return a set S ∈ Fadv(n). As A is a randomized α-approximation algorithm, there
is γ ∈ (0, 1] such that A returns a set S ∈ F(n, X) which satisfies |S| ≤ α · |X| = α · κ(n)
with probability at least γ. As all the sets in Fadv have cardinality greater than α · κ(n) it
follows that Pr(X /∈ C(R)) ≤ 1− γ, or equivalently, Pr(X ∈ C(R)) ≥ γ.
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By the definition of C(R) (8), each query Sj(R) adds at most
(⌊α·κ(n)⌋

κ(n)
)

sets to C(R).
Thus C(R) ≤ q(n) ·

(⌊α·κ(n)⌋
κ(n)

)
. Since X is independent of R we have,

γ ≤ Pr(X ∈ C(R)) ≤
q(n) ·

(⌊α·κ(n)⌋
κ(n)

)(
n

κ(n)
) ,

and hence

q(n) ≥ γ ·

(
n

κ(n)
)(⌊α·κ(n)⌋

κ(n)
) = γ · max

k∈[0, n
α )∩N

(
n
k

)(⌊αk⌋
k

) ≥ n−O(1) · (brute(α))n
,

where the equality follows from the definition of κ(n) and the last inequality follows from
Lemma 5.2. In particular, A does not use O∗(cn) oracle queries for any c < brute(α). ◀

6 Concluding Remarks

We introduced and analyzed approximate monotone local search Approximate-MLS which can
be used to obtain faster exponential approximation algorithms from parameterized (extension)
approximation algorithms for monotone subset minimization problems. In particular, we
obtain faster exponential approximation algorithms for Vertex Cover, 3-Hitting Set,
DFVS, Subset DFVS, DOCT and Undirected Multicut (for some approximation
ratios).

Following the submission of this work we became aware of a similar application of monotone
local search in the PhD thesis of Lee [20]. However, Lee mainly provides experimental
evaluations of the running time of approximate monotone local search for specific problems
such as Vertex Cover and Feedback Vertex Set, and does not provide a rigorous
analysis of the general running time which is the main focus of this work.

The significance of Exact-MLS stems from the abundance of existing parameterized
(extension) algorithms which can be used to obtain the state-of-art exponential algorithms for
multiple problems. Approximate-MLS has a similar potential in the context of exponential
approximation algorithms. Thus, our result further emphasizes the importance of the already-
growing field of parameterized approximation, by exhibiting its strong connections with
exponential-time approximations.

Some interesting follow-up questions of our work are the following.

▶ Problem 6.1. Can an α-approximate algorithm running in time O∗((brute(α)− ε)n) be
derived from a parameterized extension β-approximation algorithm for any β > α?

For example, for Directed Feedback Vertex Set only a parameterized 2-approxima-
tion algorithm running in time O∗(ck) [22] is currently available. The question is whether
this algorithm can also be used to obtain an exponential 1.1-approximation algorithm that
runs in time O∗((brute(1.1)− ε)n), for some ε > 0?

We also described and showed that the exhaustive search analog in the α-approximate
setting achieves the best possible running time of O∗((brute(α))n) when one only has
access to a membership oracle for the problem. Observe that for α = 1, SETH asserts that
(brute(1))n = 2n is tight.

▶ Problem 6.2. Does there exist a monotone subset minimization problem for which there is
no α-approximation algorithm that runs in time O∗ ((brute(α)− ε)n), assuming SETH?



B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 50:17

Recall that the Approximate-MLS algorithm only uses random sampling and the given
parameterized α-approximation extension algorithm. Another interesting lower bound
question is the following.

▶ Problem 6.3. Can one show that the running time of Approximate-MLS is tight (up to
polynomial factors) when one is only given access to a membership oracle and a parameterized
α-approximation extension algorithm as a black-box?
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Abstract
We develop data structures for intersection detection queries in four dimensions that involve
segments, triangles and tetrahedra. Specifically, we study two main problems: (i) Preprocess a set
of n tetrahedra in R4 into a data structure for answering segment-intersection queries amid the
given tetrahedra (referred to as segment-tetrahedron intersection queries), and (ii) Preprocess a set
of n triangles in R4 into a data structure that supports triangle-intersection queries amid the input
triangles (referred to as triangle-triangle intersection queries). As far as we can tell, these problems
have not been previously studied.

For problem (i), we first present a “standard” solution which, for any prespecified value n ≤
s ≤ n6 of a so-called storage parameter s, yields a data structure with O∗(s) storage and expected
preprocessing, which answers an intersection query in O∗(n/s1/6) time (here and in what follows,
the O∗(·) notation hides subpolynomial factors). For problem (ii), using similar arguments, we
present a solution that has the same asymptotic performance bounds.

We then improve the solution for problem (i), and present a more intricate data structure that
uses O∗(n2) storage and expected preprocessing, and answers a segment-tetrahedron intersection
query in O∗(n1/2) time. Using the parametric search technique of Agarwal and Matoušek [3], we
can obtain data structures with similar performance bounds for the ray-shooting problem amid
tetrahedra in R4. Unfortunately, so far we do not know how to obtain a similar improvement for
problem (ii).

Our algorithms are based on a primal-dual technique for range searching with semi-algebraic
sets, based on recent advances in this area [2, 11]. As this is a result of independent interest, we
spell out the details of this technique.

As an application, we present a solution to the problem of “continuous collision detection” amid
moving tetrahedra in 3-space. That is, the workspace consists of n tetrahedra, each moving at its own
fixed velocity, and the goal is to detect a collision between some pair of moving tetrahedra. Using
our solutions to problems (i) and (ii), we obtain an algorithm that detects a collision in O∗(n12/7)
expected time. We also present further applications, including an output-sensitive algorithm for
constructing the arrangement of n tetrahedra in R4 and an output-sensitive algorithm for constructing
the intersection or union of two or several nonconvex polyhedra in R4.
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1 Introduction

In this paper we consider various intersection problems involving segments, triangles and
tetrahedra in R4. In four dimensions, the interesting setups involve (i) intersections between
(one-dimensional) segments and (three-dimensional) tetrahedra, and (ii) between (two-
dimensional) triangles and (two-dimensional) triangles. We study both problems, and derive
efficient solutions to each of them.

As an interesting application, we consider the continuous collision detection problem,
where the input consists of n tetrahedra in R3, each of which is moving at some constant
velocity of its own, and the goal is to detect whether any pair of them collide. Adding the
time as a fourth coordinate, this becomes a batched version of intersection detection in R4,
involving both setups (i) and (ii). Other applications include output-sensitive construction
of the arrangement of n tetrahedra in R4, and an output-sensitive algorithm for computing
the intersection or the union of two or several not necessarily convex polyhedra in R4. In
the three-dimensional versions of these problems, which were recently studied in [7], the
only setup that needed to be considered was segment intersection amid triangles. In four
dimensions, though, we also face the triangle-triangle intersection problem, since we also
need to find intersections between pairs of 2-faces of the input objects.

Setup (i): Segment-tetrahedron intersection queries. Consider first the case of segments
vs. tetrahedra. In the setup considered here, the input objects are n (not necessarily pairwise
openly disjoint) tetrahedra in R4 and the query objects are segments, and the goal is to
detect, count, or report intersections between the query segment and the input tetrahedra.

As far as we can tell, this problem has not been explicitly studied so far. We first present,
in Section 2, a “traditional” (albeit novel) solution, in which the problem is reduced to a range
searching problem in a suitable parametric space, which, in the case of (lines supporting)
segments in R4, is six-dimensional. We carefully adapt and combine recent techniques,
developed by Agarwal et al. [2] and Matoušek and Patáková [11], which provide algorithmic
constructions of intricate space decompositions based on partitioning polynomials. Using
this machinery, we solve the problem so that, with a so-called storage parameter s, a segment
intersection query can be answered in1 O∗(n/s1/6) time, for any n ≤ s ≤ n6, and the storage
and preprocessing cost are both O∗(s).

A special case of this setup is an extension to four dimensions of the classical ray shooting
problem, which has mostly been studied in two and three dimensions. In a general setting, we
are given a collection S of n simply-shaped objects, and the goal is to preprocess S into a data
structure that supports efficient ray shooting queries, where each query specifies a ray ρ and
asks for the first object of S hit by ρ, if such an object exists. In this work we only consider
the (already challenging) case of input tetrahedra. Using the parametric search technique
of Agarwal and Matoušek [3], ray shooting queries can be reduced to segment-intersection
detection queries, up to a polylogarithmic factor in the query cost. By the above discussion,
we obtain the following result:

▶ Theorem 1. Given a collection T of n tetrahedra in R4, and any storage parameter
n ≤ s ≤ n6, we can preprocess T into a data structure of size O∗(s), in randomized O∗(s)
expected time, so that we can answer any segment-intersection or ray-shooting query in T
in O∗(n/s1/6) time. The query time bound applies to segment-intersection detection and
counting queries (and to ray shooting queries). The cost is O∗(n/s1/6) +O(k) for reporting
queries.

1 As in the abstract, the O∗(·) notation hides subpolynomial factors, typically of the form nε, for any
ε > 0, and their coefficients which depend on ε.
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We later improve upon this standard algorithm in Section 4, where we show:

▶ Theorem 2. A collection S of n arbitrary tetrahedra in R4 can be preprocessed into a
data structure of size O∗(n2), in expected time O∗(n2), which supports segment-intersection
detection and counting queries and ray-shooting queries in time O∗(n1/2) per query.

This indeed improves the bounds stated in Theorem 1, which, with s = O∗(n2) storage, has
query time O∗(n2/3). Furthermore, with the storage bound specified in Theorem 2, the query
bound is similar to that obtained for ray-shooting amid hyperplanes (rather than tetrahedra)
in R4 [3].

We then go on, in the full version of the paper2 to extend the result to obtain a tradeoff
between storage (and expected preprocessing time) and query time. We show that, with
storage parameter s, which can vary between n and n6, we can answer a segment intersection
or a ray shooting query in time

Q(n, s) =

O
∗
(
n7/6

s1/3

)
for s = O(n2)

O∗
(
n3/4

s1/8

)
for s = Ω(n2).

(1)

See Figure 1 for an illustration. This yields algorithms that answer m segment intersection or
ray-shooting queries on n tetrahedra in max

{
O∗(m3/4n7/8 + n), O∗(m8/9n2/3 +m)

}
time

and storage. The first (resp., second) bound dominates when m ≤ n3/2 (resp., m ≥ n3/2).

1 2 3 4
0

5 6

1/6

1/3

1/2

2/3

5/6

query time

storage

Figure 1 The tradeoff between storage and query time. The breakpoint in the graph represents the
case studied in Section 4. Both axes are drawn on a logarithmic scale.

Setup (ii): Triangle-triangle intersection detection. We next consider the other setup of
intersection queries, where both input and query objects are triangles in R4. We show that
this setup can also be reduced, similar to setup (i), to a multi-level range searching problem
in R6 involving semi-algebraic ranges. This allows us to obtain the same performance bounds
here too. Namely we have:

▶ Theorem 3. Given a collection ∆ of n triangles in R4, and any storage parameter
n ≤ s ≤ n6, we can preprocess ∆ into a data structure of size O∗(s), in randomized O∗(s)
expected time, so that we can answer any triangle-intersection query in ∆ in O∗(n/s1/6)
time.

2 Soon to be available on arXiv.
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Since both input and query objects are triangles, it is also interesting to consider the
bichromatic batched version of the problem. Namely we have:

▶ Theorem 4. Given two collections R and B of triangles in R4, of respective sizes m and
n, We can detect an intersection between some triangle of R and some triangle of B, or
count all such intersections, in time O∗(m6/7n6/7 + m + n). We can also report all these
intersections in time O∗(m6/7n6/7 +m+ n+ k), where k is the output size.

As a consequence, integrating this bound with the one obtained in Theorem 1 (in which,
similar to the preceding argument, we need to set s = n12/7 to match the performance
with that stated above, as is easily verified), we obtain an overall O∗ (n12/7) expected time
solution for the continuous collision detection problem, that is:3

▶ Theorem 5. Given n tetrahedra in R3, each of which is moving at some constant velocity
of its own, one can detect a collision between any pair of moving tetrahedra in O∗ (n12/7)
expected time.

Collision detection has been widely studied – see Lin, Manocha and Kim [10] for a
recent comprehensive survey, and the references therein. We are not aware of any work that
addresses the exact algorithmic approach for the specific setup considered here, although
there are some works, such as Canny [6] or Schömer and Thiel [12], that address similar
contexts.

We then consider the applications of our techniques to the problems of output-sensitive
construction of an arrangement of tetrahedra in R4, and of constructing the intersection or
union of two or several (nonconvex) polyhedra in R4. Using the bounds for setups (i) and
(ii), we obtain, in Section 5:

▶ Theorem 6. (i) Let T be a collection of n tetrahedra in general position in R4. We can
construct the arrangement A(T ) of T in O∗(n12/7 + n1/2k2 + k4) expected time, where k2
is the number of intersecting pairs of tetrahedra in T , and k4 is the number of vertices of
A(T ). (ii) Given two arbitrary polyhedra R and B in R4, each of complexity O(n), that lie
in general position with respect to one another, the intersection R ∩B can be computed in
expected time O∗(n12/7 + n1/2k2 + k4), where k2 is the number of 2-faces of A(R ∪B), and
k4 is the number of vertices of A(R ∪B).

As another application of our technique we present, in the full version, an efficient
algorithm for detecting or reporting intersections between n 2-flats and n lines in R4. We
show that, given n lines and n 2-flats in R4, one can detect whether some line intersects some
2-flat in O∗(n13/8) expected time. One can also report all k intersections in O∗(n13/8 + k)
expected time. This result is a degenerate special case of the triangle-triangle intersection
setup, and admits a faster solution. (Note that in general position 2-flats and lines are not
expected to meet in R4, which makes this special case interesting.)

Setup (iii): Tetrahedron-segment intersection queries. We can also handle a symmetric
setup, in which the input consists of n segments in R4 and the query is with a tetrahedron T ,
where the goal is to detect, count or report intersections between T and the input segments.
Using a similar machinery, we obtain the same asymptotic performance bounds, as in the
standard solution, for this setup too.

3 Here we use an obvious divide-and-conquer approach in order to reduce the general (non-bichromatic)
problem to the bichromatic version.
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▶ Theorem 7. Given a collection S of n segments in R4, and any storage parameter
n ≤ s ≤ n6, we can preprocess S into a data structure of size O∗(s), in randomized O∗(s)
expected time, so that we can answer any tetrahedron-intersection query in S in O∗(n/s1/6)
time. The query time bound applies to tetrahedron-intersection detection and counting queries.
The cost is O∗(n/s1/6) +O(k) for reporting queries.

2 Segment-Intersection amid Tetrahedra: An Initial Algorithm

In this section we present an initial solution to the problem of segment-intersection detection
amid tetrahedra in four dimensions, which is based on a careful combination of the recent
range searching machinery of [2, 11]. We do so because (a) as far as we can tell, such a
solution has not yet been spelled out in the literature, (b) the adaptation of the available
techniques to this problem is not simple, requires nontrivial and careful enhancements, and
is of independent interest, and (c) this gives a yardstick for appreciating the improvement
obtained by our improved algorithm, presented in Section 4.

The parametric search technique of Agarwal and Matoušek [3] reduces ray shooting
queries to segment-intersection detection queries, so it suffices to consider the latter problem.
The reporting and counting variants are simple extensions of the same technique, as will be
discussed as we go.

To obtain a tradeoff between the storage of the structure and the query time, our algorithm
uses a primal-dual approach. However, both the primal and dual setups suffer from the fact
that, in four dimensions, segments and tetrahedra require too many parameters to specify.
Specifically, a segment requires eight parameters (e.g., by specifying its two endpoints), while
a tetrahedron requires 16 parameters (e.g., by specifying the coordinates of its four vertices).

To address this issue, we use a multi-level data structure, where each level caters to one
aspect of the condition that a segment crosses a tetrahedron. This is done so that, at each of
these levels, the number of parameters that a segment or a tetrahedron requires is at most
six. Specifically, the condition that a segment e, that lies on a line ℓ, intersects a tetrahedron
∆, supported by a hyperplane h∆, is the conjunction of the following conditions:

(i) The two endpoints of e lie on different sides of h∆.

(ii) With a suitable choice of a direction of ℓ and an orientation of ∆, ℓ has a positive
orientation with respect to each of the 2-planes that support the four 2-faces of ∆.

Conditions (i) and (ii) are the conjunction of a total of six sub-conditions: the first two
conditions tests the position of some endpoint of e with respect to the hyperplanes h∆, and
the other four conditions tests the orientation of ℓ with respect to the 2-planes supporting
specific 2-faces of the tetrahedra. Thus, the dual structure has six levels, two for testing the
sub-conditions of condition (i) and four for testing the sub-conditions of condition (ii).

More precisely, each but the last level collects all the tetrahedra ∆ that satisfy the
corresponding sub-condition for the query segment (that a specific endpoint of e lies in a
specific side of h∆ for the first two levels, and that the oriented 2-plane supporting a specific
2-face of ∆ is positively oriented with respect to the directed line ℓ for the last four levels),
as the disjoint union of precomputed canonical sets of tetrahedra. The last level just tests
whether the last sub-condition is satisfied for any tetrahedron in the current canonical set.

We use the fact that lines in R4 require six real parameters to specify. The space of
lines in R4 is actually projective, but for simplicity of presentation we regard it as a real
space, and ignore the special cases in which the real representation fails. Handling these
cases follows the same approach, and is in fact simpler. Alternatively, a generic (say random)
rotation of the coordinate frame allows us to ignore them altogether.

ESA 2022
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One simple way to represent a line ℓ in R4 is by the points u0
ℓ = (x0, y0, z0, 0) and

u1
ℓ = (x1, y1, z1, 1) at which ℓ crosses the hyperplanes w = 0 and w = 1, respectively

(ignoring lines that are orthogonal to the w-axis), so the line ℓ can be represented as the
point pℓ = (x0, y0, z0, x1, y1, z1) in R6, as desired.

Similarly, 2-planes in R4 also require six parameters to specify. This is simply because
the duality in R4 maps lines to 2-planes and vice versa, but a concrete way to represent
2-planes by six parameters is to specify three points on a 2-plane π that are intersections of
π with three fixed 2-planes, such as, say, x = y = 0, x = 0 and y = 1, and x = y = 1 (again
ignoring special directions of π). Each of the intersection points has two degrees of freedom
(as two of its coordinates are fixed), for a total of six. Denote these points as v(00)

π , v(01)
π , and

v
(11)
π , and put qπ =

(
v

(00)
π , v

(01)
π , v

(11)
π

)
, listing only the w- and z-coordinates of each point,

so qπ is a point in R6.
These observations are meaningful only for the last four levels of the structure. The

first two levels are simpler, as they deal with points (the endpoints of e) and hyperplanes
(those supporting the tetrahedra of T ) in R4. Thus each of the first two levels is a halfspace
range searching structure for points and halfspaces in R4. (Actually, this is the case when
we pass to the dual 4-space; in the primal we have a point-enclosure problem, where the
query is a point and the input consists of halfspaces bounded by the relevant hyperplanes.)
Using standard techniques (see, e.g., [1]), this can be done, for N halfspaces in the current
canonical subset and using O∗(N) storage, so that a query costs O∗(N3/4) time.4 This cost
will be subsumed by the query time bounds for the last four levels. The cost of a query
includes the cost of reporting its output, as a list of canonical sets.

We next consider the (more involved) situation in the last four levels of the structure. Here
the query segment is replaced by its supporting line ℓ, and each tetrahedron ∆ is replaced by
the 2-plane supporting a specific 2-face of ∆. In the primal setup, the line ℓ is represented
as a point pℓ in (projective) 6-space, in the manner just described, and a tetrahedron ∆,
represented by a suitable 2-plane π, is represented as a semi-algebraic region Kπ, consisting
of all points that represent (directed) lines that are positively oriented with respect to π.
The problem that we face is a point-enclosure query, in which we want to determine whether
pℓ lies in any of the regions Kπ (alternatively, count or report all these regions). In the
dual setup, the 2-planes π are represented as points in R6, and the (directed) query line ℓ is
represented as a semi-algebraic region Qℓ that consists of all (oriented) 2-planes that are
positively oriented with respect to ℓ. The problem here is a semi-algebraic range searching
query, where we want to determine whether Qℓ contains any input point (alternatively, count
or report all these points).

The orientation test of ℓ with respect to π amounts to computing the sign of the 5 × 5
determinant∣∣∣∣∣∣∣∣∣∣∣

u0
ℓ 1
u1
ℓ 1

v
(00)
π 1
v

(01)
π 1
v

(11)
π 1

∣∣∣∣∣∣∣∣∣∣∣
, (2)

with a suitable orientation of the pair of points u0
ℓ , u1

ℓ on ℓ (dictating the direction of ℓ), and
of the triple of points v(00)

π , v(01)
π , v(11)

π on π (dictating the orientation of π).

4 A tradeoff between storage and query time is also available, but we do not need it here.
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To compute these signs, at each of the four latter levels of the structure, we use a
primal-dual approach, where the top part of the structure is in the primal, and at each of its
leaf nodes we pass to the dual.

The dual setup. The dual setup is simpler, so we begin with its description. In the dual
setup, each tetrahedron ∆ of the current canonical subset of T is mapped to the point
qπ =

(
v

(00)
π , v

(01)
π , v

(11)
π

)
in R6, where π is the 2-plane supporting the 2-face of ∆ that

corresponds to the present level. The query line ℓ is mapped to a semi-algebraic region Qℓ of
constant complexity in R6, consisting of all points qπ that represent (oriented) 2-planes that
have positive orientation with respect to ℓ, that is, the corresponding determinant in (2) is
positive. (The resulting polynomial is cubic in qπ.)

As already mentioned, the task at hand, at each but the last level, is to collect the points
qπ that lie in Qℓ, as the disjoint union of a small number of precomputed canonical sets of
tetrahedra, and the task at the last level is to determine whether Qℓ contains any point qπ,
for π corresponding to the last 2-faces of the tetrahedra in the present canonical subset of T .
In other words, we have, at each of these levels, a problem involving range searching with
semi-algebraic ranges in R6. Using the algorithm of Matoušek and Patáková [11], which is a
simplified version of the algorithm of Agarwal et al. [4], this can be done, for N tetrahedra
with O∗(N) storage, so that a query takes O∗(N5/6) time (including the cost of reporting,
without enumerating, the output canonical sets). See [1, Theorem 6.1] for more details.

The primal setup. With this procedure at hand, we go back to the primal structure, at
each of the last four levels. As noted, the problem that we face there is a point enclosure
problem, where the input consists of some N constant-complexity semi-algebraic regions in
R6 of the form Kπ, and the query is the point pℓ that represents ℓ, as defined earlier, and the
task is to collect all the regions Kπ that contain pℓ, as the disjoint union of a small number
of precomputed canonical sets, or, at the last level, to determine whether pℓ is contained in
any such region.

This problem has recently been studied in Agarwal et al. [2], using a multi-level polynomial
partitioning technique, for the case where we allow maximum storage for the structure (that
is, O∗(N6) in our case) and want the query time to be logarithmic. We next show that the
structure can be modified so that its preprocessing stops “prematurely” when its overall
storage attains some prescribed value, and each of the subproblems at the new leaves can be
handled via the dual algorithm presented above.

The crucial technical tool in [2], on which their technique is based, is the following result.
We give here a restricted specialized version that suffices for our purposes. (When applying
this tool in d dimensions, the parameter 6 has to be replaced by d.)

▶ Theorem 8 (A specialized version of Agarwal et al. [2, Corollary 4.8]). Given a set Ψ of
N constant-degree algebraic surfaces in R6, and a parameter 0 < δ < 1/6, there are finite
collections Ω0, . . . ,Ω6 of semi-algebraic sets in R6 with the following properties.

For each index i, each cell ω ∈ Ωi is a connected semi-algebraic set of constant complexity.
The size |Ωi| of Ωi (the number of its sets) is a constant that depends on δ.
For each index i and each ω ∈ Ωi, at most N

4|Ωi|1/6−δ surfaces from Ψ cross ω (intersect
ω without fully containing it).

The cells partition R6, in the sense that R6 =
6⊔
i=0

⊔
ω∈Ωi

ω, where
⊔

denotes disjoint union.
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The sets in Ω0, . . . ,Ω6 can be computed in O(n+m) expected time, where the constant of
proportionality depends on δ, by a randomized algorithm. For each i and for every set ω ∈ Ωi,
the algorithm returns a semi-algebraic representation of ω, a reference point inside ω, and
the subset of surfaces of Ψ that cross ω.

In our case, the surfaces of Ψ are the boundaries of the regions Kπ. A straightforward
enhancement of the algorithm of [2] also yields, for each i and each ω ∈ Ωi, the set of regions
Kπ that fully contain ω, within the same asymptotic time bound.

We compute the partition of Theorem 8 and find, for each ψ = ∂Kπ ∈ Ψ, the sets ω ∈ Ωi,
over all i = 0, . . . , 6, that ψ crosses, and those that are fully contained in Kπ. For each i and
ω ∈ Ωi, let Ki,ω (resp., K0

i,ω) denote the set of tetrahedra ∆ ∈ T for which ∂Kπ crosses ω
(resp., Kπ fully contains ω).

The overall size of the sets K0
i,ω, over all i and ω ∈ Ωi, is O(N), with a constant that

depends on δ (that is, on the sizes |Ωi|, which depend on δ).
For each i and ω we also have a recursive subproblem that involves the subset Ki,ω of

the tetrahedra ∆ for which ∂Kπ crosses ω. Putting ri := |Ωi|, for i = 0, . . . , 6, we have, for
each i and ω, |Ki,ω| ≤ N

4r1/6−δ
i

. We run the recursion, but not all the way through, as in [2].

Instead, we use the following storage allocation rule. We fix the storage that we are willing
to allocate to the structure, and distribute it among the nodes of the recursion, as follows.
To simplify the analysis, we distinguish between the storage itself, and the so-called storage
parameter s, which is what we actually manage, but we have the property that the actual
storage will always be O∗(s).

Let s be the storage parameter that we allocate at the root of the structure. For each
i and each set ω ∈ Ωi, we allocate the storage parameter s/(4|Ωi|) for ω. Hence, when we
reach some set ω at a deeper level of recursion, say level j, the storage parameter allocated
to ω is s

4j |Ω(1)
i1

| · |Ω(2)
i2

| · · · |Ω(j)
ij

|
, where Ω(1)

i1
, Ω(2)

i2
, . . . ,Ω(j)

ij
, for indices 0 ≤ i1, i2, . . . , ij ≤ 6,

are the partition families at the ancestors of ω in the recursion.
We stop the recursion when we reach nodes for which the allocated storage parameter is

(roughly) equal to the number of tetrahedra at the node; a more precise statement of the
termination rule is given shortly.

Put, for each set ω, rω := |Ω(1)
i1

| · |Ω(2)
i2

| · · · |Ω(j)
ij

|, using the above notation for ω. The
storage parameter allocated to ω is thus s/(4jrω). Also, by Theorem 8, the number of
tetrahedra ∆ that participate in the subproblem at ω is at most

n

4j |Ω(1)
i1

|1/6−δ · |Ω(2)
i2

|1/6−δ · · · |Ω(j)
ij

|1/6−δ
= n

4jr1/6−δ
ω

,

and the stopping condition that we use is that s

4jrω
= n

4jr1/6−δ
ω

, or rω = (s/n)(6/5)/(1+6δ/5).

The size of a subproblem at a leaf is (using the O∗(·) notation to hide exponents that are
proportional to δ and constants of proportionality that depend on δ)

nω = n

4jr1/6−δ
ω

= 1
4jO

∗
(
n6/5

s1/5

)
= O∗

(
n6/5

s1/5

)
.

In more detail, since all the parameters rj in Theorem 8 are at least some sufficiently large
constant that we can control, we can make the factor 4j to be O(sδ), for any δ > 0 of our
choice. To be more precise, the choice of δ determines how large the parameters rj have
to be taken to ensure that 4j = O(sδ), and the choice of these parameters adds a constant
factor to the query cost (incurred by the cost of locating, in brute force, the cells ω, at the
various recursive levels, that contain pℓ), which depends on these parameters, and thus on δ.
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At each leaf ω we pass to the dual structure reviewed above. It uses O∗(nω) storage and
answers a query in time O∗(n5/6

ω ) = O∗(n/s1/6). To answer a query with a line ℓ in the
combined structure, we search with its point pℓ in the primal substructure, in O(log n) time
(with a constant of proportionality that depends on δ; see below), to locate the leaf cell ω
that contains pℓ (using the properties that (a) each recursive step involves a partitioning of
constant size, and (b) the cells in the partition are pairwise disjoint). We then search with
Qℓ in the dual structure at ω, which takes, as just noted, O∗(n/s1/6) time. The overall cost
of the query is therefore O∗(n/s1/6).

As to the actual storage used by the structure, the allocation mechanism ensures that
each level of the recursion uses storage that is at most 7/4 times larger than the storage used
in the previous level, because each node has seven child collections Ω0, . . . ,Ω6, each of which
is allocated an amount of storage s/4. Hence the overall storage used is O((7/4)js), where j
is the recursion depth. Arguing as in the query time analysis, we can make the factor (7/4)j
to be O(sδ), for any δ > 0. That is, the overall storage used is O(s1+δ), or, in our notation,
O∗(s).

The above description of the structure applies to any single level among the four latter
levels of the structure. The first two levels are considerably simpler and more efficient. The
primal-dual approach is straightforward for halfspace range searching, and the parametric
dimension is only four for the first two levels. The standard machinery (reviewed, e.g., in [1])
implies that, with s storage and N input tetrahedra, the cost of a query at each of these
levels is O∗(N/s1/4).

Putting everything together, and using standard arguments in the analysis of multi-level
structures (see [1, Theorem 6.1] for details), the overall size of the six-level structure is O∗(s),
for any prescribed storage parameter s between n and n6, and a query takes O∗(n/s1/6)
time. That is, this finally concludes the proof of Theorem 1 for the case of intersection
detection queries. Counting and reporting queries are handled similarly, with a similar
analysis, exploiting the fact that the decomposition in Theorem 8 is into disjoint subsets,
as is a similar decomposition used in the machinery of [11]. For reporting query, their cost
involves an additional term O(k), where k is the output size. ✷

Remark. Our mechanism is in fact a special instantiation of the following general result,
which is of independent interest, and which yields a trade-off bound for semi-algebraic range
searching in any dimension d. That is, consider a general problem of this kind, that involves n
points in Rd, and aims to answer semi-algebraic range queries, where the ranges have constant
complexity, and each range has d degrees of freedom (so the problem has a symmetric dual
version). One can solve such a problem in time O∗(n/s1/d) per query, using O∗(s) space and
preprocessing, where s is any parameter between n and nd. These queries include detecting
whether a query range contains any point from the input, counting the number of such points,
or reporting them (with an additional term O(k) in the query cost, where k is the output
size). Using duality, we obtain the same performance bounds for point-enclosure queries,
where the input consists on n constant-complexity semi-algebraic regions in Rd, and the query
is with a point p, where the goal is to detect, count or report containments of p in the input
regions. The same asymptotic bound is obtained for simplex range searching [1], but our
analysis shows that this bound corresponds to a much more general family of query ranges.
The two extreme cases s = n and s = nd have been treated in [11] and [2], respectively, but
the tradeoff between these extreme cases has not been treated explicitly (for d > 4), as far as
we can tell. As evidenced in the preceding analysis, this tradeoff is not as routine as one
might think, because of the complicated nature of the partitioning used in Theorem 8 (as
well as in [11, Theorem 1.1]). We summarize this result in the following corollary:
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▶ Theorem 9. Let P be a set of n points in Rd, for any dimension d, and let Γ be a family
of semi-algebraic ranges of constant complexity in Rd, each of which has d degrees of freedom.
Let n ≤ s ≤ nd be a prespecified storage parameter. Then one can preprocess P into a data
structure of storage and preprocessing O∗(s), such that a range-query, with a range γ ∈ Γ,
can be answered in O∗(n/s1/d) time. Such queries include detecting whether γ contains any
point of P , counting the number of such points, and reporting them (with an additional O(k)
term in the latter case, where k is the number of these points). The same performance bounds
apply to the dual point-enclosure case, where the input consists of n regions from Γ and the
query is with a point p ∈ Rd.

Remarks.
(i) Theorem 9 can be extended to the case where the number of degrees of freedom of the

ranges is different from d, but the resulting performance bound has a more complicated
expression, which is not spelled out in this work.

(ii) We note that our technique can be extended to segment intersection detection queries
amid a collection of n (d−1)-simplices in any dimension d. In that case the structure has
d+ 2 levels. The first two levels ensure that the endpoints of the query segment e lie on
different sides of the hyperplane containing the input simplex ∆, and are implemented
by halfspace range searching structures in Rd. The last d levels ensure that the line
containing e has positive orientation with respect to each of the (d− 2)-flats containing
the facets of ∆, with suitable orientations of the line and the flats. Since lines and
(d− 2)-flats in Rd have 2d− 2 degrees of freedom, these levels are implemented using
semi-algebraic range searching structures, where both primal and dual parts are in
R2d−2. Hence the cost of the query at each of the last d levels dominates the overall
cost, which is thus O∗(n/s1/(2d−2)). The parameter s can vary between n and n2d−2.

(iii) A very similar mechanism, with the same performance bounds, handles the reverse
situation, mentioned in the introduction, in which the input is a set of n segments in
R4, and the query is with a tetrahedron T , and the goal is to detect, count, or report
intersections between T and the input segments. This property is stated in Theorem 7;
we defer the relatively easy details to the full version.

3 Triangle-Triangle Intersection Queries in R4

Let ∆ be a set of n triangles in R4. We consider various triangle-triangle intersection
problems, the simplest of which is just to detect whether the query triangle intersects any
input triangle. Alternatively, we may want to count or to report all such intersections. For
concreteness we consider only the detection problem in what follows, but, as in the previous
section, the algorithm can be extended to also handle the other kinds of problems.

Similar to the preceding section, we use a multi-level data structure, where each level
caters to one aspect of the condition that a triangle crosses another triangle. Specifically,
let ∆1 and ∆2 be two triangles, and let π1, π2 be the respective 2-planes that contain them.
Assuming general position, π1 and π2 always intersect at a single point ξ, and ∆1 intersects
∆2 if and only if ξ belongs to both triangles. As is easily verified, this latter condition is
equivalent, with suitable orientations of π1, π2, and of the lines supporting the edges of both
triangles, to the conjunction of the following conditions:

(i) π1 is positively oriented with respect to each of the lines that support the edges of ∆2.

(ii) π2 is positively oriented with respect to each of the lines that support the edges of ∆1.
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Conditions (i) and (ii) are the conjunction of a total of six sub-conditions, each of which
tests the orientation of, say, the 2-plane π1 with respect to the line supporting some specific
edge of ∆2, or vice versa.

We can therefore apply a suitable variant of the same machinery of the preceding section,
and obtain a proof of Theorem 3.

The batched bichromatic version. For the batched version of the triangle-triangle inter-
section problem, with m red triangles and n blue triangles (see Theorem 4), we choose
the storage parameter s to be such that the cost of m queries with the red triangles is
asymptotically roughly the same as the cost of preprocessing the blue triangles. That is, we
set s = mn/s1/6, or s = m6/7n6/7. For this choice to make sense, we need to ensure that
n ≤ s ≤ n6, or that n1/6 ≤ m ≤ n6. When m > n6 we only use the data structure of [2] and
obtain the running time O∗(m + n6) = O∗(m), and when m < n1/6 we only use the data
structure of [11] and obtain the running time O∗(mn5/6 + n) = O∗(n). Altogether we obtain
the bound in Theorem 4.

4 Segment-Intersection amid Tetrahedra: An Improved Solution

In this section we present an improved algorithm for setup (i) of the paper, for a data structure
of roughly quadratic size. Let T be a collection of n tetrahedra in R4. Our improved solution
constructs a data structure that uses O∗(n2) storage (and expected preprocessing time),
and answers a query in O∗(n1/2) time. This is indeed a significant improvement over the
standard algorithm in Section 2, in which, with storage O∗(n2), the query cost is O∗(n2/3).
With a suitable tradeoff, presented in the full version, the improvement can be extended for
any storage parameter between n and n6, although it is most substantial when the storage is
nearly quadratic; see Figure 1.

Assume, without loss of generality, that the query segment is bounded. The algorithm
constructs a partitioning polynomial F in R4 of degree O(D), for some large but constant
parameter D, so that each cell of the partition is crossed by at most n/D2 2-faces of the
tetrahedra in T and by a total of at most n/D tetrahedra. The existence of such a polynomial
follows from Guth [8], and an expected linear-time algorithm for its construction (for constant
D) is given in [2]. We classify each tetrahedron ∆ ∈ T as being narrow (resp., wide) with
respect to a partition cell τ if a 2-face of ∆ crosses τ (resp., ∆ crosses τ but none of its
2-faces crosses τ). Let Nτ (resp., Wτ ) denote the set of narrow (resp., wide) tetrahedra at τ .

There are two cases to consider in our analysis, depending on whether the query segment
ρ is contained or not contained in the zero set Z(F ) of F . Each of these cases requires its
own data structure. The latter case is an extension of the analysis in [7] (given there for the
three-dimensional version of the problem), and the case where ρ ⊂ Z(F ) requires a different
approach than that taken in [7] for handling queries on the zero set. Due to lack of space we
only sketch the general framework; the details are given in the full version.

A sketch of the analysis. A query segment ρ that is not contained in Z(F ) crosses at
most O(D) cells of the partition. For each partition cell τ (an open connected component
of R4 \ Z(F )) we construct an auxiliary data structure on the wide tetrahedra at τ , and
preprocess the narrow tetrahedra at τ recursively. As we show below, the structure for the
wide tetrahedra uses S0(n) = O∗(n2) storage, and a query amid them takes Q0(n) = O∗(n1/2)
time. We then output the wide tetrahedron returned by querying the auxiliary structure
at τ , if such a tetrahedron exists. Otherwise, we return the tetrahedron produced by the
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recursive call, if one exists. If no tetrahedron, wide or narrow, has been found, we proceed to
the next cell τ ′ crossed by ρ, repeat the whole procedure at τ ′, and keep doing this till we
either find a tetrahedron hit by ρ or run out of cells, and then conclude that ρ does not hit
any tetrahedron of T .

The correctness of this procedure is clear (modulo that of the procedure for handling
wide tetrahedra). Denote by S(n) (resp., Q(n)) the maximum storage (resp., query time)
required by the overall structure for n tetrahedra. Also denote by S1(n) (resp., Q1(n))
the maximum storage (resp., query time) required for processing the input tetrahedra for
intersection queries with segments contained in Z(F ), for any set of n tetrahedra in R4. We
then have, for a suitable absolute constant c > 0 (where the constant hidden in the OD(·)
notation depends on D),

S(n) = OD(S0(n/D)) + S1(n) + cD4S(n/D2)
Q(n) = max

{
OD(Q0(n/D)) + cDQ(n/D2), Q1(n)

}
.

We show, in the full version, that S1(n) = O∗
D(n2) and Q1(n) = O∗

D(n1/2). Substituting
these bounds, as well as the bounds for S0(n) and Q0(n), the solutions of these recurrences
is S(n) = O∗(n2) and Q(n) = O∗(n1/2). This establishes Theorem 2.

Handling the wide tetrahedra. Handling the wide tetrahedra is done via a secondary
recursion, as follows. We choose some large constant parameter r0 ≫ D, and partition ∂τ

into OD(1) x1x2x3-monotone strata (assuming a generic choice of the coordinate frame). This
is fairly standard to do, see, e.g. [5]. We construct, for each stratum σ, a (1/r0)-cutting for
the set of (constant-degree algebraic) 2-surfaces of intersection of σ with the wide tetrahedra
in Wτ . The cutting is constructed by projecting σ and the 2-surfaces that it contains onto
the x1x2x3-subspace, constructing a (1/r0)-cutting, within that subspace, on the projected
surfaces, and then lifting the resulting cutting back to σ. Using standard results on vertical
decomposition in three dimensions (see, e.g., [13]) and the theory of cuttings [9], we obtain
O∗(r3

0) cells of the cutting (referred to as (pseudo-)prisms, in accordance with the way in
which the vertical-decomposition–based cutting is constructed), each of which is crossed by
(intersects but not contained in) at most n/r0 wide tetrahedra.

For each pair ψ1, ψ2 of prisms, we define Sψ1,ψ2 to be the set of all segments e so that e
has an endpoint in ψ1 and an endpoint in ψ2, and the relative interior of e is fully contained in
τ . Clearly, Sψ1,ψ2 is a semi-algebraic set of constant complexity in a 6-dimensional parametric
space,5 and we decompose it into its O(1) connected components.

For each segment e ∈ Sψ1,ψ2 , let T (e) denote the set of all wide tetrahedra ∆ of Wτ that
e crosses. We have the following crucial technical lemma, akin to Lemma 2.2 in [7]:

▶ Lemma 10. Each connected component C of Sψ1,ψ2 can be associated with a fixed set TC
of wide tetrahedra ∆ of Wτ , none of which crosses ψ1 ∪ ψ2, so that, for each segment e ∈ C,
TC ⊆ T (e), and each tetrahedron ∆ in T (e) \ TC crosses either ψ1 or ψ2.

We illustrate the proof in Figure 10, and delegate the rest of the details to the full version
of this paper.

5 Each segment is specified by its two endpoints; since they lie on ∂τ , each has three degrees of freedom.
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e0

ψ1

ψ2

τ

e

Figure 2 The set TC (consisting of the tetrahedra depicted as black segments), and an illustration of
the proof of Lemma 10: The tetrahedra that cross some fixed segment e0 between ψ1 and ψ2 are the
same tetrahedra that cross any other such segment e, except for those that cross ψ1 or ψ2 (like those
depicted as magenta segments).

The analysis for wide tetrahedra. For each prism ψ, the conflict list Kψ of ψ is the set of
all wide tetrahedra that cross ψ. By construction, |Kψ| ≤ n/r0. The same bound for crossing
tetrahedra holds when ψ is lower-dimensional. If a lower-dimensional prism is contained in
some tetrahedron there is no need to process ψ further, since any segment that meets ψ hits
all these tetrahedra.

For each pair of prisms ψ1, ψ2, we compute Sψ1,ψ2 and decompose it into its connected
components. For each component C we compute the set TC of the wide tetrahedra, as in
Lemma 10 (see the full version for details). This requires OD(r6

0n) = OD(n) storage and
computation time.

Let s be the storage parameter associated with the problem; we require that n ≤ s ≤ n3.
For each canonical set TC , we replace its tetrahedra by their supporting hyperplanes, and
preprocess the resulting collection of hyperplanes for efficient segment intersection queries
amid hyperplanes in R4. Using the technique of Agarwal and Matoušek [3], this problem can
be solved using O∗(s) storage (and preprocessing), and a query takes O(n polylog(n)/s1/4) =
O∗(n/s1/4) time (see also [1]). Lemma 10 guarantees the correctness of this procedure
(namely, that replacing each tetrahedron in TC by its supporting hyperplane does not cause
any “false positive” answer).

We now process recursively each conflict list Kψ, over all prisms ψ of the partition. Each
recursive subproblem uses the same parameter r0, but the allocated storage parameter is
now s/r3

0. We keep recursing until we reach conflict lists of size close to n3/2/s1/2. More
precisely, after j levels of recursion, we get a total of at most (c0r

3
0)j = cj0r

3j
0 subproblems,

each involving at most n/rj0 wide tetrahedra, for some constant c0 that depend on D (but is
considerably smaller than r0).

We stop the recursion at the first level j∗ at which n

rj∗
0

≤ n3/2/s1/2. As a result, we

have r0
j∗ = O(s1/2/n1/2), and we get cj

∗

0 r
3j∗

0 = O∗(s3/2/n3/2) subproblems. Each of these
subproblems involves at most n

rj∗
0

= O∗
(
n3/2

s1/2

)
tetrahedra. Hence the overall size of the

inputs, as well as of the canonical sets, at all the subproblems throughout the recursion, is

O∗
(
s3/2

n3/2 · n
3/2

s1/2

)
= O∗(s). In particular, this is the asymptotic cost at the bottom level of

the recursion.
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As just described, at the bottom of the recursion, each subproblem contains at most
O∗(n3/2/s1/2) wide tetrahedra, and we detect intersections with them by brute force. We
thus obtain the following recurrence for the overall storage S0(NW , sW ) for the structure
constructed on NW wide tetrahedra, where sW denotes the storage parameter allocated to
the structure (at the root NW = n, sW = s).

S0(NW , sW ) =
{

O∗
D(r6

0sW ) + c0r
3
0S0

(
NW

r0
, sW

r3
0

)
for NW ≥ Θ∗(n3/2/s1/2),

O(NW ) for NW < Θ∗(n3/2/s1/2).

}
Unfolding the recurrence up to the terminal level j∗, where NW = O∗(n3/2/s1/2), the sum
of the nonrecursive overhead terms, over all nodes at a fixed level j, is

cj0r
3j
0 ·O∗

(
sW

r3j
0

)
= O∗ (sW ) .

Hence, starting the recurrence at (NW , sw) = (n, s), the overall contribution of the overhead
terms is O∗(s). We showed above that this is also the asymptotic cost at the bottom of the
recurrence. Therefore, the overall storage used by the data structure is O∗(s). Using similar
considerations, one can show that the overall expected preprocessing time is O∗(s) as well,
since the time obeys a similar asymptotic recurrence.

Answering a query. Given a query segment ρ, which is not contained in Z(F ), we find its
O(D) intersections with Z(F ), which decompose it into O(D) segments, each fully contained
in some partition cell. Moreover, except for the first and last segment, the endpoints of each
of the other segments lie on the boundary of its cell. We process the segments in their order6

along ρ. Let e be the currently processed segment. If e is not the first or last segment, we
find the prisms ψ1, ψ2 that contain its endpoints, and find the component C of Sψ1,ψ2 that
contains e. If e is the first or last segment, we extend it backwards or forwards, respectively,
till it meets the boundary of its cell, and call the resulting segment e′. We now compute for
e′ the corresponding set Sψ1,ψ2 and its component C that contains e′. Since D and r0 are
constants, all this takes constant time.

The query, on the wide tetrahedra at the present cell τ , performs a segment intersection
detection query with e (or with e′ when e is the first or last segment) in the set of hyperplanes
containing the tetrahedra of TC , and, if no intersection is detected, continues recursively with
Tψ1 and Tψ2 (at the bottom of recursion we apply a brute-force search). If no tetrahedron
is found, in all the r0-recursive steps, we conclude that (the present subsegment of) ρ does
not hit any wide tetrahedron within τ . Once again, the correctness of this procedure follows
from Lemma 10.

The query time Q0(NW , sW ) satisfies the recurrence

Q0(NW , sW ) =

 OD(1) +O∗
(
NW

s
1/4
W

)
+ 2Q

(
NW

r0
, sW

r3
0

)
for NW ≥ Θ∗(n3/2/s1/2),

O(NW ) for NW < Θ∗(n3/2/s1/2).


Unfolding the recurrence, the overall bound for the nonrecursive overhead terms, starting
from (NW , sW ) = (n, s), is at most

O∗

∑
j≥0

(
2
r

1/4
0

)j
· n

s1/4

 = O∗
( n

s1/4

)
.

6 The order is immaterial for segment intersection detection queries, but is important for ray shooting.
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Adding the cost at the 2j∗ subproblems at the bottom level j∗ of the recursion, where the
cost of each subproblem is at most O∗(n3/2/s1/2), we obtain the query time

Q0(n, s) = O∗
(

n

s1/4 + n3/2

s1/2

)
. (3)

Therefore, for s = n2 the query time is O∗(n1/2). The bounds S0(n) := S0(n, n2) = O∗(n2)
and Q0(n) := Q0(n, n2) = O∗(n1/2) are the bounds promised earlier for the wide tetrahedra
at a cell.

5 Output-Sensitive Construction of Arrangements of Tetrahedra and
of Intersections of Polyhedra in R4

The results of Section 3 can be applied to construct the arrangement A(T ) of a set T of n
tetrahedra in R4 in an output-sensitive manner. A complete discrete representation of A(T )
requires, at the least, the collection of all faces, of all dimensions, of the arrangement, and
their adjacency structure. Concretely, for each j-dimensional face φ, for j = 0, 1, 2, 3, we
want the set of all (j + 1)-dimensional faces that have φ on their boundary. Conversely, for
each j-dimensional face φ, for j = 1, 2, 3, 4, we want the set of all (j − 1)-dimensional faces
that comprise ∂φ.

We begin by considering the task of computing all the nonempty intersections of pairs,
triples, and quadruples of tetrahedra of T . This will yield the set of vertices, and provide
an infrastructure for computing the j-faces, for j = 1, 2, 3. Denote the number of these
intersections as k2, k3, and k4, respectively. Note that we always have k4 ≥ k3 ≥ k2.

To simplify the description we assume that the tetrahedra are in general position, although
a suitable adaptation of the following machinery can handle degenerate cases too.

Reporting pairwise intersections. Two tetrahedra in general position in R4 intersect in a
two-dimensional convex polygon of constant complexity, and it suffices to report one vertex
of each nonempty polygon, in order to detect all intersecting pairs of tetrahedra. As is easily
checked, such a vertex is either an intersection of an edge of one tetrahedron with the other
tetrahedron, or an intersection of two 2-faces (triangles), one from each tetrahedron.

Reporting vertices of the first kind (edge-tetrahedron intersections) can be done using the
machinery in Theorem 1, whose details are provided in Section 2, which takes O∗(n12/7 + k2)
time.7 Reporting vertices of the second kind (triangle-triangle intersections) is done using
the machinery in Section 3, which also takes O∗(n12/7 + k2) time.

Reporting triple and quadruple intersections. We iterate over the input tetrahedra. For
each fixed tetrahedron T0, the previous step provides us with all the other tetrahedra that
intersect T0. Denote their number as kT0 , and observe that

∑
T0
kT0 = 2k2. We form the

nonempty intersections T0 ∩T , and triangulate each of them. We obtain a collection of O(kT0)
triangles, all contained in (T0 and therefore also in) the hyperplane hT0 supporting T0.

We have thus reduced our problem to that of reporting all pairwise and triple intersections
in a set of m = O(kT0) triangles in R3. This can be solved using the algorithm in [7], by a
procedure that runs in O∗(m3/2 + ℓT0) time, where ℓT0 is the number of triple intersections
of the triangles. Note that

∑
T0
ℓT0 = O(k4).

7 Although this part can be performed faster, as described in Section 4, we use the standard solution,
since we do not have a similar improvement for the construction of vertices of the second kind.
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Adding up this cost over all tetrahedra T0, the overall running time is

O∗

(∑
T

k
3/2
T + k4

)
= O∗

(
n1/2

∑
T

kT + k4

)
= O∗(n1/2k2 + k4).

Constructing the arrangement. For each tetrahedron T0, it is fairly routine to obtain, from
the information collected so far, the full three-dimensional arrangement within T0, using
standard techniques in three dimensions; we omit here these standard details. This gives us
all the j-faces of the four-dimensional arrangement A, for j = 0, 1, 2, 3, and their adjacency
information. The local adjacency information in R4 is also available from this data. By
local adjacency we mean the adjacency between a j-face and the j′-faces on its boundary,
for j′ < j, over all such pairs of faces. For completion we need to identify disconnected
pieces of the boundary of each four-dimensional cell, and record their adjacency to that cell.
This can be done by x4-vertical ray shooting from the x4-highest point of each connected
three-dimensional complex of faces. This calls for performing O(n) x4-vertical ray shooting
queries in a set of n tetrahedra in R4, which can be done using the machinery presented in
Theorem 1, or by an even simpler mechanism (since all the rays are vertical).

We have thus established the bound stated in Theorem 6.

Output-sensitive construction of the intersection of polyhedra in R4. As another applica-
tion, consider the problem where we have two not necessarily convex polyhedra R and B in
R4, whose boundaries consist of, or can be triangulated into O(n) faces of all dimensions,
which are segments, triangles, and tetrahedra. The goal is to construct their intersection
R ∩ B in an output-sensitive manner; a similar application has been shown in [7] for the
three-dimensional problem. We note that computing the union B ∪R can be done using a
very similar approach, within the same asymptotic time bound.

In order to compute R∩B, we first apply the above algorithm to construct, in an output-
sensitive manner, the arrangement A(R ∪B) of the two polyhedra R and B (specifically, we
build the arrangement of the tetrahedra comprising the boundaries of B and R). We then
label each cell (of any dimension) of A(R ∪B) with the appropriate Boolean operation, that
is, whether it either lies in R \B, B \R, B ∩R, or in the complement of B ∪R. Collecting
all the cells of the desired kind (e.g., those in B ∩R), and computing the adjacency relation
between them, we obtain a suitable representation of the intersection. This establishes the
bound stated in Theorem 6(ii).

We comment that extending the analysis to the intersection of more than two (albeit,
still a constant number of) input polyhedra can also be done, following the same machinery
as in the construction of an arrangement of tetrahedra, as presented above. It is easy to
verify that in this case we obtain the same asymptotic bound stated in Theorem 6(ii).
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Abstract
Despite a surge of interest in submodular maximization in the data stream model, there remain
significant gaps in our knowledge about what can be achieved in this setting, especially when
dealing with multiple constraints. In this work, we nearly close several basic gaps in submodular
maximization subject to k matroid constraints in the data stream model. We present a new hardness
result showing that super polynomial memory in k is needed to obtain an o(k/log k)-approximation.
This implies near optimality of prior algorithms. For the same setting, we show that one can
nevertheless obtain a constant-factor approximation by maintaining a set of elements whose size is
independent of the stream size. Finally, for bipartite matching constraints, a well-known special
case of matroid intersection, we present a new technique to obtain hardness bounds that are
significantly stronger than those obtained with prior approaches. Prior results left it open whether
a 2-approximation may exist in this setting, and only a complexity-theoretic hardness of 1.91 was
known. We prove an unconditional hardness of 2.69.
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1 Introduction

A set function f : 2N → R over a ground set N is submodular if

f(u | A) ≥ f(u | B) for all A ⊆ B ⊆ N and u ∈ N \ B ,

where, for a subset S ⊆ N and an element u ∈ N , we denote by f(u | S) := f(S ∪{u})−f(S)
the marginal contribution of u with respect to S. We say that f is monotone if f(A) ≤ f(B)
for any A ⊆ B ⊆ N .
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The definition of submodular functions captures the natural property of diminishing
returns, and the study of these functions has a rich history in optimization with numerous
applications (see, e.g., the book [28]). Already in 1978, Nemhauser, Wolsey, and Fisher
showed that a natural greedy algorithm achieves a tight approximation guarantee of e

e−1 for
selecting the most valuable subset S ⊆ N of cardinality at most ρ (see [26] for the algorithm’s
analysis and [8, 25] for matching hardness results). Since then, significant work has been
devoted to extending their result to more general constraints.

A natural generalization of a cardinality constraint is the class of matroid constraints.
While matroid constraints are much more expressive than cardinality constraints, both
constraints often enjoy the same (or similar) algorithmic guarantees. Indeed, for the problem
of maximizing a monotone submodular function subject to a single matroid constraint,
Călinescu, Chekuri, Pál, and Vondrák [3] developed the continuous greedy method, and
showed that it extends the e

e−1 -approximation guarantee to this more general setting.
Moreover, for the maximization of a monotone submodular function subject to k ≥ 2 matroid
constraints, there is a (k+1)-approximation guarantee by Fisher, Nemhauser and, Wolsey [11],
which was improved to k + ε by Lee, Sviridenko, and Vondrák [22] when the number k of
matroid constraints is considered to be a constant.

While these algorithms are efficient in the traditional sense, i.e., they run in polynomial
time in the offline “RAM” model, recent applications in data science and machine learning [21]
with very large-scale problem instances have motivated the need for very space-efficient
algorithms. In particular, it is interesting to study algorithms whose memory footprint is
independent of the ground set size.1 The task of designing such algorithms for (monotone)
submodular function maximization has become a very active research area, especially in
the context of the popular data stream computational model. Recent progress has resulted
in a tight understanding of data stream algorithms2 for maximizing monotone submodular
functions with a single cardinality constraint: one can obtain a 2-approximation for this
problem using a simple “threshold”-based algorithm that requires only Õ(ρ) memory [2, 19],
where ρ is the maximum number of elements allowed in the solution, and this is essentially
optimal unless one is willing to have a space complexity that is linear in the size of the ground
set [9]. However, our understanding of data stream algorithms for more general constraint
families is currently much more limited. Closing this gap for natural settings of multiple
matroid constraints is the motivation for our work.

Formally, we term the problem that we study Submodular Maximization subject to
k Matroid Constraints (SMkM). In this problem, we are given k ≥ 2 matroids M1 =
(N , I1), M2 = (N , I2), . . . , Mk = (N , Ik) sharing a common ground set N , and a non-
negative submodular function f : 2N → R≥0.3 Our goal is to find a common independent set
S ⊆ N (i.e., S is independent in all the matroids) that maximizes f(S). In the data stream

1 Technically, a logarithmic dependence on the ground set size is unavoidable because, at the very least,
the algorithm has to store the indices of the elements in its solution. However, we wish to have a
space complexity whose dependence on the ground set size is limited to this unavoidable logarithmic
dependence.

2 Data stream algorithms are sometimes called “streaming algorithms”; however, in this paper we reserve
the term “streaming algorithms” to data streaming algorithms whose space complexity is poly-logarithmic
in the natural parameters of the problem.

3 We recall that a matroid M = (N , I) is a tuple consisting of a finite ground set N and a nonempty
family I ⊆ 2N of subsets thereof fulfilling (i) if I ∈ I and J ⊆ I, then J ∈ I, and (ii) if I, J ∈ I with
|I| < |J |, then there is an element e ∈ J \ I such that I ∪ {e} ∈ I. Moreover, a function f : 2N → R≥0,
where N is a finite set, is submodular if f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). This is well-known to be
equivalent to the diminishing returns property, which states that for A ⊆ B ⊆ N and e ∈ N \ B, we
have f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B).
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version of this problem, the elements of the ground set N appear one by one on a stream,
and the algorithm should make a single pass over this stream and construct its output set
S. (Some papers allow also algorithms that can do a few sequential passes over the stream;
however, we consider the more practical and fundamental single-pass setting.)

The above high-level description of SMkM hides some important technical details regarding
the way in which the objective function f and the matroid constraints are accessed. In the
literature about matroids, it is customary to assume that the access of an algorithm to a
matroid is done via an independence oracle that, given a set S ⊆ N , indicates whether S is
independent in the matroid. This notion can be extended to the intersection of k matroids
in two natural ways: (i) having a single common independence oracle, which indicates
whether S is independent in this intersection (i.e., in all the matroids), or (ii) having k

independence oracles, one per matroid. Let us first consider the model with weaker access to
the matroids, i.e., the one with a common independence oracle. This model already allows
the implementation of a simple algorithm that greedily adds to its solution every element
that does not violate feasibility. This natural greedy algorithm is a k-approximation for the
special case of SMkM in which f is simply the cardinality function (i.e., f(S) = |S|) [17, 20]
using a space complexity of Õ(ρ), where ρ is the common rank of the k matroids, i.e., the
cardinality of a maximum cardinality common independent set in the k matroids of the SMkM
instance.4 We can show that this simple algorithm is almost best possible when access to
the matroid is restricted to calls to a common independence oracle, unless one is willing to
have a space complexity that is linear in n := |N |.

▶ Theorem 1. A data stream algorithm for SMkM, whose only access to the matroids is via
the common independence oracle, and with expected approximation ratio k − ε (for some
ε ∈ [0, k − 1)), must use Ω(εn/k5 log k) memory. This holds even when the task is to find a
maximum size common independent set in k partition matroids, and the common rank of
these matroids is k.

The proof of Theorem 1 is based on carefully defining k matroids such that stream prefixes
lead to restricted matroids with many indistinguishable elements. This allows for hiding a
large optimal solution. See the full version for details.

Given this inapproximability result, we turn our focus to the model in which we have access
to a separate independence oracle for every matroid. A 4k-approximation algorithm with
space complexity Õ(ρ) was given for SMkM in this model by Chakrabarti and Kale [5] when
the objective function f is guaranteed to be monotone, and O(k)-approximation algorithms
with similar space complexities were later obtained for the general case by Chekuri et al. [6]
and Feldman et al. [10]. Our first main result shows that improving over the approximation
guarantees of these algorithms by more than a logarithmic factor requires super polynomial
space in k. Specifically, we prove the following theorem.

▶ Theorem 2. Any data stream algorithm for SMkM that finds an α-approximate solution with
probability at least 2/3 uses memory at least Ω

(
ek/(8α)/k2)

assuming α ≤ k/(32 ln k). This
holds even when the task is to find a maximum size common independent set in k partition
matroids, and the common rank of these matroids is O(α) = O(k/ log k).

The technique to prove Theorem 2 is discussed in Section 3. Interestingly, this technique
also implies that any (even preemptive) online algorithm for SMkM must also have an approxi-
mation ratio of Ω(k/log k). We remark that this lower bound is asymptotically the same as

4 For general SMkM, the state-of-the-art algorithm with a space complexity of Õ(ρ) obtains a slightly worse
approximation ratio of O(k log k) with a common independence oracle [12]. Moreover, this algorithm is
applicable even to the more general class of k-extendible constraints.
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the well-known approximation hardness for k-dimensional matching [13], which is a special
case of the intersection of k matroids. However, note that this hardness does not carry over
to our setting as our model has no restriction on computational power but only on memory.

In light of Theorem 2, it is arguably surprising that one can get essentially a 2-
approximation for SMkM with space complexity independent of n.5

▶ Theorem 3. For every ε ∈ (0, 1/7), there exists a (2 + O(ε))-approximation data stream
algorithm for SMkM with space complexity poly(kρ2k, ε−ρ).

For monotone objective functions, Theorem 3 is based on merging ideas that appeared
in recent papers by Huang et al. [14] and Huang and Ward [16] (see the full version for
details). However, to obtain the same guarantee for non-monotone functions requires an
interesting novel guessing scheme. Moreover, this theorem cannot be improved by much.
The exponential dependence on k is necessary by Theorem 2, and the approximation ratio
cannot be improved, even for a cardinality constraint, without using a linear in n memory
because of the inapproximability result of [9]. It is open (even for a single partition matroid
constraint) whether the exponential dependence on ρ in Theorem 3 is necessary.

Up to this point, our inapproximability results concentrated on the asymptotic approx-
imation ratio obtainable as a function of k, which is more relevant for large values of k.
Small values of k have also been considered extensively in the literature. For example, as
aforementioned, the approximation ratio that can be obtained by a data streaming algorithm
for a cardinality constraint, which is a special case of SMkM with k = 1, was the subject of a
long line of research [1, 2, 9, 14, 19, 24] and is now essentially settled. Maximizing a monotone
submodular function subject to a bipartite matching constraint is another important special
case of SMkM, this time for k = 2.

Since ρ is usually polynomially related to n in bipartite matching constraints, the class of
algorithms considered interesting for the last problem is more restricted than for general SMkM.
Specifically, people are interested in algorithms that use Õ(ρ) memory. That is, the algorithm
does not use more memory (up to logarithmic factors) than what is required to simply store
a solution. Such algorithms are known as semi-streaming algorithms. Recently, Levin and
Wajc [23] described a semi-streaming algorithm for maximizing a monotone submodular
function subject to a bipartite matching constraint which improves over the state-of-the-art
for general SMkM with a monotone objective function. They also proved, conditioned on some
complexity-theoretic assumption, a lower bound of 1.914 on the approximation ratio that
can be obtained by a semi-streaming algorithm for the problem. Our final result improves
over this upper bound and is independent of any complexity-theoretic assumption, but does
assume that the graph can contain parallel edges (which are distinct elements from the point
of view of the submodular objective function); the hardness of [23] applies even when this is
not the case.

▶ Theorem 4. No semi-streaming algorithm can obtain, with probability at least 2/3, an
approximation ratio of 2.692 for maximizing a non-negative monotone submodular function
subject to a bipartite matching constraint.

The last result is obtained by combining known hardness results for semi-streaming
algorithms for the maximum cardinality matching problem [18] and submodular function
maximization subject to a cardinality constraint [9] in a non-trivial way so that the obtained

5 For simplicity, the space complexity stated in Theorem 3 assumes that every element of the ground set
can be stored in O(1) space. Without this assumption, we get the unavoidable logarithmic dependence
of the space complexity on n. Similarly, we also make the standard assumption that the value of f(S)
can be stored in constant space for every set S ⊆ N .
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hardness is stronger than what is known for any one of the two problems individually.
Moreover, the reduction is general, and another consequence of it is the following: any
semi-streaming algorithm for maximizing a monotone submodular function subject to a
bipartite matching constraint that has an approximation guarantee better than 3 would
yield an improved semi-streaming algorithm for the maximum cardinality bipartite matching
problem, which is a longstanding notorious open problem. We refer to reader to the full
version for further detail.

2 Preliminaries

In this section we give some additional technical details that are necessary for proving the
results stated in Section 1. In Section 2.1 we discuss in more detail the oracles used to access
the objective function and constraint matroids; and in Section 2.2 we present a known hard
problem from which we often reduce to prove our inapproximability results.

2.1 More details about the access oracles
As mentioned above, the matroid constraints are accessed via either a common independence
oracle or k distinct independence oracles, one per matroid. We also need to specify the
method used to access the objective function f . In the submodular optimization literature,
submodular objective functions such as f are usually accessed via a value oracle that, given a
set S ⊆ N , returns f(S). In the context of data stream and online algorithms, it is important
that the independence and value oracles do not leak information in a way that contradicts
our expectations from such algorithms. Accordingly, our algorithms query the oracles only
on sets of elements that are explicitly stored in their memory.

The above information leakage issue often makes proving inapproximability results more
complicated because such results have to formalize in some way the types of queries that
are allowed (i.e., queries that are not considered “leaky”). All our inapproximability results
apply to the model used by our algorithmic results; namely, when the algorithm is allowed to
query the oracles only on sets of elements that are explicitly stored in its memory – see [15]
for a formal statement of this natural model. However, we strive to weaken this assumption,
and prove most of our inapproximability results even for algorithms that enjoy a less limited
access to the oracles. For example, the proof of Theorem 2 manages to avoid this issue
completely using the following technique. The algorithm is given upfront a “super ground
set” and fully known objective function and matroids over this super ground set. The real
ground set is then chosen as some subset of this super ground set, and only the elements of
this real ground set appear in the input stream of the algorithm. Since the challenge that
the algorithm has to overcome in this case is to remember which elements belong to the real
ground set, the oracles cannot leak important information to the algorithm, and therefore,
we allow the algorithm unrestricted access to them.

The situation for Theorem 1 is a bit more involved because of the following observation.
If the algorithm is allowed unrestricted access to the common independence oracle, then it
can construct k matroids M1, M2, . . . , Mk that are consistent with this oracle, which makes
the distinction between a single common independence oracle and k independence oracles
mute. Therefore, some restriction on the access to the common independence oracle must
be used. The (arguably) simplest and most natural restriction of this kind is to allow the
algorithm to query the common independence oracle only on subsets that do not include
any elements that did not appear in the stream so far; and it turns out that this simple
restriction suffices for the proof of Theorem 1 to go through.
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It remains to consider our last inapproximability result, namely Theorem 4. Here the
elements of the ground set are edges, and the algorithm is given each edge in the form of its
two endpoints. Therefore, there is no need for independence oracles. (Formally, this situation
is equivalent to the case mentioned above in which there is a “super ground set” that is given
upfront to the algorithm, and only part of this super ground set appears in the stream.)
Unfortunately, preventing information leakage via the value oracle is more involved. For
simplicity, the proof that we give in the full version assumes the same model that we use in
our algorithmic results. However, our proof can be extended also to algorithms with a more
powerful way to access the objective function f , such as the p-players model described in [9].

2.2 The CHAINp(n) problem
Many of our inapproximability results use reductions to a (hard) problem named CHAINp(n),
introduced by Cormode, Dark, and Konrad [7], which is closely related to the Pointer Jumping
problem (see [4]). In this problem, there are p players P1, . . . , Pp. For every 1 ≤ i < p, player
Pi is given a bit string xi ∈ {0, 1}n of length n, and, for every 2 ≤ i ≤ p, player Pi (also) has
as input an index ti ∈ {1, 2, . . . , n}. (Note that the convention in this terminology is that the
superscript of a string/index indicates the player receiving it.) Furthermore, it is promised
that either xi

ti+1 = 0 for all 1 ≤ i < p or xi
ti+1 = 1 for all these i values. We refer to these

cases as the 0-case and 1-case, respectively. The objective of the players in CHAINp(n) is to
decide whether the input instance belongs to the 0-case or the 1-case. The first player, based
on the input bit string x1, sends a message M1 to the second player. Any player 2 ≤ i < p ,
based on the message it receives from the previous player (i.e., M i−1), the input bit string
xi and index ti, sends message M i to the next player. The last player, based on Mp−1 and
tp, decides if we are in the 0-case or 1-case. Each player has unbounded computational
power and can use any (potentially randomized) algorithm. We refer to the collections of
the algorithms used by all the players as a protocol. The success probability of a protocol is
the probability that its decision is correct, and the communication complexity of a protocol
is the size of the maximum message sent (i.e., maximum size of M1, . . . , Mp−1). In [9], the
following lower bound was shown for the CHAINp(n) problem, which is very similar to the
lower bounds previously proved by [7].

▶ Theorem 5 (Theorem 3.3 in [9]). For any positive integers n and p ≥ 2, any (potentially
randomized) protocol for CHAINp(n) with success probability of at least 2/3 must have a
communication complexity of at least n/36p2. Furthermore, this holds even when instances are
drawn from a known distribution D(p, n).

The distribution D(p, n) referred to by Theorem 5 is simply the uniform distribution over
all 0-case and 1-case instances (see the definition of Dp in Appendix C of [9]).

3 Inapproximability for Multiple Independence Oracles

In this section, we prove Theorem 2, which gives a strong inapproximability result for data
stream algorithms as a function of the number k of matroids, even in the case when the
objective function f is a linear function (unlike in the previous section, here we allow access
to the independence oracles of the individual matroids).

▶ Theorem 2. Any data stream algorithm for SMkM that finds an α-approximate solution with
probability at least 2/3 uses memory at least Ω

(
ek/(8α)/k2)

assuming α ≤ k/(32 ln k). This
holds even when the task is to find a maximum size common independent set in k partition
matroids, and the common rank of these matroids is O(α) = O(k/ log k).
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Note that the above result implies that (i) any data stream algorithm with an approxima-
tion guarantee o(k/ log k) requires super polynomial memory in k, and (ii) any data stream
algorithm with constant approximation guarantee requires exponential memory in k.

The techniques we use also readily imply hardness for the (preemptive) online version
of this problem. In this version, the elements of the ground set N arrive online, and upon
receiving each element the algorithm has to decide either to add this element to the solution
it maintains, or to reject the element. If the algorithm accepts an element to its solution, it
may remove this element from the solution at a later point; however, a decision to reject an
element (or remove it from the solution at a later time) is irrevocable. The algorithm is also
required to keep its solution feasible at all times. We have the following hardness in this
model.

▶ Theorem 6. For k ≥ 2, the competitive ratio of any online algorithm for SMkM against an
oblivious adversary is at least k

81 ln k . This holds even when the task is to find a maximum
size common independent set in k partition matroids, and the common rank of these matroids
is O(k/ log k).

The key building block for both (streaming and online) hardness results is a “hard”
distribution of instances described in Section 3.1. This distribution is then used to prove
Theorems 2 and 6 in Sections 3.2 and 3.3, respectively, in a similar way to the proof of
Theorem 1.

3.1 Description of hard distribution
Let p be a non-negative integer parameter of the construction. Our instances are subsets
of the set N = [p]k, where we allow multiple elements with the same coordinates (i.e.,
“multi-subsets”). A set S ⊆ N is independent in the matroid Mi (for any integer i ∈ [k])
if and only if no two elements of S share the same value in coordinate number i (in other
words, ui ̸= vi for every two distinct elements u, v ∈ S). One can observe that this definition
makes Mi a partition matroid. We recall that S ⊆ N is a common independent set if it
is independent in all matroids; otherwise, we will refer to it as dependent. Note that the
common rank of the k matroids M1, . . . , Mk is p.

In Algorithm 1 we describe a procedure for sampling p−1 many subsets S1, S2, . . . , Sp−1 ⊆
[p]k and p − 1 “hidden” optimal elements o(1) ∈ S1, o(2) ∈ S2, . . . , o(p−1) ∈ Sp−1. In every
iteration r = 1, . . . , p − 1, the algorithm first forms Sr by sampling m elements independently
and uniformly from those elements that form a common independent set with {o1, . . . , or−1}.
That is, Sr contains m uniformly random samples with replacements from

{u ∈ N | ∀1≤i<r,1≤j≤k o
(i)
j ̸= uj} .

Then, after the selection of Sr, the algorithm samples o(r) uniformly at random among the
m elements in Sr.

We remark that the algorithm with small probability may sample the same element
more than once when forming the set Sr. When this happens, we consider these samples
to be unique elements on the stream (that are dependent). This allows us to simplify the
notation in the following as each set Sr is now guaranteed to contain exactly m elements.
Formally, this corresponds to extending the ground set N by making m copies u1, . . . , um of
each element u ∈ N , and whenever an element u is sampled i times, we include the copies
u1, . . . , ui.
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Algorithm 1 Hard Instance Generation (p, m).

1: for r = 1 to p − 1 do
2: Obtain Sr by sampling m elements uniformly and with replacement from

{u ∈ N | ∀1≤i<r,1≤j≤k o
(i)
j ̸= uj} .

3: Select o(r) from Sr uniformly at random.
4: Output S1, . . . , Sp−1 and o(1), . . . , o(p−1).

We refer to Algorithm 1 as “Hard Instance Generation” as it is the basic building
block of our hardness results in both the online and streaming models. More specifically,
our hardness result for the online model is based on the (random) stream obtained by first
feeding the elements in S1 (in any order), then S2 (in any order), and so on until Sp−1 is
fed. The intuition is that when the algorithm has only seen the elements in S1, . . . , Si, it has
no information about the selection of o(i) and so any online algorithm is unlikely to have
saved the element o(i). In addition, while {o(1), . . . , o(p−1)} is a common independent set by
construction, we prove (see Lemma 8 below) that any other two elements are likely to be
dependent. This creates the “gap” between the values of the solution {o(1), o(2), . . . , o(p−1)}
and a solution with any other elements, which in turn yields the desired hardness result. For
our hardness in the data stream model, we forward a subset of the above-mentioned stream,
and the difficulty for a low-space streaming algorithm is to “remember” whether the special
elements o(1), o(2), . . . , o(p−1) appeared in the stream. This is formalized in the next sections.

We complete this section by proving that, with good probability, any large solution must
contain the hidden elements o(1), . . . , o(p−1).

▶ Definition 7. We say that the output of Algorithm 1 is successful if any two elements
e, f ∈ S1 ∪ S2 ∪ · · · ∪ Sp−1 \ {o1, . . . , op−1} are dependent, i.e., there is a coordinate i ∈ [k]
such that ei = fi.

▶ Lemma 8. The output of Algorithm 1 is successful with probability at least 1 −
(

pm
2

)
e−k/p.

Proof. Consider two elements u ∈ Sr1 \ {or1} and v ∈ Sr2 with r1 ≤ r2. As u ̸= or1 , each
coordinate of u equals that of v with probability at least 1/(p − r1 + 1) ≥ 1/p. Now, as there
are k coordinates, and each coordinate of u is sampled independently at random,

Pr[{u, v} is a common independent set] ≤ (1 − 1/p)k ≤ e−k/p .

The lemma now follows by taking the union bound over all possible pairs u, v; the number of
such pairs is upper bounded by

((p−1)m
2

)
. ◀

3.2 Hardness for online algorithms
Let p = ⌈k/(27 ln k)⌉ + 1 and m = k3. We will prove that the competitive ratio of any online
algorithm is at least k/(81 ln k). We assume throughout that k is such that k/(81 ln k) > 1.
This is without loss of generality since the statement is trivial if k/(81 ln k) ≤ 1. We shall
consider the following distribution of instances. Run Algorithm 1 with the parameters p and
m to obtain sets S1, . . . , Sp−1 (and hidden elements o(1), . . . , o(p−1)), and construct an input
stream in which the elements of S1 appear first (in any order) followed by those in S2 and so
on until the elements in Sp−1 appear. We will show that any deterministic online algorithm
ALG cannot be ((p − 1)/3)-competitive on this distribution of instances. Theorem 6 then
follows via Yao’s principle.
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To analyze the competitive ratio of ALG, let O be the event that the output of ALG
contains some element of {o(1), o(2), . . . , o(p−1)}, and let S be the event that the instance is
successful. Then, if we use |ALG| to denote the size of the independent set outputted by
ALG,

E[|ALG|] ≤ (1 − Pr[¬O, S]) · k + 1 ,

where the inequality holds because any solution has size at most k, and if the algorithm fails
to identify any element in {o(1), . . . , o(p−1)}, then it can produce solution of size at most 1
for a successful instance.

Note that since k/(81 ln k) > 1 we have that p ≤ 3 · k/(27 ln k) = k/(9 ln k). Now, by
Lemma 8 and the selection of p and m, we have

Pr[S] ≥ 1 −
(

pm

2

)
e−k/p ≥ 1 − k8 · e−9 ln k = 1 − 1/k .

To bound Pr[¬O], note that the set Sr contains no information about o(r) because o(r)

is selected uniformly at random from Sr. Moreover, when all m elements of Sr have been
inspected in the stream, ALG keeps at most p independent elements. Any one of these
elements is o(r) with probability at most p/m. In other words, the algorithm selects o(r) with
probability at most p/m. Hence, by the union bound, the algorithm has selected any of the
p − 1 elements {o(1), . . . , o(p−1)} with probability at most p/m · (p − 1) ≤ 1/k. We thus have
Pr[¬O] ≥ 1 − 1/k, and together with the above proved inequality Pr[S] ≥ 1 − 1/k, we get
via the union bound

E[|ALG|] ≤ (1 − Pr[¬O, S]) · k + 1 ≤ (2/k) · k + 1 = 3 .

Since the stream contains a solution {o(1), . . . , o(p−1)} of size p − 1, this implies that ALG is
not better than ((p − 1)/3)-competitive, which in turn implies Theorem 6.

3.3 Hardness for streaming algorithms
Let ALG be a data stream algorithm for finding a set of maximum cardinality subject to k

partition matroid constraints. Further suppose that ALG has the following properties:
ALG uses memory M ;
ALG outputs an α-approximate solution with probability at least 2/3, where α ≤ k

32 ln k

(note that α is also lower bounded by 1 since it is an approximation ratio).

Select p = ⌈3 · α⌉, and let m be the smallest power of two such that m ≥ ek/(8α). Note
that this selection satisfies

p ∈ [3 · α, 4 · α] , m ∈ [ek/(8α), 2ek/(8α)] , and 8 · p ≤ k ≤ m .

We will use ALG to devise a protocol for the CHAINp(m) problem that succeeds with
probability at least 2/3 and has communication complexity at most M +p log2 m. Combining
this reduction with Theorem 5 then yields Theorem 2, i.e., that any such algorithm ALG

must have a memory footprint M that is at least Ω
(
ek/(8α)/k2)

.

3.3.1 Description of protocol
We use ALG to obtain Protocol 2 for CHAINp(m). The protocol consists of two phases:
a precomputation phase that is independent of the CHAINp(m) instance, followed by a
description of the messages of the players.
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T

T1 T2 T3

T1,1 T1,2 T1,3 T2,1 T2,2 T2,3 T3,1 T3,2 T3,3

Figure 1 A tree representation of the sets computed during precomputation for m = p = 3.

3.3.1.1 Precomputation phase

In the precomputation phase, the players use shared random coins6 to generate instances
from the same distribution produced by Algorithm 1 for all possible values of t2, . . . , tp ∈ [m]
in an instance of CHAINp(m). Specifically, first a set T is sampled from the same distribution
as the set S1 produced by Algorithm 1. The elements of T are then randomly permuted. For
j ∈ [m], we let T (j) denote the j-th element in the the obtained ordered set. The reason that
the elements in T are randomly permuted is to make sure that for any fixed t2 ∈ [m], the
element T (t2) is uniformly random, and thus, has the same distribution as o(1) in Algorithm 1.
Following the choice of S1 = T and o(1) ∈ S1, Algorithm 1 proceeds to sample S2 to be m

random elements that are independent with respect to o(1). In the precomputation phase
we do so for each possible element in T , i.e., we sample sets T1, T2, . . . , Tm, one for each
possible choice of t2 ∈ [m]. Then, for each such Tt2 we sample m sets Tt2,1, Tt2,2, . . . , Tt2,m

for all possible choices of t3 ∈ [m] and so on. The sets constructed in the precomputation
phase can thus naturally be represented by a tree, where each path from the root T to a leaf
corresponds to a particular choice of t2, t3, . . . , tp ∈ [m]. For m = 3 and p = 3, this tree is
depicted in Figure 1. The thick path corresponds to the case of t2 = 2 and t3 = 3.

As described above, we randomly permute the sets so as to make sure that, for fixed
t2, t3, . . . tr ∈ [m], the distribution of o(1) is the same as that of T (t2) and, in general, the
distribution of o(i) is the same as that of Tt2,...,ti(ti+1). This gives us the following observation.

▶ Observation 9. Fix t2, t3, . . . , tr ∈ [m]. Over the randomness of the precomputation phase,
the elements o(1) = T (t2), o(2) = Tt2(t3), . . . , o(r−1) = Tt2,...,tr−1(tr) and the sets S1 = T, S2 =
Tt2 , . . . , Sr−1 = Tt2,...,tr−1 have the same distribution as the output of Algorithm 1.

The reason the players do this precomputation is that, after they have commonly agreed
on the tree-structure of sets (which can be generated using the public coins), it requires
little communication to decide on a “hard” instance generated from the same distribution as
Algorithm 1. Indeed, Player r only needs to know t2, . . . , tr (r log2 m bits of information)
in-order to know the set Tt2,...,tr .

6 We note that the hardness result of CHAINp(m) (Theorem 5) holds when the players have access to
public coins, i.e., shared randomness. This is proved, e.g., in Theorem 3.3 of [9]. In general, Newman’s
theorem [27] says that we can turn any public coin protocol into a private coin protocol with little
(logarithmic) increase in communication.
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Protocol 2 Reduction from CHAINp(m) to SMkM.
Precomputation

1: Let T be a uniformly random subset of N = [p]k of size m.
2: Order the elements of T randomly, and let T (j) denote the j-th element.
3: for r = 2, . . . , p − 1 and t2, . . . , tr ∈ [m] do
4: Identify o(1) = T (t2), o(2) = Tt2(t3), . . . , o(r−1) = Tt2,...,tr−1(tr).
5: Let Tt2,...,tr be a uniformly random subset of {u ∈ N | ∀1≤i<r,1≤j≤k o

(i)
j ̸= uj} of size

m.
6: Order the elements of Tt2,...,tr randomly, and let Tt2,...,tr (j) denote the j-th element.

Player Pr’s Algorithm for r = 1, . . . , p − 1
1: Initialize ALG with the received memory state (or initial state if first player).
2: Simulate ALG on the elements Tr = {Tt2,...,tr (j) | j ∈ [n] with xt

j = 1} given in any
order.

3: Send to Pr+1 the values t2, t3, . . . , tr and the memory state of ALG.
Player Pp’s Algorithm

1: If ALG with the received memory state returns an independent set of size at least 2,
output “1-case”; otherwise, output “0-case”.

3.3.1.2 The messages of the players

After generating the (common) sets in the precomputation phase using the public coins, the
players now proceed as follows. The first player receives as input x1 and simulates ALG on
the subset {T (j) | x1

j = 1} of T corresponding to the 1-bits. These elements are given to
ALG as a stream in any order. Player 1 then sends to Player 2 the message containing the
state of ALG after processing this stream of elements.

The second player receives input x2, t2 and initializes ALG with the state received from
the first player. Then, the elements {Tt2(j) | x2

j = 1} of Tt2 that correspond to 1-bits of x2

are streamed to ALG in any order. Player 2 sends to Player 3 a message containing the
state of ALG after processing these elements and the index t2. Player r, for r = 3, . . . , p − 1,
proceeds similarly to Player 2: given input xr, tr, ALG is first initialized with the state
received from the previous player, and then the elements {Tt2,...,tr (j) | xr

j = 1} are streamed
to ALG in any order. Notice that Player r knows t2, . . . , tr−1 from the message of the
previous player, tr, xr from the input, and Tt2,...,tr from the precompuation phase, and so
the set {Tt2,...,tr (j) | xr

j = 1} can be computed. Finally, Player r sends to Player r + 1 a
message consisting of the indices t2, . . . , tr and the memory state of ALG.

The final player initializes ALG with the received state and asks ALG to return an
independent set. If the independent set consists of at least two elements, Player p outputs
“1-case”, and otherwise, the output is “0-case”.

3.3.2 Analysis
The messages sent by the players contain the memory state of ALG and at most p − 2 indices
t2, . . . , tp−1 ∈ [m]. The memory state of ALG is at most M bits by assumption, and each
index requires log2 m bits. The communication complexity of the protocol is, therefore, upper
bounded by M + p log2 m.

To analyze the success probability of the protocol, we have the following lemma.

▶ Lemma 10. The instance that the players stream to ALG satisfies the following:
In the 1-case, the stream contains p − 1 independent elements.
In the 0-case, with probability at least 2/3, any two elements in the stream are dependent.
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Proof. In the 1-case, we have x1
t2 = x2

t3 = . . . = xp−1
tp = 1 and so the elements T (t2),

Tt2(t3), . . . , Tt2,...,tp−1(tp) are part of the stream. By definition, they form an independent
set consisting of p − 1 elements.

In the 0-case, we have that x1
t2 = x2

t3 = . . . = xp−1
tp = 0 and so any two elements e, f in the

stream belong to the set S1 ∪ S2 . . . , Sp−1 \ {o(1), o(2), . . . , o(p−1)}, where S1 = T, o(1) = T (t2)
and Sj = Tt2,...,tj , o(j) = Tt2,...,tj (tj+1) for j = 2, . . . , p − 1. By Observation 9, we can apply
Lemma 8 to obtain that, with probability at least 1 −

(
pm
2

)
e−k/p, any two elements in the

stream are dependent. The statement now follows since the selection of our parameters p, m

and k implies(
pm

2

)
e−k/p ≤ m4e−k/p ≤ 16ek/(8α) · e−k/(4α) = 16e−k/(8α) ≤ 1/3 ,

where for the first inequality we used p ≤ m, and for the second inequality we used that
p ≤ 4 · α and m ≤ 2ek/(8α). The last inequality holds for k ≥ 3 (the case of k = 2 can be
ignored because it implies k/(32 ln k) < 1, which makes Theorem 2 trivial). ◀

We now argue how the above lemma implies that Protocol 2 has a success probability of
2/3 in both the 0-case and 1-case. For 0-case instances, we have with probability 2/3 that
any two elements are dependent. Hence, with that probability, there is no way for ALG
to return an independent set with more than one element. Thus, the output of Player p is
correct with probability at least 2/3 in the 0-case. In the 1-case, the stream always contains
a solution of value p − 1. By the assumption that ALG returns an α-approximate solution
with probability at least 2/3, ALG returns an independent set of size at least (p − 1)/α with
probability at least 2/3. This implies that Player p is correct in this case with probability
2/3 since

(p − 1)/α ≥ (3 · α − 1)/α ≥ 2 .

Using ALG we have, thus, devised a protocol for CHAINp(m) that is correct with probability
2/3 and has a communication complexity that is upper bounded by M + p log2 m. By
Theorem 5, we thus must have (M + p log2 m) ≥ m/(36p2). Now using that p ≤ k/8 and
ek/(8α) ≤ m, we get

M ≥ m

36p2 − p log2 n ≥ 64
36

m

k2 − k2 ≥ 64
36

ek/(8α)

k2 − k2 ,

which is Ω
(
ek/(8α)/k2)

since by assumption on α we have ek/(8α) ≥ k4. We have thus proved
that the memory usage M of ALG must be at least Ω

(
ek/(8α)/k2)

as required by Theorem 2.
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(G, 4) :
a b c

(a) An instance (G, 4) for Vertex Cover. A vertex cover
of size four is indicated by the gray vertices.

(G′, 2) :
a c

(b) The outcome (G′, 2) of applying
the Triangle Rule to b.

Figure 1 An example of how the order of reduction rules can affect the final instance. A Vertex
Cover instance with k = 4 is depicted left. By applying the Triangle Rule to b (red triangle),
we obtain a graph with two edges (right). However, applying the rule to a and then c (therefore
removing the two blue triangles) yields the smaller graph consisting only of the vertex b.

1 Introduction

Kernelization by means of applying data reduction rules is a powerful (and often essential) tool
for tackling computationally difficult (e. g. NP-hard) problems in theory and in practice [11, 2].
A data reduction rule is a polynomial-time algorithm that, given a problem instance as
input, outputs an “equivalent” and often smaller instance of the same problem. One may
think of data reduction as identifying and removing “easy” parts of the problem, leaving
behind a smaller instance containing only the more difficult parts. This instance can be
significantly smaller than the original instance [1, 3, 16, 13, 18] which makes other methods
like branch&bound algorithms a viable option for solving it. In this work, we apply existing
data reduction rules “backwards”, that is, instead of smaller instances we produce (slightly)
larger instances. The hope herein is, that this alteration of the instance allows subsequently
applied data reduction rules to further shrink the instance, thus, producing even smaller
instances than with “standard” application of data reduction rules.

We consider the NP-hard Vertex Cover – the primary “lab animal” in parameterized
complexity theory [9] – to illustrate our approach and to exemplify its strengths.

Vertex Cover [12]
Input: An undirected graph G = (V, E) and k ∈ N.
Question: Is there a set S ⊆ V , |S| ≤ k, covering all edges, i. e., ∀e ∈ E : e ∩ S ̸= ∅?

Vertex Cover is a classic problem of computational complexity theory and one of Karp’s 21
NP-complete problems [15]. We remark that for presentation purposes we use the decision
version of Vertex Cover. All our results transfer to the optimization version (which our
implementation is build for).

To explain our approach, assume that all we have is the following data reduction rule:

▶ Reduction Rule 1 (Triangle Rule [9]). Let (G = (V, E), k) be an instance of Vertex
Cover and v ∈ V a vertex with exactly two neighbors u and w. If the edge {u, w} exists,
then delete v, u, and w from the graph (and their incident edges), and decrease k by two.

As illustrated in Figure 1, there are two options to apply Rule 1 for the instance (G, 4).
Picking the “bad” option, that is, applying it to b yields the instance (G′, 2). Note that (the
correctness of) Rule 1 implies that (G, 4) and (G′, 2) are “equivalent”, that is, either both of
them are yes-instances or none of them are. Hence, if we have the instance (G′, 2) on the
right side (either through the “bad” application of Rule 1 or directly as input), then we can
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apply Rule 1 “backwards” and obtain the equivalent but larger instance (G, 4) on the left
side. Then, by applying Rule 1 to a and c, we can arrive at the edge-less graph ({b}, ∅), thus
“solving” the triangle-free instance (G′, 2) by only using the Triangle Rule.

More formally, the setting can be described as follows: A data reduction rule for a
problem L is a polynomial-time algorithm which reduces an instance x to an equivalent
instance x′, that is, x ∈ L if and only if x′ ∈ L. A set of data reduction rules thus implicitly
partitions the space of all instances into classes of equivalent instances (two instances are
in the same equivalence class if one of them can be obtained from the other by applying a
subset of the data reduction rules). The more data reduction rules we have, the fewer and
larger equivalence classes we have. Now, the overall goal of data reduction is to find the
smallest instance in the same equivalence class. We demonstrate two approaches tailored
towards (but not limited to) graph problems to tackle this task.

Let us remark that while there are some analogies to the branch&bound paradigm
(searching for a solution in a huge search space), there are also notable differences: A
branching rule creates several instances of which at least one is guaranteed to be equivalent
to the original one. The problem is that, a priori, it is not known which of these instances
is the equivalent one. Hence, one has to “solve” all instances before learning the solution.
In contrast, our setting allows stopping at any time as the currently handled instance is
guaranteed to be equivalent to the starting instance. This allows for considerable flexibility
with respect to possible combinations with other approaches like heuristics, approximation
or exact algorithms.

Related Work. Fellows et al. [9] are closest to our work. They propose a method for
automated discovery of data reduction rules looking at rules that replace a small subgraph
by another one. They noticed that if a so called profile (which is a vector of integers) of
the replaced subgraph and of the one taking its place only differ by a constant in each
entry, then this replacement is a data reduction rule. To then find data reduction rules,
one can enumerate all graphs up to a certain size and compute their profile vectors. The
downside of this approach is that in order to apply the automatically found rules one has
solve a (computationally challenging) subgraph isomorphism problem or manually design
new algorithms for each new rule.

Vertex Cover is extensively studied from the the viewpoint of data reduction and
kernelization; see Fellows et al. [9] for an overview. Akiba and Iwata [3] and Hespe et al. [14]
provide exact solvers that include an extensive list of data reduction rules. The solver of
Hespe et al. [14] won the exact track for Vertex Cover at the 4th PACE implementation
challenge [7]. We provide a list of data reduction rules for Vertex Cover in the full
version [10].

Alexe et al. [4] experimentally investigated by how much the so-called Struction data
reduction rule for Independent Set can shrink small random graphs. The Struction data
reduction rule can always be applied to any graph and decreases the stability number1

of a graph by one, but may increase the number of vertices quadratically each time it is
applied. Gellner et al. [13] proposed a modification of the Struction rule for the Maximum
Weighted Independent Set problem. They first restricted themselves to only applying
data reduction rules if they do not increase the number vertices in the graph, which they
call the reduction phase. They then compared this method to an approach which allows

1 An independent set is a set of pairwise nonadjacent vertices. The stability number or the independence
number of a graph G is the size of a maximum independent set of G.
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their modified Struction rule to also increase the number of vertices in the graph by a small
fraction, which they call the blow-up phase. The experiments showed, that repetitions of the
reduction and blow-up phase can significantly shrink the number of vertices compared to
just the reduction phase.

Ehrig et al. [8] defined the notion of confluence from rewriting systems theory for
kernelization algorithms. Intuitively, confluence in kernelization means that the result of
applying a set of data reduction rules exhaustively to the input always results in the same
instance, up to isomorphism, regardless of the order in which the rules were applied. It turns
out that for our approach to work we require non-confluent data reduction rules.

Our Results. In Section 3, we provide two concrete methods to apply existing data reductions
rules “backwards” and “forwards” in order to shrink the input as much as possible. We
implemented these methods and applied them on a wide range of data reduction rules for
Vertex Cover. Our experimental evaluations are provided in Section 4 where we use our
implementation on instances where the known data reductions rules are not applicable. Our
implementation can also be used to preprocess a given graph G and it returns the smallest
found kernel K after a user specified amount of time. Moreover, the implementation can
translate a provided solution SK for the kernel into a solution SG for the initial instance
such that |SG| ≤ |SK | + d where d := τ(G) − τ(K) is the difference between the sizes of
minimum vertex covers of G and K. Thus, if a minimum vertex cover for K is provided it
will be translated into a minimum vertex cover for G.

2 Preliminaries

We use standard notation from graph theory and data reduction. In this work, we only
consider simple undirected graphs G with vertex set V (G) and edge set E(G) ⊆ {{v, w} |
v, w ∈ V (G), v ≠ w}. We denote by n and m the number of vertices and edges, respectively.
For a vertex v ∈ V (G) the open (closed) neighborhood is denoted with NG[v] (NG(v)). For
a vertex subset S ⊆ V (G) we set NG[S] :=

⋃
v∈S NG[v]. When in context it is clear which

graph is being referred to, the subscript G will be omitted in the subscripts.

Data Reduction Rules. We use notions from kernelization in parameterized algorithmics [11].
However, we simplify the notation to unparameterized problems. A data reduction rule
for a problem L ⊆ Σ∗ is a polynomial-time algorithm, which reduces an instance x to an
equivalent instance x′. We call an instance x irreducible with respect to a data reduction
rule, if the data reduction rule does not change the instance x any further (that is, x′ = x).
The property that the data reduction rule returns an equivalent instance is called safeness.
We call an instance obtained from applying data reduction rules kernel.

Often, data reduction rules can be considered nondeterministic, because a data reduction
rule could change the input instance in a variety of ways (e. g., see the example in Section 1).
To highlight this effect and to avoid confusion, we introduce the term forward rule. A
forward rule is a subset RA ⊆ Σ∗ × Σ∗ associated with a nondeterministic polynomial-time
algorithm A, where (x, y) ∈ RA if and only if y is one of the possible outputs of A on input x.
Intuitively, a forward rule captures all possible instances that can be derived from the input
instance by applying a data reduction rule a single time. To define what it means to “undo” a
reduction rule, we introduce the term backward rule. A backward rule is simply the converse
relation R−1

A := {(y, x) | (x, y) ∈ RA} of some forward rule RA.
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Confluence. A set of data reduction rules is said to be terminating, if for all instances I,
the data reduction rules in the set cannot be applied to the instance I infinitely many times.
A set of terminating data reduction rules is said to be confluent if any exhaustive way of
applying the rules yields a unique irreducible instance, up to isomorphism [8]. It is not
hard to see that given a set of confluent data reduction rules, undoing any of them is of no
use, because subsequently applying the data reduction rules will always result in the same
instance.

▶ Lemma 2.1. Let R be a confluent set of forward rules, I a problem instance, and IR the
unique instance obtained by applying the rules in R to I.

Further let R = {R−1 | R ∈ R} be the set of backward rules corresponding to R. Let I−

be an instance that was derived by applying some rules from R ∪ R. Then applying the rules
in R exhaustively in any order to I− will yield an instance isomorphic to IR.

Proof. We prove the lemma by induction over the number of times backward rules were
applied to obtain I−.

Base case: if no backward rules were applied to obtain I−, then by exhaustively applying R
we will obtain an instance isomorphic to IR.

Inductive step: Assume only n backward rules were applied to obtain I−. Consider the
sequence I = I1, I2 . . . , Iℓ−1, Iℓ = I− of instances which were on the way from I to I−

during the application of the rules in R ∪ R. Further let Ii be the instance in the sequence
after applying the n’th backward rule R−1. After applying R to Ii the instance Ii−1 can
be obtained, which was obtained by using only n − 1 backward rules. Because after R−1

only rules in R were applied, which are confluent, we may instead assume that the first rule
which was applied after R−1 was R. Consequently, by the induction hypothesis an instance
isomorphic to IR will be obtained by exhaustively applying the rules in R. ◀

3 Two Methods for Achieving Smaller Kernels

We apply data reduction rules “back and forth” to obtain an equivalent instance as small as
possible. This gives rise to a huge search space for which exhaustive search is prohibitively
expensive. Thus, some more sophisticated search procedures are needed. In this section,
we propose two approaches which we call the Find and the Inflate-Deflate method. We
implemented and tested both approaches; the experimental results are presented in Section 4.

The Find method (Section 3.1) shrinks the naive search tree with heuristic pruning rules
in order to identify sequences of forward and backward rules, which when applied to the
input instance, produce a smaller equivalent instance. We employ this method primarily
to find such sequences which are short, so that those sequences may actually be used to
formulate new data reduction rules. It naturally has a local flavor in the sense that changes
of one iteration are bound to a (small) part of the input graph.

The Inflate-Deflate method (Section 3.2) is much less structured. It randomly applies
backward rules until the instance size increased by a fixed percentage. Afterwards, all
forward rules are applied exhaustively. If the resulting instance is smaller, then the process
is repeated; otherwise, all changes are reverted.

3.1 Find Method
For finding sequences of forward and backward rules which when applied to the input instance
produce a smaller instance, we propose a structured search approach based on recursion.
Let I be the input instance and let FI be the set of all instances reachable via one forward
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or backward rule, i. e., FI = {I ′ | (I, I ′) ∈ R for any forward or backward rule R}. If the
input instance is irreducible with respect to the set of forward rules, then only backward
rules will be applicable. We branch into |FI | cases where, for each I ′ ∈ FI , we try to
recursively find forward and backward rules applicable to I ′ and branch on each of them.
This is repeated until some maximum recursion depth is reached or the sequence of forward
and backward rule applications results in a smaller instance. In the latter case, the sequence
of applied rules can be thought of as a new data reduction rule.

Note that the search space is immense: For example, consider the backward rule corre-
sponding to Rule 1, which inserts three vertices u, v, and w, makes them pairwise adjacent,
and inserts an arbitrary set of edges between u and v and the original vertices. Thus, for each
original vertex, there are four options (make it adjacent to u, to v, to u and v, or neither).
This results in 4n options for applying just this one single backward rule. Hence, it is clear
that we have to introduce suitable methods to cut off large parts of the resulting search
tree. To this end, we heavily rely on the observation that many reduction rules have a “local
flavor”.

Region of Interest. To avoid a very large search space we only consider applying forward
and backward rules “locally”. For this, we define a “region of interest”, which for graph
problems is a set X ⊆ V . Any forward or backward rule must only be applied within the
region of interest. We initially start with a very modest region of interest, namely X = {v}
for all v ∈ V . Thus, we work with n regions of interest per graph, each one considered
separately.

Forward and backward rules are allowed to leave the region of interest only if at least one
vertex that is “relevant” for the rule is within the region of interest. Moreover, the region of
interest is allowed to “grow” as rules are applied. This is because applications of rules might
cause further rules to become applicable. For example, rules might become applicable to the
neighbors of vertices modified by the previously applied rules.

Specifically, let M be the set of “modified” vertices, which are new vertices or vertices
which gained or lost an edge as a result of applying a forward or backward rule, and let D

be the set of vertices it deleted. In the case of Vertex Cover, we suggest to expand the
region of interest to (X ∪ N [M ]) \ D after each rule application. The majority of forward
rules for Vertex Cover are “neighborhood based”. Of course, the region of interest could
be expanded even further, e. g., by extending it by N2[M ] instead, but this will of course
increase the search space. With a larger region of interest we might find more reduction rules,
but at the cost of higher running time. Additionally, the found reductions may be more
complex, and modify a large subgraph and are therefore difficult to analyze or implement.

We will call the above method, which recursively applies forward and backward rules
one by one restricted to only the region of interest, the Find method. Note that we “accept”
a sequence of forward and backward rules if it decreases the number of vertices or the
parameter k, without increasing either. We have done so to find only “nice” data reduction
rules where there is no trade-off between decreasing the parameter k or the number of vertices.
However, different conditions to “accept” a sequence of forward and backward rules are also
possible. For example, by only requiring that the number of vertices or edges is decreased.

Graph modification. Our implementation of the Find method outputs sequences of rules
which are able to shrink the graph. However, just knowing which rules and in what order
they were applied may not be very helpful in understanding the changes made by the rules.
Specifically, it does not show how the rules were applied.
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Figure 2 A graph modification example corresponding to the application of the Degree-2 Folding
Rule that applies to vertices with exactly two non-adjacent neighbors (the rule merges the degree-two
vertex and its neighbors). The set B = {b1, b2, b3} is the boundary of the graph modification. Notice
that only vertices in B (the boundary) are adjacent to both vertices in V (H) and V (G) \ V (H).

For this reason, we introduce the notion of a graph modification based on the ideas by
Fellows et al. [9]. A graph modification encodes how a single or multiple data reduction rules
have changed a graph. We say the boundary of a subgraph H of a graph G is the set B of
all vertices in V (H) whose neighborhood in G contains vertices in V (G) \ V (H).

▶ Definition 3.1. A graph modification is a 4-tuple of graphs (G, H, H ′, G′) with the following
properties

B = V (H ′) ∩ V (G),
H is a subgraph of G with boundary B, and
G′ is derived from G by deleting all vertices in V (H) \ B and all edges among B from G

and then adding the vertices in V (H ′) \ B and adding all edges from H ′.
See Figure 2 for an example of a graph modification. The Find method can be extended
such that in addition to printing rule sequences it also outputs the graph modifications
corresponding to each application of a rule from the found sequences. This can be achieved
by keeping track of newly created or deleted vertices and edges by the applied rules.

Isomorphism. It may happen that two or more rule sequences change an instance in the
same way, that is, they produce isomorphic graphs from the same input instance. In order
to avoid double counting, we implemented an isomorphism test to avoid these issues; see the
full version [10] for details.

The Find and Reduce Method. The Find and Reduce Method is just a small variation of
Find. Instead of only searching for sequences of forward and backward rules which shrink
the instance, upon finding such a sequence it is also immediately applied to the instance.
The search for more sequences continues with the smaller instance. This method serves the
dual purpose of both finding sequences of rules which shrink the instance (and therefore also
finding reduction rules), but also that of producing a smaller irreducible instance. Another
potential advantage of this method is that it finds only the rules which were used to produce
the smaller instance, and may therefore be more practical than the ones found by Find.
Recall, that Find only searches for reduction rules applicable directly to the input instance.
Perhaps by applying a single such sequence, different sequences are needed to shrink the
remaining instance further.

ESA 2022
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3.2 Inflate-Deflate

Both the Find and the Find and Reduce method only change a small part of the instance. It
may, however, be necessary to change large parts of an instance before it can be shrunk to a
size smaller than it was originally. For this reason, we propose the Inflate-Deflate inspired by
the Cyclic Blow-Up Algorithm by Gellner et al. [13].

Essentially, Inflate-Deflate iteratively runs two phases: First, in the inflation phase,
randomly applies a set of backward rules to the instance until it becomes some fixed
percentage α larger than it was initially. Then, in the deflation phase, exhaustively apply
a set of forward rules and repeat with the inflation phase again. Our implementation has
the termination condition |V | = 0 which may never be met. Thus a timeout or limit on the
number of iterations has to be specified. The inflation factor α can be freely set to any value
greater zero. We investigate the effect of different inflation factors in Section 4 for values
of α between 10% and 50%.

In our deflate procedure, we apply the set of forward rules exhaustively in a particular
way: An applicable forward rule is randomly chosen, and then it is randomly applied to the
instance, but only once. Afterwards another applicable rule is chosen randomly, and this
is repeated until the instance becomes irreducible with respect to all forward rules. This
randomized exhaustive application of the forward rules ensures that the rules are not applied
in a predefined way, and different “interactions” of the rules are tested. For example, consider
the case where in the inflate phase the Backward Degree-2 Folding Rule was applied, then
likely one would not want to immediately exhaustively apply the (Forward) Degree-2 Folding
Rule (see Figure 2) which could in effect directly cancel the changes made by that backward
rule. Furthermore, in this way, each of the forward rules has a chance to be applied. This
avoids any potential problems due to an inconvenient fixed rule order.

Because large sections of an instance are modified at once, no short sequences of forward
and backward rules can be extracted from this method. As a result, it is unlikely that new
reduction rules could be learned this way. However, the method produces smaller irreducible
instances as we will see in Section 4.

Local Inflate-Deflate. Within Inflate-Deflate it may happen that if we inflate the instance
and then deflate it again, often the resulting instance is larger. In such cases the number of
“negative” changes to the instance outweigh the number of “positive” changes. To increase
the success probability one may try to lower the inflation factor, however then it can also
happen that positive changes are less likely.

An alternate way to try to increase the success probability, is to apply backward rules
within a randomly chosen subgraph rather than the whole graph. For example, this subgraph
could be the set of all vertices with some maximum distance to a randomly chosen vertex.
Backward rules are then applied until the subgraph becomes larger by a factor of α, instead
of the whole graph.

4 Experimental Evaluation

In this section, we describe the experiments which we performed based on an implementation
of the methods described in Section 3.
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Table 1 A glossary of the forward and backward rules which were used in our implementation.
Note that we apply the Struction Rule only if it does not increase k. In the columns named alias we
provide shortened names for the rules. We refer to the full version of the paper [10] for detailed
descriptions of these rules.

Forward rules Backward rules
Alias Full name Alias Full name

Deg0 Degree-0 Undeg2 Backward Degree-2 Folding
Deg1 Degree-1 Undeg3 Backward Degree-3 Independent Set
Deg2 Degree-2 Folding Uncn Backward 2-Clique Neighborhood (special case)
Deg3 Degree-3 Independent Set Undom Backward Domination
Dom Domination Ununconf Backward Unconfined
Unconf Unconfined-κ (κ = 4) OE_Ins Optional Edge Insertion
Desk Desk
CN 2-Clique Neighborhood
OE_Del Optional Edge Deletion
Struct Struction (k′ ≤ k)
Magnet Magnet
LP LP

4.1 Setup

Computing Environment. All our experiments were run on a machine running Ubuntu
18.04 LTS with the Linux 4.15 kernel. The machine is equipped with an Intel® Xeon® W-2125
CPU, with 4 cores and 8 threads2 clocked at 4.0 GHz and 256GB of RAM.

Datasets. For our experiments we used three different datasets: DIMACS, SNAP and
PACE; the lists of graphs are given in the full version [10]. The DIMACS and SNAP datasets
are commonly used for graph-based problems, including Vertex Cover [3, 16, 13]. We have
used the instances from the 10th DIMACS Challenge [5], specifically from the Clustering,
Kronecker, Co-author and Citation, Street Networks, and Walshaw subdatasets. In total
these are 82 DIMACS instances. From the SNAP Dataset Collection [17] we have used the
graphs from from the Social, Ground-Truth Communities, Communication, Collaboration,
Web, Product Co-purchasing, Peer-to-peer, Road, Autonomous systems, Signed and Location
subdatasets. In total we obtained 52 SNAP instances. Additionally, we used a dataset
which was used specifically for benchmarking Vertex Cover solvers in the 2019 PACE
Challenge [7]. We used the set of 100 private instances [6], which were used for scoring
submitted solvers.

Preprocessing and Filtering. We apply some preprocessing to our datasets. We obtain
simple, undirected graphs by ignoring any potential edge direction or weight information
from the instances and by deleting self-loops. To these graphs we apply the forward rules, see
Table 1 and the full version [10] for an overview: Deg1, Deg2, Deg3, Unconf, Cn, LP, Struct,
Magnet and Oe_delete exhaustively in the given order. We note that the kernels obtained
this way always had fewer vertices than the kernels obtained with the data reduction suite
used by Akiba and Iwata [3] and also Hespe et al. [14].

2 All our implementations are single-threaded.
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We filter out graphs that became empty as a result of applying these rules. These were
41 DIMACS, 33 SNAP and 12 PACE instances. Furthermore, we discard graphs which after
applying these rules still had more than 50,000 vertices. These were 12 DIMACS and 3
SNAP instances. Because the PACE instances may also contain instances from the other two
datasets, we have tested the graphs for isomorphism. We have found one PACE instance to
be isomorphic to a SNAP instance (p2p-Gnutella09), which was already excluded, because it
was shrunk to an empty graph.

In total, we are left with 31 DIMACS, 16 SNAP and 88 PACE graphs with at most
50,000 vertices – all of these graphs are irreducible with respect to the forward rules. When
referring to the datasets DIMACS, SNAP and PACE we will be referring to these kernelized
and filtered instances.

Implementation. The major parts of our implementation are written in C++11 and
compiled using version 7.5 of g++ using the -O2 optimization flag. Smaller parts, such as
scripts for visualization or automation were written in Python 3.6 or Bash. We provide the
source code for our implementation at https://git.tu-berlin.de/afigiel/undo-vc-drr.
This implementation contains our Find and Inflate-Deflate method, together with the two
small variations Find and Reduce, and local Inflate-Deflate. Find uses the local isomorphism
test which we describe in Section 3.1, and output a description of the graph modification in
addition to the found sequences.

We also provide a Vertex Cover solver implementation with all our forward rules
implemented, and some new data reduction rules which are explained later in this section.
The solver is based on the branch-and-reduce paradigm and is very similar to the Vertex
Cover solver by Akiba and Iwata [3]. Moreover, we provide a lifting algorithm that can
transform solutions for the kernelized instances into solution for the original instances. We
also provide a Python script that is used to visualize the graph modifications of the sequences
of forward and backward rules that are output by our methods. However, our focus in this
section is on the Find and Inflate-Deflate method.

Methodology. We have implemented our Find and Inflate-Deflate methods together with
their two variations: Find and Reduce and local Inflate-Deflate. Almost all forward and
backward rules described in the full version [10] are used by these methods, see Table 1 for
an overview.

All rules increase or decrease k, but do not need to know k in advance. This allows us to
run Find and Inflate-Deflate on all graphs, without having to specify a value for k. Instead,
we set k = 0 for all instances. In the final instance (G′, k′) computed from (G, k = 0) we will
have τ(G′) − k′ = τ(G), where τ(G) denotes the vertex cover number of G. For graphs G′

which become empty, −k′ is the vertex cover number of the original graph G.
We set a maximum recursion limit for Find such that only sequences of at most two or

three rules are found. We will refer to FAR2 and FAR3 as the Find and Reduce method which
only searches for sequences of at most two or three forward and backward rules, respectively.

We used inflation ratios α equal to 10, 20 and 50 percent, and we will refer to the different
Inflate-Deflate configurations as ID10, ID20, and ID50, respectively. We also tested our local
Inflate-Deflate method with α = 20%, which we have found to work best in preliminary
experiments, which we will refer to as LID20.

All these configurations were tested on the three datasets with a maximum running time
of one hour.

https://git.tu-berlin.de/afigiel/undo-vc-drr
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Figure 3 A matrix depicting which pairs of forward rules we have found to be non-confluent. A cell
corresponding to a row rule Ra and a column rule Rb is colored white if the set R = {Ra, Rb, Deg0}
is not confluent. The Degree-0 rule is always included to not take into account differences in number
of isolated vertices left after applying the rules. Gray cells correspond to sets which may be confluent,
meaning that no counter-example was found for them.

4.2 Results
Confluence. Confluence can be proved using for example conflict pair analysis [8], which
is not straightforward and does not work for all types of data reduction rules. However,
disproving confluence is potentially much easier, as it suffices to find one example where
applying the rules in different order yields different instances.

For each pair of forward rules in Table 1, we tested on the set of all graphs with at most 9
vertices3 whether we can obtain irreducible, but non-isomorphic graphs by randomly applying
the two rules to the same graph. More precisely, we test whether a set R = {Ra, Rb, Deg0}
is confluent for two forward rules Ra and Rb. We include the Degree-0 Rule in these sets,
because a difference in the number of isolated vertices is only a minor detail which we do not
wish to take into account. We note that, the inclusion of the Degree-0 Rule in these sets was
never the reason that a set was not confluent.

Our results are summarized in Figure 3. The figure clearly shows that most pairs of
forward rules are not confluent. This means that the relative order of these rules may affect
the final instance.

Instance Shrinking. Next, we demonstrate how much the Find and Reduce and Inflate-Deflate
methods were able to shrink the irreducible DIMACS, SNAP, and PACE graphs, which were
obtained by exhaustively applying a set of forward rules. The results are summarized in
Figure 4 and Table 2.

Notably, ten DIMACS and four SNAP instances were reduced to an empty graph by the
Inflate-Deflate methods. Five further DIMACS graphs shrank to around 80% of their size, and
half of the DIMACS graphs did not really shrink at all. We conclude that the Inflate-Deflate
approach seems to either work really well or nearly not at all for a given instance.

3 We obtained these graphs from Brendan McKay’s website https://users.cecs.anu.edu.au/~bdm/
data/graphs.html
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Figure 4 Cactus plots depicting how many irreducible instances were shrunk to a given fraction
of their size (measured in vertices). The order of the instances is chosen for each configuration such
that the size fractions of the instances are increasing. Note that the y-axis for DIMACS and SNAP
start at zero (i. e. instances reduced to the empty graph); the y-axis for PACE does not.

Table 2 Summery of the average relative size (in terms of number of vertices) achieved by each
of the configurations on the three datasets. The best value per dataset is given in bold.

FAR2 FAR3 ID10 ID20 ID50 LID20

DIMACS 82.6% 67.0% 62.9% 63.6% 66.1% 63.4%
SNAP 80.6% 66.8% 56.4% 59.3% 64.1% 56.4%
PACE 99.2% 97.4% 97.8% 98.1% 98.1% 98.0%

On average the ID10 configuration produced the smallest irreducible instances, see Table 2.
From the FAR2 configuration it can be seen that already applying only two forward/backward
rules in a sequence can considerably reduce the size of some graphs. In this case, the first
rule is always a backward rule, and the second always a forward rule. However, using up to
three rules in a sequence gave significantly better results.

For Inflate-Deflate, we see that small inflation ratios α around 10% perform best on
average. Increasing the inflation ratio leads to slightly worse results, especially for the SNAP
instances.

Next, in Figure 5, we see that the ID10 method was able to shrink graphs to empty
graphs mostly for graphs with the lowest average degree (8–14), with the exception of one
instance with an average degree of around 45. However, a large number of graphs with an
average degree of 8–14 were not shrunk considerably. The other configurations, namely ID20,
ID50, and FAR3 exhibit the same behavior. Similar behavior is also observed by replacing the
average degree with the maximum degree. For the most part, only graphs with a relatively
small maximum degree were able to be shrunk considerably. We conclude that our approach
is most viable on sparse irreducible graphs.

In Figure 6, we show how the graph size changes over time with Find and Reduce and
Inflate-Deflate on two example graphs. It can be clearly observed how ID10 repeatedly
increases the number of vertices, which is the inflation phase, and then subsequently reduces
it, which is the deflation phase. A slow downward trend of the number of vertices can be
observed.



A. Figiel, V. Froese, A. Nichterlein, and R. Niedermeier 53:13

101 102
0

25

50

75

100

Average Degree

R
em

ai
ni

ng
%

[1
00

%
=

n
]

DIMACS
SNAP
PACE

101 102

Maximum Degree

Figure 5 Scatter plot relating the relative size (measured in vertices) of the shrunk instances to
the average and maximum degree of these graphs for the ID10 configuration. Note that a logarithmic
scale is used for the x-axis.
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Figure 6 The shrinkage of two instances by ID10 and FAR3 configurations on already kernelized
instances. The x axis is time, and y is number of vertices. In the right figure red segments mean
that the graph was shrunk by using a sequence of at least two forward and backward rules, whereas
the blue segments indicate the use of forward rules only.

For the FAR3 configuration it can be seen that there are phases in which only forward
rules have to be used to shrink the graph, and phases where longer sequences of forward and
backward rules are needed. Sometimes a sudden large decrease in the number of vertices
using only forward rules can be observed, which one may think of as a cascading effect. The
graph only had to be changed by a small amount, triggering a cascade of forward rules.

5 Conclusion

Our work showed the large potential in the general idea of undoing data reduction rules to
further shrink instances that are irreducible with respect to these rules. While the results for
some instances are very promising, our experiments also revealed that other instances resist
our attempts of shrinking them through preprocessing. From a theory point of view this
is no surprise, as we deal with NP-hard problems after all. However, there is a lot of work

ESA 2022



53:14 There and Back Again: On Applying Data Reduction Rules by Undoing Others

that still can be done in this direction. Similar to the branch&bound approach, many clever
heuristic tricks will be needed to find solutions in the vast search space. Such heuristics
might, for example, employ machine learning to guide the search. As mentioned before,
our approach is not limited to Vertex Cover. Looking at other problems is future work
though. A framework for applying our approach on graph problems could be another next
step. Also, our approach should be easily parallelizable.

Besides all these practical questions, there are also clear theoretical challenges: For
example, for a given set of data reduction rules is there always (for each possible instance) a
sequence of backwards and forward rules to obtain an equivalent instance of constant size?
Note that this would not contradict the NP-hardness of the problems: Such sequences are
probably hard to find and could even be of exponential length.
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Abstract
Given a training set P ⊂ Rd, the nearest-neighbor classifier assigns any query point q ∈ Rd to the
class of its closest point in P . To answer these classification queries, some training points are more
relevant than others. We say a training point is relevant if its omission from the training set could
induce the misclassification of some query point in Rd. These relevant points are commonly known
as border points, as they define the boundaries of the Voronoi diagram of P that separate points of
different classes. Being able to compute this set of points efficiently is crucial to reduce the size of
the training set without affecting the accuracy of the nearest-neighbor classifier.

Improving over a decades-long result by Clarkson (FOCS’94), Eppstein (SOSA’22) recently
proposed an output-sensitive algorithm to find the set of border points of P in O(n2 + nk2) time,
where k is the size of such set. In this paper, we improve this algorithm to have time complexity
equal to O(nk2) by proving that the first phase of their algorithm, which requires O(n2) time, are
unnecessary.
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Keywords and phrases nearest-neighbor classification, nearest-neighbor rule, decision boundaries,
border points, relevant points
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1 Introduction

In the context of non-parametric classification, we are given a training set P ⊂ Rd consisting
of n labeled points in d-dimensional Euclidean space, where the label of every point in P

indicates the class (or color) that the point belongs to. The goal of a classifier is to use the
training set P to predict the class for any unlabeled query point q ∈ Rd, that is, to classify q.

The nearest-neighbor classifier (also known as nearest-neighbor rule) [13] stands out as a
simple yet powerful method, that works by assigning any query point q to the class of its
closest point in P . Despite its simplicity, the nearest-neighbor classifier is well-known to
exhibit good classification accuracy both experimentally and theoretically [10, 11, 30]. In
fact, it is still frequently used in many applications [5, 18, 22, 25–27,29] over more recent and
sophisticated techniques like support-vector machines [9] and deep neural networks [28].

One of the principal disadvantages of this technique is its high dependency on the size and
dimensionality of the data, especially in light of big data applications. With training sets with
billions of points becoming increasingly common, reducing the nearest-neighbor classifier’s
dependency on n and d is one approach to enhance its efficiency. There has been significant
progress towards this goal, mainly focusing on two directions. The first involves the design of
efficient data structures to answer approximate nearest-neighbor queries [2–4,17,19,20,23].
The second direction focuses on reducing the size of the training set used by the nearest-
neighbor classifier, thus effectively reducing n. However, most practical techniques for training
set reduction provide limited guarantees on the effect of this reduction to the accuracy of the
nearest-neighbor classifier [1, 14–16].
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(a) Original training set P . (b) Border/Relevant points of P .

Figure 1 On the left, a training set P with points of three classes: red, blue and yellow. There
the black lines highlight the boundaries of P between points of different classes. On the right, a
subset of these points corresponding to the set of border points of P . Note that by definition, the
boundaries between points of different classes remain the same for P and for its set of border points.

Only a handful of works [6,8,12] have proposed training set reduction algorithms that
guarantee the same classification of every query point, before and after the reduction took
place. These are called boundary preserving algorithms, and it is the focus of this paper.

The set of border points (or relevant points1) of the training set P are those that define
the boundaries between points of different classes, and whose omission from the training set
would imply the misclassification of some query points in Rd. Formally, two points p, p̂ ∈ P

are border points of P if they belong to different classes, and there exist some point q ∈ Rd

such that q is equidistant to both p and p̂, and no other point of P is closer to q than these
two points (i.e., the empty ball property of Voronoi Diagrams). See Figure 1 for an example
of a training set P in R2 and its set of border points. Throughout, we let k denote the
total number of border points in the training set. By definition, if instead of building the
nearest-neighbor classifier with the entire training set P we use the set of border points of P ,
its dependency is reduced from n to k, while still obtaining the same classification for any
query point in Rd. This becomes particularly relevant for applications where k ≪ n.

In this paper, we improve a recently proposed algorithm by [12] that computes the set
of border points of any training set P ⊂ Rd, where dimension d is assumed to be constant.
While the original algorithm computes such set in O(n2 + nk2) time, where k is the number
of border points of P , our new algorithm computes the same set in O(nk2) time.

1.1 Previous Work
Other related problems in the realm of training set reduction are NP-hard [24,31,33] to solve
exactly (e.g., those of finding minimum cardinality consistent subsets and selective subsets).
However, the problem of preserving the class boundaries of the nearest-neighbor classifier, or
simply, finding the set of border points of P , is tractable.

For training sets P ⊂ R2 in 2-dimensional Euclidean space, Bremner et al. [6] proposed an
output-sensitive algorithm for finding the set of border points of P in O(n log k) worst-case
time. However, how to generalize this algorithm for higher dimensions remained unclear.

1 While [12] uses the term relevant points, the term border points has been the standard in the literature
of this and other related problems [14,15,21,32]. For this reason, we stick to the term border points.
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Until very recently, the best result for the higher dimensional case was that of Clarkson [8].
He proposed an algorithm to find the set of border points of P ⊂ Rd, with bounded d, that
runs in O(min (n3, kn2 log n)) worst-case time. For almost three decades, this remained the
best result for training sets in Rd. Recently, Eppstein [12] proposed a significantly faster
algorithm for the d-dimensional Euclidean case, which runs in O(n2 + nk2) worst-case time.

Eppstein’s algorithm is strikingly simple, yet full of interesting ideas (see Algorithm 1).
The algorithm works as follows: it begins by selecting an initial set of border points of P , one
point from every class region. From here, the algorithm uses a series of subroutines which
we will group together and denote as the “inversion method”, to find the remaining border
points of P . Thus, the algorithm can be naturally split into two phases: the initialization of
R with some border points, and the search process for the remaining border points of P .

Algorithm 1 Recent Eppstein’s algorithm [12] to find the set of border points of P .

Input: Initial training set P

Output: The set of border points of P

1 Let M be the MST of P

2 Initialize R with the end points of every bichromatic edge of M

3 foreach p ∈ R do
4 Let c be p’s class and Pc be the points of P that belong to class c

5 Let Sp be the inverted points of P \ Pc around p

6 Find all extreme points of Sp and their corresponding original points Ep

7 R← R ∪ Ep

8 return R

The initialization phase (lines 1–2 of Algorithm 1) involves finding a subset of border
points such that at least one point for every class region is selected. Eppstein observes that
this can be achieved by computing the Minimum Spanning Tree (MST) of P , identifying the
edges of the MST that connect points of different classes (denoted as bichromatic edges), and
selecting the endpoints of all such edges. This phase takes O(n2) time, but we will prove
that it is not necessary.

The search phase (lines 3–6 of Algorithm 1) is in charge of finding every remaining border
point of P . This phase iterates over all selected points, and for each such point p, it performs
what we call the inversion method. This method identifies a subset of border points of P ,
which are added to R. Once the algorithm has done the inversion method on every point of
R, it terminates with the guarantee of having selected every border point of P .

Given any point p ∈ P , the inversion method on p is described in lines 4–6 of Algorithm 1.
Let c be p’s class, and Pc be the points of P that belong to class c, the inversion method on
p consists of: (i) inverting all points of P \ Pc around a ball centered at p (call the set of
these inverted points as Sp and include p itself in the set), (ii) computing the set of extreme
points of Sp, and finally (iii) returning the set Ep of those points of P that correspond to the
extreme points of Sp before inversion. For a detailed description and proof of correctness of
this method, we refer the reader to Eppstein’s paper [12]. However, for the purposes of this
paper we only need a property presented in Lemma 3 of [12]: the points in Ep reported by
the inversion method are the Delaunay neighbors of p with respect to the set (P \ Pc) ∪ {p}.

Every call of the inversion method takes O(nk) time by leveraging well-known output-
sensitive algorithms for computing extreme points. Given that this method is called exclusively
on every border point of the training set, this yields a total of O(nk2) time to complete the
search phase of the algorithm. Overall, this implies that Eppstein’s algorithm computes the
entire set of border points of P in O(n2 + nk2) worst-case time.
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2 Our Approach

We propose a simple modification to Eppstein’s algorithm, which avoids the step of computing
the MST of the training set P , along with the subsequent selection of bichromatic edges to
produce the initial subset of border points.

Instead, we simply start the search process with any arbitrary point of P . The rest of
the algorithm remains virtually unchanged (see Algorithm 2 for a formal description). We
show that this new approach is not only correct, meaning that it only finds border points
of P , but also complete, as all border points of P are eventually found by our algorithm.
Additionally, by avoiding the main bottleneck of the original algorithm, our new algorithm
computes the same result in O(nk2) time, eliminating the O(n2) term.

Algorithm 2 New algorithm to find the set of border points of P .

Input: Initial training set P

Output: The set of border points of P

1 Let s be any “seed” point from P

2 R← ϕ

3 foreach p ∈ R ∪ {s} do
4 Let c be p’s class and Pc be the points of P that belong to class c

5 Let Sp be the inverted points of P \ Pc around p

6 Find all extreme points of Sp and their corresponding original points Ep

7 R← R ∪ Ep

8 return R

Before proceeding, it is useful to explore why Eppstein’s algorithm computes the MST of
the training set P . First, note that the original algorithm only applies the inversion method
on border points of P . In fact, Eppstein’s correctness proof relies on it: Lemma 6 in [12]
proves that all points in Ep are border points by assuming that point p is also a border point.
From the description of our algorithm, note that we initially apply the inversion method on a
“seed” point s, which might not be a border point. Therefore, we need to generalize Lemma 6
in [12] for the case where p is not a border point of P . Additionally, using the points from
all bichromatic pairs of the MST of P guarantees that Eppstein’s algorithm starts the search
phase with at least one point from every boundary of P . Eppstein’s completeness proof
shows that this search can then “move along” any given boundary and eventually select all
its defining points. We show that the search process is far more powerful, and can even
“jump” between nearby boundaries, thus rendering the MST computation unnecessary.

The following description outlines the necessary steps to prove both the correctness and
completeness of our new algorithm, which are unfolded in the rest of this section.

By applying the inversion method to any point of P , not necessarily a border point, all
reported points are border points of P . This is established in Lemma 1, generalizing the
statement of Lemma 6 of [12] for non-border points.
For any class boundary of P , once the algorithm selects a point from this boundary, it
will eventually select every other point defining the same boundary. This is originally
proved in Lemma 10 [12], however, we provide simpler proofs in Lemmas 2 and 3.
Given two disconnected boundaries separated by a class region, we prove that if our
algorithm selects a defining point from one of the boundaries, it will eventually select all
defining points from both boundaries. This is proved in Lemma 4.
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All together, these lemmas are used to prove the main result: the correctness, completeness,
and worst-case time complexity of Algorithm 2, as stated in Theorems 5 and 6.

(a) Training set P . (b) Points from (P \ Pc) ∩ {p}. (c) q and p̂ are border points.

Figure 2 Example showing the inversion method from any point p ∈ P . On the left, training
set P . The middle figure shows every non red point of P , except for p itself, along with a point q

selected from the inversion method on p. On the right, we see evidence that q is a border point of P .

▶ Lemma 1. Let p ∈ P be any point of the training set. Then every point selected using the
inversion method on p must be a border point of P .
Proof. Let Ep be the points of P corresponding (before inversion) to the extreme points of
Sp. According to Lemma 3 [12], every point in Ep is a neighbor of point p with respect to the
Voronoi Diagram of set (P \ Pc) ∪ {p}. This implies that for every point q ∈ Ep other than
p, there exists a ball such that both p and q are on its surface and no points of P \ Pc lie
inside (see Figures 2a and 2b). We can now leverage similar techniques to the ones described
in [6], to find a “witness” point to the hypothesis that q must be a border point of P .

Recall that the empty ball we just described, as illustrated in Figure 2b, is empty from
points of P \ Pc. However, there might be points of Pc inside. And moreover, we know that
at least one point of Pc, point p, lies on its surface. Now, let r be the center of this ball,
we grow an empty ball, this time with respect to the entire training set P , such that its
center lies on the line qr and point q is on its surface (see Figure 2c). This ball will grow
until it hits another point p̂ of P , which we are guaranteed it will be of the same class as
point p, and thus, of different class as point q. Finally, we have just found an empty ball
with respect to P , which has points q and p̂ on its surface, and were the class of both points
differ. Therefore, this implies that q is a border point of P . ◀

Before continuing, we need to formally define a few concepts. First, we define a wall of P

as any (d− 1)-dimensional face of the Voronoi Diagram of P . By known properties of these
structures, every wall w is defined by two distinct points p, q ∈ P such that any point on w

has p and q as its two equidistant nearest-neighbors in the training set. We say two walls are
adjacent if their intersection is not empty. That is, if there exists a point in Rd with all the
defining points of these two walls as its equidistant nearest-neighbors in P .

Additionally, we define a class boundary (or just boundary) of P as the union of adjacent
walls, where each of these walls is defined by two points of different classes. Similarly, we
define a class region of P as the union of adjacent Voronoi cells whose defining points belong
to the same class. Based on these definitions, note that class boundaries are the ones that
separate different class regions of P . Figure 4 illustrates a training set in R2 with points of
three classes, whose Voronoi Diagram describes five class regions and two class boundaries.
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(a) (b)

Figure 3 By definition, any two adjacent walls w1 and w2 of the Voronoi Diagram of P hold
the empty ball property with the points that define them. When these walls are part of the class
boundaries of P , the points that define them belong to at least two classes.

▶ Lemma 2. Let w1 and w2 be two adjacent walls in a class boundary of P . If the algorithm
selects one of the points defining one of these walls, it eventually selects the remaining points
defining both walls.

Proof. LetW be the set of points defining both walls w1 and w2 (see Figure 3). By definition,
these two walls of the Voronoi Diagram of P are adjacent if there exists an empty ball with
all the points of W on its surface. Knowing these two walls are part of the class boundaries
of P , the set W must contain at least three points, and at least two classes.

Let p1 be the first point of W to be selected by the algorithm. When doing the inversion
method on point p1, the algorithm will select all points of W of different class than p1, of
which we know there is at least one. Let p2 be one such point. Finally, when doing the
inversion method on point p2, the algorithm will select the remaining points of W of the
same class as p1. Therefore, all points of W will eventually be selected by the algorithm. ◀

Figure 4 A training set with five class regions (one blue, two red, and two yellow regions), along
with two disconnected class boundaries that separate all these regions. On the left, a boundary
separating the blue region and the leftmost yellow and red regions. On the right, a boundary that
separates the same blue region and the remaining red and yellow regions.
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▶ Lemma 3. Let A be a class boundary of P , and assume that the algorithm selects one of
the defining points of A. Then, the algorithm will eventually select all defining points of A.

This comes as a direct consequence of Lemma 2 and the definition of a class boundary of
the training set P . It remains to show what happens with boundaries that are disconnected.

▶ Lemma 4. Let A and B be two disconnected boundaries of P , such that there exists a
path in space from A to B that is completely contained within one color region. Without loss
of generality, say that every point that defines A has been selected by the algorithm. Then,
every point that defines B must also be selected by the algorithm.

Proof. Given these two disconnected boundaries A and B, we assume there exists some path
P in Rd going from a wall of A to a wall of B, such that this path passes exclusively through
a single class region (see Figure 5a). Without loss of generality, say this is a red class region.
Formally, for every point r along P we know r’s nearest-neighbor in P is red. Additionally,
we assume that every border point defining A is selected by the algorithm. Hence, the proof
consists of showing that there exists a sequence of border points ⟨p1, p̂1, p2, p̂2, . . . , pm, p̂m⟩
such that (i) p1 and p̂m are defining points of A and B, respectively, (ii) p̂i is retrieved by
the inversion method on pi, for every i ∈ [1, m], and finally (iii) points pi and p̂i−1 are both
defining the same boundary, for every i ∈ [2, m]. See Figure 5 for a visual description.

(a) (b) (c)

Figure 5 On the right, two disconnected boundaries A and B enclosing a red class region. Thus,
there is a path P completely contained inside such region and connecting both boundaries. Other
boundaries can also be enclosing the same region and be near path P. On the left, we proof that
there exists a sequence of points that can be retrieved by calls to the inversion method, such that if
points of A are selected by the algorithm, eventually points of B will also be selected.

By definition, for every point r along path P we know r’s nearest-neighbor is a red point.
Now, let’s delete every red point from consideration, including the ones defining boundaries
A and B (see Figure 5b). This immediately implies that r’s nearest-neighbor just became a
non-red border point of P . The fact that r’s new nearest-neighbor is a border point is easy
to proof, using similar arguments as the ones laid down in Lemma 1. Additionally, these
border points could be defining other boundaries apart from A and B, as seen in Figure 5b.

Let’s start moving along the path P, starting from the end-point of the path that lies
on a wall of boundary A. Then, find all ri points along the path, where each ri has two
equidistant nearest-neighbors among the remaining non-red points, and both points define
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two distinct boundaries of P . We say there are m of these points along the path, and denote
ri’s two equidistant nearest-neighbors as qi,1 and qi,2 for i ∈ [1, m]. Clearly, qi,1 and qi−1,2
are border points defining the same boundary, for all i ∈ [2, m]. See Figure 5b, where the
three black points along the path are the ri points, and the yellow and blue points on the
surface of the balls centered at each ri are the corresponding qi,1 and qi,2 points.

For now, let’s fix the analysis on one such ri point, and consider the ball centered at ri

with both qi,1 and qi,2 on its surface. There must exist some other point qi,3 lying inside of
ri’s ball, such that qi,3 is one of the deleted red points defining the same boundary as qi,1. It
is now easy to see that there exist an empty ball, with respect to the set P \ Pred ∪ {qi,3},
with both qi,3 and qi,2 on its boundary. This implies that qi,2 is retrieved by the inversion
method on qi,3. Therefore, let’s add pi ← qi,3 and p̂i ← qi,2 to the sequence of points that we
are looking for. Repeat this for every ri with i ∈ [1, m] to identify all points in the sequence.

Finally, we have the sequence of border points ⟨p1, p̂1, p2, p̂2, . . . , pm, p̂m⟩ such that for any
i ∈ [1, m] assuming that the algorithm selects the points defining the same boundary as pi, it
will also select p̂i, and leveraging Lemma 3 it will eventually select all other points defining
the same boundary as p̂i. Given that p1 and p̂m are defining border points of boundaries A
and B, respectively, and by the assumption that all points defining A are selected by the
algorithm, we know that eventually, all points defining B will be selected too. ◀

▶ Theorem 5. The algorithm selects every border point of P in O(nk2) time.

Proof. Proving the worst-case time complexity of our algorithm follows directly from the
time complexity of the search phase of Eppstein’s algorithm [12]. However, the correctness
and completeness of our algorithm follows from Lemmas 1 to 4.

First, we know by Lemmas 1-3 that Algorithm 2 will select the defining border points
of at least one class boundary of P . Denote this boundary as A and consider any other
boundary B of P . Evidently, we can draw a path P from A to B, which would generally
pass through several class regions. Then, let’s split P into several subpaths P1,P2, . . . ,Pm

such that each subpath is completely contained within a single class region. From this, we
can directly apply Lemma 4 on each of the intermediate boundaries that “cut” P into these
subpaths. Finally, this implies that our algorithm will eventually select every defining point
of boundary B, and similarly, it will do the same with all other boundaries of P . ◀

▶ Theorem 6. Leveraging Chan’s algorithm [7] for finding extreme points, the algorithm
selects every border point of P in randomized expected time O(nk log k) for d = 3, and in

O
(

nk(log k)O(1) + k(nk)1− 1
⌊d/2⌋+1 (log n)O(1)

)
time for all constant dimensions d > 3.

Just as with Eppstein’s original algorithm, we can use Chan’s randomized algorithm [7]
for finding extreme points of point sets in Rd, in order to reduce the expected time complexity
of our improved algorithm. The remaining of the proof is the same as for Theorem 5.
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1 Introduction

The circumference of a graph is the length of its longest (simple) cycle. In 1959, Erdős
and Gallai [4] gave the following, now classical, lower bound for the circumference of an
undirected graph.

▶ Theorem 1 (Erdős and Gallai [4]). Every graph with n vertices and more than 1
2 (n − 1)ℓ

edges (ℓ ≥ 2) contains a cycle of length at least ℓ + 1.

We provide an algorithmic extension of the Erdős-Gallai theorem: A fixed-parameter
tractable (FPT) algorithm with parameter k, that decides whether the circumference of
a graph is at least ℓ + k. To state our result formally, we need a few definitions. For an
undirected graph G with n vertices and m edges, we define ℓEG(G) = 2m

n−1 . Then by the
Erdős-Gallai theorem, G always has a cycle of length at least ℓEG(G) if ℓEG(G) > 2. The
parameter ℓEG(G) is closely related to the average degree of G, ad(G) = 2m

n . It is easy to
see that for every graph G with at least two vertices, ℓEG(G) − 1 ≤ ad(G) < ℓEG(G).
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The maximum average degree mad(G) is the maximum value of ad(H) taken over all
induced subgraphs H of G. Note that ad(G) ≤ mad(G) and mad(G) − ad(G) may be
arbitrarily large. By Goldberg [13] (see also [12]), mad(G) can be computed in polynomial
time. By Theorem 1, we have that if ad(G) ≥ 2, then G has a cycle of length at least ad(G)
and, furthermore, if mad(G) ≥ 2, then there is a cycle of length at least mad(G). Based on
this guarantee, we define the following problem.

Input: A graph G on n vertices and an integer k ≥ 0.
Task: Decide whether G contains a cycle of length at least mad(G) + k.

Longest Cycle Above MAD

Our main result is that this problem is FPT parameterized by k. More precisely, we show
the following.

▶ Theorem 2. Longest Cycle Above MAD can be solved in time 2O(k) · nO(1) on
2-connected graphs.

While Theorem 2 concerns the decision variant of the problem, its proof may be easily
adapted to produce a desired cycle if it exists. We underline this because the standard
construction of a long cycle that for every e ∈ E(G) invokes the decision algorithm on G − e,
does not work in our case, as edge deletions decrease the average degree of a graph.

Theorem 2 has several corollaries. The following question was explicitly stated in the
literature [6, 9]. For a 2-connected graph G and a nonnegative integer k, how difficult is it
to decide whether G has a cycle of length at least ad(G) + k? According to [9], it was not
known whether the problem parameterized by k is FPT, W[1]-hard, or Para-NP. Even the
simplest variant of the question, whether a path of length ad(G) + 1 can be computed in
polynomial time, was open. Theorem 2 resolves this question because mad(G) ≥ ad(G) for
every graph G.

▶ Corollary 3. For a 2-connected graph G and a nonnegative integer k, deciding whether G

has a cycle of length at least ad(G) + k can be done in time 2O(k) · nO(1).

Similarly, we have the following corollary.

▶ Corollary 4. For a 2-connected graph G and a nonnegative integer k, deciding whether G

has a cycle of length at least ℓEG(G) + k can be done in time 2O(k) · nO(1).

An undirected graph G is d-degenerate if every subgraph of G has a vertex of degree at
most d, and the degeneracy of G is defined to be the minimum value of d for which G is
d-degenerate. Since a graph of degeneracy d has a subgraph H with at least d · |V (H)|/2
edges, we have that d ≤ ad(H) ≤ mad(G). Therefore, Theorem 2 implies the following
corollary, which is the main result of [6].

▶ Corollary 5 ([6]). For a 2-connected graph G of degeneracy d, deciding whether G has a
cycle of length at least d + k can be done in time 2O(k) · nO(1).

Theorem 1 provides the same lower bound on the number of vertices in a longest path.
We consider the Longest Path Above MAD problem that, given a graph G and integer
k, asks whether G has a path with at least mad(G) + k vertices. Observe that a graph G

has a path with ℓ vertices if and only if the graph G′, obtained by adding to G a universal
vertex that is adjacent to every vertex of the original graph, has a cycle with ℓ + 1 vertices.
Because mad(G′) ≥ mad(G), Theorem 2 yields the following.
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▶ Corollary 6. Longest Path Above MAD can be solved in time 2O(k) ·nO(1) on connected
graphs.

We complement Theorem 2 by observing that the 2-connectivity condition is crucial
for tractability due to the fact that the considered properties are not closed under taking
biconnected components. In particular, it may happen that every long cycle of a graph is in
a biconnected component of small average degree. This yields the following theorem.

▶ Theorem 7 (⋆).1 It is NP-complete to decide whether an n-vertex connected graph G has
a cycle of length at least ℓEG(G) + 1.

The single-exponential dependence in k of algorithm in Theorem 2 is asymptotically
optimal: it is unlikely that Longest Cycle Above MAD can be solved in 2o(k) · nO(1)

time. This immediately follows from the well-known result (see e.g. [2, Chapter 14]) that
existence of an algorithm for Hamiltonian Cycle with running time 2o(n) would refute the
Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [14]. Thus Longest
Cycle Above MAD cannot be solved in 2o(k) · nO(1) time, unless ETH fails.

Comparison with the previous work. Two of the recent articles on the circumference of
a graph above guarantee are most relevant to our work. The first is the paper of Fomin,
Golovach, Lokshtanov, Panolan, Saurabh, and Zehavi [6] who gave an algorithm that in time
2O(k) · nO(1) for a 2-connected graph G of degeneracy d, decides whether G has a cycle of
length at least d + k. In the heart of their algorithm is the following “rerouting” argument: If
a cycle hits a sufficiently “dense” subgraph H of G, then this cycle can be rerouted inside H

to cover all vertices of H. The main obstacle on the way of generalizing the result of Fomin
et al. [6] “beyond” the average degree was the lack of rerouting arguments in graphs of large
average degree.

The rerouting arguments in the proof of Theorem 2 use the structural properties of dense
graphs developed in the recent work of Fomin, Golovach, Sagunov, and Simonov [9] (see [8]
for the full version) on parameterized complexity of finding a cycle above Dirac’s bound.
We remind that by the classical theorem of Dirac [3], every 2-connected graph has a cycle
of length at least min{2δ(G), |V (G)|}, where δ(G) is the minimum degree of G. Fomin et
al. gave an algorithm that in time 2O(k+|B|) · nO(1) decides whether a 2-connected graph G

contains a cycle of length at least min{2δ(G−B), |V (G)|−|B|}+k, where B is a given subset
of vertices which may have “small” degrees. The result of Fomin et al. [8, 9] is “orthogonal”
to ours in the following sense: It does not imply Theorem 2 and Theorem 2 does not imply
the theorem from [8]. However, the tools developed in [8], in particular the new type of
graph decompositions called Dirac decompositions, appear to be useful in our case too.

From a more general perspective, our work belongs to a popular subfield of Parameterized
Complexity concerning parameterization above/below specified guarantees. In addition
to [9, 6], the parameterized complexity of paths and cycles above some guarantees was
studied in [1, 15], and [7].

2 Overview of the proof of the main result

Here we outline the critical technical ideas leading to our main result, Theorem 2. We first
explain our techniques for the Longest Cycle Above AD problem. Let us remind that in
this problem, the task is to decide whether a graph G has a cycle of length at least ad(G) + k.
(The difference with mad is that we do not take the maximum over all subgraphs.)

1 The results with omitted proofs are marked with the “⋆” sign. Missing proofs can be found in the full
version of this paper [10].
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The nucleus of our proof is a novel structural analysis of dense subgraphs in graphs with
large average degrees. Informally, we prove that if there is a cycle of length at least ad(G) + k

in G, then G contains a dense subgraph H and a long (of length at least ad(G) + k) cycle
C that “revolves” around H (see Figure 1). By that, we mean the following. First, the
number of times cycle C enters and leaves H is bounded by O(k). Second, C contains at least
ad(G) − ck vertices of H for some constant c. Moreover, we need a way stronger “routing”
property of H . Basically for any possible “points of entry and departure” of cycle C in H , we
show that these pairs of vertices could be connected in H by internally vertex-disjoint paths
of total length at least ad(G) − ck. Furthermore, such paths could be found in polynomial
time. Then everything boils down to the following problem. For a given subgraph H of G,
we are looking for at most k internally vertex-disjoint paths outside H of total length Ω(k),
each path starts and ends in H. This task can be done in time 2O(k) · nO(1) by making use
of color-coding. Finally, if we find such paths, then we could complete them to a cycle of
length at least ad(G) + k by augmenting them by the paths inside H.

H

Figure 1 A cycle “revolving” around H. The segments of the cycle outside H are shown in green
and the segments inside H are blue.

Identifying dense subgraph H. Notice that we can assume that ad(G) ≥ αk for a sufficiently
big positive constant α. Otherwise, we can solve the problem in 2O(k) · nO(1) time using the
known algorithm for Longest Cycle [11]. We start with preprocessing rules “illuminating”
some “useless” parts of the graph. If G contains several connected components, it suffices
to keep only the densest of them, as its average degree is at least the average degree of G.
Similarly, if G is connected but has a cut-vertex, keeping the densest block also suffices.
Further, if there is a vertex v of degree less than 1

2 ad(G), then v can be safely removed. By
applying these reduction rules exhaustively, we find an induced 2-connected subgraph H of
G whose minimum degree δ(H) ≥ 1

2 ad(H) ≥ 1
2 ad(G). Similarly to removing sparse blocks, if

G contains a vertex separator X of size two such that there is a “sparse” component A of
G − X, then A can be removed. By applying the last reduction rule we either find a cycle of
length at least ad(G) + k or can conclude that the resulting subgraph H is 3-connected.

If (G, k) is a yes-instance, that is, graph G contains a cycle of length at least ad(G) + k,
there are two possibilities. Either in G a cycle of length at least 2δ(H) + k “lives” entirely in
H, or it passes through some other vertices of G. If a long cycle is entirely in H, we can
employ the recent result of Fomin et al. [8] that finds in time 2O(k) · nO(1) in a 2-connected
graph G a cycle of length at least 2δ(G) + k ≥ ad(G) + k. However, if no long cycle lives
entirely in H, the result of Fomin et al. is not applicable.
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The next step of constructing H crucially benefits from the graph-theoretical result of
Fomin et al. [8]. Specifically, we use the theorem about the Dirac decomposition from [8]. The
definition of the Dirac decomposition is technical and we give it in Section 4. For 2-connected
graphs, the Dirac decomposition imposes a very intricate structure. However, since, thanks
to the reduction rules, H is 3-connected, we bypass most of the technical details from [8].
Informally, the Dirac decomposition leads to the following win-win situation. By the Dirac’s
theorem [3], graph H contains a cycle S of length at least 2δ(H) ≥ ad(G). Moreover, we
could find such a cycle in polynomial time. By the result of Fomin et al. [8], if the length
of S is less than 2δ(H) + k, then either S can be enlarged in polynomial time, or (a) H

is small, that is, |V (H)| < ad(H) + k, yielding that H is extremely dense; or (b) H has a
vertex cover of size 1

2 ad(H) − O(k). If S got enlarged, we iterate until we achieve cases (a)
or (b). If we are in case (a), the construction of H is completed. In case (b), we need to
prune the obtained graph a bit more. More specifically, we can delete O(k) vertices in the
vertex cover and select a subset of the independent set to achieve the property that (i) each
of remaining vertices in the vertex cover is adjacent to at least ad(H) − O(k) vertices in the
selected independent subset, and (ii) every vertex of the selected subset of the independent
set sees nearly all vertices of the vertex cover. This mean that the obtained induced subgraph
is also “dense”, albeit in a different sense. Depending on the case, we use different arguments
to establish the routing properties of H.

Routing in H. The case (a), when |V (H)| < ad(H) + k, is easier. In this case, the degrees
of almost all vertices are close to |V (H)|. Let S = {x1y1, . . . , xℓyℓ} an arbitrary set of O(k)
pairs of distinct vertices of H forming a linear forest (that is, the union of xiyi is a union of
disjoint paths). The intuition behind S is that xi corresponds to the vertex from where the
long cycle leaves H and yi when it enters H again. We show first how to construct a cycle in
H + S (that is, the graph obtained from H by turning the pairs of S into edges) containing
every pair xiyi from S as an edge. This is done by performing constant-length jumps: any
two vertices can be connected either by an edge, or through a common neighbor, or through
a sequence of two neighbors. Then we extend the obtained cycle to a Hamiltonian cycle in
H + S – every vertex of H that is not yet on a cycle can be inserted due to the high degrees
of the vertices. The extension of S into a Hamiltonian cycle is shown in Figure 2 (a).

A

H H

a) b) c)

Figure 2 Constructing cycles. The set of pairs S that may be both edges and nonedges of H is
shown by red lines and the extension of S into a long cycle is blue. The paths “revolving” around H

are green. The vertex cover in c) is denoted by A.

Therefore, if there is a collection of at most k internally vertex disjoint paths going outside
from H and returning back, the high density of H allows collecting all of them in a cycle
containing all the vertices of H. Together with all the additional vertices these paths visit
outside of H we construct a long cycle in G (see Figure 2 (b)). The only condition is that
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these paths have to form a linear forest. Thus, if we find a collection of such paths with
enough internal vertices, we immediately obtain a long cycle “revolving” around H. The
crucial part of the proof is to show that if there is any cycle of length at least ad(H) + k in
G, then it can be assumed to have this form.

Let us remark that a similar “rerouting” property was used by Fomin et al. [6] in their
above-degeneracy study. Actually, for case (a), we need only a minor adjustment of the
arguments from [6]. However, in the “bipartite dense” case (b) the structure of the dense
subgraph H is more elaborate and this case requires a new approach. Contrarily to case (a),
the long cycle that we construct in H + S is not Hamiltonian but visits all the vertices of
the vertex cover (see Figure 2 (c)). In this case, the behavior of paths depends on which
part of H they hit. Because of that, while establishing the routing properties, we have to
take into account the difference between paths connecting vertices from the vertex cover,
independent set, and both. Pushing the “rerouting” intuition through, in this case, turns out
to be quite challenging.

Final steps. After finalizing the “rerouting” arguments above, it only remains to design
an algorithm that checks whether there exists a collection of paths in G that start and
end in H and have at least a certain number of internal vertices in total. We do it by a
color-coding-style approach. For case (a), such a subroutine has already been developed in
the above-degeneracy case [6]. On the other hand, for the “bipartite dense” case (b) we need
to impose an additional restriction on the desired paths, as the length of the final cycle also
depends on how the paths’ end-vertices are distributed between the two parts and we have
to incorporate these kinds of constraints in our path-finding subroutine.

Finally, to solve Longest Cycle Above MAD, we use the fact that given a graph G,
we can find an induced subgraph F with ad(F ) = mad(G) in polynomial time by the result
of Goldberg [13] (see also [12]). Then we find a dense subgraph H of F with the described
properties and use H to find a cycle of length at least mad(G) + k.

3 Preliminaries

In this section, we introduce basic notations, and a series of previously-known results that
will be helpful to us.

We consider only finite undirected graphs. For a graph G, V (G) and E(G) denote its
vertex and edge sets, respectively. Throughout the paper we use n = |V (G)| and m = |E(G)|
whenever the considered graph G is clear from the context. For a graph G and a subset
X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced by X. We write
G − X to denote the graph G[V (G) \ X]; for a single-element set X = {x}, we write G − x.
Similarly, if Y is a set of pairs of distinct vertices, G − Y = (V (G), E(G) \ Y ). For a set Y

of pairs of distinct vertices of G, G + Y denotes the graph (V (G), E(G) ∪ Y ), that is, the
graph obtained by adding the edges in Y \ E(G); slightly abusing notation we may denote
the pairs of such a set Y in the same way as edges. For a vertex v, we denote by NG(v) the
(open) neighborhood of v, i.e., the set of vertices that are adjacent to v in G. A set of vertices
X is a vertex cover of G if for every edge xy of G, x ∈ X or y ∈ X.

A path P in G is a subgraph of G with V (P ) = {v0, . . . , vℓ} and E(P ) = {vi−1vi | 1 ≤
i ≤ ℓ}. We write v0v1 · · · vℓ to denote P ; the vertices v0 and vℓ are end-vertices of P , the
vertices v2, . . . , vℓ are internal, and ℓ is the length of P . For a path P with end-vertices s and
t, we say that P is an (s, t)-path. Two paths P1 and P2 are internally disjoint if no internal
vertex of one of the paths is a vertex of the other; note that end-vertices may be the same.
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For two internally disjoint paths P1 and P2 having one common end-vertex, we write P1P2
to denote the concatenation of P1 and P2. A graph F is a linear forest if every connected
component of F is a path. Let S be a set of pairs of distinct vertices of G; they may be
either edges or nonedges. We say that S is potentially cyclable if (V (G), S) is a linear forest.
A cycle is a graph C with V (C) = {v1, . . . , vℓ} for ℓ ≥ 3 and E(C) = {vi−1vi | 1 ≤ i ≤ ℓ},
where v0 = vℓ. We may write that C = v1 · · · vℓ. A cycle C (a path P , respectively) is
Hamiltonian if V (C) = V (G) (V (P ) = V (G), respectively). A graph G is Hamiltonian if it
has a Hamiltonian cycle.

A set of vertices S is a separator of a connected graph G, if G − S is disconnected. For a
positive integer k, G is k-connected if |V (G)| > k and for every set S of at most k −1 vertices,
G − S is connected. If S = {v} is a separator of size one, then v is called a cut-vertex. Note,
in particular, that a connected graph with at least three vertices is 2-connected if it has
no cut-vertex. A block of a connected graph with at least two vertices is an inclusion-wise
maximal induced subgraph without cut-vertices, that is, either a 2-connected graph or K2.

The degree of a vertex v in a graph G is dG(v) = |NG(v)|. The minimum degree of G

is δ(G) = min{dG(v) | v ∈ V (G)}. For a nonempty set of vertices X, the average degree of
X is adG(X) = 1

|X|
∑

v∈X dG(v), and the average degree of G is ad(G) = adG(V (G)) = 2m
n .

The maximum average degree is mad(G) = max{ad(H) | H is induced subgraph of G}.
The following observation about the circumference lower bound ℓEG(G) and the average

degree of G is useful for us.

▶ Observation 8. For every graph G with at least two vertices ℓEG(G)−1 ≤ ad(G) < ℓEG(G).

Goldberg [13] proved that, given a graph G, an induced subgraph H of maximum density,
that is, a subgraph with the maximum value |E(H)|

|V (H)| , can be found in polynomial time. This
result was improved by Gallo, Grigoriadis, and Tarjan [12]. Note that if H is an induced
subgraph of maximum density, then mad(G) = ad(H).

▶ Proposition 9 ([12]). An induced subgraph of maximum density of a given graph G can be
found in O(nm log(n2/m)) time.

We use the lower bound on the length of a longest (s, t)-path in a 2-connected graph via
the average degree obtained by Fan [5].

▶ Proposition 10 ([5, Theorem 1]). Let s and t be two distinct vertices in a 2-connected
graph G. Then G has an (s, t)-path of length at least adG(V (G) \ {s, t}).

Notice that the proof of Proposition 10 in [5] is constructive and a required path can be
found in polynomial time.

It is well-known that Longest Cycle, which asks whether a graph has a cycle of length
at least k, can be solved in 2O(k) · nO(1) time. The currently best deterministic algorithm is
due to Fomin et al. [11].

▶ Proposition 11 ([11]). Longest Cycle can be solved in 4.884k · nO(1) time.

The task of Longest (s, t)-Path is, given a graph G with two terminal vertices s and t,
and a positive integer k, decide whether G has an (s, t)-path with at least k vertices. Fomin
et al. [11] proved that this problem is FPT when parameterized by k.

▶ Proposition 12 ([11]). Longest (s, t)-Path can be solved in 2O(k) · nO(1) time.
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4 Finding a dense subgraph

Here we show that given an instance of Longest Cycle Above MAD, we can in polynomial
time either solve the problem or find a dense induced subgraph of the input graph. This
part crucially depends on structural and algorithmic results obtained by Fomin et al. in [8].
We derive the following structural corollary for 3-connected graphs from [8, Lemma 20].

▶ Corollary 13 (⋆). Let G be a 3-connected graph and k be an integer such that 0 < k ≤
1

24 δ(G). Then there is an algorithm that, given a cycle C of length less than 2δ(G) + k, in
polynomial time either

returns a longer cycle in G, or
returns a vertex cover of G of size at most δ(G) + 2k, or
reports that C is Hamiltonian.

Now, by applying exhaustively the classical reduction rules from the proof of Theorem 1
and a new reduction rule that removes sparse 2-connected components, we reach the situation
where we can apply Corollary 13. The result of this process is encapsulated in the next
lemma.

▶ Lemma 14 (⋆). There is a polynomial-time algorithm that, given an instance (G, k) of
Longest Cycle Above MAD, where 0 < k ≤ 1

80 mad(G) − 1, either
(i) finds a cycle of length at least mad(G) + k in G, or
(ii) finds an induced subgraph H of G with ad(H) ≥ mad(G) − 1 such that δ(H) ≥ 1

2 ad(H)
and |V (H)| < ad(H) + k + 1, or

(iii) finds an induced subgraph H of G such that there is a partition {A, B} of V (H) with
the following properties:

B is an independent set,
1
2 mad(G) − 4k ≤ |A|,
for every v ∈ A, |NH(v) ∩ B| ≥ 2|A|,
for every v ∈ B, dH(v) ≥ |A| − 2k − 2.

5 Covering vertices of dense graphs

In this section, we prove that, given a sufficiently dense graph G and a bounded-size set
of pairs of distinct vertices S forming a linear forest, we can find a long cycle in G + S

containing all edges from S. First, we consider the case where there is a small number of
vertices in the graph compared to the average degree. Then, we deal with the case where one
part in a bipartition of a dense bipartite graph has bounded size. The proofs of the next two
lemmas follow the strategy of using the high density of the graph to connect an arbitrary
small subset of vertices in a cycle via constant-length jumps, and then extend this cycle to a
long cycle using similar arguments. Recall that for a set S of pairs of distinct vertices of a
graph G, we say that S is potentially cyclable if (V (G), S) is a linear forest.

▶ Lemma 15 (⋆). Let G be a graph and k be an integer such that (i) 0 < k ≤ 1
60 ad(G), (ii)

δ(G) ≥ 1
2 ad(G), and (iii) ad(G) + k > n. Let also S be a potentially cyclable set of at most

k pairs of distinct vertices. Then G + S has a Hamiltonian cycle containing every edge of S.

Now we consider dense bipartite graphs. Similarly to Lemma 15, we show that for a
given set of pairs of vertices forming a linear forest there is a cycle containing all these pairs
in the extended graph, and also each vertex of the “high-degree” part of the graph. For an
example, see Figure 3.
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A

B

Figure 3 Structure of G and G′ = G + S. The set of pairs S is shown by red lines and the edges
of C that are not in S are green. Note that G′ is not required to be bipartite.

▶ Lemma 16 (⋆). Let G be a bipartite graph, {A, B} is a bipartition of V (G) with p = |A|,
and let k be an integer such that (i) 0 < k ≤ 1

10 p, (ii) for every v ∈ A, dG(v) ≥ 2p, and (iii)
for every v ∈ B, dG(v) ≥ p − k. Let S be a potentially cyclable set of at most 9

4 k pairs of
distinct vertices. Then G′ = G + S has a cycle C containing every edge of S and every vertex
of A. Furthermore, C is a longest cycle in G′ containing the edges of S and the length of C

is 2p − s + t, where s is the number of edges of S with both end-vertices in A and t is the
number of edges in S with both end-vertices in B.

6 Rerouting long cycles to dense dubgraphs

In this section, we show that a dense induced subgraph can be used to find a long cycle in a
2-connected graph. Specifically, we show that one can always assume that a long cycle is an
extension of a longest cycle in a dense subgraph. To state this more precisely, we need some
additional terminology that we introduce next.

Let T ⊆ V (G) for a graph G. A path P is called a T -segment if P has length at least two,
the end-vertices of P lie in T , and v /∈ T for any internal vertex v of P . A set of internally
disjoint paths P = {P1, . . . , Pr} is a system of T -segments if (i) Pi is a T -segment for every
i ∈ {1, . . . , r}, and (ii) the union of the paths in P is a linear forest. Let A, B ⊆ V (G) be
disjoint sets of vertices in G. For a pair {x, y} of distinct vertices in G, we say that {x, y} is
an A-pair (B-pair, respectively) if x, y ∈ A (x, y ∈ B, respectively), and we say that {x, y}
is an (A, B)-pair if either x ∈ A, y ∈ B or, symmetrically, y ∈ A, x ∈ B. If {A, B} is a
partition of T ⊆ V (G), then for a T -segment P with end-vertices x and y, P is an A-segment
if {x, y} is an A-pair, P is a B-segment if {x, y} is a B-pair, and P is an (A, B)-segment if
{x, y} is an {A, B}-pair.

First, we consider the case when there is a dense subgraph H with the property that
for every potentially cyclable set S of at most k pairs of distinct vertices, H + S has a
Hamiltonian cycle containing every edge of S. We show the following lemma whose proof is
almost identical to the proof of Lemma 3 in [6].

▶ Lemma 17 (⋆). Let G be a 2-connected graph and let k be a positive integer. Suppose that
H is an induced subgraph of G such that |V (H)| ≥ 2k and for every potentially cyclable set
S of at most k pairs of distinct vertices of H, H + S has a Hamiltonian cycle containing
every edge of S. Then G has a cycle of length at least |V (H)| + k if and only if one of the
following holds:

(i) There are two distinct vertices s, t ∈ V (H) such there is an (s, t)-path P in G of length
at least k + 1 whose internal vertices lie in V (G) \ V (H).

(ii) There is a system of T -segments P = {P1, . . . , Pr} for T = V (H) such that r ≤ k and
the total number of vertices on the paths in P outside T is at least k and at most 2k − 2.
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Now we show a related result for dense induced subgraphs of another type. See Figure 4
for an illustration.

A

B

Figure 4 Structure of segments in Case (ii) of Lemma 18. The A-segments are shown by green
lines, the B-segments are red, and the (A, B)-segments are blue.

▶ Lemma 18. Let G be a 2-connected graph and let k be a positive integer. Suppose that H

is an induced subgraph of G whose set of vertices has a partition {A, B} with |A| ≥ 3
2 k and

B being an independent set. Suppose also that for every potentially cyclable set S in H of at
most k pairs of distinct vertices in H, with s A-pairs and t B-pairs, H + S has a cycle of
length at least 2|A| − s + t. Then G has a cycle of length at least 2|A| + k if and only if one
of the following holds:

(i) There are two distinct vertices x, y ∈ V (H) such that H has an (x, y)-path P of length
at least k + 2 whose internal vertices lie in V (G) \ V (H).

(ii) There is a system of T -segments P = {P1, . . . , Pr} for T = V (H) with s A-segments
and t B-segments such that
(a) r ≤ k,
(b) every A-segment has at least two internal vertices,
(c) the total number of internal vertices on the paths in P is at least k + s − t and at

most 3k − 2.

Proof. Let T = V (H). First, we show that if either (i) or (ii) is fulfilled, then G has a cycle
of length at least |V (H)| + k.

Suppose that there are distinct x, y ∈ T and an (x, y)-path P in G with all internal
vertices outside T such that the length of P is at least k + 2. Let S = {xy}. We have that
H + S has a cycle C containing xy of length at least 2|A| − 1. We replace the edge xy in C

by the path P . Then the length of the obtained cycle C ′ is at least 2|A| + k as required.
Assume that there is a system of T -segments P = {P1, . . . , Pr} for T = V (H) with s

A-segments and t B-segments such that (a)–(b) are fulfilled. Let xi and yi be the end-vertices
of Pi for i ∈ {1, . . . , r} and define S = {x1y1, . . . , xryr}. Observe that S is a potentially
cyclable set for H and |S| ≤ k. Then H + S has a cycle C of length at least 2|A| that
contains every edge of S. We construct the cycle C ′ from C by replacing xiyi by the path Pi

for every i ∈ {1, . . . , r}. Because the total number of internal vertices in the paths of P is at
least k + s − t, the length of C ′ is at least |V (H)| + k.

For the opposite direction, assume that G has a cycle C of length at least 2|A| + k. We
consider the following three cases.
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Case 1. V (C) ∩ T = ∅. Since G is a 2-connected graph, there are pairwise distinct vertices
x, y ∈ T and x′, y′ ∈ V (C), and vertex disjoint (x, x′) and (y, y′)-paths P1 and P2 such that
the internal vertices of the paths are outside T ∪ V (C). The cycle C has length at least
2|A| + k ≥ 3k. Therefore, C contains an (x′, y′)-path P with at least k + 1 vertices. The
concatenation of P1, P and P2 is an (x, y)-path in G of length at least k + 2 whose internal
verices are outside T . Hence, (i) is fulfilled.

Case 2. |V (C) ∩ T | = 1. Let V (C) ∩ T = {x} for some vertex x. Since G is 2-connected,
there is an (y, y′)-path P in G − x such that y′ ∈ V (C), y ∈ T , and the internal vertices
are outside T ∪ V (C). Because the length of C is at least 3k, C contains an (x′, y′)-path P ′

with at least k + 2 vertices. The concatenation of P ′ and P is an (s, t)-path in G of length
at least k + 2 whose internal verices are outside T . Hence, (i) holds.

Case 3. |V (C) ∩ T | ≥ 2. Observe that because B is an independent set, H has no cycle
of length greater that 2|A|. Therefore, as k > 0 and |V (C)| ≥ 2|A| + k, V (C) \ T ̸= ∅. Let
P1, . . . , Pℓ be the “outside” segments of C with respect to H, that is, P1, . . . , Pℓ are paths
on C such that (∗) for every i ∈ {1, . . . , ℓ}, Pi is an (xi, yi)-path with at least one internal
vertex for some distinct xi, yi ∈ T and the internal verices of Pi are outside T , and (∗∗)⋃ℓ

i=1 V (Pi) \ T = V (C) \ T . If Pi has length at least k + 2 for some i ∈ {1, . . . , ℓ}, then (i)
holds. Assume that this is not the case, that is, the length of each Pi is at most k + 1. Let
IA, IB , IAB ⊆ {1, . . . , ℓ} be the subsets of indices such that Pi is an B-segment for i ∈ IB , a
B-segment for i ∈ IB , and an (A, B)-segment for i ∈ IAB ; note that some of these sets may
be empty.

First, we consider IB . Suppose that the paths Pi for i ∈ IB have at least k − |IB | internal
vertices. Consider an inclusion minimal subset of indices J ⊆ IB such that the paths Pi for
i ∈ J have at least k − |J | internal vertices and let S = {xiyi | i ∈ J}. Observe that the
pairs of S compose either a linear forest or a cycle. Suppose that the pairs in S form a cycle.
Then every edge of C is outside H, and we have that C is the concatenation of the paths
Pi ∈ J . Note that |J | ≥ 2 in this case. Let j ∈ J . By the choice of J , the total number of
internal vertices on the paths Pi for i ∈ J \ {j} is at most k − |J | − 1. Because the length
of Pj is at most k + 1, we have that |V (C)| ≤ (k − |J | − 1) + |J | + k = 2k − 1 < 2|A| + k;
a contradiction. Therefore, S forms a linear forest. We obtain that P = {Pi | i ∈ J} is a
system of T segments and |P| ≤ k. To see that the total number of internal vertices on the
paths in P is at most 2k, let j ∈ J . Because the total number of internal vertices on the
paths Pi for i ∈ J \ {j} is at most k − |J | − 1 and the length of Pj is at most k + 1, the
number of internal vertices on the paths in P is at most (k − |J | − 1) + k ≤ 3k − 2. We
conclude that (ii) is fulfilled.

Assume from now on that the paths Pi for i ∈ IB have at most k − |IB | − 1 internal
vertices. Then we analyse IAB in a similar way. Let t = |IB |. Suppose that the paths
Pi for i ∈ IAB ∪ IB have at least k − t internal vertices. Consider an inclusion minimal
subset of indices J ⊆ IAB such that the paths Pi for i ∈ J ∪ IB have at least k − t internal
vertices and let S = {xiyi | i ∈ J ∪ IB}. Notice that |S| ≤ k. Again, we have that the
pairs of S compose either a linear forest or a cycle. Then we exclude the possibility that
S forms a cycle. If we have a cycle, then C is the concatenation of the paths Pi ∈ J ∪ IB.
Pick an arbitrary j ∈ J . We have that the total number of internal vertices on the paths
Pi for i ∈ (J \ {j}) ∪ IB is at most k − t − 1. Because the length of Pj is at most k + 1,
|V (C)| ≤ (k − t − 1) + (|J | + t) + k = 2k + |J | − 1 < 2|A| + k and we get a contradiction.
Hence, S forms a linear forest and P = {Pi | i ∈ J ∪ IB} is a system of T segments and
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|P| ≤ k. To upper bound the total number of internal vertices on the paths in P, let j ∈ J .
Because the total number of internal vertices on the paths Pi for i ∈ (J \ {j}) ∪ IB is at most
k − t − 1 and the length of Pj is at most k + 1, the number of internal vertices on the paths
in P is at most 2k − t − 1 ≤ 3k − 2. We obtain that (ii) holds.

It remains to consider the case where the paths Pi for i ∈ IAB ∪ IB have at most
k − t − 1 internal vertices. For this we analyse IA. Let I ′

A ⊆ IA be the set of indices i ∈ IA

such that Pi has at least two internal vertices. Let r be the number of internal vertices
on the paths Pi with i ∈ I ′

A ∪ IB ∪ IAB. Observe that because B is an independent set,
|V (C)| ≤ r + t + 2|A| − |I ′

A|. Hence, r + t − |I ′
A| ≥ k. We select an inclusion minimal set of

indices J ⊆ I ′
A such that the paths Pi for i ∈ J ∪ IB ∪ IAB have at least k − t + |J | internal

vertices and let S = {xiyi | i ∈ J ∪ IB ∪ IAB}. Let also s = |J |. Observe that because Pi

has at least two internal vertices for every i ∈ I ′
A, |S| ≤ k. In the same way as above, the

pairs of S compose either a linear forest or a cycle, and we show that it should be a linear
forest. If the pairs of S form a cycle, then C is the concatenation of the paths Pi ∈ J . Let
j ∈ J . By the minimality of J , the total number of internal vertices on the paths Pi for
i ∈ (J \ {j}) ∪ IB ∪ IAB is at most k + (s − 1) − t − 1. Because the length of Pj is at most
k + 1, |V (C)| ≤ (k + (s − 1) − t − 1) + (s + t + |IAB |) + k = 2k + |IAB | + 2s − 2. Observe
that t + s + |IAB | ≤ k, because if t + s + |IAB | ≥ k + 1, the total number of the internal
vertices on the paths Pi for i ∈ (J \ {j}) ∪ IB ∪ IAB would be at least k + s. Therefore,
|V (C)| ≤ 2k + |IAB | + 2s − 2 ≤ 4k − 2 < 2|A| + k; a contradiction. We obtain that S forms
a linear forest and P = {Pi | i ∈ J ∪ IB ∪ IAB} is a system of T segments, and |P| ≤ k. To
get the upper bound for the total number of internal vertices on the paths in P, let j ∈ J .
Because the total number of internal vertices on the paths Pi for i ∈ (J \ {j}) ∪ IB is at most
k + (s − 1) − t − 1 and the length of Pj is at most k + 1, the number of internal vertices on
the paths in P is at most 2k + s − t − 2 ≤ 3k − 2. We conclude that (ii) is fulfilled. This
concludes the analysis of Case 3 and the proof of the lemma. ◀

Fomin et al. [6] proved the following algorithmic result about systems of T -segments.

▶ Proposition 19 ([6, Lemma 4]). Let G be a graph, T ⊆ V (G), and let p and r be positive
integers. Then it can be decided in 2O(p) · nO(1) time whether there is a system of T -segments
P with r paths having p internal vertices in total.

However, we need an algorithm for constructing a system of T -segments with additional
properties described in Lemma 18. For this, we modify the algorithm from Proposition 19.

▶ Lemma 20 (⋆). Let G be a graph, T ⊆ V (G), and let {A, B} be a partition of T . Let
also p and r be positive integers, and suppose that s and t are nonnegative integers with
s+ t ≤ r. Then it can be decided in 2O(p) ·nO(1) time whether there is a system of T -segments
P with r paths having p internal vertices in total such that (i) P contains s A-segments,
(ii) t B-segments, and (iii) every A-segment has at least two internal vertices.

7 Proof of the main result

Now we have all ingredients to prove our main result. We restate it here for the reader’s
convenience.

▶ Theorem 2. Longest Cycle Above MAD can be solved in time 2O(k) · nO(1) on
2-connected graphs.
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Proof. Let (G, k) be an instance of Longest Cycle Above MAD, where G is a 2-connected
graph. We use the algorithm from Proposition 9 and compute mad(G) in polynomial time. If
k = 0, the problem is trivial, because a cycle of length at least mad(G) exists by Theorem 1.
Hence, we can assume that k ≥ 1. If k > 1

88 mad(G) − 1, we use Proposition 11 and solve
the problem in 2O(k) · nO(1) time. From now, we assume that 0 < k ≤ 1

88 mad(G) − 1. In
particular, k ≤ 1

80 mad(G) − 1. We apply Lemma 14, and in polynomial time either
(i) find a cycle of length at least mad(G) + k in G, or
(ii) find an induced subgraph H of G with ad(H) ≥ mad(G) − 1 such that δ(H) ≥ 1

2 ad(H)
and |V (H)| < ad(H) + k + 1, or

(iii) find an induced subgraph H of G such that there is a partition {A, B} of V (H) with
the following properties:

B is an independent set,
1
2 mad(G) − 4k ≤ |A|,
for every v ∈ A, |NH(v) ∩ B| ≥ 2|A|,
for every v ∈ B, dH(v) ≥ |A| − 2k − 2.

If the algorithm finds a cycle of length at least mad(G) + k, then we return it and stop. In
Cases (ii) and (iii), we get a dense induced subgraph H that can be used to find a solution.

Case (ii). The algorithm from Lemma 14 returns an induced subgraph H of G with
ad(H) ≥ mad(G) − 1 such that δ(H) ≥ 1

2 ad(H) and |V (H)| < ad(H) + k + 1. Let k′ =
⌈mad(G)⌉ + k − |V (H)|. We have that G has a cycle of length at least mad(G) + k if and only
if G has a cycle of length at least |V (H)| + k′. Note that k′ ≤ k + 1 ≤ 1

88 mad(G) ≤ 1
60 ad(H).

By Lemma 15, for every potentially cyclable set S of at most k + 1 pairs of distinct vertices
of H, H + S has a Hamiltonian cycle containing every edge of S.

Suppose that k′ ≤ 0. Observe that H has a Hamiltonian cycle as we can use Lemma 15
for S = {e}, where e is an arbitrary edge e ∈ E(H). Then we conclude that H has a cycle of
length at least mad(G) + k and stop. Assume that k′ > 0. Note that |V (H)| ≥ ad(H) ≥ 2k′.
Then by Lemma 17, G has a cycle of length at least |V (H)| + k′ if and only if one of the
following holds:
(a) There are two distinct vertices s, t ∈ V (H) such that H has an (s, t)-path P of length at

least k′ + 1 whose internal vertices lie in V (G) \ V (H).
(b) There is a system of T -segments P = {P1, . . . , Pr} for T = V (H) such that r ≤ k′ and

the total number of vertices on the paths in P outside T is at least k′ and at most 2k′ −2.

First, we check if (a) can be satisfied. For this, we consider all pairs of distinct vertices s

and t of H . For every pair, we construct G′ = G[(V (G)\V (H))∪{s, t}] and use Proposition 12
to find an (s, t)-path of length at least k′ + 1 in G in 2O(k) · nO(1) time. If we find such a
path for some pair, we report the existence of a cycle of length at least mad(G) + k and stop.
Otherwise, we verify (b) using Proposition 19. We use the algorithm from Proposition 19
for r ∈ {1, . . . , k′} and for p ∈ {k′, . . . , 2k′ − 2}. If we find a required system of T -segments,
then we return that G has a cycle of of length at least mad(G) + k and stop. If we fail to
find such a system for every r and p, we conclude that G has no cycle of length at least
mad(G) + k. Note that this can be done in 2O(k) · nO(1) time. This concludes Case (ii).

Case (iii). The algorithm from Lemma 14 returns an induced subgraph H of G such that
there is a partition {A, B} of V (H) with the properties:

B is an independent set,
1
2 mad(G) − 4k ≤ |A|,
for every v ∈ A, |NH(v) ∩ B| ≥ 2|A|,
for every v ∈ B, dH(v) ≥ |A| − 2k − 2.
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Let k′ = ⌈mad(G)⌉ + k − 2|A|. Observe that G has a cycle of length at least mad(G) + k if
and only if G has a cycle of length at least 2|A| + k′. We have that 2|A| ≥ ⌈mad(G)⌉ − 8k

and, therefore, k′ ≤ 9k.
Note that |A| ≥ 1

2 mad(G) − 4k ≥ 40k, since k ≤ 1
88 mad(G) − 1. Also, we have that for

every v ∈ B, dH(v) ≥ |A| − 4k. Therefore, by Lemma 16, for every potentially cyclable set
S of at most 9k pairs of distinct vertices, G′ = G + S has a cycle C containing every edge
of S and the length of C is 2|A| − s + t, where s in the number of edges of S with both
end-vertices in A and t is the number of edges in S with both end-vertices in B.

Suppose that k′ ≤ 0. Then we observe that H has a cycle of length 2|A| because we can
set S = {xy}, where xy ∈ E(H) with x ∈ A and y ∈ B. Then H has a cycle of length at
least 2|A| + k′ and we conclude that G has a cycle of length at least mad(G) + k. Assume
that k′ > 0. Since |A| ≥ 40k ≥ 3

2 k′, we can apply Lemma 18. We obtain that G has a cycle
of length at least 2|A| + k′ if and only if one of the following holds:
(a) There are two distinct vertices x, y ∈ V (H) such that H has an (x, y)-path P of length

at least k′ + 2 whose internal vertices are in V (G) \ V (H).
(b) There is a system of T -segments P = {P1, . . . , Pr} for T = V (H) with s A-segments and

t B-segments such that
r ≤ k′ ≤ 9k,
every A-segment has at least two internal vertices,
the total number of internal vertices vertices on the paths in P is at least k′ + s − t

and at most 3k′ − 2 ≤ 27k − 2.

To verify (a), we use the same approach as in Case (ii), that is, we consider all pairs of
distinct vertices x and y of H . For every pair, we construct G′ = G[(V (G) \ V (H)) ∪ {x, y}]
and use Proposition 12 to find an (x, y)-path of length at least k′ + 2 in G in 2O(k) · nO(1)

time. If we find such a path for some pair, we report the existence of a cycle of length at least
mad(G) + k and stop. Otherwise, we verify (b) using Lemma 20. We use the algorithm from
this lemma for r ∈ {1, . . . , k′}, s ∈ {0, . . . , k′} and t ∈ {0, . . . , k′} such that s + t ≤ r, and for
p ∈ {k′ + s − t, 3k′ − 2}. If we find a system of T -segments P = {P1, . . . , Pr} for T = V (H)
with s A-segments and t B-segments with the required properties, then we conclude that
G has a cycle of of length at least 2|A| + k′ and stop. If such a system does not exist for
every choice of r, s, t, and p, we have that G has no cycle of length at least mad(G) + k. By
Lemma 20, this can be done in 2O(k) · nO(1) time, because k′ ≤ 9k. This concludes Case (iii).

Because the algorithm from Lemma 14 is polynomial and the other subroutines used in
our algorithm for Longest Cycle Above MAD run in 2O(k) · nO(1), the overall running
time is 2O(k) · nO(1) and this concludes the proof.

Let us remark that since the algorithms for paths in Propositions 19 and 12 and Lemma 20
are, in fact, constructive, and the same holds for the algorithms for cycles in Lemmas 17
and 18 and Proposition 11, our algorithm is not only able to solve the decision problem, but
also can find a cycle of length at least mad(G) + k if it exists. ◀
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Abstract
We give an improved approximation algorithm for two related clustering problems. In the Minimum
Sum of Radii clustering problem (MSR), we are to select k balls in a metric space to cover all
points while minimizing the sum of the radii of these balls. In the Minimum Sum of Diameters
clustering problem (MSD), we are to simply partition the points of a metric space into k parts while
minimizing the sum of the diameters of these parts. We present a 3.389-approximation for MSR and
a 6.546-approximation for MSD, improving over their respective 3.504 and 7.008 approximations
developed by Charikar and Panigrahy (2001). In particular, our guarantee for MSD is better than
twice our guarantee for MSR.

Our approach refines a so-called bipoint rounding procedure of Charikar and Panigrahy’s
algorithm by considering centering balls at some points that were not necessarily centers in the bipoint
solution. This added versatility enables the analysis of our improved approximation guarantees.
We also provide an alternative approach to finding the bipoint solution using a straightforward LP
rounding procedure rather than a primal-dual algorithm.
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1 Introduction

Clustering, as one of the fundamental problems in information technology, has been studied in
computing science and several other fields to a great extent. Different methods of clustering
have been used significantly in data mining, bioinformatics, pattern recognition, computer
vision, etc. The goal of clustering is to partition a set of data points into partitions, called
clusters. Many of clustering problems involve finding k cluster centers and a mapping σ from
data points to the centers to minimize some objective function. One of the most studied such
objective functions is k-Center which minimizes the maximum diameter (or radius) [9, 18].
Another examples is the k-Median problem which aims to minimize sum of distances from
data points to their centers, as extensively studied in [5, 6, 19, 20, 21].

In this paper, we focus on a different objective function for clustering that is more
center-focused in that the cost of a cluster is the radius of the ball used to cover that cluster.
Specifically, we study the following problem.
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▶ Definition 1. In the Minimum Sum of Radii problem (MSR), we are given a set X of n

points in a metric space with distances d and a positive integer k. We are to select centers
C ⊆ X, |C| ≤ k and assign each i ∈ C a radius ri so that each j ∈ X lies within distance ri

of at least one i ∈ C (i.e. d(j, i) ≤ ri). The goal is to minimize the total radii, i.e.
∑

i∈C ri.

We also consider the related problem to minimize sum of diameters of the clusters chosen.
Note this variant is simply about partitioning the point set, there are no centers involved.

▶ Definition 2. In the Minimums Sum of Diameters problem (MSD), the input is the
same as in MSR and our goal is to partition the points into k clusters X1, X2, . . . , Xk to
minimize

∑k
i=1 maxj,j′∈Xi

d(j, j′), the sum of the diameters of the clusters.

It is easy to see that an α-approximation algorithm for MSR yields a 2α-approximation
algorithm for MSD. That is, if OPTR denotes the optimum MSR solution cost and OPTD

an optimum MSD solution cost, we have OPTR ≤ OPTD because in the optimum MSD
solution we could pick any point from each cluster to act as its center (with radius equal to
the diameter of the cluster). So if we have an MSR solution with cost at most α · OPTR,
then if we define clusters Xi by sending each point to some center whose ball covers that
point, the diameter of cluster i would be ≤ 2 · ri so the sum of diameters would then be at
most 2α ·OPTR ≤ 2α ·OPTD.

1.1 Our Contributions
Prior to this work, Charikar and Panigrahy presented a 3.504-approximation for MSR [7].
Since an α-approximation for MSR yields a 2α-approximation for MSD, this also yields a
7.008-approximation for MSD. These were the best polynomial-time approximations for these
problems in general metrics.

In this paper, we first present an improved polynomial-time approximation algorithm for
MSR. Specifically, we prove the following.

▶ Theorem 3. There is a polynomial-time 3.389-approximation for MSR.

We obtain this primarily by refining a so-called bipoint rounding step from [7]. That is,
our improvement for MSR mainly focuses in the last phase of the algorithm in [7] which
combines two subsets of balls that, together, open an average of k centers and whose average
cost is low. Their algorithm focuses on selecting k of the centers from these two subsets. We
expand the set of possible centers to choose and consider some that may not be centers in
the averaging of the two subsets.

While not our main result, we also present an alternative way to obtain these two
subsets of balls in that we consider a straightforward rounding of a linear programming (LP)
relaxation, the Lagrangian relaxation of the problem obtained by relaxing the constraint that
at most k centers are chosen, rather than a primal-dual technique as in [7]. Our rounding
algorithm is incredibly simple and we employ fairly generic arguments to convert it to a
bipoint solution for a single Lagrangian multiplier λ. This may be of independent interest
as it should be easy to adapt to other settings where one wants to get a bipoint solution
where both points are obtained from a common Lagrangian value λ, as long as the LMP
approximation is from direct LP rounding. We emphasize this is only an alternative approach:
we could work directly with their primal-dual approach.

Our second result is an improved MSD approximation that does not just use our MSR
approximation as a black box.

▶ Theorem 4. There is a polynomial-time 6.546-approximation for MSD.

In particular, notice the guarantee is better than twice our approximation guarantee for
MSR. This is obtained through a variation of our new ideas behind our MSR approximation.
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We emphasize this is the first improvement to the approximation guarantee from
polynomial-time algorithms for these problems in over 20 years.

1.2 Related Work
Gibson et al. show MSR is NP-hard even in metrics with constant doubling dimension
or shortest-path metrics of edge-weighted planar graphs [10]. In polynomial time, the best
approximation algorithm is the stated 3.504 approximation by Charikar and Panigrahy [7].
Interestingly, [10] show that MSR can be solved exactly in nO(log n·log Γ) where Γ is the
aspect ratio of the metric (maximum distance divided by minimum nonzero distance). By
standard techniques, this yields a quasi-PTAS for MSR: i.e. a (1 + ϵ)-approximation with
running time nO(log 1/ϵ+log2 n). A major open problem is to design a PTAS for MSR, or
perhaps to demonstrate there is no PTAS for MSR under some strong lower bound (eg.
the exponential-time hypothesis). For now, it is of interest to get improved constant-factor
approximations for MSR. By way of analogy, the unsplittable flow problem was known to
admit a quasi-PTAS [1, 2] yet improved constant-factor approximations were subsequently
produced [15, 13, 14], that is until a PTAS was finally found by Grandoni et al. [12].

On the other hand MSD is hard to approximate: Doddi et al. show that unless P = NP,
there is no (2− ϵ)-approximation for MSD for any ϵ > 0 even if the metric is the shortest
path metric of an unweighted graph [8]. Prior to our work, the best approximation for MSD
is simply twice the best polynomial-time approximation for MSR, i.e. 2 · 3.504 = 7.008 using
the approximation for MSR from [7].

MSR and MSD have been studied in special cases as well. In constant-dimensional
Euclidean metrics, MSR can be solved exactly in polynomial time [11]. This is particularly
interesting in light of the fact that MSR is hard in doubling metrics. For MSD in constant-
dimensional Euclidean metrics, if k is also regarded as a constant then MSD can be solved
exactly [4]. In general metrics with k = 2, MSD can be solved exactly by observing that if
we are given the diameters of the two clusters, we can use 2SAT to determine if we can place
the points in these clusters while respecting the diameters [16]. However, MSD is NP-hard
for even k = 3 as it captures the problem of determining if an unweighted graph can be
partitioned into 3 cliques. Finally, if one does not allow balls with radius 0 in the solution,
MSR can be solved in polynomial time in shortest path metrics of unweighted graphs [3, 17].

1.3 Organization
Our MSR approximation is given in Section 2. Our algorithm follows the same general
structure as the algorithm in [7] so we defer the details behind one significant step (obtaining
the “bipoint” solution) and focus on our new ideas. Our MSD approximation is then given
in Section 3. Finally, our new approach to obtaining a clean bipoint solution is summarized
in Section 4. For the sake of space, many proofs in Section 4 are deferred to the full version.
Brief concluding remarks are given in Section 5.

2 Minimum Sum of Radii

2.1 Preliminaries
Throughout, n = |X|. We assume d(i, i′) > 0 for distinct i, i′ ∈ X (i.e. there are no
collocated points), clearly this is without loss of generality since we could restrict X to
contain only one point from each group of collocated points. A ball in X is a set of the form
B(i, r) = {j ∈ X : d(i, j) ≤ r} for some point i ∈ X and radius r ≥ 0. We sometimes also
call a pair (i, r) a ball with the understanding it is referring to the set B(i, r). One can view
a solution to MSR as being a collection of balls.

ESA 2022



56:4 Improved Approximations for Clustering with Minimum Sum of Radii or Diameters

In some places in our algorithm, we need to guess balls from the optimal solution or use
LP variables corresponding to balls that may appear in the optimal solution: in these steps
we only need to consider balls B(i, r) where r = d(i, j) for some j ∈ X because it is clear
that an optimal MSR solution will set each radius as to be the furthest point that is covered
by that ball. So there are only O(|X|2) different balls to consider. We view a solution as a
collection B of pairs (i, r), i ∈ X, r ≥ 0 describing the centers and radii of balls. For such a
subset, we let cost(B) =

∑
(i,r)∈B r be the total radii of these balls.

Fix some small constant ϵ > 0 such that 1/ϵ is an integer. Smaller ϵ lead to better
guarantees with increased (but still polynomial) running times. Since the bound in the
statement of Theorem 3 is just a rounded up version of the actual approximation guarantee,
we will ultimately pick ϵ to be small enough to hide it in the approximation guarantee, which
is why it does not appear in the statement. We assume k > 1/ϵ, otherwise we can simply
use brute force to find the optimum solution in nO(1/ϵ) time.

Our algorithm for MSR is summarized in Algorithm 1 at the end of this section, though it
makes reference to a fundamental subroutine to find our “bipoint” solution that we describe
in Section 4. By bipoint, we simply mean two subsets of balls B1,B2 with |B1| ≥ k ≥ |B2| so,
in a sense to be described later, some averaging of these sets looks like a feasible fractional
solution using exactly k balls.

2.2 Step 1: Guessing the Largest Balls
Let B∗ denote some fixed optimum solution with OPT := cost(B∗). Among all optimal
solutions, we assume B∗ has the fewest balls. Thus, for distinct (i, r), (i′, r′) ∈ B∗ we have
that i′ /∈ B(i, r) since, otherwise, B∗ − {(i, r), (i′, r′)}) ∪ {(i, r + r′)} is another optimal
solution with even fewer balls.

Similar to [7], we guess the 1/ϵ largest balls in B∗ by trying each subset B′ of 1/ϵ balls
and proceeding with the algorithm we describe in the rest of this paper. Let Rm be the
minimum radius of a ball in B′ and note Rm ≤ ϵ ·OPT . We also let k′ := k − 1/ϵ, which is
an upper bound on the number of balls in B∗ − B′.

We now restrict ourselves to the instance with points X ′ := X − ∪(i,r)∈B′B(i, r) to be
covered. Since no center of a ball in B∗ is contained within another ball from B∗, the
remaining balls in B∗ − B′ are also centered in X ′. We will let OPT ′ = OPT − ∪(i,r)∈B′r

denote the optimal solution value to this restricted instance. The solution B∗ − B′ for this
instance satisfies r ≤ Rm ≤ ϵ · OPT for any (i, r) ∈ B∗ − B′. We also assume |X ′| > k′,
otherwise we just open zero-radius ball at each point in X ′.

Before proceeding to the main part of the algorithm, we perform a “precheck” for this
guess as follows: run a standard 2-approximation for the k′-Median instance on the metric
restricted to X ′ (eg. [18]). If the solution returned has radius > 2 ·Rm, then we reject this
guess B′. This is valid because we know for a correct guess that the remaining points can
each be covered using at most k′ balls each with with radius at most Rm. From now on, we
let A denote the k′ centers returned by this approximation: so each j ∈ X ′ lies in at least
one ball of the form B(i, 2 ·Rm) for some i ∈ A.

Summary. After guessing B′ we have restricted ourselves to an MSR instance with points
X ′, a bound k′ on the number of balls to choose (where k′ < |X ′|), and a bound Rm. For
a correct guess of B′, there is an optimal solution that uses balls with radius at most Rm.
Furthermore, A is a set of k′ centers such that every j ∈ X ′ has d(j,A) ≤ 2 ·Rm balls.

When analyzing the rest of the algorithm, will assume that B′ is guessed correctly, i.e.
B′ ⊆ B∗ and all (i, r) ∈ B∗ − B′ have r ≤ Rm. Our final solution will be the minimum-cost
solution found over all guesses B′ that were not rejected, so it will be at most the cost of the
solution found when B′ was guessed correctly.
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2.3 Step 2: Getting a Bipoint Solution

The output from this step is similar to [7], except we obtain it with a different algorithm.
We note that their approach would suffice for our purposes, our reasons for considering this
different approach are described after the statement of Theorem 6 below. Some details are
deferred to Section 4 and some to the full version of this paper, here we explain what is
required to understand our ideas that lead to the improved approximation guarantee.

For a value λ ≥ 0, LP(λ) is the linear program that results by considering the Lagrangian
relaxation of MSR. That is, the LP has variables for each possible ball we may add except
instead of restricting the number of balls to be at most k′, we simply pay λ for each ball.

Note. Terms of the LP that consider pairs (i, r) corresponding to balls with i ∈ X ′ and
r of the form d(i, j) for some j ∈ X ′ but only for those where r ≤ Rm. Thus, the LP has
O(|X|2) variables.

min
∑

(i,r)(r + λ) · xi,r

s.t.
∑

(i,r):j∈B(i,r) xi,r ≥ 1 ∀ j ∈ X ′

x ≥ 0
(LP(λ))

The following is standard and follows by considering the natural integer solution corresponding
to the balls in B∗ − B′.

▶ Lemma 5. For any λ ≥ 0, let OPTLP(λ) denote the optimum value of LP(λ). Then
OPTLP (λ) − λ · k′ ≤ OPT ′.

We summarize the main properties of a bipoint solution that is required by our algorithm.
The proof of the following is the subject of Section 4.

▶ Theorem 6. There is a polynomial-time algorithm that will compute a single value λ ≥ 0
and two sets of balls B1,B2 having respective sizes k1, k2 where k1 ≥ k′ ≥ k2. Furthermore,
for every (i, r) ∈ B1, there is some (i′, r′) ∈ B2 such that B(i, r) ∩B(i′, r′) ̸= ∅. Finally, for
both ℓ = 1 and ℓ = 2 we have the following properties:

for each (i, r) ∈ Bℓ, we have r ≤ 3 ·Rm,
tripling the radii of each (i, r) ∈ Bℓ will cover X ′, i.e. for each j ∈ X ′ there is some
(i, r) ∈ Bℓ such that j ∈ B(i, 3 · r), and
cost(Bℓ) + λ · kℓ ≤ OPTLP(λ)

Again, we note that essentially the same result is found in [7], except it is slightly more
technical to state since the two sets B1 and B2 are obtained through a LMP algorithm
applied to different (but very close) values λ1 and λ2 which leads to an additional ϵ-loss in
the approximation guarantee. Qualitatively speaking, the theorem statement itself is not new
and the reader who is not interested in seeing a new technique can skip reading its proof.

As an easy warmup, notice that if k1 = k′ then by Lemma 5 we have

cost(B1) ≤ OPTLP(λ) − λ · k′ ≤ OPT ′.

In this case, tripling the radii of all balls in B1 covers all of X ′ with cost at most 3 ·OPT ′.
Together with B′, this is a feasible MSR solution with cost at most 3 · OPT . A similar
approximation follows if k2 = k. However, we do not distinguish these case in our full analysis
below.
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2.4 Step 3: Combining Bipoint Solutions
Let λ,B1,B2 be the bipoint solution from Theorem 6. For brevity, let C1 = cost(B1) and
C2 = cost(B2). Since k1 ≥ k′ ≥ k2, there are values a, b ≥ 0 with a+b = 1 and a·k1+b·k2 = k′.
We fix these values throughout this section.

The following shows the average cost C1 and C2 is bounded by OPT ′, the first inequality
is by the last property listed in Theorem 6 and the second by Lemma 5.

a·C1 +b·C2 ≤ a·(OPTLP(λ)−λ·k1)+b·(OPTLP(λ)−λ·k2) = OPTLP(λ)−λ·k ≤ OPT ′ (1)

The rest of our algorithm and analysis considers how to convert the two solutions B1,B2 to
produce a feasible solution whose value is within a constant-factor of this averaging of C1, C2.
First, note tripling the radii in all balls in B2 will produce a feasible solution as k2 ≤ k′, but
it may be too expensive. So we will consider two different solutions and take the better of
the two. The first solution is what we just described: formally it is {(i, 3r) : (i, r) ∈ B2},
which is a feasible solution with cost 3 · C2.

Constructing the second solution is our main deviation from the work in [7]. Intuitively,
we want to cover all points by using balls (i, 3 · r) for (i, r) ∈ B1. The cheaper of this and the
first solution can easily be shown to have cost at most 3 ·OPT ′. The problem is that this
could open more than k′ centers (if k1 > k′). As in [7], we consolidate some of these balls
into a single group based on their common intersection with some (i′, r′) ∈ B2. We will select
some groups and merge their balls into a single ball so the number of balls is at most k′. Our
improved approximation is enabled by considering different ways to cover balls in a group
using a single ball, [7] only considered one possible way to cover a group with a single ball.

We now form groups. For each (i, r) ∈ B2, we create a group Gi,r ⊆ B1 as follows:
for each (i′, r′) ∈ B1, consider any single (i, r) ∈ B2 such that B(i, r) ∩ B(i′, r′) ̸= ∅ and
add (i′, r′) to Gi,r. If multiple (i, r) ∈ B2 satisfy this criteria, pick one arbitrarily. Let
G = {Gi,r : (i, r) ∈ B2 s.t. Gi,r ̸= ∅} be the collection of all nonempty groups formed this
way, note G is a partitioning of B1.

Covering a group with a single ball
From here, the approach in [7] would describe how to merge the balls in a group Gi,r ∈ G
simply by centering a new ball at i, and making its radius sufficiently large to cover all points
covered by the tripled balls B(i′, 3r′) for (i′, r′) ∈ Gi,r. We consider choosing a different
center when we consolidate the B1 balls in a group. In fact, it suffices to simply pick the
minimum-radius ball that covers the union of the tripled balls in a group. This ball can be
centered at any point in X ′.

To analyze this, we describe a few candidate balls and argue that the cheapest of these
has cost at most 11

8 · r + 3 · cost(Gi,r) for each Gi,r ∈ G. The exact choice of ball we use
for the analysis depends on the composition of the group, namely the total and maximum
radii of balls in Gi,r versus the radius r itself. In [7], the ball they select has cost at most
r + 4 · cost(Gi,r). While our analysis has a higher dependence on r, when considered as an
alternative solution to the one that just triples all balls in B2 we end up with a better overall
solution.

For now, fix a single group Gi,r ∈ G. Let R1 denote r, R2 be the maximum radius of a
ball in Gi,r and R3 be the maximum radius among all other balls in Gi,r apart from the one
defining R2. If Gi,r has only one ball, then let R3 = 0. That is, 0 ≤ R3 ≤ R2 but it could be
that R3 = R2, i.e. there could be more than one ball from Gi,r with maximum radius. We
also let i1 denote i, i2 be the center of any particular ball with maximum radius in Gi,r, and
i3 be any single point in B(i1, R1) ∩B(i2, R2). There is at least one since each ball in Gi,r

intersects B(i, r) by construction of the groups.
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i1
i2

i3

i
′

i
′′

j

R1

R2

≤ R3

Figure 1 A depiction of a group Gi1,R1 . The solid ball is B(i1, R1) and the dashed balls are
those in Gi1,R1 . Point j is covered by tripling the ball centered at i′. The dashed path depicts the
way we bound d(j, i2) in the second part of the case Centering at i2.

Next we describe the radius of a ball that would be required if we centered it at one of
i1, i2 or i3. Consider any j ∈ Yi,r with, say, j ∈ B(i′, 3r′) for some (i′, r′) ∈ Gi,r. Let i′′ be
any point in B(i1, r) ∩B(i′, r′). We bound the distance of j from each of i1, i2 and i3 to see
what radius would suffice for each of these three possible centers. Figure 1 depicts this group
and one case of the analysis below.

Centering at i1. Simply put,

d(j, i1) ≤ d(j, i′) + d(i′, i′′) + d(i′′, i1)
≤ 3 ·R2 + R2 + R1

= R1 + 4 ·R2.

So radius C(1) := R1 + 4 ·R2 suffices if we choose i1 as the center.
Centering at i2. If (i′, r′) = (i2, R2) then d(j, i2) ≤ 3 ·R2. Otherwise, r′ ≤ R3 and

d(j, i2) ≤ d(j, i′) + d(i′, i′′) + d(i′′, i1) + d(i1, i3) + d(i3, i2)
≤ 3 ·R3 + R3 + R1 + R1 + R2

= 2 ·R1 + R2 + 4 ·R3.

So radius C(2) := max{3 ·R2, 2 ·R1 + R2 + 4 ·R3} suffices if we choose i2 as the center.
Centering at i3. If (i′, r′) = (i2, R2) then d(j, i3) ≤ d(j, i2)+d(i2, i3) ≤ 3·R2+R2 = 4·R2.
Otherwise, r′ ≤ R3 and we see

d(j, i3) ≤ d(j, i′) + d(i′, i′′) + d(i′′, i1) + d(i1, i3)
≤ 3 ·R3 + R3 + R1 + R1

= 2 ·R1 + 4 ·R3.

So radius C(3) := max{4 ·R2, 2 ·R1 + 4 ·R3} suffices if we choose i3 as the center.
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With these bounds, we now describe how to choose a single ball covering the points
covered by tripled balls in Gi,r in a way that gives a good bound on the minimum-radius
ball covering these points. The following cases employ particular constants to decide which
center should be used, these have been optimized for our approach. The final bounds are
stated to be of the form 3 · Ci,r plus some multiple of r. Let Ci,r =

∑
(i′,r′)∈Gi,r

r be the
total radii of all balls in Gi,r. So

∑
Gi,r∈G Ci,r = cost(B1) = C1.

Case: R3 > R2/3.
Then the ball B′

i,r is selected to be B(i1, C(1)). Note 4/3 · R2 < R2 + R3 ≤ Ci,r so
C(1) ≤ r + 3 · Ci,r.
Case: R3 ≤ R2/3 and R2 ≥ 6

5 ·R1.
The ball B′

i,r is selected to be B(i2, C(2)). Note C(2) ≤ 6
5 · ·R1 + 3 ·R2 ≤ 6

5 · ·r + 3 · Ci,r.
Case: R3 ≤ R2/3 and 6

5 ·R1 > R2 ≥ 3
8 ·R1.

The ball B′
i,r is selected to be B(i3, C(3)). Note C(3) ≤ 11

8 ·R1 + 3 ·R2 ≤ 11
8 · r + 3 · Ci,r.

Case: R3 ≤ R2/3 and 3
8 ·R1 > R2.

The ball B′
i,r is selected to be B(i1, C(1)). Note C(1) ≤ 11

8 ·R1 + 3 ·R2 ≤ 11
8 · r + 3 · Ci,r.

In any case, we see that by selecting B′
i,r optimally, the radius is at most 11

8 · r + 3 · Ci,r.
Also, since R1, R2, R3 ≤ 3 ·Rm by Theorem 6, then the radius of B′

i,r is also seen to be at
most, say, 21 ·Rm.

Choosing which groups to merge
For each group Gi,r ∈ G, we consider two options. Either we select all balls in Gi,r with triple
their original radii (thus, with total cost 3 · Ci,r), or we select the single ball B′

i,r described
in the previous section. We want to do this to minimize the resulting cost while ensuring the
number of centers open is at most k′. To help with this, we consider the following linear
program. For each Gi,r ∈ G we have a variable zi,r where zi,r = 0 corresponds to selecting
the |Gi,r| balls with triple their original radius and zi,r = 1 corresponds to selecting the
single ball B′

i,r. As noted in the previous section, the radius of B′
i,r is at most 11

8 · r + 3 ·Ci,r

and also at most 21 ·Rm.

minimize :
∑

Gi,r∈G(1− zi,r) · 3 · Ci,r + zi,r · cost({B′
i,r})

subject to :
∑

Gi,r∈G ((1− zi,r) · |Gi,r|+ zi,r) ≤ k′

zi,r ∈ [0, 1] ∀ Gi,r ∈ G
(LP-Choose)

To consolidate the groups, compute an optimal extreme point to LP-Choose. Since
all but one constraint are [0, 1] box constraints, there is at most one variable zi,r that
does not take an integer value. Since |Gi,r| ≥ 1, then setting zi,r to 1 yields a feasible
solution whose cost increases by at most the radius of B′

i,r, which was observed to be at
most 21 ·Rm ≤ 21 · ϵ ·OPT .

Recall that a, b are such that a, b ≥ 0, a + b = 1 and a · k1 + b · k2 = k′. Setting zi,r = a

for each Gi,r = 1 is feasible since 1− zi,r = b,
∑

Gi,r∈G |Gi,r| = k2, and there are at most k′
1

terms in this sum. The value of this solution is∑
Gi,r∈G

(3 · b + 3 · a) · Ci,r + 11
8 · b · r = 3 · C2 + 11

8 · b · C1

so the optimum solution to LP-Choose has value at most this as well. Summarizing,
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▶ Lemma 7. In polynomial time, we can compute a set of at most k′ balls with total radius
at most 11

8 · b · C
′
1 + 3 · C2 + 21 · ϵ ·OPT which cover all points in X ′.

Finally, we can complete our analysis. Recall our simple solution of tripling the balls in
B′

1 has cost at most 3 · C ′
1 and the more involved solution jut described has cost at most

3 · C1 + 11
8 · a · C2 + 21 · ϵ ·OPT . Now,

min
{

3 · C2, 3 · C1 + 11
8 · b · C2

}
≤ (1− d) · 3 · C2 + d ·

(
b · 11

8 · C2 + 3 · C1

)

holds for any 0 ≤ d ≤ 1. To maximize the latter, we set d = 3(1−b)
11
8 ·b2− 11

8 ·b+3 and see the
minimum of these two terms is at most(

9
11
8 · b2 − 11

8 · b + 3

)
· (aC1 + bC2) ≤

(
9

11
8 · b2 − 11

8 · b + 3

)
·OPT ′

where we have used bound 1 for the last step.
The worst case occurs at b = 1

2 , at which the bound becomes 85/288 ·OPT ′. Thus, the
cost of the solution is at most 288

85 ·OPT ′ + 21 · ϵ ·OPT . Adding the balls B′ we guessed to
also cover the points in X −X ′, we get get a solution covering all of X with total radii at
most

cost(B′) + 288
85 ·OPT ′ + 21 · ϵ = OPT −OPT ′ + 288

85 ·OPT ′ + 21 · ϵ ·OPT ≤ 3.389 ·OPT

for sufficiently small ϵ.

Algorithm Summary

The entire algorithm for MSR that we have just presented is summarized in Algorithm 1.

Algorithm 1 MSR Approximation.

S ← ∅ {The set of all solutions seen over all guesses}
for each subset B′

j of 1/ϵ balls do
let X ′, Rm be as described in Section 2.2
(A, R)← k-Median 2-approximation on X ′

if R > 2 ·Rm then
reject this guess B′ and continue with the next

let B1,B2, λ be the bipoint solution described in Theorem 6
let G be the groups (a partitioning of B1) described in Section 2.4
for each Gi,r ∈ G, let B′

i,r be the cheapest ball covering ∪(i′,r′)∈Gi,r
B(i′, 3 · r′)

let z′ be an optimal extreme point to LP-Choose
B(1) ← {B′

i,r : z′
i,r > 0} ∪

⋃
z′

i,r
=0{(i′, 3 · r′) : (i′, r′) ∈ Gi,r}

B(2) ← {(i, 3 · r) : (i, r) ∈ B2}
let B be {(i, 3 · r) : (i, r) ∈ B′} plus the cheaper of the two sets B(1) and B(2)

S ← S ∪ {B}
return the cheapest solution from S
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3 Minimum Sum of Diameters

Here, we observe that a slight modification to the MSR approximation in fact yields a
6.546-approximation for MSD. Note that for any Y ⊆ X with diameter, say, diam(Y ),
for any i ∈ Y we have Y ⊆ B(i, diam(Y )) and diam(B(i, diam(Y )) ≤ 2 · diam(Y ). So
while it is difficult to guess any single cluster from the optimum MSD solution, we can
guess the 1/ϵ largest diameters (the values) and guess balls B′ with these radii that cover
these largest-diameter clusters. Let OPT ′

D denote the total diameter of the remaining
clusters from the optimum solution, k′ = k − 1

ϵ , X ′ be the remaining points to cluster, and
Rm = min{r : (i, r) ∈ B′} ≤ ϵ ·OPTD.

For any λ ≥ 0, note OPTLP(λ) + λ · k′ ≤ OPT ′
D as picking any single center from each

cluster in optimum solution on X ′ yields an MSR solution with cost at most OPT ′
D. We

then use Theorem 6 to get a bipoint solution B1,B2, λ.
If we triple the balls in B2 and output those clusters, we get a solution with total diameter

≤ 6 · cost(B2). For the other case, we again form groups G. Instead of picking a ball B′
i,r for

each group Gi,r ∈ G, we simply let B′
i,r be the set of points covered by the tripled balls in

Gi,r. We claim diam(B′
i,r) ≤ 2 · r + 6 · Ci,r.

To see this, consider any two points j′, j′′ covered by ∪(i′,r′)∈Gi,r
B(i′, 3 · r′), say (i′, r′)

and (i′′, r′′) are the balls in Gi,r which, when tripled, cover j′ and j′′, respectively. If
(i′, r′) = (i′′, r′′) (i.e. it is the same tripled ball from Gi,r that covers both j′, j′′) then
d(j′, j′′) ≤ 6 · r′ ≤ 6 · Ci,r. Otherwise, we have r′ + r′′ ≤ Ci,r and

d(j′, j′′) ≤ d(j′, i′) + d(i′, i) + d(i, i′′) + d(i′′, j′′) ≤ 4 · r′ + r + r + 4 · r′′ ≤ 2 · r + 4 · Ci,r.

In either case, we can upper bound d(j′, j′′) ≤ 2 · r + 6 · Ci,r, so diam(B′
i,r) is bounded by

the same. We use an LP similar to LP-Choose except with the modified objective function
to reflect the diameter costs of the corresponding choices.

minimize :
∑

Gi,r∈G(1− zi,r) · 6 · Ci,r + zi,r · diam(B′
i,r)

subject to :
∑

Gi,r∈G ((1− zi,r) · |Gi,r|+ zi,r) ≤ k′

zi,r ∈ [0, 1] ∀ Gi,r ∈ G
(LP-Choose MSD)

For a, b ≥ 0, we let a + b = 1 and a · k1 + b · k2 = k′, similar to MSR. Setting zi,r = a

shows the optimum LP solution value is at most∑
Gi,r∈G

(6 · b + 6 · a) · Ci,r + 2 · b · r = 6 · C2 + 2 · b · C1.

In an optimal extreme point, at most one variable in LP-Choose MSD that is fractional
so we set it to 1 we pick to corresponding group to be covered by a single ball. The final
cost is min {6 · C2, 6 · C1 + 2 · b · C2 + O(ϵ) ·OPTD} ≤ (1− d) · 6 ·C2 + d · (b · 2 · C2 + 6 · C1)
for any d ∈ [0, 1]. Let At d = 6(1−b)

2·b2−2·b+6 the worst case for the final bound is at b = 1/2 at
which we see the cost is at most 72

11 ·OPT ′
D + O(ϵ) ·OPTD. Adding this to the 1/ϵ balls we

guessed (whose diameters are at most twice their radius) and choosing ϵ sufficiently small
shows we get a solution with an approximation guarantee of 6.546 for MSD, which is better
than two times the MSR guarantee.
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4 Getting the Bipoint Solution: Proof of Theorem 6

We again emphasize that one can slightly adapt the algorithm and analysis in [7] to prove a
slightly weaker version of Theorem 6 that would still suffice for our approximation guarantees.
The main difference is that the averaging of the bipoint solution costs as given in bound
(1) from Section 2.4 would be bounded by (1 + ϵ′) ·OPT for some ϵ′ > 0 (the running time
depends linearly on log 1/ϵ).

We give an alternative approach that uses simple LP rounding. This may be of independent
interest since our method of getting a single λ rather than two “close” values λ1, λ2 is simple
in principle and may apply to other Lagrangian multipler preserving (LMP) approximations
that use direct LP rounding. That is, we give a recipe to find a single λ and two corresponding
solutions B1,B2 that uses very generic properties of the rounding algorithm.

The proof of Theorem 6 proceeds through the usual approach of using a binary search
using an LMP algorithm. We begin by describing our LMP algorithm followed by a simple
consolidation step which is used in some parts of the binary search. Our direct LP rounding
procedure is presented here as is an outline of the binary search routine. For the sake of
space, full details of how our binary search works with the rounding procedure are deferred
to full version.

4.1 A Simple LMP Algorithm via Direct LP Rounding

Algorithm 2 describes our rounding procedure. Note it only depends on x′ and not on λ

itself.

Algorithm 2 ROUND(x′).

B ← ∅
for (i, r) with x′

i,r > 0 in non-increasing order of r do
if B(i, r) ∩B(i′, r′) = ∅ for each (i′, r′) ∈ B then
B ← B ∪ {(i, r)}

return B

To analyze the performance of this algorithm, we also consider the dual of LP(λ).

max
∑

j∈X′ yj

s.t.
∑

j∈B(i,r)∩X′ yj ≤ r + λ ∀ (i, r), r ≤ Rm

y ≥ 0
(DUAL(λ))

▶ Theorem 8. Let λ ≥ 0. Let x′ be an optimal solution for LP(λ) and y′ be an optimal
dual solution for LP(λ). Let B denote the set returned by ROUND(x′). The balls in B are
pairwise-disjoint and for each (i, r) ∈ B we have r ≤ Rm and r + λ =

∑
j∈B(i,r) y′

j.

Proof. Disjointedness follows by construction. Each ball B has radius at most Rm since
each ball is from the support of x′ and LP(λ) only has variable for balls with radius ≤ Rm.
Again, since each (i, r) ∈ B lies in the support of x′ then complementary slackness shows
r + λ =

∑
j∈B(i,r) y′

j . ◀

Note the last condition shows cost(B) + λ · |B| ≤
∑

j∈X′ y′
j = OPTLP(λ). Thus, we call

this a “Langrangian multipler preserving” algorithm because if B′′ is obtained by tripling
the radii of the balls returned by ROUND(x′), then cost(B′′) + 3 · λ · |B′′| ≤ 3 ·OPTLP(λ).
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4.2 Sketch of the Binary Search
While it is fairly easy to see that using λ = 0 will have an optimal LP solution be rounded
to |X ′| > k′ balls, we need to ensure that for large enough λ that our rounding proced-
ure produces ≤ k′ balls in order to begin our binary search. Thus, we consider another
step CONSOLIDATE(B, λ,A, Rm) that tries to consolidate some of the balls output by
ROUND(x′) using the balls from the k-Median approximation A. Roughly speaking, if the
single radius 3 ·Rm-ball centered at some i′ ∈ A′ is cheaper than the balls of B it covers, we
replace them with this single ball.

Algorithm 3 CONSOLIDATE(B, λ, A, Rm).

Bc ← ∅
for each i′ ∈ A do

Let Ni′ = {(i, r) ∈ B : i ∈ B(i′, 2 ·Rm)}
if 3 ·Rm + λ ≤

∑
(i,r)∈Ni′ (r + λ) then

Bc ← Bc ∪ {(i′, 3 ·Rm)}
B ← B −Ni′

Bc ← Bc ∪ B
return Bc

We the following show in the full version.

▶ Lemma 9. Let B = ROUND(x′) for some optimal solution x′ for LP(λ) and Bc =
CONSOLIDATE(B, λ,A, Rm).
1. If λ ≥ 4 ·Rm, then |Bc| ≤ k′,
2. r ≤ 3 ·Rm for each (i, r) ∈ Bc

3. for each (i, r) ∈ Bc there is some Xi,r ⊆ B(i, r) such that r + λ ≤
∑

j∈Xi,r
·y′

j where y′ is
an optimal solution to DUAL(λ),

4. for different (i, r), (i′, r′) ∈ Bc we have Xi,r ∩Xi′,r′ = ∅, and
5. for each j ∈ X ′ we have j ∈ B(i, 3 · r) for some (i, r) ∈ Bc.

In particular, the total (r + λ)-cost of Bc is still at most OPTLP(λ) since properties 3 and
4 show each ball can be paid for some variables in the optimal dual solution and no variable
in the dual is charged more than once this way.

In this way, we can start the binary search with λ1 = 0 (for which ROUND will return
exactly k′ balls) and λ2 = 4 ·Rm (for which consolidating the rounded solution will produce
≤ k′ balls). During the binary search, if at any step the optimal LP solution x1 to LP(λ1) is
also an optimal LP solution to LP(λ2) (here [λ1, λ2] is the current interval enclosed by the
binary search) or if |B| ≥ k′ ≥ |Bc| where B is obtained by rounding an optimal solution to
LP(λ) and Bc is obtained by consolidating it, it is easy to find the bipoint solution satisfying
Theorem 6.

So we focus on break points λ which, intuitively, are values λ where the set of optimal
extreme points to LP(λ) changes. In the full version, we prove there is sufficiently-large
distance between distinct breakpoints. So after a polynomial number of iterations, if the
search did not terminate for one of the reasons mentioned above, then the window [λ1, λ2]
encloses exactly one break point.

We also show how to compute the largest λ such that x1 remains optimal for LP(λ) by
solving yet another a linear program that exploits complementary slackness. After computing
the only breakpoint in our final binary search window, it is easy to construct the bipoint
solution satisfying the requirements of Theorem 6. We note that whenever we return a
bipoint solution from this binary search, we consider a post-processing routine to ensure
each ball in B1 will intersect at least one ball in B2 to fulfill the requirements of Theorem 6.
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5 Concluding Remarks

It may be possible to improve our analysis further by considering an even more involved
approach to analyzing how to optimally cover a group using a single ball, though such
an approach seems likely to produce approximations that are still a constant-factor worse
than 3. What is more interesting is an observation about our new approach to finding the
bipoint solution. If we ever encounter a λ such that |B| ≥ k′ ≥ |Bc| where B is the output of
ROUND and Bc is the output of CONSOLIDATE (using B), then Check 1 will terminate
the search with bipoint solution B,Bc. If we refine the CONSOLIDATE step to perform
the consolidations for B one at a time and stop when the number of clusters first becomes
≤ k′, one can show that tripling the radii of these ≤ k′ balls is a solution with cost at most
(3 + O(ϵ)) ·OPT ′. But this is just for one case in our binary search. In general, is there a
refinement of our binary search routine (or some other approach) that would always produce
a (3 + ϵ)-approximation?
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We give a new and simple worst-case optimal algorithm for adaptive prefix-free coding that matches
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1 Introduction

Suppose Alice has a deck of n cards, each marked with a character from a known alphabet
of size σ, and she wants to send the sequence of the cards’ characters to Bob over a noiseless
binary channel. Moreover, suppose neither of them know in advance the frequencies of the
distinct characters in the deck – perhaps it has just been shuffled – and Alice wants to encode
each card’s character before looking at the next card, such that Bob can recognize the last
bit of that character’s encoding when he receives it, and decode the character.

In 1973 Faller [1] proposed that Alice encode each card’s character with a Huffman
code [7] for the distribution of characters she has already seen, modified to assign codewords
also to characters she has not yet seen. Thus, Alice encodes the ith character using a code
that depends only on the first i − 1 characters. Assuming Bob has already decoded the
first i − 1 characters when he receives the encoding of the ith, he can build the same code.
Because the codewords in a Huffman code are prefix-free – no codeword is a prefix of another
– he can then use that code to decode the ith character when he receives the last bit of
its encoding. Since the codes adapt to the frequencies of the characters as more and more
are seen, Faller’s algorithm is said to perform adaptive Huffman coding or, more generally,
adaptive prefix-free coding.

Building n Huffman codes from scratch takes Ω(nσ) time, but Faller showed how Alice
and Bob can store a Huffman code such that after incrementing the frequency of a character,
they can update the code in time proportional to the length of the codeword previously
assigned to that character. It follows that Faller’s algorithm runs in time proportional
to the total length of the encoding of the sequence. Gallager [6] and Knuth [11] further
developed Faller’s algorithm in 1978 and 1985, respectively, and it is usually known as the
FGK algorithm for their initials. It is commonly taught in courses on data compression and
used in the classic UNIX utility compact, for example.

The same year Knuth published his work on the FGK algorithm, Vitter [15, 16, 17] gave
a more sophisticated algorithm for adaptive Huffman coding. He showed it uses less than
1 more bit per character than Alice would use if she knew the characters’ frequencies in
advance, built a single Huffman code for them, sent it to Bob, and then used it to encode
and send the sequence of characters in the deck. In other words, Vitter’s algorithm uses at
most about n(H + 1 + δ) bits and O(n(H + 1)) time overall, where
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H =
σ∑

j=1

nj

n
lg n

nj
≤ lg σ

is the entropy of the distribution n1
n , . . . , nσ

n of characters in the deck and δ ∈ [0, 1) is the
redundancy of a Huffman code for that distribution. (When the distribution is dyadic – each
frequency ni is n divided by a power of 2 – then δ = 0, and when nearly all the cards have
the same character then δ is nearly 1.) Vitter’s algorithm is also commonly taught in courses
on data compression.

Vitter attributed to Chazelle an observation that the FGK algorithm uses at most about
twice as many bits as using a single Huffman code for the characters’ frequencies (the
coefficient 2 can be reduced to about 1.44 using a result by Katona and Nemetz [10]), so
the FGK algorithm also runs in O(n(H + 1)) time. In 1999 Milidiú, Laber and Pessoa [12]
showed that with the FGK algorithm, Alice sends fewer than 2 more bits per character
than she would with a single Huffman code for the characters’ frequencies, or at most about
n(H + 2 + δ) bits overall.

In 2003 Gagie [3, 4] showed that if we modify the FGK algorithm to perform adaptive
Shannon coding instead of adaptive Huffman coding, then Alice sends at most about H + 1
bits per character. A Shannon code [13] is a prefix-free code that assigns any character with
probability p a codeword of length at most

⌈
lg 1

p

⌉
so, if Alice pretends she has seen each

character once before she starts encoding the sequence S[1..n] of the cards’ characters, then
she sends at most

n∑
i=1

⌈
lg i + σ − 1

occ(S[i], S[1..i − 1]) + 1

⌉

≤
n∑

i=1
lg(i + σ − 1) −

n∑
i=1

lg
(
occ(S[i], S[1..i − 1]) + 1

)
+ n

< lg n! + σ lg(n + σ) −
σ∑

j=1
lg nj ! + n

= lg
(

n

n1, . . . , nσ

)
+ σ lg(n + σ) + n

bits, where occ(S[i], S[1..i−1]) is the frequency of S[i] in the prefix S[1..i−1] and
(

n
n1,...,nσ

)
is

the number of distinct ways of arranging the cards in the deck. By Stirling’s Approximation,
lg
(

n
n1,...,nσ

)
≤ nH + O(σ log n), so with Gagie’s algorithm Alice sends n(H + 1) + o(n) bits

as long as σ lg(n + σ) ∈ o(n).
In 2006 Karpinski and Nekrich [8, 9] gave a more sophisticated algorithm for adaptive

Shannon coding, with which Alice sends n(H + 1) + O(σ log2 n) bits and encodes S in O(n)
time, and Bob decodes it in O(n(log H + 1)) time. Their algorithm uses canonical codes [14]
and assumes Alice and Bob are working on word RAMs with Ω(log n)-bit words, as we do
henceforth. Notice speeding up encoding on a word RAM is generally easier than speeding
up decoding: for example, given a single prefix-free code whose longest codeword fits in a
constant number of machine words, Alice can build an O(σ)-space lookup table that tells
her the codeword for any character in constant time.

In 2009 Gagie and Nekrich [5] improved Karpinski and Nekrich’s algorithm so that Bob
decodes S also in O(n) time, at the cost of increasing the bound on the total encoding
length to n(H + 1) + O(σ log5/2 n). They also proved Alice must send n

(
lg σ + 1 − o(1)

)
≥
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Table 1 The per-character bounds for the algorithms discussed, assuming σ ∈ o
(

n1/2

log n

)
, ignoring

lower-order terms and omitting asymptotic notation.

encoding encoding decoding
authors length time time

FGK [1, 6, 11] H + 2 + δ H + 1 H + 1
Vitter [15, 16, 17] H + 1 + δ H + 1 H + 1

Gagie [3, 4] H + 1 H + 1 H + 1
KN [8, 9] H + 1 1 lg H + 1

GN [5] H + 1 1 1
new H + 1 1 1

n(H + 1 − o(1)) bits in the worst case, even when even when σ ∈ ω(1). To see why, suppose
σ = 2⌈lg f(n)⌉ + 1 for some function f(n) ∈ ω(1), so σ ∈ ω(1) and any prefix-free code for the
alphabet assigns some character a codeword of length ⌈lg f(n)⌉+1 = lg σ +1−o(1). For each
i, the adversary chooses S[i] to be a character with codeword length at least lg σ + 1 − o(1)
in the code Alice will use to encode S[i].

Gagie and Nekrich’s algorithm is simultaneously worst-case optimal in terms encoding and
decoding time and of encoding length, as long as σ ∈ o

(
n

log5/2 n

)
, but it relies on constant-

time predecessor queries on sets of O(log1/6 n) elements. These are theoretically possible
on a word RAM with Ω(log n)-bit words [2] but very complicated and totally impractical.
In this paper we give a new algorithm for adaptive prefix-free coding that is simple – it
uses no data structures more complicated than a lookup table – but still uses O(n) time
for both encoding and decoding and n(H + 1) + O

(
n

log n + σ2 log2 n
)

bits, which is within

lower-order terms of optimal when σ ∈ o
(

n1/2

log n

)
. Table 1 shows the per-character bounds

of all the algorithms we have discussed here, assuming σ ∈ o
(

n1/2

log n

)
, ignoring lower-order

terms and omitting asymptotic notation. We leave as future work finding a simple algorithm
that is worst-case optimal even when σ is closer to n.

2 Algorithm

Before we describe our new algorithm, we briefly review how length-restricting a prefix-free
code can speed up decoding. Our starting point is Gagie’s [3, 4] observation that if we
smooth the probability distribution n1

n , . . . , nσ

n by averaging it with the uniform distribution
and apply Shannon’s construction [13] to the result, then we obtain a prefix-free code with
average codeword length

σ∑
j=1

nj

n

⌈
lg 1

1
2
(nj

n + 1
σ

)⌉ <
σ∑

j=1

nj

n

(
lg n

nj
+ 2
)

= H + 2

when encoding S, and maximum codeword length at most ⌈lg σ⌉ + 1.
In O(σ) time we can build an O(σ)-space lookup table that, for any binary string of

length ⌈lg σ⌉ + 1, tells us which character’s codeword is a prefix of that string and the length
of that codeword. If we encode S by replacing each character by its codeword – which we
can do in O(n) time using an O(σ)-space lookup table that tells us the codeword for any
character – then later we can decode S in O(n) time by repeatedly taking prefixes of the
encoding consisting ⌈lg σ⌉ + 1 bits, looking up which character’s codeword is a prefix of the
encoding and the length of that codeword, and deleting the codeword from the beginning of
the encoding. Unfortunately, we may use about H + 2 bits per character.
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If we take a weighted average of n1
n , . . . , nσ

n and the uniform distribution, however, then
we can reduce the number of bits we use per character, at the cost of increasing the maximum
codeword length and the space needed by the table. For example, if we assign weight lg n−1

lg n

to n1
n , . . . , nσ

n and weight 1
lg n to the uniform distribution before averaging them and applying

Shannon’s construction, then the average codeword length when encoding S is
σ∑

j=1

nj

n

⌈
lg 1

lg n−1
lg n · nj

n + 1
lg n · 1

σ

⌉
<

σ∑
j=1

nj

n

(
lg n

nj
+ lg lg n

lg n − 1 + 1
)

< H + 1 + lg e

lg n − 1

and the maximum codeword length is at most ⌈lg(σ lg n)⌉ = ⌈lg σ + lg lg n⌉, so the lookup
table takes O(2lg σ+lg lg n) = O(σ log n) space. Building this table takes O(σ log n) time.

We are now ready to describe our new algorithm. First, Alice encodes S[1..⌈σ lg n⌉] using
a Shannon code C0 for the uniform distribution, that assigns every character a codeword of
length ⌈lg σ⌉. This takes her O(σ log n) time. Then, for k ≥ 1, after encoding S[1..k⌈σ lg n⌉],
Alice builds a Shannon code Ck for a weighted average of the distribution of characters she
has encoded so far and the uniform distribution:

lg n − 1
ln n

·
occ

(
a1, S[1..k⌈σ lg n⌉]

)
k⌈σ lg n⌉) + 1

lg n
· 1
σ

, . . . ,
lg n − 1

ln n
·
occ

(
aσ, S[1..k⌈σ lg n⌉]

)
k⌈σ lg n⌉

+ 1
lg n

· 1
σ

,

where occ
(
aj , S[1..k⌈σ lg n⌉]

)
is the frequency in S[1..k⌈σ lg n⌉] of the jth character aj in the

alphabet. She builds an O(σ)-space lookup table for Ck that lets her encode S[k⌈σ lg n⌉ +
1..(k + 1)⌈σ lg n⌉] in O(σ log n) time.

Because the codewords in C0 have length ⌈lg σ⌉, Bob can build an O(σ)-space lookup
table that lets him decode S[1..⌈σ lg n⌉] in O(σ log n) time. Then, for k ≥ 1, after encoding
S[1..k⌈σ lg n⌉], Bob builds the same Shannon code Ck that Alice used to encode S[k⌈σ lg n⌉ +
1..(k +1)⌈σ lg n⌉]. Because the longest codeword in Ck has length at most ⌈lg σ +lg lg n⌉, Bob
can build an O(σ log n)-space lookup table that lets him decode S[k⌈σ lg n⌉+1..(k+1)⌈σ lg n⌉]
in O(σ log n) time.

3 Analysis

For each k ≥ 0, building Ck and the lookup tables for encoding and decoding with it takes
Alice and Bob O(σ log n) time, and that cost is amortized over the ⌈σ lg n⌉ characters in
S[k⌈σ lg n⌉ + 1..(k + 1)⌈σ lg n⌉]. Since encoding and decoding S[k⌈σ lg n⌉ + 1..(k + 1)⌈σ lg n⌉]
also takes O(σ log n) time, Alice and Bob each spend O(n) time in total, or constant time
per character in S.

Probably the most complicated aspect of our algorithm is the analysis showing the total
length of the encoding is at most n(H + 1) + O

(
n

log n + σ2 log2 n
)

. Consider that each
character in S is encoded with O(σ log n) bits so, in particular, the first ⌈σ lg n⌉ occurrences
of each distinct character are encoded with a total of O(σ2 log2 n) bits. Let Ij be the set
of positions i such that character S[i] of S is an occurrence of the jth character aj in the
alphabet but not one of aj ’s first ⌈σ lg n⌉ occurrences. For i ∈ Ij , Alice encodes S[i] using at
most⌈

lg
(

1
lg n−1

lg n · i−1
occ(aj ,S[1..i])−⌈σ lg n⌉

)⌉
< lg i − 1

occ(aj , S[1..i]) − ⌈σ lg n⌉) + 1 + lg e

lg n − 1

bits. Therefore, the total number of bits in the encoding is∑
j

∑{
lg i − 1

occ(aj , S[1..i]) − ⌈σ lg n⌉
: i ∈ Ij

}
+ n + O

(
n

log n
+ σ2 log2 n

)
.
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Notice
∑

j

∑
{lg(i − 1) : i ∈ Ij} ≤ lg n! and for each j,∑{

lg
(
occ(aj , S[1..i]) − ⌈σ lg n⌉

)
: i ∈ Ij

}
= lg(nj − ⌈σ lg n⌉)! = lg nj ! − O(σ log2 n) .

Therefore, the total number of bits in the encoding is at most

lg n! −
σ∑

j=1
lg nj ! + n + O

(
n

log n
+ σ2 log2 n

)

= lg
(

n

n1, . . . , nσ

)
+ n + O

(
n

log n
+ σ2 log2 n

)
≤ n(H + 1) + O

(
n

log n
+ σ2 log2 n

)
.
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Abstract
We confirm a conjecture of Gartland and Lokshtanov [arXiv:2007.08761]: if for a hereditary graph
class G there exists a constant k such that no member of G contains a k-creature as an induced
subgraph or a k-skinny-ladder as an induced minor, then there exists a polynomial p such that
every G ∈ G contains at most p(|V (G)|) minimal separators. By a result of Fomin, Todinca, and
Villanger [SIAM J. Comput. 2015] the latter entails the existence of polynomial-time algorithms
for Maximum Weight Independent Set, Feedback Vertex Set and many other problems,
when restricted to an input graph from G. Furthermore, as shown by Gartland and Lokshtanov,
our result implies a full dichotomy of hereditary graph classes defined by a finite set of forbidden
induced subgraphs into tame (admitting a polynomial bound of the number of minimal separators)
and feral (containing infinitely many graphs with exponential number of minimal separators).
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1 Introduction

For a graph G, a set S ⊆ V (G) is a minimal separator if there are at least two connected
components A, B of G − S with N(A) = N(B) = S (so that S is an inclusion-wise minimal
set that separates a vertex of A from a vertex of B). Around the year 2000, Bouchitté and
Todinca presented a theory of minimal separators and related objects called potential maximal
cliques and showed their usefulness for providing efficient algorithms [2]. In particular, the
Maximum Weight Independent Set problem (given a vertex-weighted graph, find a subset
of pairwise nonadjacent vertices of maximum total weight) can be solved in time bounded
polynomially in the size and the number of minimal separators in the graph. This result has
been generalized by Fomin, Todinca, and Villanger to a large range of problems that can be
defined as finding an induced subgraph of constant treewidth with some CMSO2-expressible
property [3]; this includes, for example, Longest Induced Path or Max Induced Forest,
which is by complementation equivalent to Feedback Vertex Set.
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When do these metaalgorithmic results give efficient algorithms? In other words, which
restrictions on graphs guarantee a small number of minimal separators? On one hand, it
is easy to see that an n-vertex chordal graph has O(n) minimal separators. On the other
hand, consider the following two negative examples. For k ≥ 3, the (k, 1)-prism consists of
two k-vertex cliques with vertex sets X = {x1, . . . , xk} and Y = {y1, . . . , yk} and a perfect
matching {xiyi | i ∈ [k]}. It is easy to see that the (k, 1)-prism has 2k − 2 minimal separators:
any choice of one endpoint of each edge xiyi gives a minimal separator, except for the choices
X and Y . The (k, 3)-theta consists of k independent edges {xiyi | i ∈ [k]}, a vertex x adjacent
to all vertices xi and a vertex y adjacent to all vertices yi (the intuition behind the notation
is that the graph consists of k paths of length 3, joining x and y). Again, any choice of one
endpoint of each edge xiyi gives a minimal separator. Thus, both the (k, 1)-prism and the
(k, 3)-theta have an exponential (in the number of vertices) number of minimal separators.

In 2019, Milanič and Pivač initiated a systematic study of the question which graph
classes admit a small bound on the number of minimal separators in its members [5, 6]. A
graph class G is tame if there exists a polynomial pG such that for every G ∈ G the number
of minimal separators of G is bounded by pG(|V (G)|). Clearly, if G is tame, then Maximum
Weight Independent Set and all problems captured by the formalism of [3] are solvable in
polynomial time when the input graph comes from G. On the opposite side of the spectrum,
G is feral if there exists c > 1 such that for infinitely many graphs G ∈ G it holds that G has
at least c|V (G)| minimal separators. Following the previous examples, the class of chordal
graphs is tame while the class of all (k, 1)-prisms and/or all (k, 3)-thetas (over all k) is feral.
Milanič and Pivač provided a full tame/feral dichotomy for hereditary graph classes (i.e.,
closed under vertex deletion) defined by minimal forbidden induced subgraphs on at most 4
vertices [5, 6].

A subsequent work of Abrishami, Chudnovsky, Dibek, Thomassé, Trotignon, and
Vuskovič [1] indicated that the main line of distinction between tame and feral graph
classes should lie around the notion of a k-creature. A k-creature in a graph G is a tuple
(A, B, X, Y ) of pairwise disjoint nonempty vertex sets such that (i) A and B are connected,
(ii) A is anti-adjacent to Y ∪ B and B is anti-adjacent to A ∪ X, (iii) every x ∈ X has a
neighbor in A and every y ∈ Y has a neighbor in B; (iv) |X| = |Y | = k and X and Y

can be enumerated as X = {x1, . . . , xk}, Y = {y1, . . . , yk} such that xiyj ∈ E(G) if and
only if i = j. We say that G is k-creature-free if G does not contain a k-creature as an
induced subgraph. Similarly as in the examples of the (k, 1)-prism and the (k, 3)-theta,
any choice of one endpoint of every edge xiyi gives a minimal separator in the subgraph
induced by the creature (which, in turn, can be easily lifted to a minimal separator in G).
Hence, if G contains a k-creature as an induced subgraph, it contains at least 2k minimal
separators. In fact, the notion of a k-creature is a common generalization of the examples
of the (k, 1)-prism and the (k, 3)-theta. Indeed, the (k, 3)-theta contains a k-creature with
A = {x} and B = {y} while the (k, 1)-prism contains a (k − 2)-creature with A = {xk−1},
B = {yk}, X = {x1, . . . , xk−2}, and Y = {y1, . . . , yk−2}. In particular, Abrishami et al.
conjectured that if for a hereditary graph class G there exists k such that no G ∈ G contains
a k-creature as an induced subgraph, then G is tame. (Observe that a presence of arbitrarily
large creatures in a hereditary graph class does not immediately imply that the graph class
is feral, as the sets A and B can be of superpolynomial size in k.)

A counterexample to the conjecture of [1] has been provided by Gartland and Lokshtanov
in the form of a k-twisted ladder [4]. They observed that, despite the fact that the conjecture
of [1] is false, every example they can construct “looks like a twisted ladder”, which indicates
that the tame/feral boundary for hereditary graph classes should not be far from the said



J. Gajarský et al. 58:3

conjecture. To support this intuition, they introduced the notion of a k-skinny ladder (a
graph consisting of two induced antiadjacent paths P = (p1, . . . , pk), Q = (q1, . . . , qk), and
independent set R = (r1, . . . , rk), and edges {piri, qiri | i ∈ [k]}), noted that a k-skinny-ladder
is an induced minor of every counterexample they constructed, and proved the following.

▶ Theorem 1. For every k there exists a constant ck such that if a graph G is k-creature-free
and does not contain a k-skinny-ladder as an induced minor, then the number of minimal
separators in G is bounded by ck|V (G)|ck log |V (G)|, that is, quasi-polynomially in the size
of G.

Gartland and Lokshtanov conjectured that this dependency should be in fact polynomial.
Our main result of this paper is a proof of this conjecture.

▶ Theorem 2. For every k ∈ N there exists a polynomial q of degree O(k3 · (8k2)k+2) such
that every graph G that is k-creature-free and does not contain k-skinny-ladder as an induced
minor contains at most q(|V (G)|) minimal separators.

That is, every hereditary graph class G for which there exists k such that no member of G

contains a k-creature nor k-skinny-ladder as an induced minor, is tame.
As proven in [4], Theorem 2 implies a dichotomy result into tame and feral graph classes

for all hereditary graph classes defined by a finite list of forbidden induced subgraphs. (For
the exact definitions of graphs in the statement, we refer to [4].)

▶ Theorem 3. Let G be a graph class defined by a finite number of forbidden induced
subgraphs. If there exists a natural number k such that G does not contain all k-theta,
k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, k-claw, and k-paw graphs, then G is
tame. Otherwise G is feral.

Our proof builds upon the proof of Theorem 1 of [4] and provides a new way of analysing
one of the core invariants. For a graph G and a set S, define

ζG(S) = max{|I| : I ⊆S is an independent set and for every v /∈S we have |N(v)∩I| ≤ 1}.

That is, we want a set I ⊆ S of maximum possible size that is not only independent, but no
vertex outside S is adjacent to more than one vertex of I. In the proof of Theorem 1 of [4],
an important step is to prove that a minimal separator S with huge ζG(S) gives rise to a
large skinny ladder as an induced minor. Our main technical contribution is an improved
way of analysing minimal separators S with small ζG(S).

▶ Theorem 4. For every k, L ∈ N there exists a polynomial p of degree O(k3 · L), such that
the following holds. For every k-creature-free graph G, the number of minimal separators S

satisfying ζG(S) ≤ L is at most p(|V (G)|).

After brief preliminaries in Section 2, we prove Theorem 4 in Section 3. We show how
Theorem 4 implies Theorem 2 (with the help of some tools from [4]) in Section 4.

2 Preliminaries

Let G be a graph, v be a vertex of G, and S be a subset of vertices. By NG(v) we denote the
set of neighbors of v. Similarly, by NG(S) we denote the set

⋃
x∈S NG(x) \ S. If the graph

G is clear from the context, we simply write N(v) and N(S).
For sets A, B, C, whenever we write A \ B \ C, the set difference operation associates

from the left, meaning that A \ B \ C is equivalent to (A \ B) \ C (and, alternatively, to
A \ (B ∪ C)).

ESA 2022
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By G − S we denote the graph obtained from G by deleting all vertices from S along with
incident edges, and by G[S] we denote the graph induced by the set S, i.e., G − (V (G) \ S).
By CC(G) we denote the set of connected components of G, given as vertex sets.

A matching in G is a set of pairwise disjoint edges. We say that a matching {xiyi | i ∈
[k]} is a semi-induced matching between {x1, . . . , xk} and {y1, . . . , yk} if for all i, j ∈ [k],
xiyj ∈ E(G) if and only if i = j.

For vertices u, v, a set S ⊆ V (G) \ {u, v} is a u-v-separator if u and v are in different
connected components of G − S. We say that S is a minimal u-v-separator if it is a u-v-
separator and no proper subset of S is a u-v-separator. A set S is a minimal separator if it
is a minimal u-v-separator for some u, v. Equivalently, S is a minimal separator if there are
at least two components A, B ∈ CC(G − S) such that N(A) = N(B) = S. Any component
A ∈ CC(G − S) with N(A) = S is called full to S; a minimal separator has at least two full
components.

We define

Sv
G = {N(v) ∩ S : v /∈ S and S is a minimal separator of G}.

The following result of Gartland and Lokshtanov will be a crucial tool used in our argument.

▶ Lemma 5 (Gartland and Lokshtanov [4]). If G is a k-creature-free graph, then for every
v ∈ V (G) it holds that |Sv

G| ≤ |V (G)|k+1.

Let us also recall the crucial definition. For a set S ⊆ V (G) we define

ζG(S) = max{|I| : I ⊆S is an independent set and for every v /∈S we have |N(v)∩I| ≤ 1}.

3 Proof of Theorem 4

We prove the theorem by induction on L with the exact bound of nL(4+(k2+2)(k+2)) minimal
separators.

Note that if S ̸= ∅, then ζG(S) ≥ 1, since for any u ∈ S, the set I = {u} satisfies the
required properties. Thus, in the base case, when L = 0, the only candidate for S is the
empty set, therefore the claim holds vacuously. Also, the claim is immediate for n = 1, so we
assume n > 1.

Let S be a minimal separator of G, and let A and B be two connected components of
G − S that are full to S. If there is a vertex v ∈ V (G) \ S such that N(v) ⊇ S, then S ∈ Sv

G.
There are at most nk+2 such separators S by Lemma 5; we may therefore assume that no
such vertex exists. Let B̃ be a minimal connected subset of B that still dominates S, i.e.
such that N(B̃) ⊇ S. Let u ∈ B̃ be such that B̃ \ {u} is still connected. Such a vertex u can
be found, for instance, as a leaf of a spanning tree of B̃. We define the following sets that
will be important throughout the proof, see Figure 1.

We let v ∈ S ∩ N(u) \ N(B̃ \ {u}). In words, v is a private neighbor (with respect to B̃)
of u in S. Such a vertex v exists by the minimality of B̃.
Su = N(u) ∩ S.
Sv = (N(v) ∩ S) \ Su.
SA = (S \ Su \ Sv) ∩ N(N(v) \ S \ B). That is, SA contains the vertices of S \ Su \ Sv

that have a common neighbor with v in N(v) \ S \ B.
SB = (S\Su \Sv \SA)∩N(N(v)∩B). Similarly, SB contains the vertices of S\Su \Sv \SA

that have a common neighbor with v in N(v) ∩ B.
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S

A B

B̃
u

v

Su

Sv

SA

SB

Figure 1 Subsets of S defined in the proof of Theorem 4. The full lines indicate adjacencies. The
dotted line inside Su indicates a partition of Su between the private neighbors of u (below) and
other neighbors of u (above). The dashed line indicates there is no edge between the sets.

S

A B

B̃
u

v

SA

ZA

(a) |ZA|-creature obtained in the
proof of Claim 6.

S

A B

B̃
u

v

D

(b) |D|-creature obtained in the
proof of Claim 7.

S

A B

B̃
u

v

D

D

ZD

(c) |ZD|-creature obtained in the
proof of Claim 8.

Figure 2 The creatures of Theorem 4.

Our goal is now to identify a small set that dominates S∗ = Su ∪ Sv ∪ SA ∪ SB . We will
repeatedly use Lemma 5 on the vertices of this set in order to bound the number of choices
for S∗. We then show that we can find a minimal separator S0 in S \ S∗ such that A is a full
component in G − (S∗ ∪ S0) and there is a component containing B̃ \ {u}. We will be able
to show that ζG−S∗(S0) < ζG(S) which allows us to conclude using the induction hypothesis
on G − S∗.

▷ Claim 6. Let ZA ⊆ N(v) \ S \ B be a minimal set such that N(ZA) ⊇ SA. Then G

contains a |ZA|-creature.

Proof. By the minimality of ZA, each vertex of ZA has a private neighbor in SA. Hence, there
is a semi-induced matching between ZA and a size-|ZA| subset of SA, say SA,Z . We obtain
the |ZA|-creature by considering the sets ({v}, B̃ \{u}, ZA, SA,Z), see Figure 2a. Indeed, note
that by our choice of u, we have that G[B̃ \ u] is connected; v has no neighbors in B̃ \ {u},
as it is a private neighbor of u; v has no neighbors in SA,Z since SA,Z ⊆ SA ⊆ S \ Su \ Sv;
clearly there are no edges between B̃ \ {u} and ZA since S is a separator; v dominates ZA

and B̃ \ u dominates SA,Z . ◁
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S

A B

B̃
u

v

Su

Sv

SA

SB

D

D3

D2

D1

ZD3

ZD2

ZD1

ZA

Figure 3 Illustration of how Q is obtained in the proof of Theorem 4.

▷ Claim 7. Let D ⊆ CC(G[A \ N(v)]) be a minimal set of such components that dominates
S \ Su \ Sv \ SA. Then G contains a |D|-creature.

Proof. By the minimality of D, for each D ∈ D there exists a vertex yD ∈ S \ Su \ Sv \ SA

that is dominated only by vertices of D. Let xD be a vertex of D that is adjacent to yD

and that is closest to N(v) ∩ A in G[A]. Note that the edges {xDyD : D ∈ D} form a
semi-induced matching between {xD : D ∈ D} and {yD : D ∈ D} in G. Let PD be the set
of internal vertices on a shortest path between xD and N(v)∩A via G[A]. Note that PD ⊂ D

and that PD is anti-adjacent to
⋃

D∈D{yD}. Indeed, the vertices of PD are not adjacent to
yD, as this would contradict the minimality of the distance between xD and N(v); and for
any D′ ̸= D, the vertices of PD are not adjacent to yD′ as this vertex is only dominated by
vertices of D′, by our choice of yD′ . Then we obtain a |D|-creature by considering the sets
({v} ∪ (N(v) ∩ A) ∪ (

⋃
D∈D PD), B̃ \ {u},

⋃
D∈D{xD},

⋃
D∈D{yD}), see Figure 2b. Indeed,

note that G[{v} ∪ (N(v) ∩ A) ∪ (
⋃

D∈D PD)] and G[B̃ \ {u}] are connected; there are no
edges between {v} ∪ (N(v) ∩ A) and

⋃
D∈D{yD} since (

⋃
D∈D{yD}) ∩ (SA ∪ Sv ∪ Su) = ∅,

neither edges between
⋃

D∈D PD and
⋃

D∈D{yD} as mentioned above. Note also that
{v} ∪ (N(v) ∩ A) ∪ (

⋃
D∈D PD) ∪ (

⋃
D∈D{xD}) is anti-adjacent to B̃ \ {u} as argued in the

proof of Claim 6. Finally, note that (N(v) ∩ A) ∪ (
⋃

D∈D PD) dominates
⋃

D∈D{xD}, since
every xD either has a neighbor in PD, or in N(v) ∩ A if PD = ∅. Finally, it is easy to see
that B̃ \ {u} dominates

⋃
D∈D{yD}. ◁

▷ Claim 8. Let D be as in Claim 7. For each D ∈ D, let ZD ⊆ N(v) ∩ B be a minimal set
that dominates N(D) ∩ SB . Then G contains a |ZD|-creature.

Proof. By the minimality of ZD, there is a semi-induced matching between ZD and a size-|ZD|
subset SB,Z of N(D) ∩ SB . We obtain a creature by considering the sets ({v}, D, ZD, SB,Z),
see Figure 2c. Indeed, note that D is connected by definition; v is not adjacent to SB,Z

since SB,Z ∩ (Su ∪ Sv) = ∅ and v is not adjacent to D since D is a connected component of
A \ N(v); D is not adjacent to ZD since S is a separator; v dominates ZD by definition of
ZD and SB,Z ⊆ N(D). ◁

Let Z = {u}∪ZA ∪
⋃

D∈D ZD, where ZA, D, and ZD for D ∈ D are as defined in Claims 6,
7 and 8, respectively. For all z ∈ Z, let Qz = N(z) ∩ S. Let Q =

⋃
z∈Z Qz. Note that Q

contains Su since u ∈ Z, that Q contains SA since ZA ⊆ Z, and that Q contains SB. The
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latter is due to the fact that the vertices in D dominate SB by choice, and each ZD where
D ∈ D dominates N(D) ∩ SB . We illustrate this situation in Figure 3. It remains to get a
grip on Sv.

To do so, let S′ = (S \ {v}) ∪ (N(v) ∩ B), and note that S′ separates A ∪ {v} from
B̃ \ {u}. Let S′′ be a minimal subset of S′ that still separates A ∪ {v} from B̃ \ {u}. Note
that there are components A′′ ⊇ A ∪ {v} and B′′ ⊇ B̃ \ {u} that are full to S′′ and S′′ is a
minimal separator. Now let R = N(v) ∩ S′′ ∈ Sv

G, so there are at most nk+2 choices for R,
by Lemma 5. We observe that R ⊇ Sv, which is due to the fact that B̃ \ {u} dominates Sv,
and that S′′ separates {v} from B̃ \ {u}.

▷ Claim 9. There are at most nk2(k+2) choices for Q, and at most nk+2 choices for R.

Proof. We already observed the second statement of the claim above. For the first statement,
by Claims 6, 7 and 8, we know that |Z| < k2, so there are at most nk2 choices for Z. For
each z ∈ Z, Qz ∈ Sz

G, so by Lemma 5, there are at most nk2(k+1) choices for each Qz, and
therefore at most nk2(k+2) choices for Q. ◁

Now, let G0 = G − (Q ∪ R) and S0 = S \ Q \ R. Note that S0 ⊆ S \ Su \ Sv \ SA \ SB.
Moreover, A is a connected component of G0 − S0, and there is a connected component B0
of G0 − S0 that contains B̃ \ {u}. We conclude that S0 is a minimal separator of G0, with A

and B0 being connected components of G0 − S0 that are full to S0. We now show that we
can use the induction hypothesis to bound the number of choices for S0.

▷ Claim 10. ζG0(S0) < ζG(S).

Proof. Let I0 ⊆ S0 be an independent set such that for all y ∈ V (G0) \ S0, |NG0(y) ∩ I0| ≤ 1.
Let I = I0 ∪ {v}; I is still an independent set since S0 ⊆ S \ NG(v). We argue that for all
y ∈ V (G) \ S, |NG(y) ∩ I| ≤ 1. Suppose that y ∈ NG(v). Since S0 ∩ (SA ∪ SB) = ∅, we have
that NG(y) ∩ S0 = ∅ and therefore |NG(y) ∩ I| = 1. We may now assume that y /∈ NG(v).
Suppose that |NG(y) ∩ I| > 1. Since y /∈ NG(v), we conclude that y /∈ V (G0) \ S0, otherwise
y would have at least two neighbors in I0, a contradiction with the choice of I0 in S0 in the
graph G0. This means that y ∈ R \ S, and therefore y ∈ NG(v) ∩ B, which is a contradiction
with our assumption that y /∈ NG(v). ◁

The number of choices for u, v, Q, and R is at most n2+(k2+1)(k+2), see Claim 9. For S0,
there are at most n(L−1)(4+(k2+2)(k+2)) choices by Claim 10 and the induction hypothesis.
Given Q, R, and S0, there are at most n choices for A ∈ CC(G − Q − R − S0) and we
obtain S as N(A). Taking into account also at most nk+2 separators S for which there exists
v ∈ V (G) \ S with S ⊆ N(v), the number of separators of G is bounded by

n2+(k2+1)(k+2) · n(L−1)(4+(k2+2)(k+2)) · n + nk+2

≤ n4+(k2+1)(k+2) · n(L−1)(4+(k2+2)(k+2)) ≤ nL(4+(k2+2)(k+2)).

This completes the proof.

4 Wrapping up the proof of Theorem 2

To conclude the proof of Theorem 2, we observe that the following statement essentially
follows from the combinations of Lemma 9 and the proof of Lemma 15 of [4].

▶ Lemma 11 ([4]). If G is a k-creature-free graph that contains a minimal separator S with
ζG(S) > (8k2)k+2, then G contains a k-skinny-ladder as an induced minor.
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Proof (sketch). Let G and S be as in the lemma statement. Let I0 ⊆ S be an independent
set of size ζG(S) such that no vertex v ∈ V (G) \ S is adjacent to more than one vertex of I0.

Let L0 and R0 be two full sides of S. Lemma 9 of [4] asserts that there exists an induced
path L in L0, an induced path R in R0, and a set I ⊆ I0 of size at least |I0|/k2 > (8k2)k+1

such that L dominates I and R dominates I.
This is exactly the situation at the end of the first paragraph of the proof of Lemma 15

of [4]. A careful inspection of that proof shows that the remainder of the proof (as well as
the invoked Lemmata 8, 13 and 14) do not use other assumptions of Lemma 15. Hence, we
obtain the conclusion: a k-skinny ladder as an induced minor of G. ◀

By combining Theorem 4 and Lemma 11, we obtain Theorem 2.

5 Conclusion

In Theorem 2 we showed that if a graph class G excludes k-creatures as induced subgraphs
and k-skinny ladders as induced minors, then G is tame. However, note that while k-creatures
have exponential (in k) number of minimal separators, this is not the case for k-skinny
ladders: the class of k-skinny ladders (over all k) is tame. Thus the implication reverse to
the one in Theorem 2 does not hold.

Observe that the full tame/feral dichotomy for arbitrary hereditary graph classes is simply
false due to some very obscure examples. Let Hk be the (k, 2k + 1)-theta graph: k paths of
length 2k + 1 with common endpoints. Note that Hk has 2k2 + 2O(k) minimal separators
(2k2 of them choose one internal vertex on each path) and k2k + 2 vertices, so the number
of minimal separators of Hk is around |V (Hk)|log |V (Hk)|. Hence, the hereditary class of all
induced subgraphs of all graphs Hk for k ∈ N is neither tame nor feral.

However, it is still interesting to try to obtain a tighter classification between tame and
feral graph classes for some more “well-behaved” hereditary graph classes. As discussed in
Conjecture 4 of [4], a good restriction that excludes artificial examples as in the previous
paragraph is to focus on induced-minor-closed graph classes.
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Abstract
Let T be an ordinal tree on n nodes in which each node is assigned a color. We consider the batched
colored path counting problem and the batched path mode/least frequent element query problem,
in which given n query paths, each identified by a pair of nodes in T , one is asked to answer queries
of the following forms: How many distinct colors are there on each query path (i.e. the colored path
counting problem); what is the color on each query path that occurs at least/most as frequently
as any other colors (i.e. the path mode/least frequent element query problem). By reducing the
batched colored path counting problem to sparse matrix multiplication, we design a solution that
answers n colored path counting queries in Õ(n

2ω
ω+1 ) = O(n1.40704) time in total, while we reduce

batched path mode/least frequent element query to the min-plus-query-witness problem so that
we can answer a batch of n queries in Õ(n

24+2ω
17+ω ) = O(n1.483814) time1. Previously, both problems

could only be solved in Õ(n1.5) time.
Based on similar techniques, we design a dynamic colored path counting structure supporting

both queries and updates in Õ(n
ω+1
ω+3 ) = O(n0.627759) time, while our dynamic path mode/least

frequent element query structures support each operation in Õ(n
16+ω(1,2,1)
26+ω(1,2,1) ) = O(n0.658139) time,

where ω(1, 2, 1) denotes the minimum value such that the product of an n × n2 matrix and an n2 × n

matrix can be computed in O(nω(1,2,1)+ϵ) time for any constant ϵ > 0. We also solve batched range
mode/least frequent element query problems over arrays in Õ(n

18+2ω
13+ω ) = O(n1.479603) time. Both

problems can be viewed as special cases of these batched path queries, and previously, the fastest
algorithm for batched range mode queries and batched range least frequent element queries use
O(n1.4805) and Õ(n1.5) time, respectively.
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1 Introduction

Trees are used to represent information in many areas of computer science. In tree-structured
data, additional properties such as categorical information are often encoded as colors of
tree nodes. To facilitate the retrieval of color information, researchers have defined the
following queries over an ordinal tree T on n nodes with each node assigned a color from

1 The Õ notation hides the polylog(n) factors, e.g., O(n lg2 n) = Õ(n), and ω denotes the best possible
exponent of square matrix multiplication.
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{0, 1, . . . , C − 1}, where C ≤ n: Given a path in T , a path colored counting query returns the
number of distinct colors assigned to the nodes in this path, while a path mode query or a
path least frequent element query returns the most frequent or the least frequent color among
the multiset of colors assigned to nodes in this path, respectively2. The color that is assigned
to the most number of nodes in a path is called the mode of the path. These queries can be
used to compute fundamental statistic information over tree-structured data.

Researchers have studied these query problems and designed data structure solutions [32,
11, 21]. Different time-space tradeoffs have been achieved, and among the best linear-space
solutions under word RAM, the structure of He and Kazi [21] can answer a colored path
counting query in O(

√
n lg lg C) time, while the solutions of Durocher et al. [11] can answer

a path mode query or a path least frequent element query in O(
√

n/w lg lg n) time, where
w denotes the number of bits stored in a word. The support for these queries is thus
much slower than the support for many other path queries in trees such as path minimum
[9, 2, 30, 10, 5, 8], path medium [32, 35, 24, 25], path counting [9, 32, 35, 24, 25] and path
majority [11, 13], for which linear-space solutions with sublogarithmic or even constant query
times exist.

However, researchers have given evidence to show that these solutions to colored path
counting, path mode and path least frequent element are efficient, by proving conditional
lower bounds. It has been shown that the multiplication of two

√
n ×

√
n Boolean matrices

can be performed by answering n colored path counting queries, n path mode queries or n

path least frequent element queries. This reduction was explicitly given for colored path
counting [21], while for the other two path queries, it follows from the same conditional
lower bound on range mode queries [6] and range least frequent element queries [7] in arrays,
for which we preprocessing an array A, such that, given a range [i, j], we can find the
most frequent or least frequent element in A[i, j] efficiently. Note that when the given tree
has a single path only, path mode and path least frequent element queries become range
mode and range least frequent element queries, respectively. This reduction means, with
current knowledge, the total running time of answering n of these path or range queries,
including preprocessing, cannot be faster than nω/2, save for polylogarithmic speedups,
where ω < 2.37286 denotes the exponent of matrix multiplication [1]. Furthermore, since
the best known combinatorial approach of multiplying two n × n Boolean matrices require
Θ(n3/polylog(n)) time [38], the total time of answering n of these queries cannot be faster
than n1.5, save for polylogarithmic speedups, using pure combinatorial methods with current
knowledge. Since the structures of He and Kazi [21] and Durocher et al. [11] can be built
in Õ(n1.5) time, they can be used to answer n colored path counting or path mode/least
frequent element queries in Õ(n1.5) time, matching this conditional lower bound on pure
combinatorial methods within polylogarithmic factors.

The problem of answering n queries given offline is the batched version of these query
problems. To achieve O(n1.5−ϵ)-time solutions for some positive constant ϵ, Williams and
Xu [37] reduced batched range mode to the min-plus product of a pair of matrices of special
structures, which makes it possible to answer a batch of n range mode queries over an array
of length n in O(n1.4854) time. Gu et al. [17] further improved the running time to O(n1.4805).
Similar ideas have also yielded dynamic range mode structures with O(n0.655994) query and
update times [17]. This is surprising as Jin and Xu [27] showed that dynamic range mode

2 These problems can also be defined over free trees. However, we follow the definitions given in previous
work [11, 21] and assume that T is an ordinal tree, as this allows us to directly apply previous solutions
to the problems defined over ordinal trees.



Y. Gao and M. He 59:3

structure cannot simultaneously support update and query in O(n2/3−ϵ) time for any positive
constant ϵ using purely combinatorial method with current knowledge. Even before that,
Kaplan et al. [31] used sparse matrix multiplication to answer n 2D orthogonal colored range
counting queries over n colored points on the plane in Õ(n

2ω
ω+1 ) total time. This query counts

the number of distinct colors assigned to points in an axis-aligned query rectangle and is
related to path colored counting in the sense that they both generalize 1D colored range
counting [14, 34] and have the same conditional lower bound.

Despite all these exciting works which beat the conditional lower bounds for combinatorial
methods, no previous work was done to solve batched colored path counting or batched path
mode in O(n1.5−ϵ)-time. No similar results were achieved for batched range least frequent
queries in arrays or batched path least frequent element, either. Therefore, we use matrix
multiplication and min-plus product to solve these problems and their dynamic versions.

1.1 Previous Work
The study on colored range counting started in the 1D case, for which Gupta et al. [19]
showed a reduction to 2D orthogonal range counting over uncolored points, hence achieving
a linear space solution with O(lg n/ lg lg n) query time. This problem has been studied
extensively in 2D [18, 31, 16, 33, 15], for which Kaplan et al. [29] proved the conditional lower
bound based on Boolean matrix multiplication which we discussed previously. They further
designed a data structure occupying O((nt )2 lg6 n + n lg4 n) words that supports 2D colored
range counting in O(t lg7 n) time for any 0 < t ≤ n, which was later improved by Gao and
He [15] who shaved off several log n-factors in time/space bounds. Kaplan et al. also showed
how to solve batched 2D orthogonal colored range counting in Õ(n

2ω
ω+1 ) = O(n1.40704) time by

reducing it to sparse matrix multiplication. Recently, Jin and Xu [27] presented a dynamic 2D
orthogonal colored range counting structure with Õ(n2/3) query and update times. Colored
range counting has also been studied in high dimensions [18, 31, 16]. Finally, He and Kazi [21]
considered colored path counting in trees and proved a conditional lower bound which is
also based on Boolean matrix multiplication. They designed an O(n + n2

t2 )-word structure
that answers queries in O(t lg lg C) time for any t ∈ [1, n], and it can be constructed in
O(n

2

t lg lg C) time. Hence it implies an O(n3/2 lg lg C)-time solution to batched colored path
counting.

Since Krizanc et al. [32] proposed range and path mode query problems, a long series of
papers have been published on these and related problems [32, 6, 7, 12, 37, 36, 17, 27]. The
best linear-space solutions include the structure of Chan et al. [6] that answers range mode
queries in arrays in O(

√
n/w) time, the structure of Durocher et al. [11] that answers range

least frequent element queries in arrays in O(
√

n/w) time, and the structures of Durocher
et al. [11] that answer path mode / least frequent elements in trees in O(

√
n/w lg lg n)

time. Chan et al. [6] also studied dynamic range mode in arrays, and their solution was
later improved by El-Zein et al. [12], whose linear-space structure supports both queries and
updates in O(n2/3) time. El-Zein et al. also designed a linear-space structure supporting range
least frequent element in O(n2/3 lg n lg lg n) time and updates in O(n2/3) time; different from
the original definition of range least frequent, the query is allowed to return a color that does
not appear in the query range but appears elsewhere in the array. A Monte Carlo structure
is designed in the dynamic case for the original range least frequent element query. It is
worth mentioning that all the results summarized in this paragraph use purely combinatorial
approaches. They match the conditional lower bounds [6, 7, 27] within polylogarithmic
factors.

ESA 2022
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Recently, more efficient solutions to the batched range mode problem in arrays [36, 37, 17]
have been found. Williams and Xu [37] reduced this problem to the min-plus product of
a pair of matrices. The second matrix has the property that the entries at each row are
non-decreasing, which allows designing a truly subcubic time algorithm for min-plus product
of two n × n matrices. With it, they can solve batched range mode in O(n1.4854) time. Later,
the query time was improved by Gu et al. [17] to O(n1.4805). Sandlund and Xu [36] broke
the O(n2/3) per-operation time barrier for dynamic range mode in arrays; they reduced the
problem to the min-plus-query-witness problem, and achieved a dynamic data structure
that supports both queries and updates in O(n0.655994) time. Later, Gu et al. [17] further
improved the time for each operation to O(n0.6524).

1.2 Our Contributions
Our Results. We have achieved the following results:

an Õ(n
2ω

ω+1 ) = O(n1.40704)-time algorithm for batched colored path counting in trees,
improving the previous best approach which solves this problem in Õ(n1.5) time [21];
an Õ(n

24+2ω
17+ω ) = O(n1.483814)-time algorithm for batched path mode/least frequent element

queries in trees, improving the previous best result with Õ(n1.5) running time [11];
an Õ(n

18+2ω
13+ω ) = O(n1.479603) time algorithm for batched range mode/least frequent

element queries in arrays, while the previous best results solve batched range mode in
O(n1.4805) time [17] and batched range least frequent element in Õ(n1.5) time [11];
a dynamic colored path counting structure for trees supporting queries and updates in
Õ(n

ω+1
ω+3 ) = O(n0.627759) time, while the best dynamic structure for 2D orthogonal colored

range counting, as a related problem, supports each operation in Õ(n2/3) time [27];
a dynamic data structure for path mode/least frequent element queries in trees supporting
queries and updates in Õ(n

16+ω(1,2,1)
26+ω(1,2,1) ) = O(n0.658139) worst-case time. Here, ω(1, 2, 1)

denotes the minimum value such that the product of an n × n2 matrix and an n2 × n

matrix can be computed in O(nω(1,2,1)+ϵ) time for any constant ϵ > 0. These bounds
are close to the O(n0.6524) query and update times for dynamic range mode [17] which
can be viewed as a special case of dynamic path mode, while the previous best result for
dynamic range least frequent element supports queries and updates in Õ(n2/3) time [12].

Overview of Our Approach. To achieve these results, we develop new algorithmic ideas to
address the challenges we encounter due to the tree topology. The first challenge is how to
apply a divide-and-conquer approach to batched path queries. The solution of Williams and
Xu [37] to batched range mode recursively divides the input array into halves, and at each
level of recursion, they build data structures to answer queries whose ranges straddle the
midpoint. This ensures that the set of possible queries considered share subranges instead of
being disjoint, facilitating preprocessing. The solution of Kaplan et al. [31] to batched 2D
orthogonal colored range counting is based on a similar idea in 2D. To adapt to tree topology,
we apply the centroid decomposition of trees recursively instead. Then, in each component
obtained as a result of the decomposition, we preprocess for queries whose paths cross the
centroid. This decomposition scheme helps us solve all three batched path queries.

When preprocessing for query paths that contain the centroid in a component, we mark a
subset of nodes and attempt to use either sparse matrix multiplication or min-plus product
as in previous work. However, more twists to previous approaches are needed. In the solution
of Kaplan et al. [31] to batched 2D orthogonal colored counting, the matrices that they
need to multiply during preprocessing are already sparse. This is however not the case in
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our solution to batched path colored counting. To resolve this, we use the properties of
our node marking scheme to carefully reduce the problem of multiplying these matrices to
the multiplication of two different but related matrices that are sparse. There is a similar
challenge for batched path mode. Previous solutions to batched range mode in [36, 17]
reduces the preprocessing for each set of query ranges to the min-plus-query-witness problem
over two matrices of which the second matrix is monotone, i.e., entries in the same row are
non-decreasing.This allows applying strategies such as dividing each entry by a carefully
chosen integer and rounding down the result to decrease the number of different entries in
the matrix. In our case, due to the tree topology, the second matrix is not monotone, so
this way of applying integer division fails to decrease the number of different entries. To
resolve this issue, we design a two-tier scheme to mark nodes for preprocessing, and use the
properties of this marking scheme to reduce the weights of entries of the second matrix using
different formulas depending on at which tier the corresponding tree nodes are marked. This
allows us to decrease the number of different entries to speed up preprocessing.

In range mode queries over arrays, the input elements are split into two categories, i.e.,
frequent elements and infrequent elements, based on the frequency of each distinct element,
and the elements in the different categories are processed in different ways. As mentioned
above, the min-plus-query-witness problem was considered in [36, 17] to solve dynamic range
mode, and it is used to handle frequent elements. Naturally, a data structure that solves
dynamic range mode on arrays can answer static range mode queries as well. By combining
an existing solution to the min-plus-query-witness problem shown in [17, Lemma 33] and a
static data structure that handles infrequent elements shown in [37, Proof of Theorem 6.1],
we design a static data structure for range mode queries on arrays. This simple combination
leads to a new static data structure with faster preprocessing time and query time.

In this paper, we describe our solutions to batched colored path counting and batched
path mode queries to show the details of these ideas. Due to space constraints, our solutions
to other problems such as batched range mode queries in arrays, batched range least frequent
element queries in arrays, dynamic path colored counting, dynamic path mode queries, and
dynamic path least frequent queries are deferred to the full version of this paper.

2 Preliminaries

This section introduces the notation and the previous results used in this paper.

Notation. Given an ordinal tree T , let |T | denote the number of nodes in T , and let ⊥
denote its root. For any two nodes x, y ∈ T , we use Px,y to represent the path whose
endpoints are x and y. Thus, Px,⊥ is a root-to-node path. If y is an ancestor of x, then P ′

x,y

is defined to be the path whose endpoints are x and the child of y that is an ancestor of x,
i.e., P ′

x,y = Px,y \ {y}. Furthermore, c(x) denotes the color assigned to x, and C(Px,y) (or
C(P ′

x,y)) denotes the set of colors that appear in Px,y (or P ′
x,y). Finally, Tx refers to the

subtree of T rooted at node x, and parent(x) is the parent of x.

Navigation in colored ordinal trees. Regarding each tree node color as integer label, the
input tree, studied in this paper, is both an ordinal tree and a labeled tree. To support the
basic navigational operations on it, we apply the succinct representation of ordinal trees by
[22] and the result of He et al. [23] on labeled tree representations. The following lemma
summarizes the operations used in our solution and the complexity. Following their notation,
we call a node (resp. ancestor) assigned color α an α-node (resp. α-ancestor).
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▶ Lemma 1 ([22, 23]). Let T be an ordinal tree on n nodes with each node assigned a color
from {0, 1, . . . , C − 1}, where C ≤ n. A data structure occupying n lg C + 2n + o(n lg C) bits
can be built over T in O(n) time to support:

depthα(x) in O(lg lg C) time, which returns the number of α-ancestors of node x;3
depth(x) in O(1) time, which returns the number of ancestors of x;
LCA(x, y) in O(1) time, which returns the lowest common ancestor of nodes x and y.

Given a query path Px,y and a color α in a tree T represented by Lemma 1, He and
Kazi [21] showed how to use depthα and LCA to compute the number of appearances of α in
Px,y in O(lg lg C) time. This implies the support of colored path emptiness, which asks whether
a color α appears in Px,y. We can further use it to compute {|C(Px,⊥)| : x ∈ T )}, i.e., the
numbers of distinct colors on all root-to-node paths. To do this, perform a preorder traversal
of T , and each time we visit a node x, we compute |C(Px,⊥)| as follows: If x is the root, then
|C(Px,⊥)| is 1. Otherwise, locate x′ = parent(x), and answer a colored path emptiness query
to find out whether c(x) appears in Px′,⊥. If it does, set |C(Px,⊥)| = |C(Px′,⊥)|; otherwise,
|C(Px,⊥)| = |C(Px′,⊥)| + 1. This process uses O(n lg lg C) time.

Node sampling. In our solutions, we use the following lemma based on the pigeonhole
principle to select a subset of tree nodes and precompute information for them.

▶ Lemma 2 ([26]). Let T be a tree on n nodes whose height is h. Given an integer t ∈ [1, n],
an integer ℓ ∈ [0, t − 1] can be found in O(n) time such that the total number of nodes whose
depths are ℓ + i × t for some i ∈ [0, ⌊h−ℓ

t ⌋] is at most n/t.

Sparse rectangular matrix multiplication. We use the following result of Kaplan et al. [31]:

▶ Lemma 3 ([31, Theorem 2.5]). Let A be an m×n matrix having at most t non-zero entries,
where t ≥ m

ω+1
2 . Then, given the list of non-zero entries of A as the input without storing A

verbatim, the product of A and the transpose of A can be computed in O(tm ω−1
2 ) time.

3 Batched Colored Path Counting

We first design a data structure to answer a restricted version of colored path counting which
requires the query path to contain the root (Section 3.1). Then we generalize it to handle
arbitrary paths, which yields a new result for batched colored path counting (Section 3.2).

3.1 Color Counting over Paths Containing the Root
Data structures. To design a data structure for a restricted version of colored path counting
which requires the query path to contain the root, we first represent the tree T using Lemma 1.
As discussed in Section 2, this structure supports colored path emptiness. Then, for an
integer parameter 0 < X ≤ n to be chosen later, we select at most n/X nodes of T using
Lemma 2 and mark them. This means we mark nodes at every X levels of T , starting from
some level ℓ ∈ [0, X − 1] determined by Lemma 2. In addition, we mark the root node as

3 Note that the structure of He et al. [23] can support depthα(x, i) in O(lg lg C
lg w ) time, faster than what is

stated in Lemma 1. However, this requires a string representation with support for rank and select [4]
which uses perfect hashing, and it is not known how to construct this structure in O(n) deterministic
time. Therefore, we swap it with the string representation of Belazzougui et al. [3] which can be
constructed in linear deterministic time and achieve the bounds in Lemma 1.
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well. This means the number, m, of nodes that we mark satisfies m ≤ n/X + 1. We refer to
the i-th marked node visited in a preorder traversal as the i-th marked node for short, where
i starts from 0, and this node is denoted by xi. Thus, x0 is the root. For each marked node
x, we precompute r(x) which is the rank of x among marked nodes defined this way, as well
as the value |C(Px,⊥)|. Furthermore, each node in the tree stores a flag indicating whether it
is marked, as well as a pointer to the lowest marked proper ancestor.

Next, we construct an m × m matrix M . For every pair of integers i and j in [0, m − 1],
M [i, j] stores |C(Pxi,⊥) ∩ C(Pxj ,⊥)|, i.e., the number of distinct colors that appear in both
the path between the i-marked node and the root and the path between j-th marked node
and the root. It is worth mentioning that our query algorithm to be described later only
uses entries of M that correspond to two marked nodes whose lowest common ancestor is
the root. The other entries are never used, but we precompute them regardless.

Overall, our data structures use O(n + ( nX )2) words.

Query algorithm. To describe the query algorithm, let Px,y denote a query path containing
the root. Since ⊥∈ Px,y, we always have LCA(x, y) =⊥. W.l.o.g., we assume that neither
x nor y is the root node. Let x′ and y′ denote the lowest marked ancestors of x and
y, respectively, and we divide the query path Px,y into three disjoint subpaths: P ′

x,x′ ,
Px′,y′ and P ′

y,y′ . Following the inclusion-exclusion principle, we have that |C(Px′,y′)| =
|C(Px′,⊥)| + |C(P⊥,y′)| − M [r(x′), r(y′)]. Since the three terms at the right-hand side of this
formula have all been precomputed, |C(Px′,y′)| can be computed in constant time. Next, we
count the number of distinct colors that appear in P ′

x,x′ but not in Px′,y′ . This can be done
by iterating through each node z in P ′

x,x′ in the direction towards x and check whether c(z)
appears in Pparent(z),y′ by performing a path emptiness query. The number of distinct colors
that are in P ′

y,y′ but not in Px,y′ can be counted in a similar way. Adding these two counts
to |C(Px′,y′)| yields the answer. Since x (resp. y) and x′ (resp. y′) are at most X − 1 levels
apart, the query time is O(X lg lg C). This query algorithm is adapted from an algorithm of
He and Kazi [21] for arbitrary query paths, though we use a different matrix.

Preprocessing. Lemmas 1 and 2, together with the discussions on how to compute
{|C(Px,⊥)| : x ∈ T} in Section 2, can be applied to construct all our data structure
components except the matrix M in O(n lg lg C) time. To compute M , one way is to define
an m × C matrix A, in which entry A[i, α] = 1 if color α ∈ C(Pxi,⊥), and it is 0 otherwise.
Then we compute M as AAT , where AT denotes the transpose of A. However, since C can
be as large as n, the multiplication of A and AT can be costly.

Instead, to compute M , we use the computation of two related but different m × m

matrices as stepping stones, and one of these two, which we call M̂ , can be computed
via sparse rectangular matrix multiplication [31]. Before defining M̂ , we introduce more
notation. Let a be a marked node and b its lowest marked proper ancestor. We define
Ĉ(a) = C(P ′

a,b)\C(Pb,⊥), i.e., the set of colors that appear on the path from a to b (including
a but excluding b) but not on the path between and including b and the root. Since there
are at most X nodes in P ′

a,b, we have |Ĉ(a)| ≤ X.
With these definitions, we can define M̂ as an m × m matrix, in which, for each pair of

integers i, j ∈ [0, m − 1], M̂ [i, j] stores |Ĉ(xi) ∩ Ĉ(xj)|. To compute M̂ [i, j], we define an
m × C matrix Â, and for each integer i ∈ [0, m − 1] and each color α ∈ [0, C − 1], Â[i, α] is
set to be 1 if α ∈ Ĉ(xi) and 0 otherwise. Then M̂ = ÂÂT . Since each row of Â indicates
whether each color appears in the set Ĉ(a) for some marked node a, each row has at most X

non-zero entries. Since Â has m rows and m ≤ n/X + 1, overall Â has at most n + X ≤ 2n
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non-zero entries only. A list of non-zero entries of Â can be computed in O(n) time; the
details are omitted due to page limit. With these non-zero entries as input, we can apply
Lemma 3 to compute M̂ in O(n(ω+1)/2/X(ω−1)/2) time for any X ∈ [n(ω−1)/(ω+1), n].

The other m × m matrix that is used to help us compute M is called M ′. For each
pair of integers i, j ∈ [0, m − 1], entry M ′[i, j] stores |Ĉ(xi) ∩ C(Pxj ,⊥)|. To compute M ′,
we perform a preorder traversal of T . Each time we visit a marked node xj , we compute
the j-th column of M ′ as follows: If xj =⊥, then j = 0 and, for each i ∈ [0, m − 1], we
set entry M ′[i, 0] to be 0, since c(⊥) /∈ Ĉ(xi). If xj is not the root, we locate the lowest
marked proper ancestor, y, of xj . Since y is visited before xj , M ′[i, r(y)] has already been
computed, and we set M ′[i, j] = M ′[i, r(y)] + M̂ [i, j]. To see the correctness, observe that
M ′[i, j] = |Ĉ(xi) ∩ C(Pxj ,⊥)| = |Ĉ(xi) ∩ (C(Py,⊥) ∪ Ĉ(xj))|; since C(Py,⊥) ∩ Ĉ(xj) = ∅, this
is equal to |Ĉ(xi) ∩ C(Py,⊥)| + |Ĉ(xi) ∩ Ĉ(xj)| = M ′[i, r(y)] + M̂ [i, j]. This way we can
compute M ′ in O(n + ( nX )2) time provided that M̂ is available.

After computing M̂ and M ′, we can compute M by performing another preorder traversal
of T. Each time we visit a marked node xi, we compute the i-th row of M as follows: If
xi =⊥, then M [i, j] = 1 for any j ∈ [0, m − 1]. Otherwise, we locate the lowest marked
proper ancestor, y, of xi. Since y is visited before xi, M [r(y), j] has already been computed,
and we set M [i, j] = M [r(y), j] + M ′[i, j]. To see the correctness, observe that M [i, j] =
|C(Pxi,⊥) ∩ C(Pxj ,⊥)| = |(C(Py,⊥) ∪ Ĉ(xi)) ∩ C(Pxj ,⊥)|; since C(Py,⊥) ∩ Ĉ(xi) = ∅, this is
equal to |C(Py,⊥) ∩ C(Pxj ,⊥)| + |Ĉ(xi) ∩ C(Pxj ,⊥)| = M [r(y), j] + M ′[i, j]. In this way, we
can compute M in O(n + ( nX )2) time after computing M̂ and M ′. The total preprocessing
time is hence O(n lg lg C + ( nX )2 + n(ω+1)/2

X(ω−1)/2 ) for any integer X ∈ [n
ω−1
ω+1 , n].

3.2 Color Counting on an Arbitrary Path
We now generalize the structure in the previous section to support queries over arbitrary
paths. Our strategy is to decompose T recursively using centroid decomposition [28]; a
centroid of an n-node tree is a node whose removal splits the tree into connected components
each containing at most n/2 nodes, and this node can be found in O(n) time.

At level 0 of the recursion, the given tree T is a connected component by itself and we
call it the level-0 component. We find a centroid, u, of T , and define a new rooted tree Tu

by designating u as the root of T , reorienting edges when necessary. Then we build the
query structure in Section 3.1 over Tu. Afterwards, we remove u from T , and build our
data structure recursively over each connected component that has more than X nodes. In
general, at the i-th level of the recursion, we have a set of connected components called
level-i components obtained by removing from T the centroids computed in previous levels of
the recursion. For each component, we compute its centroid and designate the centroid as
the root of this component to build the query structure of Section 3.1. One minor detail
is that, before building the query structure over a component of size n′, we need to ensure
that colors are encoded as nonnegative integers less than n′. Thus, when n′ ≤ C, we sort the
colors that appear in this component using integer sorting in O(n′ lg lg n′) = O(n′ lg lg C)
time [20] and re-encode these colors using their ranks. Then we remove the centroid of each
level-i component to split it into a set of level-(i + 1) components and recurse. When a
component has at most X nodes, we no longer apply this recursive procedure to it, and we
call it a base component. Thus, we have O(lg(n/X)) recursion levels.

In addition, for each node x ∈ T , we store a list of O(lg(n/X)) pointers, and the i-th
pointer maps x to its copy in a level-i component; this pointer is a null if x is removed as
a centroid node found in a previous level. Furthermore, we build a weighted tree T ′ by
assigning weights to the nodes of T as follows: If a node x is chosen as the centroid node of
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a level-i component, its weight is i. If x is never chosen as a centroid, then its weight is ∞.
Then we construct the linear-space data structure of Chan et al. [8, Theorem 1.1] to support
path minimum queries over T ′ in constant time; a path minimum query returns the node
with minimum weight in a given query path.

Since we have O(lg(n/X)) recursion levels, both the space costs and construction time of
this new structure is a factor of O(lg(n/X)) more than those of the structure in Section 3.1;
the detailed analyses are deferred to the full version of this paper. To answer a query with
Px,y as the query path, query T ′ to find the smallest weight, s, assigned to nodes in Px,y. If
s = ∞, then x and y are in the same base component, and thus Px,y has at most X vertices.
We can traverse Px,y in T to count the number of distinct colors; each time we visit a new
node, we perform a path emptiness query to determine whether we have already encountered
this color. This way we can answer the query in O(X lg lg C) time. Otherwise, observe that
no nodes in Px,y are chosen as centroids for recursion level s − 1 or smaller. Therefore, x and
y must reside in a same level-s component S, and Px,y contains the centroid of S. Since this
centroid is designated as the root of S before building the query structure of Section 3.1 over
S, we can use this query structure to answer the query in O(X lg lg C) time. Thus we have:

▶ Lemma 4. Let T be a colored ordinal tree on n nodes with each node assigned a color from
{0, 1, . . . , C−1}, where C ≤ n, and let X be an arbitrary integer in [n

ω−1
ω+1 , n]. A data structure

of O((lg n
X )(n + n2

X2 )) words can be constructed in O((lg n
X )(n lg lg C + ( nX )2 + n(ω+1)/2

X(ω−1)/2 )) time
to support colored path counting query in O(X lg lg C) time.

We finally solve the batched colored path counting problem by first building the query
structure of Lemma 4 and then using it to answer n queries. Setting X = n

ω−1
ω+1 yields:

▶ Theorem 5. A batch of n colored path counting queries over a colored tree T on n nodes
can be answered in Õ(n

2ω
ω+1 ) = O(n1.40704) time in total.

4 Batched Path Mode Queries

To solve batched path mode queries over tree T , let t1 and t2 be two constant parameters
such that 0 ≤ t2 ≤ t1 ≤ 1. We categorize node colors into two different types: a color α is an
infrequent color if it is assigned to at most n1−t1 nodes in T ; otherwise, we call it a frequent
color. Thereby, a mode of a query path could be either a frequent or an infrequent color.
We use the following lemma to find the most frequent element in the multiset of infrequent
colors assigned to the nodes in a query path Px,y; due to space constraints, we defer the
proof to the full version of this paper.

▶ Lemma 6. An O(n2−t1 lg4 n)-word structure can be constructed in O(n2−t1 lg5 n) time,
such that, given a query path Px,y, the most frequent element and its frequency in the multiset
of infrequent colors assigned to the nodes in Px,y can be computed in O(n1−t1 lg5 n) time.

To find the most frequent element in the multiset of frequent colors that appear in Px,y,
we mark O(n1−t2) nodes using a two-level marking scheme (Section 4.1). Section 4.2 then
handles the case in which the endpoints of a query path containing the root are both marked.
Finally, We assemble all components in Section 4.3 and solve batched range mode.

4.1 Marking O(n1−t2) Nodes
Let X be an integer parameter in [nt2 , n] to be determined later. We choose at most n/X

nodes of T using Lemma 2, mark these nodes and the root, and call them tier-1 marked
nodes. Since the tier-1 marked nodes form a subset of levels of T , removing them splits T
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into a forest of subtrees. Then we use the same lemma to mark nodes at every ⌈nt2⌉ levels
of each subtree starting from some level of the subtree, and these nodes are called tier-2
marked nodes. Since the total number of nodes over all subtrees is less than n, there are
O(n1−t2) tier-2 marked nodes. We regard both tier-1 and tier-2 marked nodes as marked
nodes, and there are O(n/X + n1−t2) = O(n1−t2) marked nodes in total. It follows that a
path that connects any non-root node to its lowest marked proper ancestor contains no more
than ⌈nt2⌉ + 1 nodes. As before, we refer to the i-th marked node, xi, visited in a preorder
traversal as the i-th marked node for short, starting from 0, and r(x′) is the rank of the
marked node x′.

4.2 Paths with Marked Endpoints Containing the Root: Frequent Colors
Now, for a path Px′,y′ such that x′ and y′ are both marked nodes and ⊥∈ Px′,y′ , we show
how to find the most frequent element and its frequency in the multiset of frequent colors
assigned to nodes in Px′,y′\{⊥} = P ′

x′,⊥ ∪ P ′
y′,⊥. Note that for each color other than c(⊥),

its frequencies in P ′
x′,⊥ ∪ P ′

y′,⊥ and in Px′,y′ are exactly the same, while later we consider
c(⊥) separately. A frequent color appears more than n1−t1 times in T , so there are only
O(nt1) distinct frequent colors. We number the frequent colors incrementally starting from
0 in an arbitrary order, and we refer to the frequent color numbered by k as color fk. Let
µ denote the total number of marked nodes, and let κ denote the total number of distinct
frequent colors. Then µ = O(n1−t2) and κ = O(nt1). Next, we construct a µ × κ matrix
M . Corresponding to marked node xi and frequent color fk, Mi,k stores the negation of the
frequency of fk in path P ′

xi,⊥. It follows that the min-plus product4 of M and its transpose,
denoted by M ⋆ MT , is a µ × µ matrix, in which entry (M ⋆ MT )i,j stores the negation of
the maximum frequency of a frequent color in P ′

xi,⊥ ∪ P ′
xj ,⊥, provided ⊥∈ Pxi,xj . As before,

some entries of this matrix correspond to a pair of nodes whose lowest common ancestor is
not the root and are thus never used, but we compute these entries regardless. To compute
M ⋆ MT efficiently, it suffices to solve the following problem using M and MT as input
matrices.

▶ Problem 1 (Min-Plus-Query-Witness problem [36]). Build a data structure upon a pair of
input matrices A and B, such that, given two integers i and j and a set S of integers in a
query, the index k∗ with Ai,k∗ + Bk∗,j = mink/∈S{Ai,k + Bk,j} can be found efficiently.

Gu et al. [17] solved this problem with three preprocessing steps, which we generalize
for our solution. Henceforth, we use k∗ to denote the index such that Mi,k∗ + MT

k∗,j =
mink/∈S{Mi,k + MT

k,j}. All the proofs omitted from this section will be made available in the
full version of this paper.

Preprocessing Step 1. Gu et al. provided an efficient solution to Problem 1 when the second
input matrix is monotone, i.e., entries in the same row are non-decreasing. In our case, the
second matrix, MT , does not have such a property due to the tree topology. Therefore, our
first step is to generalize their definition of total range over a monotone matrix to our notion
of total difference, defined over an arbitrary a × b matrix A as

∑b−1
j=1(

∑a−1
k=0JAk,j ̸= Ak,j−1K),

in which the Iverson bracket JAk,j ̸= Ak,j−1K evaluates to 1 if Ak,j ̸= Ak,j−1 is true and 0
otherwise. We then bound the total difference of MT :

4 Given an m × n matrix A and an n × p matrix B, the min-plus product of A and B, denoted by A ⋆ B,
is the m × p matrix in which entry (A ⋆ B)i,j = mink{Ai,k + Bk,j}.
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▶ Lemma 7. The total difference of the matrix MT is O(n).

The total difference of MT is however not small enough to lead to an efficient solution
to Problem 1 directly. The strategy of Gu et al. is to divide each entry of the second
input matrix by a carefully chosen integer and round down the result, to decrease the total
difference of the matrix. However, the same method will fail to decrease the total difference
of MT , as MT is not monotone, so we design a new approach to construct a matrix B̃ from
MT that has a smaller total difference. To introduce this approach, we define p̂arent1(v)
to be node v’s lowest proper ancestor that is tier-1 marked and p̂arent(v) to be v’s lowest
proper ancestor that is either tier-1 or tier-2 marked. For a tier-1 marked node v̂1, let Rk(v̂1)
denote the frequency of the frequent color fk in P ′

v̂1,⊥, and for a tier-2 marked node v̂2, let
R′
k(v̂2) denote the frequency of fk in P ′

v̂2,p̂arent(v̂2) and Ψ(v̂2) denote the set of tier-2 marked
nodes in P ′

v̂2,p̂arent1(v̂2). We define parameter W to be ⌊nθ⌋, where θ is a constant with
0 ≤ θ ≤ 1. With the notations above, we introduce matrix B̃ which has the same size as
MT . For each pair (k, j), if the j-th column of MT corresponds to a tier-1 marked node
v̂1, then B̃k,j stores −⌊Rk(v̂1)

W ⌋. Otherwise, this column must correspond to a tier-2 marked
node v̂2; let v̂1 denote p̂arent1(v̂2) and we set B̃k,j = −⌊Rk(v̂1)

W ⌋ −
∑
u∈ψ(v̂2)⌊

R′
k(u)
W ⌋. Then

we can bound the total difference of B̃:

▶ Lemma 8. The total difference of B̃ is O( nX · nt1 + n
W ). Setting X to be ⌊Wnt1⌋, the total

difference of B̃ is O(n/W ).

We define a matrix Ã, in which entry Ãi,k = ⌊Mi,k

W ⌋, and a matrix C̃ ′ of the same size as
matrix M ⋆MT , in which C̃ ′

i,j stores the (|S|+1)-st smallest element in {Ãi,k+B̃k,j : k ∈ [κ]}.
Let [n] denote {0, 1, · · · , n − 1}. For each i ∈ [µ] and each j ∈ [µ], we define set Li,j to be
{(Ãi,k + B̃k,j , k) : k ∈ [κ]}. The small total difference of B̃ allows us to borrow ideas from
[17] to design a fast algorithm to compute C̃ ′ and to build a structure that maintains Li,j :

▶ Lemma 9. Matrix C̃ ′ can be computed in Õ(n2−2t2 + n(2−t2)/W ) time using matrices Ã

and B̃. Furthermore, in the same amount of time, a data structure of Õ(n2−2t2 + n(2−t2)/W )
words can be constructed upon Ã and B̃, such that, given a pair (i, j) and an integer t ≥ 1,
the t smallest pairs in Li,j, keyed by the first item of each pair, can be listed in Õ(t) time.

Preprocessing Step 2. In this step, we take matrices M , MT and C̃ ′ as input and partially
solve Problem 1 under certain conditions. Let ρ ≥ 0 be a parameter to be chosen later;
let c be any constant that is no less than 1. For each r ∈ [(c + 2)µρ ln n], we construct
matrices Ar and Br as follows: Sample jr uniformly at random from [µ]. Set Ar

i,k to be
Mi,k + MT

k,jr − W · C̃ ′
i,jr if |Mi,k + MT

k,jr − W · C̃ ′
i,jr | ≤ 2(W − 1) · (3 + W · n(t1−t2))

and Ar′

i,k = ∞ for all r′ < r; otherwise, set Ar
i,k = ∞. In addition, set entry Br

k,j to be
MT
k,j − MT

k,jr if MT
k,jr ̸= ∞; otherwise, set Br

k,j = 0. Following [17], for a pair (i, k), if
Ar
i,k ̸= ∞ for some r, we call (i, k) covered; otherwise it is uncovered. We call a triple

(i, k, j) weakly relevant if |Mi,k + MT
k,j − W · C̃ ′

i,j | ≤ 2(W − 1) · (3 + W · n(t1−t2)), and we
call a triple (i, k, j) almost relevant if 0 ≤ Ãi,k + B̃k,j − C̃ ′

i,j ≤ (W−1)·(3+W ·n(t1−t2))
W . Let

ω(1, t1/(1 − t2), 1) denote the smallest number such that the product of an n × ⌈nt1/(1−t2)⌉
matrix and an ⌈nt1/(1−t2)⌉ × n matrix can be computed in O(nω(1,t1/(1−t2),1)+ϵ) time for any
constant ϵ > 0. We have:

▶ Lemma 10. Given matrices Ar and Br, a data structure of Õ(2(W − 1)(3 + Wn(t1−t2)) ·
n(1−t2)·(ρ+2+ t1

1−t2
−σ) +n(1−t2)·(ρ+1+ 2t1

1−t2
−σ)) words can be built in Õ(2(W −1)(3+Wn(t1−t2))·

n(1−t2)·(ρ+ω(1,t1/(1−t2),1)+ t1
1−t2

−σ)) time to partially solve the min-plus-query-witness query
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problem upon matrices M and MT . More precisely, given a query (S, i, j), if (i, k∗) has been
covered, then k∗ can be found in Õ(|S| + n(1−t2)·(ρ+σ)) time, where ρ and σ are two constant
parameters with ρ ≥ 0, 0 ≤ σ ≤ t1

1−t2 . The randomized part in this preprocessing step can
be derandomized. Furthermore, after preprocessing, the number of triples that are almost
relevant and uncovered is O(n(1−t2)·(2+ t1

1−t2
−ρ)).

Preprocessing Step 3. Finally, for each pair (i, j), we define Vi,j = {(Mi,k + MT
k,j , k) :

(i, k, j) is an uncovered and almost relevant triple} and apply the same method in [17]:

▶ Lemma 11. In Õ(n2−2t2 + n(2−t2)/W + n(1−t2)·(2+ t1
1−t2

−ρ)) time, one can find all almost
relevant and uncovered triples and build a data structure of Õ(n2−2t2 + n(1−t2)·(2+ t1

1−t2
−ρ))

words upon them, such that, given a pair (i, j) and an integer t ≥ 1, the t smallest elements
in Vi,j, keyed by the first item in each pair, can be listed in Õ(t) time.

The Querying Procedure. The query algorithm is similar to the one shown in [17]. Let
(S, i, j) be the query parameters. If (i, k∗) is covered, then we use Lemma 10 to find k∗ in
Õ(|S|+n(1−t2)(ρ+σ)) time. Otherwise, we claim that Ãi,k∗ +B̃k∗,j−C̃ ′

i,j ≤ (W−1)(Wnt1−t2 +3)
W

(the proof will be made available in the full version of this paper); therefore, either (i, k∗, j)
is almost relevant, or Ãi,k∗ + B̃k∗,j − C̃ ′

i,j < 0. If (i, k∗, j) is almost relevant, then (Mi,k∗ +
MT
k∗,j , k∗) is among the (|S| + 1) smallest elements in Vi,j ; thereby, we can find k∗ in Õ(|S|)

time using Lemma 11. If Ãi,k∗ + B̃k∗,j − C̃ ′
i,j < 0, then (Ãi,k∗ + B̃k∗,j , k∗) is among the

(|S| + 1) smallest elements in Li,j ; we can find k∗ for this case in Õ(|S|) time using Lemma
9. As a result, we have solved the min-plus-query-witness problem over M and MT and
achieved Lemma 12. Recall that parameter W was set to be ⌊nθ⌋.

▶ Lemma 12. A data structure of Õ(n2−2t2 + n(1−t2)(1−θ)+1 + n(1−t2)(2+ t1
1−t2

−ρ)

+ n(1−t2)(ρ+1+ 2t1
1−t2

−σ) + n2θ(1−t2)+(t1−t2)+(1−t2)(ρ+2+ t1
1−t2

−σ)) words can be built upon M and
MT in Õ(n1+(1−t2)(1−θ) + n2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+ t1

1−t2
−σ) + n(1−t2)(2+ t1

1−t2
−ρ))

time, such that a query defined in Problem 1 can be answered in Õ(|S| + n(1−t2)(σ+ρ)) time,
where ρ ≥ 0, 0 ≤ σ ≤ t1

1−t2 , and 0 ≤ θ ≤ 1.

As a result, we can apply Lemma 12 to find the most frequent element and its frequency
in the multiset of frequent colors assigned to nodes in P ′

x′,⊥ ∪ P ′
y′,⊥ provided that x′ and y′

are marked and ⊥∈ Px′,y′ . In the static case, the excluded set S is always set to be empty.

4.3 Mode Queries on an Arbitrary Path
We first represent tree T using Lemma 1. As discussed in Section 2, this structure supports
finding the number of appearances of a color on a path in O(lg lg C) time. Then we mark
O(n1−t2) nodes of T as discussed in Section 4.1. We compute the number of appearances of
each color on T to determine whether it is frequent or infrequent. Then we construct the data
structures of Lemmas 6 and 12 for queries over infrequent and frequent colors, respectively.

Let Px,y be a query path containing the root. W.l.o.g., we assume that neither x nor y

is the root node. If Px,y contains less than two marked nodes, then, by our node-marking
strategy, |Px,y| = O(nt2). In this case, a mode on Px,y can be found in O(nt2) time. Otherwise,
let x′ and y′ denote the lowest marked ancestors of x and y, respectively, and we divide Px,y
into four disjoint parts: P ′

x,x′ , P ′
x′,⊥ ∪ P ′

y′,⊥, ⊥ and P ′
y,y′ . Since there are O(nt2) nodes in

P ′
x,x′ ∪ P ′

y,y′∪ ⊥, it requires O(nt2 lg lg C) time to scan the nodes in P ′
x,x′ ∪ P ′

y,y′∪ ⊥, and
for each color encountered, count its occurrences in Px,y. Let c1 be the color with maximum
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number of occurrences found this way. Then we apply Lemma 6 to find the infrequent color,
c2, with maximum frequency in Px′,y′ in Õ(n1−t1) time, and we query over the data structure
of Lemma 12, setting the excluded set S = ∅, to find the frequent color, c3, with maximum
frequency in P ′

x′,⊥ ∪ P ′
y′,⊥ in Õ(n(1−t2)(σ+ρ)) time. We also obtain the frequency of c2 in

Px′,y′ and the frequency of c3 in P ′
x′,⊥ ∪ P ′

y′,⊥ when finding c2 and c3. Note that, if the mode
is not c1, then the mode does not appear in P ′

x,x′ ∪ P ′
y,y′∪ ⊥, so it must be either c2 or c3.

Hence it suffices to compare the frequency of c1 in Px,y, the frequency of c2 in Px′,y′ , and
the frequency of c3 in P ′

x′,⊥ ∪ P ′
y′,⊥ to find the answer to the query.

Finally, we apply the technique in Section 3.2 to compute the mode in an arbitrary path:

▶ Lemma 13. Let T be a colored ordinal tree on n nodes with each node assigned a color
from {0, 1, . . . , C − 1}, where C ≤ n. A data structure of Õ(n2−t1 + n2−2t2 + n(1−t2)(1−θ)+1 +
n(1−t2)(ρ+1+ 2t1

1−t2
−σ) + n2θ(1−t2)+(t1−t2)+(1−t2)(ρ+2+ t1

1−t2
−σ) + n(1−t2)(2+ t1

1−t2
−ρ)) words can be

constructed in Õ(n2−t1 + n2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1
1−t2

,1)+ t1
1−t2

−σ) + n(1−t2)(2+ t1
1−t2

−ρ) +
n1+(1−t2)(1−θ)) time, such that a path mode query can be answered in Õ(nt2 + n1−t1 +
n(1−t2)(σ+ρ)) time, where ρ ≥ 0, 0 ≤ σ ≤ t1

1−t2 , and 0 ≤ θ ≤ 1.

Applying Lemma 13 to batched path mode and setting t1 = 10
17+ω(1,1,1) , where ω(1, 1, 1) ∈

[2, 2.37286), t2 = 1 − t1, θ = 2t1−1
t1

, ρ = 4t1−2
t1

, and σ = 3−5t1
t1

yields:

▶ Theorem 14. A batch of n path mode queries over a colored tree T on n nodes can be
answered in Õ(n

24+2ω
17+ω ) = O(n1.483814) time.
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Abstract
The notions of edge-cuts and k-edge-connected components are fundamental in graph theory with
numerous practical applications. Very recently, the first linear-time algorithms for computing all the
3-edge cuts and the 4-edge-connected components of a graph have been introduced. In this paper
we present carefully engineered implementations of these algorithms and evaluate their efficiency
in practice, by performing a thorough empirical study using both real-world graphs taken from a
variety of application areas, as well as artificial graphs. To the best of our knowledge, this is the
first experimental study for these problems, which highlights the merits and weaknesses of each
technique. Furthermore, we present an improved algorithm for computing the 4-edge-connected
components of an undirected graph in linear time. The new algorithm uses only elementary data
structures, and is implementable in the pointer machine model of computation.
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1 Introduction

Determining or testing the edge connectivity of a graph G = (V, E), as well as computing
notions of connected components or subgraphs, is a classical subject in graph theory, motivated
by several application areas (see, e.g., [20]), that has been extensively studied since the 1970’s.
An (edge) cut of G is a set of edges S ⊆ E such that G \ S is not connected. We say that S

is a k-cut if its cardinality is |S|= k. A cut S is minimal if no proper subset of S is a cut of
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G. The edge connectivity of G, denoted by λ(G), is the minimum cardinality of an edge cut
of G. A graph is k-edge-connected if λ(G) ≥ k. A cut S separates two vertices u and v, if u

and v lie in different connected components of G \ S. Vertices u and v are k-edge-connected,
denoted by u

G≡k v, if there is no (k − 1)-cut that separates them. By Menger’s theorem [17],
u and v are k-edge-connected if and only if there are k-edge-disjoint paths between u and v.
A k-edge-connected component of G is a maximal set C ⊆ V such that there is no (k −1)-edge
cut in G that disconnects any two vertices u, v ∈ C (i.e., u and v are in the same connected
component of G \ S for any (k − 1)-edge cut S). We can define, analogously, the vertex cuts
and the k-vertex-connected components of G. It is known how to compute the (k − 1)-edge
cuts, (k − 1)-vertex cuts, k-edge-connected components and k-vertex-connected components
of a graph in linear time for k ∈ {2, 3} [6, 12, 19, 23, 26]. The case k = 4 has also received
significant attention [2, 3, 13, 14], but until very recently, none of the previous algorithms
achieved linear running time. In particular, Kanevsky and Ramachandran [13] showed how to
test whether a graph is 4-vertex-connected in O(n2) time. Furthermore, Kanevsky et al. [14]
gave an O(m+nα(m, n))-time algorithm to compute the 4-vertex-connected components of a
3-vertex-connected graph, where α is a functional inverse of Ackermann’s function [25]. Using
the reduction of Galil and Italiano [6] from edge connectivity to vertex connectivity, the same
bounds can be obtained for 4-edge connectivity. Specifically, one can test whether a graph is
4-edge-connected in O(n2) time, and one can compute the 4-edge-connected components of a
3-edge-connected graph in O(m + nα(m, n)) time. Dinitz and Westbrook [3] presented an
O(m + n log n)-time algorithm to compute the 4-edge-connected components of a general
graph G (i.e., when G is not necessarily 3-edge-connected). Nagamochi and Watanabe [21]
gave an O(m + k2n2)-time algorithm to compute the k-edge-connected components of a
graph G, for any integer k.

Very recently, linear-time algorithms for computing the 4-edge-connected components of
an undirected graph were presented in [8, 18]. Specifically, Nadara, Radecki, Smulewicz, and
Sokołowski [18] gave two linear-time algorithms, a simple randomized and a more complicated
deterministic algorithm. Georgiadis, Italiano, and Kosinas [8] also presented a linear-time
deterministic algorithm that requires less machinery but a more detailed analysis. The main
part in these algorithms is the computation of the 3-edge cuts of a 3-edge-connected graph
G. The algorithms operate on a depth-first search (DFS) tree T of G [23], with start vertex
r, and compute three types of 3-edge cuts C = {e1, e2, e3}, depending on the number of tree
edges in C. We refer to a cut C that consists of t tree edges of T as a type-t cut of G. The
challenging cases are when C is a type-2 or type-3 cut. To handle type-2 cuts in linear time,
both NRSS [18] and GIK [8] require the use of the static tree disjoint-set-union (DSU) data
structure of Gabow and Tarjan [5], which is quite sophisticated and not amenable to simple
implementations. Moreover, the deterministic algorithm of NRSS also employs a linear-time
algorithm for computing offline nearest common ancestors [11]. NRSS [18] provided an
elegant way to handle type-3 cuts. Specifically, they showed that computing all type-3 cuts
can be reduced, in linear time, to computing type-1 and type-2 cuts, by contracting the
edges of G \ E(T ). The algorithm of GIK [8], on the other hand, operates directly on the
original graph, but requires a more involved case analysis and, as for type-2 cuts, uses the
Gabow-Tarjan DSU data structure.

Our contribution. We present an improved version of the algorithm of GIK [8] for identifying
type-2 cuts, so that it only uses simple data structures. The resulting algorithm relies only on
basic properties of depth-first search (DFS) [23], and on parameters carefully defined on the
structure of a DFS spanning tree (see Section 3.3). As a consequence, it is simple to describe
and to implement, and it does not require the power of the RAM model of computation,
thus implying the following new results:
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▶ Theorem 1. The 3-edge cuts of an undirected graph can be computed in linear time on a
pointer machine.

▶ Corollary 2. The 4-edge-connected components of an undirected graph can be computed in
linear time on a pointer machine.

Next, we consider the practical performance of these algorithms. We provide carefully
engineered implementations of the randomized algorithm of NRSS [18], the deterministic
algorithm of GIK [8], as well as our new linear-time pointer-machine algorithm. Then, we
conduct a thorough empirical study to highlight the merits and weaknesses of each technique.
In particular, our experimental evaluation addresses the following questions:

How well does the randomized algorithm perform with respect to its deterministic
counterparts?
How efficient is the graph contraction technique in practice?
How does our new linear-time pointer-machine algorithm compare against the linear-time
RAM algorithms?
How fast can we compute the 4-edge-connected components of a graph compared to
computing the k-edge-connected components for k < 4?

2 Linear-time algorithms for computing the 4-edge-connected
components

Let G = (V, E) be the input graph, which may have multiple edges. To compute the
4-edge-connected components of G, we can perform the following steps:
1. Compute the connected components of G.
2. For each connected component, we compute the 2-edge-connected components which are

subgraphs of G.
3. For each 2-edge-connected component, we compute its 3-edge-connected components

C1, . . . , Cℓ.
4. For each 3-edge-connected component Ci, we compute a 3-edge-connected auxiliary graph

Hi, such that for any two vertices x and y, we have x
G≡4 y if and only if x and y are

both in the same auxiliary graph Hi and x
Hi≡4 y.

5. Finally, we compute the 4-edge-connected components of each Hi.

For Steps 1–3, we can compute the 1-edge and 2-edge cuts, and the 2-edge and 3-
edge-connected components a graph in linear time by [6, 12, 19, 23, 26]. It can be easily
demonstrated that the (subgraphs induced by the) k-edge-connected components of G, for
k = 1, 2, have the same k′-edge-connected components as G, for all k′ > k. However, the
analogous property does not hold for k = 3. Thus we use the construction provided by
Dinitz [2], which extends the 3-edge-connected components of G, by adding some extra edges
to them, so that the resulting auxiliary graphs have the same k′-edge-connected components
as G, for all k′ > 3. To perform Step 4, we use the fact that we can construct a compact
representation of the 2-cuts of any 2-edge-connected component H of G, which allows us
to compute its 3-edge-connected components C1, . . . , Cℓ in linear time [10, 26]. We let
G[Ci] denote the subgraph of G that is induced by the vertices in Ci. By shrinking each
3-edge-connected component Ci of H into a single node, we obtain a quotient graph Q of
H which has the structure of a tree of cycles [2], i.e., Q is connected and every edge of Q

belongs to a unique cycle. Let (Ci, Cj) and (Ci, Ck) be two edges of Q which belong to the
same cycle. Then (Ci, Cj) and (Ci, Ck) correspond to two edges (x, y) and (x′, y′) of G, with
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x, x′ ∈ Ci. If x ̸= x′, we add a virtual edge (x, x′) to G[Ci], which acts as a substitute for
the cycle of Q that contains (Ci, Cj) and (Ci, Ck). Now let Hi be the graph G[Ci] plus all
those virtual edges. Then Hi is 3-edge-connected and its 4-edge-connected components are
precisely those of G that are contained in Ci [2]. Thus we can compute the 4-edge-connected
components of G by computing the 4-edge-connected components of the graphs Hi.

Hence, we have reduced the problem of computing the 4-edge-connected components of a
(general) graph, to the computation of the 4-edge-connected components of a collection of
auxiliary 3-edge-connected graphs.

So, from now on, we let G be a 3-edge-connected graph. We can compute its 4-edge-
connected components by successively splitting G into smaller graphs according to its 3-cuts.
When no more splits are possible, the connected components of the final split graph correspond
to the 4-edge-connected components of G. (We refer to [8] for the details.) It remains to
describe how to compute the 3-edge cuts of a 3-edge-connected graph G.

3 Computing the 3-cuts of a 3-edge-connected graph

In this section we give an overview of the algorithms of NRSS [18] and GIK [8] for computing
the 3-edge cuts of a 3-edge-connected graph G. Then, we also present our new linear-time
pointer-machine algorithm. Throughout this section, we assume that G = (V, E) is a 3-edge-
connected graph with n vertices and m ≥ 3n/2 edges, and may have multiple edges. It is
well-known that the number of the 3-edge-cuts of G is O(n) [20], which also follows from the
definition of the cactus graph [1, 15]). See also [8, 18] for an independent proof of this fact.

For a graph H, we let V (H) and E(H) denote the set of vertices and edges of H,
respectively. If H is a subgraph of G then G \ E(H) denotes the graph that results from G

after deleting the edges of H.

3.1 Depth-first search and related notions

Here we introduce some concepts and parameters that are used in the algorithms, defined
with respect to a depth-first search spanning tree. Let T be the spanning tree of G provided
by a depth-first search (DFS) of G [23], with start vertex r. A vertex u is an ancestor of
a vertex v (v is a descendant of u) in T if the tree path from r to v contains u. Thus, we
consider a vertex to be both an ancestor and a descendant of itself. The edges in T are
called tree-edges; the edges in E(G) \ E(T ) are called back-edges, as their endpoints have
ancestor-descendant relation in T . We let p(v) denote the parent of a vertex v in T . If u

is a descendant of v in T , we denote the set of vertices of the simple tree path from u to v

as T [u, v]. The expressions T [u, v) and T (u, v] have the obvious meaning (i.e., the vertex
on the side of the parenthesis is excluded). We identify vertices with their preorder number
assigned during the DFS. Thus, if v is an ancestor of u in T , then v ≤ u. Let T (v) denote
the set of descendants of v, and let ND(v) = |T (v)| denote the number of descendants of v.
Then, vertex u is a descendant of v (i.e., u ∈ T (v)) if and only if v ≤ u < v + ND(v) [24].

Whenever (x, y) denotes a back-edge, we shall assume that x is a descendant of y. We
say that a back-edge (x, y) leaps over a vertex v if x is a descendant of v and y is a proper
ancestor of v. We let B(v), for a vertex v ̸= r, denote the set of all back-edges that leap
over v, and we let bcount(v) = |B(v)| denote the number of elements of B(v). Thus, if we
remove the tree-edge (v, p(v)), T (v) remains connected to the rest of the graph through the
back-edges in B(v), which implies the following property:
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▶ Property 3 ([8]). A connected graph G is 2-edge-connected if and only if bcount(v) > 0,
for every v ̸= r. Furthermore, G is 3-edge-connected only if bcount(v) > 1, for every v ̸= r.

This suggests that the sets B(v) can be used to determine various connectivity relations
in graphs. In fact, we can consider many useful notions extracted from those sets by
considering the distribution of the ends of the back-edges that are contained in them.
First, consider the lower ends of the back-edges in B(v). We define the low point of
vertex v, denoted by low(v), as the minimum vertex y such that there exists a back-edge
(x, y) ∈ B(v). Formally, low(v) := min{y | ∃(x, y) ∈ B(v)}. We also let lowD(v) be
x. That is, lowD(v) is a descendant of v from which stems a back-edge that provides
low(v). (Notice that lowD(v) is not uniquely determined.) We denote the back-edge
(lowD(v), low(v)) as MinUp(v). Similarly, we define the high point of v, denoted by high(v),
as the maximum vertex y such that there exists a back-edge (x, y) ∈ B(v). Formally,
high(v) := max{y | ∃(x, y) ∈ B(v)}. We also let highD(v) be x. That is, highD(v) is a
descendant of v from which stems a back-edge that provides high(v). (Again, highD(v) is not
uniquely determined.) We denote the back-edge (highD(v), high(v)) as MaxUp(v). Finally
we let l1(v) be the minimum y such that there exists a back-edge of the form (v, y) (or v, if
no such back-edge exists). Formally, l1(v) := min({y | ∃(v, y) ∈ B(v)} ∪ {v}). Furthermore,
we define l2(v) := min({y | ∃(v, y) ∈ B(v) \ {(v, l1(v)}} ∪ {v}).

Now we consider the higher ends of the back-edges in B(v). First, we let MinDn(v)
(resp. MaxDn(v)) denote a back-edge in B(v) with minimum (resp. maximum) higher end.
We then define the maximum point M(v) of v as the maximum vertex z such that T (z)
contains the higher ends of all back-edges in B(v). In other words, M(v) is the nearest
common ancestor of all x for which there exists a back-edge (x, y) ∈ B(v). See Figure 1.
(Clearly, M(v) is a descendant of v.) Let m be a vertex and v1, . . . , vk be all the vertices
with M(v1) = . . . = M(vk) = m, sorted in decreasing order. Observe that vi+1 is an ancestor
of vi, for every i ∈ {1, . . . , k − 1}, since m is a common descendant of all v1, . . . , vk. Then we
have M−1(m) = {v1, . . . , vk}, and we define nextM (vi) := vi+1, for every i ∈ {1, . . . , k − 1},
and prevM (vi) := vi−1, for every i ∈ {2, . . . , k}. Thus, for every vertex v, nextM (v) is the
successor of v in the decreasingly sorted list M−1(M(v)), and prevM (v) is the predecessor of
v in the decreasingly sorted list M−1(M(v)).

Now let v be a vertex and let u1, . . . , uk be the children of v sorted in non-decreasing
order w.r.t. their low point. We let ci(v) be ui, if i ∈ {1, . . . , k}, and ∅ if i > k. (Note that
ci(v) is not uniquely determined, since some children of v may have the same low point.)
Then we call c1(v) the low1 child of v, and c2(v) the low2 child of v. We let M̃(v) denote
the nearest common ancestor of all x for which there exists a back-edge (x, y) ∈ B(v) with
x a proper descendant of M(v). We leave M̃(v) undefined if no such proper descendant x

of M(v) exists. We also define Mlow1(v) as the nearest common ancestor of all x for which
there exists a back-edge (x, y) ∈ B(v) with x being a descendant of the low1 child of M(v),
and also define Mlow2(v) as the nearest common ancestor of all x for which there exists a
back-edge (x, y) ∈ B(v) with x a descendant of the low2 child of M(v). We leave Mlow1(v)
(resp., Mlow2(v)) undefined if no such proper descendant x of the low1 (resp., low2 ) child of
M(v) exists.

We note that it is easy to compute all l1(v), l2(v), low(v), lowD(v), and bcount(v) during
the DFS. In particular, the notion of low points plays central role in classic algorithms
for computing the biconnected components [23], the triconnected components [12] and the
3-edge-connected components [6, 12, 19, 26] of a graph. (Hopcroft and Tarjan [12] also use a
concept of high points, which, however, is different from ours.) Furthermore, all M(v), M̃(v),
Mlow1(v) and Mlow2(v), for all vertices v for which they are defined, can be computed in
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Figure 1 An illustration of the concepts defined on a depth-first search (DFS) spanning tree
of an undirected graph. Vertices are numbered in DFS order and back-edges are shown directed
from descendant to ancestor in the DFS tree. Vertices v1 and v2 have M(v1) = M(v2) = m,
hence {v1, v2} ⊆ M−1(m), nextM (v1) = v2, and prevM (v2) = v1. Moreover, (11, 3) ̸∈ B(v2), so
lowM (v1) = 3.

linear-time in pointer machines [8]. For the computation of all high(v) (and highD(v)), [8]
and [18] gave a linear-time algorithm that uses the static tree DSU data structure of Gabow
and Tarjan [5], and thus their computation depends on the power of RAM machines.

3.2 Randomized algorithm of NRSS

We give an overview of the randomized linear-time algorithm of Nadara, Radecki, Smulewicz,
and Sokołowski [18]. Let H : E 7→ 2E be a function defined as follows. If e is a back-edge,
H(e) = {e}. Otherwise, H(e) = B(u), for the unique vertex u ̸= r such that e = (u, p(u)).
Now NRSS provide an elegant characterization of 3-cuts: a triple of edges {e1, e2, e3} is
a 3-cut if and only if H(e1) ⊕ H(e2) ⊕ H(e3) = ∅ (where ⊕ denotes the symmetric set
difference). Then we get a useful equivalent characterization of 3-cuts by representing the
sets H(e) as bit-vectors. To be precise, we consider the composition of χ : 2E 7→ {0, 1}E (the
characteristic function on E) with H : E 7→ 2E ; then we have that {e1, e2, e3} is a 3-cut if
and only if χH(e1) ⊕ χH(e2) ⊕ χH(e3) = 0 (where ⊕ here denotes the logical XOR function).
Thus, if for an edge e we have a candidate e′ that may provide a 3-cut of the form {e, e′, e′′},
for a third edge e′′, then e′′ is uniquely determined by the expression χH(e) ⊕ χH(e′).

Since we cannot compute all χH(e), for all edges e, in linear time, the idea of NRSS
is to compress the bits of those vectors into a fixed number of RAM words. (We assume
that a RAM cell can store O(log m) bits.) In particular, we select b = ⌈3 lg m⌉ random
bits to represent the characteristic function of H(e), for every back-edge e, and we call
this value CH (e). (We may select a bigger multiple of lg m for higher precision; however,
⌈3 lg m⌉ is enough for all practical purposes.) Then CH (e), for a tree-edge e, corresponds to⊕

e′∈H(e) CH (e′).
Now, for type-1 and type-2 cuts, we can find good candidate edges that may yield 3-cuts.

Specifically, let {(u, p(u)), e, e′} be a type-1 cut (i.e., e and e′ are back-edges). Then one of
e, e′ is the back-edge that provides the low point of u. Thus, without loss of generality, we may
assume that e = MinUp(u). Then we can retrieve e′ with high probability by determining
CH −1(CH ((u, p(u))) ⊕ CH (e)). Now let {(u, p(u)), (v, p(v)), e} be a type-2 cut (where e is a
back-edge). In this case u and v are related as ancestor and descendant, and thus we may
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assume, without loss of generality, that u is a descendant of v. Then we have that either e

leaps over u but not over v, or that e leaps over v but not over u. In the first case, e is the
back-edge that provides the high point of u (that is, e = MaxUp(u)). Thus we can retrieve
(v, p(v)) with high probability by determining CH −1(CH ((u, p(u))) ⊕ CH (MaxUp(u))). In
the second case, e is either MinDn(v) or MaxDn(v). Thus we can retrieve (u, p(u)) with high
probability from CH ((v, p(v)) ⊕ MinDn(v)) or CH ((v, p(v)) ⊕ MaxDn(v)). NRSS provide
linear-time algorithms for computing all MaxUp(v), MinDn(v) and MaxDn(v), for all vertices
v ̸= r, using the static-tree DSU data structure of Gabow and Tarjan [5]. (The inverses
CH −1 can be computed efficiently by using e.g. hash tables.)

Finally, for type-3 cuts, NRSS provided a simple linear-time reduction to computing
type-1 and type-2 cuts. First, compute the connected components C1, . . . , Ck of G \ E(T ).
Then, form a reduced graph G′ by contracting each component Ci into a single vertex ci.
In this construction, we maintain parallel edges between two vertices but remove self-loops.
Then, recursively compute the type-1 and type-2 cuts of G′. Assuming that G is 3-edge
connected, it is easy to observe that G′ satisfies the following properties: (i) G′ is also 3-edge
connected, and (ii) |E(G′)|≤ 2

3 |E(G)|. The latter inequality follows from the fact that the
minimum vertex degree in G is 3, and that |E(G′)|≤ |V (G)| due to the contractions. Then,
the total running time spend during the recursive calls is bounded by O(m).

3.3 Deterministic algorithm of GIK
Here we provide an overview of the deterministic linear-time algorithm of Georgiadis, Italiano,
and Kosinas [8]. The idea is to distinguish various types of 3-cuts on a DFS tree of the
graph, and then provide an algorithm specifically adapted for each particular case. The
classification of GIK is heavily guided by some DFS parameters that can be extracted from
the sets B(v) of the back-edges that leap over a vertex v, for v ̸= r, without computing the
sets B(v) explicitly.

First, let {(u, p(u)), e, e′} be a type-1 cut. Then we obviously have B(u) = {e, e′}. Thus,
in order to identify all those cuts, we need to have computed, for every vertex u ̸= r,
two back-edges that leap over u. We take as one of them a back-edge e that provides
the low point of u. To get one more back-edge, we extend the definition of low points:
we let low2 (u) be the lowest lower end of all back-edges in B(u) \ {e}, and let low2D(u)
be a descendant of u such that (low2D(u), low2 (u)) ∈ B(u) \ {e}. Let low1 (u) := low(u)
and low1D(u) := lowD(u). (Refer to Figure 1.) Then, for every u ̸= r, we have that
{(low1D(u), low1 (u)), (low2D(u), low2 (u))} ⊆ B(u), and these two back-edges form a 3-cut
with (u, p(u)) if and only if bcount(u) = 2. We note that all back-edges (low2D(v), low2 (v))
can be computed easily during the DFS, and thus all type-1 cuts can be computed in linear
time in a pointer machine without using sophisticated data structures.

Now let {(u, p(u)), (v, p(v)), e} be a type-2 cut (where e is a back-edge). Then we
have that u and v are related as ancestor and descendant, and we may assume in what
follows, without loss of generality, that u is a descendant of v. Then we have that either
B(u) = B(v) ⊔ {e} or B(v) = B(u) ⊔ {e}. In either case, we can exploit the similarity of the
sets B(u) and B(v) to find good candidate pairs {u, v} that may provide type-2 cuts of the
form {(u, p(u)), (v, p(v)), e}, for a back-edge e. Take the case B(u) = B(v)⊔{e} as an example.
Then e must be the back-edge that provides the high point of u, and so e = (highD(u), high(u)).
Depending on the location of highD(u), we can relate M(v) with a maximum point of u.
Specifically, if highD(u) is a descendant of M(v), then M(v) = M(u), and v is the greatest
ancestor of u with this property (i.e., v = nextM (u)). If highD(u) is an ancestor of M(v),
then M(v) = M̃(u) and v is the greatest ancestor of u with this property. Finally, if highD(u)
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is not related as ancestor or descendant with M(v), then M(v) = Mlow1(u), and v is again
the greatest ancestor of u with this property. These considerations are the basis of an efficient
algorithm for determining, for a vertex u, a proper ancestor v of u, and a back-edge e, that
may yield a type-2 cut of the form {(u, p(u)), (v, p(v)), e}. (In fact, once such a v has been
found, we only have to check whether bcount(u) = bcount(v) + 1 to establish the existence of
this cut.) The case B(v) = B(u) ⊔ {e} can be handled in a similar manner. We refer to [8]
for more details.

Finally, with a much more involved subdivision of type-3 cuts into more cases, and with
extensive use of DFS parameters extracted from the sets of leaping back-edges, GIK provide
linear-time algorithms to identify all those cuts. These algorithms use the high points in
a way that seems difficult to avoid them. We need not mention any details of those cases
because we can avoid them overall using the idea of NRSS for identifying all type-3 cuts on
the contracted graph.

In the next section we will show how to handle the cases of type-2 cuts without the use of
high points, thus providing the first linear-time pointer-machine algorithm for determining
all 3-cuts of 3-edge-connected graphs.

3.4 A new linear-time pointer-machine algorithm
Our goal is to provide a method to compute all 3-cuts in linear time without using the
high points (since the only known algorithm for computing all high points in linear time
depends on the power of RAM machines [8, 18]). We achieve this through the following
three improvements over the GIK algorithm. First, we introduce two new parameters,
lowMD(v) and lowM(v), that yield the back-edge (highD(u), high(u)) that is needed in the
case B(u) = B(v) ⊔ {e}, M(u) = M(v) (see the previous subsection). Second, we replace all
conditions provided by GIK for determining type-2 cuts with equivalent ones that avoid the
invocation and the computation of the high points. And finally, we use the idea of NRSS to
deal with type-3 cuts by reducing them to type-1 and type-2 cuts.

Let v be a vertex such that nextM (v) ̸= ∅. Then we have B(nextM (v)) ⊂ B(v). Thus we
can define lowM (v) as the lowest lower end of all back-edges in B(v)\B(nextM (v)), and we let
lowMD(v) be a vertex such that (lowMD(v), lowM (v)) is a back-edge in B(v) \ B(nextM (v)).
(Refer to Figure 1.) Formally, we have

lowM (v) := min{y | ∃(x, y) ∈ B(v) \ B(nextM (v))}.
lowMD(v) := a vertex x such that (x, lowM (v)) ∈ B(v).

All edges (lowMD(v), lowM(v)), for all vertices v for which they are defined, can be
determined with a linear-time algorithm that uses only elementary data structures and
depends on a specific ordering of the adjacency lists of the graph. Now, if we have a pair of
vertices {u, v} such that B(u) = B(v) ⊔ {e}, for a back-edge e, and v = nextM (u), then it
is certainly true that e = (lowMD(u), lowM(u)) = (highD(u), high(u)). This shows how to
handle one of the three subcases of the lower type-2 cuts, described in the previous Section.
For the other two subcases, as well as for the upper case of type-2 cuts, we can simply provide
alternative criteria that characterize them, using most of the DFS notions in Section 3.1 in a
way similar to [8] (but without using the high points). The algorithms that we get in this
way are very similar to those given by GIK.

Due to the space constraints, we refer to [9] for a detailed description of those criteria
and their proofs, as well as for an exposition and proof of correctness of the full algorithm for
determining type-2 cuts. Throughout the remainder of the paper, we refer to this algorithm
as Linear.
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4 Empirical Analysis

We implemented our algorithms in C++, using g++ 7.5.0 with full optimization (flag -O4)
to compile the code. The reported running times were measured on a GNU/Linux machine,
with Ubuntu (18.04.6 LTS): a Dell Precision Tower 7820 server 64-bit NUMA machine with
an Intel(R) Xeon(R) Gold 5220R processor and 192GB of RAM memory. The processor
has 24.75MB of cache memory and 18 cores. In our experiments we did not use any
parallelization, and each algorithm ran on a single core. We report CPU times measured
with the high_resolution_clock function of the standard library chrono, averaged over
ten different runs.

Implementation details

We tested four implementations, two for the randomized algorithm of Nadara, Radecki,
Smulewicz, and Sokołowski [18] (NRSS and NRSS-sort), one for the deterministic algorithm
of Georgiadis, Italiano, and Kosinas [8] (GIK), and one for our linear-time pointer machine
algorithm (Linear). We did not include an implementation of the deterministic algorithm
of [18], because it is more complicated than the routine in GIK for computing type-2 cuts,
and it uses data structures for off-line nearest common ancestors (in addition to the static
tree DSU data structure of Gabow and Tarjan). In NRSS we made use of a hash table in
order to store the CH values of the tree-edges and to be able to retrieve them efficiently.
An alternative suggestion for this problem is to use radix sort [18]. However, the latter
is only significant for the theoretical analysis, since in practice we observed that this part
of the algorithm does not play a significant role in the total running time (as this it is
dominated by the computation of other parameters). Furthermore, we made the following
improvements in this algorithm. First, we handle the case of type-1 cuts using the same
idea as in GIK and in our linear-time pointer-machine algorithm. Specifically, we detect
those cuts by using the values bcount, low1D, low1 , low2D and low2 . (This method is also
suggested in the the deterministic algorithm of [18].) This confers an obvious advantage,
since (1) these parameters can be computed easily and fast during the DFS, and (2) we thus
avoid having to store O(m) CH values and pointers to the corresponding back-edges. Second,
we implemented a simpler and faster linear-time algorithm for computing all MinDn and
MaxDn values, that uses only elementary data-structures. We observed that this algorithm
is several times faster than the one suggested by [18], but it only slightly affects the total
running-time, since that is dominated by the computation of high and highD points (i.e.,
the MaxUp edges). Finally, we used two different algorithms for MaxUp, since the total
running time is heavily dependent on the way this computation is performed. The first
algorithm (as in GIK) simply traverses the adjacency lists. This is enough for GIK, but
for NRSS we then have to sort the adjacency lists, in order to keep pointers to the MaxUp
edges, and this incurs a significant overhead. The second implementation of NRSS uses
bucket-sort on the back-edges (as suggested by [18]), and it is called NRSS-sort. In both
GIK and NRSS(-sort) we implemented the DSU data-structure by using path-compression
and union-by-size. Although this is not theoretically optimal, in practice it works efficiently
and we get a linear-time behaviour.

Experimental results for real-world graphs

For the experimental evaluation, we considered several real-world (undirected) graphs, taken
from various application areas, as well as random graphs. For each graph G, we also compute
a corresponding sparse 4-edge-connectivity certificate of G. A k-edge-connectivity certificate
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of G is a spanning subgraph H of G such that, for any two vertices u and v and any positive
integer k′ ≤ k, u and v are k′-edge-connected in H if and only if they are k′-edge-connected
in G. Such a subgraph H has at most k(n − 1) edges and can be computed in linear time [20].
The reason why we use both the original graphs and their sparse certificates is twofold.
First, we would like to observe if sparsity affects the relative performance of the algorithms.
Second, we would like to see how more efficient is the computation of the 4-edge-connected
components on the sparse certificates rather than on the original graphs.

Table 1 shows some statistics about the real-world graphs used in our experimental
evaluation. The running times of the algorithms for the original graphs and for their sparse
certificates are shown in Table 2 and Table 3 respectively.1 Figure 2 and 3 illustrate the
detailed running times for each part of the 4-edge-connected components algorithms on the
real-world graphs and their sparse certificates. For each algorithm, it depicts the running
time for computing the (k − 1)-edge-cuts and the corresponding k-connected components for
k ∈ {1, 2, 3, 4}.

Table 1 Characteristics of real-world graphs taken from the SNAP [16]; n is the number of
vertices, m is the number of edges, and #kCCs is the number of k-edge-connected components; m′

is the number of edges in a 4-edge-connectivity certificate of G. The network types are: social (SN),
product (PN), collaboration, (CN), road (RN), and internet topology (IT).

Graph n m #1CCs #2CCs #3CCs #4CCs m′ type

Deezer-HR 54573 498202 1 2436 5188 7878 194107 SN
Facebook-Artist 50515 819306 1 3220 6425 9144 179349 SN
com-Amazon 548552 925872 213690 244981 284574 335963 884127 PN
Gowalla 196591 950327 65294 112349 135493 145544 325636 SN
com-DBLP 425957 1049866 108878 155981 217842 268497 826192 CN
com-Youtube 1157828 2987624 22939 690029 860753 941713 1999435 SN
roadNet-CA 1971281 5533214 8713 8713 385230 385230 5520326 RN
twitch-gamers 168114 6797557 1 4081 7975 11800 648245 SN
as-Skitter 1696415 11095298 756 232897 493601 680010 5181377 IT
com-LiveJournal 3997962 34681189 38577 860464 1292384 1587631 2519167 SN
com-Orkut 3072627 117185083 187 67981 111261 149632 11953289 SN
com-Friendster 124836180 1806067135 59227815 73213653 79168479 82884698 203718281 SN

The algorithms GIK, Linear, NRSS and NRSS-sort compute the 4-edge-connected compon-
ents, report the number of k-edge-connected components, for k ≤ 4, and the corresponding
times to compute them, as well as the number of minimal k-edge cuts, for k ≤ 3. (We note
that the number of minimal k-edge cuts can be as large as O(n2) and O(n3) for k = 2, 3,
respectively.) For computing the k-edge-connected components for k < 4, all algorithms use
the same routines. For k = 1 we simply perform a BFS; for k = 2 we implement the classic
algorithm of Tarjan that uses the low points [23]. For k = 3 we use the algorithm of GK,
which is the simplest and fastest known for computing 2-edge cuts and 3-edge-connected
components [7, 10]. For every 3-edge-connected component that we compute, we construct
the auxiliary 3-edge-connected graph that corresponds to it (which essentially maintains
its k-edge cuts, for all k ≥ 3) [2], by adding some virtual edges, and then we run the
corresponding 3-edge cut algorithm on this graph. Finally, after we have computed all
3-edge cuts of each such graph (the number of those cuts is O(n) in total), we compute its
4-edge-connected components by using the algorithm of [18] to compute the cactus tree.

1 We note that we did not run the algorithms on the original com-Friendster graph, because its number
of edges is too big for our implementations, due to our choice of variable types.
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Table 2 Running times in seconds of the algorithms for the real-world graphs of Table 1. For
each algorithm we report the total running time and the time required to compute the 3-edge cuts
and the corresponding 4-edge-connected components. Best running times for each graph are marked
in bold.

Graph NRSS-sort NRSS GIK Linear
total 4ECCs total 4ECCs total 4ECCs total 4ECCs

Deezer-HR 0.163 0.107 0.177 0.119 0.107 0.049 0.109 0.052
Facebook-Artist 0.223 0.153 0.229 0.158 0.128 0.059 0.136 0.066
com-Amazon 0.596 0.362 0.640 0.403 0.416 0.177 0.442 0.204
Gowalla 0.241 0.152 0.249 0.159 0.158 0.065 0.163 0.074
com-DBLP 0.533 0.322 0.575 0.362 0.374 0.158 0.387 0.174
com-Youtube 1.424 0.829 1.450 0.844 0.949 0.339 1.009 0.407
roadNet-CA 3.266 2.128 3.381 2.244 1.984 0.849 2.058 0.925
twitch-gamers 3.026 2.294 2.325 1.617 1.265 0.521 1.431 0.706
as-Skitter 5.676 3.918 5.717 3.961 3.321 1.561 3.645 1.883
com-LiveJournal 30.310 21.203 29.270 20.019 17.327 8.056 19.805 10.637
com-Orkut 94.435 70.280 85.745 61.550 43.171 19.172 55.081 30.316

From the running times reported in Tables 2 and 3, and plotted in Figures 2 and 3,
we observe that running time of all algorithms is dominated by the computation of the
3-edge-cuts and the 4-edge-connected components. Indeed, computing the k-edge-connected
components takes about twice as much as computing the (k − 1)-edge-connected components.
On average, the computation of the 3-edge-cuts and the 4-edge-connected components
constitutes more than 60% of the running time of the NRSS algorithms and more than 40%
of the running time of the GIK and Linear. Furthermore, as expected, all algorithms are
executed faster on the sparse certificates, sometimes significantly, depending on the density
of the original graph. (For instance, for twitch-gamers, all algorithms run about 7 times
faster on the sparse certificate, while for com-LiveJournal, they run about 20 times faster
on the sparse certificate.) Thus, for computing the 4-edge-connected components and the
3-cuts of a dense graph, it is more efficient to produce the sparse certificate (even with a
straightforward algorithm that performs 4 passes over the edges of the graph) and apply any
of those algorithms on it, than apply the algorithm directly on the original graph.

We observe that the running time of the Linear algorithm is very close to that of GIK.
Indeed, GIK runs faster than Linear by about 7.5% on the original graphs and by about
3% on the sparse certificates. This means that the contraction operation does not incur
a significant overhead in the total running time. One could expect the GIK algorithm to
be worse than Linear, because it implements various sub-algorithms to handle the various
subcases of type-3 cuts. However, all those sub-algorithms (except one, that needs an array of
size O(m)) take time O(n), because they rely on parameters already computed. Furthermore,
although the Linear algorithm avoids the computation of high points, it uses as a replacement
the lowMD and lowM points, whose computation rely on a specific sorting of the adjacency
lists.

We also observe that the NRSS algorithms are consistently slower than GIK and Linear,
by a significant factor, in both the original graphs and their sparse certificates. Specifically,
GIK is about 40% faster than NRSS-sort on the original graphs, and about 35% faster on
the sparse certificates. This is somewhat expected, because all these algorithms use the same
parameters (or similar methods to compute those that they need), but the NRSS algorithms
need also to maintain pointers to the edges that correspond to those parameters, and they
also compute the CH values that use at least three RAM words for every edge.
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Table 3 Running times in seconds of the algorithms for the sparse certificates of the real-world
graphs of Table 1. For each algorithm we report the total running time and the time required to
compute the 3-edge cuts and the corresponding 4-edge-connected components. Best running times
for each graph are marked in bold.

Graph NRSS-sort NRSS GIK Linear
total 4ECCs total 4ECCs total 4ECCs total 4ECCs

Deezer-HR-SC 0.098 0.061 0.105 0.069 0.070 0.032 0.069 0.032
Facebook-Artist-SC 0.086 0.054 0.092 0.060 0.059 0.026 0.060 0.028
com-Amazon-SC 0.585 0.352 0.620 0.388 0.418 0.182 0.430 0.198
Gowalla-SC 0.124 0.070 0.133 0.079 0.093 0.037 0.093 0.038
com-DBLP-SC 0.486 0.288 0.508 0.312 0.343 0.141 0.349 0.153
com-Youtube-SC 1.037 0.544 1.082 0.591 0.770 0.260 0.791 0.295
roadNet-CA-SC 3.296 2.140 3.403 2.246 2.018 0.856 2.073 0.922
twitch-gamers-SC 0.307 0.203 0.326 0.221 0.193 0.088 0.200 0.096
as-Skitter-SC 3.643 2.432 3.830 2.614 2.336 1.106 2.445 1.236
com-LiveJournal-SC 1.389 0.773 1.419 0.811 0.958 0.338 0.992 0.383
com-Orkut-SC 16.216 11.422 16.386 11.789 9.943 5.342 10.597 6.014
com-Friendster-SC 515.693 323.119 551.180 357.877 376.956 184.727 413.305 220.934

Experimental results for random graphs

Finally, we explore further the relative performance of the four algorithms for computing
3-edge cuts (in 3-edge-connected graphs). Thus we created random graphs with a fixed
number of vertices and an increasing number of edges, and we applied four algorithms on
those graphs and on their sparse certificates. We augmented the graphs, whenever needed,
in order to become 3-edge-connected, by adding a relatively small number of new edges.
Specifically, we computed their connected components, and we connected them on a path.
Then we applied the algorithm of Eswaran and Tarjan [4] to introduce the smallest number of
edges that are needed to make them 2-edge-connected. And finally we applied the algorithm
of Naor et al. [22] to optimally increase the connectivity by one. The corresponding plots are
shown in in Figure 4. In these experiments we notice that the GIK algorithm can be as much
as 50% faster than Linear, and more than twice as fast as NRSS(-sort). This fact is not easily
observable in the full algorithms for computing the 4-edge-connected components, because
there are other unrelated operations taking place, and also the sizes of the 3-edge-connected
components are most probably not large enough to make this difference manifest. We also
notice that the NRSS-sort algorithm has, in fact, somewhat worse performance than NRSS
on dense graphs.
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Figure 2 Detailed running times for each part of the 4-edge-connected components algorithms on
the first six real-world graphs of Table 1 and their sparse certificates. For each algorithm, we plot the
running time for computing the (k − 1)-edge-cuts and the corresponding k-connected components
for k ∈ {1, 2, 3, 4}.
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Figure 3 Detailed running times for each part of the 4-edge-connected components algorithms on
the last six real-world graphs of Table 1 and their sparse certificates. For each algorithm, we plot the
running time for computing the (k − 1)-edge-cuts and the corresponding k-connected components
for k ∈ {1, 2, 3, 4}.
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Figure 4 Running times in seconds for random graphs with 1M and 10M vertices and their
corresponding sparse certificates.
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Abstract
Given a graph and two vertex sets satisfying a certain feasibility condition, a reconfiguration problem
asks whether we can reach one vertex set from the other by repeating prescribed modification
steps while maintaining feasibility. In this setting, Mouawad et al. [IPEC 2014] presented an
algorithmic meta-theorem for reconfiguration problems that says if the feasibility can be expressed
in monadic second-order logic (MSO), then the problem is fixed-parameter tractable parameterized
by treewidth + ℓ, where ℓ is the number of steps allowed to reach the target set. On the other hand,
it is shown by Wrochna [J. Comput. Syst. Sci. 2018] that if ℓ is not part of the parameter, then the
problem is PSPACE-complete even on graphs of bounded bandwidth.

In this paper, we present the first algorithmic meta-theorems for the case where ℓ is not part of
the parameter, using some structural graph parameters incomparable with bandwidth. We show
that if the feasibility is defined in MSO, then the reconfiguration problem under the so-called token
jumping rule is fixed-parameter tractable parameterized by neighborhood diversity. We also show
that the problem is fixed-parameter tractable parameterized by treedepth + k, where k is the size of
sets being transformed. We finally complement the positive result for treedepth by showing that the
problem is PSPACE-complete on forests of depth 3.
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1 Introduction

A reconfiguration problem asks, given two feasible solutions S and S′ of a combinatorial
problem, whether there is a step-by-step transformation from S to S′ without losing the
feasibility [18]. The field studying such problems, called combinatorial reconfiguration, is
growing rapidly. The source combinatorial problems in reconfiguration problems have spread
in many subareas of theoretical computer science (see surveys [32,38]). In this work, we focus
on reconfiguration problems on graphs, especially the ones considering some vertex subsets as
feasible solutions. Such problems involve classic properties like independent sets [19], vertex
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covers [28], dominating sets [35], and some connected variants [26]. Restrictions to some
important graph classes such as bipartite graphs [24], split graphs [3], and sparse graphs [25]
are also studied.

Since many problems are studied under many settings in combinatorial reconfiguration, one
may ask for a unified method, or an algorithmic meta-theorem, for handling reconfiguration
problems like Courcelle’s theorem for classic (non-reconfiguration) problems [1,6, 9, 10,12].
Since reconfiguration problems are hard in general (often PSPACE-complete [18]), we need
to consider some special cases or introduce some additional parameters to consider fixed-
parameter tractability. One successful approach in this direction was taken by Mouawad et
al. [30], who showed that if the feasible solutions in a graph can be expressed in monadic
second-order logic, then the reconfiguration problem (under reasonable transformation rules)
is fixed-parameter tractable parameterized simultaneously by the treewidth of the underlying
graph and the length of a transformation sequence. Their method is quite general and can
be applied to several other settings.1 On the other hand, Wrochna [40] showed that if the
length of a transformation sequence is not part of the parameter, then some problems that
fit in this framework are PSPACE-complete even on graphs of bounded bandwidth.

The two results mentioned above (the tractability parameterized by treewidth + transfor-
mation length [30] and the intractability parameterized solely by bandwidth [40]) might be
interpreted as that if we have the length of a transformation sequence in the parameter, then
we can do pretty much everything we expect, and otherwise we can expect very little. Thus,
one might conclude that this line of research is complete and the length of a transformation
sequence is necessary and sufficient in some sense for having efficient algorithms. Indeed, to
the best of our knowledge, the study of meta-algorithms for reconfiguration problems was
not extended after these results.

In this paper, we revisit the investigation of meta-algorithms for reconfiguration problems
and shed light on the settings where the length of a transformation sequence is not part of
the parameter. In particular, we present fixed-parameter algorithms for the reconfiguration
problem of vertex sets defined by a monadic second-order formula parameterized by vertex
cover number or neighborhood diversity. We also show that when combined with the solution
set size, treedepth can be used to obtain a fixed-parameter algorithm. We then complement
this result by showing that when the solution size is not part of the parameter, the problem
is PSPACE-complete on graphs of constant treedepth.

Due to the space limitation, the proofs of some results (marked with ⋆) are omitted or
shortened. The full proofs will be included in the full version.

1.1 Our results

Now we give a little more precise description of our results. Formal definitions not given
here can be found in Section 2 or in the full version.

For a graph G, we denote its clique-width by cw(G), treewidth by tw(G), treedepth by
td(G), vertex cover number by vc(G), neighborhood diversity by nd(G), cluster deletion
number by cd(G). (We define some of these parameters in the last part of Section 2.) See
Figure 1 for the hierarchy among the graph parameters studied in this paper and some related
ones. For a graph parameter f, we often say informally that a problem is fixed-parameter
tractable “parameterized by f” to mean “parameterized by f(G), where G is the input graph.”

1 We elaborate on this a little more in Section 1.2.
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Figure 1 The graph parameters studied in this paper. A connection between two parameters
indicates the existence of a function in the one above that lower-bounds the one below.

Given a monadic second-order (MSO1) formula ϕ with one free set variable, a graph G, and
two vertex subsets S, S′ of the same size, MSO1-Reconfiguration (MSO1-R) asks whether
there exists a sequence of vertex subsets from S to S′ such that each set in the sequence
satisfies the property expressed by ϕ and each set in the sequence is obtained from the
previous one by exchanging one vertex with another. Note that this rule allows to exchange
any pair of vertices. Such a rule is well studied and called the token jumping rule [19]. There is
another well-studied rule called the token sliding rule [17], which requires that the exchanged
vertices are adjacent in G. We focus on the simpler rule token jumping in this paper and
comment on the token sliding counter parts in the full version. MSO2-Reconfiguration
(MSO2-R) with more general MSO2 formulas is defined analogously.

To show a concrete example of MSO1-R, let ϕ(S) := ∀u ∀v : (u ∈ S ∧ v ∈ S) ⇒ ¬E(u, v).
This ϕ is an MSO1 formula (see Section 2) expressing that S is an independent set. Thus,
MSO1-R with this ϕ is exactly Independent Set Reconfiguration under the token
jumping rule.

Now the main results in this paper can be summarized as follows.
1. MSO1-R is FPT parameterized by nd + |ϕ|.

MSO2-R is FPT parameterized by vc + |ϕ|, but not by nd + |ϕ| unless E = NE.
The positive results here strongly depend on the token jumping rule.

2. MSO2-R is FPT parameterized by td + k + |ϕ|, where k is the size of input sets S and S′.
This result holds also under the token sliding rule.
As a by-product, we show that MSO1-R is FPT parameterized by cd+k+ |ϕ|. (Omitted
in the short version.)

3. For some fixed ϕ, MSO1-R is PSPACE-complete even on forests of depth 3.
A similar hardness result can be shown under the token sliding rule.

In all positive results, we can find a shortest sequence for transformation (if any exists).

1.2 Related work
Wrochna [40] showed that MSO1-R is PSPACE-complete on graphs of constant bandwidth
when ϕ expresses independent sets. This implies the PSPACE-completeness of MSO1-R on
graphs of constant pathwidth, treewidth, and clique-width (see Figure 1). To cope with this
intractability, Mouawad et al. [30] considered a variant with the additional restriction that
the length of a transformation sequence cannot exceed some upper bound ℓ. They showed
that this variant of MSO2-R is fixed-parameter tractable parameterized by ℓ+ tw + |ϕ|. They
reduce the reconfiguration problem to the model-checking problem of a single MSO2 formula
by expressing the existence of fewer than ℓ intermediate sets that satisfy ϕ and also expressing
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that the change from a set to the next one obeys the transformation rule. Their framework
is quite general and can be used in several other settings such as vertex sets defined by an
MSO1 formula with the parameter ℓ+ cw + |ϕ|, or size-k vertex sets defined by a first-order
formula with the parameter ℓ + k + |ϕ| on a nowhere dense graph class (as observed also
in [25]). Also, since the step-by-step modification can be defined by a formula, the results
apply not only for the token jumping rule but also for several other rules including the token
sliding rule.2

Another important line of studies on parameterized complexity of reconfiguration problems
take the input set size k as the main parameter instead of a graph structural parameter.
This line was initiated by Mouawad et al. [29], who showed several results parameterized
solely by k and also by k + ℓ. Recently, Bodlaender et al. [4, 5] further extended this line
by showing that depending on whether and how the parameter depends on ℓ, the problem
becomes complete to XL, XNL, or XNLP.

2 Preliminaries

We assume that the reader is familiar with the parameterized complexity theory. See a
standard textbook (e.g., [13, 15,16,31]) for basic definitions.

Let G = (V,E) be a graph. For X ⊆ V , we denote by G[X] and G − X the graphs
induced by X and V \X, respectively. We sometimes denote the vertex set of G by V (G)
and the edge set by E(G). For a digraph D, we denote by A(D) its arc set.

For a non-negative integer d, let [d] denote the set {i ∈ Z | 1 ≤ i ≤ d}. For two
non-negative integers a, b with a ≤ b, let [a, b] denote the set {i ∈ Z | a ≤ i ≤ b}.

Colored graphs. In this paper, we consider graphs in which each vertex has a (possibly
empty) set of colors. We call them colored graphs. Formally, a colored graph G is a tuple
(V,E, C) such that the vertex set is V , the edge set E ⊆

(
V
2
)

is a set of unordered pairs of
vertices, and C = ⟨C1, . . . , Cc⟩ is a tuple of subsets of V , where each Ci is called a color. For
v ∈ V , let C(v) denote the set of colors that v belongs to. When C(v) = ∅ for all v ∈ V , then
the graph is uncolored. As we describe later, monadic second-order formulas treat the edge
set as a symmetric binary relation on V and each color as a unary relation on V . As the
number of colors a formula ϕ can access is bounded by |ϕ|, which is always considered as
a parameter or a constant in this paper, we can assume that the number of colors c is a
parameter as well. We omit the information of colors and say G = (V,E) when colors do not
matter.

Two colored graphs G = (V,E, ⟨C1, . . . , Cc⟩) and G′ = (V ′, E′, ⟨C ′
1, . . . , C

′
c⟩) are isomor-

phic if there is a color-preserving isomorphism f : V → V ′; that is,
for all u, v ∈ V , {u, v} ∈ E if and only if {f(u), f(v)} ∈ E′, and
for all v ∈ V and 1 ≤ i ≤ c, v ∈ Ci if and only if f(v) ∈ C ′

i.
We also say that ⟨G,S⟩ and ⟨G′, S′⟩ are isomorphic for sets S ⊆ V and S′ ⊆ V ′ if the colored
graphs (V,E, ⟨C1, . . . , Cc, S⟩) and (V ′, E′, ⟨C ′

1, . . . , C
′
c, S

′⟩) are isomorphic.

Monadic second-order logic. In the monadic second-order logic on colored graphs, denoted
MSO1, we can use vertex variables and vertex-set variables. The atomic formulas are the
equality x = y of vertex variables, the adjacency relation E(x, y) which means {x, y} ∈ E,
the color predicate Ci(x) for each color Ci which means x ∈ Ci, and the inclusion predicate

2 Actually, the rule used in [30] was another one called “token addition and removal.”
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X(x) for a variable x and a set variable X which means x ∈ X. The MSO1 formulas are
recursively defined from atomic formulas using the usual Boolean connectives (¬, ∧, ∨, ⇒,
⇔), and quantification of variables (∀x, ∃x, ∀X, ∃X). For the sake of readability, we often
use syntactic sugar in MSO1 formulas (e.g., we write “∃x ∈ X : ψ” to mean “∃x : X(x) ∧ ψ”).
As syntax sugars, we also use dotted quantifiers ∃̇ and ∀̇ to quantify distinct objects. For
example, ∃̇a, b, c : ψ means ∃a, b, c : (a ̸= b) ∧ (b ̸= c) ∧ (c ≠ a) ∧ ψ and ∀̇a, b, c : ψ means
∀a, b, c : ((a ̸= b) ∧ (b ̸= c) ∧ (c ̸= a)) ⇒ ψ.

MSO2 is an extension of MSO1 that additionally allows edge variables, edge-set variables,
and an atomic formula I(e, x) that represents the edge-vertex incidence relation. It is known
that MSO2 is strictly more powerful than MSO1 in general [11].

An MSO1 (or MSO2) formula ϕ with free variables X1, . . . , Xp is denoted by ϕ(X1, . . . , Xp).
For a graph G and vertex subsets S1, . . . , Sp of G, we write G |= ϕ(S1, . . . , Sp) if ϕ is true
for G when the free variables X1, . . . , Xp are interpreted as S1, . . . , Sp. We call an MSO1
(MSO2) formula without free variables an MSO1 (MSO2, resp.) sentence.

▶ Proposition 2.1 (Folklore, see e.g., [23]). Let G and G′ be colored graphs and S and S′ be
some vertex subsets of them such that ⟨G,S⟩ and ⟨G′, S′⟩ are isomorphic. Then, for every
MSO1 (or MSO2) formula ϕ with one free set variable, G |= ϕ(S) if and only if G′ |= ϕ(S′).

Problem definitions. For a colored graph G and an MSO1 (or MSO2) formula ϕ(X) a
sequence S0, . . . , Sℓ of vertex subsets of G is a TJ(ϕ)-sequence from S0 to Sℓ (of length ℓ) if

|Si−1 \ Si| = |Si \ Si−1| = 1 for every i ∈ [ℓ], and
G |= ϕ(Si) for 0 ≤ i ≤ ℓ.

We denote by distϕ,G(S, S′) the minimum length of a TJ(ϕ)-sequence from S to S′, which is
set to ∞ if there is no such sequence. We call a TJ(ϕ)-sequence of length 1 a TJ(ϕ)-move.
Now the main problem studied in this paper can be formalized as follows.

MSO1-Reconfiguration (MSO1-R)
Input: An MSO1 formula ϕ, a colored graph G = (V,E, C), and sets S, S′ ⊆ V

such that |S| = |S′|, G |= ϕ(S), and G |= ϕ(S′).
Question: Is there a TJ(ϕ)-sequence from S to S′?

We also study MSO2-R that allows MSO2 formulas having one free vertex-set variable
as ϕ. Observe that MSO1-R is PSPACE-hard as it generalizes various PSPACE-complete
reconfiguration problems such as Independent Set Reconfiguration. On the other
hand, it still belongs to PSPACE since we can non-deterministically find the next vertex set
R in the TJ(ϕ)-sequence and test whether G |= ϕ(R) holds in PSPACE [34,39].

When describing a TJ(ϕ)-move from Si−1 to Si, it is sometimes convenient to say that a
token on the vertex u ∈ Si−1 \ Si is moved to the vertex v ∈ Si \ Si−1. The intuition behind
this is that a vertex set in a TJ(ϕ)-sequence is considered as the positions of tokens and
that in one TJ(ϕ)-move, token on some vertex jumps to another vertex. For simplicity, we
sometimes write Si−1 − u+ v instead of (Si−1 \ {u}) ∪ {v}.

Graph parameters. For a graph G = (V,E), a set S ⊆ V is a vertex cover if each e ∈ E

has at least one endpoint in S. The vertex cover number of G, denoted vc(G), is the size of a
minimum vertex cover of G. A vertex cover of size k of an n-vertex graph, if any exists, can
be found in time O(ck ·n) for some small constant c [8]. This implies that we can assume that
a vertex cover of minimum size is given with the input when vc(G) is part of the parameter.
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Two vertices u and v are twins if N(u) = N(v) or N [u] = N [v]. The neighborhood
diversity of a graph G, denoted nd(G), is the number of subsets Vi in the unique partition
V1, . . . , Vp of V into maximal sets of twin vertices. It is known that the neighborhood diversity
and the corresponding partition can be computed in linear time [27,37]. From the definitions,
we can see that nd(G) ≤ 2vc(G) + vc(G) for every graph G [21].

The treedepth of a graph G = (V,E), denoted td(G), is the minimum depth d of a rooted
forest F on the vertex set V such that each edge of G connects an ancestor and a descendant
in F , where the depth of a forest is defined as the maximum distance between a root and a
leaf. We call such a forest a treedepth decomposition. It is known a treedepth decomposition
of depth d, if exists, can be found in time 2O(d2) · n [33]. Thus we may assume that a
treedepth decomposition of depth td(G) is given with the input when td(G) is part of the
parameter.

3 MSO1-R parameterized by neighborhood diversity

The main result of this section is the following theorem.

▶ Theorem 3.1. MSO1-R parameterized by nd+|ϕ| is fixed-parameter tractable. Furthermore,
for a yes instance of MSO1-R, finding a shortest TJ(ϕ)-sequence is fixed-parameter tractable
with the same parameter.

We first prove Theorem 3.1 and then discuss the possibility of an extension to MSO2-R.
To prove Theorem 3.1, we first partition the feasible sets into a small number of equivalence
classes. We show that the reachability between feasible sets can be checked by using an
appropriately defined adjacency between the equivalence classes. Then, we take a deeper look
at the connections between the equivalence classes and show that a shortest reconfiguration
sequence can be found by finding some flow-like structure among the equivalence classes.

In the following, we fix the input of MSO1-R as follows:
ϕ(X): an MSO1 formula with one free set variable X;
G = (V,E, C): a colored graph;
S, S′ ⊆ V : the initial and target sets such that G |= ϕ(S), G |= ϕ(S′), and |S| = |S′| = k.

We say that a set X ⊆ V is feasible if G |= ϕ(X).
We assume that the sets S and S′ are colors in G; that is, C is of the form like

⟨C1, . . . , Cc, S, S
′⟩. If S and S′ are originally not colors in G, we may add them and

increase the number of colors only by 2.
Two vertices u, v ∈ V in G are of the same type if u and v are twins and C(u) = C(v). Let

⟨V1, . . . , Vt⟩ be the partition of V into the sets of vertices of the same type. We call each Vi

a type. Note that the type partition can be computed in polynomial time and that t depends
only on the neighborhood diversity of G and the number of colors in C.

For an MSO1 formula ψ, let q(ψ) = 2qs · qv, where qs and qv are the numbers of set and
vertex quantifies in ψ, respectively. Lampis [21] proved the following fact, which is one of
the main ingredients in our algorithm.3

3 Note that Proposition 3.2 implies that, when neighborhood diversity is part of the parameter, the MSO1
model-checking problem admits a small induced subgraph of the input graph as a kernel [21]. However,
this does not directly show the fixed-parameter tractability of MSO1-R (let alone the stronger claim of
Theorem 3.1). In fact, as we will see later, an analogous result (Proposition 4.3) that implies a “natural”
kernel for the MSO1 model-checking problem parameterized by treedepth is known, while MSO1-R is
PSPACE-complete on graphs of constant treedepth (Theorem 5.1).
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▶ Proposition 3.2 ([21]). Let ψ be an MSO1 sentence. Assume that a graph H has more
than q(ψ) vertices of the same type, and H ′ is the graph obtained from H by removing a
vertex in that type. Then, H |= ψ if and only if H ′ |= ψ.

We need the concept of “shapes” of vertex subsets that was used with Proposition 3.2 in
the context of extended MSO1 model-checking problems [20]. Here we introduce it in the
following simplified form, which is sufficient for our purpose. The signature of X ⊆ V is
the mapping σX : [t] → Z≥0 such that σX(i) = |Vi ∩X|. A shape is a mapping from [t] to
Z≥0 ∪ {⊥⊤} that maps each i ∈ [t] to an element of [0, q(ϕ) − 1] ∪ {⊥⊤} ∪ [|Vi| − q(ϕ) + 1, |Vi|].
Note that the number of shapes is (2q(ϕ) + 1)t. A set X ⊆ V has shape σ̄ if for every i ∈ [t],

σ̄(i) =
{

⊥⊤ q(ϕ) ≤ σX(i) ≤ |Vi| − q(ϕ),
σX(i) otherwise.

We say that a shape σ̄ is k-feasible if there is a feasible set X ⊆ V of size k that has σ̄ as its
shape.

Let σ̄S and σ̄S′ be the shapes of the input sets S and S′, respectively. Since S is a color
of G, each type Vi either is a subset of S or has no intersection with S, that is,

σ̄S(i) =
{

|Vi| Vi ⊆ S,

0 otherwise.

This implies that a set R ⊆ V has shape σ̄S if and only if R = S. This applies to S′ as well.

▶ Observation 3.3. R ⊆ V has shape σ̄S (σ̄S′) if and only if R = S (R = S′, resp.).

Proposition 3.2 and the definition of shapes together give the following fact, which is
known in more general forms in the previous studies (see e.g., [20]). This less general one is
sufficient in our setting. We present a full proof in the full version to be self contained.

▶ Lemma 3.4 (⋆). If R,R′ ⊆ V have the same shape, then G |= ϕ(R) if and only if
G |= ϕ(R′).

Lemma 3.4 implies in particular that if a shape σ̄ is k-feasible, then every size-k set of
shape σ̄ is feasible.

▶ Lemma 3.5 (⋆). If feasible sets R,R′ ⊆ V have the same shape and size, then there is a
TJ(ϕ)-sequence of length |R \ R′| from R to R′ such that all sets in the sequence have the
same shape.

We now introduce the adjacency between shapes. Intuitively, this concept captures how
a single token jump connects different shapes. Let S1 and S2 be sets having different shapes
σ̄1 and σ̄2, respectively, such that S1 \ S2 = {u}, u ∈ Vi, S2 \ S1 = {v}, v ∈ Vj , and i ̸= j.
For h ∈ [t] \ {i, j}, σ̄1(h) = σ̄2(h) holds. Since σ̄1 ̸= σ̄2, at least one of σ̄1(i) ̸= σ̄2(i) and
σ̄1(j) ̸= σ̄2(j) holds. If σ̄1(i) ̸= σ̄2(i), then |Vi ∩ S2| = |Vi ∩ S1| − 1 implies that one of the
following holds:

A1: σ̄1(i) ̸= ⊥⊤, σ̄2(i) ̸= ⊥⊤, and σ̄2(i) = σ̄1(i) − 1;
A2: σ̄1(i) = ⊥⊤ and σ̄2(i) = q(ϕ) − 1; (σS1(i) = q(ϕ))
A3: σ̄1(i) = |Vi| − q(ϕ) + 1 and σ̄2(i) = ⊥⊤. (σS2(i) = |Vi| − q(ϕ))

Similarly, if σ̄1(j) ̸= σ̄2(j), then |Vj ∩ S2| = |Vj ∩ S1| + 1 implies that one of the following
holds:

B1: σ̄1(j) ̸= ⊥⊤, σ̄2(j) ̸= ⊥⊤, and σ̄2(j) = σ̄1(j) + 1;
B2: σ̄1(j) = q(ϕ) − 1 and σ̄2(j) = ⊥⊤; (σS2(j) = q(ϕ))
B3: σ̄1(j) = ⊥⊤ and σ̄2(j) = |Vj | − q(ϕ) + 1. (σS1(j) = |Vj | − q(ϕ))

ESA 2022



61:8 Algorithmic Meta-Theorems for Combinatorial Reconfiguration Revisited

Given the observation above, we say that two k-feasible shapes σ̄1 and σ̄2 are adjacent if
and only if the following three conditions are satisfied.
(1) One of the following holds:

σ̄1 and σ̄2 disagree at exactly two indices i and j such that i satisfies one of A1, A2,
A3 and j satisfies one of B1, B2, B3;
σ̄1 and σ̄2 disagree at exactly one index i satisfying one of A1, A2, A3, or j satisfying
one of B1, B2, B3.

(2) There exists a size-k set S1 of shape σ̄1 such that
if i is defined in (1) and σ̄1(i) = ⊥⊤, then σS1(i) = q(ϕ);
if j is defined in (1) and σ̄1(j) = ⊥⊤, then σS1(j) = |Vj | − q(ϕ).

(3) There exists a size-k set S2 of shape σ̄2 such that
if i is defined in (1) and σ̄2(i) = ⊥⊤, then σS2(i) = |Vi| − q(ϕ);
if j is defined in (1) and σ̄2(j) = ⊥⊤, then σS2(j) = q(ϕ).

The size-k shape graph Sk has the set of k-feasible shapes as its vertex set and the
adjacency between the vertices (shapes) is as defined above.

▶ Lemma 3.6 (⋆). Let σ̄1 and σ̄2 be two different shapes that are k-feasible. Then, σ̄1 and
σ̄2 are adjacent in Sk if and only if there exist size-k feasible sets S1 and S2 of shapes σ̄1
and σ̄2, respectively, with |S1 \ S2| = |S2 \ S1| = 1.

Since |S| = |S′| = k, the reachability between them can be reduced to the reachability
between their shapes in Sk.

▶ Lemma 3.7 (⋆). Let σ̄ and σ̄′ be the shapes of S and S′, respectively. There is a
TJ(ϕ)-sequence from S to S′ if and only if σ̄ and σ̄′ belong to the same connected component
of Sk.

Lemma 3.7 implies that MSO1-R can be solved by checking that the shapes of the initial
and target sets belong to the same connected component of Sk. We now show that Sk can
be constructed efficiently.

▶ Lemma 3.8 (⋆). Constructing Sk is fixed-parameter tractable parameterized by t+ q(ϕ).

The lemma above already implies that MSO1-R is fixed-parameter tractable parameterized
by nd + |ϕ|. To find a shortest TJ(ϕ)-sequence, we take a closer look at Sk.

A sequence σ̄0, . . . , σ̄q of shapes with σ̄i ̸= σ̄i+1 for 0 ≤ i < q is the shape sequence of a
TJ(ϕ)-sequence if the TJ(ϕ)-sequence can be split into q + 1 subsequences such that all sets
in the ith subsequence have shape σ̄i for 0 ≤ i ≤ q.

▶ Lemma 3.9 (⋆). If there is a TJ(ϕ)-sequence from S to S′, then there is a shortest one
such that the corresponding shape sequence forms a simple path in Sk.

Lemma 3.9 implies that for finding a shortest TJ(ϕ)-sequence from S to S′, it suffices
to first guess a path in Sk and then find a shortest TJ(ϕ)-sequence having the path as its
shape sequence. Note that |V (Sk)| ≤ (2q(ϕ) + 1)t and thus the number of candidates for
such shape sequences is upper bounded by a function depending only on q(ϕ) and t. (Recall
that t is the number of types in G.) Therefore, the following lemma completes the proof of
Theorem 3.1.

▶ Lemma 3.10 (⋆). Given a sequence σ̄0, . . . , σ̄q of shapes such that σ̄0 = σ̄S and σ̄q = σ̄S′ ,
finding a shortest TJ(ϕ)-sequence with the shape sequence σ̄0, . . . , σ̄q is fixed-parameter
tractable parameterized by t+ q(ϕ).
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Proof. We reduce the problem to Minimum-Cost Circulation defined as follows. Let
D = (X,A) be a directed graph. We define δin(v) = {a ∈ A | a = (u, v) ∈ A} and δout(v) =
{a ∈ A | a = (v, u) ∈ A}. A function f : A → R is a circulation if f(δin(v)) = f(δout(v)) for
each v ∈ X, where f(A′) =

∑
a∈A′ f(a) for A′ ⊆ A. A circulation f is an integer circulation if

f(a) is an integer for each a ∈ A. Given a cost function w : A → Q, the cost of a circulation f
is defined as cost(f) =

∑
a∈A w(a)f(a). Now, given a directed graph D = (X,A), a demand

function d : A → Q, a capacity function c : A → Q, and a cost function w : A → Q, Minimum-
Cost Circulation asks to find a circulation f minimizing cost(f) under the condition that
d(a) ≤ f(a) ≤ c(a) for each a ∈ A. It is known that Minimum-Cost Circulation can be
solved in strongly polynomial time, and if the demand d and the capacity c take integer
values only, then a minimum-cost integer circulation is found [36].

Now we construct an instance of Minimum-Cost Circulation from the graph G =
(V,E, C), its type partition ⟨V1, . . . , Vt⟩, and the shape sequence σ̄0, . . . , σ̄q. We first construct
D = (X,A). The digraph D contains two special vertices s and s′, and q sets L0, L1, . . . , Lq−1
of vertices such that Lj = {vj

1, . . . , v
j
t } for 0 ≤ j ≤ q − 1. Each Lj is a bidirectional clique

(i.e., there is an arc for each ordered pair of vertices in Lj). For 1 ≤ j ≤ q− 1, D contains the
matching {(vj−1

i , vj
i ) | 1 ≤ i ≤ t} from Lj−1 to Lj . There are arcs from s to all vertices in L0

and from all vertices in Lq−1 to s′. Additionally, D contains the arc (s′, s). Each arc a in each
clique Lj has demand d(a) = 0, capacity c(a) = ∞, and cost w(a) = 1. All other arcs have
cost 0. We set d((s′, s)) = c((s′, s)) = k. For i ∈ [t], we set d((s, v0

i )) = c((s, v0
i )) = |Vi ∩ S|

(= σ̄0(i)) and d((vq−1
i , s′)) = c((vq−1

i , s′)) = |Vi ∩ S′| (= σ̄q(i)). For i ∈ [t] and j ∈ [q − 1],
we set

d((vj−1
i , vj

i )) =
{

q(ϕ) σ̄j(i) = ⊥⊤,
σ̄j(i) otherwise,

c((vj−1
i , vj

i )) =
{

|Vi| − q(ϕ) σ̄j(i) = ⊥⊤,
σ̄j(i) otherwise.

In the full version, we show that there exists a TJ(ϕ)-sequence of length at most p
with the shape sequence σ̄0, . . . , σ̄q from S to S′ if and only if the instance ⟨D, d, c, w⟩ of
Minimum-Cost Circulation admits an integer circulation f of cost at most p. This
completes the proof since Minimum-Cost Circulation is solvable in strongly polynomial
time and the size of D depends only on t and the number of shapes. ◀

Using Lemma 6 in [21] and Theorem 3.1, we can show the following.

▶ Corollary 3.11 (⋆). MSO2-R parameterized by vc + |ϕ| is fixed-parameter tractable.
Furthermore, for a yes instance of MSO2-R, finding a shortest TJ-sequence is fixed-parameter
tractable with the same parameter.

On the other hand, using a hardness result in [22], we can show that an extension
of Theorem 3.1 to MSO2 is not possible under some reasonable assumption. Recall that
E = DTIME(2O(n)) and NE = NTIME(2O(n)).

▶ Theorem 3.12 (⋆). Unless E = NE, MSO2-R on n-vertex uncolored graphs of neighborhood
diversity 2 and twin cover number 3 cannot be solved in time O(nf(|ϕ|)) for any function f .

4 Fixed-parameter algorithm parameterized by the solution size and
treedepth

In this section, we show that MSO2-R is fixed-parameter tractable when parameterized
simultaneously by treedepth, the length of the MSO2 formula, and the size of input sets S
and S′.
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▶ Theorem 4.1. MSO2-R parameterized by td + k + |ϕ| is fixed-parameter tractable, where
k is the size of input sets. Furthermore, for a yes instance of MSO2-R, finding a shortest
TJ-sequence is fixed-parameter tractable with the same parameter.

As we show in Section 5, having the size of input sets is necessary since otherwise it is
PSPACE-complete.

It is known (see e.g., [11]) that given a colored graph G and an MSO2 sentence ϕ, one
can compute in polynomial time a colored graph G′ and an MSO1 sentence ϕ′ such that

G |= ϕ if and only if G′ |= ϕ′;
G′ is obtained from G by subdividing each edge, and consider the new vertices introduced
by the subdivisions as a color;
the length of ϕ′ is bounded by a function of |ϕ|.

Observe that td(G′) ≤ td(G) + 1.4 Therefore, to prove Theorem 4.1, it suffices to show that
MSO1-R is fixed-parameter tractable parameterized by the claimed parameter.

Now we generalize the type of a vertex used in Section 3 to the type of a vertex set. For a
colored graph G = (V,E, C) and vertex sets X,X ′ ⊆ V , we say that X and X ′ have the same
type if there is an isomorphism η from G to itself such that η(X) = X ′, η(X ′) = X, and
η(v) = v for every v /∈ X∪X ′. Note that from the definition of isomorphisms between colored
graphs, C(v) = C(η(v)) holds for every v ∈ V . Note also that singletons {x}, {x′} ⊆ V have
the same type if and only if the vertices x and x′ have the same type.

The next lemma says that if there are many disjoint vertex sets of the same type, then
we can avoid most of them when finding TJ(ϕ)-sequences.

▶ Lemma 4.2 (⋆). Let ⟨ϕ,G, S, S′⟩ be a yes-instance of MSO1-R with |S| = |S′| = k. Let
C1, . . . , Ct be a family of disjoint vertex sets with the same type not intersecting S ∪ S′. If
t > k, then for every I ⊆ [t] with |I| = k, there is a shortest TJ(ϕ)-sequence S0, . . . , Sℓ from
S0 = S to Sℓ = S′ such that Ci ∩

⋃
0≤j≤ℓ Sj ̸= ∅ only if i ∈ I.

Next we further argue that if there are a much larger number of disjoint vertex sets of
the same type, then we can safely remove some of them. Note that this claim is stronger
than Lemma 4.2 in some sense. Since the formula ϕ(X) may depend on the whole structure
of G (i.e., not only on G[X]), “not using it in a sequence” and “removing it from the graph”
are different.

We need the following proposition, which is a generalization of Proposition 3.2.

▶ Proposition 4.3 ([23]). Let G be a colored graph and ϕ be an MSO1 formula with one free
set variable. Assume that G contains t > 2p·q(ϕ) disjoint size-p vertex sets with the same
type. Let G′ be the graph obtained from G by removing one of the t sets. Then, for every
subset X ⊆ V disjoint from the t sets, G′ |= ϕ(X) if and only if G |= ϕ(X).

Using Proposition 4.3, we can show the following.

▶ Lemma 4.4 (⋆). Let ⟨ϕ,G, S, S′⟩ be an instance of MSO1-R with |S| = |S′| = k. Let
C1, . . . , Ct be a family of disjoint size-p vertex sets with the same type not intersecting S ∪S′.
If t > k + 2p·q(ϕ), then for every C ∈ {C1, . . . , Ct}, distϕ,G(S, S′) = distϕ,G−C(S, S′).

4 Starting with a treedepth decomposition F of G with depth at most d, we construct a treedepth
decomposition F ′ of G′ with depth at most d + 1 by adding the vertex corresponding to each edge
{u, v} ∈ E(G) as a leaf attached to one of u and v that is a descendant of the other.
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The next lemma completes the proof of Theorem 4.1 as it means that we have a kernel
of MSO1-R parameterized by td(G) + k + |ϕ| that preserves the minimum length of a
TJ(ϕ)-sequence.

▶ Lemma 4.5. Let ⟨ϕ,G, S, S′⟩ be an instance of MSO1-R with |S| = |S′| = k. In polynomial
time, one can compute a subgraph H of G such that distϕ,G(S, S′) = distϕ,H(S, S′) and the
size of H depends only on the parameter td(G) + k + |ϕ|.

Proof. Let F be a treedepth decomposition of depth td(G). If F is not connected, then we
add a new vertex r and add edges from the new vertex to the roots of trees in F and set r
to the new root. We call the resultant tree T . If F is connected, then we just set T = F and
call its root r. Let d be the depth of T . Note that d ≤ td(G) + 1.

A node in T has height h if the maximum distance to a descendant is h, where the height
of a leaf is 0. Let c(0) = 0, n(0) = 1, and for h ≥ 0, let

c(h+ 1) = (k + 2n(h)·q(ϕ)) · 2|ϕ|·n(h) · 2(n(h)+d−h)2
+ 2k,

n(h+ 1) = n(h) · c(h+ 1) + 1.

In the next paragraph, we show that after exhaustively applying Lemma 4.4 in a bottom-up
manner along T , each node of height h has at most c(h) children and each subtree rooted
at a node of height h contains at most n(h) nodes. This implies that H has at most n(d)
vertices, where n(d) depends only on td(G), k, and |ϕ|. If h = 0, then the claim is trivial.
Assume that the claim holds for some h ≥ 0. It suffices to prove the upper bound c(h+ 1)
for the number of children as the upper bound n(h+ 1) follows immediately. Suppose to the
contrary that a node v of height h+ 1 has more than c(h+ 1) children. Since |S ∪ S′| ≤ 2k,
more than c(h+ 1) − 2k subtrees rooted at the children of v have no intersection with S ∪ S′.
Let S1, . . . , Sp be such subtrees. By the induction hypothesis, |V (Si)| ≤ n(h) holds for i ∈ [p].
Let R be the vertices on the v-r path in T (including v and r). Observe that, in H, the
vertices in V (Si) may have neighbors only in V (Si) ∪R. Thus the number of different types
of V (S1), . . . , V (Sp) is at most 2|ϕ|·n(h) ·2(n(h)+d−h)2 , where 2|ϕ|·n(h) is the number of possible
ways for coloring n(h) vertices with subsets of at most |ϕ| colors and 2(n(h)+d−h)2 is an upper
bound on the number of different ways that n(h) vertices form a graph and have additional
neighbors in d− h vertices. Since p > c(h+ 1) − 2k = (k + 2n(h)·q(ϕ)) · 2|ϕ|·n(h) · 2(n(h)+d−h)2 ,
there is a subset I ⊆ [p] such that |I| > k + 2n(h)·q(ϕ) and all vertex sets V (Si) with i ∈ [I]
have the same type. This is a contradiction as Lemma 4.4 can be applied here.

Finally, let us see how fast we can apply Lemma 4.4 exhaustively in a bottom-up manner.
The description above immediately gives a fixed-parameter algorithm parameterized by
td(G) +k+ |ϕ|, which is actually sufficient for our purpose. A polynomial-time algorithm can
be achieve in pretty much the same way as presented in [14] for a reconfiguration problem of
paths parameterized by td. The idea is to use a polynomial-time algorithm for labeled-tree
isomorphism to classify subtrees into different types. Only the differences here are that the
graph is colored and the parameters involved are larger. As the colors of the vertices can be
handled by a labeling algorithm and the involved parameters do no matter when they are
too large (i.e., if it is |V | or more), we still obtain a polynomial-time algorithm. ◀

5 PSPACE-completeness on forests of depth 3

In this section, we complement Theorem 4.1 by showing that if the size of input sets is not
part of the parameter, then the problem becomes PSPACE-complete.

ESA 2022



61:12 Algorithmic Meta-Theorems for Combinatorial Reconfiguration Revisited

For a set U , a subset family C ⊆ 2U is an exact cover if the elements of C are pairwise
disjoint and

⋃
C∈C C = U . For two exact covers C1, C2 of U , we say that C1 can be obtained

from C2 by a merge (and C2 can be obtained from C1 by a split) if C1 \ C2 = {D1} and
C2 \ C1 = {D2, D3} for some D1, D2, D3. Note that D1 = D2 ∪D3 and D2 ∩D3 = ∅ as C1
and C2 are exact covers.

Given a set U , a family D ⊆ 2U , and two exact covers C, C′ ⊆ D of U , Exact Cover
Reconfiguration asks whether there exists a sequence C0, . . . , Cℓ of exact covers of U from
C = C0 to C′ = Cℓ such that Ci ⊆ D for all i and Ci is obtained from Ci−1 by a split or a merge
for each i ∈ [ℓ]. It is known that Exact Cover Reconfiguration is PSPACE-complete [7].

In this section, we prove the following hardness result by reducing Exact Cover
Reconfiguration to MSO1-R. (Recall that MSO1-R belongs to PSPACE.)

▶ Theorem 5.1 (⋆). For some fixed ϕ, MSO1-R is PSPACE-complete on uncolored forests
of depth 3.

Let ⟨U,D, C, C′⟩ be an instance of Exact Cover Reconfiguration. We construct an
equivalent instance of MSO1-R. Without loss of generality, we assume that U is a set of
positive integers greater than or equal to 3.

For each set D ∈ D, we construct a tree TD as follows (see Figure 2). The tree TD

contains a central vertex called the root. For each d ∈ D, the root has a child with d

grandchildren. We call the subtree rooted at a child of the root a star and each leaf in a star
a star leaf. Additionally, the root has two more children that have degree 1. They are called
the antennae.

· · ·︸ ︷︷ ︸
d1

· · ·︸ ︷︷ ︸
d2

· · ·︸ ︷︷ ︸
d|D|

· · ·

the antennae

the root

a star

a star leaf

Figure 2 The tree TD with D = {d1, d2, . . . , d|D|}.

The entire forest F consists of trees TD for all D ∈ D and eight isolated vertices. By I, we
denote the set of the isolated vertices. Clearly, F has treedepth 3. The initial set S consists
of all vertices in I and all star leaves of TD for all D ∈ C. Similarly, the target set S′ consists
of all vertices in I and all star leaves of TD for all D ∈ C′. Note that |S| = |S′| = |U | + 8.

For a set R ⊆ V (F ) and a set D ∈ D, the tree TD is full (empty) under R if R contains
all (no, resp.) star leaves of TD, and TD is clean if it is full or empty. We also say that, for a
set R ⊆ V (F ) and a set D ∈ D, a star in TD is full (empty) if R contains all (no, resp.) star
leaves of the star, and the star is clean if it is full or empty.

A tree TD is marked by a vertex set if both antennae are included in the vertex set. A
star in TD is marked by a vertex set if the center (i.e., the unique non-leaf vertex) of the star
is included. We use the eight additional vertices to mark trees and stars.

We construct the MSO1 formula ϕ(X) expressing that X satisfies 1 or 2 below.
1. All trees TD are clean and exactly eight vertices in X are not star leaves.
2. Exactly three trees TD1 , TD2 , TD3 are marked, all other trees are clean, and the following

conditions are satisfied.
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Exactly one of the three trees, say TD3 , is clean.
In each of TD1 and TD2 , exactly one star is marked and all other stars are clean.
The marked star in TD1 is clean if and only if so is the marked star in TD2 .

Constructing such ϕ(X) is tedious but not difficult. The expression is given in the full
version. Now it suffices to show that the constructed instance ⟨ϕ, F, S, S′⟩ is a yes-instance of
MSO1-R if and only if ⟨U,D, C, C′⟩ is a yes-instance of Exact Cover Reconfiguration.
The rest of the proof is omitted in the short version.

6 Conclusion

We revisited the reconfiguration problems of vertex sets defined by MSO formulas, while
putting the length constraint of reconfiguration sequence aside. We showed that the problem
is fixed-parameter tractable parameterized solely by neighborhood diversity and by the
combination of treedepth and the vertex-set size. The parameterization solely by treedepth
would not work as we showed that the problem is PSPACE-complete on forests of depth 3.

Given the positive result for neighborhood diversity and the known hardness for clique-
width (implied by the one for bandwidth [40]), a natural target would be an extension to
modular-width, which is a parameter sitting between neighborhood diversity and clique-
width (see Figure 1). It is known that a special case, the independent set reconfiguration, is
fixed-parameter tractable parameterized by modular-width [2], but the algorithm in [2] is
already quite nontrivial.

Another direction would be strengthening the hardness for treedepth. In Section 5, we
showed the hardness for a quite complicated and rather unnatural formula ϕ, which simulates
the merge and split operations. Although this rules out the possibility of meta-theorems
parameterized by treedepth, it would be still interesting to investigate the complexity of
specific more natural problems. For example, what is the complexity of the independent set
reconfiguration and the dominating set reconfiguration parameterized solely by treedepth?
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Abstract
It follows from the work of Tait and the Four-Color-Theorem that a planar cubic graph is 3-edge-
colorable if and only if it contains no bridge. We consider the question of which planar graphs are
subgraphs of planar cubic bridgeless graphs, and hence 3-edge-colorable. We provide an efficient
recognition algorithm that given an n-vertex planar graph, augments this graph in O(n2) steps to a
planar cubic bridgeless supergraph, or decides that no such augmentation is possible. The main tools
involve the Generalized (Anti)factor-problem for the fixed embedding case, and SPQR-trees for
the variable embedding case.
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1 Introduction

Whether or not the 3-Edge Colorability-problem is solvable in polynomial time for planar
graphs is one of the most fundamental open problems in algorithmic graph theory:

▶ Question 1. Can we decide in polynomial time, whether the edges of a given planar graph
can be colored in three colors such that any two adjacent edges receive distinct colors?

In other words, can we decide for a planar graph G in polynomial time whether χ′(G) ≤ 3,
where χ′(G) denotes the chromatic index of G? Clearly, it is enough to consider planar
graphs G of maximum degree ∆(G) = 3. If G is planar and 3-regular, then by the Four-
Color-Theorem [1, 2] and the work of Tait [26] we know that G is 3-edge-colorable if and
only if G is bridgeless. An edge is a bridge if its removal increases the number of connected
components (note that this definition also applies to disconnected graphs). As we can check
the existence of bridges in linear time [28], we hence can decide in polynomial time whether
a given 3-regular planar graph is 3-edge-colorable.

In particular, subgraphs of bridgeless 3-regular planar graphs are 3-edge-colorable. How-
ever, this does not answer Question 1 yet (as sometimes wrongly claimed, e.g., in [7]), because
it is for example not clear which planar graphs of maximum degree 3 are subgraphs of
bridgeless 3-regular planar graphs, and whether these can be recognized efficiently.

In this paper we consider the corresponding decision problem: Given a graph G, is
there a bridgeless 3-regular planar graph H, such that G ⊆ H? In other words, can G be
augmented, by adding edges and (possibly) vertices, to a supergraph H of G that is planar,
3-regular, and contains no bridge? For brevity we call such a supergraph H a 3-augmentation
of G and denote the above decision problem as 3-Augmentation. Our main result is that
3-Augmentation is in P.
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(a) A planar graph G1 with a
3-augmentation H1.

(b) A different planar embed-
ding of G1 that does not allow
a 3-augmentation.

(c) A graph G2 with a 3-regular
planar supergraph H2. However,
there is no 3-augmentation of G2.

Figure 1 Example instances for the 3-Augmentation problem.

▶ Theorem 2. For a given n-vertex graph G we can construct in O(n2) time a 3-regular
bridgeless planar supergraph H of G, or conclude that no such exists.

Theorem 2 is the main result of the present paper and we emphasize that this does not
answer Question 1 yet. In fact, admitting a 3-augmentation is a sufficient condition for
3-edge colorability; but it is in general not necessary. For example, K2,3 admits a proper
3-edge coloring but no 3-augmentation. Question 1 remains open and we discuss it and its
connection to 3-augmentations in more detail in Section 3.

In order to decide the existence of a 3-augmentation (i.e., proving Theorem 2), we may of
course assume that the graph G itself is planar and of maximum degree at most 3. Observe
that in this case it is always possible to find a 3-regular planar supergraph of G, for example
by adding the small gadget K

(1)
4 consisting of K4 with one subdivided edge to each vertex

that has not degree 3 yet, see Figure 1c. The difficult part is to prevent bridges in the
resulting graph, even if the input graph G is already bridgeless. In fact, our task boils down
to finding a suitable planar embedding of G such that for each vertex v of G and each missing
edge at v, we can assign an incident face at v that should contain the new edge. We avoid the
creation of bridges by assigning each face either no or at least two such new edges. Having
assigned k new edges to a face f , we insert the small gadget K

(k)
4 consisting of K4 with one

edge subdivided k times into f . See Figure 1a for an example. Let us note that this might
only work for some planar embeddings of G. See Figure 1b for a negative example.

We show Theorem 2 in three steps. First, we show that G admits a 3-augmentation
if and only if each inclusion-maximal 2-connected component, called a block, of G admits
a 3-augmentation. As all blocks can be found in linear time [27], we may restrict to the
2-connected case henceforth. Second, we consider a 2-connected G with a fixed planar
embedding E and use the Generalized Antifactor-problem to test whether G admits a
3-augmentation H ⊇ G with a planar embedding whose restriction to G equals E . Finally,
for a 2-connected G with variable embedding, we use an SPQR-tree of G to efficiently go
through the possible planar embeddings of G with a dynamic program and to identify one
such embedding that allows for a 3-augmentation, or conclude that no such exists.

Outline. After discussing related work below, we give necessary definitions in Section 1.1,
including the Generalized Antifactor-problem and SPQR-trees. In Section 2 we develop
our algorithm for the 3-Augmentation-problem, where we reduce to the 2-connected case
in Section 2.1, and handle the fixed embedding in Section 2.2, and variable embedding in
Section 2.3. Finally, in Section 3 we complete the loop back to the 3-Edge Colorability-
problem for planar graphs. Lemmas marked with ∗ are proven in the full version [13].
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Related work. Hartmann, Rollin and Rutter [16] studied a similar augmentation problem
for planar graphs, where we are only allowed to add edges (but no vertices) to the graph. In
particular, for given c, k ∈ {1, . . . , 5} they define the c-Connected Planar k-Regular
Augmentation-problem where one seeks to add edges to a given planar graph G, so that
the resulting supergraph H of G is planar, c-connected, and k-regular. Observe that the
2-Connected Planar 3-Regular Augmentation-problem is more restrictive than the
3-Augmentation-problem: The former forbids to add new vertices, therefore refuses all
input graphs with an odd number of vertices, and requires the result to be connected,
therefore refusing all input graphs that are 3-regular and disconnected. In fact, reducing
from Planar 3Sat, they show that 2-Connected Planar 3-Regular Augmentation
is NP-complete [16, Theorem 3], while we show that 3-Augmentation lies in P.

Let us mention a few more examples from the rich and diverse area of augmentation
problems. Eswaran and Tarjan [12] pioneered the systematic investigation of augmentation
problems. They presented algorithms to find in O(|V | + |E|) a smallest number of edges
whose addition to a given (not necessarily planar) graph G = (V, E) results in a 2-connected
respectively 2-edge-connected graph (a connected graph with no bridge), while the weighted
versions of either problem is NP-complete. If we additionally require the result to be planar,
already both unweighted problems are NP-complete [18,22]. Other problems of augmenting to
a planar graph consider augmenting to a grid graph [3], or triangulating while minimizing the
maximum degree [9, 19], avoiding separating triangles [4], creating a Hamiltonian cycle [11],
or resulting in a chordal graph [20], just to name a few.

1.1 Preliminaries

All graphs considered here are finite, undirected, and contain no loops but possibly multiedges.
We write ∥G∥ for the size of G (its number of edges) and denote the degree of a vertex v

by deg(v), the minimum degree in G by δ(G), and the maximum degree in G by ∆(G).
A graph G is d-regular, for some non-negative integer d, if we have δ(G) = ∆(G) = d. A
3-regular graph is also called cubic, while a graph G is subcubic if ∆(G) ≤ 3.

A bridge in a graph G is an edge e whose removal increases the number of connected
components, i.e., G − e has strictly more components than G. Equivalently, e is a bridge if e

is not contained in any cycle of G. A bridgeless graph is one that contains no bridge. Note
that a bridgeless graph may be disconnected. On the other hand, for a positive integer k,
a graph G = (V, E) is k-connected if |V | ≥ k + 1 and for any set U of k − 1 vertices in G

the graph G − U is connected. In particular, a graph G of maximum degree ∆(G) ≤ 3 is
2-connected if and only if G is connected and bridgeless. A 2-connected graph is sometimes
also called biconnected, while a 3-connected graph is sometimes also called triconnected.

A planar embedding E of a (planar) graph G is (in a sense that we need not make precise
here) an equivalence class of crossing-free drawings of G in the plane. In particular, a
planar embedding determines the set F of all faces, the distinguished outer face f0 ∈ F , the
clockwise ordering of incident edges around each vertex and the boundary of each face as a
set of facial walks, each being a clockwise ordering of vertices and edges (with repetitions
allowed). The edges and vertices incident to the outer face are called outer edges and outer
vertices, while all others are inner edges and inner vertices. For every embedding E of G

we define the flipped embedding E ′ to be the embedding obtained from E by reversing the
clockwise order of incident edges at each vertex. This operation changes neither the set of
faces nor the outer face. Whitney’s Theorem [30] states that a 3-connected planar graph G

has a unique embedding (up to the choice of the outer face and flipping).
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Generalized (Anti)factors. If G is a subgraph of H , denoted G ⊆ H , and v is a vertex of G,
then we denote the degree of v in G by degG(v). If V (G) = V (H), then G is called a spanning
subgraph of H. If each vertex v of H is assigned a set B(v) ⊆ {0, . . . , degH(v)}, then a
spanning subgraph G of H is called a B-factor of H if and only if degG(v) ∈ B(v) for every
vertex v. Lovász [21] introduced B-factors and the Generalized Factor-problem that,
given graph H and for each vertex v in H a set B(v), asks whether H admits some B-factor.
A set B(v) is said to have a gap of length ℓ ≥ 1 if there is an integer i ∈ B(v) such that
i + 1, . . . , i + ℓ /∈ B(v), and i + ℓ + 1 ∈ B(v). While the Generalized Factor-problem
is NP-complete in general [21], it can be solved in polynomial time if all gaps of each B(v)
have length one [8].

Now let B(v) ⊆ {0, . . . , degH(v)} be another set assigned to each vertex v. A spanning
subgraph G of H is called a B-antifactor, if and only if degG(v) ̸∈ B(v). One can think
of B(v) as forbidden degrees for v in G. The Generalized Antifactor-problem asks
whether H admits a B-antifactor. Note that the set {0, . . . , degH(v)} \ B(v) is finite, so
the Generalized Antifactor-problem is indeed a special case of the Generalized
Factor-problem. Therefore, an instance of the Generalized Antifactor-problem with
no two consecutive integers in any B(v) corresponds to an instance of the Generalized
Factor-problem with gaps of length at most one1 and can be solved in polynomial time [8].

In Section 2.2 we use a theorem by Sebö [24], giving an efficient algorithm to compute
generalized antifactors without two consecutive forbidden degrees.

▶ Theorem 3 (Sebö [24]). Let H = (V, E) be a graph and for each vertex v ∈ V let
B(v) ⊆ {0, . . . , degH(v)} be a set containing no two consecutive integers. Then we can
compute a B-antifactor in time O(|V | · |E|), or conclude that no such exists.

SPQR-Tree. The SPQR-tree is a tree-like data structure that compactly encodes all planar
embeddings of a biconnected planar graph. It was introduced by Di Battista and Tamassia [10]
and can be computed in linear time [15]. Its precise definition includes quite a number
of technical terms, of which we define the crucial ones below. This makes our exposition
self-contained, while also ensuring the established terminology for experienced readers. We
give an illustrating example in Figure 2.

The SPQR-tree of a biconnected planar graph G is a rooted tree T , where each vertex µ

of T is associated to a multigraph skel(µ) that is called the skeleton of µ. This multigraph
skel(µ) must be of one of four types determining whether µ is an S-, a P-, a Q- or an R-vertex:

S-vertex: skel(µ) is a simple cycle.
P-vertex: skel(µ) consists of two vertices and at least three parallel edges.
Q-vertex: skel(µ) consists of two vertices with two parallel edges.
R-vertex: skel(µ) is triconnected.

Some of the edges of the skeletons can be marked as virtual edges. An edge e = µν of the
SPQR-tree T corresponds to two virtual edges, exactly one in skel(µ) and one in skel(ν).
Conversely, each virtual edge corresponds to exactly one tree edge of T in this way. We refer
again to Figure 2 for an example.

Under above conditions, the defining property of the SPQR-tree T is that G can be
obtained by gluing along the virtual edges: For each tree edge e = µν, the skeletons skel(µ)
and skel(ν) are identified at the corresponding endpoints of the two virtual edges associated
to e and then the virtual edges are removed.

1 Let us point out a subtlety here illustrating that this correspondence is not one-to-one. Requiring
that B(v) does not contain two consecutive integers is stronger than requiring gaps of length 1 in B(v) :=
{0, . . . , degH(v)} \ B(v). For example, consider a vertex v with degH(v) = 5 and B(v) = {1, 3, 4, 5}.
Then B(v) = {0, 2} has a gap of length 1, even though B(v) contained consecutive integers.
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Figure 2 A graph with an edge eρ (left) and its SPQR-tree rooted at the Q-vertex ρ corresponding
to eρ (right). Each tree node µ shows the skeleton skel(µ) in which the virtual edge to its parent is
shown thicker. The (blue) tree edges indicate the associated pairs of virtual edges.

We additionally require that no two S-vertices and no two P-vertices are adjacent in T ,
as otherwise the skeletons of two such vertices can be merged into the skeleton of a new
vertex of the same type. Further, exactly one of the two parallel edges in a Q-vertex is a
virtual edge while S-, P- and R-vertices contain only virtual edges. Under these conditions
the SPQR-tree of G is unique. There is exactly one Q-vertex per edge in G and these form
the leaves of the SPQR-tree. The inner S-, P- and R-vertices correspond more or less2 to the
separation pairs (that is, pairs of vertices forming a cut set) of G [10].

Assume that an arbitrary vertex ρ of T is fixed as the root. For some vertex µ in T let π

be its parent. Further, let u, v be the endpoints of the virtual edge in skel(µ) associated
with the tree edge µπ in T . Then the graph obtained by gluing skel(µ) with all skeletons in
its subtree and without the virtual edge uv is called the pertinent graph of µ and denoted
by pert(µ). Note that pert(µ) is always connected.

SPQR-Tree and Planar Embeddings. If the SPQR-tree T is rooted at a Q-vertex ρ

corresponding to an edge eρ of G, then T represents all planar embeddings of G in which eρ

is an outer edge [10]. When G is constructed by gluing corresponding virtual edges, one has
the following choices on the planar embedding:

Whenever the corresponding virtual edges of an S-, P- or R-vertex µ and its parent are
glued together, this leaves two choices for the planar embedding: Having decided for an
embedding Eµ of pert(µ) already, we can insert Eµ or the flipped embedding E ′

µ.
The parallel virtual edges of a P-vertex µ associated to virtual edges of children can be
permuted arbitrarily. Every permutation leads to a different planar embedding of skel(µ).
Gluing at the virtual edge of a Q-vertex µ replaces the virtual edge uv by the “real”
edge uv in G. This has no effect on the embedding.

Let E be a planar embedding of G having eρ as an outer edge. Further, let µ be an inner vertex
of the SPQR-tree and uµ, vµ be the endpoints of the virtual edge in skel(µ) corresponding to
the parent edge of µ in T . Lastly, let Eµ be the restriction of E to pert(µ) and let fo

µ be the
outer face of Eµ. As eρ is an outer edge of E , it follows that uµ and vµ are outer vertices
in Eµ. The uµvµ-path in pert(µ) having fo

µ to its left (right) is the left (right) outer path
of Eµ. Lastly, we define the left (right) outer face of Eµ inside E to be the face of E left (right)
of the left (right) outer path of Eµ.

2 In fact they correspond to so-called split pairs. However, we omit their formal discussion, as it is not
needed here.
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2 The 3-Augmentation-Problem

2.1 Reduction to the 2-Connected Case
▶ Proposition 4. For a disconnected graph G with connected components G1, . . . , Gk, k ≥ 2,
we have that

(i) G has a 3-augmentation if and only if each Gi has a 3-augmentation, i = 1, . . . , k, and
(ii) G has a 2-connected 3-augmentation if and only if each Gi has a 3-augmentation and

no Gi is 3-regular, i = 1, . . . , k.

Proof.
(i) Any 3-augmentation of G is also a 3-augmentation of each Gi, showing already necessity.

For sufficiency, observe that the 3-augmentations of different Gi are vertex-disjoint and
hence their union is a 3-augmentation of G.

(ii) Like above, a 2-connected 3-augmentation H of G is also a 3-augmentation of each Gi,
i = 1, . . . , k. Moreover, as H is connected, each Gi has a vertex with at least one
incident edge in E(H) − E(G), showing that Gi is not 3-regular.
On the other hand, for i = 1, . . . , k let Hi be a 3-augmentation of Gi. Without loss of
generality each Hi is connected (hence 2-connected since 3-augmentations are bridgeless).
As Gi is not 3-regular, we can pick an edge ei from E(Hi) − E(Gi), i = 1, . . . , k. Next,
choose a planar embedding E of the disjoint union H1 ·∪ · · · ·∪Hk where each of e1, . . . , ek

is an outer edge. Finally, add a copy of K
(2k)
4 into the outer face of E , delete e1, . . . , ek,

and connect the 2k degree-2 vertices of H1 ·∪ · · · ·∪ Hk with the 2k degree-2 vertices of
K

(2k)
4 by a non-crossing matching. The result is a 2-connected 3-augmentation of G (by

definition a 3-augmentation is bridgeless, so connectivity implies 2-connectivity). ◀

▶ Proposition 5. A graph G admits a 3-augmentation if and only if ∆(G) ≤ 3 and each
block of G admits a 3-augmentation.

Proof. If G is bridgeless, then each connected component is a single block and thus admits
a 3-augmentation by assumption. The disjoint union of these is a 3-augmentation of G.

Otherwise, consider G with a bridge e = uv. Let G1 be the connected component of
G − e containing u, and let the remaining graph be G2 = G − G1. It is enough to show
that if G1 and G2 have 3-augmentations H1 respectively H2, then G has a 3-augmentation,
too. To this end, consider an edge e1 ∈ E(H1) − E(G1) incident to u and an edge e2 ∈
E(H2) − E(G2) incident to v. These edges exist as degG1

(u), degG2
(v) ≤ ∆(G) − 1 ≤ 2

but degH1(u) = degH2(v) = 3. Choose a planar embedding of H1 ·∪ H2 with e1 and e2
being outer edges. Denoting by a, b the endpoints of e1, e2 different from u, v, we see that
(H1 − e1) ·∪ (H2 − e2) ∪ {uv, ab} is a 3-augmentation of G, as desired. ◀

2.2 The Fixed Embedding Setting
As usual for embedding-dependent problems for planar graphs, it makes sense to distinguish
between the planar graph G being given with a fixed embedding that shall not be altered,
and the setting with variable embedding where we solely have G as the input and shall find
a suitable embedding for G or decide that no such exists. The 3-augmentation problem is
formulated in the variable embedding setting. However, let us treat the variant with a fixed
embedding first, as this will be a crucial subroutine for the variable embedding setting later.

▶ Proposition 6. Let G be an n-vertex 2-connected planar multigraph of maximum de-
gree ∆(G) ≤ 3 with a fixed planar embedding E. Then we can compute in time O(n2) a
3-augmentation H of G with a planar embedding EH whose restriction to G equals E, or
conclude that no such exists.
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Proof. Let V ′ denote the subset of the vertices of G with degG(v) ≤ 2 and let F denote
the set of faces of E . Note that since G is 2-connected, all v ∈ V ′ have degG(v) = 2.
We consider the bipartite vertex-face incidence graph I = (V ′ ·∪ F, E(I)) with vertex-set
V ′ ·∪ F and edge-set E(I) := {vf | v ∈ V ′, f ∈ F, v is incident to f}. Note that I has O(n)
vertices and at most 2n edges, since ∆(G) ≤ 3. We define an instance of the Generalized
Antifactor-problem by assigning each vertex x of I (corresponding to a vertex in G or a
face in F ) a set B(x) ⊆ {0, . . . , degI(x)}:

B(x) :=
{

{0, 2} for x ∈ V ′

{1} for x ∈ F

Note that no B(x) contains two consecutive integers.

▷ Claim 7. Graph G admits a 3-augmentation H extending the embedding E if and only
if I admits a B-antifactor.

Proof. First assume H is a 3-augmentation of G with a planar embedding EH that extends E .
Hence every edge e ∈ E(H) − E(G) lies in a unique face of E . We construct a B-antifactor
of I as follows. For each degree-2 vertex v of G, let fv be the face of E that contains the
unique edge in E(H) − E(G) incident to v. We claim that J = (V ′ ·∪ F, {vfv | v ∈ V ′}) is a
B-antifactor of I. In fact, degJ (v) = 1 for each degree-2 vertex v ∈ V . Now if we would have
degJ(f) = 1 for some face f ∈ F , then exactly one vertex v ∈ V ′ has exactly one incident
edge e lying in face f . In particular, the other endpoint of e is not a vertex of G. But then e

is a bridge and H is not a 3-augmentation. Hence degJ (f) ̸= 1 for each f ∈ F and I indeed
admits a B-antifactor.

Conversely assume now that I has some B-antifactor J . Then we construct the desired
3-augmentation H of G as follows. Inside each face f of E with degJ (f) > 0 place a copy Kf

of K
(degJ (f))
4 . Connect the degJ(f) degree-2 vertices v ∈ V ′ with vf ∈ E(J) by a non-

crossing matching with the degJ(f) degree-2 vertices of Kf . Call the resulting graph H

and its resulting planar embedding EH . Then H is 2-connected (in particular bridgeless)
as G is 2-connected and degJ(f) ̸= 1 for each f ∈ F . Moreover, H is 3-regular. In fact, for
each vertex v ∈ V ′ we have degH(v) = degG(v) + 1 = 3, as J is a B-antifactor. Finally,
restricting EH to G gives back embedding E . ◁

Now Claim 7 immediately finishes the proof because no B(x) contains two consecutive
integers. Hence, by Sebö’s algorithm [24] (cf. Theorem 3) we can compute a B-antifactor
of I in O(n2) time, or conclude that no such exists. ◀

2.3 The Variable Embedding Setting
Even an unlabeled 2-connected subcubic planar graph G can have exponentially many different
planar embeddings (e.g., the (2×n)-grid graph). Thus, iterating over all embeddings of G and
applying the algorithm from Proposition 6 to each of them is not a polynomial-time algorithm
and hence no feasible approach for us. In this section we describe how to use the SPQR-tree
of G to efficiently find a planar embedding E of G such that there is a 3-augmentation H of G

extending E , or conclude that no such embedding exists. The algorithm from Proposition 6
will be an important subroutine.

▶ Proposition 8. Let G be an n-vertex 2-connected planar graph of maximum degree ∆(G) ≤ 3.
Then we can compute in O(n2) time a 3-augmentation H of G or conclude that no such
exists.
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Overview. The proof of Proposition 8 uses a bottom-up dynamic programming approach on
the SPQR-tree T of G rooted at a Q-vertex ρ corresponding to some edge eρ in G. Consider a
vertex µ ̸= ρ in T . Let uv be the virtual edge in skel(µ) that is associated to the parent edge
of µ. Recall that each embedding E of G with eρ on the outer face, when restricted to the
pertinent graph pert(µ), gives an embedding Eµ of pert(µ) whose inner faces are also inner
faces of E , and with u and v being outer vertices of Eµ. The outer face of Eµ is composed of
two (not necessarily edge-disjoint) u-v-paths; the left and right outer path of Eµ, which are
contained in the left and right outer face of Eµ inside E , respectively. We seek to partition
the (possibly exponentially many) planar embeddings of pert(µ) with u, v on its outer face
into a constant number of equivalence classes based on how many edges in a 3-augmentation
of G could possibly “connect” pert(µ) with the rest of the graph G inside the left or right
outer face of Eµ inside E . This corresponds3 to the number of degree-2 vertices on the left
and right side in so-called inner augmentations of Eµ. Loosely speaking, it will be enough for
us to distinguish three cases for the left side (0, 1, or at least 2 connections), the symmetric
three cases for the right side, and to record which of the nine resulting combinations are
possible. Note that this grouping of embeddings of Eµ into constantly many classes is the
key insight that allows an efficient dynamic program.

Whether a particular equivalence class is realizable by some planar embedding Eµ of pert(µ)
will depend on the vertex type of µ (S-, P- or R-vertex) and the realizable equivalence classes
of its children µ1, . . . , µk. In the end, we shall conclude that the whole graph G has a
3-augmentation if and only if for the unique child µ of the root ρ of T the equivalence class
of embeddings of pert(µ) for which neither the left nor the right side has any connections is
non-empty.

Most of our arguments are independent of SPQR-trees and we instead consider so-called
uv-graphs, which are slightly more general than pertinent graphs. We shall introduce inner
augmentations of uv-graphs, which then give rise to label sets for uv-graphs, both in a
fixed and variable embedding setting. These label sets encode the aforementioned number
of connections between the uv-graph as a subgraph of G and the rest of G in a potential
3-augmentation. After showing that we can compute even variable label sets by resorting
to the fixed embedding case and Proposition 6, we then present the final dynamic program
along the rooted SPQR-tree T of G.

uv-Graphs and Labels. A uv-graph is a connected multigraph Guv with ∆(Guv) ≤ 3,
two distinguished vertices u, v of degree at most 2, together with a planar embedding Euv

such that u and v are outer vertices. A connected multigraph Huv ⊇ Guv with planar
embedding EH is an inner augmentation of Guv if

EH extends Euv and has u, v on its outer face,
each of u, v has the same degree in Huv as in Guv,
every vertex of Huv except for u, v has degree 1 or 3,
every degree-1 vertex of Huv lies in the outer face of EH and
every bridge of Huv that is not a bridge of Guv is incident to a degree-1 vertex.

Because u, v are outer vertices in EH , one could add another edge euv (oriented from u to v)
into the outer face of EH preserving planarity (this edge is not part of the inner augmentation).
Then euv splits the outer face into two faces fA, fB left and right of euv, respectively. Each
degree-1 vertex of Huv now lies either inside fA or fB .

3 up to the fact that left and right outer path may share degree-2 vertices, each of which sends however
its third edge into only one of the left and right outer face
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We are interested in the number of degree-1 vertices in each of these faces of EH and write
d(Huv, EH) = (a, b) if an inner augmentation Huv of Guv has exactly a degree-1 vertices
inside fA and exactly b degree-1 vertices inside fB .

▶ Lemma 9. Let Huv be an inner augmentation of Guv with d(Huv, EH) = (a, b). If a ≥ 2,
then Guv has an inner augmentation H0

uv with d(H0
uv, E0

H) = (0, b) and an inner augmentation
H1

uv with d(H1
uv, E1

H) = (1, b). A symmetric statement holds when b ≥ 2.

Proof. Add edge uv to the inner augmentation Huv such that it has a degree-1 vertices
in fA. We add a copy of K

(a)
4 into fA and identify the a degree-2 vertices of K

(a)
4 with the a

degree-1 vertices in fA in a non-crossing way. Ignoring edge uv, the obtained graph is the
desired inner augmentation H0

uv with d(H0
uv, E0

H) = (0, b). We obtain H1
uv by additionally

subdividing an edge of K
(a)
4 that is incident to fA once and by attaching a degree-1 vertex

to it into fA. ◀

Motivated by Lemma 9, we focus on inner augmentations Huv with d(Huv, EH) = (a, b)
where a, b ∈ {0, 1}, and assign to Huv in this case the label ab with a, b ∈ {0, 1}.

The embedded label set Lemb(Guv, Euv) contains all labels ab such that there is an inner
augmentation Huv of Guv with label ab. Allowing other planar embeddings of Guv, we
further define the variable label set as Lvar(Guv) =

⋃
E Lemb(Guv, E), where E runs over all

planar embeddings of Guv where u and v are outer vertices. As this in particular includes for
each embedding E of Guv also the flipped embedding E ′ of Guv, it follows that ab ∈ Lvar(Guv)
if and only if ba ∈ Lvar(Guv). Whenever this property holds for a (variable or embedded)
label set, we call the label set symmetric. Hence, all variable label sets are symmetric, but
embedded label sets may or may not be symmetric.

For brevity, let us use ⋆ as a wildcard character, in the sense that if {x0, x1} is in
an embedded or variable label set for some x ∈ {0, 1}, then we shorten the notation and
replace them by a label x⋆. Symmetrically, we use the notation ⋆x and in particular define
{⋆⋆} := {00, 01, 10, 11}. Using this notation, the eight possible symmetric label sets are:

∅, {00}, {01, 10}, {11}, {0⋆, ⋆0}, {00, 11}, {1⋆, ⋆1}, {⋆⋆} (1)

The following lemma reveals the significance of inner augmentations and label sets.

▶ Lemma 10. Let G be a 2-connected graph with ∆(G) ≤ 3 and E be an embedding of G

with some outer edge e = xy. Further, let Guv be the uv-graph obtained from G by deleting e

and adding two new vertices u, v with edges ux and vy into the outer face of E. Then G has
a 3-augmentation if and only if 00 ∈ Lvar(Guv).

Proof. First let H ⊇ G be a 3-augmentation of G and let EH be an embedding of H with
e = xy being an outer edge. Then deleting e and adding two new vertices u, v with edges ux

and vy into the outer face of EH results in an inner augmentation Huv of Guv with respect
to the embedding of Guv inherited from EH . As adding an edge euv from u to v into Huv

gives a graph with no degree-1 vertices, we have 00 ∈ Lvar(Guv).
Conversely, assume that 00 ∈ Lvar(Guv). Then there is an embedding Euv of Guv that

allows for some inner augmentation Huv with embedding EH for which Huv + euv has no
degree-1 vertices, where euv = uv denotes a new edge between u and v. Thus, in Huv the
vertices u and v have degree 1 (as in Guv), every vertex of Huv except u, v has degree 3, and
the only bridges of Huv are the edges ux and vy. Then we obtain a 3-augmentation H of G

by removing ux, vy from Huv and adding the edge xy into the outer face of EH . In case, Huv

already contains the edge xy, this is replaced by a copy of K
(2)
4 with two non-crossing edges

between x, y and the two degree-2 vertices of K
(2)
4 . ◀
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v

(a) Lemb(Y, EY )={00}.
u

v

x

(b) Lemb(Y, EY )={01, 10}.
u

v

` r

(c) Lemb(Y, EY )={00, 11}.
u

v

r

`

(d)Lemb(Y, EY )={11}.

u

v

z

y

x

(e) Lemb(Y, EY )={⋆⋆}.
u

v

` r
x

(f) Lemb(Y, EY )={0⋆, ⋆0}.
u

v

` r

x z

y

(g) Lemb(Y, EY )={1⋆, ⋆1}.

 

(h) Only degree 3.

Figure 3 a–g The seven gadgets for the seven non-empty variable label sets Lvar(Guv) of a
uv-graph Guv. h Modification to locally replace a degree-2 vertex by four degree-3-vertices.

Gadgets. In our algorithm below, we aim to replace certain uv-graphs X (with variable
embedding) by uv-graphs Y with fixed embedding EY , such that the variable label set Lvar(X)
equals the embedded label set Lemb(Y, EY ). This will allow us to use Proposition 6 from the
fixed embedding setting as a subroutine.

The following lemma describes seven uv-graphs, each with a fixed embedding, corres-
ponding to the seven different non-empty variable label sets as given in (1). For this purpose,
each such gadget is itself a uv-graph Y with a fixed embedding EY .

▶ Lemma* 11. For every uv-graph Guv with Lvar(Guv) ̸= ∅ there exists a gadget Y with an
embedding EY such that u, v are outer vertices and Lemb(Y, EY ) = Lvar(Guv).

Lemma 11 is proven in the full version [13], but the claimed gadgets are shown in Figure 3.

Computing a Label Set. In our algorithm below we want to compute the variable label sets
of pert(µ) for vertices µ of the rooted SPQR-tree T of G. As we will see, we can reduce this
to a constant number of computations of embedded label sets of certain uv-graphs that are
specifically crafted to encode all the possible embeddings of pert(µ). The following lemma
describes how to do this.

▶ Lemma* 12. Let Guv be an n-vertex uv-graph and Euv a planar embedding where u and v

are outer vertices. Then we can check each of the following in time O(n2):
Whether 00 ∈ Lemb(Guv, Euv).
Whether 01 ∈ Lemb(Guv, Euv) or 10 ∈ Lemb(Guv, Euv).
Whether 11 ∈ Lemb(Guv, Euv).

In particular, if Lemb(Guv, Euv) is symmetric, then this is sufficient to determine the exact
embedded label set Lemb(Guv, Euv).

The idea for Lemma 12 is similar to Lemma 10: For each check, we do some small
local modifications to Guv in order to obtain an embedded planar graph G+

uv that has a
3-augmentation extending its embedding if and only if Lemb(Guv, Euv) contains the specific
label. Then the result follows from Proposition 6. A full proof is given in the full version [13].
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Algorithm for Variable Embedding. In order to decide whether a given biconnected planar
graph G admits some planar embedding which admits a 3-augmentation, we use the SPQR-
tree T of G. Rooting T at some Q-vertex ρ, the pertinent graph pert(µ) of a vertex µ in T

is a subgraph of G. Moreover, if uµvµ is the virtual edge in skel(µ) associated to the parent
edge of µ, then pert(µ) is a uv-graph (with uµ, vµ taking the roles of u, v in the uv-graph).
Now the variable label set Lvar(pert(µ)) is a constant-size representation of all possible labels
that any possible embedding of an inner augmentation of pert(µ) can have (having uµ and vµ

on its outer face). The remainder of this section describes how the variable label sets of all
vertices in the SPQR-tree can be computed by a bottom-up dynamic program.

▶ Lemma* 13. Let µ be an inner R-, S-, or P-vertex of the SPQR-tree and µ1, . . . , µk

be its children. Further assume that the variable label sets Lvar(pert(µi)), for i = 1, . . . , k,
are non-empty and known. Then the variable label set Lvar(pert(µ)) can be computed in
time O(∥ skel(µ)∥2).

The idea to prove Lemma 13 is to consider skel(µ) with its essentially unique embedding
and to replace for each µi the associated virtual edge by the embedded gadget Y from
Lemma 11 (cf. Figure 3) with Lemb(Y, EY ) = Lvar(pert(µi)). Then the virtual edge uv

associated to the parent of µ gets removed to obtain an embedded uv-graph on O(∥ skel(µ)∥)
vertices, whose embedded label set can then be computed with Lemma 12. A full proof is
given in the full version [13].

Lemma 13 computes the variable label set of an inner vertex of the SPQR-tree, requiring
that the variable label sets of its children are non-empty. If this condition is not satisfied,
i.e., at least one vertex µ has Lvar(pert(µ)) = ∅, then the following lemma applies:

▶ Lemma 14. If Lvar(pert(µ)) = ∅ for some vertex µ of the SPQR-tree T of G, then G has
no 3-augmentation.

Proof. Assuming that G has a 3-augmentation H, we shall show that Lvar(pert(µ)) ̸= ∅ for
every vertex µ of T . If µ is the root, let u, v be the two unique vertices in skel(µ) (because
µ = ρ is a Q-vertex). If µ is not the root, let u, v be the endpoints of the virtual edge
associated to the parent edge of µ.

By the definition of labels, Lvar(pert(µ)) ̸= ∅ if there is some inner augmentation of pert(µ)
for at least one of its planar embeddings with u, v on its outer face. But the 3-augmentation H

of G induces an inner augmentation of pert(µ) as follows: Let EH be a planar embedding
of H with outer edge eρ and EG its restriction to G. Recall that then u, v are outer vertices
of pert(µ) in EG. Consider the embedded subgraph of H consisting of pert(µ) and all vertices
and edges of H inside inner faces of pert(µ) in EG. For each vertex w ̸= u, v on the outer face
of pert(µ) in EG incident to an edge of H in the outer face of pert(µ), we add a new pendant
edge at w into the outer face of pert(µ) in EG. The resulting graph is an inner augmentation
of pert(µ) and hence Lvar(pert(µ)) ̸= ∅. ◀

Now that we considered S-, P- and R-vertices, we are finally set up to prove Proposition 8.
There we claim that we can decide in polynomial time whether a biconnected planar graph G

with ∆(G) ≤ 3 has a 3-augmentation.

Proof of Proposition 8. As mentioned above, we use bottom-up dynamic programming on
the SPQR-tree T of G rooted at an arbitrary Q-vertex ρ corresponding to an edge eρ in G.

The base cases are the leaves of T , all of which are Q-vertices. The variable label set of a
leaf µ is Lvar(pert(µ)) = {00}: pert(µ) is just a single edge and the only inner augmentation
of pert(µ) is pert(µ) itself, and as such has label 00.
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Now let µ be an inner vertex of T and thus be either an S-, a P- or an R-vertex. All its
children µ1, . . . , µk have already been processed and their variable label sets Lvar(pert(µi))
are known. Then the variable label set Lvar(pert(µ)) can be computed in time O(∥ skel(µ)∥2)
(which is actually O(1) in case of a P-vertex) by Lemma 13. To apply this lemma, we need
to guarantee that the variable label sets Lvar(pert(µi)) of the children are non-empty. If
this is not the case, then by Lemma 14 graph G has no 3-augmentation and we can stop
immediately.

It remains to consider the root ρ of the SPQR-tree. Recall that pert(ρ) = G. Following
the setup of Lemma 10, let x, y be the two unique vertices of skel(ρ) and xy be the unique
non-virtual edge, i.e., the edge eρ = xy of G. Let Guv be the uv-graph obtained from
G = pert(ρ) by deleting eρ = xy and adding two new pendant edges ux, vy. Note that x

and y have the same degree in Guv as in G. By Lemma 10, G has a 3-augmentation if and
only if 00 ∈ Lvar(Guv).

To check whether 00 ∈ Lvar(Guv), let µ be the unique child of ρ. Thus we have
pert(µ) = G − eρ. We have already computed Lvar(pert(µ)) and can assume by Lemma 14
that it is non-empty. Consider the gadget Y with embedding EY from Lemma 11 such that
Lemb(Y, EY ) = Lvar(pert(µ)). Let u′ and v′ denote the two degree-1 vertices in Y . If both x

and y have degree 3 in G (hence also in Guv), then Lvar(Guv) = Lvar(pert(µ)) = Lemb(Y, EY )
and we already know whether or not 00 is contained in these label sets.

If x has degree 2 in G (hence also degree 2 in Guv, while degree 1 in pert(µ)), then x

receives a new edge in inner augmentations of Guv but not in inner augmentations of pert(µ).
For Y to model Lvar(Guv) instead of Lvar(pert(µ)), we subdivide in Y the edge at u′ by
a new vertex x′. Similarly, if y has degree 2 in G, we subdivide in Y the edge at v′. For
the resulting graph Y ′ with embedding EY ′ it follows that Lvar(Guv) = Lemb(Y ′, EY ′) and
we can check whether 00 is contained in these label sets by calling Lemma 12 on Y ′ with
embedding EY ′ . This takes constant time, as Y ′ has constant size.

The overall runtime is the time needed to construct the SPQR-tree plus the time spent
processing each of its vertices. Gutwenger and Mutzel [15] show how to construct the
SPQR-tree in time O(n). The time for the dynamic program traversing the SPQR-tree T is

O
( ∑

µ∈V (T )

∥ skel(µ)∥2)
⊆ O

(( ∑
µ∈V (T )

∥ skel(µ)∥
)2)

⊆ O(n2),

where the first step uses that for a set of positive integers the sum of their squares is at most
the square of their sum, and the second step uses that the SPQR-tree has linear size. ◀

3 Discussion and Open Problems

In this paper we showed how to test in polynomial time whether a planar graph G is a
subgraph of some bridgeless cubic planar graph H . (We call such H a 3-augmentation of G.)
Our motivation was to test whether G admits a proper 3-edge-coloring, because admitting a
3-augmentation is sufficient to conclude that χ′(G) ≤ 3. (This follows from the Four-Color-
Theorem [1, 2] and the work of Tait [26].) However, there are 3-edge-colorable planar graphs
with no 3-augmentation; K2,3 is an easy example. For another class of examples, consider for
instance any 3-connected 3-regular plane graph G (that is, the dual of a plane triangulation)
and subdivide (with a new degree-2 vertex each) any set of at least two edges, where no
two of these are incident to the same face of G (so their dual edges form a matching in the
triangulation). The resulting graph G′ has only one embedding (up to the choice of the
outer face) and clearly no 3-augmentation. On the other hand, Conjecture 15 below predicts
that G′ is 3-edge colorable.
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The computational complexity of the 3-Edge Colorability-problem for planar graphs
remains open, while it is known to be NP-complete already for 3-regular, but not necessarily
planar, graphs [17]. Similarly to our methods in Section 2.1, one can easily show that a
planar subcubic graph is 3-edge-colorable if and only if all of its blocks (inclusion-maximal
biconnected subgraphs) are 3-edge-colorable, i.e., 3-Edge Colorability reduces to the
2-connected case. A simple counting argument shows that a 2-connected subcubic graph G

with exactly one degree-2 vertex is not 3-edge-colorable (independent of whether G is planar
or not). The following conjecture, attributed to Grötzsch by Seymour [25], states that in the
case of planar graphs, this is the only obstruction.

▶ Conjecture 15 (Grötzsch, cf. [25]). If G is a 2-connected planar graph of maximum
degree ∆(G) ≤ 3, then G is 3-edge-colorable, unless it has exactly one vertex of degree 2.

If Conjecture 15 is true, 3-Edge Colorability would be in P, as its condition is easy
to check in linear time.

Finally, let us also briefly discuss planar graphs of maximum degree larger than 3. Vizing
conjectured in 1965 that all planar graphs of maximum degree ∆ ≥ 6 are ∆-edge-colorable,
proving it only for ∆ ≥ 8 [29]. As of today, it is known that all planar graphs of maximum
degree ∆ ≥ 7 are ∆-edge-colorable [14, 23, 31], and optimal edge colorings can be computed
efficiently in these cases. The case ∆ = 6 is still open, while for ∆ = 3, 4, 5 there are planar
graphs of maximum degree ∆ that are not ∆-edge-colorable [29], and at least for ∆ = 4, 5
the ∆-Edge Colorability-problem is suspected to be NP-complete for planar graphs [6].

Generalizing Conjecture 15, Seymour’s Exact Conjecture [25] states that every planar
graph G is ⌈η′(G)⌉-edge-colorable, where η′(G) denotes the fractional chromatic index of G.
It is worth noting that Seymour’s Exact Conjecture implies Vizing’s Conjecture, as well as
the Four-Color-Theorem; see e.g., the recent survey [5].
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Abstract
Embeddings of graphs into distributions of trees that preserve distances in expectation are a
cornerstone of many optimization algorithms. Unfortunately, online or dynamic algorithms which
use these embeddings seem inherently randomized and ill-suited against adaptive adversaries.

In this paper we provide a new tree embedding which addresses these issues by deterministically
embedding a graph into a single tree containing O(log n) copies of each vertex while preserving the
connectivity structure of every subgraph and O(log2 n)-approximating the cost of every subgraph.
Using this embedding we obtain the first deterministic bicriteria approximation algorithm for the
online covering Steiner problem as well as the first poly-log approximations for demand-robust
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1 Introduction

Probabilistic embedding of general metrics into distributions over trees are one of the most
versatile tools in combinatorial and network optimization. The beauty and utility of these
tree embeddings comes from the fact that their application is often simple, yet extremely
powerful. Indeed, when modeling a network with length, costs, or capacities as a weighted
graph, these embeddings often allow one to pretend that the graph is a tree. A common
template for countless network design algorithms is to (1) embed the input weighted graph
G into a randomly sampled tree T that approximately preserves the weight structure of G;
(2) solve the input problem on T and; (3) project the solution on T back into G.
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A long and celebrated line of work [32, 3, 6, 17] culminated in the embedding of Fakchar-
oenphol, Rao and Talwar [17] – henceforth the “FRT embedding” – which showed that any
weighted graph on n nodes can be embedded into a distribution over weighted trees in a way
that O(log n)-approximately preserves distances in expectation. Together with the above
template this reduces many graph problems to much easier problems on trees at the cost
of an O(log n) approximation factor. This has lead to a myriad of approximation, online,
and dynamic algorithms with poly-logarithmic approximations and competitive ratios for
NP-hard problems such as for k-server [5], metrical task systems [8], group Steiner tree and
group Steiner forest [2, 36, 21], buy-at-bulk network design [4] and (oblivious) routing [37].
For many of these problems tree embeddings are the only known way of obtaining such
algorithms on general graphs.

However, probabilistic tree embeddings have one drawback: Algorithms based on them
naturally require randomization and their approximation guarantees only hold in expectation.
For approximation algorithms – i.e., in the offline setting – there are derandomization tools,
such as the FRT derandomizations given in [12, 17, 7], to overcome these issues. These
derandomization results are so general that essentially any offline algorithm based on tree
embeddings can be transformed into a deterministic algorithm with matching approximation
guarantees (with only a moderate increase in running time). Unfortunately, these strategies
are not applicable to online or dynamic settings where an adversary progressively reveals
the input. Indeed, most online and dynamic algorithms that use FRT are randomized (e.g.
[23, 28, 2, 19, 8, 36, 14, 15]).

This overwhelming evidence in the literature is driven by a well-known and fundamental
barrier to the use of probabilistic tree embeddings in deterministic online and dynamic
algorithms. More specifically and even worse, this is a barrier which prevents these algorithms
from working against all but the weakest type of adversary. In particular, designing an online
or dynamic algorithm which is robust to an oblivious adversary (which fixes all requests in
advance, independently of the algorithm’s randomness) is often much easier than designing
an algorithm which is robust to an adaptive adversary (which chooses the next request based
on the algorithm’s current solution). As the actions of a deterministic algorithm can be
fully predicted this distinction only holds for randomized algorithms – any deterministic
algorithm has to always work against an adaptive adversary. For these reasons, many online
and dynamic algorithms have exponentially worse competitive ratios in the deterministic or
adaptive adversary setting than in the oblivious adversary setting. This is independent of
computational complexity considerations.

The above barrier results from a repeatedly recognized and seemingly unavoidable
phenomenon which prevents online algorithms built on FRT from working against adaptive
adversaries. Specifically, there are graphs where every tree embedding must have many
node pairs with polynomially-stretched distances [6]. There is nothing that prevents an
adversary then from learning through the online algorithm’s responses which tree was sampled
and then tailoring the remainder of the online instance to pairs of nodes that have highly
stretched distances. The exact same phenomenon occurs in the dynamic setting; see, for
example, [23] and [28] for dynamic algorithms with expected cost guarantees that only
hold against oblivious adversaries because they are based on FRT. In summary, online and
dynamic algorithms that use probabilistic tree embeddings seem inherently randomized and
seem to necessarily only work against adversaries oblivious to this randomness.
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Similar, albeit not identical,1 issues also arise in other settings, most notably demand-
robust optimization. The demand-robust model is a well-studied model of optimization under
uncertainty [13, 30, 18, 25, 26, 22] in which an algorithm first buys a partial solution given a
large collection of potential problem instances. An “adaptive adversary” then chooses which
of the potential instances must be solved and the algorithm must extend its partial solution
to solve the selected instance at inflated costs. The adversary is adaptive in the sense that it
chooses the final instance with full knowledge of the algorithm’s partial solution. To thwart
an algorithm which reduces a demand-robust problem to its tree version via a sampled FRT
tree, the adversary can present a collection of potential instances which for every tree T in
the FRT distribution contains an instance for which T is an arbitrarily bad approximation
and then always choose the worst-case problem instance. The fact that there do not exist any
demand-robust algorithms which use FRT despite this setting having received considerable
attention seems at least partially due to the issues pointed out here.

Overall it seems fair to say that prior to this work tree embeddings seemed fundamentally
incapable of enabling adaptive-adversary-robust and deterministic algorithms in several
well-studied settings.

1.1 Our Contributions
We provide a new type of metric embedding – the copy tree embedding – which is deterministic
and therefore also adaptive-adversary-robust. Specifically, we show that any weighted graph
G can be deterministically embedded into a single weighted tree with a small number of
copies for each vertex. Any subgraph of G will project onto this tree in a connectivity and
approximate-cost preserving way.

To precisely define our embeddings we define a copy mapping ϕ which maps a vertex v

to its copies.

▶ Definition 1 (Copy Mapping). Given vertex sets V and V ′ we say ϕ : V → 2V ′ is a copy
mapping if every node has at least one copy (i.e. |ϕ(v)| ≥ 1 for all v ∈ V ), copies are disjoint
(i.e. ϕ(v) ∩ ϕ(u) = ∅ for u ̸= v) and every node in V ′ is a copy of some node (i.e. for every
v′ ∈ V ′ there is some v ∈ V where v′ ∈ ϕ(v)). For v′ ∈ V ′, we use the shorthand ϕ−1(v′) to
stand for the unique v ∈ V such that v′ ∈ ϕ(v).

A copy tree embedding for a weighted graph G now simply consists of a tree T on copies
of vertices of G with one distinguished root and two mappings πG→T and πT →G which map
subsets of edges from G to T and from T to G in a way that preserves connectivity and
approximately preserves costs. We say that two vertex subsets U, W are connected in a
graph if there is a u ∈ U and w ∈ W such that u and w are connected. We also say that
a mapping π : 2E → 2E′ is monotone if for every A ⊆ B we have that π(A) ⊆ π(B). A
rooted tree T = (V, E, w) is well-separated if for all edges e if e′ is a child edge of e in T then
w(e′) ≤ 1

2 w(e). In the below for F ⊆ E we let w(F ) :=
∑

e∈F w(e).

▶ Definition 2 (α-Approximate Copy Tree Embedding with Copy Number χ). Let G = (V, E, w)
be a weighted graph with some distinguished vertex r ∈ V called the root. An α-approximate
copy tree embedding with copy number χ consists of a weighted rooted tree T = (V ′, E′, w′), a
copy mapping ϕ : V → 2V ′ and edge mapping functions πG→T : 2E → 2E′ and πT →G : 2E′ →
2E where πT →G is monotone and:

1 We remark that, unlike the online and dynamic setting, the barrier to obtaining demand-robust
algorithms which work against the “adaptive adversary” implicit in the setting is merely computational
and thus seems potentially less inherent.
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(a) Graph G.
(b) Compute partial tree embed-
dings. (c) Merge trees.

Figure 1 Illustration of our first construction where we merge O(log n) partial tree embeddings.

(a) Graph G. (b) Enumerate FRT support. (c) Merge trees.

Figure 2 Illustration of our second construction where we merge the O(n log n) trees in the FRT
support.

1. Connectivity Preservation: For all F ⊆ E and u, v ∈ V if u, v are connected by F ,
then ϕ(u), ϕ(v) ⊆ V ′ are connected by πG→T (F ). Symmetrically, for all F ′ ⊆ E′ and
u′, v′ ∈ V ′ if u′ and v′ are connected by F ′ then ϕ−1(u′) and ϕ−1(v′) are connected by
πT →G(F ′).

2. α-Cost Preservation: For any F ⊆ E we have w(F ) ≤ α · w′(πG→T (F )) and for any
F ′ ⊆ E′ we have w′(F ′) ≤ w(πT →G(F ′)).

3. Copy Number: |ϕ(v)| ≤ χ for all v ∈ V and ϕ(r) = {r′} where r′ is the root of T .
A copy tree embedding is efficient if T , ϕ, and πT →G are deterministically poly-time comput-
able and well-separated if T is well-separated.

We emphasize that, whereas standard tree embeddings guarantee costs are preserved in
expectation, our copy tree embeddings preserve costs deterministically. Also notice that for
efficient copy tree embeddings we do not require that πG→T is efficiently computable; this is
because πG→T will be used in our analyses but not in any of our algorithms. The idea of
embeddings which map vertices to several copies has previously been explored by [9] and
was recently explored in a concurrent work of [20]. The key difference between these works
and our own is that the number of copies that each vertex is mapped to is unboundedly
large (in the case of [9]) or only small in expectation (in the case of [20]). On the other hand,
the analogue of α-cost preservation in [9] (“path preservation”) is stronger than our α-cost
preservation.

We first give two copy tree embedding constructions which trade off between the number
of copies and cost preservation. Both constructions are based on the idea of merging
appropriately chosen tree embeddings as pictured in Figure 1 and Figure 2 where we color
nodes according to the node whose copy they are.

Construction 1: Merging Partial Tree Embeddings (full version). The cornerstone of
our first construction is the idea of merging embeddings which give good deterministic
distance preservation. If our goal is to embed the entire input metric into a tree this is
impossible. However, it is possible to embed a random constant fraction of nodes in an
input metric into a tree in a way that deterministically preserves distances of the embedded
nodes; an embedding which we call a “partial tree embedding” (see also [24, 29]). We then
use the method of conditional expectation to derandomize a node-weighted version of this
random process and apply this derandomization O(log n) times, down-weighting nodes as
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they are embedded. The result of this process is O(log n) partial tree embeddings where a
multiplicative-weights-type argument shows that each node appears in a constant fraction
of these embeddings. Merging these O(log n) embeddings gives our copy tree while an
Euler-tour-type proof shows that subgraphs of the input graph can be mapped to our copy
tree in a cost and connectivity-preserving fashion. The following theorem summarizes our
first construction.

▶ Theorem 3. There is a poly-time deterministic algorithm which given any weighted graph
G = (V, E, w) and root r ∈ V computes an efficient and well-separated O(log2 n)-approximate
copy tree embedding with copy number O(log n).

Construction 2: Merging FRT Support (full version). Our second construction follows
from a known fact that the size of the support of the FRT distribution can be made O(n log n)
and this support can be computed deterministically in poly-time [12]. Merging each tree in
this support at the root and some simple probabilistic method arguments give a copy tree
embedding that is O(log n)-cost preserving but with an O(n log n) copy number. Equivalently,
it can be inferred from [9]. The next theorem summarizes this construction.

▶ Theorem 4. There is a poly-time deterministic algorithm which given any weighted graph
G = (V, E, w) and root r ∈ V computes an efficient and well-separated O(log n)-approximate
copy tree embedding with copy number O(n log n).

While our second construction achieves a slightly better cost bound than our first
construction, it has the significant downside of a linear copy number. Notably, this linear
copy number makes our second construction unsuitable for some applications, including, for
example, our second application as described below. Moreover, our first construction also
has several desirable properties which our second does not which we expect might be useful
for future applications. These include: (1) πG→T is monotone (in addition to πT →G being
monotone as stipulated by Definition 2); (2) if u and v are connected by F ⊆ E then Ω(log n)
vertices of ϕ(u) are connected to Ω(log n) vertices of ϕ(v) in πG→T (F ) (as opposed to just
one vertex of ϕ(u) and one vertex of ϕ(v) as in Definition 2) and; (3) if u is connected to r

by F ⊆ E then every vertex in ϕ(u) is connected to ϕ(r) in πG→T (F ) (as opposed to just
one vertex of ϕ(u) as in Definition 2).

We next apply our constructions to obtain new results for several online and demand-
robust connectivity problems whose history we briefly summarize now. Group Steiner tree
and group Steiner forest are two well-studied generalizations of set cover and Steiner tree. In
the group Steiner tree problem, we are given a weighted graph G = (V, E, w) and groups
g1, . . . , gk ⊆ V and must return a subgraph of G of minimum weight which contains at least
one vertex from each group. The group Steiner forest problem generalizes group Steiner tree.
Here, we are given Ai, Bi ⊆ V pairs and for each i we must connect some vertex from Ai to
some vertex in Bi. [2] and [36] each gave a poly-log approximation for online group Steiner
tree and forest respectively but both of these approximation guarantees are randomized
and only hold against oblivious adversaries because they rely on FRT. Indeed, [2] posed the
existence of a deterministic poly-log approximation for online group Steiner tree as an open
question which has since been restated several times [11, 10].

Another well-studied generalization of group Steiner tree is the covering Steiner problem
which is defined as group Steiner tree but where we are additionally given a value ri ∈ (0, |gi|]
for each group gi and must connected at least an ri vertices of gi in our subgraph. This
problem was introduced by [35] and further studied in several follow-up works [16, 27].

ESA 2022



63:6 Adaptive-Adversary-Robust Algorithms via Small Copy Tree Embeddings

Similarly, while demand-robust minimum spanning tree and special cases of demand-robust
Steiner tree have received considerable attention [13, 34, 33], there are no known poly-log
approximations for demand-robust Steiner tree, group Steiner tree or group Steiner forest.

The reason our embeddings are well-suited to group Steiner problems and its generaliza-
tions is that mapping it onto a copy tree embedding simply results in another instance of the
group Steiner tree problem, this time on a tree. Indeed, our embeddings almost immediately
reduce the open question of [2] – solving online group Steiner tree and forest deterministically
on a general graph – to its tree case (see the full version for details). Equivalently, this
reduction be inferred from the embeddings [9], though [2] seems to have overlooked this
connection.

Application 1: Deterministic Online Covering Steiner (Section 3). In our first application
we make progress on the open question of [2] by showing that the online covering Steiner
problem admits a bicriteria deterministic poly-log approximation. Specifically, note that
the covering Steiner problem generalizes group Steiner tree but unlike group Steiner tree it
admits a natural bicriteria relaxation: instead of connecting, for example, 1

2 of the nodes
in each group we could require that our algorithm only connects, say, (1−ϵ)

2 of all nodes in
each group for some ϵ > 0. Thus, our result can be seen as showing that there is indeed a
deterministic poly-log competitive algorithm for online group Steiner tree – as posed in the
above open question of [2] – provided the algorithm can be bicriteria in the relevant sense.
We use our embeddings for this application. Those of [9] or [20] are not suitable for our
first application since this application requires a bound on the number of copies of each
vertex. More formally, we obtain a deterministic poly-log bicriteria approximation for this
problem which connects at least 1−ϵ

2 of the nodes in each group (notated “(1 − ϵ)-connection
competitive” below) by using our copy tree embeddings and a “water-filling” algorithm to
solve the tree case.

▶ Theorem 5. There is a deterministic poly-time algorithm for online covering Steiner
(on general graphs) which is O( log3 n

ϵ · maxi
|gi|
ri

)-cost-competitive and (1 − ϵ)-connection-
competitive.

As we later observe, providing a deterministic poly-log-competitive algorithm for the
online covering Steiner problem with any constant bicriteria relaxation is strictly harder
than providing a deterministic poly-log-competitive algorithm for online (non-group) Steiner
tree. Thus, this result also generalizes the fact that a deterministic poly-log approximation
is known for online (non-group) Steiner tree [31]. Additionally, as a corollary we obtain the
first non-trivial deterministic approximation algorithm for online group Steiner tree – albeit
one with a linear dependence on the maximum group size.2

▶ Corollary 6. There is an O(N log3 n)-competitive deterministic algorithm for online group
Steiner tree where N := maxi |gi| is the maximum group size.

We next adapt and apply our embeddings in the demand-robust setting.

Application 2: Demand-Robust Steiner Problems (full version). We begin by generalizing
copy tree embeddings to demand-robust copy tree embeddings. Roughly, these are copy
tree embeddings which simultaneously work well for every possible demand-robust scenario.

2 We explicitly note here that this bicriteria guarantee does not yield a solution to the open problem of
[2] of finding a poly-log deterministic approximation to the online group Steiner tree problem.
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We then adapt our analysis from our previous constructions to show that these copy tree
embeddings exist. Lastly, we apply demand-robust copy tree embeddings to give poly-log
approximations for the demand-robust versions of several Steiner problems – Steiner forest,
group Steiner tree and group Steiner forest – for which, prior to this work, nearly nothing
was known. In particular, the only non-trivial algorithms known for demand-robust Steiner
problems prior to this work are an algorithm for demand-robust Steiner tree [13] and an
algorithm for demand-robust Steiner forest on trees with exponential scenarios [18] (which
is, in general, incomparable to the usual demand-robust setting). To show these results, we
apply our demand-robust copy tree embeddings to reduce these problems to their tree case.
Thus, we also give our results on trees which are themselves non-trivial.

▶ Theorem 7. There is a randomized poly-time O(log2 n)-approximation algorithm for the
demand-robust group Steiner tree problem on weighted trees.

▶ Theorem 8. There is a randomized poly-time O(D · log3 n)-approximation algorithm for
the demand-robust group Steiner forest problem on weighted trees of depth D.

▶ Theorem 9. There is a randomized poly-time O(log4 n)-approximation algorithm for the
demand-robust group Steiner tree problem on weighted graphs.

▶ Theorem 10. There is a randomized poly-time O(log6 n)-approximation for the demand-
robust group Steiner forest problem on weighted graphs with polynomially-bounded aspect
ratio.

Demand-robust group Steiner forest generalizes demand-robust Steiner forest and prior
to this work no poly-log approximations were known for demand-robust Steiner forest; thus
the above result gives the first poly-log approximation for demand-robust Steiner forest. We
solve the tree case of the above problems by observing a connection between demand-robust
and online algorithms. In particular, we exploit the fact that for certain online rounding
schemes a demand-robust problem can be seen as an online problem with two time steps
provided certain natural properties are met. Notably, these properties will be met for these
problems on trees. Thus, we emphasize that going through the copy tree embedding is crucial
for our application – a more direct approach of using online rounding schemes on the general
problem does not seem to yield useful results.

Further Applications. Lastly, we note that copy tree embeddings were integral to another
recent work of [29], who gave the first poly-log approximations for the hop-constrained version
of many classic network design problems, including hop-constrained Steiner forest [1], group
Steiner tree and buy-at-bulk network design [4].

2 Graph Notation And Assumptions

Throughout this paper we will work with weighted graphs of the form G = (V, E, w) where
V and E are the vertex and edge sets of G and w : E → R≥1 gives the weight of edges. We
typically assume that n := |V | is the number of nodes and write [n] = {1, 2, . . . , n}. We will
also use V (G), E(G) and wG to stand for the vertex set, edge set and weight function of G.
Similarly, we will use we to stand for w(e) where convenient. For a subset of edges F ⊆ E,
we use the notation w(F ) :=

∑
e∈F wG(e). We use dG : V × V → R≥0 to give the shortest

path metric according to w. We will talk about the diameter of a metric (V, d) which is
maxu,v∈V d(u, v); we notate the diameter with D. We use B(v, x) := {u ∈ V : d(v, u) ≤ x}
to stand for the closed ball of v of radius x in metric (V, d) and BG(v, x) if (V, d) is the
shortest path metric of G and we need to disambiguate which graph we are taking balls with
respect to. We will sometimes identify a graph with the metric which it induces.
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Notice that we have assumed that edge weights are non-zero and at least 1. This will be
without loss generality as for our purposes any 0 weight edges may be contracted and scaling
of edge weights ensures that the minimum edge weight is at least 1.

3 Online Covering Steiner

In this section we give a deterministic bicriteria algorithm for the online covering Steiner
problem which is the same as online group Steiner tree but where we must connect at least
ri vertices from each group gi to the root. The algorithm is bicriteria in the sense that it
relaxes both the ri-connectivity guarantee and the cost.

As mentioned in the introduction, this problem generalizes group Steiner tree. Moreover,
it is also easy to see that any deterministic bicriteria algorithm for online covering Steiner
also gives a poly-log-competitive deterministic (unicriteria) algorithm for online (non-group)
Steiner tree. In particular, given an instance of Steiner tree on weighted graph G = (V, E, w)
with root r where we must connect terminals A ⊆ V to r, it suffices to solve the covering
Steiner problem where each vertex in A is in a singleton group with any constant bicriteria
relaxation. This is because connecting any c > 0 fraction of each group to r will connect at
least one vertex to r by the integrality of the number of connected vertices. Thus, our result
generalizes the fact that deterministic poly-log approximations are known for online (non-
group) Steiner tree [31]. However, we do note that our (deterministic) poly-log-approximate
bicriteria online covering Steiner problem algorithm does not imply there is a (deterministic)
poly-log-approximate online (non-partial) group Steiner tree algorithm (due to the nature of
the bicriteria guarantee).

Offline Covering Steiner Problem. In the covering Steiner problem we are given a weighted
graph G = (V, E, w) as well as pairwise disjoint groups g1, g2, . . . , gk ⊆ V , desired connected
vertices 1 ≤ ri ≤ |gi| for each group gi and root r ∈ V . Our goal is to find a tree T rooted at
r which is a subgraph of G and satisfies |T ∩ gi| ≥ ri for every i. We wish to minimize our
cost, w(T ) :=

∑
e∈E(T ) w(e).3

Online Covering Steiner Problem. The online covering Steiner problem is the same as
offline covering Steiner problem but where our solution need not be a tree and groups are
revealed in time steps t = 1, 2, . . .. That is, in time step t an adversary reveals a new group
gt and the algorithm must maintain a solution Tt where: (1) Tt−1 ⊆ Tt; (2) Tt is feasible for
the (offline) covering Steiner tree problem on groups g1, . . . gt and; (3) Tt is cost-competitive
with the optimal offline solution for this problem where the cost-competitive ratio of our
algorithm is maxt w(Tt)/OPTt where OPTt is the cost of the optimal offline covering Steiner
problem solution on the first t groups. We will give a bicriteria approximation for online
covering Steiner; thus we say that an online solution is ρ-connection-competitive if for each t

we have |Tt ∩ gi| ≥ ri · ρ for every i ≤ t.

3.1 Online Covering Steiner on a Tree
We begin by giving a bicriteria deterministic online algorithm for covering Steiner on trees
based on a “water-filling” approach. Informally, in iteration t each unconnected vertex in
each group will grow the solution towards the root at an equal rate until at least ri · (1 − ϵ)
vertices in gt are connected to r.

3 As with group Steiner tree the assumption that the tree is rooted and that the groups are pairwise
disjoint is without loss of generality.
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3.1.1 Problem
More formally we will solve a problem which is a slight generalization of covering Steiner on
trees. We solve this problem on a tree rather than just covering Steiner on a tree because,
unlike group Steiner tree, the “groupified” version of covering Steiner is not necessarily
another instance of covering Steiner. Roughly, instead of groups we now have groups of
groups, hence we call this problem 2-level covering Steiner.

Offline 2-Level Covering Steiner Problem. In the 2-level covering Steiner problem we are
given a weighted graph G = (V, E, w), root r ∈ V and groups of groups G1, . . . Gk where
Gi consists of groups {g

(i)
1 , . . . g

(i)
ki

} where each g
(i)
j ⊆ V . We are also given connectivity

requirements r1, . . . , rk. Our goal is to compute a minimum-weight tree T containing r where
for each i ≤ k we have |{g

(i)
j : g

(i)
j ∩ T ≠ ∅}| ≥ ri. We let ni := |{v : ∃j s.t. v ∈ g

(i)
j }|. Notice

that covering Steiner is just 2-level covering Steiner where each g
(j)
i is a singleton set.

Online 2-Level Covering Steiner Problem. Online 2-level covering Steiner is the same as
the offline problem but where Gt is revealed in time step t by an adversary. In particular,
for each time step t we must maintain a solution Tt where: (1) Tt−1 ⊆ Tt for all t; (2) Tt

is feasible for the (offline) 2-level covering Steiner problem on G1, . . . , Gt with connectivity
requirements r1, . . . , rt and; (3) Tt is cost-competitive with the optimal offline solution for
this problem where the cost-competitive ratio of our algorithm is maxt w(Tt)/OPTt where
OPTt is the cost of the optimal offline 2-level covering Steiner problem solution on the first t

groups of groups.
We will give a bicriteria approximation for online 2-level covering Steiner problem on

trees; thus we say that an online solution is ρ-connection-competitive if for each t we have
|{g

(i)
j : g

(i)
j ∩ T ̸= ∅}| ≥ ρ · ri for every i ≤ t.

3.1.2 Algorithm
We now formally describe our algorithm for the 2-level covering Steiner problem on weighted
tree T = (V, E, w) given an ϵ > 0. We will maintain a fractional variable 0 ≤ xe ≤ we

for each edge indicating the extent to which we buy e where our xes will be monotonically
increasing as our algorithm runs. Say that an edge e is saturated if xe = we.

Let us describe how we update our solution in the tth time step. Let Tt be the connected
component of all saturated edges containing r. Then, we repeat the following until |{g

(t)
j :

g
(t)
j ∩ Tt ̸= ∅}| ≥ rt · (1 − ϵ). Let G′

t := {g
(t)
j ∈ Gt : g

(t)
j ∩ Tt = ∅} be all groups in Gt not yet

connected and let g′
t :=

⋃
S∈G′

t
S be all vertices in a group which have not yet been connected

to r. We say that e is on the frontier for v ∈ g′
t if it is the first edge on the path from v to r

which is not saturated. Similarly, let re be the number of vertices in g′
t for which e is on the

frontier for v. Then, for each edge e we increase xe by re · δ where δ = mine(we − xe)/re.
Our solution in the tth time step is Tt once |{g

(t)
j : g

(t)
j ∩ Tt ̸= ∅}| ≥ (1 − ϵ) · rt.

We illustrate one iteration of this algorithm in Figure 3.

3.1.3 Analysis
We proceed to analyze the above algorithm and give its properties.

▶ Theorem 11. There is a deterministic poly-time algorithm for online 2-level covering
Steiner on trees which is 1

ϵ · (maxi
ni

ri
)-cost-competitive and (1 − ϵ)-connection-competitive.
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Figure 3 Solution our algorithm gives after one group of groups, G1, is revealed where r1 = 2.
Nodes in groups in G1 outlined in green and nodes colored according to the group of G1 which
contains them. Saturated edges given in blue and edges with 0 < xe < we annoted with “xe/we”.
All other edges labeled by we.

Proof. We begin by verifying that our algorithm returns a monotonically increasing and
(1 − ϵ)-connection-competitive solution. First, notice that our solution is monotonically
increasing since our xes are monotonically increasing and our solution only includes saturated
edges. To see that our solution is (1 − ϵ)-connection-competitive notice that at least one new
edge becomes saturated from each update to the xes (namely arg mine(we −xe)/re) and since
if all edges are saturated then Tt = T which clearly satisfies |{g

(t)
j : g

(t)
j ∩Tt ̸= ∅}| ≥ (1−ϵ) ·rt,

this process will eventually halt with a (1 − ϵ)-connection-competitive solution in the tth
iteration. For the same reason our algorithm is deterministic poly-time.

It remains to argue that our solution is 1
ϵ · (maxi

ni

ri
)-cost-competitive. We will argue

that we can uniquely charge each unit of increase of our xes to an appropriate cost portion
of the optimal solution. Fix an iteration t. Next, let δ(i,j) for i ≤ t be the value of δ in
the ith iteration the jth time we increase the value of our xes. Similarly, let δ

(i,j)
x be the

increase in
∑

e xe when we do so and let δ
(i,j)
y be the increase in

∑
e∈T ∗

t
xe where T ∗

t is the
optimal offline solution to the 2-level covering Steiner problem we must solve in the tth
iteration. Lastly, let y :=

∑
i≤t

∑
j δ

(i,j)
y be the value of

∑
e∈T ∗

t
xe at the end of the tth

iteration; clearly we have y ≤ OPTt. We claim that it suffices to show that for each i ≤ t

and each j that δ
(i,j)
x ≤ 1

ϵ δ
(i,j)
y

ni

ri
since it would follow that at the end of iteration t we have

that

w(Tt) ≤
∑

e

xe =
∑
i≤t

∑
j

δ(i,j)
x ≤ 1

ϵ

∑
i≤t

∑
j

ni

ri
δ(i,j)

y ≤ 1
ϵ

(
max

i

ni

ri

)
y ≤ 1

ϵ

(
max

i

ni

ri

)
OPTt.

We proceed to show that δ
(i,j)
x ≤ 1

ϵ δ
(i,j)
y

ni

ri
for each i ≤ t and j. We fix an i and j and for

cleanliness of notation we will drop the dependence on i and j in our δs henceforth.
First, notice that we have that

δx ≤ ni · δ (1)

since each vertex v ∈ gi is uniquely responsible for up to a δ increase on xe where e is the
edge on v’s frontier.

On the other hand, notice that if a group in Gi is connected to r by T ∗
t but is not yet

connected by Ti then such a group uniquely contributes at least δ to δy. Since T ∗
t connects

at least ri groups in Gi to r but at the moment of our increase Ti connects at most (1 − ϵ) · ri,
there are at least ϵ · ri such groups in Gi which are connected to r by T ∗

t but not by Ti. Thus,
we have that

δy ≥ ϵ · ri · δ (2)

Combining Equations 1 and 2 shows δx ≤ 1
ϵ δy

ni

ri
as required. ◀
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3.2 Online Covering Steiner on General Graphs
Next, we apply our first construction to give an algorithm for covering Steiner on general
graphs. Crucially, the following result relies on a single copy tree embedding with poly-
logarithmic copy number, making our second construction unsuitable for this problem.

▶ Theorem 5. There is a deterministic poly-time algorithm for online covering Steiner
(on general graphs) which is O( log3 n

ϵ · maxi
|gi|
ri

)-cost-competitive and (1 − ϵ)-connection-
competitive.

Proof. We will use our copy tree embedding to produce a single tree on which we must
deterministically solve online 2-level covering Steiner. We will then apply the algorithm from
Theorem 11 to solve online 2-level covering Steiner on this tree.

More formally, consider an instance of online covering Steiner on weighted graph G =
(V, E, w) with root r. Then, we first compute a copy tree embedding (T, ϕ, πG→T , πT →G)
deterministically with respect to G and r as in Theorem 3 with cost approximation O(log2 n)
and copy number O(log n). Next, given our instance It of covering Steiner on G with
groups g1, . . . gt and connection requirements r1, . . . , rt we let I ′

t be the instance of 2-level
covering Steiner on T with groups of groups G1, . . . Gt where Gi = {ϕ(v) : v ∈ gi}, connection
requirements r1, . . . , rt and root ϕ(r). Then if the adversary has required that we solve
instance It in time step t, then we require that the algorithm in Theorem 11 solves I ′

t in time
step t and we let H ′

t be the solution returned by our algorithm for I ′
t. Lastly, we return as

our solution for It in time step t the set Ht := πT →G(H ′
t).

Let us verify that the resulting algorithm is indeed feasible (i.e. monotone and (1 − ϵ)-
connection-competitive) and of the appropriate cost.

First, we have that Ht ⊆ Ht+1 for every t since H ′
t ⊆ H ′

t+1 because our algorithm for
trees returns a feasible solution for its online problem and πT →G is monotone by definition of
a copy tree embedding. Moreover, we claim that Ht connects at least (1 − ϵ) · ri vertices from
gi to r for i ≤ t and every t. To see this, notice that there at least (1 − ϵ) · ri groups from Gi

containing a vertex connected to r by H ′
t. Since each such group consists of the copies of a

distinct vertex, by the connectivity preservation properties of a copy tree it follows that Ht

connects at least (1 − ϵ) · ri vertices from gi to r.
Next, we verify the cost of our solution. Let OPT′

t be the cost of the optimal solution to
I ′

t. Notice that since our copy number is O(log n), it follows that ni ≤ O(log n · |gi|). Thus,
by the guarantees of Theorem 11 we have

wT (H ′
t) ≤ 1

ϵ
·
(

max
i

ni

ri

)
OPT′

t ≤ O

(
log n

ϵ

)
·
(

max
i

|gi|
ri

)
OPT′

t. (3)

Next, we bound OPT′
t. Let H∗

t be the optimal solution to It. We claim that πG→T (H∗
t )

is feasible for I ′
t. This follows because H∗

t connects at least ri vertices from gi to r for i ≤ t

and so by the connectivity preservation property of copy tree embeddings we know that there
are at least ri groups in Gi with a vertex connected to r by πG→T (H∗

t ). Thus, combining
this with the O(log2 n) cost preservation of our copy tree embedding we have

OPT′
t ≤ wT (πG→T (H∗

t )) ≤ O(log2 n) · wG(H∗
t ). (4)

Lastly, by the cost preservation property of our copy tree embedding we have that
wG(Ht) ≤ wT (H ′

t) which when combined with Equations 3 and 4 gives

wG(Ht) ≤ O

(
log3 n

ϵ
· max

i

|gi|
ri

)
· wG(H∗

t ).

thereby showing that our solution is within the required cost bound. ◀
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Since group Steiner tree is exactly covering Steiner where ri = 1 in which case maxi
|gi|
ri

≤
N where again N is the maximum size of a group. Moreover, since any solution can only
connect an integral number of vertices from each group, it follows that a 1

2 -connection-
competitive solution for covering Steiner where ri = 1 (i.e. for group Steiner tree) connects
at least one vertex from each group. Thus, as a corollary of the above result we have the
following deterministic algorithm for online group Steiner tree.4

▶ Corollary 6. There is an O(N log3 n)-competitive deterministic algorithm for online group
Steiner tree where N := maxi |gi| is the maximum group size.
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Abstract
We revisit the complexity of the well-studied notion of Additively Separable Hedonic Games (ASHGs).
Such games model a basic clustering or coalition formation scenario in which selfish agents are
represented by the vertices of an edge-weighted digraph G = (V, E), and the weight of an arc uv

denotes the utility u gains by being in the same coalition as v. We focus on (arguably) the most
basic stability question about such a game: given a graph, does a Nash stable solution exist and can
we find it efficiently?

We study the (parameterized) complexity of ASHG stability when the underlying graph has
treewidth t and maximum degree ∆. The current best FPT algorithm for this case was claimed
by Peters [AAAI 2016], with time complexity roughly 2O(∆5t). We present an algorithm with
parameter dependence (∆t)O(∆t), significantly improving upon the parameter dependence on ∆
given by Peters, albeit with a slightly worse dependence on t. Our main result is that this slight
performance deterioration with respect to t is actually completely justified: we observe that the
previously claimed algorithm is incorrect, and that in fact no algorithm can achieve dependence
to(t) for bounded-degree graphs, unless the ETH fails. This, together with corresponding bounds we
provide on the dependence on ∆ and the joint parameter establishes that our algorithm is essentially
optimal for both parameters, under the ETH.

We then revisit the parameterization by treewidth alone and resolve a question also posed by
Peters by showing that Nash Stability remains strongly NP-hard on stars under additive preferences.
Nevertheless, we also discover an island of mild tractability: we show that Connected Nash Stability
is solvable in pseudo-polynomial time for constant t, though with an XP dependence on t which, as
we establish, cannot be avoided.
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1 Introduction

Coalition formation is a topic of central importance in computational social choice and in
the mathematical social sciences in general. The goal of its study is to understand how
groups of selfish agents are likely to partition themselves into teams or clusters, depending
on their preferences. The most well-studied case of coalition formation are hedonic games,
which have the distinguishing characteristic that each agent’s utility only depends on the
coalition on which she is placed (and not on the coalitions of other players). Hedonic games
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Table 1 Summary of results. t, p, ∆, W denote the treewidth, pathwidth, maximum degree, and
maximum absolute weight. Results denoted by (G) apply to general (possibly disconnected) Nash
Stability, and by (C) to Connected Nash Stability.

Parameter Algorithms Lower Bounds
t, p Strongly NP-hard for Stars (G) (Theorem 9)

(nW )O(t2) (C) (Theorem 11) No f(p) · no(p/ log p) (C) (Theorem 12)
t, p + ∆ (∆t)O(∆t) (n + log W )O(1) No (p∆)o(p∆)(nW )O(1) (G) (Theorem 5)

(G) (Theorem 4)
No ∆o(∆)(nW )O(1) if p = O(1) (G) (Corollary 6)
No po(p)nO(1) if ∆, W = O(1) (Theorem 7) (G,C)

have recently been an object of intense study also from the computer science perspective
[1, 2, 6, 7, 9, 10, 12, 19, 27, 33, 40], due in part to their numerous applications in, among
others, social network analysis [34], scheduling group activities [15], and allocating tasks
to wireless agents [39]. For more information we refer the reader to [13] and the relevant
chapters of standard computational social choice textbooks [4].

Hedonic games are extremely general and capture many interesting scenarios in algorithmic
game theory and computational social choice. Unfortunately, this generality implies that
most interesting questions about such games are computationally hard; indeed, even encoding
the preferences of agents generally takes exponential space. This has motivated the study of
natural succinctly representable versions of hedonic games. In this paper, we focus on one of
the most widely-studied such models called Additively-Separable Hedonic Games (ASHG).
In this setting the interactions between agents are given by an edge-weighted directed graph
G = (V, E), where the weight of an arc uv ∈ E denotes the utility that u gains by being
placed in the same coalition as v. Thus, vertices which are not connected by an arc are
considered to be indifferent to each other. Given a partition into coalitions, the utility of a
player v is defined as the sum of the weights of out-going arcs from v to its own coalition.

A rich literature exists studying various questions about ASHGs, including a large
spectrum of stability concepts and social welfare maximization [3, 5, 17, 20, 23, 34, 35, 41].
In this paper we focus on perhaps the most basic notion of stability one may consider. We
say that a configuration π is Nash Stable if no agent v can unilaterally strictly increase
her utility by selecting a different coalition of π or by forming a singleton coalition. The
algorithmic question that we are interested in studying is the following: given an ASHG,
does a Nash Stable partition exist? Even though other notions of stability exist (notably
when deviating players are allowed to collaborate [11, 16, 37, 42]), fully understanding the
complexity of Nash Stability is of particular importance, because of the fundamental
nature of this notion.

Nash Stability of ASHGs has been thoroughly studied and is, unfortunately, NP-
complete. We therefore adopt a parameterized point of view and investigate whether some
desirable structure of the input can render the problem tractable. We consider two of the
most well-studied graph parameters: the treewidth t and the maximum degree ∆ of the
underlying graph. The study of ASHGs in this light was previously taken up by Peters [36]
and the goal of our paper is to improve and clarify the state of the art given by this previous
work.

Summary of Results. Our results can be divided into two parts (see Table 1 for a summary).
In the first part of the paper we parameterize the problem by t + ∆, that is, we study its
complexity for graphs that have simultaneously low treewidth and low maximum degree.
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The study of hedonic games on such graphs was initiated by Peters [36], who already
considered a wide variety of algorithmic questions on ASHGs for these parameters and
provided FPT algorithms using Courcelle’s theorem. Due to the importance of Nash
Stability, more refined algorithmic arguments were given in the same work, and it was
claimed that Connected Nash Stability (the variant of the problem where coalitions must
be connected in the underlying graph) and Nash Stability can be decided with parameter
dependence roughly 2∆2t and 2∆5t, respectively (though as we explain below, these claims
were not completely justified). We thus revisit the problem with the goal of determining
the optimal parameter dependence for Nash Stability in terms of t and ∆. Our positive
contribution is an algorithm deciding Nash Stability in time (∆t)O(∆t) (n + log W )O(1),
where W is the maximum absolute weight, significantly improving the parameter dependence
for ∆ (Theorem 4). This is achieved by reformulating the problem as a coloring problem with
t∆ colors in a way that encodes the property that two vertices belong in the same coalition
and then using dynamic programming to solve this problem. Our main technical contribution
is then to establish that our algorithm is essentially optimal. To that end we first show that
if there exists an algorithm solving Nash Stability in time (p∆)o(p∆)(nW )O(1), where p is
the pathwidth of the underlying graph, then the ETH is false (Theorem 5). Hence, it is not
possible to obtain a better parameter dependence, even if we accept a pseudo-polynomial
running time and a more restricted parameter.

If we were considering a parameterization with a single parameter, at this point we would
be essentially done, since we have an algorithm and a lower bound that match. However, the
fact that ∆ and t are two a priori independent variables significantly complicates the analysis
because, informally, the space of running time functions that depend on two variables is
not totally ordered. To see what we mean by that, recall that [36] claimed an algorithm
with complexity roughly 2∆5t, while our algorithm’s complexity has the form (∆t)∆t. The
two algorithms are not directly comparable in performance: for some values of ∆, t one
is better and for some the other (though the range of parameters where 2∆5t < (∆t)∆t is
quite limited). As a result, even though Theorem 5 shows that no algorithm can beat the
algorithm of Theorem 4 in all cases, it does not rule out the possibility that some algorithm
beats it in some cases, for example when ∆ is much smaller than t, or vice-versa. We
therefore need to work harder to argue that our algorithm is indeed optimal in essentially
all cases. In particular, we show that even if pathwidth is constant the problem cannot be
solved in ∆o(∆)(nW )O(1) (Corollary 6); and even if ∆ and W are constant, the problem
cannot be solved in po(p)nO(1) (Theorem 7) unless the ETH is false. Hence, we succeed in
covering essentially all corner cases, showing that our algorithm’s slightly super-exponential
dependence on the product of ∆ and t is truly optimal, and we cannot avoid the slightly
super-exponential on either parameter, even if we were to accept a much worse dependence
on the other.

An astute reader will have noticed a contradiction between our lower bounds and the
algorithms of [36]. It is also worth noting that Theorem 7 applies to both the connected
and disconnected cases of the problem, using an argument due to [36]. Hence, Theorem 7
implies that, either the ETH is false, or neither of the aforementioned algorithms of [36]
can have the claimed performance, as executing them on the instances produced by our
reduction (which have ∆ = O(1)) would give parameter dependence 2O(t), which is ruled
out by Theorem 7. Indeed, in Section 3 we explain in more detail that the argumentation of
[36] lacks an ingredient (the partition of vertices in each neighborhood into coalitions) which
turns out to be necessary to obtain a correct algorithm and also key in showing the lower
bound. Hence, the slightly super-exponential dependence on t cannot be avoided (under the
ETH), and the dependence on t promised in [36] is impossible to achieve: the best one can
hope for is the slightly super-exponential dependence on both t and ∆ given in Theorem 4.
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In the second part of the paper, we consider Nash Stability on graphs of low treewidth,
without making any further assumptions (in particular, we consider graphs of arbitrarily large
degree). This parameterization was considered by Peters [36] who showed that the problem
is strongly NP-hard on stars and thus motivated the use of the double parameter t + ∆. This
would initially appear to settle the problem. However, we revisit this question and make two
key observations: first, the reduction of [36] does not show hardness for additive games, but
for a more general version of the problem where preferences of players are not necessarily
additive but are described by a collection of boolean formulas (HC-nets [18, 25]). It was
therefore explicitly posed as an open question whether additive games are also hard [36].
Second, in the reduction of [36] coalitions are disconnected. As noted in [26, 36], there
are situations where Nash Stable coalitions make more sense if they are connected in the
underlying graph. We therefore ask whether Connected Nash Stability, where we impose
a connectivity condition on coalitions, is an easier problem.

Our first contribution is to resolve the open question of [36] by showing that imposing
either one of these two modifications does not render the problem tractable: Nash Stability
of additive hedonic games is still strongly NP-hard on stars (Theorem 9); and Connected
Nash Stability of hedonic games encoded by HC-nets is still NP-hard on stars (Theorem 10).
However, our reductions stubbornly refuse to work for the natural combination of these
conditions, namely, Connected Nash Stability for additive hedonic games on stars.
Surprisingly, we discover that this is with good reason: Connected Nash Stability turns
out to be solvable in pseudopolynomial time on graphs of bounded treewidth (Theorem 11).
More precisely, our algorithm, which uses standard dynamic programming techniques but
crucially relies on the connectedness of coalitions, runs in “pseudo-XP” time, that is, in
polynomial time when t = O(1) and weights are polynomially bounded. Completing our
investigation we show that this is essentially the best possible: obtaining a pseudo-polynomial
time algorithm with FPT dependence on treewidth (or pathwidth) would contradict standard
assumptions (Theorem 12). Hence, in this part we establish that there is an overlooked case
of ASHGs that does become somewhat tractable when we only parameterize by treewidth,
but this tractability is limited.

Related work. Deciding if an ASHG admits a partition that is Nash Stable or has other
desirable properties is NP-hard [3, 5, 34, 38, 41]. Hardness remains even in cases where a
Nash Stable solution is guaranteed, such as symmetric preferences, where the problem is
PLS-complete [21], and non-negative preferences, where it is NP-hard to find a non-trivial
stable partition [35]. The problem generally remains hard when we impose the requirement
that coalitions must be connected [8, 26].

A related Min Stable Cut problem is studied in [29], where we partition the vertices
into two coalitions in a Nash Stable way. Interestingly, the complexity of that problem turns
out to be 2O(∆t), since each vertex has 2 choices; this nicely contrasts with Nash Stability,
where vertices have more choices, and which is slightly super-exponential parameterized by
treewidth. Similar slightly super-exponential complexities have been observed with other
problems involving treewidth and partitioning vertices into sets [24, 32].

2 Preliminaries

We use standard graph-theoretic notation and assume that the reader is familiar with
standard notions in parameterized complexity, including treewidth t and pathwidth p [14].
We mostly deal with directed graphs and denote an arc from vertex u to vertex v as uv.
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When we talk about the degree or the neighborhood of a vertex v, we refer to its degree
and its neighborhood in the underlying graph, that is, the graph obtained by forgetting
the directions of all arcs. Throughout the paper ∆(G) (or simply ∆, when G is clear from
the context) denotes the maximum degree of the underlying graph of G. The Exponential
Time Hypothesis (ETH) is the assumption that there exists c > 1 such that 3-SAT on
formulas with n variables does not admit a cn algorithm [28]. We will mostly use a somewhat
simpler to state (and weaker) form of this assumption stating that 3-SAT cannot be solved
in time 2o(n).

In this paper we will be mostly interested in Additively Separable Hedonic Games (ASHG).
In an ASHG we are given a directed graph G = (V, E) and a weight function w : V × V → Z
that encodes agents’ preferences. The function w has the property that for all u, v ∈ V such
that uv ̸∈ E we have w(u, v) = 0, that is, non-zero weights are only given to arcs. A solution
to an ASHG is a partition π of V , where we refer to the sets of V as classes or, more simply,
as coalitions. For each v ∈ V and S ⊆ V the utility that v derives from being placed in
the coalition S is defined as pv(S) =

∑
u∈S\{v} w(v, u). A partition π is Nash Stable if we

have the following: for each v ∈ V , if v belongs in the class S of π, we have pv(S) ≥ 0 and
for each S′ ∈ π we have pv(S) ≥ pv(S′). In other words, no vertex can strictly increase its
utility by joining another coalition of π or forming a singleton coalition. We also consider
the notion of Connected Nash Stable partitions, which are Nash Stable partitions π with the
added property that all classes of π are connected in the underlying undirected graph of G.

3 Parameterization by Treewidth and Degree

In this section we revisit Nash Stability parameterized by t + ∆, which was previously
studied in [36]. Our main positive result is an algorithm given in Section 3.1 solving the
problem with dependence (t∆)O(t∆).

Our main technical contribution is then to show in Section 3.2 that this algorithm is
essentially optimal, under the ETH. As explained, we need several different reductions to
settle this problem in a satisfactory way. The main reduction is given in Theorem 5 and uses
the fact that a partition restricted to the neighborhood of a vertex with degree ∆ encodes
roughly ∆ log ∆ bits of information, because there are around ∆∆ partitions of ∆ elements
into equivalence classes. This key idea allows the first reduction to compress the treewidth
more and more as ∆ increases. Hence, we can produce instances where both t and ∆ are
super-constant, but appropriately chosen to match our bound. In this way, Theorem 5
rules out running times of the form, say (t∆)t+∆, as when t, ∆ are both super-constant,
t + ∆ = o(t∆). By modifying the parameters of Theorem 5 we then obtain Corollary 6
from the same construction, which states that no algorithm can have dependence ∆o(∆),
even on graphs of bounded pathwidth. On the other hand, this type of construction cannot
show hardness for instances of bounded degree, as when ∆ = O(1), then ∆∆ = O(1), so we
cannot really compress the treewidth of the produced instance. Hence, we use a different
reduction in Theorem 7, showing that the problem cannot be solved with dependence po(p)

on instances of bounded degree. This reduction uses a super-constant number of coalitions
that “run through” the graph, and hence produces instances with super-constant t. The
three complementary reductions together cover the whole range of possibilities and indicate
that there is not much room for improvement in our algorithm.

It is worth discussing here that, assuming the ETH, Theorem 7 contradicts the claimed
algorithms of [36], which for ∆ = O(1) would solve (Connected) Nash Stability with
dependence 2O(t), while Theorem 7 claims that the problem cannot be solved in time 2o(t log t).
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Let us then briefly explain why the proof sketch for these algorithms in [36] is incomplete:
the idea of the algorithms is to solve Connected Nash Stability, and use the arcs of the
instance to verify connectivity. Hence, the DP algorithm will remember, in a ball of distance
2 around each vertex, which arcs have both of their endpoints in the same coalition. The
claim is that this information allows us to infer the coalitions. Though this is true if one is
given this information for the whole graph, it is not true locally around a vertex where we
only have information about other vertices which are close by. In particular, it could be the
case that u has neighbors v1, v2, which happen to be in the same coalition, but such that
the path proving that this coalition is connected goes through vertices far from u. Because
this cannot be verified locally, any DP algorithm would need to store some connectivity
information about the vertices in a bag which, as implied by Theorem 7 inevitably leads to a
dependence of the form tt.

3.1 Improved FPT Algorithm
In order to obtain our algorithm for Nash Stability we will need two ingredients. The first
ingredient will be a reformulation of the problem as a vertex coloring problem. We use the
following definition where, informally, a vertex is stable if its outgoing weight to vertices of
the same color cannot be increased by changing its color.

▶ Definition 1. A Stable k-Coloring of an edge-weighted digraph G is a function c :
V → [k] satisfying the following property: for each v ∈ V we have

∑
u∈c−1(c(v)) w(v, u) ≥

maxj∈[k+1]
∑

u∈c−1(j) w(v, u).

Note that in the definition above we take the maximum over j ∈ [k +1] of the total weight
of v towards color class j. Since c is a function that uses k colors, we have c−1(k + 1) = ∅
and hence this ensures that the total weight of v towards its own color must always be
non-negative in a stable coloring. Also note that to calculate the total weight from v to
a certain color class j, it suffices to consider the vertices of color j that belong in the
out-neighborhood of v.

Our strategy will be to show that, for appropriately chosen k, deciding whether a graph
admits a stable k-Coloring is equivalent to deciding whether a Nash Stable partition exists.
Then, the second ingredient of our approach is to use standard dynamic programming
techniques to solve Stable k-Coloring on graphs of bounded treewidth and maximum degree.

The key lemma for the first part is the following:

▶ Lemma 2. Let G = (V, E) be an edge-weighted digraph whose underlying graph has
maximum degree ∆ and admits a tree decomposition with maximum bag size t. Then, G has
a Nash Stable partition if and only if it admits a Stable k-Coloring for k = t · ∆.

Proof. First, suppose that we have a Stable k-Coloring c : V → [k] of the graph for some
value k. We obtain a Nash Stable partition of V (G) by turning each color class into a
coalition. By the definition of Stable k-Coloring, each vertex has at least as high utility in
its own color class (and hence its own coalition) as in any other, so this partition is stable.

For the converse direction, suppose that there exists a Nash Stable partition π of G.
We will first attempt to color the coalitions of π in a way that any two coalitions which
are at distance at most two receive distinct colors, while using at most t · ∆ colors. In
the remainder, when we refer to the distance between two sets of vertices S1, S2, we mean
minu∈S1,v∈S2 d(u, v), where distances are calculated in the underlying graph.

Consider the graph G2 obtained from the underlying graph of G by connecting any two
vertices which are at distance at most 2 in the underlying graph of G. We can construct a
tree decomposition of G2 where all bags contain at most t · ∆ vertices by taking the assumed
tree decomposition of G and adding to each bag the neighbors of all vertices contained in
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that bag. Furthermore, we can assume without loss of generality that any equivalence class
C of the Nash Stable partition π is connected in G2. If not, that would mean that there
exists a class C that contains a connected component C ′ ⊆ C such that C ′ is at distance at
least 3 from C \ C ′ in the underlying graph of G. In that case we could partition C into two
classes C ′, C \ C ′, without affecting the stability of the partition.

Formally now the claim we wish to make is the following:

▷ Claim 3. There is a coloring c of the equivalence classes of π with k = t · ∆ colors such
that any two classes C1, C2 of π which are at distance at most two in the underlying graph
of G receive distinct colors.

Proof. We prove the claim by induction on the number of equivalence classes of π. If there
is only one class the claim is trivial.

Consider a rooted tree decomposition of G2. For an equivalence class C of π we say that
the bag B is the top bag for C if B contains a vertex of C and no bag that is closer to
the root contains a vertex of C. Select an equivalence class C of π whose top bag is as far
from the root as possible. We claim that there are at most t · ∆ − 1 classes C ′ which are at
distance at most 2 from C in G.

In order to prove that there are at most t · ∆ − 1 other classes at distance at most two
from C, consider such a class C ′, which is therefore at distance one from C in G2. Let B

be the top bag of C. If C ′ does not contain any vertex that appears in B then we get a
contradiction as follows: first, C ′ has a neighbor of a vertex of C, so these two vertices must
appear together in a bag; since all vertices of C appear in the sub-tree rooted at B, some
vertices of C ′ must appear strictly below B in the decomposition; since B is a separator of
G2 and C ′ is connected, if no vertex of C ′ is in B then all vertices of C ′ appear below B in
the decomposition; but then, this contradicts the choice of C as the class whose top bag is
as far from the root as possible. As a result, for each C ′ that is a neighbor of C in G2, there
exists a distinct vertex of C ′ in B. Since |B| ≤ t · ∆ and B contains a vertex of C, we get
that the coalitions C ′ which are neighbors of C in G2 are at most t · ∆ − 1.

We now remove all vertices of C from the graph and claim that π restricted to the new
graph is still a Nash Stable partition. By induction, there is a coloring of the remaining
coalitions of π that satisfies the claim. We keep this coloring and assign to C a color that is
not used by any of the at most k − 1 coalitions which are at distance two from C. Hence, we
obtain the claimed coloring of the classes of π. ◁

From Claim 3 we obtain a coloring of the equivalence classes of π with k = t · ∆ colors,
such that any two equivalence classes which are at distance at most 2 in the underlying
graph of G receive distinct colors. We now obtain a coloring of V by assigning to each vertex
the color of its class. In the out-neighborhood of each vertex v the partition induced by the
coloring is the same as that induced by π, since all the vertices in the out-neighborhood of
v are at distance at most 2 from each other in G. Hence, the k-Coloring must be stable,
because otherwise a vertex would have incentive to deviate in π by joining another coalition
or by becoming a singleton. ◀

▶ Theorem 4. There exists an algorithm which, given an ASHG defined on a digraph
G = (V, E) whose underlying graph has maximum degree ∆ and a tree decomposition of
the underlying graph of G of width t, decides if a Nash Stable partition exists in time
(∆t)O(∆t) (n + log W )O(1), where n = |V | and W is the largest absolute weight.

Proof. Using Lemma 2 we will formulate an algorithm that decides if the given instance
admits a Stable k-Coloring for k = (t + 1)∆, since this is equivalent to deciding if a Nash
Stable partition exists. We first obtain a tree decomposition of G2 by placing into each bag
of the given decomposition all the neighbors of all the vertices of the bag.
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We now execute a standard dynamic programming algorithm for k-coloring on this new
decomposition, so we sketch the details. The DP table has size k(t+1)∆ = (∆t)O(∆t) since
we need to store as a signature of a partial solution the colors of all vertices contained in a
bag. The only difference with the standard DP algorithm for coloring is that our algorithm,
whenever a new vertex v is introduced in a bag B, considers all possible colors for v, and then
for each u ∈ B, if all neighbors of u are contained in B, verifies for each signature whether u

is stable. Signatures where a vertex is not stable are discarded. The key property is now that
for any vertex u, there exists a bag B such that B contains u and all its neighbors (since in
G2 the neighborhood of u is a clique), hence only signatures for which all vertices are stable
may survive until the root of the decomposition. ◀

3.2 Tight ETH-based Lower Bounds
▶ Theorem 5. If the ETH is true, there is no algorithm which decides if an ASHG on a
graph with n vertices, maximum degree ∆, and pathwidth p admits a Nash Stable partition in
time (p∆)o(p∆)(nW )O(1), where W is the maximum absolute weight.

Proof. We will give a parametric reduction which, starting from a 3-SAT instance ϕ with n

variables and m clauses, and for any desired parameter d < n/ log n, constructs an ASHG
instance G with the following properties:
1. G can be constructed in time polynomial in n

2. G has maximum degree O(d)
3. G has pathwidth O( n

d log d )
4. the maximum absolute value W is 2O(d)

5. ϕ is satisfiable if and only if there exists a Nash Stable partition.

Before we go on, let us argue why a reduction that satisfies these properties does indeed
establish the theorem: given a 3-SAT instance on n variables, we set d = ⌊

√
n⌋. We

construct G in polynomial time, therefore the size of G is polynomially bounded by n.
Deciding if G has a Nash Stable partition is equivalent to solving ϕ by the last property. By
the third property, the pathwidth of the constructed graph is O(

√
n

log n ), so p∆ = O( n
log n ).

Furthermore, W = 2O(
√

n). If deciding if a Nash Stable partition exists can be done in time
(p∆)o(p∆)(|G| ·W )O(1), the total running time for deciding ϕ is (p∆)o(p∆)(|G| ·W )O(1) = 2o(n)

contradicting the ETH.
We now describe our construction. We are given a 3-SAT instance ϕ with variables

x0, . . . , xn−1, and a parameter d, which we assume to be a power of 2 (otherwise we increase
its value by at most a factor of 2). We also assume without loss of generality that all clauses
of ϕ have size exactly 3 (otherwise we repeat literals). We construct the following graph:
1. Selection vertices: for each i1 ∈ {0, . . . , ⌈ n

d log d ⌉}, i2 ∈ {0, . . . , d − 1}, j ∈ {0, . . . , m},
we construct a vertex u(i1,i2,j).

2. Consistency vertices: for each i1 ∈ {0, . . . , ⌈ n
d log d ⌉}, j ∈ {1, . . . , m − 1}, we construct

a vertex c(i1,j). For i2 ∈ {0, . . . , d − 1} we give weights: w(c(i1,j), u(i1,i2,j)) = 4i2 ;
w(c(i1,j), u(i1,i2,j+1)) = −4i2 ; w(u(i1,i2,j), c(i1,j)) = w(u(i1,i2,j+1), c(i1,j)) = −4d.

3. Clause gadget: for each j ∈ {1, . . . , m} we construct two vertices sj , s′
j and set

w(sj , s′
j) = 2. We also construct three vertices ℓ(j,1), ℓ(j,2), ℓ(j,3) and set w(ℓ(j,1), sj) =

w(ℓ(j,2), sj) = w(ℓ(j,3), sj) = 2 and w(sj , ℓ(j,1)) = w(sj , ℓ(j,2)) = w(sj , ℓ(j,3)) = −1.
4. Palette gadget: we construct a vertex p and a helper p′. We set w(p, p′) = w(p′, p) = 1.

Furthermore, for i1 = ⌈ n
d log d ⌉ and for all i2 ∈ {0, . . . , d − 1}, we set w(p, u(i1,i2,0)) = 1

and w(u(i1,i2,0), p) = −1. We call selection vertex u(i1,i2,0) a palette vertex.
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So far, we have described the main part of our construction, without yet specifying how
we encode which literals appear in each clause. Before we move on to describe this part, let
us give some intuition about the construction up to this point. The intended meaning of
the palette gadget is that vertices u(i1,i2,0) for i1 = ⌈ n

d log d ⌉ and i2 ∈ {0, . . . , d − 1} should
be placed in distinct coalitions (p can be thought of as a stalker). These vertices form a
“palette”, in the sense that every other selection vertex encodes an assignment to some of
the variables of ϕ by deciding which of the palette vertices it will join. Hence, we intend to
extract an assignment of ϕ from a stable partition by considering each vertex u(i1,i2,0), for
i1 ∈ {0, . . . , ⌈ n

d log d ⌉ − 1}, i2 ∈ {0, . . . , d − 1}. For each such vertex we test in which of the
d palette partitions the vertex was placed, and this gives us enough information to encode
log d variables of ϕ. Since we have ⌈ n

d log d ⌉ · d ≥ n
log d non-palette selection vertices, and

each such selection vertex encodes log d variables, we will be able to encode an assignment
to n variables. The role of the consistency vertices is to make sure that the partition of
the selection vertices (and hence, the encoded assignment) stays consistent throughout our
construction.

In order to complete the construction, let us make the above intuition more formal.
For i1 ∈ {0, . . . , ⌈ n

d log d ⌉ − 1}, i2 ∈ {0, . . . , d − 1} and for any j ∈ {1, . . . , m}, we will say
that u(i1,i2,j) encodes the assignment to variables xk, with k ∈ {i1 · d log d + i2 log d, · · · , i1 ·
d log d+ i2 log d+log d−1}. Equivalently, given an integer k, we can compute which selection
vertices encode the assignment to xk by setting i1 = ⌊ k

d log d ⌋ and i2 = ⌊ k−i1d log d
log d ⌋. In that

case, xk is represented by u(i1,i2,j) (for any j).
Let us now explain precisely how an assignment to the variables of ϕ is encoded by the

placement of selection vertices in coalitions. Let k be such that xk is encoded by u(i1,i2,j)
and let i3 = k − i1d log d − i2 log d. We have i3 ∈ {0, . . . , log d − 1}. If xk is set to True
in the assignment, then u(i1,i2,j) must be placed in the same coalition as a palette vertex
u⌈ n

d log d ⌉,i′
2,0 where i′

2 has the following property: if we write i′
2 in binary, then the bit in

position i3 must be set to 1. Similarly, if xk is set to False, then we must place u(i1,i2,j) in
the same coalition as a palette vertex u⌈ n

d log d ⌉,i′
2,0 where writing i′

2 in binary gives a 0 in
position i3. Observe that, given an assignment and a vertex u(i1,i2,j) which represents log d

variables, this process fully specifies the palette vertex with which we must place u(i1,i2,j)
to represent the assignment. In the converse direction, we can extract from the placement
of u(i1,i2,j) an assignment to the vertices it represents if we know that all palette vertices
are placed in distinct components, simply by finding the palette vertex u(⌈ n

d log d ⌉,i′
2,0) in the

coalition of u(i1,i2,j), writing down i′
2 in binary, and using its log d bits in order to give an

assignment to the log d variables represented by u(i1,i2,j).
We are now ready to complete the construction by considering each clause. Each vertex

ℓ(j,α), α ∈ {1, 2, 3}, corresponds to a literal of the j-th clause of ϕ. If this literal involves the
variable xk, we calculate integers i1, i2, i3 from k as explained in the previous paragraph. Say,
xk is the i3-th variable represented by u(i1,i2,j). We set w(ℓ(j,α), u(i1,i2,j)) = 1. Furthermore,
for each i′

2 ∈ {0, . . . , d − 1} we look at the i3-th bit of the binary representation of i′
2. If

setting xk to the value of that bit would make the literal represented by ℓ(j,α) True, we set
w(ℓ(j,α), u(⌈ n

d log d ⌉,i′
2,j)) = 1; otherwise we set w(ℓ(j,α), u(⌈ n

d log d ⌉,i′
2,j)) = 0. We perform the

above process for all j ∈ {1, . . . , m}, α ∈ {1, 2, 3}.
Our construction is now complete, so we need to show that we satisfy all the claimed

properties. It is not hard to see that the graph can be built in polynomial time, and the
maximum absolute weight used is 2O(d) (on arcs incident on some consistency vertices). The
vertices with maximum degree are the consistency vertices and the vertices representing
literals, both of which have degree O(d).
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To establish the bound on the pathwidth we first delete p, p′ from the graph, as this can
decrease pathwidth by at most 2. Now observe that, for each j, the set Cj = {c(i1,j) | i1 ∈
{0, . . . , ⌈ n

d log d ⌉} } is a separator of the graph. We claim that if we fix a j, then the set
Cj ∪ Cj+1 separates the set C ′

j = {u(i1,i2,j) |i1 ∈ {0, . . . , ⌈ n
d log d ⌉}, i2 ∈ {0, . . . , d − 1} } ∪

{sj , s′
j , ℓ(j,1), ℓ(j,2), ℓ(j,3)} from the rest of the graph. We claim that we can calculate a path

decomposition of the graph induced by Cj ∪C ′
j ∪Cj+1 with width O( n

d log d ) such that the first
bag contains Cj and the last bag contains Cj+1. If we achieve this we can construct a path
decomposition of the whole graph by gluing these decompositions together in the obvious
way (in order of increasing j). However, a path decomposition of this induced subgraph can
be constructed by placing Cj ∪ Cj+1 ∪ {sj , s′

j , ℓ(j,1), ℓ(j,2), ℓ(j,3)} and a distinct vertex of the
remainder of C ′

j in each bag. This decomposition has width 2|Cj | + O(1) = O( n
d log d ).

Finally, let us establish the main property of the construction, namely that ϕ is satisfiable
if and only if the ASHG instance admits a Nash Stable partition. If there exists a satisfying
assignment to ϕ we construct a partition as follows: (i) p, p′ are in their own coalition (ii) each
consistency vertex is a singleton (iii) for i2 ∈ {0, . . . , d − 1}, the vertices of {u⌈ n

d log d ⌉,i2,j | j ∈
{1, . . . , m}} are placed in a distinct coalition (iv) we place the remaining selection vertices
in one of the previous d coalitions in a way that represents the assignment as previously
explained (v) for each j ∈ {1, . . . , m} the j-th clause contains a True literal; we place the
corresponding vertex ℓ(j,α) together with its out-neighbor in the selection vertices, and the
remaining literal vertices together with s, s′ in a new coalition. We claim that this partition
is Nash Stable. We have the following argument: (i) p′ is with p, while p cannot increase
her utility by leaving p′, since all its other out-neighbors are in distinct coalitions (ii) for
each i1, i2, j, the vertices u(i1,i2,j), u(i1,i2,j+1) are in the same coalition. Hence, the utility of
each consistency vertex is 0 in any coalition, and such vertices are stable as singletons (iii)
each selection vertex u(i1,i2,j) has utility 0, and such vertices only have out-going arcs of
negative weight (iv) in each clause gadget we have a coalition with sj , s′

j together with two
literal vertices, say ℓ(j,1), ℓ(j,2); no vertex has incentive to leave this coalition (v) finally, for
literal vertices ℓ(j,α) which we placed together with a selection vertex, we observe that if the
assignment sets the corresponding literal to True, the selection vertex that is an out-neighbor
of ℓ(j,α) must have been placed in a coalition that contains a palette vertex towards which
ℓ(j,α) has positive utility, hence the utility of ℓ(j,α) is 2 and this vertex is stable.

For the converse direction, suppose that we have a Nash Stable partition π. We first
prove that all vertices u⌈ n

d log d ⌉,i2,0, for i2 ∈ {0, . . . , d − 1}, must be in distinct coalitions.
Indeed, if two of them are in the same coalition, p will have incentive to join the coalition
that has the maximum number of such vertices. However, once p joins such a coalition, these
vertices will have negative utility, contradicting stability. Second, we prove that for each
i1, i2, j, the vertices u(i1,i2,j), u(i1,i2,j+1) must be in the same coalition. If not, consider two
such vertices which are in distinct coalitions and maximize i2. We claim that in this case
c(i1,j) will always join u(i1,i2,j). Indeed, from the selection of i2, we have that for i′

2 > i2,
the contribution of arcs with absolute weight 4i′

2 to the utility of c(i1,j) cancels out; while
for i′

2 < i2 the sum of all absolute utilities of arcs with weights 4i′
2 is too low to affect the

placement of c(i1,j) (in particular, 4i2 −
∑

j<i2
4j >

∑
j<i2

4j). But, if c(i1,j) joins such a
coalition, a selection vertex has negative utility, contradicting stability.

From the two properties above we can now extract an assignment to ϕ. For each selection
vertex u(i1,i2,j), if this vertex is in the same coalition as u(⌈ n

d log d ⌉,i′
2,0), we give an assignment

to the variables represented by u(i1,i2,j) as described, that is, we write i′
2 in binary and use

one bit for each variable. Note that the choice of j here is irrelevant, as we have shown that
thanks to the consistency vertices, for each i1, i2, all vertices u(i1,i2,j) are in the same coalition.
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If u(i1,i2,j) is not in the same coalition as any u(⌈ n
d log d ⌉,i′

2,0), we set its corresponding variables
in an arbitrary way. To see that this assignment satisfies clause j, consider sj , which, without
loss of generality is placed with s′

j . If three of the vertices ℓ(j,1), ℓ(j,2), ℓ(j,3) are in the same
coalition as sj , then sj has negative utility, contradiction. Hence, one of these vertices, say
ℓ(j,1), is in another coalition. But then, since the neighbors of this vertex among vertices
u(⌈ n

d log d ⌉,i2,j) are all in distinct coalitions, ℓ(j,1) is in the same coalition with one such vertex
and its out-neighbor selection vertex. But this means that we have extracted an assignment
from the corresponding vertex and that this assignment sets the corresponding literal to
True, satisfying the clause. ◀

▶ Corollary 6. If the ETH is true, there is no algorithm which decides if an ASHG on a
graph with n vertices, maximum degree ∆, and constant pathwidth admits a Nash Stable
partition in time ∆o(∆)(nW )O(1), where W is the maximum absolute weight.

Proof. We use the same reduction as in Theorem 5, from a 3-SAT formula on n variables,
but set d = ⌊ n

2 log n ⌋. According to the properties of the construction, the pathwidth of the
resulting graph is O( n

d log d ) = O(1), the maximum degree is O(n/ log n), the maximum weight
is 2O(n/ log n) and the size of the constructed graph is polynomial in n. If there exists an
algorithm for finding a Nash Stable partition in the stated time, this gives a 2o(n) algorithm
for 3-SAT. ◀

▶ Theorem 7. If the ETH is true, there is no algorithm which decides if an ASHG on a
graph with n vertices, constant maximum degree ∆, and pathwidth p admits a Nash Stable
partition in time po(p)nO(1), even if all weights have absolute value O(1).

▶ Corollary 8. Theorem 7 also applies to Connected Nash Stability.

4 Parameterization by Treewidth Only

In this section we consider Nash Stability on graphs of bounded treewidth. Peters [36]
showed that this problem is strongly NP-hard on stars, but for a more general version where
preferences are described by boolean formulas (HC-nets). In Section 4.1 we strengthen this
hardness result by showing that Nash Stability remains strongly NP-hard on stars for
additive preferences. We also show that Connected Nash Stability is strongly NP-hard
on stars, albeit also using HC-nets.

The only case that remains is Connected Nash Stability with additive preferences.
Somewhat surprisingly, we show that this case evades our hardness results because it is in
fact more tractable. We establish this via an algorithm running in pseudo-polynomial time
when the treewidth is constant in Section 4.2. As a result, this is the only case of the problem
which is not strongly NP-hard on bounded treewidth graphs (unless P=NP).

We then observe that our algorithm only establishes that the problem is in XP param-
eterized by treewidth (for weights written in unary). We show in Section 4.3 that this is
inevitable, as the problem is W[1]-hard parameterized by treewidth even when weights are
constant. Hence, our “pseudo-XP” algorithm is qualitatively optimal.

4.1 Refined paraNP-hardnesss
▶ Theorem 9. Nash Stability of ASHGs is strongly NP-hard for stars.

Proof. We present a reduction from 3-Partition. In this problem we are given a set of
3n positive integers A, a target value T , and are asked to partition A into n triples, such
that each triple has sum exactly T . This problem has long been known to be strongly
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NP-hard [22]. Furthermore, we can assume that the sum of all elements of A is nT (otherwise
the answer is clearly No); and that all elements have values strictly between T/4 and T/2,
so sets of sizes other than three cannot have sum T (this can be achieved by adding T to all
elements and setting 4T as the new target).

We construct an ASHG as follows: for each element of A we construct a vertex; we
construct a set B of n additional vertices; we add a “stalker” vertex s and a helper s′. The
preferences are defined as follows: for all x ∈ A ∪ B we set w(x, s) = −1; for each x ∈ B we
set w(s, x) = 2T ; for each x ∈ A we set w(s, x) = −w(x), where w(x) is the value of the
corresponding element in the original instance. Finally, we set w(s, s′) = T and w(s′, s) = 1.
The graph is a star as all arcs are incident on s.

If there exists a valid 3-partition of A, we construct a stable partition of the new instance
by placing s with s′ and, for each triple placing its elements in a coalition with a distinct
vertex of B. Vertices of A ∪ B have utility 0 in this configuration and no incentive to deviate;
while s would have utility T in any existing coalition, so it has no incentive to leave s′; s′ is
satisfied as she is together with s.

For the converse direction, if we have a stable configuration π, s′ must be with s (otherwise
s′ has incentive to deviate). Furthermore, s cannot be with any vertex of A ∪ B, as placing s

with any such vertex would give that vertex incentive to leave. Hence, s, s′ are one coalition
of the stable partition, and s has utility T in this coalition. This implies that every coalition
formed by vertices of A ∪ B must have utility at most T for s.

We now want to prove that every coalition of vertices of A ∪ B contains exactly one vertex
of B. If we show this, then the weight of elements of A placed in each such coalition must be
at least T , hence it must be exactly T (as the sum of all elements of A is nT ). Therefore, we
obtain a solution to the original instance.

To prove that every coalition that contains vertices of A ∪ B must contain exactly one
vertex of B, suppose first that there exists a coalition that only contains vertices of A. Call
the union of all such coalitions A′ ⊆ A. Let C1, . . . , Ck be the coalitions that contain some
vertex of B, for some k ≤ |B| = n. We now reach a contradiction as follows: first, since
s does not have incentive to join Ci, for i ∈ [k], we have

∑
v∈Ci

w(s, v) ≤ T , therefore∑k
i=1

∑
v∈Ci

w(s, v) ≤ kT ≤ nT . On the other hand,
∑k

i=1
∑

v∈Ci
w(s, v) ≥

∑
v∈B w(s, v) +∑

v∈A\A′ w(s, v) > 2nT − nT = nT , because if A′ is non-empty
∑

v∈A\A′ w(s, v) > −nT .
Hence we have a contradiction and from now on we suppose that every coalition that contains
a vertex of A ∪ B has non-empty intersection with B.

Finally, consider a coalition that contains k ≥ 1 vertices of B. These vertices give s

utility 2kT , meaning that the sum of weights of vertices of A placed in this coalition must
be at least (2k − 1)T . Let ti be the number of coalitions which contain exactly i ≥ 1 vertices
of B. We obtain the inequality

∑
i ti(2i − 1)T ≤ nT , because the weight of all elements

of A is nT . On the other hand
∑

i iti = n, as we have that |B| = n. We therefore have∑
i ti(2i − 1) ≤ n ⇔

∑
i ti ≥ n =

∑
i iti ⇔

∑
i>1(1 − i)ti ≥ 0, which can only hold if ti = 0

for i > 1. ◀

▶ Theorem 10. Deciding if a graphical hedonic game represented by an HC-net admits a
connected Nash Stable partition is NP-hard even if the input graph is a star and all weights
are in {1, −1}.

4.2 Pseudo-XP algorithm for Connected Partitions
▶ Theorem 11. There exists an algorithm which, given an ASHG instance on n vertices
with maximum absolute weight W , along with a tree decomposition of the underlying graph
of width t, decides if a connected Nash Stable partition exists in time (nW )O(t2).
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Proof. Due to space constraints, we only sketch the proof. The algorithm uses standard DP
techniques. In addition to connectivity information about which vertices of the bag are in
the same connected component of the same coalition (which takes tO(t) to store in the DP
table), we store for each vertex the utility it would have if it joined the coalition of each
other vertex in the bag, and also the best coalition it has seen in the part of the graph that
has already been processed. This gives (nW )t combinations per vertex in the bag, hence a
DP table of the claimed size, and allows us to verify that all vertices are stable. The key
property is that, since coalitions are connected, a coalition that has already been seen and
does not contain any members in the bag is complete, in the sense that no further vertex
can later be added to the coalition (as it would become disconnected). ◀

4.3 ETH-based lower bound for Connected Partitions
▶ Theorem 12. If the ETH is true, deciding if an ASHG of pathwidth p admits a connected
Nash Stable configuration cannot be done in time f(p) ·no(p/ log p) for any computable function
f , even if all weights are in {−1, 1}.

By a slight modification of the previous proof we also obtain weak NP-hardness for the
case where the input graph has vertex cover 2.

▶ Corollary 13. It is weakly NP-hard to decide if an ASHG on a graph with vertex cover 2
admits a connected Nash Stable partition.

5 Conclusions and Open Problems

Our results give strong evidence that the precise complexity of Nash Stability parameterized
by t + ∆ is in the order of (t∆)O(t∆). It would be interesting to verify if the same is true
for Connected Nash Stability, as this problem turned out to be slightly easier when
parameterized only by treewidth, and is only covered by Corollary 8 for the case of bounded-
degree graphs. Of course, it would also be worthwhile to investigate the fine-grained
complexity of other notions of stability. In particular, versions which are complete for higher
levels of the polynomial hierarchy [37] may well turn out to have double-exponential (or worse)
complexity parameterized by treewidth [30, 31]. Finally, it would be worth to investigate
precise complexity of other stability notions of hedonic games (e.g., individual stability and
core stability), or other variants of hedonic games (e.g., fractional hedonic games and social
distance games).
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Abstract
A dynamic graph algorithm is a data structure that answers queries about a property of the current
graph while supporting graph modifications such as edge insertions and deletions. Prior work has
shown strong conditional lower bounds for general dynamic graphs, yet graph families that arise
in practice often exhibit structural properties that the existing lower bound constructions do not
possess. We study three specific graph families that are ubiquitous, namely constant-degree graphs,
power-law graphs, and expander graphs, and give the first conditional lower bounds for them. Our
results show that even when restricting our attention to one of these graph classes, any algorithm for
fundamental graph problems such as distance computation or approximation or maximum matching,
cannot simultaneously achieve a sub-polynomial update time and query time. For example, we show
that the same lower bounds as for general graphs hold for maximum matching and (s, t)-distance in
constant-degree graphs, power-law graphs or expanders. Namely, in an m-edge graph, there exists no
dynamic algorithms with both O(m1/2−ϵ) update time and O(m1−ϵ) query time, for any small ϵ > 0.
Note that for (s, t)-distance the trivial dynamic algorithm achieves an almost matching upper bound
of constant update time and O(m) query time. We prove similar bounds for the other graph families
and for other fundamental problems such as densest subgraph detection and perfect matching.
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1 Introduction

A dynamic graph algorithm is a data structure that stores a graph and supports update
operations, usually consisting of edge insertions and deletions, as well as query operations that
ask about a specific property of the graph. The introduction of strong conditional lower bounds
based on widely-believed complexity assumptions [1, 12] has had a fundamental influence on
the field, pushing the design of new algorithms towards more specialized algorithms such
as partially-dynamic or even offline-dynamic algorithms or towards approximate solutions.
However, graphs arising in real-world applications often differ significantly from the very
specifically crafted graphs for which the lower bound results are shown. Frequently, real-world
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graphs have some special structure, such as having a power-law degree distribution, a constant
degree, or being planar. Expanders, on the other side, have recently been used to design
dynamic algorithms for general graphs. This naturally leads to the question of determining
the complexity of dynamic graph algorithms for these graph classes, and this is exactly the
question investigated in this paper.

While the complexity of dynamic graph algorithms for planar graphs has already been
studied quite extensively [20, 14, 18, 16, 3, 2, 1, 15, 5], the question is still widely open for
other families of graphs, including power-law graphs, constant-degree graphs, and expanders.
Certain problems become easier for these graph classes: As an N -node1 constant-degree
graph has O(N) edges, computing all-pairs shortest paths (APSP) takes only time Õ(N2),
while the popular APSP conjecture postulates that for general graphs, there exists a small
constant c > 0 such that any algorithm in the word RAM model with O(log N)-bit words
requires N3−o(1) expected time to compute APSP. Moreover, some problems become trivial
in these graph classes, e.g., computing shortest paths with logarithmic additive error on
expander graphs is trivial, due to their low diameter.

In this paper we will concentrate on graph problems that have real-world applications
such as shortest-paths (which has applications in online navigation), matching (which has
applications in reconfigurable datacenters), and densest subgraphs (which has applications in
network analysis), yet we believe that our general approach can be applied to further graph
problems. For these three problems, the known conditional lower bounds construct graphs
that are far from being in the classes we consider: They have maximum degree Ω(N) and
small cuts, and their degree distribution is unknown as it depends on the instance that is
postulated to be hard.

Constant-degree graphs. Various dynamic graph problems that admit strong lower bounds
in general graphs have very efficient algorithms on constant-degree graphs. Let ∆ be the
maximum degree in the graph. For local problems, where the solution at a node v can be
computed by simply analyzing information stored at the neighbors of v such as maintaining
a maximal matching, a maximal independent set, or a (∆ + 1)-vertex coloring, there exist
simple dynamic algorithms with O(∆) update time and constant query time. Additionally,
for various problems that count or detect certain fixed subgraphs with c nodes (such as
triangle counting for c = 3) there exists dynamic algorithms with O(∆c−1) update time and
constant query time, even though they have polynomial conditional lower bounds in general
graphs (see Table 1). These efficient algorithms for local problems rule out the possibility of
any non-trivial lower bound in the constant-degree setting.

Furthermore, even for the non-local problem of maintaining a maximum matching Gupta
and Peng [11] designed a (1 + δ)-approximation algorithm for any small δ > 0 that runs in
O

(
min

{
m

|M(t)| , |M(t)|
}

δ−2
)

amortized time per update, where M(t) denotes the maximum
cardinality matching after the t-th update operation. As in a graph with maximum degree
∆ it holds that |M(t)| ≥ m/(2∆), their algorithm achieves an amortized update time of
O(∆ δ−2), which is O(δ−2) in constant-degree graphs. This raises the question of how
efficiently other non-local dynamic graph problems such exact maximum matching, shortest
paths, and densest subgraph can be solved in dynamic constant-degree graphs and whether
it is possible to show (conditional) lower bounds for them.

1 To avoid confusion with the parameters n and M used in the online-matrix-vector multiplication
conjecture, we use N to denote the number of vertices and m the number of edges in the dynamic
graphs.



M. Henzinger, A. Paz, and A. R. Sricharan 65:3

Table 1 Counting problems which admit polynomial conditional lower bounds on general graphs
(amortized) and on Erdős-Rényi graphs (average case), but have algorithms with constant update and
query times in constant-degree graphs. For the lower bounds above, there is no dynamic algorithm
with pre-processing time p(m, N), update time u(m, N), and query time q(m, N) unless the OMv
conjecture is false. When p(m, N) is unspecified, poly(N) pre-processing time is allowed.

Problems
Lower bounds Upper bounds

General graphs [12] Erdős-Rényi avg-case [13] constant ∆ (trivial)
u(m, N) q(m, N) p(m, N) u(m, N) q(m, N) u(m, N) q(m, N)

Triangle

m1/2−ϵ m1−ϵ

N3−ϵ m1/2−ϵ m1−ϵ

∆ 1
counting

C4 subgraph
∆3 1

counting
5-length

N2−ϵ Nω−2−ϵ 1 ∆4 1
(s, t)-path count

Expanders. Expander decompositions are increasingly becoming a central tool for designing
dynamic graph algorithms with improved running time bounds for various graph problems
such as connectivity, minimum spanning tree, shortest paths, conductance, edge-connectivity,
maximum flows, and minimum cuts [17, 9, 7, 6]. One of the central subproblems that these
algorithms have to handle is to solve a graph problem on a dynamically changing expander.
To understand the limitations of this approach it is crucial to understand which problems
can be solved efficiently on expanders, and which cannot. We present novel lower bounds for
dynamic problems on expanders, more specifically on constant-degree expanders.

Note that these results also have an interesting connection to the average-case hardness
of dynamic graph algorithms. Recently, lower bounds on the average-case hardness were
shown for various subgraph counting problems in dynamic Erdős-Rényi graphs (see Table 1
for some of them) [13]. As random graphs are usually expanders, giving lower bounds for a
problem on dynamic expanders gives an indication that this problem might also be hard in
the average case and can motivate further work in this direction.

Power-law graphs. Graphs are called power-law graphs if the fraction of nodes with degree
d is proportional to 1/dc for some constant c > 0. Static and dynamic power-law graphs
arise surprisingly often in real-world networks, such as the Internet, the world-wide web, and
citation graphs, as well as in physics, linguistics, and economics. Even though the existence
of large dynamic power-law graphs was already pointed out in 2004 [10], no efficient dynamic
algorithms have been developed specifically for this class of graphs. This leads to the question
of whether sub-polynomial time dynamic algorithms are even possible for power-law graphs
or not. In fact, dynamic power-law graphs were not only never studied, they were not even
defined – removing even a single edge from a power-law graph changes the degree distribution
and thus violates the power-law distribution. Hence, we first present several definitions of
dynamic power-law graphs, where some slackness in the degree-distribution is allowed. Then
we prove lower bounds that hold for all of these dynamic power-law graph definitions.

1.1 Our Results
Throughout the paper we use the standard assumption that queries output one value, such
as the size, length or weight of the solution. Note that this makes it only more challenging
to prove lower bounds. All our results are conditioned on the popular OMv conjecture [12],
defined in Section 2, but to simplify the terminology we usually drop the word “conditional”.
Our results are also summarized in Table 2.
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1. Main results. We study the hardness of dynamic algorithms for (i) constant-degree
graphs, (ii) expanders, and (iii) power-law graphs, for the following graph problems:
Determining (a) the size of a maximum matching, (b) the length of the (s, t) shortest-path
(i.e. (s, t)-distance), and (c) the density of the densest subgraph. Specifically, we show
the following tradeoff between the update time u and the query time q in an m-edge
graph for maximum matching and (s, t)-distance: There is no dynamic algorithm which
achieves both u = O(m1/2−ϵ) and q = O(m1−ϵ) for any small ϵ > 0. Note that these
bounds match the bounds given for general graphs in [12] and that the lower bound for
(s, t)-distance is almost tight as the simple algorithm that only records the edge change
at update time and computes the solution from scratch at query time achieves u = O(1)
and q = O(m). For densest subgraph we show that there is no dynamic algorithm which
achieves both u = O(N1/4−ϵ) and q = O(N1/2−ϵ) for any small ϵ > 0, which is weaker
than the lower bound on general graphs (of u = O(N1/2−ϵ) and q = O(N1−ϵ)).
The only relevant prior work are conditional lower bounds for planar graphs [1], which
have constant degree: In unweighted graphs they show for all-pairs-shortest paths a
weaker tradeoff between update time u and query time q than we do, namely they prove
max(u2 · q, u · q2) = Ω(m1−o(1)). In weighted graphs they show for (s, t)-distance a
tradeoff of max(u, q) = Ω(m1/2−o(1)). Note that our result is stronger as it shows that in
unweighted graphs no algorithm with u = Ω(m49/100) and q = Ω(m99/100) is possible.

2. Degree–lower bound trade-off. While the constant-degree lower bounds are equal to the
lower bounds for general graphs in terms of m, they are naturally quadratically lower
in terms of the number of nodes N . To understand the behaviour of the bounds also
with respect to N , we extend our constant-degree lower bounds for maximum matching,
perfect matching, and (s, t)-distance to graphs with maximum degree O(N t), for any
0 ≤ t ≤ 1. We show the following result: There is no dynamic algorithm which achieves
both u = O(N (1+t)/2−ϵ) and q = O(N1+t−ϵ) in a graph with maximum degree O(N t)
for any ϵ > 0. These results hold even in bipartite graphs. Note that for t = 1 these
results match exactly the bounds for general graphs in [12], and for t = 0, they match
the aforementioned results for constant-degree graphs.

3. Approximation results. In constant-degree graphs we extend the lower bound to the
problem of approximating the (s, t)-distance within a factor of 3 − δ, for any small
constant δ. This naturally extends the (3 − δ)-approximation lower bounds on general
graphs to the constant-degree case. In planar graphs, the (s, t)-distance lower bound
holds only for exact answers.
Note that a similar extension to approximation algorithms is not possible for maximum
cardinality matching and for densest subgraph: (a) For maximum matching, for any
small δ > 0 the above-mentioned (1 + δ)-approximation algorithm [11] achieves an
amortized update time of O(δ−2), which is constant for a constant δ, thereby precluding
any non-trivial lower bounds for approximate maximum matching in the constant-degree
setting. Stated differently, our work shows an interesting dichotomy for dynamic matching
matching in constant-degree graphs: For the exact setting there is no dynamic algorithm
which achieves both u = O(m1/2−ϵ) and q = O(m1−ϵ) for any small ϵ > 0, while a
(1 + δ)-approximation can be achieved in constant time, for any small δ > 0. (b) The
same dichotomy arises for densest subgraph: For any small δ > 0 there exists a (1 − δ)-
approximation algorithm with polylogarithmic time per operation [19], while we show a
polynomial lower bound for the exact value.

4. Partially dynamic algorithms. We extend the constant-degree reductions for maximum
matching and (s, t)-distance also to the insertions-only and the deletions-only setting,
achieving the same lower bound as in the fully dynamic setting.
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Table 2 Our results for graphs on N nodes with m edges. For every u and q stated above,
there is no algorithm for the corresponding problem with amortized O(u(m, N)) update time and
O(q(m, N)) query time simultaneously unless the OMv conjecture is false. The first three rows hold
also for perfect matching. All the lower bounds in the table except for densest subgraph match the
general OMv lower bounds.

Problem Class u(m, N) q(m, N)

Maximum Matching

∆ ≤ 3

m1/2−ϵ m1−ϵconstant degree & expansion
power-law graphs

∆ ≤ 3, partially dynamic
∆ ≤ N t N (1+t)/2−ϵ N1+t−ϵ

(s, t)-distance

∆ ≤ 3

m1/2−ϵ m1−ϵ

(3 − δ)-approx, ∆ ≤ 3
constant degree & expansion

power-law graphs
∆ ≤ 3, partially dynamic

∆ ≤ N t N (1+t)/2−ϵ N1+t−ϵ

Densest Subgraph
∆ ≤ 5

N1/4−ϵ N1/2−ϵconstant degree & expansion
power-law graphs

5. Perfect matching. A special case of maximum cardinality matching is determining whether
a perfect matching exists in a bipartite graph. For constant-degree graphs and expander
graphs we show the following lower bound: There is no dynamic algorithm which achieves
both u = O(m1/2−ϵ) and q = O(m1−ϵ) for any small ϵ > 0. This can also be extended to
the varying-degree setting.

To summarize, our paper opens up the research field of dynamic graph algorithms for
more specific, practical graph classes, in contrast with previous work that concentrated on
general or planar graphs. We believe that our techniques can be extended to further classes of
dynamic graphs or even in other domains of theoretical computer science, such as distributed
graph algorithms or streaming algorithms. One further interesting implication of our work is
presenting the limitations of dynamic graph algorithms on expanders, thus complementing
recent algorithmic results that use expander decompositions in dynamic graphs.

1.2 Our Techniques
We prove lower bounds by reductions from the online matrix vector (OMv) conjecture [12].
In these reductions, the input of an online problem, which is an n × n matrix M and a
sequence of n pairs (u, v) of n-vectors, is translated into a dynamic graph. The reduction is
built so that there exists a pair (u, v) satisfying uMv = 1 if and only if the dynamic graph
has some desired property at some point of time. While we follow the general framework
of OMv lower bounds, the details are delicate, as the dynamic graphs we construct should
fall into specific graph classes at all times, while still maintaining the graph property under
consideration. We give a high-level overview of our reductions below.

One way to turn known OMv-to-dynamic graphs reductions into reductions that produce
bounded-degree graphs is by replacing high-degree nodes by bounded-degree trees. This
technique has a rather clear and straightforward effect on the distances in the graph, so it
is applicable when considering distance-related problems. This, however, is far from being
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the case when considering other problems, such as maximum matchings. Here, replacing a
high-degree node with a gadget could adversely affect the desired matching size, since the
gadget might create several augmenting paths that would not have existed when it was a
single high-degree node. To overcome this, we limit the possible maximum matching sizes,
by designing a reduction graph with bounded-degree gadgets composed of paths, where the
maximum matching is always either a perfect matching, or a near-perfect matching, i.e., the
matching size is either N/2 or N/2 − 1. This reduction thus involves a large matching and
a small gap between the uMv = 0 and uMv = 1 cases, and hence cannot be extended to
achieve a lower bound for the approximation of the maximum matching size. While this
might seem as a limitation of our construction, recall that this is actually not the case: As
described above, for any small δ > 0 there is a constant time (1 + δ)-approximation dynamic
algorithm for the problem, and, thus, such a lower bound cannot exist.

An even more delicate reduction we present is for proving a lower bound on the densest-
subgraph problem. A straightforward reduction would change O(n) graph-edges for every
bit of the input, which will allow us to make sure that the density of the densest subgraph
changes by a significant amount when uMv = 0 versus when uMv = 1. However, this
would involve O(n2) updates for each (u, v) input pair, and the reduction would fail to
yield any non-trivial lower bound. Thus, we are forced to change very few edges for each
input bit, which renders an almost negligible effect on the density, making it difficult to
control the exact density of the densest subgraph. Our reduction balances these two factors,
using a construction where each gadget is a sufficiently dense regular graph, while having
each bit of the input translate into the existence or nonexistence of merely two edges inside
specific gadgets. As in the case of matchings, our lower bounds cannot be extended to
approximations, as for any δ > 0 there exists a fast algorithm with polylogarithmic update
time for computing (1 − δ)-approximations to the densest subgraph.

We then extend these reductions from bounded-degree graphs to constant-degree constant-
expansion graphs. First, the standard lower bound reductions contain sparse cuts if the inputs
M, u or v are sparse, making a standard reduction graph far from being an expander. Thus,
we have to augment the graph with many more edges to make sure that it has no sparse cuts
regardless of M, u and v. We do this augmentation “inside a layer” to prevent the additional
edges from creating undesired short paths between s and t, or spurious augmenting paths in
the case of matchings. Sparse cuts also exist in parts of the graph that do not depend on M, u

or v, and to handle these, we add edges of a constant-degree expander between a well-chosen
set of nodes, thus guaranteeing the expansion without changing the required graph property.
Finally, in the case of distance-related problems, we note that expander graphs can have at
most logarithmic diameter, but the substitution of nodes by trees described above increases
the diameter to be at least logarithmic, leaving only a very small slack for our construction.

When studying densest subgraphs on expanders, adding edges in order to avoid sparse
cuts might change the location and structure of the densest subgraph in an undesired way.
In order to guarantee the expansion in this case, we add a copy of all the graph nodes, build
a constant-degree expander on the copies of the nodes, and then connect each node to its
copy by a matching.

In dynamic power-law graphs where the node degrees may depend on the inputs u, M, v

and change over time, we have to guarantee that the degree changes incurred by the processing
of different inputs do not cause a violation of the power-law distribution of degrees. As before,
all the changes must also be done without changing the graph property under consideration,
and without performing too many update operations. We address this problem by inserting
or deleting edges in an online fashion in other parts of the reduction graph, to compensate
for the changes incurred by processing the input vector pairs.
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Organisation. Section 2 has notation and definitions. Section 3 presents the dynamic
maximum matching lower bounds. The lower bounds for other problems, namely densest
subgraph detection and (s, t)-distance, are briefly discussed in Section 4, and so is the
partially dynamic setting. The full lower bounds, the results for partially dynamic graphs,
and the missing proofs all appear in the full version of the paper.

2 Preliminaries

Throughout the paper, we consider vectors and matrices that are boolean, and so a vector-
matrix-vector multiplication outputs a single bit. Henzinger et al. [12] define the Online
Matrix Vector (OMv) and the Online Vector Matrix Vector (OuMv) multiplication problems.

▶ Definition 1 (Online Matrix Vector Multiplication). Let M be a boolean n × n matrix.
Preprocessing the matrix is allowed. Then, n vectors v1, v2, . . . , vn arrive one at a time, and
the task is to output the product Mvi before the next vector is revealed.

▶ Definition 2 (Online Vector Matrix Vector Multiplication). Let M be a boolean n × n matrix.
Preprocessing the matrix is allowed. Then, n vector pairs (u1, v1), (u2, v2), . . . , (un, vn) arrive
one at a time, and the task is to output the bit uiMvi before the next vector pair is revealed.

In their paper, they show that the OuMv problem can be reduced to the OMv problem, and
conjecture that there is no truly subcubic time algorithm for OMv.

▶ Conjecture 3 (OMv). There is no algorithm for the OMv (and hence the OuMv) problem
running in time O(n3−ϵ) for any constant ϵ > 0.

We work with the OuMv problem for all the reductions in our paper. We denote the
length of our input vectors ui, vi by n, and thus the matrix M is of dimension n × n. We
use upper indices to indicate the vector’s location in the stream, but usually focus on one
pair (u, v) omitting these indices. We use lower indices for a location in the vector or matrix,
e.g., ui and Mij . We use N to denote the number of nodes in our reduction graph.

▶ Definition 4 (Expansion). The expansion parameter of a graph G = (V, E) is defined as

h = min
{

|E(S, S)|
|S|

∣∣∣∣ ∅ ̸= S ⊆ V, |S| ≤ |V |/2
}

where E(S, S) is the number of edges from S to V \ S. We call a graph with expansion h a
h-expander. Works on dynamic algorithms use a different definition of expansion parameter
h′, called volume expansion. However, when considering constant-degree graphs with constant
expansion (as we do in this paper), both parameters are within a ∆ factor of each other, so
we only consider the expansion parameter h in our proofs.

We study power-law graphs as introduced in [4], and only consider the setting where
β > 2. In the following definition, if the number of nodes N in the graph is fixed, then we
get that α is roughly ln N .

▶ Definition 5 (Power Law). A graph is said to follow an (α, β)-power law distribution if the
number Nd of nodes with degree d is inversely proportional to dβ for some constant β > 0.
That is,

Nd =
⌊

eα

dβ

⌋
≈

⌊
1

ζ(β) · N

dβ

⌋
,

where ζ(β) =
∑∞

i=1 1/iβ is the Riemann Zeta function.
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Since dynamic graphs allow edge insertions and deletions, it is impossible to maintain
an exact degree distribution at all times. Hence, we introduce the notion of approximate
power-law distributions to afford some slack for dynamic changes. One natural relaxation is
to allow β to vary within an interval.

▶ Definition 6 (β-Varying Power Law). A graph is said to follow an (α, β1, β2)-varying power
law distribution if the number Nd of nodes with degree d satisfies

min
{⌊

1
ζ(β1) · N

dβ1

⌋
,

⌊
1

ζ(β2) · N

dβ2

⌋}
≤ Nd ≤ max

{⌊
1

ζ(β1) · N

dβ1

⌋
,

⌊
1

ζ(β2) · N

dβ2

⌋}
,

This relaxation of an exact power law, while being natural, is a global relaxation rather
than a local one. Thus we also define two locally approximate definitions below that allow
similar slack for all degrees.

▶ Definition 7 (Additively Approximate Power Law). A graph is said to follow an (α, β, c)-
additively approximate power law distribution if the number Nd of nodes of degree d for a
realisable degree d satisfies⌊

1
ζ(β) · N

dβ

⌋
− c ≤ Nd ≤

⌊
1

ζ(β) · N

dβ

⌋
+ c

where we say that d is a realisable degree if there is a node of degree d in an (α, β)-power law
graph.

▶ Definition 8 (Multiplicatively Approximate Power Law). A graph is said to follow an (α, β, ϵ)-
multiplicatively approximate power law distribution if the number Nd of nodes of degree d

satisfies

1
(1 + ϵ) ·

⌊
1

ζ(β) · N

dβ

⌋
≤ Nd ≤ (1 + ϵ) ·

⌊
1

ζ(β) · N

dβ

⌋
Our lower bounds contain at most four nodes that are one degree away from an exact

power-law distribution, and thus hold in all the models discussed above with any reasonable
parameter regime.

3 Lower Bounds for Dynamic Maximum Matching

The previous matching lower bounds on general graphs [12, 8] use reduction graphs that
contain nodes with degree Ω(N). In this section, we construct a constant-degree reduction
graph with constant expansion.

Reduction gadgets

Our gadget construction starts by replacing each node of a dense reduction by a path; we
refer to each path as a “subgadget”.

Connecting every node of this new subgadget with nodes outside the subgadget might
create unwanted matchings of larger sizes, so instead we carefully choose a subset of the path
nodes to connect outside the subgadget. Figure 1 shows odd and even paths (“odd” and
“even” describe the number of nodes) with a “canonical” matching for each of them marked
in red. Next, we detail the connections outside the subgadgets.
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Figure 1 Odd and even sized paths used in the maximum matching lower bounds. The canonical
matchings are marked in red.

Consider an odd path on 2n + 1 vertices, and a bipartition of the vertices into (X ′, X)
with |X ′| ≤ |X|. Indexing the vertices as X[0] and X ′[i], X[i] for 1 ≤ i ≤ n, our canonical
matching matches X[i] with X ′[i], and leaves X[0] unmatched. We connect only the vertices
{X[i] | 1 ≤ i ≤ n} outside the subgadget, while vertices in X ′ and X[0] only have edges
inside the subgadget. For an even path on 2n + 2 vertices indexed as above, our canonical
matching is perfect, and matches X[i] to X ′[i]. Only vertex X ′[0] and all the vertices in
X are connected outside the subgadget, and all vertices X ′[i], 1 ≤ i ≤ n, only have edges
within the subgadget.

While this suffices for sparsification, we need additional constructions in order to guarantee
constant expansion. In particular, it turns out that adding edges inside a subgadget does
not suffice for constant expansion, and we are forced to add edges between subgadgets. Our
construction adds edges on the same side of the bipartition across subgadgets, and we show
that if the newly added edges take part in any augmenting path, then there also exists an
augmenting path in the subgraph devoid of any newly inserted edge.

The reduction graph consists of a left subgraph (L) and a right subgraph (R), connected
together by edges corresponding to the matrix M . Note that for constant expansion, we need
the number of edges of M to be a constant fraction of the sizes of L and R. While it would
be possible to construct a reduction graph with |L| and |R| that depend on the input matrix
M , we instead choose to augment the input matrix and vectors as it simplifies notation. We
thus augment the input beforehand to ensure that there are Ω(n2) edges crossing from L to
R. To this end, we work with the vectors û = (u 0) and v̂ = (v 0) of dimension 2n, and the
matrix M̂ = ( M 1

1 1 ) of dimension 2n × 2n. It is easy to see that uMv = 1 ⇐⇒ ûM̂ v̂ = 1.

▶ Definition 9 (Reinforced gadget). A reinforced gadget with x subgadgets of size y consists
of x subgraphs, each of which is a path on y nodes. The nodes are bipartitioned into sets
(X ′, X) with the larger side of the partition labelled as X in each subgadget. Thus |X ′| ≤ |X|.
It is then augmented with the following edge-set: Consider a degree-d expander graph on
x ·

⌈
y
2
⌉

nodes, choose an arbitrary bijection between the expander nodes and X, and add the
expander edges to these nodes accordingly. The resulting graph is the reinforced gadget.

Note that reinforced gadgets are not bipartite. Thus, while the constant-degree lower
bounds hold for bipartite matching, the expander result is for maximum matching on general
graphs. In what follows, we drop the hats from û, M̂ and v̂ for simplicity, but continue our
analysis with their dimensions as 2n, 2n × 2n, 2n respectively.

Reduction Graph

We use the following reduction graph, composed of two odd-sized reinforced gadgets and two
even-sized reinforced gadgets.

ESA 2022



65:10 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Figure 2 The expander reduction graph for maximum matching. The red lines denote the
canonical matching, the blue lines denote the paths in each subgadget, the grey lines denote the
expander edges, and the green lines denote the input-dependent edges.

A reinforced gadget with one subgadget of size 4n + 1, on a set L1 ∪ L2. The nodes are
labelled L1[i] for 1 ≤ i ≤ 2n, and L2[i] for 0 ≤ i ≤ 2n. The path is from L2[0] to L2[2n],
and the expander is on L2.
A reinforced gadget with 2n subgadgets of size 4n + 2, on a set L3 ∪ L4. The subgadgets
are labelled LG[i] for 1 ≤ i ≤ 2n, and the nodes of subgadget LG[i] are labelled L3[i, j]
or L4[i, j] for 0 ≤ j ≤ 2n depending on whether the node is in L3 or L4. The path in
each subgadget goes from L3[i, 0] to L4[i, 2n], and the expander is on L4.
A copy of the above structure, with node sets marked Ri instead of Li, respectively.
For the matrix M , add the edge (L4[i, j], R4[j, i]) if Mij = 1.
Given an input vector u, for each i ∈ [2n], add the edge (L2[i], L3[i, 0]) if ui = 1, and
(L2[i], L4[i, 0]) otherwise.
Given an input vector v, for each j ∈ [2n], add the edge (R2[j], R3[j, 0]) if vj = 1, and
add the edge (R2[j], R4[j, 0]) otherwise.

The total number of nodes in the reduction graph is N = 16n2 + 16n + 2 = Θ(n2).

Matchings in the Graph

We start by defining a base matching B on the graph, which is made up of the canonical
matchings on each of the gadgets. On the left side, B matches L3[i, j] to L4[i, j], and L1[i]
to L2[i] for all i, j. The matching on the right side is similar. Note that this matching always
exists regardless of the input, and only L2[0] and R2[0] are unmatched in the entire graph.
Thus |B| = N

2 − 1. We claim that this graph has a perfect matching if and only if uMv = 1.
Let C denote the maximum cardinality matching.

▶ Lemma 10. If uMv = 1, then |C| = N
2 , and otherwise |C| = N

2 − 1.
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Proof. Since B is always a matching of size N
2 − 1 regardless of the input, the claim is

equivalent to showing that uMv = 1 if and only if there is an augmenting path with respect
to the matching B.

( =⇒ ) Suppose that uMv = 1, with ui = Mij = vj = 1. Consider the path P composed
of the following subpaths, of which all except P4 start with an unmatched edge and end with
a matched edge, while P4 both starts and ends with an unmatched edge.

P1 = L2[0], L1[1], L2[1], . . . , L2[i]
P2 = L2[i], L3[i, 0], L4[i, 0], . . . , L4[i, j]
P3 = L4[i, j], R4[j, i], R3[j, i], . . . , R3[j, 0]
P4 = R3[j, 0], R2[j], R1[j], . . . , R2[0]

Thus, P is an augmenting path to the base matching B, which gives us that the maximum
matching C has to have size > N

2 − 1, implying that the maximum matching C is a perfect
matching.

( ⇐= ) Suppose now that there exists an augmenting path P to the base matching B

that starts at s = L2[0] and ends at t = R2[0].
Since (∪iLi, ∪jRj) is an (s, t)-cut, there is at least one crossing edge, say (L4[i, j], R4[j, i]),
in P . Thus Mij = 1.
Since P leaves the subgadget LG[i] using (L4[i, j], R4[j, i]), it should have entered the
subgadget at some previous instance. Since (L4[i, j], R4[j, i]) is an unmatched edge and
all the matching edges in LG[i] are within the subgadget, P should have entered the
subgadget using an unmatched edge. As all the matching edges in LG[i] are between L3
and L4, P cannot both enter and exit the subgadget through L4. Thus P enters LG[i]
through L3. However, the only possible unmatched edge from L3 leaving the subgadget
is the edge (L3[i, 0], L2[i]). Thus P uses the edge (L3[i, 0], L2[i]) to enter the subgadget
LG[i], and so ui = 1.
The path P now enters the subgadget RG[j] through the unmatched edge (L4[i, j], R4[j, i]).
As before, all the matched edges in RG[j] are between R4 and R3, and so P has to exit the
subgadget using an unmatched edge from R3. However, the only possible unmatched edge
from R3 leaving the subgadget is the edge (R3[j, 0], R2[j]). Thus the edge (R3[j, 0], R2[j])
is used by P , giving us that vj = 1.

This gives us that uMv = 1 as required. ◀

Complexity of the Reduction

On the arrival of a new vector pair, we first add all the edges corresponding to the new input
(if they do not already exist), and then remove the previous vector pair’s edges, as opposed
to the usual convention of first deleting the previous edges and inserting the new ones. This
ensures that the graph remains an expander at all steps. The proof of constant expansion
is involved, and we defer it to the full version. Since number of edges in a constant-degree
graph is O(N), we get the following theorem for expanders.

▶ Theorem 11. For any constant ϵ > 0, there is no dynamic algorithm maintaining a
maximum matching or determining the existence of a perfect matching, on all N -node graphs
with constant degree and constant expansion, with amortized O(N1/2−ϵ) update time and
O(N1−ϵ) query time, unless the OMv conjecture is false.

Proof. Consider the reduction graph above. It consists of N = 16n2 + 16n + 2 = Θ(n2)
nodes. Every time we get a new (u, v) input vector pair, we update L2 × L3 and R2 × R3 as
detailed above. This takes O(n) updates in total. After that, we query once for the size of
the maximum matching in this new graph, and return 1 if and only if |C| = N

2 .
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Thus for each pair of input vectors, we perform O(n) updates and O(1) query. In total,
checking n vector pairs takes us O(n2) updates and O(n) query. If there were an algorithm for
maximum matching on constant-degree graphs with update time O(N1/2−ϵ) (i.e., O(n1−2ϵ))
and query time O(N1−ϵ) (i.e., O(n2−2ϵ)), then we can decide if uMv = 1 for all n pairs in
O(n3−2ϵ) time, contradicting the OMv conjecture. ◀

4 Other Lower Bounds

Dynamic Maximum Matching. All our lower bounds for the dynamic maximum matching
problem are summarized in Theorem 12. Note that m = O(N) for the first three graph
classes below.

▶ Theorem 12. For any constant ϵ > 0, there is no dynamic algorithm for maintaining the
size of the maximum matching on the following graph classes, with the amortized update time
u(N) = O(N1/2−ϵ) and amortized query time q(N) = O(N1−ϵ),
1. ∆ ≤ 3,
2. constant degree, constant expansion,
3. power-law graph,
4. ∆ ≤ O(N t) with u(N) = O(N (1+t)/2−ϵ), and q(N) = O(N1+t−ϵ),
unless the OMv conjecture is false.

Dynamic Densest Subgraph. Our lower bounds for the dynamic densest subgraph problem
are summarized in Theorem 13.

▶ Theorem 13. For any constant ϵ > 0, there is no dynamic algorithm for maintaining the
density of the densest subgraph on the following graph classes, with the amortized update
time u(N) = O(N1/4−ϵ) and amortized query time q(N) = O(N1/2−ϵ),
1. ∆ ≤ 7,
2. constant degree, constant expansion,
3. power-law graph,
unless the OMv conjecture is false.

Dynamic (s, t)-distance. Our lower bounds for the dynamic (s, t)-shortest paths problem
are summarized in Theorem 14, and extend naturally to the SSSP and the APSP problems.
Note that m = O(N) for the first four classes below.

▶ Theorem 14. For any constant ϵ > 0, there is no dynamic algorithm for maintaining
(s, t)-distance, SSSP, or APSP on the following graph classes, even for bipartite graphs, with
the amortized update time u(N) = O(N1/2−ϵ) and amortized query time q(N) = O(N1−ϵ)
(except for the last class), unless the OMv conjecture is false.
1. ∆ ≤ 3,
2. (3 − δ)-approximation, ∆ ≤ 3,
3. constant degree, constant expansion,
4. power law graph,
5. ∆ ≤ O(N t) with u(N) = O(N (1+t)/2−ϵ), and q(N) = O(N1+t−ϵ),

Partially Dynamic Algorithms. We summarize our lower bounds for partially dynamic
algorithms in Theorem 15.
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▶ Theorem 15. For any constant ϵ > 0, there is no algorithm in either the insertions-only
or deletions-only setting maintaining (s, t)-distance or maximum matching, on all N -node
graphs with maximum degree ∆ ≤ 3, with amortized O(N1/2−ϵ) update time and O(N1−ϵ)
query time, unless the OMv conjecture is false.
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Abstract

We study how to vertex-sparsify a graph while preserving both the graph’s metric and structure.
Specifically, we study the Steiner point removal (SPR) problem where we are given a weighted graph
G = (V, E, w) and terminal set V ′ ⊆ V and must compute a weighted minor G′ = (V ′, E′, w′) of G

which approximates G’s metric on V ′. A major open question in the area of metric embeddings is
the existence of O(1) multiplicative distortion SPR solutions for every (non-trivial) minor-closed
family of graphs. To this end prior work has studied SPR on trees, cactus and outerplanar graphs
and showed that in these graphs such a minor exists with O(1) distortion.

We give O(1) distortion SPR solutions for series-parallel graphs, extending the frontier of this
line of work. The main engine of our approach is a new metric decomposition for series-parallel
graphs which we call a hammock decomposition. Roughly, a hammock decomposition is a forest-like
structure that preserves certain critical parts of the metric induced by a series-parallel graph.
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1 Introduction

Graph sparsification and metric embeddings aim to produce compact representations of
graphs that approximately preserve desirable properties of the input graph. For instance,
a great deal of work has focused on how, given some input graph G, we can produce a
simpler graph G′ whose metric is a good proxy for G’s metric; see, for example, work on tree
embeddings [4, 16], distance oracles [36, 35] and graph spanners [2, 1] among many other
lines of work. Simple representations of graph metrics enable faster and more space efficient
algorithms, especially when the input graph is very large. For this reason these techniques
are the foundation of many modern algorithms for massive graphs.
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Compact representations of graphs are particularly interesting when we assume that G

is a member of a minor-closed graph family such as tree, cactus, series-parallel or planar
graphs.1 As many algorithmic problems are significantly easier on such families – see e.g.
[26, 3, 37] – it is desirable that G′ is not only a simple approximation of G’s metric but that
it also belongs to the same family as G.

Steiner point removal (SPR) formalizes the problem of producing a simple G′ in the
same graph family as G that preserves G’s metric. In SPR we are given a weighted graph
G = (V, E, w) and a terminal set V ′ ⊆ V where V \ V ′ are called “Steiner points.” We must
return a weighted graph G′ = (V ′, E′, w′) where:

1. G′ is a minor of G;

2. dG(u, v) ≤ dG′(u, v) ≤ α · dG(u, v) for every u, v ∈ V ′;
and our aim is to minimize the multiplicative distortion α. We refer to a G′ with distortion α

as an α-SPR solution. In the above dG and dG′ give the distances in G and G′ respectively.
If we only required that G′ satisfies the second condition then we could always achieve

α = 1 by letting G′ be the complete graph on V ′ where w′({u, v}) = dG(u, v) for every
u, v ∈ V ′. However, such a G′ forfeits any nice structure that G may have exhibited. Thus,
the first condition ensures that if G belongs to a minor-closed family then so does G′. The
second condition ensures that G′’s metric is a good proxy for G’s metric. G′ is simpler
than G since it is a graph only on V ′ while G′ is a proxy for G’s metric by approximately
preserving distances on V ′.

As [22] observed, even for the simple case of trees we must have α > 1. For example,
consider the star graph with unit weight edges where V ′ consists of the leaves of the star.
Any tree G′ = (V ′, E′, w′) has at least two vertices u and v whose connecting path consists
of at least two edges. On the other hand, the length of any edge in G′ is at least 2 and so
dG′(u, v) ≥ 4. Since dG(u, v) = 2 it follows that α ≥ 2. While this simple example rules out
the possibility of 1-SPR solutions on trees, it leaves open the possibility of small distortion
solutions for minor-closed families.

In this vein several works have posed the existence of O(1)-SPR solutions for minor-closed
families as an open question: see, for example, [5, 19, 8, 30, 11] among other works. A line
of work (summarized in Figure 1) has been steadily making progress on this question for the
past two decades. [22] showed that trees (i.e. connected K3-minor-free graphs) admit 8-SPR
solutions.[20] recently gave a simpler proof of this result. [8] proved this was tight by showing
that α ≥ 8 for trees which remains the best known lower bound for Kh-minor-free graphs. In
an exciting recent work, [19] reduced O(1)-SPR in Kh-minor-free graphs to computing “O(1)
scattering partitions” and showed how to compute these partitions for several graph classes,
including cactus graphs (i.e. all connected F -minor-free graphs where F is K4 missing one
edge). Lastly, a work of [5] generalizes these results by showing that outerplanar graphs (i.e.
graphs which are both K4 and K2,3-minor-free) have α = O(1) solutions.

1 A graph G′ is a minor of a graph G if G′ can be attained (up to isomorphism) from G by edge
contractions as well as vertex and edge deletions. A graph is F -minor-free if it does not have F as a
minor. A family of graphs G is said to be minor-closed if for any G ∈ G if G′ is a minor of G then
G′ ∈ G. A seminal work of Robertson and Seymour [34] demonstrated that every minor-closed family
of graphs is fully characterized by a finite collection of “forbidden” minors. In particular, if G is a
minor-closed family then there exists a finite collection of graphs M where G ∈ G iff G does not have
any graph in M as a minor. Here and throughout this work we will use “minor-closed” to refer to all
non-trivial minor-closed families of graphs; in particular, we exclude the family of all graphs which is
minor-closed but trivially so.
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Trees

Cactus

Outerplanar

Series-Parallel
α = O(1) [This work]

α = O(1) [Basu and Gupta]

α = O(1) [Filtser]

α ≤ 8 [Gupta]
α ≥ 8 [Chan et al.]

+

Figure 1 A summary of the SPR distortion for (connected) Kh-minor-free graphs achieved in
prior work and our own. Graph classes illustrated according to containment. We also give the
forbidden minors for each graph family.

1.1 Our Contributions
In this work, we advance the state-of-the-art for Steiner point removal in minor-closed graph
families. We show that series-parallel graphs (i.e. graphs which are K4-minor-free) have
O(1)-SPR solutions. The following theorem summarizes the main result of our paper.

▶ Theorem 1. Every series-parallel graph G = (V, E, w) with terminal set V ′ ⊆ V has a
weighted minor G′ = (V ′, E′, w′) such that for any u, v ∈ V ′ we have

dG(u, v) ≤ dG′(u, v) ≤ O(1) · dG(u, v).

Moreover, G′ is poly-time computable by a deterministic algorithm.

Series-parallel graphs are a strict superset of all of the aforementioned graph classes for
which O(1)-SPR solutions were previously known; again, see Figure 1. Series-parallel graphs
are one of the most well-studied graph classes in metric embeddings and serve as a frequent
test bed for making progress on long-standing open questions. For example, series-parallel
graphs are one of the few graph classes for which the well-known GNRS conjecture in metric
embeddings has been successfully proven [25]. For further examples see, among many other
works, those of [23, 7] and [13].

Relation to Prior Results

From a metric-embeddings perspective, series-parallel graphs are significantly more complex
than outerplanar graphs (the largest minor-free graph class for which O(1)-distortion Steiner
point removal was known prior to our work). For example, [24] showed that outerplanar
graphs can be embedded into “dominating tree metrics” with constant distortion but that
such an embedding for series-parallel graphs incurs Ω(log n) distortion. Likewise, outerplanar
graphs embed isometrically into l1 which is known to not be possible for series-parallel graphs;
see [33] and [9] for details. Thus, the metrics induced by series-parallel graphs often behave
very differently and in less well-structured ways than those induced by outerplanar graphs.

Furthermore, the techniques on which we rely are quite different than those of [5] for the
outerplanar case. At least two aspects of these techniques may be of independent interest.
We defer a more thorough overview of our techniques to Section 4 but briefly highlight these
two points now.
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A New Approach for Steiner Point Removal

First, much of our approach generalizes to any Kh-minor-free graph so our approach seems
like a promising avenue for future work on O(1)-SPR in minor-closed families. Specifically,
we prove our result by beginning with the “chops” used by [29] to build low diameter
decompositions for Kh-minor-free graphs. For input ∆ > 0 and root vertex r, these chops
consist of deleting any edge which for some i ∈ Z has endpoints at distance i∆ and i∆ + 1
from r; removing such edges partitions the input graph into width ∆ “annuli.” We begin
with these chops but then slightly perturb them to respect the shortest path structure of the
graph, resulting in what we call O(1)-scattering chops. We argue that the result of repeating
such scattering chops is a scattering partition which by the results of [19] can be used to
construct an O(1)-SPR solution.

The key to this strategy is arguing that series-parallel graphs admit a certain structure –
which we call a hammock decomposition – that enables one to perform these perturbations
in a principled way. If one could demonstrate a similar structure for Kh-minor-free graphs
or otherwise demonstrate the existence of O(1)-scattering chops for such graphs, then
the techniques laid out in our work would immediately give O(1)-SPR solutions for all
Kh-minor-free graphs.

New Geometric Structure for Series-Parallel Graphs

Second, our hammock decompositions are a new metric decomposition for series-parallel
graphs which may be interesting in their own right. We give significantly more detail in the
full version of our work but briefly summarize our decomposition for now. We show that
for any fixed BFS tree TBFS there is a forest-like subgraph which contains all shortest paths
between cross edges of TBFS.2 Specifically, the “nodes” of this forest are not vertices but
highly structured subgraphs of the input series-parallel graph which we call hammock graphs.
A hammock graph consists of two subtrees of the BFS tree and the cross edges between
them.

Our hammock decompositions stand in contrast to the fact that the usual way in which
one embeds a graph into a tree – by way of dominating tree metrics – are known to incur
distortion Ω(log n) in series-parallel graphs [25]. Furthermore, our decomposition can be
seen as a metric-strengthening of the classic nested ear decompositions for series-parallel
graphs of [28] and [15]. In general, a nested ear decomposition need not reflect the input
metric. However, not only can one almost immediately recover a nested ear decomposition
from a hammock decomposition, but the output nested ear decomposition interacts with the
graph’s metric in a highly structured way (see the full version of our work).

Open Questions Resolved

Lastly, we note that, in addition to making progress on the existence of O(1)-SPR solutions for
every minor-closed family, our work also settles several open questions. The existence of O(1)-
SPR solutions for series-parallel graphs was stated as an open question by both [5] and [8];
our result answers this question in the affirmative. Furthermore, [20] posed the existence of
O(1) scattering partitions for outerplanar and series-parallel graphs as an open question; we
prove our main result by showing that series-parallel graphs admit O(1) scattering partitions,
settling both of these questions.

2 Here and throughout this work a cross edge is an edge that is in the input graph but not in TBFS.
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2 Related Work

We briefly review additional related work.
Since the introduction of SPR by [22], a variety of works have studied the bounds

achievable for well-behaved families of graphs for several very similar problems. [30] studied a
problem like SPR but where distances in G must be exactly preserved by G′ and the number
of Steiner vertices – that is, vertices not in V ′ – must be made as small as possible; this
work showed that while O(k4) Steiner vertices suffice (where k = |V ′|) for general graphs,
better bounds are possible for well-behaved families of graphs. More generally, [11] studied
how to trade off between the number of terminals and distortion of G′, notably showing
(1 + ϵ) distortion is possible in planar graphs with Õ(k2/ϵ2) Steiner vertices. [14] showed that
in minor-closed graphs distances can be preserved up to O(1) multiplicative distortion in
expectation by a distribution over minors as opposed to preserving distances deterministically
with a single minor as in SPR.

A variety of recent works have also studied how to find minors which preserve properties
of G other than G’s metric. [14] studied a flow/cut version of SPR where the goal is for
G′ to be a minor of G just on the specified terminals while preserving the congestion of
multicommodity flows between terminals: this work showed that a convex combination of
planar graphs can preserve congestion on V ′ up to a constant while for general graphs a
convex combination of trees preserves congestion up to an O(log k). Similarly, [31] studied
how to find minimum-size planar graphs which preserve terminal cuts. [21] studied how
to find a minor of a directed graph with as few Steiner vertices and which preserves the
reachability relationships between all k terminals, showing that O(k3) vertices suffices for
general graphs but O(log k · k2) vertices suffices for planar graphs.

There has been considerable effort in the past few years on developing good SPR solutions
for general graphs. [27] gave O(log5 k)-SPR solutions for general graphs. This was improved
by [10] who gave O(log2 k)-SPR solutions which was, in turn, improved by [18] and [17] who
gave O(log k)-SPR solutions for general graphs. We also note that [19] also achieved similar
results by way of scattering partitions, albeit with a worse poly-log factor as well as the first
O(1)-SPR solutions for bounded pathwidth graphs.

3 Preliminaries

Before giving an overview of our approach we summarize the characterization of series-parallel
graphs we use throughout this work as well as the scattering partition framework of [19] on
which we build.

3.1 Characterizations of Series-Parallel Graphs
There are some minor inconsistencies in the literature regarding what is considered a series-
parallel graph and so we clarify which notion of series-parallel we use throughout this paper.
Some works – e.g. [15] – take series parallel graphs to be those which can be computed by
iterating parallel and series compositions of graphs. Call these series-parallel A graphs.3

3 The following is a definition of series-parallel A graphs due to [15]. A graph is two-terminal if it has a
distinct source s and sink t. Let G and H be two two-terminal graphs with sources s and s′ and sinks t
and t′. Then the series composition of G and H is the graph resulting from identifying t and s′ as the
same vertex. The parallel composition of G and H is the graph resulting from identifying s and s′ as
the same vertex and t and t′ as the same vertex. A two-terminal series-parallel graph is a two-terminal
graph which is either a single edge or the graph resulting from the series or parallel composition of
two two-terminal series-parallel graphs. A graph is series-parallel A if it has some pair of vertices with
respect to which it is two-terminal series-parallel.
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(a) A clawed cycle.
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(b) A scattering partition.

Figure 2 In (a) we illustrate a clawed cycle where the cycle C is given in solid black and each
path is given in dotted black. In (b) we illustrate a scattering partition with τ = 3 and how one
path P of length at most ∆ is incident to at most three parts where we color the subpaths of P

according to the incident part.

Strictly speaking, series-parallel A graphs are not even minor-closed as they are not closed
under edge or vertex deletion. Other works – e.g. [19] – take series-parallel graphs to be graphs
whose biconnected4 components are each series-parallel A graphs; call these series-parallel
B graphs. Series-parallel B graphs clearly contain series-parallel A graphs and, moreover,
are minor-closed. For the rest of this work we will use the more expansive series-parallel B
notion; henceforth we use “series-parallel” to mean series-parallel B.

It is well-known that a graph is K4-minor-free iff it is series-parallel [6]. Similarly a graph
has treewidth at most 2 iff it is series-parallel [6]. In this work we will use an alternate
definition in terms of “clawed cycles” which we illustrate in Figure 2a.5

▶ Definition 2 (Clawed Cycle). A clawed cycle is a graph consisting of a root r, a cycle C

and three paths P1 P2 and P3 from r to vertices v1, v2, v3 ∈ C where v1 ̸= v2 ̸= v3

The fact that series-parallel graphs are exactly those that do not have any clawed cycles
as a subgraph was proven by [12]; we give a proof for completeness.

▶ Lemma 3 ([12]). A graph G is series-parallel iff it does not contain a clawed cycle as a
subgraph.

Proof. K4 is itself a clawed cycle and so a graph with no clawed cycle subgraphs is K4-
minor-free and therefore series-parallel. If a graph contains a clawed cycle then we can
construct a K4 minor by arbitrarily contracting the graph into v1, v2, v3 and r, as defined in
Definition 2. ◀

3.2 Scattering Partitions
Our result will be based on a new graph partition introduced by [19], the scattering partition.
Roughly speaking, a scattering partition of a graph is a low-diameter partition which respects
the shortest path structure of the graph; see Figure 2b.6

4 A connected component C is biconnected if C remains connected even after the deletion of any one
vertex in C.

5 We note that clawed cycles are also called “embedded Wheatstone bridge.”
6 We drop one of the parameters of the definition of [19] as it will not be necessary for our purposes.
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▶ Definition 4 (Scattering Partition). Given a weighted graph G = (V, E, w), a partition
P = {Vi}i of V is a (τ , ∆) scattering partition if:
1. Connected: Each Vi ∈ P is connected;
2. Low Weak Diameter: For each Vi ∈ P and u, v ∈ Vi we have dG(u, v) ≤ ∆;
3. Scattering: Every shortest path P in G of length at most ∆ satisfies |{Vi : Vi ∩ P ̸=

∅}| ≤ τ .

[19] extended these partitions to the notion of a scatterable graph.

▶ Definition 5 (Scatterable Graph). A weighted graph G = (V, E, w) is τ -scatterable if it has
a (τ, ∆)-scattering partition for every ∆ ≥ 0.

We will say that G is deterministic poly-time τ -scatterable if for every ∆ ≥ 0 a (τ, ∆)-
scattering partition is computable in deterministic poly-time.

As a concrete example of a τ -scatterable graph and as observed by [19] notice that all
trees are O(1)-scatterable. In particular, suppose we are given a tree and a ∆ > 0. If we fix a
root vertex r and then delete any edge which for some i ∈ Z has endpoints at distance i·∆

2 and
i·∆
2 + 1 from r this breaks the input tree into connected components. Each component has

diameter at most ∆ by construction. Furthermore, it is easy to see that any path of length
at most ∆ is incident to a constant number of these components and so these components
indeed form a scattering partition with τ = O(1). This construction is essentially a single
chop of the aforementioned KPR strategy. However, while a KPR chop can be used to
construct scattering partitions on trees, as we will see shortly, KPR chops on series-parallel
graphs do not, in general, result in scattering partitions.

Lastly, the main result of [19] is that solving SPR reduces to showing that every induced
subgraph is scatterable. In the following G[A] is the subgraph of G induced by the vertex
set A.

▶ Theorem 6 ([19]). A weighted graph G = (V, E, w) with terminal set V ′ ⊆ V has
an O(τ3)-SPR solution if G[A] is τ -scatterable for every A ⊆ V . Furthermore, if G[A]
is deterministic poly-time scatterable for every A ⊆ V then the O(τ3)-SPR solution is
computable in deterministic poly-time.

4 Intuition and Overview of Techniques

We now give intuition and a high-level overview of our techniques. As discussed in the
previous section, solving SPR with O(1) distortion for any fixed graph reduces to showing
that the subgraph induced by every subset of vertices is O(1)-scatterable. Moreover, since
every subgraph of a Kh-minor-free graph is itself a Kh-minor-free graph, it follows that
in order to solve SPR on any fixed Kh-minor-free graph, it suffices to argue that every
Kh-minor-free graph is O(1)-scatterable.

Thus, the fact that we dedicate the rest of this document to showing is as follows.

▶ Theorem 7. Every series-parallel graph G is deterministic, poly-time O(1)-scatterable.

Combining this with Theorem 6 immediately implies Theorem 1.

4.1 General Approach
Given a series-parallel graph G and some ∆ ≥ 1, our goal is to compute an (O(1), ∆)-
scattering partition for G. Such a partition has two non-trivial properties to satisfy: (1) each
constituent part must have weak diameter at most ∆ and (2) each shortest path of length at
most ∆ must be in at most O(1) parts (a property we will call “scattering”).
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(a) First ∆-chop. (b) Second ∆-chop. (c) Resulting connected compon-
ents.

Figure 3 Two levels of ∆-chops on the grid graph for ∆ = 3. We give the edges of the BFS trees
we use in pink; roots of these trees are given as squares. Background colors give the annuli of nodes.

(a) A ∆-chop. (b) Components not scat-
tering.

(c) A perturbed ∆-chop. (d) Components scatter-
ing.

Figure 4 An example (of an outerplanar graph) where a ∆-chop does not produce a scattering
partition but how perturbing said chop does. Here, we imagine that the root is at the top of the
graph and each edge incident to the root has length ∆ − 3. We highlight the path P that either ends
up in many or one connected component depending on whether we perturb our ∆-chop in yellow.

A well-known technique of [29] – henceforth “KPR” – has proven useful in finding so-called
low diameter decompositions for Kh-minor-free graphs and so one might reasonably expect
these techniques to prove useful for finding scattering partitions. Specifically, KPR shows
that computing low diameter decompositions in a Kh-minor-free graph can be accomplished
by O(h) levels of recursive “∆-chops”. Fix a root r and a BFS tree TBFS rooted at r. Then,
a ∆-chop consists of the deletion of every edge with one vertex at depth i · ∆ and another
vertex at depth i · ∆ + 1 for every i ∈ Z≥1; that is, it consists of cutting edges between
each pair of adjacent ∆-width annuli. KPR proved that if one performs a ∆-chop and then
recurses on each of the resulting connected component then after O(h) levels of recursive
depth in a Kh-minor free graph the resulting components all have diameter at most O(∆).
We illustrate KPR on the grid graph in Figure 4.

Thus, we could simply apply ∆-chops O(h) times to satisfy our diameter constraints (up
to constants) and hope that the resulting partition is also scattering. Unfortunately, it is
quite easy to see that (even after just one ∆-chop!) a path of length at most ∆ can end up
in arbitrarily many parts of the resulting partition. For example, the highlighted shortest
path in Figures 4a and 4b repeatedly moves back and forth between two annuli and ends up
in arbitrarily many parts after a single ∆-chop. Nonetheless, this example is suggestive of
the basic approach of our work. In particular, if we merely perturbed our first ∆-chop to cut
“around” said path as in Figures 4c and 4d then we could ensure that this path ends up in a
small number of partitions.

More generally, the approach we take in this work is to start with the KPR chops but
then slightly perturb these chops so that they do not cut any shortest path of length at most
∆ more than O(1) times. That is, all but O(1) edges of any such path will have both vertices
in the same (perturbed) annulus. We then repeat this recursively on each of the resulting
connected components to a constant recursion depth. Since each subpath of a shortest path
of length at most ∆ is itself a shortest path with length at most ∆, we know that each such
shortest path is broken into a constantly-many-more shortest paths at each level of recursion.
Moreover, since we recurse a constant number of times, each path ends up in a constant
number of components.
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Implementing this strategy requires meeting two challenges. First, it is not clear that the
components resulting from KPR still have low diameter if we allow ourselves to perturb our
chops. Second, it is not clear how to perturb a chop so that it works simultaneously for every
shortest path. Solving the first challenge will be somewhat straightforward while solving the
second will be significantly more involved. In particular, what makes the second challenge
difficult is that we cannot, in general, perturb a chop on the basis of one violated shortest
path as in the previous example; doing so might cause other paths to be cut too many times
which will then require additional, possibly conflicting, perturbations and so on. Rather, we
must somehow perturb our chops in a way that takes every shortest path into account all at
once.

4.2 Scattering Chops
The easier issue to solve will be how to ensure that our components have low diameter even if
we perturb our chops. Here, by closely tracking various constants through a known analysis
of KPR we show that the components resulting from KPR with (boundedly) perturbed cuts
are still low diameter.

We summarize this fact and the above discussion with the idea of a scattering chop. A
(τ, ∆)-scattering chop consists of cutting all edges at about every ∆ levels in the BFS tree in
such a way that no shortest path of length at most ∆ is cut more than τ times. Our analysis
shows that if all Kh-minor-free graphs admit (O(1), ∆)-scattering chops for every ∆ then
they are also O(1)-scatterable and therefore also admit O(1)-SPR solutions; this holds even
for h > 4.

4.3 Hammock Decompositions and How to Use Them
The more challenging issue we must overcome is how to perturb our chops so that every
shortest path of length at most ∆ is only cut O(1) times. Moreover, we must do so in a
way that does not perturb our boundaries by too much so as to meet the requirements of a
scattering chop. We solve this issue with our new metric decomposition for series-parallel
graphs, the hammock decomposition.

Consider a shortest path P of length at most ∆. Such a path can be partitioned into a
(possibly empty) prefix consisting of only edges in TBFS, a middle portion whose first and
last edges are cross edges of TBFS and a (possibly empty) suffix which also only has edges
in TBFS. Thus, if we want to compute a scattering chop, it suffices to guarantee that any
shortest path of length at most ∆ which is either fully contained in TBFS or which is between
two cross edges of TBFS is only cut O(1) times by our chop; call the former a BFS path and
the latter a cross edge path.

Next, notice that all BFS paths are only cut O(1) times by our initial KPR chops.
Specifically, each BFS path can be partitioned into a subpath which goes “up” in the BFS
tree and a subpath which goes “down” in the BFS tree. As our initial KPR chops are ∆
apart and each such subpath is of length at most ∆, each such subpath is cut at most O(1)
times. Thus provided our perturbations do not interfere too much with the initial structure
of our KPR chops we should expect that our BFS paths will only be cut O(1) times.

Thus, our goal will be to perturb our KPR chops to not cut any cross edge path more than
O(1) times while mostly preserving the initial structure of our KPR chops. Our hammock
decompositions will allow us to do exactly this. They will have two key components.

The first part is a “forest of hammocks.” Suppose for a moment that our input graph had
a forest subgraph F that contained all cross edge paths of our graph which were also shortest
paths. Then, it is not too hard to see how to use F to perturb our chops to be scattering for
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all cross edge paths. Specifically, for each tree T in our forest F we fix an arbitrary root and
then process edges in a BFS order. Edges which we process will be marked or unmarked
where initially all edges are unmarked. To process an edge e = {u, v} we do the following. If
e is marked or u and v both belong to the same annulus then we do nothing. Otherwise,
e is unmarked and u is in some annulus A but v is in some other annulus A′ (before any
perturbation). We then propagate A an additional Θ(∆) deeper into T ; that is if we imagine
that v is the child of u in F then we move all descendants of u in F within Θ(∆) of u into A.
We then mark all edges in T whose endpoints are descendants of u and within Θ(∆) of u. A
simple amortized analysis shows that after performing these perturbations every cross edge
path is cut O(1) times: if we think of following a cross edge path from one endpoint to the
other, then each time this path is cut there must be at least Ω(∆) many edges we get to
traverse until the next time it is cut again.

Unfortunately, it is relatively easy to see that such an F may not exist in a series-parallel
graph. The forest of hammocks component of our decompositions is a subgraph which will be
“close enough” to such an F , thereby allowing us to perturb our chops similarly to the above
strategy. As mentioned in the introduction, a hammock graph consists of two subtrees of a
BFS tree and the cross edges between them. A forest of hammocks is a graph partitioned
into hammocks where every cycle is fully contained in one of the constituent hammocks.
While the above perturbation will guarantee that our cross edge paths are not cut too often,
it is not clear that such a perturbation does not change the structure of our initial chops in
a way that causes our BFS paths to be cut too many times.

The second part of our hammock decompositions is what we use to guarantee that our
BFS paths are not cut too many times by preserving the structure of our initial KPR chops.
Specifically, the forest structure of our hammocks will reflect the structure of TBFS. In
particular, we can naturally associate each hammock Hi with a single vertex, namely the
LCA of any u and v where u is in one tree of Hi and v is in the other. Then, our forest
of hammocks will satisfy the property that if hammock Hi is a “parent” of hammock Hj

in our forest of hammocks then the LCA corresponding to Hi is an ancestor of the LCA
corresponding to Hj in TBFS; even stronger, the LCA of Hj will be contained in Hi. Roughly,
the fact that our forest of hammocks mimics the structure of TBFS in this way will allow us
to argue that the above perturbation does not alter the initial structure of our KPR chops
too much, thereby ensuring that BFS paths are not cut too many times.

The computation of our hammock decompositions constitutes the bulk of our technical
work but is somewhat involved. The basic idea is as follows. We will partition all cross edges
into equivalence classes where each cross edge in an equivalence class shares an LCA in TBFS
(though there may be multiple, distinct equivalence classes with the same LCA). Each such
equivalence class will eventually correspond to one hammock in our forest of hammocks. To
compute our forest of hammocks we first connect up all cross edges in the same equivalence
class. Next we connect our equivalence classes to one another by cross edge paths which run
between them. We then extend our hammocks along paths towards their LCAs to ensure the
above-mentioned LCA properties. Finally, we add so far unassigned subtrees of TBFS to our
hammocks. We will argue that when this process fails it shows the existence of a K4-minor
and, in particular, a clawed cycle.

5 Notation and Conventions

Before proceeding to our formal results we specify the notation we use throughout this work
as well as some of the assumptions we make on our input series-parallel graph without loss
of generality (WLOG).
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Graphs. For a weighted graph G = (V, E, w), we let V (G) = V and E(G) = E give the
vertex set and edge sets of G respectively. We will sometimes abuse notation and use G

to stand for V or E when it is clear from context if we mean G’s vertex or edge set. Our
weight function on edges is w : E → Z≥1. Given graphs G and H, we will use the notation
H ⊆ G to indicate that H is a subgraph of G. The weak diameter of a subgraph H is
maxu,v∈V (H) dG(u, v).

Assumption of Unique Shortest Paths and Unit Weights. We will assume throughout this
work that in our input series-parallel graph for any vertices u and v the shortest path between
u and v is unique and that w(e) = 1 for every e. It is easy to see that our algorithms extend
to non-unique shortest paths and the non-unit weight edge cases by standard techniques. In
particular, one can randomly perturb the initial weights of the input graph so as to guarantee
the uniqueness of shortest paths. Similarly, one can expand each edge of weight w(e) into a
path of w(e) edges while preserving series-parallelness and the metric on the nodes from the
original graph which suffices for our purposes.

Induced Graphs and Edges. Given an edge set E and disjoint vertex sets V1 and V2, we let
E(V1, V2) := {e = {v1, v2} ∈ E : v1 ∈ V1, v2 ∈ V2} be all edges between V1 and V2. Given
graph G = (V, E) and a vertex set U ⊆ V , we let G[U ] = (U, EU ) be the “induced subgraph”
of G where {u′, v′} ∈ EU iff {u′, v′} ∈ E. Given a collection of subgraphs H = {Hi}i of a
graph we call G[H] := (

⋃
i V (Hi),

⋃
i E(Hi)) the induced subgraph of H. Similarly, we will

let E(H) :=
⋃

i E(Hi) give the edges of H. We emphasize that it is not necessarily the case
that G[H] = G[V (H)].

Paths. Given a path P = (v0, v1, . . . , vk, vk+1) we will use internal(P ) := {v1, . . . , vk} to
refer to the internal vertices of P . We will say that a path P is between two vertex sets U

and W if its first and last vertices are in U and W respectively and internal(P ) ∩ U = ∅ and
internal(P )∩W = ∅. We will sometimes abuse notation and use P and E(P ) interchangeably.
We will also sometimes say such a path is “from” U to W interchangeably with a path is
“between” U and W . We will use P ⊕ P ′ to refer to the concatenation of two paths which
share an endpoint throughout this paper. For a tree T , we will let T (u, v) stand for the
unique path between u and v in T for u, v ∈ V (T ). We will sometimes assume that a path
from a vertex set to another vertex set is directed in the natural way.

BFS Tree Notation. For much of this work we will fix a series-parallel graph G = (V, E)
along with a fixed but arbitrary root r ∈ V and a fixed but arbitrary BFS tree TBFS with
respect to r. When we do so we will let Ec := E \ E(TBFS) be all cross edges of TBFS. For
u, v ∈ V , if u ∈ TBFS(r, v) \ {v} then we say that u is an ancestor of v. In this case, we also
say that v is a descendant of u. If u is an ancestor of v or v is an ancestor of u then we say
that u and v are related; otherwise, we say that u and v are unrelated. For two vertices
u, v ∈ V we will use the notation u ≺ v to indicate that v is an ancestor of u and we will use
the notation u ⪯ v to indicate that v is an ancestor of or equal to u. It is easy to verify that
⪯ induces a partial order. We let TBFS(v) := TBFS[{v}∪{u ∈ V : u is a descendant of v}] be
the subtree of TBFS rooted at v. Given a connected subgraph T ⊆ TBFS, we will let high(T )
be the vertex in V (T ) which is an ancestor of all vertices in V (T ). Given a path P ⊆ TBFS
we will say that P is monotone if high(P ) is an ancestor of all vertices in P and there is
some vertex low(P ) which is a descendant of all vertices in P . We let h(v) give the height of
a vertex in TBFS (where we imagine that the nodes furthest from r are at height 0). We let
LCA(e) be the least common ancestor of u and v in TBFS for each e = {u, v} ∈ E.
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Miscellaneous. We will use ⊔ for disjoint set union throughout this paper. That is A ⊔ B

is equal to A ∪ B but indicates that A ∩ B = ∅.

6 Perturbing KPR and Scattering Chops

In this section we show that KPR still gives low diameter components even if its boundaries
are perturbed and therefore somewhat “fuzzy.” We then observe that this fact shows that
“O(1)-scattering chops” imply the existence of O(1)-scattering partitions for Kh-minor-free
graphs and therefore O(1)-SPR solutions.

6.1 Perturbing KPR
We will repeatedly take the connected components of annuli with “fuzzy” boundaries. We
formalize this with the idea of a c-fuzzy ∆-chop; see Figure 5a for an illustration.

▶ Definition 8 (c-Fuzzy ∆-Chop). Let G = (V, E, w) be a weighted graph with root r and
fix 0 ≤ c < 1 and ∆ ≥ 1. Then a c-fuzzy ∆-chop is a partition of V into “fuzzy annuli”
A = {A1, A2, . . .} where for every i and v ∈ Ai we have

(i − 1)∆ − c∆
2 ≤ d(r, v) < i · ∆ + c∆

2 .

As each fuzzy annulus in a fuzzy chop may contain many connected components we
must be careful when specifying how recursive application of these chops break a graph into
connected components; hence the following definitions. Given fuzzy annulus Ai, we let Ci be
the connected components of Ai.

▶ Definition 9 (Components Resulting from a c-Fuzzy ∆-Chop). Let G = (V, E, w) be a
weighted graph and let C be a partition of V into connected components. Then we say that C
results from one level of c-fuzzy ∆-chops if there is a c-fuzzy ∆-chop A with respect to some
root r ∈ V satisfying C =

⋃
i:Ai∈A Ci. Similarly, for h ≥ 2 we say that C results from h-levels

of c-fuzzy ∆-chops if there is some C′ which results from one level of c-fuzzy ∆-chops and C
is the union of the result of h − 1 levels of c-fuzzy ∆-chops on each C ′ ∈ C′.

We will now claim that taking h − 1 levels of fuzzy chops in a Kh-minor-free graph will
result in a connected, low weak diameter partition. In particular, we show the following
lemma, the main result of this section.

▶ Lemma 10. Let ∆ and h satisfy 2 ≤ h, ∆ ≥ 1 and fix constant 0 ≤ c < 1. Suppose C is
the result of h − 1 levels of c-fuzzy ∆-chops in a Kh-minor-free weighted graph G. Then, the
weak diameter of every C ∈ C is at most O(h · ∆).

For the rest of this section we identify the nodes of a minor of graph G with “supernodes.”
In particular, we will think of each of the vertices of the minor as corresponding to a disjoint,
connected subset of vertices in G (a supernode) where the minor can be formed from G (up
to isomorphism) by contracting the constituent nodes of each such supernodes.

Our proof will closely track a known analysis of KPR [32]. The sketch of this strategy is
as follows. We will argue that if we fail to produce parts with low diameter then we have
found Kh as a minor. Our proof will be by induction on the number of levels of fuzzy chops.
Suppose C is produced by h − 1 levels of fuzzy chops; in particular, suppose C is produced
by taking some fuzzy chop to get C′ and then taking h − 2 levels of fuzzy chops on each
C ′ ∈ C′. Also assume that there is some C ∈ C which has large diameter. Then, C must
result from taking h − 2 levels of fuzzy chops on some C ′ ∈ C where C ′ lies in some fuzzy
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annulus Ai of G. By our inductive hypothesis it follows that C contains Kh−1 as a minor.
Our goal is to add one more supernode to this minor to get a Kh minor. We will do so
by finding disjoint paths of length O(∆) in the annulus above Ai from each of the Kh−1
supernodes all of which converge on a single connected component. By adding these paths
to their respective supernodes in the Kh−1 minor and adding the connected component on
which these paths converge to our collection of supernodes, we will end up with a Kh minor.

The main challenge in this strategy is to show how to find paths as above which are
disjoint. We will do so by choosing these paths from a “representative” from each supernode
where initially the representatives are Ω(h∆) far-apart and grow at most O(∆) closer at
each level of chops; since we do at most O(h) levels of chops, the paths we choose will never
intersect.

To formalize this strategy we must state a few definitions which will aid in arguing that
these representatives are far apart.

▶ Definition 11 (∆-Dense). Given sets S, U ⊆ V we say S is ∆-dense in U if d(u, S) ≤ ∆
for every u ∈ U .

▶ Definition 12 (R-Represented). A Kh minor is R-represented by set S ⊆ V if each
supernode Vi ⊆ V of the minor in G contains a representative vi ∈ S ∩ Vi and these
representatives are pairwise at least R apart in G.

Since V is clearly (1 + c)∆-dense in V , we can set S to V and j to h − 1 in the following
lemma to get Lemma 10.

▶ Lemma 13. Fix 0 ≤ c < 1 and h > j ≥ 0. Let S be any set which is (1 + c)∆-dense in V

and suppose C is the result of j levels of c-fuzzy ∆-chops and some C ∈ C has weak diameter
more than 22h∆. Then there exists a Kj+1 minor which is 8(h − j)∆-represented by S.

Proof. Our proof is by induction on j. The base case of j = 0 is trivial as K1 is a minor of
any graph with a supernode +∞-represented by any single vertex in V .

Now consider the inductive step on graph G = (V, E). Fix some set S which is (1 + c)∆-
dense in V and let C be the result of j levels of c-fuzzy chops using root r with some C ′ ∈ C
of diameter more than 22h∆. Suppose C ′ is in fuzzy annulus Ak and suppose that C ′ is
the result of applying j − 1 levels of c-fuzzy chops to some C which resulted from 1 level of
c-fuzzy chops in G; note that C is a connected component of Ak and that C ′ is contained
in C.

As an inductive hypothesis we suppose that any j − 1 levels of c-fuzzy ∆-chops on any
graph H which results in a cluster of weak diameter more than 22h∆ demonstrates the
existence of a Kj minor in H which is 8(h − j + 1)∆-represented by any set S′ which is
(1 + c)∆-dense in V (H). Here weak diameter is with respect to the distances induced by the
original input graph.

Thus, by our inductive hypothesis we therefore know that C contains a Kj minor which is
8(h − j + 1)∆-represented by any S′ ⊆ V (C) which is (1 + c)∆-dense in V (C). In particular,
we may let S′ be the “upper boundary” of C; that is, we let S′ be all vertices v in C such
that the shortest path from v to r does not contain any vertices in C. Clearly the shortest
path from any vertex in C to r intersects a node in S′; moreover, when restricted to C this
shortest path has length at most ∆ + c∆ (since C is contained in Ak) which is to say that S′

is (1 + c)∆-dense in C. Thus, by our induction hypothesis there is a Kj minor in C which is
8(h − j + 1)∆-represented by S′. Let V1, . . . , Vj be the nodes in the supernodes of the Kj

minor.
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We now describe how to extend the Kj minor to a Kj+1 minor which is 8(h − j)∆-
represented by S. We may assume that k ≥ 9h + 1; otherwise the distance from every node
in Ak to r would be at most (9h + 1)∆ + c∆

2 ≤ (9h + 3
2 )∆ and so the weak diameter of C ′

would be at most (18h + 3)∆ ≤ 21h∆, contradicting our assumption on C ′’s diameter. It
follows that for every v ∈ Ak we have

d(v, r) ≥ (k − 1)∆ − c∆
2 ≥ 9h∆ − c∆

2 ≥ 8h∆. (1)

We first describe how we grow each supernode Vi from the Kj minor to a new supernode
V ′

i . Let vi be the representative in S′ for Vi. Consider the path which consists of following
the shortest path from vi to r for distance 2∆ and then continuing on to the nearest node in
S; let v′

i be this nearest node; this path from vi to v′
i has length at most (3 + c)∆ since S is

(1 + c)∆-dense in V (G). Let V ′
i be the union of Vi with the vertices in this path. Since each

of these paths is of length at most (3 + c)∆ ≤ 4∆, it follows that each of these paths for
each i must be disjoint since each vi is at least 8(h − j + 1)∆ > 8∆ apart. Further, every
v′

i must also, therefore, be at least 8(h − j)∆ apart. Therefore, we let these v′
i form the

representatives in S for each of the V ′
i .

We now describe how we construct the additional supernode, V0, which we add to our
minor to get a Kj+1 minor. V0 will “grow” from the root to S and each of the V ′

i . In
particular, let ui ∈ V ′

i be the node in V ′
i which is closest to r and let Pi be the shortest path

from r to ui, excluding ui. Similarly, let v′
0 be the node in S closest to r and let P0 be the

shortest path from r to v′
0, including v′

0. Then, we let V0 be P0 ∪ P1 ∪ . . . ∪ Pj and we let v′
0

be the representative for V0 in S. We claim that for every i ≥ 1 we have

d(P0, V ′
i ) ≥ 8(h − j)∆. (2)

In particular, notice that since S is (1+c)∆-dense in V (G) we know that d(r, v′
0) ≤ (1+c)∆ ≤

2∆ and since d(v, r) ≥ 8h∆ for every v ∈ Ak by Equation (1) and d(v′
i, Ak) ≤ (3 + c)∆ ≤ 4∆,

it follows that d(P0, V ′
i ) ≥ (8h − 6)∆ ≥ 8(h − j)∆. Consequently, d(v′

0, v′
i) ≥ 8(h − j)∆ for

every i ≥ 1. Thus, our representatives of each supernode are appropriately far apart.
It remains to show that our supernodes indeed form a Kj+1 minor; clearly by construction

they are all pair-wise adjacent and so it remains only to show that they are all disjoint from
one another. We already argued above that for i, j ≥ 1 any V ′

i and V ′
j are disjoint so we

need only argue that V ′
0 is disjoint from each V ′

i for i ≥ 1. P0 must be disjoint from each V ′
i

for i ≥ 1 by Equation (2) and so we need only verify that Pi is disjoint from V ′
j for i, j ≥ 1;

By construction if i = j we know that Pi is disjoint from V ′
j so we assume i ̸= j and

that Pi intersects V ′
j for the sake of contradiction. Notice that each Pi has length at most

k∆ + c∆
2 − 2∆ = k∆ + c∆ − 2∆ − c∆

2 < (k − 1)∆ − c∆
2 by how we construct V ′

i . Thus, Pi

must be disjoint from Ak. It follows that if Pi intersects V ′
j then it must intersect V ′

j \ Vj .
However, since d(vi, vj) ≥ 8(h − j + 1)∆ ≥ 16∆ and the length of paths V ′

i \ Vi and V ′
j \ Vj

are at most 4∆ we know that d(V ′
i \ Vi, V ′

j \ Vj) ≥ 8(h − j)∆ ≥ 8∆. Thus, after intersecting
V ′

j \ Vj and then continuing on to a vertex adjacent to V ′
i \ Vi, we know Pi must travel at

least 8∆; since the vertices of Pi are monotonically further and further from r, and the vertex
in V ′

j \ Vj that Pi intersects must be distance at least (k − 1)∆ − c∆
2 − 4∆ ≥ (k − 5)∆ from

r, then the last vertex of Pi must be distance at least (k + 3)∆ from r, meaning Pi must
intersect annulus Ak, a contradiction. ◀
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r

≈ Δ

(a) A c-fuzzy ∆-chop.

r

(b) Visualizing some paths.

Figure 5 A c-fuzzy ∆-chop that is 1-scattering. We draw each fuzzy annulus in a distinct color.
In (b) we visualize some shortest paths of length at most ∆ and highlight cut edges in red.

6.2 Scattering Chops
Using Lemma 10 we can reduce computing a good scattering partition and therefore computing
a good SPR solution to finding what we call a scattering chop. The following definitions
are somewhat analogous to Definition 4 and Definition 5. However, notice that the second
definition is for a family of graphs (as opposed to a single graph as in Definition 5). We
illustrate a τ -scattering chop in Figure 5.

▶ Definition 14 (τ -Scattering Chop). Given a weighted graph G = (V, E, w), let A be a
c-fuzzy ∆-chop with respect to some root r ∈ V . A is a τ -scattering chop if each shortest
path of length at most ∆ has at most τ edges cut by A where we say that an edge is cut by A
if it has endpoints in different fuzzy annuli of A.

▶ Definition 15 (τ -Scatter-Choppable Graphs). A family of graphs G is τ -scatter-choppable
if there exists a constant 0 ≤ c < 1 such that for any G ∈ G and ∆ ≥ 1 there is some
τ -scattering and c-fuzzy ∆-chop A with respect to some root.

We will say that G is deterministic poly-time τ -scatter-choppable if the above chop A for
each G ∈ G can be computed in deterministic poly-time.

Lastly, we conclude that to give an O(1)-scattering partition – and therefore to give an
O(1)-SPR solution – for a Kh-minor-free graph family it suffices to show that such a family
is O(1)-scatter choppable.

▶ Lemma 16. Fix a constant h ≥ 2 and let Gh be all Kh-minor-free graphs. Then, if Gh is
τ -scatter-choppable then every G ∈ Gh is O(τh−1)-scatterable.

Proof. The claim is almost immediate from Lemma 10 and the fact that all subpaths of a
shortest path are themselves shortest paths.

In particular, first fix a sufficiently small constant c′ to be chosen later. Then, consider a
G ∈ Gh and fix a ∆. By assumption we know that G is τ -scatter-choppable and since each
subgraph of G is in Gh so too is each subgraph of G. Thus, we may let C be the connected
components resulting from h − 1 levels of c-fuzzy and (c′∆)-chops which are τ -scattering.

We claim that for sufficiently small c′ we have that C is a
(

τh−1

c′ , ∆
)

-scattering partition.
By Lemma 10 the diameter of each part in C is at most O(c′ · h · ∆) ≤ ∆ for sufficiently
small c′. Next, consider a shortest path P of length at most ∆. We can partition the edges
of P into at most 1

c′ shortest paths P1, P2, . . ., each of length at most c′ · ∆. Thus, it suffices
to show that each Pi satisfies |{C ∈ C : Pi ∩ C ̸= ∅}| ≤ τh−1.

We argue by induction on the number of levels of chops that after h′ < h chops we have
|{C ∈ C : Pi ∩ C ̸= ∅}| ≤ τh′ . Suppose we perform just one chop; i.e. h′ = 1. Then, since our
chops are τ -scattering we know that P will be cut at most τ times and so be incident to at
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most τ components of C as required. Next, suppose we perform h′ > 1 levels of chops. Then
our top-level chop will partition the vertices of Pi into at most τ components. By induction
and the fact that each subpath of Pi is itself a shortest path of length at most c′∆, we know
that the vertices of Pi in each such component are broken into at most τh′−1 components
and so Pi will be incident to at most τh′ components as required. As we perform h − 1 levels
of chops, it follows that C is indeed a

(
τh−1

c′ , ∆
)

-scattering partition. ◀
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Abstract
Let P be a set of n colored points. We develop efficient data structures that store P and can
answer chromatic k-nearest neighbor (k-NN) queries. Such a query consists of a query point q and a
number k, and asks for the color that appears most frequently among the k points in P closest to
q. Answering such queries efficiently is the key to obtain fast k-NN classifiers. Our main aim is to
obtain query times that are independent of k while using near-linear space.

We show that this is possible using a combination of two data structures. The first data structure
allow us to compute a region containing exactly the k-nearest neighbors of a query point q, and
the second data structure can then report the most frequent color in such a region. This leads
to linear space data structures with query times of O(n1/2 log n) for points in R1, and with query
times varying between O(n2/3 log2/3 n) and O(n5/6 polylog n), depending on the distance measure
used, for points in R2. These results can be extended to work in higher dimensions as well. Since
the query times are still fairly large we also consider approximations. If we are allowed to report a
color that appears at least (1 − ε)f∗ times, where f∗ is the frequency of the most frequent color,
we obtain a query time of O(log n + log log 1

1−ε
n) in R1 and expected query times ranging between

Õ(n1/2ε−3/2) and Õ(n1/2ε−5/2) in R2 using near-linear space (ignoring polylogarithmic factors).
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1 Introduction

One of the most popular approaches for classification problems is to use a k-Nearest Neighbor
(k-NN) classifier [3, 10, 12, 14]. In a k-NN classifier the predicted class of a query item q

is taken to be the most frequently appearing class among the k items most similar to q.
One can model this as a geometric problem in which the input items are represented by
a set P of n colored points in Rd: the color of the points represents their class, and the
distance between points measures their similarity. The goal is then to store P so that one can
efficiently find the color (class) c∗ most frequently occurring among the k points in P closest
to a query point q. See Figure 1(left). We refer to such queries as chromatic k-NN queries.
To answer such queries, k-NN classifiers often store P in, e.g., a kd-tree and answer queries
by explicitly reporting the k points closest to q, scanning through this set to compute the
most frequently occurring color [3]. Unfortunately, for many distance measures (including
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q

Figure 1 (left) A set of input points from three different classes (colors). The class of a query
point q is determined by the labels of its k nearest neighbors (with k = 7 as shown here q is classified
as red). (middle) The color partition for k = 1. (right) The color partition for k = 3.

the Euclidean distance) such an approach has no guarantees on the query time other than
the trivial O(n) time bound. Even assuming that the dependency on n during the query time
is small (e.g. when the points are nicely distributed [11]), the approach requires Θ(k) time to
explicitly process all k points closest to q, whereas the desired output is only a single value:
the most frequently appearing color. Hence, our main goal is to design a data structure to
store P that has sublinear query time in terms of both n and k, while still using only small
space. We focus our attention on the L2 (Euclidean) distance, and the L∞ distance metrics.
Most of our ideas extend to more general distance measures and higher dimensions as well.
However, already in the restricted settings presented here, designing data structures that
provide guarantees on the space and query time turns out to be a challenging task.

If the value k is fixed in advance, one possible solution is to build the kth-order Voronoi
diagram Vork(P ) of P , and preprocess it for point location queries. The kth-order Voronoi
diagram is a partition of Rd into maximal cells for which all points in a cell (a Voronoi region)
Vk,P (S) have the same set S of k closest points from P . Hence, in each Voronoi region there
is a fixed color that occurs most frequently among S. See Figure 1(right) for an illustration.
By storing Vork(P ) in a data structure for efficient (i.e. O(log n) time) point location queries
we can also answer chromatic k-NN queries efficiently. However, unfortunately Vork(P ) may
have size Θ(k(n − k)) [15] (for points in R2 and the L2 distance). For other Lm distances
the diagram is similarly large [17, 6]. Hence, we are interested in solutions that use less,
preferably near-linear, space.

The only result on the theory of chromatic k-NN queries that we are aware of is that
of Mount et al. [20]. They study the problem in the case that we measure distance using
the Euclidean metric and that the number of colors c, as well as the parameter k, are small
constants. Mount et al. state that it is unclear how to obtain a query time independent
of k, and instead analyze the query times in terms of the chromatic density ρ of a query q.
The chromatic density is a term depending on the distance from the query point q to the
kth nearest neighbor of q, and the distance from q to the first point at which the answer
of the query would change (e.g. the (k + t)th nearest neighbor of q for some t > 0). The
intuition is that if many points near q have the same color, queries should be easier to answer
than when there are multiple colors with roughly the same number of points. The chromatic
density term models this. Their main result is a linear space data structure for points in Rd

that supports O(log2 n + (1/ρ)d log(1/ρ)) time queries. We aim for bounds only in terms
of combinatorial properties (i.e. n, c, and k) and allow the number of colors, as well as the
parameter k, to be comparable to n. Our results are particularly relevant when k and c are
large compared to n.
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Table 1 Our results for exact chromatic k-nearest neighbors problems. Bounds marked with ∗

are expected bounds. The general Lm metric bounds hold for m = O(1).

Dimension Metric Preprocessing time Space Query time

d = 1 Lm O(n3/2 log n) O(n) O(n1/2 log n)

d = 2 Lm Õ(n2/(4+δ)) O(n) Õ(n1−1/(12+3δ))

d ≥ 3 Lm Õ(n2−1/d + n1+d/(2d−2+δ)) O(n) Õ(n1−1/((d+1)(2d−2+δ)))

d ≥ 2
L∞

O(n1+d/(d+1)) O(n) O(n1−1/(d+1)+δ)
Õ(n1+d/(d+1)) O(n logd−1 n) O((n logd−1 n)1−1/(d+1))

L2 Õ(n2−1/d + n1+d/(d+1))∗ O(n) Õ(n1−(d−1)/d(d+1))

Table 2 Our results for the approximate chromatic k-nearest neighbors problems.

Dimension Metric Preprocessing time Space Query time

d = 1 Lm O(n log 1
1−ε

n) O(nε−1) O(log n + log log 1
1−ε

n)

d = 2 L∞ Õ(nε−6)∗ Õ(nε−6) Õ(n1/2ε−5/2)∗

L2 Õ(n1+δ + nε−7)∗ Õ(nε−4) Õ(n1/2ε−3/2)∗

Our approach. Our main idea is to answer a query in two steps. (1) We identify a region
Dk

m(q) that contains exactly the set k-NNm(q) of the k sites closest to q according to distance
metric Lm. (2) We then find the mode color c∗; that is, the most frequently occurring color
among the points in the region Dk

m(q). This way, we never have to explicitly enumerate
the set k-NNm(q). We will design separate data structures for these two steps. Our data
structure for step (1) will find the smallest metric disk Dk

m(q) containing k-NNm(q) centered
at q. We refer to such a query as an range finding query. If the distance used is clear from
the context we may write k-NN(q) and Dk(q) instead.

Range mode queries. The data structure in step (2) answers so-called range mode queries.
For these data structures we exploit and extend the result of Chan et al. [8]. They show an
array A with n entries can be stored in a linear space data structure that allows reporting the
mode of a query range (interval) A[i..j] in O(n1/2) time. Furthermore, points in Rd can be
stored in O(n polylog n + r2d) space so that range mode queries with axis-aligned orthogonal
ranges can be answered in O((n/r) polylog n) time. Here, r ∈ [1, n] is a user-choosable
parameter. In particular, setting r = ⌈n1/2d⌉ yields an O(n polylog n) space solution with
O(n1−1/2d polylog n) query time. Range mode queries with halfspaces can be answered in
O((n/r)1−1/d2 + polylog n) time using O(nrd−1) space [8]. Range mode queries in arrays
have also been considered in an approximate setting [7]. The goal is then to report an element
that appears sufficiently often in the range.

Results and organization. Refer to Table 1 for an overview of our exact solutions. We first
consider the problem for n points in R1. In this setting, we develop an optimal linear space
data structure that can find Dk

m(q) in O(log n) time, for any m ≥ 1 (Section 2). We then use
Chan et al. [8]’s data structure to report the mode color in Dk

m(q). Since we present all of our
data structures in the pointer machine model augmented with real-valued arithmetic, this
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yields an O(n1/2 log n) time query algorithm. There is a conditional Ω(n1/2−δ) lowerbound
for chromatic k-NN queries using linear space and O(n3/2) preprocessing time (refer to
Section 5) so this result is likely near-optimal. In Section 3 we present our data structure for
finding Dk

m(q) in R2. For the L∞ metric we show that we can essentially find Dk
m(q) using

a binary search on the radius of the disk, and thus there is a simple O(n log n) size data
structure that allows us to find the range Dk(q) in O(log2 n) time (or O(nδ) time, for an
arbitrarily small δ > 0, in case of a linear space structure). For the L2 metric, we can no
longer easily access a discrete set of candidate radii. It is tempting to therefore replace the
binary search by a parametric search [18, 19]. However, the basic such approach squares
the Õ(n1/2) time required to solve the decision problem and is thus not applicable. The
full strategy requires a way to generate independent comparisons; typically by designing
a parallel decision algorithm [18]. Neither task is straightforward to achieve. Instead, we
show that we can directly adapt the query algorithm for answering semi-algebraic range
queries [2] (essentially the decision algorithm in the approach sketched above) to find Dk

2 (q)
in O(n1/2 polylog n) time. Unfortunately, the final query time for chromatic k-NN queries
is dominated by the O(n5/6 polylog n) time range mode queries, for which we use a slight
variation of the data structure of Chan et al. [8]. We briefly discuss these results in Section 4,
We do show that the data structure can be constructed in O(n5/3) expected time, rather than
the straightforward O(n2) time implementation that directly follows from the description
of Chan et al.. For the L∞ metric we can answer range mode queries in O(n3/4 polylog n)
time using Chan et al.’s data structure for orthogonal ranges. However, we show that we
can exploit that the ranges are squares and use a cutting-based approach (similar to the one
used for the L2 distance) to answer queries in O(n2/3 log2/3 n) time instead. If we wish to
reduce the space from O(n log n) to linear the query time becomes O(n2/3+δ).

Since the query times are still rather large, we then turn our attention to approximations;
refer to Table 2 for an overview. If f∗ is the frequency of the mode color among k-NN(q) then
our data structures may return a color that appears at least (1−ε)f∗ times. In case of the L2
distance our data structure presented in Section 6 now achieves roughly Õ(n1/2ε−3/2) query
time, where the Õ notation hides polylogarithmic factors of n and ε. The main idea is that
approximate levels in the arrangement of distance functions have relatively low complexity,
and thus we can store them to efficiently answer approximate range mode queries.

2 The one-dimensional problem

In this section we consider the case where P is a set of n points in R1. In this case all
Lm-distance metrics with m ≥ 1 are the same, i.e. Lm(a, b) = |a − b|. We develop a linear
space data structure supporting queries in O(n1/2 log n) time. Building the data structure
will take O(n3/2) time. We follow the general two-step approach sketched in Section 1. We
first show that there is an optimal, linear-space data structure with which we can find Dk(q)
in O(log n) time, even if k is part of the query. As we then briefly describe how we can
directly use the data structure by Chan et al. [8] to find the mode color of the points in
Dk(q) in O(n1/2 log n) time.

Range finding queries. Given a set P of n points in R1, we wish to store P so that given a
query, consisting of a point q ∈ R1 and a natural number k, we can efficiently find the kth

furthest point from q, and thus Dk
m(q). We show that by storing P in sorted order in an

appropriate binary search tree, we can answer such queries in O(log n) time. To this end,
we first consider answering so called rank queries on a ordered set, represented by a pair of
binary search trees. This turns out to be the crucial ingredient in the data structure.
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Let R ∪ B be an ordered set of elements, and let TR be a be a binary search tree whose
internal nodes store the elements from R, and in which each node is annotated with the
number of elements in that subtree. Similarly, let TB be a binary search tree storing B. We
can efficiently compute the element among R ∪ B with rank k (i.e. the kth smallest element):

▶ Lemma 2.1. Let TB and TR be two binary search trees with size annotations, and let k be
a natural number. We can compute the element of rank k among B ∪ R in O(height(TB) +
height(TR)) time.

To support efficiently querying Dk(q) we now store P in a balanced binary search tree
TP with subtree-size annotations, so that we can: (i) search for the element of rank k, and
(ii) given a query value q ∈ R1 we can split the tree at q in O(log n) time. We can implement
TP using e.g. a red black tree [22] (although with some care even a simple static balanced
binary search tree will suffice). We will use the split operations only to answer queries; so we
use path copying in this operation, so that we can still access the original tree once a query
finishes [21]. The data structure uses O(n) space, and can be built in O(n log n) time.

Given a query (q, k) the main idea is now to split TP into two trees TP < and TP ≥ , where
P < ⊆ P is the set of points left of q and P ≥ = P \ P < is the remaining set of points right of
q (or coinciding with q). Observe that in these two trees, the points are actually ordered by
distance to q (albeit for TP < the points are stored in decreasing order while the points in
TP ≥ are stored in increasing order). So, we can essentially use the procedure from Lemma 2.1
on the trees TP < and TP ≥ to find the point in P ≤ ∪ P > with rank k (according to the “by
distance to q”-order). The only difference with the algorithm as described in Lemma 2.1 is
that for TP < the roles of the left and right subtree are reversed. Splitting T into TP < and
TP ≥ takes O(log n) time. Since both subtrees have height at most O(log n), Lemma 2.1 also
takes O(log n) time. So, we obtain the following result:

▶ Theorem 2.2. Let P be a set of n points in R1. In O(n log n) time we can build a linear
space data structure so that given a query q, k we can find the smallest disk Dk

m(q), with
respect to any Lm metric, containing k-NNm(q) in O(log n) time.

Range mode queries. What remains is to store P such that given a query interval Q we
can efficiently report the mode color among P ∩ Q. Chan et al. [8] show that an array A of
size n can be preprocessed in O(n3/2) time into a linear space structure that can report the
range mode of a query range A[i : j] in O(n1/2) time. By implementing arrays with balanced
binary search trees, we can also implement this structure in the pointer machine model. This
increases the query and preprocessing times by an O(log n) factor. We then store (the colors
of) the points in increasing order in this structure. Together with Theorem 2.2 we obtain:

▶ Theorem 2.3. Let P be a set of n points in R1. In O(n3/2 log n) time, we can build a data
structure of size O(n), that answers chromatic k-NN queries on P in O(n1/2 log n) time.

3 Range finding queries two dimensions

In this section we give a data structure that, given a query point q ∈ R2, reports the smallest
range Dk

m(q) centered at q containing k-NNm(q). In Section 3.1 we consider the case where
the L∞ metric is used. In Section 3.2 we then consider the L2 metric.
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Figure 2 The considered radii ri, and r∗, for k = 5.

3.1 The L∞ metric case

For a given value r ≥ 0, define S(q, r) = [qx − r, qx + r] × [qy − r, qy + r] as the axis-aligned
square with sidelength 2r centered at q. We call r the radius of such a square. Now observe
that Dk(q) = S(q, r∗) is also an axis-aligned square, in particular with radius r∗ equal to
the distance L∞(q, p) between q and the kth nearest neighbor p of q. Thus we either have
r∗ = |qx − px| or r∗ = |qy − py|. This leads us to the following data structure. We store
the x-coordinates x1, . . . , xn of the points in P in increasing order in a balanced binary
search tree. Similarly, we store the y-coordinates of the points in P in sorted order y1, . . . , yn.
We set x0 = y0 = −∞ and xn+1 = yn+1 = ∞, and call these values coordinates as well.
In addition, we store P in a data structure for O(log n) time orthogonal range counting
queries, for which we use a range tree [5, 23]. The entire data structure can be constructed
in O(n log n) time, and uses O(n log n) space.

Now let x0, . . . , xℓ be the x-coordinates that are at most qx. The sequence ri = |qx − xi|,
for i = 0, . . . , ℓ, defines a sequence of decreasing radii. See Figure 2 for an illustration. We
can find the smallest radius ri for which S(q, ri) contains at least k points by performing
binary search over the radii, performing orthogonal range counting at each step to guide the
search. By performing a similar procedure for the x-coordinates greater than qx, as well as
for the y-coordinates, we obtain a set of four squares, that each contain at least k points.
The smallest of these squares contains exactly k points and is thus Dk(q). As each procedure
performs O(log n) orthogonal range counting queries, we obtain the following theorem.

▶ Theorem 3.1. Let P be a set of n points in R2. In O(n log n) time, we can build a data
structure of size O(n log n), that can report Dk

1 (q) and Dk
∞(q) in O(log2 n) time.

Following an idea of Chan et al. [8] we can reduce the space used by replacing the binary
range tree used for the orthogonal range queries by one with fanout nδ for some constant
δ > 0. This increases the query time to O(nδ + k′) time, where k′ is the output size.

▶ Theorem 3.2. Let P be a set of n points in R2. Let δ > 0 be an arbitrarily small constant.
In O(n log n) time, we can build a data structure of O(n) size, that can report Dk

1 (q) and
Dk

∞(q) in O(nδ) time.
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3.2 The L2 metric case

3.2.1 Randomized query times
In this section, we sketch a simple randomized data structure that finds Dk

2 (q) in expected
O(n1/2 logB+1 n) time1. The data structure consists of the large fan-out partition tree of
Agarwal et al. [2], used for semialgebraic range searching. Together with this tree, we take
a random sample P ′ of P by including each point with probability 1/n1/2. Note that this
random sample will contain n1/2 points in expectation.

The main idea is to combine binary search on the ordered distances R = {L2(q, p′) |
p′ ∈ P ′} with circular range counting. Let r∗ be the distance between q and its kth nearest
neighbor among P . We then search for two consecutive distances ri, ri+1 ∈ R, such that
ri ≤ r∗ ≤ ri+1. Because the number of points p ∈ P with ri ≤ L2(q, p) ≤ ri+1 is n1/2 in
expectation, we can then afford to report these points with semialgebraic range reporting,
and combining binary search with range counting again to find r∗. This leads to an expected
query time of O(n1/2 logB+1 n).

3.2.2 Worst-case query times
In this section we show how to achieve the same complexity bounds of Section 3.2.1, but
with a worst-case query time bound, rather than a randomized bound.

The data structure. For now, we assume that the set P lies in D0-general position for
some constant D0 (see [2] for a definition). The details on this assumption are not important,
and we show in the full version of the paper how to handle arbitrary point sets. The data
structure consists of two copies of the large fan-out (fan-out nδ, for some constant δ > 0)
partition tree of Agarwal et al. [2], built on P . The first copy, which we call T , will be
augmented slightly to support generating candidate ranges (disks) that will eventually lead
to Dk(q). The second copy will be used as a black box, answering circular range counting
queries to guide the search for Dk(q) by counting the number of points inside the candidate
ranges.

The tree T is constructed by recursively partitioning the space into open, connected
regions, called cells. Once a cell contains a small (constant) number of points of P , the
recursion stops and T gets a leaf node containing these points. There may be points of
P that do not lie on these cells, but rather on the zero set of the partitioning polynomial
used to partition the space. For range searching with arbitrary point sets, Agarwal et al. [2]
store these points in an auxiliary data structure. However, with our assumption that P lies
in D0-general position, we do not need this auxiliary data structure, and will simply store
the points inside a leaf node, whose parent is the node corresponding to the partitioning
polynomial. We further adjust T such that each internal node corresponding to a cell ω

stores an arbitrary point in ω. During the construction of T , a point inside each cell is
already computed. Hence the construction time is unaltered.

Answering a query. To query the structure with a query point q, we keep track of a set
of nodes Ni for each level i of T that is explored by our algorithm. With slight abuse of
terminology, we refer to the sets P ′ of points stored in the leaves of T as cells. Let Ωi denote

1 We would like to thank an anonymous reviewer for the solution sketched in this section, which led to
our current solution for finding Dk

2 (q) in Section 3.2.

ESA 2022



67:8 Chromatic k-Nearest Neighbor Queries

q r−

r+

q

Figure 3 (left) A partitioning of P into four cells. The red crosses are the points p(ω). (right) The
disk Dk(q) (dashed boundary) and the disks D(q, r−) (dotted boundary, dark gray) and D(q, r+)
(dotted boundary, light gray).

the cells corresponding to the internal nodes in Ni, and Pi denote the cells corresponding to
the leaf nodes in Ni. We maintain that pk(q), the kth nearest neighbor of q, is contained
in a cell in Ωi ∪ Pi. Initially, N1 contains the root node. If T is a single leaf, then the cell
corresponding to the root node will be stored in P1. Otherwise, it will be stored in Ω1.

The query algorithm works as follows. Say the algorithm is at level i in T . For a cell
ω ∈ Ωi stored in an internal node, let p(ω) be the point inside ω that was stored with it. Let

Ri = {L2(q, p(ω)) | ω ∈ Ωi} ∪
⋃

P ′
i
∈Pi

{L2(q, p) | p ∈ P ′
i }

be the set of distances to these points p(ω), as well as to all points stored in the leaves in
Pi and in the nodes in Ni. Let r∗ be the distance between q and its kth nearest neighbor
among P . This is the radius of Dk(q). To find this radius, we compute the largest distance
r− ∈ Ri, and the smallest distance r+ ∈ Ri, such that r− < r∗ ≤ r+. See Figure 3. If r−

(respectively r+) does not exist, set it to 0 (respectively ∞). We show how to compute r+.
Computing r− works similarly.

To compute r+, we use a combination of median finding and binary search. For some
radius r ∈ Ri, we decide if r+ > r or r+ ≤ r using a circular counting query. If D(q, r)
contains less than k points, we have r+ > r. Otherwise, we have r+ ≤ r. By performing this
procedure for the median radius in Ri, we can discard half of Ri with each query.

Once we have that r+ is the distance between q and a point in P (it is constructed
through a leaf node of T ), we have found r∗. We then terminate the algorithm, returning
the disk with the found radius. Otherwise we continue the search in the next level of T . To
continue the search through the tree, we construct the set Ni+1 by replacing every node
ν ∈ Ni with its children whose cells are crossed by one of D(q, r−) and D(q, r+). A cell ω is
crossed by a disk D if ω ∩ D ̸= ∅ and ω ⊈ D. The sets Ωi+1 and Pi+1 are then constructed
from these child nodes. Once these sets are constructed, we advance the algorithm to level
i + 1 and repeat the procedure.

▶ Lemma 3.3. The query algorithm correctly returns Dk(q).

Proof. We claim that this algorithm correctly returns Dk(q). First, note that if the algorithm
returns a disk, that disk contains k points, and its radius is equal to the distance between
q and a point of P . Therefore, it is indeed Dk(q). We now show that our algorithm will
always return a disk, and therefore that our algorithm is correct. To show this, it suffices to
show that for every level i of T traversed by our algorithm, the set Ωi ∪ Pi contains the cell
containing pk(q).



T. van der Horst, M. Löffler, and F. Staals 67:9

We give a proof by induction. It holds trivially that Ω1 ∪ P1 contains a cell containing
pk(q). We prove that if Ωi ∪ Pi contains a cell ω′ containing pk(q), then either the algorithm
terminates and returns Dk(q), or there is a cell ω ∈ Ωi+1 ∪ Pi+1 containing pk(q).

If ω′ ∈ Pi, then Ri will contain r∗. It will then find r+ = r∗ and terminate, returning
D(q, r+) = Dk(q). Now assume that ω′ ∈ Ωi. Let ν ∈ Ni be the internal node corresponding
to ω′. Now let ω be the cell stored in a child of ν, such that pk(q) lies in ω. We show that
ω ∈ Ωi+1 ∪ Pi+1.

Our algorithm performs repeated median finding on the radii in Ri, resulting in the largest
radius r− ∈ Ri and smallest radius r+ ∈ Ri, such that D(q, r−) and D(q, r+), contains less
than, respectively at least, k points of P . Let rω be the distance between q and p(ω), the
point in ω that was stored in T . If rω < r∗, then we have that rω ≤ r−, implying that
D(q, r−) intersects ω. Also, because ω is open, and because pk(q) ∈ ω, there must be a point
p′ ∈ ω such that r− < r∗ = L2(q, pk(q)) < L2(q, p′). This shows that ω is not contained in
D(q, r−), and thus that D(q, r−) crosses ω. With similar reasoning, it can be seen that if
rω ≥ r∗, then D(q, r+) crosses ω. Thus, ω will be crossed by at least one of D(q, r−) and
D(q, r+), and thus ω ∈ Ωi+1 ∪ Pi+1. Hence, our algorithm is correct. ◀

▶ Theorem 3.4. Let P be a set of n points in R2. Let δ > 0 be an arbitrarily small constant.
In O(n1+δ) expected time, we can build a data structure of O(n) size, that can report Dk

2 (q)
in O(n1/2 polylog n) time.

4 Range mode queries in two dimensions

In this section we discuss answering range mode queries in R2, and see how we can use
them together with the data structures from Section 3 to answer chromatic k-NN queries.
Our results build on the data structure of Chan et al. [8] for finding the mode color among
three-dimensional points in halfspaces. We show that using a standard lifting transformation
that maps the points P ⊆ R2 into planes in R3, we can apply their result to answer range
mode queries with disks in the L2 metric. Our main contribution is that we show that a
similar approach can answer range mode queries with squares (disks in the L∞ metric).
Somewhat surprisingly, this leads to better query times compared to directly using the
existing range mode data structures for orthogonal ranges [8]. Finally, we show that we
can, in fact, construct the data structures in (expected) O(n5/3) time rather than O(n2)
(worst-case) time. We briefly sketch these ideas here. Refer to the full version for details.

The data structure for the L2 metric. We lift the set of points P ⊆ R2 to a set of planes
H in R3. The points in a query disk Q map to the subset of planes passing below a point
h∗. Hence, we have to report the mode color c of these planes. The main idea in the data
structure of Chan et al. [8] is to build a (1/r)-cutting on the planes in H; a subdivision of
R3 into O(r3) interiorly disjoint cells, whose interiors are each crossed by at most n/r planes
(for r = n1/3). Let ∆ be the cell containing the query point h∗. The key insight is that the
mode color c of the planes passing below the query point h∗ is either the mode color c∆ of
all planes passing below ∆, or the color of one of the planes that intersect ∆. The data
structure stores the color c∆ for each cell ∆, so at query time we only have to consider the
at most n/r colors of the planes that intersect ∆. Our insight is that for k-NN queries we
can use the tools from Section 3 to find these colors in Õ(n1/2) time, leading to a total query
time of Õ(n5/6) (rather than Õ(n8/9) time in the case of arbitrary query points in R3).
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The data structure for the L∞ metric. For a point p ∈ P ⊆ R2, the graph of the distance
function L∞(p, q) = max{|px − qx|, |py − qy|} forms an upside-down pyramid ∇p in R3. For
a point q ∈ R2 we have that L∞(p, q) ≤ r if and only if (qx, qy, r) lies above ∇p. Thus, we
can again transform the problem to that of finding the mode color among those graphs in R3

that lie below a given query point. Using a similar cutting-based solution as sketched above –
again exploiting that we can quickly find the (colors of the) graphs intersecting a cell ∆ in
R2 rather than R3 – yields a linear space data structure answering queries in an O(n2/3+δ)
time. Using O(n log n) space we can decrease the query time to O(n5/3 log2/3 n).

Construction. Our final contribution in terms of the range mode data structures is that
we show how to efficiently construct the above data structures. In case of both the L2
and the L∞ metrics, there is a somewhat straightforward algorithm to construct the above
data structures in O(n2) time. The bottleneck being the time required to compute the
mode color c∆ for all cells ∆ of the cutting. We argue that this can actually be done in
roughly Õ(nr2 + r3nα) time, for some α ∈ (0, 1). For our choice of parameter r, this leads to
algorithms with subquadratic running time. We summarize our results for the chromatic
k-NN problem in the following theorems.

▶ Theorem 4.1. Let P be a set of n points in R2. There is a linear space data structure
that answers chromatic k-NN queries on P with respect to the L2 metric. Building the data
structure takes expected O(n5/3) time, and queries take O(n5/6 polylog n) time.

▶ Theorem 4.2. Let P be a set of n points in R2. There is a linear space data structure
that answers chromatic k-NN queries on P with respect to the L∞ metric. Building the data
structure takes O(n5/3) time, and queries take O(n2/3+δ) time. We can decrease the query
time to O(n2/3 log2/3 n) time using O(n log n) space and O(n5/3 log2/3 n) preprocessing time.

5 Lower bounds

We now discuss to what extent our results for the exact version of the problem may be
improved further. Chan et al. [8] show that there is a conditional Ω(n1/2−δ) time lower
bound on range mode queries, provided we insist on using only linear space and O(n3/2)
preprocessing time. We extend this bound to chromatic k-NN queries in R1. More generally,
Lemma 5.1 shows that we can reduce chromatic k-NN queries in Rd to range mode queries
using range counting. Due to space restrictions, further details on the lower bound can be
found in the full version of the paper.

▶ Lemma 5.1. Let P be a set of n points in Rd. A range mode query with a query ball Dm

(with respect to the Lm metric) can be answered using a single range counting query with
query range Dm and a single chromatic k-NN query.

Proof. We use the range counting query to find the number of points in the range Dm. Let
this be k, and let q be the center point of the ball Dm. Hence, Dk

m(q) = Dm, and thus the
answer to the chromatic k-NN query with center q and value k is the mode color of Dm. ◀

Relations to range counting queries. Next, we relate the cost of range finding queries, i.e.
the problem solved in our first step, to range counting queries. Given a data structure for
range finding queries we can answer range counting queries using only logarithmic overhead:

▶ Lemma 5.2. Let P be a set of n points in Rd. A range counting query on P with a disk
Dm under metric m can be performed using O(log n) range finding queries.
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Proof. Let q be the center of the query disk. We binary search over the integers 0, . . . , n,
using a range finding query to find a disk Dk

m(q) for each considered integer k. If the reported
disk is smaller than Dm, the number of points inside Dm is at least k. Otherwise, the number
of points is smaller than k. It follows that with O(log n) range finding queries, we can count
the number of points in Dm. ◀

It thus follows that range finding is roughly as difficult as range counting. In particular,
a Q(n) time lower bound for range counting queries using S(n) space implies an Ω̃(Q(n))
time lower bound for range finding queries with S(n) space. For example, in the semigroup
model there is an Ω̃(n/S(n)1/d) time lower bound for halfspace range counting [4]. Since
every halfspace is a disk D2 (of radius ∞), this lower bound also holds for range counting
with disks in the L2 metric, and thus also for range finding.

The range mode queries from step 2 are also related to a form of range counting. A
“type-2” range counting query with query range Q asks for all the distinct colors appearing
in Q together with their frequencies, i.e. for each reported color c we must also report the
number of points in P ∩ Q that have color c [9]. Clearly, answering “type-2” queries is more
difficult than range counting (just assign all points the same color), so the above lower bounds
also hold for “type-2” queries. Such “type-2” queries however also allow us to solve the range
mode problem. When the number of colors is small (e.g. two), and we already know the
number of points k in the query range Dk(q) it seems that answering range mode queries is
not much easier than answering (“type-2”) range counting queries. We therefore conjecture
that answering range mode queries is roughly as difficult as answering range counting queries.

▶ Conjecture 5.3. If answering a range counting query with a query range D using S(n)
space requires Q(n) time then answering a range mode query with query range D using S(n)
space requires Ω̃(Q(n)) time.

Note that this conjecture together with Lemma 5.1 would imply that answering a k-NN
query is at least as hard as answering a range counting query. Furthermore, since we can
answer a range counting query using O(log n) range finding queries (Lemma 5.2) that would
then mean our two-step approach has negligible overhead with respect to an optimal solution
to chromatic k-NN queries.

6 The approximate problems

In this section we sketch our approach for answering ε-approximate chromatic k-NN queries.
Refer to the full version for details. Our goal is to report a color c that occurs at least
(1 − ε)f∗ times, where f∗ is the frequency of the mode color c∗ of k-NN(q). We again use
the two-step approach of finding the range Dk(q) (step (1)) and computing the mode of the
range (step (2)). We use exact range finding data structures from Sections 2 and 3, and
focus our attention on approximating step (2) for two reasons: first, the running times in our
exact solutions are dominated by step (2), and second, it is unclear how to use approximate
solutions to k-NN queries (that is, approximate ranges) and still obtain guarantees on the
approximation factor of our ε-approximate chromatic k-NN queries.

For points in R1 we can directly use the result of Bose et al. [7] to answer (1 − ε)-
approximate range mode queries. In O(n log 1

1−ε
n) time, we can thus build an O(n/ε) size

data structure that can answer k-NN queries in O(log n + log log 1
1−ε

n) time.
For points in R2, and the L2-metric, we answer approximate range mode queries as

follows; we use similar ideas for the L∞ metric. We use the standard lifting transformation
to transform the set of points P a set of planes H. A query disk Q now corresponds to a
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Figure 4 (left) An illustration of the idea in R2, the planes (here lines) of a single color, their
ki =

(
1

1−α

)i-levels (bright red), and the g(ε)-approximate ki-levels Lc,0, Lc,1, . . . (in dark red).
(right) For each i, the Li forms the lower envelope of the Lc,i surfaces over all colors c. We search
for the largest i for which q lies above Li (dashed).

vertical halfline with a top endpoint h∗, and the mode color c∗ of P ∩Q is the most frequently
occurring color among the planes passing below h∗. Our aim is to report a color c such that
at least (1 − ε)f∗ planes of that color pass below h∗.

The main idea to answer approximate range mode queries efficiently is to compute, for
each color c, a series of g(ε)-approximate ki-levels (for some function g) considering only the
planes of color c. For each choice of i, we then consider the lower envelope Li of all those
ki-levels among the various colors. See Figure 4 for an illustration. Now observe that if h∗

lies in between Li and Li+1, the frequency f∗ of a mode color c∗ may only be a g(ε) fraction
larger than ki+1, while the frequency of the color defining Li directly below h∗ is at least ki.
So if g(ε) and ki/ki+1 are sufficiently small this is a (1 − ε)-approximation. One additional
complication is that even though our g(ε)-approximate ki-levels have fairly small complexity,
their lower envelopes do not. So, we need to design a data structure that can test if h∗ lies
above or below Li without explicitly storing Li. We show that with near-linear space we can
answer such queries in Oε(n1/2) time. This then leads to an Õε(n1/2) time query algorithm
for answering k-NN queries.

We use the same approach to answer approximate queries under the L∞ metric. Here,
the approximate levels are constructed using the result of Kaplan et al. [13]. This leads to
roughly the same complexities.

7 Concluding Remarks

We presented the first data structures for the chromatic k-NN problem with query times that
depend only on the number of stored points. While we focused mostly on the two-dimensional
case, our exact result extend to higher dimensions and other metrics as well (see full version).
Our two-step approach essentially reduces the problem to efficiently answering range mode
queries. The main open question is how to answer such queries efficiently. Since it is unlikely
that we can answer such queries in Ω(n1/2) time (using only near-linear space), it is also
particularly interesting to consider further improvements to the ε-approximate query data
structures. For the Euclidean distance, finding the query range may now be the dominant
factor (depending on the choice of ε). One option is to report a range that contains only
approximately the k nearest neighbors of a query point. However, this further complicates
the analysis. For the L∞ distance it may also be possible to reduce the space usage by using
a different method for computing the approximate levels (e.g. using the results by Agarwal
et al. [1] or the recent results of Liu [16]).
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Abstract
We consider the maximum weight b-matching problem in the random-order semi-streaming model.
Assuming all weights are small integers drawn from [1, W ], we present a 2 − 1

2W
+ ε approximation

algorithm, using a memory of O(max(|MG|, n) · poly(log(m), W, 1/ε)), where |MG| denotes the
cardinality of the optimal matching. Our result generalizes that of Bernstein [3], which achieves
a 3/2 + ε approximation for the maximum cardinality simple matching. When W is small, our
result also improves upon that of Gamlath et al. [11], which obtains a 2 − δ approximation (for some
small constant δ ∼ 10−17) for the maximum weight simple matching. In particular, for the weighted
b-matching problem, ours is the first result beating the approximation ratio of 2. Our technique
hinges on a generalized weighted version of edge-degree constrained subgraphs, originally developed
by Bernstein and Stein [5]. Such a subgraph has bounded vertex degree (hence uses only a small
number of edges), and can be easily computed. The fact that it contains a 2 − 1

2W
+ ε approximation

of the maximum weight matching is proved using the classical Kőnig-Egerváry’s duality theorem.
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1 Introduction

The maximum weight (b-)matching problem is a classical problem in combinatorial optimiza-
tion. In this paper we will study a sparsifier for that problem and use it in order to design a
streaming algorithm for randomly-ordered streams of edges.

Our main tool is a generalized weighted version of the edge-degree constrained subgraph
(EDCS), a graph sparsifier originally designed for the maximum matching problem by
Bernstein and Stein [5]. Let us first recall the definition an EDCS H of a graph G [5].

▶ Definition 1 (from [5]). Let G = (V, E) be a graph, and H a subgraph of G. Given any
integer parameters β ≥ 2 and β− ≤ β − 1, we say that H is a (β, β−)-EDCS of G if H

satisfies the following properties:
(i) For any edge (u, v) ∈ H, degH(u) + degH(v) ≤ β

(ii) For any edge (u, v) ∈ G\H, degH(u) + degH(v) ≥ β−.
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An EDCS has a size that can be easily controlled by the parameter β and it somehow
“balances” the vertex degrees in the graph. A very nice property of this sparsifier is that, for
well-chosen values of β and β−, it always contains a 3/2 + ε approximation of the maximum
cardinality matching [2, 6]:

▶ Theorem 2 (from the recent work of Assadi and Bernstein [2]). Let 0 < ε < 1/2. Set λ = ε
32 .

Let β ≥ β− + 1 be integers such that β ≥ 8λ−2 log(1/λ) and β− ≥ (1 − λ) · β. Then any
(β, β−)-EDCS H of a graph G contains a matching MH such that

( 3
2 + ε

)
· |MH | ≥ |MG|

where MG denotes the maximum cardinality matching.

In our paper, we generalize the EDCS in two ways:
we handle (small) integer-weighted edges;
we handle the more general case of b-matchings.

To describe our generalization, first let us introduce some notation. A weighted multi-
graph G = (V, E) is defined by its set of vertices V and its multi-set of weighted edges E

drawn from V × V × {1, 2, . . . , W} (i.e., e = (u, v, k) represents an edge between u and v

of weight w(e) = k). We emphasize that E is a multi-set: not only can there be multiple
edges between two vertices, but also some of these edges can have the same weight. We
assume that the multi-graph does not contain any self-loop. For a given vertex v ∈ V and a
given subgraph H of G, δH(v) denotes the multi-set of incident edges to v in H, degH(v)
the degree of v in the multi-graph H and wdegH(v) its weighted degree

∑
(u,v,w)∈δH (v) w in

H. Given a weighted multi-graph G = (V, E) and a set of capacities bv ∈ Z+ associated to
each vertex v ∈ V , a multi-set of weighted edges M is called a b-matching if for all v ∈ V

the number of edges incident to v in M is smaller than or equal to bv. For a given subgraph
H of G, we denote by MH an arbitrary maximum weight b-matching included in H. The
concept of b-matching encompasses that of matching and allows us to tackle a larger variety
of real situations where the vertices have different capacities, e.g. [20]. In this paper we will
assume that the number of edges between any two vertices u and v is at most min(bu, bv).1

▶ Definition 3. Let G = (V, E) be a weighted multi-graph, where E is a multiset of edges
drawn from V ×V ×{1, 2, . . . , W}, {bv}v∈V be a set of constraints, and H be a subgraph of G.
Given any integer parameters β ≥ 3 and β− ≤ β − 2, we say that H is a (β, β−)-w-b-EDCS
of G if H satisfies the following properties:

(i) For any edge (u, v, wuv) ∈ H, wdegH (u)
bu

+ wdegH (v)
bv

≤ β · wuv

(ii) For any edge (u, v, wuv) ∈ G\H, wdegH (u)
bu

+ wdegH (v)
bv

≥ β− · wuv.

An EDCS is a special case of a weighted b-EDCS when all the bvs and all the weights are
equal to 1. We can show that such w-b-EDCSes as described in Definition 3 always exist.
Moreover, we can also prove that it uses only a reasonable number of edges (up to 2β · |MG|)
and it contains a relatively large weighted b-matching:

▶ Theorem 4. Let 0 < ε < 1/2 and let W be an integer parameter. Set λ = ε
100W . Let

β ≥ β− + 2 be integers such that β+6W
log(β+6W ) ≥ 2W 2λ−2 and β− − 6W ≥ (1− λ) · (β + 6W ).

Then any (β, β−)-w-b-EDCS H of a weighted multi-graph G with integer edge weights bounded
by W contains a b-matching MH such that

(
2− 1

2W + ε
)
· w(MH) ≥ w(MG).

1 This is actually a reasonable assumption as the maximum number of edges that are relevant between
two given vertices u and v to construct a b-matching is at most min(bu, bv). This assumption is more
debatable in the streaming setting, and this is why we explain how to handle this case in the full version
of this paper.
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In the full version of this paper, we give a whole class of tight examples reaching the
bound of Theorem 4. Compared with the previous results of [2, 6] (Theorem 2) when W = 1,
we can observe that the approximation ratio is the same, even though the constraints on β

and β− are a bit stricter here. Nonetheless, we can deal with b-matchings as well, even when
W > 1. As a side note, we note that to satisfy the conditions stated in Theorem 4, it suffices
that β is of order poly(W, 1/ε) for some polynomial.

The semi-streaming model of computation [10] has been motivated by the recent rise of
massive graphs, where we cannot afford to store the entire input in memory. Given that
the graph is made of |V | = n vertices and |E| = m edges, in the semi-streaming model the
graph is presented to the algorithm as a stream of edges e1, . . . , em. The algorithm is allowed
to make a single pass over that stream and can use a memory roughly proportional to the
output size (up to a poly-logarithmic factor).

We note that in the most general model where an adversary decides the order of the
elements, even for the maximum cardinality simple matching, it is still unclear whether it is
possible to beat the approximation ratio of 2.

Our focus here is on the random-order streaming model, where the permutation of
the edges in the stream is assumed to be chosen uniformly at random. This is a quite
reasonable assumption as real-world data have little reason of being ordered in an adversarial
way. In fact, as mentioned in [17], the random-order streaming model might better explain
why certain algorithms perform better in practice than their theoretical bounds under an
adversary model. It is noteworthy that under the random-order streaming model, there are
already quite a few evidences to show that it is possible to beat the approximation factor of
2 [1, 3, 11, 17], at least for the simple matching.

Using an adaptation of EDCS, Bernstein [3] obtained a 3/2 + ε approximation in the
random-order semi-streaming framework (with probability 1− 2n−3 and using O(n · log(n) ·
poly(1/ε)) memory). Similarly, we can adapt our w-b-EDCSes to design a semi-streaming
algorithm for randomly-ordered streams of weighted edges:

▶ Theorem 5. Let 0 < ε < 1
2 and let W be an integer parameter. There exists an

algorithm that can extract with high probability (at least 1− 2m−3) from a randomly-ordered
stream of weighted edges having integer weights in {1, . . . , W} a weighted b-matching with an
approximation ratio of 2− 1

2W + ε, using O(max(|MG|, n) · poly(log(m), W, 1/ε)) memory.

Theorem 5 is the first result for the maximum (integer-weighted) b-matching problem
in the random-order semi-streaming framework. For the special case of simple matching,
when W = 1, we essentially re-capture the result of Bernstein [3] (albeit using slightly
more memory). When W > 1, we note that prior to our work, Gamlath et al. [11] have
obtained an approximation ratio of 2− δ for some small δ ∼ 10−17. Our result gives a better
approximation when W is reasonably small (but using a memory depending polynomially in
W ) and we believe that our approach is significantly simpler.
▶ Remark 6. Another generalization of EDCS has been developed by Bernstein et al. [4] to
maintain a 3/2 + ε approximation of the optimal weighted matching in a dynamic graph.
However it is still unknown if their construction can actually lead to an algorithm in the
random-order one-pass semi-streaming model [4], or applied to b-matchings.

Technical Overview

To generalize the EDCS to the weighted case, a natural first idea is to build multiple EDCSes,
one for each edge-weight from 1 to W , and then take their union. We show in the full version
of this paper that such an idea does not lead to a subgraph containing a matching that is
better than a 2 approximation.

ESA 2022
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Our approach is a proper generalization of EDCS, as defined in Definition 3. In Theorem 4,
we show that such a w-b-EDCS contains a matching of good approximation ratio. The proof
of this theorem is technically the most innovative part of the present work. In order to
handle integer-weighted matchings (see Section 2) we make use of Kőnig-Egerváry’s duality
theorem [7] and a specially-constructed auxiliary graph. The fact that the weights of the
edges are integers is critical to get an approximation ratio better than 2 (especially for
Claim 13). Then, to handle b-matchings (see Section 3), we build a reduction to simple
matchings and show that by doing so we do not lose too much in the approximation ratio.

Regarding Theorem 5, when we design a semi-streaming algorithm to extract a b-matching
there is an additional challenge: we do not know in advance the actual size of MG, which
cannot be bounded by n (for instance |MG| could be of size n1.2 or even larger), but we still
want to use as little memory as possible, i.e., O(max(|MG|, n) · poly(log(m), W, 1/ε)). We
tackle this issue by using a guessing strategy in the early phase of the stream (see Section 4).

Related Work

In the adversarial semi-steaming setting, for the unweighted case, the simple greedy algorithm
building a maximal matching provides a 2 approximation, which is the best known approxim-
ation ratio. Knowing whether it is possible to achieve a better approximation ratio is a major
open question in the field of streaming algorithms. For weighted matchings an approximation
ratio of 2 + ε can be achieved [12, 18, 19]. For weighted b-matchings the approximation ratio
2 + ε can also be attained [14]. On the hardness side, we know that an approximation ratio
better than 1 + ln 2 ≈ 1.69 cannot be achieved [15].

In contrast, for the random-order stream, a first result was obtained by Konrad, Magniez,
and Mathieu [17] with an approximation ratio strictly below 2 for unweighted simple
matchings. The approximation ratio was then improved in a sequence of papers [11, 16, 9, 3].
Currently the best result is due to Assadi and Behnezhad [1], who obtained the ratio of
3/2− δ for some small constant δ ∼ 10−14. Regarding weighted simple matchings, Gamlath
et al. [11] obtained an approximation ratio of 2 − δ for some small constant δ ∼ 10−17.
Regarding b-matchings, to our knowledge the only result is an approximation ratio of 2− δ

in expectation for random-order online matroid intersection by Guruganesh and Singla [13]
(hence it applies for unweighted bipartite b-matchings).

2 EDCS for Weighted Matchings

In this section we consider the problem of finding a maximum weight matching in an
edge-weighted graph G = (V, E) where the edges have integer weights in [1, W ]. For ease
of presentation, we will use simplified notations for simple graphs in this section. Here
w(u, v) denotes edge weight between vertices u and v. For a subgraph H of G and a vertex
u ∈ V , we denote by NH(v) the set of vertices adjacent to v in H, by degH(v) the degree
of v in H, i.e., degH(v) = |NH(v)|, and by wdegH(v) the weighted degree of v in H, i.e.,
wdegH(v) =

∑
u∈NH (v) w(u, v). For a subgraph H of G, we will denote by MH an arbitrary

maximum weight matching in H. Then we define the notion of edge-degree constrained
subgraphs for weighted graphs (w-EDCS), which in fact is just Definition 3 specialized to
the setting in this section.

▶ Definition 7. Let G = (V, E) be a graph with weighted edges, and H be a subgraph of G.
Given any integer parameters β ≥ 3 and β− ≤ β − 2, we say that H is a (β, β−)-w-EDCS of
G if H satisfies the following properties:

(i) For any edge (u, v) ∈ H, wdegH(u) + wdegH(v) ≤ β · w(u, v)
(ii) For any edge (u, v) ∈ G\H, wdegH(u) + wdegH(v) ≥ β− · w(u, v).
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Here is a first simple proposition on (β, β−)-w-EDCS (coming from Property (i)).

▶ Proposition 8. Let H be a (β, β−)-w-EDCS of a given graph G. Then, for all v ∈ V , we
have degH(v) ≤ β.

Proof. Let v ∈ V . If NH(v) = ∅, the stated property is trivial. Otherwise, pick a vertex
u such that w(u, v) = minu′∈NH (v) w(u′, v). Then, by Property (i), β · w(u, v) ≥ wdegH(v).
Therefore, degH(v) ≤ wdegH (v)

w(u,v) ≤ β, as any edge incident to v in H has a weight larger than
or equal to w(u, v). ◀

We show the existence of w-EDCSes by construction, using a local search algorithm. The
following proof closely follows the argument of [2].

▶ Proposition 9. Any graph G = (V, E) with weighted edges contains a (β, β−)-w-EDCS
for any parameters β ≥ β− + 2. Such a (β, β−)-w-EDCS can be found in O(β2W 2 · n) local
search steps.

Proof. Start with an empty subgraph H. Then try the following local improvements of H,
until it is no longer possible. If there is an edge in H violating Property (i) of Definition 7,
then fix that edge by removing it from H. Otherwise, if there is an edge in G\H violating
Property (ii), then fix that edge by inserting it in H.

Observe that we give the priority to the correction of violations of Property (i), so that at
each step of the algorithm all the vertices have degrees bounded by β + 1 (as after inserting
an edge, Proposition 8 may be violated). To prove that this algorithm terminates in finite
time and to show the existence of a w-EDCS, we introduce a potential function:

Φ(H) = (2β − 2)
∑

(u,v)∈H

w(u, v)2 −
∑
u∈V

(wdegH(u))2.

As the vertices have degrees bounded by β + 1 and the edges have weights bounded by W ,
the value of that potential function is bounded by 2β2W 2 · n. Then we can show that after
each local improvement step, the value of Φ(H) increases at least by 2 (see the full version
of this paper for details). Therefore, the algorithm terminates in O(β2W 2 · n) steps. ◀

We also introduce the notion of w-vertex-cover of the edge-weighted graph.

▶ Definition 10. We say that the non-negative integer variables (αv)v∈V represent a w-
vertex-cover of a subgraph H of G if for all (u, v) ∈ H, we have w(u, v) ≤ αu + αv. The sum∑

v∈V αv is called the weight of the w-vertex-cover.

To use this data structure for the maximum weight problem, we will use the theorem of
Kőnig-Egerváry [7], which is a classic duality theorem.

▶ Theorem 11 (Kőnig-Egerváry). In any edge-weighted bipartite subgraph H of G, the
maximum weight of a matching equals the smallest weight of a w-vertex-cover.

This theorem allows us to prove the following lemma, which is technically the most
important part of the present work.

▶ Lemma 12. Let 0 < ε < 1/2 and W be an integer parameter. For β ≥ β− + 2 integers
such that β

β− ≤ 1 + ε
5W and β− ≥ 4W

ε , we have that any (β, β−)-w-EDCS H of a bipartite
graph G (with integer edge weights bounded by W ) contains a matching MH such that(
2− 1

2W + ε
)
· w(MH) ≥ w(MG).

ESA 2022
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Proof. Using Kőnig-Egerváry’s theorem in the bipartite graph H, we know that there exist
integers (αv)v∈V such that:∑

v∈V αv = w(MH)
for all (u, v) ∈ H, w(u, v) ≤ αu + αv

Now consider the optimal matching MG in G. The first idea is to use the duality theorem to
relate w(MG) to w(MH), with a leftover term that will be analyzed in the second part of
the proof. We introduce the notion of good and bad edges:

the edges (u, v) ∈MG such that β− ·w(u, v) ≤ β · (αu + αv), which are called good edges;
the set of good edges is denoted as Mgood;
the edges (u, v) ∈MG such that β− · w(u, v) > β · (αu + αv), which are called bad edges;
the set of bad edges is denoted as Mbad.

A key observation is that the edges in MG ∩ H are necessarily good edges by the
definition of the w-vertex-cover (αv)v∈V and the fact that β− < β. Therefore, the bad
edges (u, v) are in G\H and as a consequence they satisfy Property (ii) of Definition 7, i.e.,
β− · w(u, v) ≤ wdegH(u) + wdegH(v).

Hence we can write the following:

β− · w(MG) =
∑

(u,v)∈Mgood

β− · w(u, v) +
∑

(u,v)∈Mbad

β− · w(u, v)

≤
∑

(u,v)∈Mgood

β · (αu + αv) +
∑

(u,v)∈Mbad

(wdegH(u) + wdegH(v))

=
∑

(u,v)∈MG

β · (αu + αv) +
∑

(u,v)∈Mbad

(wdegH(u) + wdegH(v)− β · (αu + αv))

≤ β · w(MH) +
∑

(u,v)∈Mbad

((wdegH(u)− β · αu)+ + (wdegH(v)− β · αv)+),

where (x)+ denotes the non-negative part max(x, 0). In the last inequality we also used the
fact that

∑
(u,v)∈MG

(αu + αv) ≤
∑

v∈V αv = w(MH), as each vertex of V is counted at most
once in that sum. Now, denoting by Vbad the set of vertices which are the endpoints of a bad
edge and such that wdegH(u)− β · αu > 0, we get

β− · w(MG) ≤ β · w(MH) +
∑

v∈Vbad

(wdegH(v)− β · αv). (1)

Naturally, we want to upper-bound the value of
∑

v∈Vbad
(wdegH(v)−β ·αv) and we will do

so via a specially-constructed graph. Before we describe this graph, we can first easily observe
that for any v ∈ Vbad, for any u ∈ NH(v), we have w(u, v) ≥ wdegH (v)

β > αv (by Property (i)
of Definition 7 and the definition of Vbad); moreover, as (αv)v∈V is a w-vertex-cover of H,
we obtain that αu > 0. These observations will be useful in the following.

The new graph is Hbad = (Vbad ∪ Ṽ , Ẽ). The vertices in Hbad are the vertices of Vbad

as well as copies of the vertices of V such that αv > 0, i.e., Ṽ = {ṽ : v ∈ V, αv > 0}. We
build the set of edges Ẽ as follows. For each v ∈ Vbad, for each u ∈ NH(v), we create in Ẽ

an edge (v, ũ) such that w(v, ũ) = w(v, u) − αv (note that if u is also in Vbad, then Ẽ will
also contain another edge (u, ṽ) such that w(u, ṽ) = w(u, v)− αu). Note that w(v, ũ) ∈ Z>0,
since w(u, v) > αv as observed above. Therefore the graph Hbad still has non-negative
integer-valued edge weights. We next remove some edges from Ẽ: while there exists a
vertex v ∈ Vbad such that wdegHbad

(v) > wdegH(v)− β · αv + W , we pick an arbitrary edge
(v, ũ) ∈ Ẽ incident to v and remove it from Hbad. This process guarantees the following
property:
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∀v ∈ Vbad, wdegH(v)− β · αv ≤ wdegHbad
(v) ≤ wdegH(v)− β · αv + W. (2)

This finishes the description of the graph Hbad. By (2), for any (v, ũ) ∈ Ẽ we have:

β · w(v, ũ) + W = β · (w(v, u)− αv) + W ≥ wdegH(v)− β · αv + W + wdegH(u)
≥ wdegHbad

(v) + wdegHbad
(ũ).

Summing this inequality over all the edges in Ẽ we obtain:

β · w(Ẽ) + W · |Ẽ| ≥
∑

(v,ũ)∈Ẽ

(wdegHbad
(v) + wdegHbad

(ũ))

=
∑

v∈Vbad

degHbad
(v) ·wdegHbad

(v) +
∑
ũ∈Ṽ

degHbad
(ũ) ·wdegHbad

(ũ)

≥
∑

v∈Vbad

wdegHbad
(v)

W
·wdegHbad

(v) +
∑
ũ∈Ṽ

wdegHbad
(ũ)

αu
·wdegHbad

(ũ)

=
∑

v∈Vbad

(wdegHbad
(v))2

W
+

∑
ũ∈Ṽ

(wdegHbad
(ũ))2

αu

≥
∑

v∈Vbad

1
W
·
(

w(Ẽ)
|Vbad|

)2

+
∑
ũ∈Ṽ

1
αu
·
(

w(Ẽ) · αu∑
ũ′∈Ṽ αu′

)2

= w(Ẽ)2

W · |Vbad|
+ w(Ẽ)2∑

ũ′∈Ṽ αu′
.

The second inequality comes from the fact that the degree of a vertex can be lower-bounded
by the weighted degree of that vertex divided by the weight of the largest edge incident to it
(for v ∈ Vbad this weight is W , and for ũ ∈ Ṽ it is αu, as w(v, ũ) = w(v, u)− αv ≤ αu for v

adjacent to ũ in Hbad). The third inequality comes from the minimization of the function
over the constraints

∑
v∈Vbad

wdegHbad
(v) =

∑
ũ∈Ṽ wdegHbad

(ũ) = w(Ẽ). Now observing
that |Ẽ| ≤ w(Ẽ), we derive the following:

β + W ≥ w(Ẽ)
W · |Vbad|

+ w(Ẽ)∑
ũ∈Ṽ αu

. (3)

The following claim will help us lower bound the average weighted degree of the vertices
of Vbad in Hbad, namely, w(Ẽ)/|Vbad|. For this part it is crucial that the weights are integers.

▷ Claim 13. For all (u, v) ∈Mbad, (wdegH(u)− β · αu)+ + (wdegH(v)− β · αv)+ ≥ β−

1+ε/4

Proof. We proceed by contradiction. Suppose that there exists (u, v) ∈ Mbad such that
(wdegH(u) − β · αu)+ + (wdegH(v) − β · αv)+ < β−

1+ε/4 . Then, as β− · w(u, v) ≤ β · (αu +
αv) + (wdegH(u)− β · αu)+ + (wdegH(v)− β · αv)+, it means that

β · (αu + αv) < β− · w(u, v) < β · (αu + αv) + β−

1 + ε/4 ,

and therefore by dividing by β− we obtain

β

β− · (αu + αv) < w(u, v) <
β

β− · (αu + αv) + 1
1 + ε/4 .
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As (αu + αv) ∈ {0, 1, . . . , W} (recall that (u, v) is a bad edge) and because β
β− ≤ 1 + ε

5W <

1 + ε
4W ·(1+ε/4) , there cannot be any integer in the open interval]

β

β− · (αu + αv), β

β− · (αu + αv) + 1
1 + ε/4

[
,

implying that w(u, v), which is an integer, cannot exist. The proof follows. ◁

Recall that u of (u, v) ∈ Mbad is part of Vbad only if wdegH(u) − β · αu > 0. Claim 13
then implies that given (u, v) ∈ Mbad, if both u and v are in Vbad, then wdegHbad

(u) +
wdegHbad

(v) ≥ β−

1+ε/4 ; if only u is in Vbad, then wdegHbad
(u) ≥ β−

1+ε/4 . We can thus infer that
w(Ẽ)
|Vbad| ≥

β−

2·(1+ε/4) and we can rewrite (3) as β + W ≥ β−

2W ·(1+ε/4) + w(Ẽ)∑
ũ∈Ṽ

αu
, and therefore

(
β + W − β−

2W · (1 + ε/4)

)
·

∑
ũ∈Ṽ

αu ≥ w(Ẽ). (4)

We now can rebound the expression of (1) as follows:

β− · w(MG) ≤ β · w(MH) +
∑

v∈Vbad

(wdegH(v)− β · αv)

≤β · w(MH) +
∑

v∈Vbad

wdegHbad
(v) by (2)

≤β · w(MH) + w(Ẽ)

≤
(

2β + W − β−

2W · (1 + ε/4)

)
· w(MH). by (4) and

∑
ũ∈Ṽ

αu ≤ w(MH)

Re-arranging,(
2 β

β− + W

β− −
1

2W · (1 + ε/4)

)
· w(MH) ≥ w(MG).

As β
β− ≤ 1 + ε/4 and β− ≥ 4W

ε we obtain the desired result. ◀

Then we can generalize this result to non-bipartite graphs.

▶ Theorem 14. Let 0 < ε < 1/2 and W be an integer parameter. Set λ = ε
100W . For

β ≥ β− + 2 integers such that β
log(β) ≥ 2W 2λ−2 and β− ≥ (1 − λ) · β, we have that any

(β, β−)-w-EDCS H of a graph G (with integer edge weights bounded by W ) contains a
matching MH such that

(
2− 1

2W + ε
)
· w(MH) ≥ w(MG).

Proof. The proof of this theorem relies on Lemma 12 and on the same construction as the
one in [2], using the probabilistic method and Lovasz Local Lemma [8]. We provide the
details of the proof in the full version of this paper. ◀

3 EDCS for Weighted b-Matchings

From now on we consider the problem of finding a maximum weight b-matching in an
edge-weighted multi-graph G = (V, E). Hence we will use the notations described in the
introduction. Here we recall the generalization of edge-degree constrained subgraphs (EDCS)
to an edge-weighted multi-graph G = (V, E) in the context of the b-matching problem.
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▶ Definition 15. Let G = (V, E) be a weighted multi-graph, where E is a multiset of edges
drawn from V ×V ×{1, 2, . . . , W}, {bv}v∈V be a set of constraints, and H be a subgraph of G.
Given any integer parameters β ≥ 3 and β− ≤ β − 2, we say that H is a (β, β−)-w-b-EDCS
of G if H satisfies the following properties:

(i) For any edge (u, v, wuv) ∈ H, wdegH (u)
bu

+ wdegH (v)
bv

≤ β · wuv

(ii) For any edge (u, v, wuv) ∈ G\H, wdegH (u)
bu

+ wdegH (v)
bv

≥ β− · wuv.

As for a w-EDCS (Proposition 8), we can bound the degree of a vertex in a w-b-EDCS
H (with almost the same proof as that of Proposition 8).

▶ Proposition 16. Let H be a (β, β−)-w-b-EDCS of a given graph G. Then, for all v ∈ V ,
we have degH(v) ≤ β · bv.

▶ Proposition 17. Let H be a (β, β−)-w-b-EDCS of a given graph G. Then H contains at
most 2β · |MG| edges.

Proof. A vertex v ∈ V is called saturated by MG if |δG(v) ∩MG| = bv. We denote by Vsat

the set of vertices saturated by MG. As MG is a maximal matching in G, it means that for
all (u, v, wuv) ∈ G\MG, either u or v is in Vsat. We denote by Msat ⊆ MG the subset of
edges in MG that are incident to a vertex of Vsat. By this definition, we get:

|H| = |H ∩ (MG\Msat)|+ |H\(MG\Msat)| ≤ |MG| − |Msat|+
∑

v∈Vsat

degH(v)

≤ |MG| − |Msat|+
∑

v∈Vsat

β · bv ≤ |MG| − |Msat|+ 2 · |Msat| · β ≤ 2β · |MG|,

as for all v ∈ V , degH(v) ≤ β · bv and
∑

v∈Vsat
bv ≤ 2 · |Msat|. ◀

We can also show that such w-b-EDCSes always exist.

▶ Proposition 18. Any multi-graph G = (V, E), along with a set of constraints {bv}v∈V ,
contains a (β, β−)-w-b-EDCS for any parameters β ≥ β− + 2. Such a (β, β−)-w-b-EDCS
can also be found in O(β2W 2 · |MG|) local search steps.

Proof. As in the proof of Proposition 9, we follow closely the argument of [2]. We use the
same local-search algorithm as the one in Proposition 9, except that the properties violated
are those of Definition 15. Here we also give the priority to the correction of violations of
Property (i), so that the at each step of the algorithm all the vertices v ∈ V have degrees
bounded by β · bv + 1. To prove that this algorithm terminates and show the existence of a
w-b-EDCS, we introduce the following potential function:

Φ(H) = (2β − 2)
∑

(u,v,wuv)∈H

w2
uv −

∑
u∈V

(wdegH(u))2

bu
.

Observe that because of Proposition 17, the value of Φ(H) is bounded by 2βW 2 · 2β · |MG|.
We can also show that after each local improvement, the value of Φ(H) increases by at
least 3/2 (see full version for details). Hence the algorithm terminates in O(β2W 2 · |MG|)
steps. ◀

The main interest of these w-b-EDCSes is that they contain an (almost) 2− 1
2W approx-

imation, as in the case of w-EDCSes in simple graphs (Theorem 14).
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▶ Theorem 4. Let 0 < ε < 1/2 and let W be an integer parameter. Set λ = ε
100W . Let

β ≥ β− + 2 be integers such that β+6W
log(β+6W ) ≥ 2W 2λ−2 and β− − 6W ≥ (1− λ) · (β + 6W ).

Then any (β, β−)-w-b-EDCS H of a weighted multi-graph G with integer edge weights bounded
by W contains a b-matching MH such that

(
2− 1

2W + ε
)
· w(MH) ≥ w(MG).

Proof. Consider a maximum weight b-matching MG. We will build from H and MG two
simple graphs G′ = (V ′, E′) and H ′ = (V ′, E′

H). The set of vertices V ′ contains, for each
vertex v ∈ V , bv vertices v1, . . . , vbv

, so that V ′ contains
∑

v∈V bv vertices in total. To
construct E′, for each v ∈ V , we will distribute the edges of δ(v) ∩ (H ∪MG) among the bv

vertices v1, . . . , vbv
in such a way so that the following three properties hold:

(i) each vi has a most one edge of MG incident to it;
(ii) G′ is a simple graph;
(iii) each vi has a weighted degree in the interval

[
wdegH (v)

bv
− 2W, wdegH (v)

bv
+ 3W

]
.

The existence of such a distribution is achieved by a greedy procedure (see the full version
of this paper for a proof of this fact). For Property (ii), it is crucial that the graph G has
at most min(bu, bv) edges between any vertices u and v. This property is important in the
proof of Theorem 14 (where negative association is used). Then, for H ′, we just consider
the restriction of G′ to the edges corresponding to H (ignoring those from MG\H in the
preceding construction).

Observe that MG corresponds a simple matching in G′, and that any simple matching in
H ′ corresponds to a b-matching in H . Next we show that H ′ is a (β + 6W, β− − 6W )-EDCS
for simple graph G′. Consider an edge (ui, vj) ∈ H ′. It corresponds to an edge (u, v, wuv) of
H so wdegH′(ui) + wdegH′(vj) ≤ wdegH (u)

bu
+ wdegH (v)

bv
+ 6W ≤ (β + 6W ) ·wuv, so Property

(i) of Definition 7 holds. Consider next an edge (ui, vj) ∈ G′\H ′. It corresponds to an edge
(u, v, wuv) of MG\H , so wdegH′(ui)+wdegH′(vj) ≥ wdegH (u)

bu
+ degH (v)

bv
−6W ≥ (β−−6W ) ·

wuv (as there can be a difference of at most W between the weighted degree of u in G′ and in
H ′). Thus Property (ii) of Definition 7 holds as well. To conclude, H ′ is a (β +6W, β−−6W )-
w-EDCS of G′, so by Theorem 14 we have that (2− 1

2W + ε) · w(MH′) ≥ w(MG′) = w(MG).
As w(MH) ≥ w(MH′) (because any matching in H ′ corresponds to a b-matching of the same
weight in H), completing the proof. ◀

4 Application to b-Matchings in Random-Order Streams

In this section we consider the random-order semi-streaming model and we show how our
results in the preceding section can be adapted to get a 2− 1

2W + ε approximation.
As our algorithm builds on that of Bernstein [3] for the unweighted simple matching,

let us briefly summarize his approach. In the first phase of the streaming, he constructs a
subgraph that satisfies only a weaker definition of EDCS in Definition 1 (only Property (i)
holds). In the second phase of the streaming, he collects the “underfull” edges, which are
those edges that violate Property (ii). He shows that in the end, the union of the subgraph
built in the first phrase and the underfull edges collected in the second phase, with high
probability, contains a 3/2 + ε approximation and that the total memory used is in the
order of O(n · log n). As we will show below, this approach can be adapted to our context
of edge-weighted b-matching. Our main technical challenge lies in the fact that unlike the
simple matching, the size of MG can vary a lot. We need a “guessing” strategy to ensure
that the required memory is proportional to |MG|.

▶ Definition 19. We say that a graph H has bounded weighted edge-degree β if for every
edge (u, v, wuv) ∈ H, wdegH (u)

bu
+ wdegH (v)

bv
≤ β · wuv.
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▶ Definition 20. Let G be a edge-weighted multi-graph, and let H be a subgraph of G with
bounded weighted edge-degree β. For any parameter β−, we say that an edge (u, v, wuv) ∈ G\H
is (H, β, β−)-underfull if wdegH (u)

bu
+ wdegH (v)

bv
< β− · wuv.

▶ Lemma 21. Let 0 < ε < 1/2 be any parameter and W be an integer parameter. Set
λ = ε

100W . Suppose that β− and β ≥ β− + 2 are integers so that β+8W
log(β+8W ) ≥ 2W 2λ−2 and

β− − 6W ≥ (1− λ) · (β + 8W ). Given an edge-weighted multi-graph G with integer weights
in 1, . . . , W , and a subgraph H with bounded weighted edge-degree β, if X contains all edges
in G\H that are (H, β, β−)-underfull, then (2− 1

2W + ε) · w(MH∪X) ≥ w(MG).

Proof. First, observe that H∪X is not necessarily a w-b-EDCS of G. Thereby we use another
argument from [3]. Let MG be a maximum weight b-matching in G, let MH

G = MG ∩H and
M

G\H
G = MG∩(G\H). Let XM = X∩M

G\H
G . We can observe that w(MG) = w(M

H∪M
G\H

G

).

Then we can show that H ∪XM is a (β + 2W, β−)-w-b-EDCS of H ∪M
G\H
G (see the full

version of this paper). As a result, Theorem 4 can be applied in this case and we get that(
2− 1

2W + ε
)
· w (MH∪XM ) ≥ w

(
M

H∪M
G\H

G

)
= w(MG), thus concluding the proof. ◀

▶ Remark 22. One can easily notice that there exist integers β and β− that are O(poly(W, 1/ε))
satisfying the conditions of Lemma 21. From now on, we will use the parameters λ, β, and
β− satisfying the conditions of Lemma 21 and they are of values O(poly(W, 1/ε)).

Algorithm 1 Main algorithm computing a weighted b-matching for a random-order stream.

1: H ← ∅
2: ∀ 0 ≤ i ≤ log2 m, αi ←

⌊
ε·m

log2(m)·(2i+2β2W 2+1)

⌋
3: for i = 0 . . . log2 m do
4: ProcessStopped← False
5: for 2i+2β2W 2 + 1 iterations do
6: FoundUnderfull← False
7: for αi iterations do
8: let (u, v, wuv) be the next edge in the stream
9: if wdegH (u)

bu
+ wdegH (v)

bv
< β− · wuv then

10: add edge (u, v, wuv) to H

11: FoundUnderfull← True
12: while there exists (u′, v′, wu′v′) ∈ H : wdegH (u′)

bu′
+ wdegH (v′)

bv′
> β ·wu′v′ do

13: remove (u′, v′, wu′v′) from H

14: if FoundUnderfull = False then
15: ProcessStopped← True
16: break from the loop
17: if ProcessStopped = True then
18: break from the loop
19: X ← ∅
20: for each (u, v, wuv) remaining edge in the stream do
21: if wdegH (u)

bu
+ wdegH (v)

bv
< β− · wuv then

22: add edge (u, v, wuv) to X

23: return the maximum weight b-matching in H ∪X

The algorithm, formally described in Algorithm 1, consists of two phases. The first phase,
corresponding to Lines 3-18, constructs a subgraph H of bounded weighted edge-degree β

using only a ε fraction of the stream Eearly. In the second phase, the algorithm collects the
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underfull edges in the remaining part of the stream Elate. As in [3] we use the idea that if no
underfull edge was found in an interval of size α (see Lines 6-13), with high probability the
number of underfull edges remaining in the stream is bounded by some value γ = 4 log(m) m

α .
The issue is therefore to choose the right size of interval α, because we do not know the order
of magnitude of |MG| in the b-matching problem: if we do as in [3] by choosing only one
fixed size of intervals α, then if α is too small, the value of γ will be too big compared to
|MG|, whereas if the value of α is too large we will not be able to terminate the first phase
of the algorithm within the early fraction of size εm. Therefore, the idea in the first phase of
the algorithm is to “guess” the value of log2 |MG| by trying successively larger and larger
values of i (see Line 3). In fact, by setting i0 = ⌈log2 |MG|⌉, we know that the number of
operations that can be performed on a w-b-EDCS is bounded by 2i0+2β2W 2 (see the proof
of Proposition 18). As a result we know that the first phase should always stop at a time
where i is smaller than or equal to i0, and therefore at a time when αi ≥ αi0 . Then we can
prove that with high probability the number of remaining underfull edges in the stream is at
most γi = 4 log(m) m

αi
.

Algorithm 1 works when MG is neither too small nor too big. Here we will first argue
that the other border cases can be handled anyway. We first have this easy lemma (its proof
is very similar to that of Proposition 17, see the full version of this paper).

▶ Lemma 23. We have the inequality |G| ≤ 2n · |MG|.

Then we use it to handle the case of small b-matchings.

▷ Claim 24. We can assume that w(MG) ≥ 3W 2

2ε2 log(m).

Proof. In fact, if w(MG) < 3W 2

2ε2 log(m), then |MG| < 3W 2

2ε2 log(m) and by Lemma 23 the
graph has only m = O(n · 3W 2

2ε2 · log(m)) edges, so the whole graph can be stored only using
O(n · poly(log(m), W, 1/ε)) memory, implying that we can compute an exact solution. ◁

▷ Claim 25. Assuming Claim 24, with probability at least 1 −m−3 the late part of the
steam Elate contains at least a (1− 2ε) fraction of the optimal b-matching.

Proof. Consider a maximum weight b-matching MG = {f1, . . . , f|MG|}. We define the
random variables Xi = 1fi∈Eearly · w(fi). Hence we have E[

∑
Xi] = ε · w(MG). Moreover,

the random variables Xi are negatively associated, so we can use Hoeffding’s inequality to
get P

[∑|MG|
i=1 Xi ≥ 2ε · w(MG)

]
≤ exp

(
− 2·ε2·w(MG)2

|MG|·W 2

)
≤ exp

(
− 2·ε2·w(MG)

W 2

)
≤ m−3, as we

now assume that w(MG) ≥ 3W 2

2ε2 log(m) (see Claim 24). ◁

Recall that we defined i0 = ⌈log2 |MG|⌉.

▷ Claim 26. We can assume that ε·m
log2(m)·(2i0+2β2W 2+1) ≥ 1.

Proof. If this is not the case, then we can just store all the edges of G as the number
of edges m is bounded by log2(m)·(2i0+2β2W 2+1)

ε = O(|MG| · poly(log(m), W, 1/ε)) (as β is
O(poly(W, 1/ε)), see Remark 22). As a result, if at some point of the first phase we have
not stopped and we have αi = 0, then we store all the remaining edges of Elate and we will
be able to get a (1− 2ε) approximation with high probability (because of Claim 25) using
O(|MG| · poly(log(m), W, 1/ε)) memory. ◁

Then we can move on to our main algorithm. The following lemma is very similar to the
one used in [3] (see the proof in the full version of this paper). It can then be combined with
previous lemmas and claims to prove that a 2− 1

2W + ε approximation can be achieved with
high probability.
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▶ Lemma 27. The first phase of Algorithm 1 uses O(β · |MG|) memory and constructs a
subgraph H of G, satisfying the following properties:
1. The first phase terminates within the first εm edges of the stream.
2. When the first phase terminates after processing some edge, we have:

a. H has bounded weighted edge degree β, and contains at most O(β · |MG|) edges.
b. With probability at least 1−m−3, the total number of (H, β, β−)-underfull edges in the

remaining part of the stream is at most γ = O(|MG| · (log(m))2 · β2W 2 · 1/ε).

▶ Theorem 28. Let ε > 0. Using Algorithm 1, with probability 1− 2m−3, one can extract
from a randomly-ordered stream of edges a weighted b-matching with an approximation ratio
of 2− 1

2W + ε, using O(max(|MG|, n) · poly(log(m), W, 1/ε)) memory.

Proof. Applying Lemma 21 to the graph H ∪Glate we can get, choosing the right values β

and β− (which are O(poly(W, 1/ε))), H∪X contains a (1−2ε)−1 ·(2− 1
2W +ε) approximation

of the optimal b-matching (with probability at least 1 −m−3, see Claim 25), and with a
memory consumption of O(|MG| · poly(log(m), W, 1/ε)) (with probability at least 1−m−3,
see Lemma 27), with probability at least 1− 2m−3 (union bound). Hence the proof. ◀
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1 Introduction

1.1 Background: phylogenetic trees and networks

Phylogenetic trees and networks are graphs used to represent evolutionary relationships. In
particular, a rooted phylogenetic network is a directed acyclic graph with distinctly labelled
leaves, a unique root and no indegree-1 outdegree-1 vertices. The labels of the leaves can, for
example, represent a collection of studied biological species, and the network then describes
how they evolved from a common ancestor (the root). Here, we will only consider rooted
binary phylogenetic networks, which we will call networks for short. Vertices with indegree 2
in such a network are called reticulations and represent events where lineages combine,
for example the emergence of new hybrid species. A network without reticulations is a
phylogenetic tree.
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Figure 1 Left: a phylogenetic tree T . Middle: a phylogenetic network N displaying T (solid
lines indicate an embedding of T ; black nodes indicate reticulations). Right: the display graph
D(N, T ) of N and T (see Section 1.5) with the network part drawn on top and the tree part drawn
on the bottom. Note that vertices of the display graph are not labelled. In the figure, the leaves
(square vertices) are ordered in the same way as in N .

1.2 The Tree Containment problem
The evolutionary history of a small unit of hereditary information (for example a gene, a
fraction of a gene or (in linguistics) a word) can often be described by a phylogenetic tree.
This is because at each reticulation, each unit is inherited from only one parent. Hence, if
we trace back the evolutionary history of such a hereditary unit in the network, we see that
its phylogenetic tree can be embedded in the network. This raises the fundamental question:
given a phylogenetic network and a phylogenetic tree, can the tree be embedded into the
network? This is called the Tree Containment problem (see Figure 1). To formalize this
problem, we say that a network N displays a tree T if some subgraph of N is a subdivision
of T .

Input: phylogenetic network Nin and tree Tin, both on the same set of leaf labels
Question: Does Nin display Tin?

Tree Containment (TC)

1.2.1 Motivation
Apart from being a natural and perhaps one of the most fundamental questions regarding
phylogenetic networks, the Tree Containment problem has direct applications in phylo-
genetics. The main application is the validation of phylogenetic network inference methods.
After constructing a network, one may want to verify whether it is consistent with the
phylogenetic trees. For example, if a heuristic method is used to generate a network for a
genomic data set, and tree inference methods are used to generate trees for each gene, then
the quality of the produced network can be assessed by computing the fraction of the gene
trees that can be embedded into it. In addition, one may want to find the actual embeddings
for visualisation purposes and/or to assess the importance of each network arc.

However, our main motivation for studying Tree Containment is that it is a first step
towards the wider application of treewidth based approaches in phylogenetics (see Sections 1.4
and 1.5). The techniques we develop are not exclusively designed for Tree Containment
but intended to be useful also for other problems such as Network Containment [31] and
Hybridization Number [8, 41, 42, 43]. The former is the natural generalization of Tree
Containment in which we have two networks as input and want to decide whether one can
be embedded into the other. It can, in particular, be used to decide whether two networks
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are isomorphic. In the latter problem, Hybridization Number, the input consists of a set
of phylogenetic trees, and the aim is to construct a network with at most k reticulations that
embeds each of the input trees. Although this will certainly be non-trivial, we expect that at
least part of the approach we introduce here can be applied to those and other problems in
phylogenetics.

1.3 Previous work
Tree Containment was shown to be NP-hard [32], even for tree-sibling, time-consistent,
regular networks [29]. On the positive side, polynomial-time algorithms were found for other
restricted classes, including tree-child networks [17, 18, 22, 24, 29, 44]. The first non-trivial
FPT algorithm for Tree Containment on general networks had running time O(2k/2n2),
where the parameter k is the number of reticulations in the network [32]. Another algorithm
was proposed by [23] with the same parameter, but it is only shown to be FPT for a
restricted class of networks. Since the problem can be split into independent subproblems
at non-leaf cut-edges [29], the parameterization can be improved to the largest number of
reticulations in any biconnected component (block), also called the level of the network.
Further improving the parameterization, the maximum number t∗ of “unstable component-
roots” per biconnected component was considered and an algorithm (working also in the
non-binary case) was found with running time O(3t∗ |N ||T |) [44]. Herein, a parameterization
“improves” over another if the first is provably smaller than (a function of) the second in any
input network.

Several generalizations and variants of the Tree Containment problem have been
studied. The more general Network Containment problem asks to embed a network
in another and has been shown to be solvable in polynomial time on a restricted network
class [31]. When allowing multifurcations and non-binary reticulations, two variants of
Tree Containment have been considered: In the firm version, each non-binary node
(“polytomy”) of the tree has to be embedded in a polytomy of the network whereas, in the
soft version, polytomies may be “resolved” into binary subtrees in any way [2]. Finally, the
unrooted version of Tree Containment was also shown to be NP-hard but fixed-parameter
tractable when the parameter is the reticulation number (the number of edges that need
to be deleted from the network to obtain a tree) [28]. While this version of the problem is
also known to be fixed-parameter tractable with respect to the treewidth of the network [30],
the work does not explicitly describe an algorithm and the implied running time depends on
Courcelle’s theorem [10] which makes practical implementation virtually impossible.

Since the notion of “display” closely resembles that of “topological minor” (with the
added constraint that the embedding must respect leaf-labels), Tree Containment can
be understood as a special case of a variant of the well-known Topological Minor
Containment (TMC) problem for directed graphs. TMC is known to be NP-complete
in general by reduction from Hamiltonian Cycle and previous algorithmic results focus
on the undirected variant, parameterized by the size h of the sought topological minor H

(corresponding to the input tree for Tree Containment). In particular, undirected TMC can
be solved in f(h)nO(1) time [21, 15]. In the directed case, even the definition of “topological
minor” has been contested [19] and we are aware of little to no algorithmic results. In Tree
Containment, part of the embedding of the host tree in the guest network is fixed by the
leaf-labeling. If the node-mapping is fixed for all nodes of the host, then directed TMC
generalizes the Disjoint Paths problem [16], which is NP-complete for 2 paths or in case
the host network is acyclic. Indeed, one can show Tree Containment to be NP-hard in a
similar fashion [32].

ESA 2022
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1.4 Treewidth
From the overview presented in Section 1.3, we see that the parameters that are most heavily
used are the reticulation number and the level. This is true not only for Tree Containment
but more generally in the phylogenetic networks literature. Although these parameters are
natural, their downside is that they are not necessarily much smaller than the input size.
This is why we study a different parameter here.

The treewidth of a graph measures its tree-likeness (see definition below), similarly to
the reticulation number and level. In that sense, it is also a natural parameter to consider
in phylogenetics, where networks are often expected to be reasonably tree-like. A major
advantage of treewidth is that it is expected to be much smaller than the reticulation number
and level. In particular, there exist classes of networks for which the treewidth is at most
a constant factor times the square-root of the level (see [33] for an example). Moreover,
a broad range of advanced techniques have been developed for designing FPT algorithms
for graph problems when the parameter is the treewidth [4, 12, 6, 13]. For these reasons,
the treewidth has recently been studied for phylogenetics problems [30, 34, 33, 38] and
related width parameters have been proposed [3]. However, using treewidth as parameter for
phylogenetic problems poses major challenges and, therefore, there are still few algorithms in
phylogenetics that use treewidth as parameter (see Section 1.5).

It will be convenient to define a tree decomposition of a graph G = (V, E) as a rooted
tree, where each vertex of the tree is called a bag and is assigned a partition (P, S, F ) of V ,
where S is a separator between P and F . We will refer to S as the present of the bag. The
set P is equal to the union of the presents of all descendant bags (minus the elements of S)
and we refer to it as the past of the bag. The set F = V \ (S ∪ P ) is referred to as the future
of the bag. For each edge of the graph, there is at least one bag for which both endpoints
of the edge are in the present of the bag. Finally, for each v ∈ V , the bags that have v in
the present form a non-empty connected subtree of the tree decomposition. The width of a
tree decomposition is one less than the maximum size of any bag’s present and the treewidth
tw(G) of a graph G is the minimum width of any tree decomposition of G. The treewidth of
a phylogenetic network or other directed graph is the treewidth of the underlying undirected
graph.

Our dynamic programming works with nice tree decompositions, in which the root is
assigned (V,∅,∅) and each bag assigned (P, S, F ) has exactly one of four types: Leaf bags
have P = S = ∅ (hence F = V ) and have no child, Introduce bags have a single child
assigned (P, S \ {z}, F ∪ {z}) for some z ∈ S, Forget bags have a single child assigned
(P \ {z}, S ∪ {z}, F ) for some z ∈ P , and Join bags have two children assigned (L, S, F ∪ R)
and (R, S, F ∪L) respectively, where (L, R) is a partition of P . When the treewidth is bounded
by a constant, [5] showed that a minimum-width tree decomposition can be found in linear
time and [36] showed that a nice tree decomposition of the same width can be obtained in
linear time. Regarding approximation, it is known that, for all graphs G, tree decompositions
of width O(tw(G)) can be computed in time single-exponential in tw(G) [11, 7, 37] and tree
decompositions of width O(tw(G)

√
log tw(G)) can be computed in polynomial time [14].

1.5 Challenges
One of the main challenges of using treewidth as parameter in phylogenetics is that the
central goal in this field is to infer phylogenetic networks and, thus, the network is not
known a priori so a tree decomposition cannot be constructed easily. A possible strategy to
overcome this problem is to work with the display graph (see Figure 1). Consider a problem
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taking as input a set of trees, such as Hybridization Number. Then, the display graph of
the trees is obtained by taking all trees and identifying leaves with the same label. Now we
have a graph in the input and hence we can compute a tree decomposition. Moreover, in
some cases, there is a strong relation between the treewidth of the display graph and the
treewidth of an optimal network [20, 33, 30].

A few instances of exploiting (tree decompositions of) the display graph of input networks
for algorithm design have been published. Famously, Bryant and Lagergren [9] designed
MSOL formulations solving the Tree Consistency problem on display graphs, which have
been improved1 by a concrete dynamic programming on a given tree decomposition of the
display graph [1]. Kelk et al. [34] also developed MSOL formulations on display graphs for
multiple incongruence measures on trees, based on so-called “agreement forests”. For the
Tree Containment problem, MSOL formulations acting on the display graph have been
used to prove fixed-parameter tractability with respect to the treewidth [30]. Analogously to
the work of Baste et al. [1] for Tree Consistency, we develop in this manuscript a concrete
dynamic programming algorithm for Tree Containment acting on display graphs.

Tree Containment is conceptually similar to Hybridization Number in the sense
that the main challenge is to decide which tree vertices correspond to which vertices of the
other trees (for Hybridization Number) or network vertices (for Tree Containment).
However, Hybridization Number is even more challenging since the network may contain
vertices that do not correspond to any input vertex [41]. Therefore, Tree Containment is a
natural first problem to develop techniques for, aiming at extending them to Hybridization
Number and other problems in phylogenetics in the long run.

That being said, solving Tree Containment parameterized by treewidth poses major
challenges itself. Even though the general idea of dynamic programming on a tree decompos-
ition is clear, its concrete use for Tree Containment is severely complicated by the fact
that the tree decomposition does not know the correspondence between tree vertices and
network vertices. For example, when considering a certain bag of the tree decomposition,
a tree vertex that is in the present of that bag may have to be embedded into a network
vertex that is in the past or in the future. It may also be necessary to map vertices from the
future of the tree to the past of the network and vice versa. Therefore, it will not be possible
to “forget the past” and “not worry about the future”. In particular, this makes it much
more challenging to bound the number of possible assignments for a given bag. We will do
this by bounding the number of “time-travelling” vertices by a function of the treewidth. We
will describe these challenges in more detail in Section 2.2.

1.6 Our contribution

In this paper, we present an FPT-algorithm for Tree Containment parameterized by
the treewidth of the input network. Our algorithm is one of the first (constructive) FPT-
algorithms for a problem in phylogenetics parameterized by treewidth. We believe that this
is an important development as the treewidth can be much smaller than other parameters
such as reticulation number and level which are easier to work with. We see this algorithm as
an important step towards the wide application of treewidth-based methods in phylogenetics.

1 Commonly, MSOL formulations are used to classify problems as FPT but are considered impractical
since the resulting running times are dominated by a tower of exponentials of size bounded in the
treewidth.

ESA 2022
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2 Preliminaries

2.1 Reformulating the problem
A key concept throughout this paper will be display graphs [9], which are the graphs formed
from the union of a phylogenetic tree and a phylogenetic network by identifying leaves with
the same labels. Throughout this paper we will let Nin and Tin denote the respective input
network and tree in our instance of Tree Containment. The main object of study will be
the “display graph” of Nin and Tin. For the purposes of our dynamic programming algorithm,
we will often consider graphs that are not exactly this display graph, but may be thought of
as roughly corresponding to subgraphs of it (though they are not exactly subgraphs; see [40,
Appendix A.1]). In order to incorporate such graphs as well, we will define display graphs in
a slightly more general way than that usually found in the literature. In particular, we allow
for the two “sides” of a display graph to be disconnected, and for some leaves to belong to
one side but not the other.

▶ Definition 1 (display graph). A display graph is a directed acyclic graph D = (V, A), with
specified subsets VT , VN ⊆ V such that VT ∪ VN = V , satisfying the following properties:

The graph T := D[VT ] is an out-forest;
Every vertex has in- and out-degree at most 2 and total degree at most 3;
Any vertex in VN ∩VT has out-degree 0 and in-degree at most 1 in both T and N := D[VN ].

Herein, we call T the tree side and N the network side of D and we will use the term D(N, T )
to denote a display graph with network side N and tree side T .

Given a phylogenetic network Nin and phylogenetic tree Tin with the same leaf-label set,
we define Din(Nin, Tin) to be the display graph formed by taking the disjoint union of Nin
and Tin and identifying pairs of leaves that have the same label. We note that, while the
leaves of Nin and Tin were originally labelled, this labelling does not appear in Din(Nin, Tin).
Labels were used to construct Din(Nin, Tin), but in the rest of the paper we will not need to
consider them. Indeed, such labels are relevant to the Tree Containment problem only
insofar as they establish a relation between the leaves of Tin and Nin, and this relation is
now captured by the structure of Din(Nin, Tin).

We now reformulate the Tree Containment problem in terms of an embedding function
on a display graph. Unlike the standard definition of an embedding function (see, e.g., [29]),
which is defined for a phylogenetic network N and tree T , our definition of an embedding
function applies directly to the display graph D(N, T ). Because of our more general definition
of display graphs, our definition of an embedding function will also be more general than that
found in the literature. The key idea of an embedding function remains the same, however:
it shows how a subdivision of T may be viewed as a subgraph of N .

▶ Definition 2 (embedding function). Let D be a display graph with network side N and tree
side T , and let P(N) denote the set of all directed paths in N . An embedding function on D

is a function ϕ : V (T ) ∪ A(T ) → V (N) ∪ P(N) such that:
(a) for each u ∈ V (T ), ϕ(u) ∈ V (N) and, for each arc uv ∈ A(T ), ϕ(uv) is a directed

ϕ(u)-ϕ(v)-path in N ;
(b) for any distinct u, v ∈ V (T ), ϕ(u) ̸= ϕ(v);
(c) for any u ∈ V (T ) ∩ V (N), ϕ(u) = u;
(d) the paths {ϕ(uv) | uv ∈ A(T )} are arc-disjoint;
(e) for any distinct p, q ∈ A(T ), ϕ(p) and ϕ(q) share a vertex z only if p and q share a vertex

w with z = ϕ(w);
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Note that the standard definition of an embedding of a phylogenetic tree T into a phylogenetic
network N (see e.g. [29]) coincides with the definition of an embedding function on D(N, T ).
Property (e) ensures that, while the embeddings of arcs uv, vw1, vw2 can all meet at ϕ(v),
the embeddings of different tree arcs cannot otherwise meet. (In particular, the path ϕ(uv)
cannot end at a reticulation that is also an internal vertex of ϕ(u′v′), something that is
otherwise allowed by properties (a)–(d).)

▶ Lemma 3. A phylogenetic network N displays a phylogenetic tree T if and only if there is
an embedding function on D(N, T ).

In light of Lemma 3, we may henceforth view Tree Containment as the following problem:

Input: phylogenetic network Nin and phylogenetic tree Tin with the same leaf-label set
Task: Find an embedding function on Din(Nin, Tin).

Tree Containment (TC)

2.2 Overview of our approach
We study Tree Containment parameterized by the treewidth of the input network Nin. A
key tool will be the following theorem.

▶ Theorem 4 ([30]). Let N and T be an unrooted binary phylogenetic network and tree,
respectively, with the same leaf-label set. If N displays T then tw(D(N, T )) ≤ 2tw(N) + 1.

By Theorem 4, we suppose that the display graph Din(Nin, Tin) has treewidth at most 2k + 1,
where k is the treewidth of the underlying undirected graph N of Nin as, otherwise, N does
not display the unrooted version T of Tin, implying that Nin does not display Tin.

As is often the case for treewidth parameterizations, we will proceed via a dynamic
programming on a tree decomposition, in this case a tree decomposition of Din(Nin, Tin).
Recall that we view a bag (P, S, F ) in the tree decomposition as partitioning the vertices
of Din(Nin, Tin) into past, present and future. A typical dynamic programming approach
is to store, for each bag, some set of information about the present, while forgetting most
information about the past, and not yet caring about what happens in the future. The
resulting information is stored in a “signature”, and the algorithm works by calculating which
signatures are possible on each bag, in a bottom-up manner. This approach is complicated by
the fact that the sought-for embedding of Tin into Nin may not map the past/present/future
of Tin into the past/present/future (respectively) of Nin. Vertices from the past of Tin may
be embedded in the future of Nin, or vice versa. Thus, we have to store more information
than we might at first think. In particular, it is not enough to store information about which
present vertices of Tin are embedded in which present vertices of Nin (indeed, depending
on the bag, it may be that none of them are). As such, our notion of a “signature” has
to track how vertices from the past of Tin are embedded in the present and future of Nin,
and which vertices from the past of Nin contain vertices from the present or future of Tin.
Vertices of the past which are mapped to vertices of the past, on the other hand, can mostly
be forgotten about.

2.3 An informal guide to (compact) signatures
Roughly speaking, a signature σ for a bag (P, S, F ) in the tree decomposition of Din(Nin, Tin)
consists of the following items (see Figure 3 for an example):
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F

P

Nin

Tin

future

future

past

Figure 2 Left: An example of a display graph Din(Nin, Tin) for which Nin displays Tin as witnessed
by the embedding function ϕ that is indicated by bold edges. Highlighting with dashed border
represents the sets P and F , for some bag (P, S, F ) in a tree decomposition of Din(Nin, Tin). Right:
A representation of the (compact) signature for (P, S, F ) derived from this solution. Vertices labelled
past or future are highlighted in gray without border.

1. a display graph D(N, T ), some of whose vertices correspond (isomorphically) to S ⊆
V (Din(Nin, Tin)), and the rest of which are labeled past or future (which we may think
of as vertices corresponding to some vertex of Din(Nin, Tin) in P or F , respectively). We
use a function ι on V (D(N, T )) to capture both this correspondence and labelling, where ι

maps each vertex to an element of S or a label from {past, future}.
2. an embedding ϕ of T in N such that, for no arc uv, all of V (ϕ(uv)) ∪ {u, v} have the

same label y ∈ {past, future} under ι.
Signatures may be seen as “partial embedding functions” on parts of Din(Nin, Tin) in a
straightforward way. In particular, we call σ valid for (P, S, F ) if, roughly speaking, ϕ corres-
ponds (via ι) to something that can be extended to an embedding function on the subgraph
of Din(Nin, Tin) induced by the vertices P ∪ S introduced below (P, S, F ). In our dynamic
programming algorithm, we build valid signatures for a bag x from valid signatures of the
child bag(s) of x (in particular, validity for x is implied by validity for the child bag(s)).

Since iterating over all signatures for a bag (P, S, F ) (in order to check their validity)
exceeds FPT time, we will instead consider “compact” signatures, whose number and size
are bounded in the width |S| of the bag (P, S, F ). If Din(Nin, Tin) admits an embedding
function ϕ∗, then a compact signature corresponding to this embedding function exists. In
the following, we informally describe the compaction process for this hypothetical solution ϕ∗,
thus giving a rough idea of the definition of a “compact” signature. At all times, the
(tentative) signature will contain a display graph D(N, T ) (initially D(N, T ) = Din(Nin, Tin)),
and an embedding function of T into N (initially ϕ∗). For a more complete description of
our approach, see Appendix A in [40], for the proofs and remaining details, see Appendix B,
and for an illustration, see Figure 2.

Step 1 After initiallization with ϕ∗, we assign a label future to all vertices of F , and a
label past to all vertices in P (Observe that no vertex labeled past will be adjacent
to a vertex labeled future, since S separates P from F in Din(Nin, Tin)). Then, we
“forget” which vertices of Din(Nin, Tin) the vertices labelled past or future correspond
to. Our preliminary signature now contains (1) a display graph D(N, T ) whose vertices
are either labelled future or past or correspond (isomorphically) to vertices in S ⊆
V (Din(Nin, Tin)) (we refer the reader to [40, Appendix A.1] for a more formal description),
as well as (2) an embedding function for D(N, T ) into N .
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Nin

Tin

N

T

ι

ϕ

past

past

future

Figure 3 Example of a signature of a bag (P, S, F ). The S-part of D(Nin, Tin) is solid while the
non-S part is faded. The embedding ϕ (right, indicated with gray edge-highlight) maps T into N .
The dotted arcs labelled ι show the isomorphism between part of D(N, T ) and S ⊆ V (D(Nin, Tin)).
Note that the part of D(N, T ) that is not mapped to S is not necessarily isomorphic to anything in
D(Nin, Tin).

Step 2 We now simplify the structure of the preliminary signature. The main idea is that,
if a is an arc of T with both endpoints labelled past and all vertices in the path ϕ(a)
are also labelled past, then we can safely forget a and all the arcs in ϕ(a). Intuitively,
the information that a will be embedded in ϕ(a) does not have any effect on the possible
solutions one could construct on the part of Din(Nin, Tin) that is “above” the bag (P, S, F ).
Similarly, we can forget any arc a of T whose endpoints, as well as every vertex in ϕ(a),
are assigned the label future. Intuitively, this is because this information should have
no bearing on whether a solution exists with this signature for Din(Nin, Tin) restricted to
P ∪ S. In a similar way, we forget any vertex u ∈ V (T ) and its embedding ϕ(u) if they
are assigned the same label, provided that all their incident arcs can also be forgotten.
We will call the vertices and arcs fulfilling these conditions “redundant” and we remove
them from our tentative signature. We can also safely delete the vertices and arcs of N

that are labelled y ∈ {past, future} but are not part of the image of ϕ. As a result, we
now have that for any remaining vertex u ∈ T , either one of {u, ϕ(u)} is labelled past
and the other labelled future, or some vertex element of S must appear either one of
{u, ϕ(u)}, a neighbor of u, or a vertex in the path ϕ(a) for an incident arc a of u. Thus,
we have “forgotten” all the aspects of the embedding except those that involve vertices
from the present in some way, or those where the embedding “time-travels” between the
past and future (see [40, Appendix A.3] for a more formal description of this process).

Step 3 Finally, we may end up with long paths of vertices with in-degree and out-degree 1
that are labelled past or future in N (for example, if u and v are labelled past, then
ϕ(uv) may be a long path in N with all vertices labelled future). Such long paths do not
contain any useful information to us, we therefore compress these by suppressing vertices
with in-degree and out-degree 1 (This gives the compact signature, see [40, Appendix A.8]).
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2.4 Bounding the number of signatures
We now outline the main arguments for why the number of possible (compact) signatures
for a given bag (P, S, F ) can be bounded in |S|. Such a bound on the number of signatures
ensures that the running time of the algorithm is FPT, because the number of calculations
required for each bag is bounded by a function of the treewidth.

The main challenge is to bound the size of the display graph D(N, T ) in a given signature
for (P, S, F ). Once such a bound is achieved, this immediately implies upper bounds (albeit
quite large) for the number of possible display graphs and the number of possible embeddings,
and hence on the number of possible signatures. We will focus here on bounding the size of
the tree part T . Once a bound is found for |T | it is relatively straightforward to use that to
give a bound on |N | (because the arcs of N that are not used by the embedding of T into N

are automatically deleted, unless they are themselves incident to a vertex in S, and because
isolated vertices are deleted and long paths suppressed).

It can be seen that a vertex u ∈ V (T ) is redundant (and so would be deleted from the
signature) unless one of the following properties holds:
(1) u ∈ S,
(2) ϕ(u) ∈ S,
(3) u is incident to an element of S

(4) for some arc a incident to u, the path ϕ(a) contains a vertex from S or
(5) u and ϕ(u) have different labels from {past, future}.
Essentially if none of (1)–(4) holds, then all the vertices mentioned in those properties have
the same label as either u or ϕ(u), using the fact that S separates the vertices labelled past
from the vertices labelled future. If u and ϕ(u) have the same label, then all these vertices
have the same label, which is enough to show that u is redundant. It remains to bound
the number of vertices satisfying one of these properties. For the first four properties, it is
straightforward to find a bound in terms of |S|. The vertices satisfying the final property
are “time-travelling” (in the sense that either u is labelled past and ϕ(u) future, or u is
labelled future and ϕ(u) past). Because of the bounds on the other types of vertices, it is
sufficient to provide a bound on the number of lowest time-travelling vertices in T .

To see the intuition why this bound should hold: consider some full solution on the
original input, i.e. an embedding function on Din(Nin, Tin), and suppose u ∈ V (Tin) is a
lowest tree vertex for which u ∈ P, ϕ(u) ∈ F (thus in the corresponding signature, u has
label past and ϕ(u) has label future). Let x ∈ V (Nin) ∩ V (Tin) be some leaf descendant of
u. Then there is path in Tin from u to x, and a path in Nin from ϕ(u) to ϕ(x) = x. Thus
Din(Nin, Tin) has an (undirected) path from u to ϕ(u). As this is a path between a vertex in
P and a vertex in F , some vertex on this path must be in S (since S separates P from F ).
Such a path must exist for every lowest time-travelling vertex u, and these paths are distinct.
The existence of these paths can then be used to bound the number of lowest time-travelling
vertices.

3 Algorithm and running time

The final algorithm first computes (or constant-factor approximates) the treewidth of the
display graph Din(Nin, Tin) and concludes non-containment if this computation already
implies tw(Din(Nin, Tin)) > 2tw(Nin) + 1. Otherwise, we proceed with a bottom-up dynamic
programming on a nice low-width tree-decomposition, which computes for each bag x =
(P, S, F ) a set CVx of “compact-valid signatures” for x (see Section 2.3 for a rough definition).
We use “compact-restrictions” to convert a compact signature of one bag into a compact
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signature for a different bag. Basically, such a restriction works by mapping certain vertices
to a label past or future, removing redundant parts of the display graph and collapsing
long paths (see Section 2.3; also see [40, Appendix A.3] for the formal definition).
Leaf bag. If x is a leaf bag, then P = S = ∅ and all compact signatures σ = (D(N, T ), ϕ, ι)

for x with ι−1(past) = ∅ are valid for x (and, thus, included in CVx).
Introduce-z bag. If x is an introduce bag with child y = (P, S \ {z}, F ∪ {z}) in T , then all

compact signatures σ for x whose compact-{z → future}-restriction is valid for y (that
is, contained in CVy) are valid for x.

Forget-z bag. If x is a forget bag with child y = (P \ {z}, S ∪ {z}, F ) in T , then all
compact-{z → past}-restrictions of compact-valid signatures σ for y are valid for x.

Join bag. For join bags, we use “reconciliations” which are, basically, 3-way analogues
of signatures, using labels {left, right, future} instead of {past, future} (see [40,
Appendix A.7]). In particular, if x is a join bag with children yL = (L, S, R ∪ F ) and
yR = (R, S, L∪F ), then we compute all compact reconciliations µ for x and check whether

the compact-{left → past, right → future}-restriction of µ is valid for yL and
the compact-{right → past, left → future}-restriction of µ is valid for yR.

Then, the compact-{{left, right} → past}-restriction of each µ verifying these condi-
tions is valid for x.

Correctness

The correctness of the computation of the sets CVx follows from [40, Lemmas 15–17 and 19].
After having computed CVx for the root bag r of the decomposition, we conclude that Nin
displays Tin if and only if there is a compact-valid signature (D(N, T ), ϕ, ι) for the root bag
with ι−1(future) = ∅. The correctness of this follows from [40, Lemma 10].

Running Time

To show that the running time is bounded in a function in the treewidth of N , the main
challenge is to bound the number of compact signatures for a bag (P, S, F ) by a function
of |S| (which, by Theorem 4, we may assume is at most 2tw(N) + 1). In order to do this,
we first bound the size of the display graph D(N, T ) in a signature by a function of |S|,
straightforwardly implying bounds on the number of possible display graphs, embedding
functions and isolabellings. Full details are given in [40]; to give a flavor of the proofs, we
present the argument bounding the number of arcs in T .

▶ Lemma 5. Any compact signature (D(N, T ), ϕ, ι) for a bag (P, S, F ) has |A(T )| ≤ 6|S|.

Proof. Let AS contain all arcs uv of D(N, T ) with ι(u) ∈ S or ι(v) ∈ S. As there is only
one vertex u with ι(u) = s for each s ∈ S and every vertex in D(N, T ) has total degree at
most 3, we have that |AS | ≤ 3|S|. As ϕ(uv) and ϕ(u′v′) are arc-disjoint for any distinct tree
arcs uv and u′v′, there are at most |AS ∩ A(N)| arcs uv of T for which ϕ(uv) contains an arc
in AS . Further, at most |AS ∩ A(T )| arcs in T are incident with a vertex in ι−1(S). Thus,
there are at most |AS | arcs uv in T for which {u, v} ∪ V (ϕ(uv)) contains a vertex of ι−1(S).

Every remaining arc uv in T has ι({u, v} ∪ V (ϕ(uv))) ⊆ {past, future}. Further, we
may assume the signature to be “well-behaved” (see [40, Sections A.4 and B.4]), which
implies among other things that vertices mapped to past and future cannot be adjacent
in D(N, T ), and that no arcs or vertices are redundant. Then we have ι(u) = ι(v) and
ι(u′) = ι(v′) for every arc u′v′ in the path ϕ(uv). Then, for all but at most |AS | ≤ 3|S|
arcs uv of T , we have ι(u) = ι(v) ∈ {past, future} as well as one of ι(V (ϕ(uv))) = {past}
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and ι(V (ϕ(uv))) = {future}. If ι(u) = ι(v) = past and ι(V (ϕ(uv))) = {past}, then uv is
redundant w.r.t. {past}, a contradiction, and, similarly in case ι(u) = ι(v) = future and
ι(ϕ(uv)) = {future}. So, for all but at most 3|S| tree arcs uv, either ι(u) = ι(v) = past
and ι(ϕ(uv)) = {future} or ι(u) = ι(v) = future and ι(ϕ(uv)) = {past}. In particular,
we have that ι(ϕ(v)) ̸= ι(v), and for such vertices we may assume v has out-degree 2 (see
Definition in [40, Appendix A.2]). Hence, any lowest arc uv in T is one of the at most |AS |
many arcs uv for which {u, v} ∪ V (ϕ(uv)) contain a vertex of ι−1(S). Thus, in total, T has
at most 2|AS | ≤ 6|S| arcs. ◀

▶ Theorem 6. Tree Containment can be solved in 2O(tw(Nin)2) · |A(Nin)| time.

4 Future work

Before implementing our dynamic programming algorithm, one should first try to reduce
the constant in the bound on the number of possible signatures as much as possible. Such
reductions may be possible for instance by imposing further structural constraints on the
signatures that need to be considered. If this constant can be reduced, possibly including
heuristic improvements, it would be interesting to implement the algorithm and test it on
practical data.

From a theoretical point of view, there are many opportunities for future work. First,
there are multiple variants and generalizations of Tree Containment that deserve attention:
non-binary inputs, unrooted inputs and inputs consisting of two networks. Indeed, in order
to decide if a network is contained in a second network, our approach would have to be
extensively modified, since our size-bound on the signatures heavily relies on Tin being a tree.

Second, a major open problem is whether the Hybridization Number problem is FPT
with respect to the treewidth of the output network. Again there are different variants:
rooted and unrooted, binary and non-binary, a fixed or unbounded number of input trees. For
some applications, the definition of an embedding has to be relaxed (allowing, for example,
multiple tree arcs embedded into the same network arc) [26, 25]. Other interesting candidate
problems for treewidth-based algorithms include phylogenetic network drawing [35], orienting
phylogenetic networks [27] and phylogenetic tree inference with duplications [39].

Finally, we believe that the approach taken in this paper (applying dynammic program-
ming techniques on a tree decomposition of single graph representing all the input data, with
careful attention given to the interaction between past and future) could potentially have
applications outside of phylogenetics, in any context where the input to a problem consists
of two or more distinct partially-labelled graphs that need to be reconciled.
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1 Introduction

Graph sparsification has played a central role in graph algorithm research in the last two
decades. Prominent examples include spanners [1], cut sparsifiers [3], and spectral sparsi-
fiers [22]. Recently, there has been significant effort in generalizing the graph sparsification
results to hypergraphs. For cut sparsifiers, Kogan and Krauthgamer [13] generalized the
Benczúr and Karger’s cut sparsifiers [3] by showing that, given any hypergraph G = (V, E)
with n vertices, there is a (1+ϵ)-approximate cut sparsifier H containing Õ(nr/ϵ2) hyperedges
where r = maxe∈E |e| denotes the rank of the hypergraph. After some follow-up work [5, 2],
Chen, Khanna, and Nagda [6] finally improved the sparsifier size to Õ(n/ϵ2) hyperedges,
matching the optimal bound for normal graphs. Another beautiful line of work generalizes
Speilman and Teng’s spectral sparsifiers [22] to hypergraphs [2, 21, 10] and very recently
results in spectral sparsifiers with Õ(n/poly(ϵ)) hyperedges [11]. We also mention that the
classical sparse connectivity certificates by Nagamochi and Ibaraki [19] were also generalized
to hypergraphs by Chekuri and Xu [5].

This paper studies a graph sparsification problem recently introduced by Chalermsook
et al. [4] called vertex sparsifiers for c-edge connectivity. It is closely related to the vertex
sparsifiers for edge cuts [15, 12] and vertex cuts [14]. In this problem, we are given an
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unweighted undirected graph G = (V, E) and a set of terminals T ⊆ V . For any disjoint
subsets A, B ⊆ T , let mincutG(A, B) denote the size of a minimum (edge-)cut that disconnects
A and B. Now, a graph H = (VH , EH) with T ⊆ VH is a (T , c)-sparsifier of G if for any
disjoint subsets A, B ⊆ T , min{c, mincutG(A, B)} = min{c, mincutH(A, B)}. Basically, H

preserves all minimum cut structures between the terminals T up to the value c. This
notion of graph sparsifiers has found interesting applications in offline dynamic algorithms
and network design problems [4]. Moreover, the very recent breakthrough on dynamic
c-edge st-connectivity by Jin and Sun [9] is also crucially based on dynamic algorithms for
maintaining (T , c)-sparsifiers.

In the original paper by [4], they showed that, for any graph G = (V, E) and terminal set
T of size k, there exists a (T , c)-sparsifier containing O(kc4) edges (which can be constructed
in O(m(c log n)O(c)) time) and also showed fast algorithms for constructing (T , c)-sparsifiers
of size k ·O(c)2c in mcO(c) logO(1) n time. Then, Liu [16] improved the size bound to O(kc3)
together with polynomial-time algorithms (no exponential dependency on c) for constructing
(T , c)-sparsifiers with O(kc3 log1.5 n) edges.

A natural question is then whether these results can be extended to hypergraphs. The
notion of (T , c)-sparsifiers itself can be naturally extended to hypergraphs by allowing G

and H to be hypergraphs and letting mincutG(A, B) denote the value of the minimum
hyperedge-cut instead. However, it is conceivable that there might not exist a (T , c)-sparsifier
with poly(k, c). This bound might require bad dependency on the rank r, for example.

In this paper, we show that the state-of-the-art for normal graphs indeed extend to
hypergraphs and we can even slightly improve the bounds:

▶ Theorem 1. Let G = (V, E) be a hypergraph with n vertices, m hyperedges, rank r and
total size p. Let T ⊆ V be the set of k terminals. There are algorithms for computing the
following:
1. a (T , c)-sparsifier H of G with O(kc3) hyperedges in O(p1+o(1) + n(rc log n)O(rc) log m)

time, which is almost-linear in the input size when both r and c = O(1), and
2. a (T , c)-sparsifier H of G with O(kc3 log1.5(kc)) hyperedges in poly(m, n) time.

The first result matches the best known bound of O(kc3) edges for normal graphs [16].
When r = O(1), the first time bound slightly improves the O(m(c log n)O(c)) bound of
[4] for normal graphs. The second result removes the exponential dependency on r and c

after relaxing the size by a log1.5(kc) factor. The number of hyperedges in our sparsifier is
completely independent from n, while the polynomial time algorithm by Liu [16] gives the
size of O(kc3 log1.5 n). So this implies the first polynomial time construction of sparsifiers of
size near-linear in k and independent of n, even for normal graphs.

Open Problems. Can we construct vertex sparsifiers for c-hyperedge connectivity of k ·
poly(c) size in near-linear time even when the rank is unbounded? This is a prerequisite
to near-linear time algorithms for computing vertex sparsifiers for c-vertex connectivity of
k ·poly(c) size. Such a result might lead to dynamic c-vertex st-connectivity algorithm similar
to the previous development where a near-linear time construction of vertex sparsifiers for
c-edge connectivity leads to a dynamic algorithm for c-edge st-connectivity [9]. As dynamic
c-vertex st-connectivity is one of the major open problems in dynamic graph algorithms
(known solutions only works for very small c ≤ 3 [7, 8, 20]), we view this work as a stepping
stone towards this goal.
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1.1 Technical Challenges

There are two main obstacles that prevent us extending the results of [16, 4] directly from
normal graphs to hypergraphs. First, if we follow the divide and conquer framework of
Chalermsook et al. [4] in a straightforward way, then we would end up with a much larger
(T , c)-sparsifier with O(|T |(rc)3) hyperedges. This is because, in [4], all vertices incident to
the boundary edges are declared as new terminal vertices in the recursion. However in our
case, each hyperedge may contain r vertices and this yields the dependency of r. To handle
this issue, we instead introduce only two anchor vertices for each boundary hyperedge. Our
divide and conquer framework requires slightly more careful analysis, but this naturally gives
a (T , c)-sparsifier with O(|T |c3) hyperedges.

The second obstacle is the near-linear time algorithm, Part (1) of Theorem 1. Chalermsook
et al. [4] introduced auxiliary graphs and apply the ϕ-Sparsify procedure on it to identify
all essential hyperedges, which roughly are hyperedges that will be kept in the sparsifier.
However, there is a subtle small gap in [4]: their ϕ-Sparsify procedure could erroneously
identify non-essential hyperedges as essential hyperedges. This is explained in more detail
in the full version of the paper. This bug results in a much larger (T , c)-sparsifier. In this
paper we fix the bug by (1) introducing a notion of useful partitions of the terminal set
and (2) providing an efficient algorithm that discards all non-useful partitions from the
auxiliary graph. Then, we show that, after our modification, this approach indeed gives a
small (T , c)-sparsifier as desired.

1.2 Organization

In Section 2 we review some basic definitions of hypergraphs. In Section 3 we define contraction
based (T , c)-sparsifiers and introduce the divide and conquer framework. In Section 4 we
show the existence of a (T , c)-sparsifier with O(|T |c3) hyperedges. In Section 5 we give
a near-linear-time algorithm that computes a (T , c)-sparsifier with O(|T |c3) hyperedges,
proving Part (1) of Theorem 1. For Part (2) of Theorem 1 we refer readers to the full version
of the paper.

2 Preliminary

Let G = (V, E) be a hypergraph. V is the set of vertices and E is a multiset of hyperedges
with each hyperedge e being a subset of V . The rank r := maxe∈E |e| of a hypergraph is the
size of the largest hyperedge, and the total size p :=

∑
e∈E |e| is the sum of all edge sizes.

For any two disjoint sets of vertices A, B ⊆ V , let EG(A, B) denote the set of hyperedges
with at least one endpoint in A and at least one endpoint in B. For any set of vertices
X ⊆ V , we denote the boundary of X of the graph G by ∂GX := EG(X, V \ X). If the
context is clear then we will omit the graph G and write ∂X instead.

Restrictions and Induced Sub-Hypergraphs. Let T ⊆ V ∪E be a mixed multiset of vertices
and hyperedges, for any set of vertices X ⊆ V , we define the restriction of the multiset T on
X to be T |X = (T ∩X)∪ {e∩X | e ∈ (T ∩E) and e∩X ≠ ∅}. The induced sub-hypergraph
G[X] is then defined over the vertex set X with the restriction of all hyperedges E|X , that
is, G[X] := (X, E|X).
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Incident Edges and Vertices. For any set of vertices X ⊆ V , define E(X) to be the set of
all hyperedges that incident to at least one vertex in X. For any set of hyperedges Y ⊆ E,
define V (Y ) =

⋃
y∈Y y to be the set of vertices incident to hyperedges in Y . Similarly, for

any mixed set of vertices and hyperedges T ⊆ V ∪ E we define V (T ) = (T ∩ V ) ∪ V (T ∩ E)
to be the set of all vertices that are in the set or incident to any hyperedge in the set.

3 Structural Properties on Hypergraphs

In this section, we explore more structural properties on hypergraphs. In particular, we
introduce anchored separated hyperedges, and describe useful properties in a divide and
conquer framework that leads to a construction of (T , c)-sparsifiers.

3.1 Cuts in Hypergraphs
Let u and v be two elements in V . We say that u and v are connected in a hypergraph G, if
there is a path connecting u and v. Let A, B ⊆ V be two disjoint sets of vertices. A and B

are disconnected if for any a ∈ A and b ∈ B, a and b are not connected.

▶ Definition 2 (Cuts and Minimum Cuts). A cut is a bipartition (X, V \X) of vertices. The
value of the cut is |∂X| = |EG(X, V \X)|. For any disjoint subsets A, B ⊆ V , if A ⊆ X

and B ⊆ (V \X) then we say that (X, V \X) is an (A, B)-cut. A minimum (A, B)-cut or
(A, B)-mincut is any (A, B)-cut with minimum value. Its value is denoted as mincutG(A, B).
Given a parameter c, a c-thresholded (A, B)-mincut cut value is defined as

mincutc
G(A, B) := min(mincutG(A, B), c).

3.2 (T , c)-Equivalency and (T , c)-Sparsifiers
Our vertex sparsifier algorithms are based on identifying a set of hyperedges and contract
them. Given a hypergraph G = (V, E) and a hyperedge e ∈ E, the contracted hypergraph
G/e is defined by identifying all incident vertices V (e) as one vertex, and then remove e

itself from the graph. For any set of terminals T ⊆ V , the effect of contracting an hyperedge
e is denoted as T/e. Similarly, for any set Ê ⊆ E, we denote G/Ê the hypergraph obtained
from G by contracting all hyperedges in Ê (notice that all hyperedges in Ê are removed
after the contraction.)

▶ Definition 3 ((T , c)-Sparsifiers). Let G = (VG, EG) and H = (VH , EH) be two hypergraphs.
Let T ⊆ VG be the set of terminals. We say H is a contraction based (T , c)-sparsifier of G,
if there exists a surjective (onto) projection π : VG → VH , such that for any e ∈ EH there is
an edge f ∈ EG such that π(f) = ∪v∈f{π(v)} = e, and for any two subsets T1, T2 ⊆ T ,

mincutc
G(T1, T2) = mincutc

H(π(T1), π(T2)).

Furthermore, if the terminals are not affected by the projection, i.e., π(T ) = T , then we say
that G and H are (T , c)-equivalent.

Remark. A more general (T , c)-sparsifier would allow an arbitrary mapping π on both
vertices and edges. However, we note that all (T , c)-sparsifiers constructed in this paper are
always contraction based. Therefore, for the ease of the presentation we will omit the term
“contraction based” when we mention (T , c)-sparsifiers.

For the ease of the reading, we define the following set operations that allow us to
add/remove hyperedges of G into a sparsifier H.
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▶ Definition 4. Let G = (V, E) be a hypergraph. For any multiset X of hyperedges over the
vertices V , and any contraction based (T , c)-sparsifier H with the projection π, define

(Adding contracted hyperedges) H ∪X := H ∪ π(X), and
(Removing contracted hyperedges) H −X := H − π(X).

3.3 (T , c)-Sparsifiers from a Divide and Conquer Framework
Another important concept to our contraction based (T , c)-sparsifier construction is that
we apply a divide and conquer framework to G. Let G = (V, E) be a hypergraph and let
(V1, V2) be a bipartition of vertices. We note that our divide and conquer framework is
slightly different than just recurse on the induced sub-hypergraphs G[V1] and G[V2]. In
particular, for each separated hyperedge e we add two new anchor vertices to e, ended up
slightly increasing the size of the vertex set in the next-level recursion.

Separated Hyperedges and Anchor Vertices. Let e ∈ E(V1, V2) be a hyperedge across the
bipartition. The separated hyperedges of e with respect to this bipartition (V1, V2) is the set
composed of hyperedges of e restricted on both V1 and V2. The anchored separated hyperedges
are separated hyperedges with additional anchor vertices: let e1 = e|V1 and e2 = e|V2 be the
separated hyperedges of e, then we introduce four new anchored vertices ve,1, ve,2, ve,3, and
ve,4 and define ê1 := e1 ∪ {ve,1, ve,2} and ê2 := e2 ∪ {ve,3, ve,4}. Let S = E(V1, V2) be the set
of crossing hyperedges, in this paper the set of anchored separated hyperedges respect to
bipartition (V1, V2) are denoted by Sep(S, V1, V2) := {ê1, ê2 | e ∈ S}.

Let A1 = {ve,1, ve,2 | e ∈ E(V1, V2)} and let A2 = {ve,3, ve,4 | e ∈ E(V1, V2)} be the set of
newly introduced anchor vertices. These anchor vertices will be added to the terminal set
in order to correctly preserve the mincut values. That is, the terminal sets defined for the
subproblems are T1 := T |V1 ∪A1 and T2 := T |V2 ∪A2. Now, we define the anchored induced
sub-hypergraphs, which are useful when applying the divide and conquer framework.

▶ Definition 5 (Anchored Induced Sub-Hypergraphs). Let G = (V, E) be a hypergraph and V1 ⊆
V be a subset of vertices. Define V2 = V \ V1, Gsep = G ∪ Sep(E(V1, V2), V1, V2)−E(V1, V2),
and the set of anchored vertices to be A1 ∪A2. Then, the anchored induced sub-hyperegraph
for V1 is defined as Ĝ[V1] := Gsep|V1∪A1 .

The Divide and Conquer Framework. The most generic divide and conquer method works
as the follows. First, a bipartition (V1, V2) are determined. Then, the algorithm performs
recursion on the anchored induced sub-hypergraphs Ĝ[V1] and Ĝ[V2] with terminal sets
T1 and T2 respectively. After obtaining the (T1, c)-sparsifier and (T2, c)-sparsifier from the
subproblems, the algorithm combines them by replacing the anchored separated hyperedges
with the original hyperedges.

Algorithm 1 A Divide and Conquer Framework.

Input: Hypergraph G, terminal set T , bipartition (V1, V2) of vertices, parameter c.
Output: A (T , c)-sparsifier H for G.

1 (Divide) Construct subproblems (Ĝ[V1], T1) and (Ĝ[V2], T2).
2 (Conquer) For i ∈ {1, 2}, obtain Hi, a (Ti, c)-sparsifier of Ĝ[Vi].
3 (Combine) Return H := H1 ∪H2 ∪ E(V1, V2)− Sep(E(V1, V2), V1, V2).

We summarize the divide and conquer framework in Algorithm 1. The following lemma
states the correctness of the framework.
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▶ Lemma 6. H returned from Algorithm 1 is a (T , c)-sparsifier.

Proof. Let π1 : V1 ∪A1 → VH1 and π2 : V2 ∪A2 → VH2 be the projection maps on H1 and
H2 respectively. Since V1 ∪A1 and V2 ∪A2 are disjoint, it is natural to define π : V → VH

by simply combining both maps where π(v) = π1(v) if v ∈ V1, and π(v) = π2(v) if v ∈ V2.
Now, it suffices to show that for any two disjoint subsets A, B ⊆ T , we have

mincutc
G(A, B) = mincutc

H(π(A), π(B)).

Part 1. We first show that mincutc
G(A, B) ≥ mincutc

H(π(A), π(B)). Let (X, V \X) be a
minimum (A, B)-cut on G with size |∂X| ≤ c. Intuitively, we will construct the cuts in
the subproblems Ĝ[V1] and Ĝ[V2] using (X, V \X). Then we will argue that the preserved
mincuts in Ĝ[V1] and Ĝ[V2] can be merged back, proving that there is a (π(A), π(B))-mincut
in H with size no larger than |∂X|.

Let S = EG(V1, V2) be the set of hyperedges across the bipartition in the divide and
conquer framework, and let V̂ = V ∪A1 ∪A2 be the vertex set in Gsep. We define the set of
vertices Xsep that contains X and all newly created anchor vertices that belongs to the X

side: for any e ∈ S, we add {ve,1, ve,2, ve,3, ve,4} to Xsep if e ⊆ X (the hyperedge is fully in
the X side). We add {ve,1, ve,3} to Xsep if e ∈ S. We add nothing if e ⊆ V \X.

Now, we have ∂Xsep = (∂X)∪Sep((∂X)∩S, V1, V2)−(∂X)∩S. Moreover, (Xsep, V̂ \Xsep)
is an (Aext, Bext)-cut in Gsep of size |∂X|+ |(∂X) ∩ S|, where{

Aext := A ∪ {ve,1, ve,3 | e ∈ ((∂X) ∩ S)}, and
Bext := B ∪ {ve,2, ve,4 | e ∈ ((∂X) ∩ S)}.

Intuitively, by carefully extend the pair (A, B) to a larger pair (Aext, Bext) we ensure that all
separated hyperedges Sep((∂X) ∩ S, V1, V2) appear in every (Aext, Bext)-mincut on Gsep. See
Figure 1.

V1

V2
X

V \X
e

V1

V2
X

V \X
ve,1 ve,4

ve,2

ve,3

Figure 1 An illustration to the proof of Lemma 6. The gray circles represent hyperedges that
cross the bipartition (V1, V2) in the divide and conquer framework. When these hyperedges are
separated, new anchor vertices are introduced and added to the terminal sets. The newly created
terminal vertices are forced to join different sides of the cut, if and only if the separated hyperedge
crosses the (A, B)-mincut (X, V \ X).

Suppose H1 is a (T1, c)-sparsifier of Ĝ[V1] and H2 is a (T2, c)-sparsifier of Ĝ[V2] obtained
from the conquer step (Algorithm 1). Let (Y1, π(V1 ∪A1) \Y1) and (Y2, π(V2 ∪A2) \Y2) be a
(π(Aext|V1∪A1), π(Bext|V1∪A1))-mincut on H1 and a (π(Aext|V2∪A2), π(Bext|V2∪A2))-mincut on
H2 respectively. Notice that every hyperedge in Sep((∂X) ∩ S, V1, V2) are in ∂(Y1 ∪ Y2). Let
Y0 := Y1 ∪ Y2 and after removing all anchor vertices we get Y = Y0 ∩ V . Now (Y, π(V ) \ Y )
is a (π(A), π(B))-cut. Since for each hyperedge e ∈ (∂GX) ∩ S, e is separated into two
hyperedges and both of them are in ∂H1∪H2Y0, we have
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|∂HY | ≤ |∂H1∪H2Y0| − |(∂GX) ∩ S|. (1)

Notice that the inequality in Equation (1) comes from the fact that ∂H1∪H2Y0 may or may
not contain more separated hyperedges from Sep(S \ ∂X, V1, V2).

Finally we obtain

mincutc
H(π(A), π(B)) ≤ |∂HY | (Y is some (π(A), π(B))-cut on H)

≤ |∂H1∪H2Y0| − |(∂X) ∩ S| (by Equation (1))
= |∂H1Y1|+ |∂H2Y2| − |(∂X) ∩ S|

(Y0 is the disjoint union Y1 ∪ Y2)
≤ |∂GsepXsep| − |(∂X) ∩ S| (Xsep is some (Aext, Bext)-cut)
= |∂X| (exactly |(∂X) ∩ S| hyperedges were separated)
= mincutc

G(A, B) (X is an (A, B)-mincut)

as desired.

Part 2. The proof of mincutc
H(π(A), π(B)) ≥ mincutc

G(A, B) is very similar to Part 1, so
we defer the proof (for completeness) in the full version. ◀

3.4 (5c, c)-Edge-Unbreakable Terminals
Let G = (V, E) be a hypergraph and let T ⊆ V be the set of terminals. By adopting the
notations from [17], we say that a terminal set T is (5c, c)-edge-unbreakable on G if for
any bipartition (V1, V2) of V with no more than c crossing edges |EG(V1, V2)| ≤ c, either
|T |V1 | < 5c or |T |V2 | < 5c. That is, if there is a cut of size at most c, then at least one of the
sides has less than 5c induced terminals.

Liu [16] obtained an (T , c)-sparsifier of size O(|T |c2) with a (5c, c)-edge-unbreakable
terminal set T where each terminal vertex v ∈ T has degree 1. It turns out that Liu’s
techniques naturally extend to hypergraphs. We prove the following in the full version of the
paper.

▶ Lemma 7. Let G = (V, E) be a hypergraph and let T ⊆ V be a set of degree-1 terminals.
If T is (5c, c)-edge-unbreakable on G, then there exists a subset E′ ⊆ E with O(|T |c2)
hyperedges, such that G/(E − E′) is a (T , c)-sparsifier of G.

4 Existence of (T , c)-Sparsifiers with O(kc3) Hyperedges

With all the tools equipped in the previous section, we are able to prove the existence of a
(T , c)-sparsifier with O(|T |c3) hyperedges.

▶ Theorem 8. Let G = (V, E) be a hypergraph and T ⊆ V be the set of terminals. Then
there is a subset E′ ⊆ E such that |E′| = O(|T |c3) and the contracted hypergraph G/(E−E′)
is (T , c)-equivalent to G.

To prove Theorem 8, it suffices to prove the following Lemma 9 where every terminal
vertex has degree 1:

▶ Lemma 9. Let G = (V, E) be a hypergraph and T ⊆ V be the set of degree 1 terminals.
Then there is a subset E′ ⊆ E such that |E′| = O(|T |c2) and the contracted hypergraph
G/(E − E′) is (T , c)-equivalent to G.
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Proof of Theorem 8. Without loss of generality, we may assume that each vertex in T has
degree at most c, by duplicating each terminal vertex and add c parallel edges between the
duplicated vertex and the original vertex. Let T be the terminal set of an input instance.
Now, assuming each terminal has degree at most c, we can further duplicate each of these
terminals c times so we have a set T ′ of at most |T |c degree-1 terminal vertices. By Lemma 9,
there exists a subset E′ ⊆ E such that |E′| = O(|T ′|c2) = O(|T |c3) and the contracted
hypergraph G/(E − E′) is (T , c)-equivalent to G. ◀

To prove Lemma 9, we first present an algorithm SparsifySlow (See Algorithm 2).
The algorithm recursively apply divide and conquer framework until the terminal set is
(5c, c)-edge-unbreakable as the base case. After applying Lemma 7 on each base case, the
algorithm combines the sparsifiers from the subproblems using Lemma 6.

Algorithm 2 SparsifySlow SparsifySlow(G, T , c).

Input: An undirected unweighted multi-hypergraph G, a set of degree-1 vertex
terminals T ⊆ V , and a constant c.

Output: A (T , c)-sparsifier H for G.
1 if T is (5c, c)-edge-unbreakable then
2 Construct H, a (T , c)-sparsifier of G using Lemma 7.
3 return H.
4 else
5 Let (V1, V2) be a bipartition of V (G) that refutes the (5c, c)-edge-unbreakable

property. That is, |EG(V1, V2)| ≤ c but |T ∩ V1| ≥ 5c and |T ∩ V2| ≥ 5c.

6 Obtain
{

H1 ← SparsifySlow(Ĝ[V1], T1, c), and
H2 ← SparsifySlow(Ĝ[V2], T2, c).

.

7 return H ← H1 ∪H2 ∪ E(V1, V2)− Sep(S, V1, V2).
8 end

Lemma 10 and Lemma 11 give the correctness proof and the size to the returned (T , c)-
sparsifier from Algorithm 2.

▶ Lemma 10. Algorithm 2 returns a (T , c)-sparsifier of G.

Proof. First we notice that all vertices in T1 and T2 have degree 1 in Ĝ[V1] and Ĝ[V2]
respectively: the anchor vertices have degree 1 and so the recursive calls in Algorithm 2 are
valid. The correctness is then recursively guaranteed by Lemma 6 (divide-and-conquer step)
and Lemma 7 (base case). ◀

▶ Lemma 11. Let G be a hypergraph, T ⊆ V is the set of degree-1 terminal vertices, and
let c be a constant. Let H = SparsifySlow(G, T , c) be the output of Algorithm 2. Then H

has at most O(|T |c2) hyperedges.

The proof to Lemma 11 is via a potential function similarly defined in Liu [16].

Proof. The execution to Algorithm 2 defines a recursion tree. If |T | < 5c, then the recursion
terminates immediately because T is trivially (5c, c)-edge-unbreakable by definition and a
(T , c)-sparsifier of O(|T |c2) hyperedges is returned by Lemma 7. Assume that |T | ≥ 5c, then
each recursive call on the subproblem (G′, T ′) guarantees that |T ′| ≥ 5c.
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Now, it suffices to use the following potential function to prove that the total number of
terminal vertices in all recursion tree leaves can be bounded by O(|T |). Define a potential
function for each subproblem (G′, T ′) to be Φ(G′, T ′) := |T ′| − 5c. Then, according to
Algorithm 2, whenever (G′, T ′) splits into two subproblems (Ĝ′[V1], T ′

1 ) and (Ĝ′[V2], T ′
2 )

we have

Φ(Ĝ′[V1], T ′
1 ) + Φ(Ĝ′[V2], T ′

2 ) ≤ |T ′ ∩ V1|+ |T ′ ∩ V2|+ 4|EG′(V1, V2)| − 10c

≤ Φ(G′, T ′)− c.

Since every subproblem has a non-negative potential, and the sum of potential decreases by
c at each divide-and-conquer step, the total number of leaf cases do not exceed Φ(G, T )/c ≤
|T |/c. Hence, the total size from the base case is at most

∑
(G′,T ′): base case |T ′| ≤ Φ(G, T ) +

(5c)(# of leaf cases) = O(|T |).
By Lemma 7, the total number of hyperedges returned from Algorithm 2 is at most

O(|T |c2). The total number of hyperedges added back at Algorithm 2 is at most the number
of divide-and-conquer steps times the cut size, which is at most |T |. Therefore, the output
(T , c)-sparsifier H has at most O(|T |c2) hyperedges as desired. ◀

Proof of Lemma 9. Lemma 9 follows immediately after the correctness proof (Lemma 10)
and upper bounding the number of hyperedges (Lemma 11). ◀

5 An Almost-linear-time Algorithm Constructing a Sparsifier

This section is devoted to proving part (1) in Theorem 1. That is, we give a almost-linear-time
(assuming a constant rank) algorithm that constructs a contraction based (T , c)-sparsifier of
O(|T |c3) hyperedges which matches with Theorem 8 up to a constant factor. We summarize
the result in Theorem 12.

▶ Theorem 12. Let G = (V, E) be a hypergraph with n vertices, m hyperedges, and rank r =
maxe∈E |e|. Let T ⊆ V be a terminal set T ⊆ V . Then there exists a randomized algorithm
which constructs a (T , c)-sparsifier with O(|T |c3) hyperedges in O(p + n(rc log n)O(rc) log m)
time.

Overview of the algorithm. Although Algorithm 2 can construct a (T , c)-sparsifier with
O(|T |c3) hyperedges, it is slow because we do not have an efficient algorithm searching for a
bipartition that violates the (5c, c)-edge-unbreakable property.

To construct our contraction-based (T , c)-sparsifier, all we need to do is identifying
essential hyperedges and contract non-essential ones. Essential hyperedges are indispensable
to maintaining mincut between terminals. It seems to be challenging to identify essential
hyperedges on an arbitrary graph without a (5c, c)-edge-unbreakable guarantee. Fortunately,
we notice there is an efficient way to identify essential hyperedges in an expander.

Naturally, we can utilize ExpanderDecompose (where the version for hypergraphs is
explicitly stated in [18]) which splits a hypergraph into expanders. Expander decomposition
not only guarantees expander sub-hypergraphs, but also fits in the divide-and-conquer
framework indicated by Lemma 6 with a favorable almost-linear time. Then, we can focus
on identifying essential hyperedges in an expander.

To identify essential hyperedges in an expander, we first enumerate all connected cuts1

with value at most c – the sub-hypergraph induced by the smaller side of a connected cut

1 In Chalermsook et al. [4], the concept of connected cuts is not explicitly defined. We give a formal
definition in the full version and hope it clarifies some ambiguity in their paper.
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is connected; see Algorithm 3 and Algorithm 4. Then, we build a pruned auxiliary graph
based on the cuts we have enumerated. The pruned auxiliary graph leads to an efficient way
identifying essential hyperedges. Finally, we contract all detected non-essential hyperedges.
We call the above procedure that sparsifies an expander ϕ-Sparsify. See Algorithm 5.

Algorithm 3 EnumerateCuts (G, ϕ, r, c).

Input: A ϕ-expander hypergraph G = (V, E) with rank r, and a threshold
parameter c.

Output: All connected cuts with value at most c.
1 C ← ∅. // Stores all found connected cuts.

2 for each vseed ∈ V do
/* Invokes a helper function to find all connected cuts involving vseed. */

3 C ← C ∪ EnumerateCutsHelp(0, G, G, ϕ, r, c, vseed). // See Algorithm 4.

4 end
5 return C.

Algorithm 4 EnumerateCutsHelp (depth, H, G, ϕ, r, c, vseed).

Input: The current recursion depth depth. A hypergraph H = (V, E) with rank r.
The original hypergraph G. Parameters c and ϕ. A seed vertex vseed ∈ V .

Output: All connected cut with value at most c so that vseed is in the smaller side.
1 if depth ≤ rc then
2 Run DFS from vseed on H and stop as soon as visiting cϕ−1 + 1 hyperedges.
3 Let Ê be the set of visited hyperedges and X be the set of visited vertices.
4 if DFS gets stuck before visiting cϕ−1 + 1 hyperedges then
5 if |∂GX| ≤ c then
6 return {(X, V \X)}. /* Some connected cut with value at most c. */

7 else
8 return ∅.
9 end

10 else
11 S ← ∅.
12 for each e ∈ Ê and for each v ∈ e, v ̸= vseed do
13 Let e′ ← e \ v./* modify the boundary hyperedge into a smaller one. */

// A recursive call with v being removed from e.

14 S ← S ∪ EnumerateCutsHelp(depth + 1, H − e + e′, G, ϕ, r, c, vseed)
15 end
16 return S.
17 end
18 else
19 return ∅.
20 end
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Algorithm 5 ϕ-Sparsify (G, T , ϕ, r, c).

Input: ϕ-expander hypergraph G = (V, E) with rank r, terminal set T ,threshold
parameter c.

Output: A (T , c)-sparsifier of G.
1 Run EnumerateCuts and construct the pruned auxiliary graph

Gaux = (V aux, Eaux), where V aux = P0 ∪ C0 ∪ E0.
2 Let E′ ← E \ E0.
3 for each e ∈ E0 (in any order) do
4 Compute the set of partitions P ′

e := P0 ∩N(N(e)) who has at least one mincut
that contains the edge e.

5 if ∀ p ∈ P ′
e, N(p) ̸⊆ N(e) then

6 Remove N(e) and all incident edges from Gaux.
7 E′ ← E′ ∪ {e}. // e is non-essential.

8 end
9 end

10 return G/E′.

Algorithm 6 SparsifyFast (G, r, T , c, C ′).

Input: hypergraph G = (E, V ) with rank r, terminal set T , threshold parameter c,
constant C ′.

Output: a (T , c)-sparsifier H.
1 H ← G.
2 iter ← 0. /* Number of iterations of the following while-loop. */

3 do
4 G← H

5 ϕ−1 ← 4C ′rc4 log3 n.
6 {Vi}t

i=1 ← ExpanderDecompose(G, ϕ).
7 G′ ← G /* Anchored sub-hypergraphs will be separated from G′ one by one. */

8 for each i = 1, 2, . . . , t do
9 Apply the divide step in Algorithm 1 to G′ with terminal T and bipartition

(Vi,
⋃t

ℓ=i+1 Vℓ), and get Gi ← Ĝ′[Vi] and G′ ← Ĝ′[
⋃t

ℓ=i+1 Vℓ].
10 (For each boundary hyperedge e with anchor vertices ve,3 and ve,4 created on

the
⋃t

ℓ=i+1 Vℓ side, we assign both ve,3 and ve,4 to an arbitrary Vj such that
j > i and e ∩ Vj ̸= ∅.)

11 {Hi}t
i=1 ← {ϕ-Sparsify(Gi, Vi ∩ T , ϕ, r, c)}t

i=1. /* The conquer step. */

12 H ← Ht /* Each sparsifier Hi will be merged with H one by one. */

13 for each i = t− 1, . . . , 1 do
14 Apply the combine step in Algorithm 1 to merge Hi with H. That is, all

anchor vertices introduced at the divide step are removed and all separated
hyperedges are replaced by the boundary hyperedges before separating Vi

from
⋃t

ℓ=i Vℓ.
15 iter = iter + 1.
16 while iter < log m.
17 return H.
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With ExpanderDecompose and ϕ-Sparsify procedures introduced above, we are able
to construct the (T , c)-sparsifier on general hypergraphs of size O(|T |c3) efficiently. Our
algorithm (Algorithm 6) is based on Chalermsook et al. [4] and consists of iterations of
ExpanderDecompose and ϕ-Sparsify. Each iteration implements the divide-and-conquer
framework shown by Algorithm 1: we first apply ExpanderDecompose and decompose
the hypergraph into ϕ-expanders. Then we apply ϕ-Sparsify to sparsify the ϕ-expanders.
Finally, we glue all sparsifiers of the ϕ-expanders by recovering the inter-cluster hyperedges
between the ϕ-expanders. Similar to [4], we prove that O(log m) iterations suffice to obtain
a (T , c)-sparsifier of O(|T |c3) hyperedges.

Due to the page limit, we refer the readers to the full version of this paper to see the
details of the algorithms in this section.
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Abstract
We study Round-UFP and Round-SAP, two generalizations of the classical Bin Packing problem
that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation
problem (SAP), respectively. We are given a path with capacities on its edges and a set of jobs
where for each job we are given a demand and a subpath. In Round-UFP, the goal is to find a
packing of all jobs into a minimum number of copies (rounds) of the given path such that for each
copy, the total demand of jobs on any edge does not exceed the capacity of the respective edge. In
Round-SAP, the jobs are considered to be rectangles and the goal is to find a non-overlapping
packing of these rectangles into a minimum number of rounds such that all rectangles lie completely
below the capacity profile of the edges.

We show that in contrast to Bin Packing, both problems do not admit an asymptotic polynomial-
time approximation scheme (APTAS), even when all edge capacities are equal. However, for this
setting, we obtain asymptotic (2 + ε)-approximations for both problems. For the general case, we
obtain an O(log log n)-approximation algorithm and an O(log log 1

δ
)-approximation under (1 + δ)-

resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption
(i.e., the maximum job demand is at most the minimum edge capacity), we obtain an absolute 12-
and an asymptotic (16 + ε)-approximation algorithm for Round-UFP and Round-SAP, respectively.
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1 Introduction

The unsplittable flow on a path problem (UFP) and the storage allocation problem (SAP)
are two well-studied problems in combinatorial optimization. In this paper, we study Round-
UFP and Round-SAP, which are two related natural problems that also generalize the
classical Bin Packing problem.

In both Round-UFP and Round-SAP, we are given as input a path G = (V, E) and
a set of n jobs J . We assume that {v0, v1, . . . , vm} are the vertices in V from left to right
and then for each i ∈ {1, ..., m} there is an edge ei := {vi−1, vi}. Each job j ∈ J has integral
demand dj ∈ N, a source vsj ∈ V , and a sink vtj ∈ V . We say that each job j spans the path
Pj which we define to be the path between vsj

and vtj . For every edge e ∈ E, we are given
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Figure 1 (a) A set of 7 jobs with demands written beside; (b) The capacity profile;
(c), (d) Any valid Round-SAP packing requires at least 2 rounds;
(e) A valid Round-UFP packing using only 1 round.

an integral capacity ce. A useful geometric interpretation of the input path and the edge
capacities is the following (see Figure 1): consider the interval [0, m) on the x-axis and a
function c : [0, m) → N. Each edge ek corresponds to the interval [k − 1, k) and each vertex
vi corresponds to the point i. For edge ek, we define c(x) = cek

for each x ∈ [k − 1, k).
In the Round-UFP problem, the objective is to partition the jobs J into a minimum

number of sets J1, ..., Jk (that we will denote by rounds) such that the jobs in each set Ji

form a valid packing, i.e., they obey the edge capacities, meaning that
∑

j∈Ji:e∈Pj
dj ≤ ce for

each e ∈ E. In the Round-SAP problem, we require to compute additionally for each set Ji

a non-overlapping set of rectangles underneath the capacity profile, corresponding to the
jobs in Ji (see Figure 1). Formally, we require for each job j ∈ Ji to determine a height hj

with hj + dj ≤ ce for each edge e ∈ Pj, yielding a rectangle Rj = (sj, hj) × (tj, hj + dj), such
that for any two jobs j, j′ ∈ Ji we have that Rj ∩ Rj′ = ∅. Again, the objective is to minimize
the number of rounds.

Note that unlike Round-SAP, in Round-UFP we do not need to pack the jobs as
contiguous rectangles. Hence, intuitively in Round-UFP we can slice the rectangles vertically
and place different slices at different heights. See Figure 1.

Round-UFP and Round-SAP arise naturally in the setting of resource allocation with
connections to many fundamental optimization problems. One possible interpretation of the
input path is that each vertex is a computer and that these computers are connected via
some wired connection, e.g., optical fiber, ethernet, etc. Each direct connection between two
computers is modeled by an edge in the input and it has a certain bandwidth, modeled by
the capacity of the edge. Also, certain pairs of computers seek to send data from one to the
other, and these pairs are represented by the input jobs. The size of each job corresponds to
the amount of data that needs to be transported. Now it can happen that the bandwidths
do not support all the jobs. In this case, a remedy is to partition the jobs into groups such
that each group is supported by the bandwidths. It is desirable to have as few groups as
possible, in order to send the data as quickly as possible. Now each of the mentioned groups
corresponds to a round in Round-UFP, and therefore we seek to minimize the number of
rounds. In Round-SAP, we require additionally that each job gets a contiguous portion of
the communication bandwidths on each edge and also that this portion is the same on each
edge. This is a requirement that arises in practice in wavelength division multiplexing and
optical fiber minimization, see [4, 51].
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An alternative interpretation of the path is that it represents a time axis. For example,
the first edge e1 would correspond to the time interval [0, 1), the second edge e2 to the interval
[1, 2), etc. The capacities of the edges represent the available amount of some resource of a
machine, e.g., memory or transmission frequencies, etc., which might change over time. Each
input job then represents a job that needs to be executed during some time interval, i.e.,
the time interval that corresponds to the edges of the path of the job. Similar to the above,
it might be the case that not all jobs can be executed on the same machine because not
enough resources are available on a machine. Then, we want to distribute the jobs on several
machines, such that all jobs assigned to the same machine can run on that machine, i.e.,
enough resources are available. Here we assume that each machine has its own resources, e.g.,
its own CPUs or memory. The jobs on the same machine then form a round according to
our definition of Round-UFP. Naturally, we seek to minimize the number of rounds, which
corresponds to minimizing the number of machines. Similarly as above, in Round-SAP, we
additionally require that each job gets a contiguous portion of the resource, e.g., a contiguous
portion of the frequency spectrum or the memory [11]. Another application is ad-placement,
where each job is an advertisement that requires a contiguous portion of the banner [45].

Round-UFP and Round-SAP are APX-hard as they contain the classical Bin Packing
problem as a special case when G has only one single edge. However, while for Bin
Packing there exists an asymptotic polynomial time approximation scheme (APTAS), 1

it is open whether such an algorithm exists for Round-UFP or Round-SAP. The best
known approximation algorithm for Round-UFP is a O(min{log n, log m, log log cmax})-
approximation [35]. For the special case of Round-UFP of uniform edge capacities, Pal [49]
gave a 3-approximation. Elbassioni et al. [21] gave a 24-approximation algorithm for the
problem under the no-bottleneck assumption (NBA) which states that the maximum job
demand is upper-bounded by the minimum edge capacity. A result in (the full version of) [45]
states that any solution to an instance of UFP can be partitioned into at most 80 sets of jobs
such that each of them is a solution to the corresponding SAP instance. This immediately
yields approximation algorithms for Round-SAP: a 240-approximation for the case of uniform
capacities, a 1920-approximation under the NBA, and a O(min{log n, log m, log log cmax})-
approximation for the general case. These are the best known results for Round-SAP.

1.1 Our Contributions
First, we show that both Round-SAP and Round-UFP, unlike the classical Bin Packing
problem, do not admit an APTAS, even in the uniform capacity case. We achieve this via
a gap preserving reduction from the 3D matching problem. We create a numeric version
of the problem and define a set of hard instances for both Round-SAP and Round-UFP.
Together with a result of Chlebik and Chlebikova [15], we derive an explicit lower bound on
the asymptotic approximation ratio for both problems. Our hardness result holds even for
the case in which in the optimal packing no round contains more than O(1) jobs, i.e., a case
in which we can even enumerate all possible packings in polynomial time.

For the case of uniform edge capacities, we give asymptotic (2 + ε)-approximation al-
gorithms for both Round-UFP and Round-SAP, and absolute (2.5+ε) and 3-approximation
algorithms for the two problems, respectively. This improves upon the previous absolute 3-
and 240-approximation algorithms mentioned above. Note that for both problems our factor
of 2 is a natural threshold: in many algorithms for UFP and SAP [10, 3, 33, 34, 45, 46], the

1 For basic definitions related to approximation algorithms, we refer to Section 2.
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input jobs are partitioned into jobs that are relatively small and relatively large (compared
to the edge capacities). Then, both sets are handled separately with very different sets of
techniques. This inherently loses a factor of 2. Our algorithms are based on a connection of
our problems to the dynamic storage allocation (DSA) problem and we show how to use some
known deep results for DSA [11] in our setting. In DSA the goal is to place some given jobs
as non-overlapping rectangles, minimizing the height of the resulting packing. This problem
might seem totally unrelated at first glance, in particular, unrelated to Round-UFP. The
mentioned result produces an alignment of rectangles that correspond to our input jobs,
based on which we assign jobs to the different rounds in Round-SAP and Round-UFP. In
one of the two cases that we distinguish, we additionally use a dynamic program that finds
an optimal solution for the relatively large jobs in the input. In comparison, the previously
best-known algorithm for Round-UFP is just a greedy routine that sorts the input jobs
and then assigns them greedily into the rounds. The previously best result for Round-SAP
takes this packing (for Round-UFP) and applies a reduction from [45] as a black-box, using
a (quite large) factor of 80, yielding a 240-approximation algorithm. In particular, our
algorithm for Round-SAP yields a much smaller approximation ratio and uses techniques
that are much better tailored to Round-SAP.

For the general cases of Round-UFP and Round-SAP, we give an O(log log min{m, n})-
approximation algorithm. Depending on the concrete values of n, m, and cmax, this constitutes
an up to exponential improvement compared to the best known result for Round-UFP [35]
and for Round-SAP (by the reasoning via [45] above). As done previously in the literature,
we represent these large jobs by rectangles that are drawn as high as possible underneath the
capacity profile and we seek a solution such that in each round, the rectangles corresponding
to the jobs in the round are pairwise non-overlapping. In contrast to prior work, we formulate
this problem as a configuration-LP and we show that we can solve it in polynomial time
via a suitable separation oracle. The integral parts of its solution immediately yield an
assignment of some input jobs into at most OPT many rounds. With an additional step, we
show that the remaining problem (corresponding to the fractional part of the solution of the
configuration-LP) can be reduced to several instances of Round-UFP/ Round-SAP with
the property that each point is overlapped by at most O(log m) rectangles. This is crucial to
be able to apply another novel step: we employ a recent result by Chalermsook and Walczak
[12] that yields a bound on the coloring number of rectangle intersection graphs, and we put
the rectangles from each color class into a separate round. Since each point is overlapped
by at most O(log m) rectangles, this yields an approximation ratio of O(log log m) only,
and since w.l.o.g. m ≤ 2n, also of O(log log n). In comparison, the previously best-known
algorithm for the general case of Round-UFP also uses the viewpoint of the rectangles
above, but it pays up to a factor of O(log m) in order to reduce the general case to the special
case in which each rectangle is stabbed by one or two lines from a suitably defined set of lines.
For the latter case, it employs a polynomial-time 3-approximation algorithm. In particular,
this algorithm neither employs a configuration-LP nor the mentioned result in [12].

Then we study the setting of resource augmentation, i.e., where we can increase the edge
capacities by a factor of 1 + δ, while still comparing our solution with the optimal solution
with original capacities. In this case, we show that we can reduce the given problem to
the setting in which the edge capacites are in the range [1, 1/δ). Applying the algorithm
from [35] then yields a O(log log 1

δ )-approximation for this case for Round-UFP, and with a
similar argumentation as before also for Round-SAP.

Furthermore, for the case of the NBA we improve the absolute approximation ratio from
24 to 12 for Round-UFP, and from 1920 to 17 for Round-SAP, and we even obtain an
asymptotic (16 + ε)-approximation for Round-SAP. For Round-SAP we give a black-box
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Table 1 Overview of our results. We distinguish the settings according to uniform edge capacities,
the no-bottleneck-assumption (NBA), general edge capacities, and general edge capacities with
(1 + δ)-resource augmentation (r.a.). Also, we distinguish between absolute approximation ratios
and asymptotic approximation ratios. All listed previous results are absolute approximation ratios.

Problem Edge capacites Previous approximation Improved approximation
Round-UFP uniform 3 [49] asymp. 2 + ε, abs. 2.5+ε

Round-SAP uniform 240 [49, 45] asymp. 2 + ε, abs. 3
Round-UFP NBA 24 [21] abs. 12
Round-SAP NBA 1920 [21, 45] asymp. 16 + ε, abs. 17
Round-UFP general O(log min{n, m, log cmax}) [35] abs. O(log log min{n, m})
Round-SAP general O(log min{n, m, log cmax}) [35] abs. O(log log min{n, m})
Round-UFP general with r.a. O(log min{n, m, log cmax}) [35] abs. O(log log(1/δ))
Round-SAP general with r.a. O(log min{n, m, log cmax}) [35] abs. O(log log(1/δ))
Round-Tree uniform 6 [23] asymp. 5.1, abs. 5.5
Round-Tree NBA 64 [21] asymp. 49, abs. 55

reduction to the case of uniform edge capacities. We first round the job sizes and the
edge capacities to powers of 2. Then we partition the input jobs into classes according to
their bottleneck capacities (the bottleneck capacity of a job is the minimum capacity of an
edge through which the job passes). For each class of bottleneck capacities, we define a
corresponding instance of Round-SAP with uniform edge capacities. The number of different
job classes can be super-constant. However, we show that we can combine the solutions
for this super-constant number of classes to a global solution for the given instance so that
overall we obtain a constant asymptotic approximation ratio of 16 + ε for Round-SAP. We
remark that our black-box reduction loses a fixed factor of 8, so any improvements for the
case of uniform edge capacities would yield an improved approximation ratio for the case of
the NBA as well. In comparison, the previously best-known result for Round-SAP under
the NBA uses the known 24-approximation algorithm for Round-UFP and then invokes the
mentioned result in [45] as a black-box, yielding a quite large approximation ratio of 1920.

For the setting of round-UFP under the NBA, the previously best-known 24-approximation
algorithm in [21] loses a large factor of 16 for packing the small jobs. This algorithm is a simple
greedy routine that sorts jobs by their left endpoints and places them appropriately into
rounds. In contrast, we first scale up the job demands to integral powers of 1/2 (assuming the
minimum edge capacity to be 1) and then consider jobs based on their bottleneck capacities.
We then devise a novel way of classifying the jobs based on the density of the jobs on various
edges: for one class of jobs we show that a simple greedy algorithm loses only a factor of 4;
for the other, our classification scheme ensures that the congestion on every edge is small
which enables us to apply a result in [48], again losing a factor of 4. Also for the large
jobs, we improve the best-known 8-approximation to a 4-approximation, thus getting an
12-approximation overall for Round-UFP under the NBA.

If in Round-UFP we are given a tree instead of a path, we obtain the Round-Tree prob-
lem. The best known result for it under the NBA is a 64-approximation [21] and a 6-
approximation is known for uniform edge capacities [23]. We improve the best known
approximation ratio under the NBA to 55 and also provide a 5.5-approximation algorithm
for the case of uniform edge capacities.

See Table 1 for an overview of our results.
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1.2 Other Related Work
Without the NBA, Epstein et al. [22] showed that no deterministic online algorithm can
achieve a competitive ratio better than Ω(log log n) or Ω(log log log(cmax/cmin)) for Round-
UFP. They also gave a O(log cmax)-competitive algorithm, where cmax is the largest edge
capacity. Without the NBA, recently Jahanjou et al. [35] gave a O(min(log m, log log cmax))-
competitive algorithm. For the special case of Round-UFP for uniform edge capacities in
the online setting, Adamy and Erlebach [2] gave a 195-competitive algorithm, which was
subsequently improved to 10 [47, 5].

Round-UFP and Round-SAP are related to many fundamental optimization problems.
For example, Round-SAP can be interpreted as an intermediate problem between two-
dimensional bin packing (2BP) and the rectangle coloring problem (RC). In 2BP, the goal is
to find an axis-parallel nonoverlapping packing of a given set of rectangles (which we can
translate in both dimensions) into minimum number of unit square bins. If all edges have
the same capacity then Round-SAP can be seen as a variant of 2BP in which the horizontal
coordinate of each item is fixed and we can choose only the vertical coordinate. For 2BP, the
present best asymptotic approximation guarantee is 1.406 [8]. On the other hand, in RC, all
rectangles are fixed and the goal is to color the rectangles using a minimum number of colors
such that no two rectangles of the same color intersect. For RC, recently Chalermsook and
Walczak [12] have given a polynomial-time algorithm that uses only O(ω log ω) colors, where
ω is the clique number of the corresponding intersection graph (and hence a lower bound
on the number of needed colors). Another related problem is Dynamic Storage Allocation
(DSA), where the objective is to pack the given jobs (with fixed horizontal location) such
that the maximum vertical height, maxj(hj + dj) (called the makespan) is minimized. The
current best known approximation ratio for DSA is (2 + ε) [11].

In a sense Round-UFP and Round-SAP are ‘Bin Packing-type’ problems, and their
corresponding ‘Knapsack-type’ problems are UFP and SAP, respectively, where each job
has an associated profit and the goal is to select a subset of jobs which can be packed into
one single round satisfying the corresponding valid packing constraints. There is a series of
work [33, 7, 9, 3, 34, 32] in UFP, culminating in a PTAS [31]. It is maybe surprising that
Round-UFP does not admit an APTAS, even though UFP admits a PTAS. For SAP, the
currently best polynomial time approximation ratio is 2 + ε [45], which has been recently
improved to 1.969 + ε [46] for the case of uniform capacities, and also a quasi-polynomial
time (1.997 + ε)-approximation is known for quasi-polynomially bounded input data.

There are many other related problems, such as two-dimensional knapsack [26, 37, 28, 36],
strip packing [27, 25, 20, 39], maximum independent set of rectangles [1, 12, 44, 29], guillotine
separability of rectangles [41, 40, 42], weighted bipartite edge coloring [43], maximum edge
disjoint paths [18], etc. We refer the readers to [38, 17] for an overview of these problems.

2 Preliminaries

Let OPTUF P and OPTSAP denote the optimal number of rounds required to pack all jobs
of a given instance of Round-UFP and Round-SAP, respectively. By simple preprocessing,
we can assume that each vertex in V corresponds to endpoint(s) of some job(s) in J , and
hence m ≤ 2n − 1. Job j is said to pass through edge e if e ∈ Pj. The load on edge e is defined
as le :=

∑
e∈Pj

dj, the total sum of demands of all jobs passing through e. Let L := maxe le
denote the maximum load.

We now define some notions related to approximation algorithms. Consider a minimization
problem Π. An algorithm A has approximation guarantee of α (α > 1), if A(I) ≤ α OPT (I)
for all input instances I of Π. This is also known as absolute approximation guarantee. As
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common in bin packing literature, we also study asymptotic approximation which intuitively
is the approximation ratio when OPT tends to infinity. An algorithm A has asymptotic
approximation guarantee of α, if A(I) ≤ α OPT (I) + o(OPT (I)) for all input instances I

of Π. A problem admits polynomial time approximation scheme or PTAS (resp. asymptotic
polynomial time approximation scheme or APTAS) if for every constant ε > 0, there exists a
(1 + ε)-approximation (resp. (1 + ε)-asymptotic approximation) algorithm with running time
O

(
nf(1/ε)), for any function f that depends only on ε.

3 Lower Bounds

A simple reduction from the Partition problem shows that it is NP-hard to obtain a better
approximation ratio than 3/2 for the classical Bin Packing problem. However, in the
resulting instances, the optimal solutions use only two or three bins. On the other hand, Bin
Packing admits an APTAS [19] and thus, for any ε > 0, a (1 + ε)-approximation algorithm
for instances in which OPT is sufficiently large. Since Round-SAP and Round-UFP are
generalizations of Bin Packing (even if G has only a single edge), the lower bound of
3/2 continues to hold. However, maybe surprisingly, we show that unlike Bin Packing,
Round-SAP and Round-UFP do not admit APTASes, even in the case of uniform edge
capacities. More precisely, we provide a lower bound of (1 + 1/1398) on the asymptotic
approximation ratio for Round-SAP and Round-UFP via a reduction from the 2-Bounded
Occurrence Maximum 3-Dimensional Matching (2-B-3-DM) problem.

In 2-B-3-DM, we are given as input three pairwise disjoint sets X := {x1, x2, . . . , xq},
Y := {y1, y2, . . . , yq}, and Z := {z1, z2, . . . , zq} and a set of triplets T ⊆ X ×Y ×Z such that
each element of X ∪ Y ∪ Z occurs in exactly two triplets in T . Note that |X| = |Y | = |Z| = q

and |T | = 2q. A matching is a subset M ⊆ T such that no two triplets in M agree in any
coordinate. The goal is to find a matching of maximum cardinality (denoted by OPT3DM ).
Chlebik and Chlebikova [15] gave the following hardness result.

▶ Theorem 1 ([15]). For 2-B-3-DM there exists a family of instances such that for each
instance K of the family, either OPT3DM (K) < α(q) := ⌊0.9690082645q⌋ or OPT3DM (K) ≥
β(q) := ⌈0.979338843q⌉, and it is NP-hard to distinguish these two cases.

Hardness of 2-B-3-DM has been useful in inapproximability results for various (multidi-
mensional) packing, covering, and scheduling problems, e.g. vector packing [52], geometric
bin packing [6], geometric bin covering [16], generalized assignment problem [13], etc. Similar
to these results, we also use gadgets based on a reduction from 2-B-3-DM to the 4-Partition
problem. However, the previous techniques are not directly transferable to our problem due
to the inherent differences between these problems. Therefore, we first use the technique
from [52] to associate certain integers with the elements of X ∪ Y ∪ Z and T and then adapt
the numeric data in a different way to obtain the hard instances.

Let ρ = 32q and let V be the set of 5q integers defined as follows: x′
i = iρ + 1, for 1 ≤

i ≤ |X|, y′
j = jρ2 + 2, for 1 ≤ j ≤ |Y |, z′

k = kρ3 + 4, for 1 ≤ k ≤ |Z|, τ ′
l = ρ4 − kρ3 − jρ2 −

iρ + 8, for each triplet τl = (xi, yj , zk) ∈ T . Define γ = ρ4 + 15. The following result is due
to Woeginger [52] 2.

2 There was a minor bug in [52], which was fixed by Ray [50]. See Lemma 2 in [50] for the proof of the
lemma.
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▶ Lemma 2 ([52]). Four integers in V sum up to the value γ if and only if (i) one of them
corresponds to some element xi ∈ X, one to some element yj ∈ Y , one to an element zk ∈ Z,
and one to some triplet τl ∈ T , and if (ii) τl = (xi, yj , zk) holds for these four elements.

Now, we create a hard instance, tailor-made for our problems. We define that our path
G = (V, E) has 40000γ vertices that we identify with the numbers 0, 1, ..., 40000γ. For each
xi ∈ X (respectively yj ∈ Y , zk ∈ Z), we specify two jobs aX,i and a′

X,i (respectively aY,j ,
a′

Y,j and aZ,k, a′
Z,k), which will be called peers of each other. Each job j is specified by a

triplet (sj, tj, dj). We define
aX,i = (0, 20000γ − 4x′

i, 999γ + 4x′
i) and a′

X,i = (20000γ − 4x′
i, 40000γ, 1001γ − 4x′

i),
aY,j = (0, 20000γ − 4y′

j , 999γ + 4y′
j) and a′

Y,j = (20000γ − 4y′
j , 40000γ, 1001γ − 4y′

j), and
aZ,k = (0, 20000γ − 4z′

k, 999γ + 4z′
k) and a′

Z,k = (20000γ − 4z′
k, 40000γ, 1001γ − 4z′

k).
For each τl ∈ T , we define two jobs bl and b′

l (also peers) by:
bl = (0, 19001γ − 4τ ′

l , 999γ + 4τ ′
l ) and b′

l = (19001γ − 4τ ′
l , 40000γ, 1001γ − 4τ ′

l ).
Finally let D be a set of 5q − 4β(q) dummy jobs each specified by (0, 40000γ, 2997γ). We
define that each edge e ∈ E has a capacity of ce := c∗ := 4000γ. This completes the reduction.
For any job j = (sj, tj, dj) we define its width wj := tj − sj.

Let AX := {aX,i | 1 ≤ i ≤ q} and A′
X := {a′

X,i | 1 ≤ i ≤ q}. The sets AY , A′
Y , AZ , A′

Z

are defined analogously. Let A := AX ∪ AY ∪ AZ and A′ := A′
X ∪ A′

Y ∪ A′
Z . Finally let

B := {bl | 1 ≤ l ≤ 2q} and B′ := {b′
l | 1 ≤ l ≤ 2q}.

To provide some intuition, we first give an upper bound on the number of jobs that can
be packed in a round. All following lemmas, statements, and constructions hold for both
Round-SAP and Round-UFP.

▶ Lemma 3. In any feasible solution any round can contain at most 8 jobs.

We say that a round is nice if it contains exactly 8 jobs. It turns out that such a
round corresponds exactly to one element τl = (xi, yj , zk) ∈ T . We say that the jobs
aX,i, a′

X,i, aY,j , a′
Y,j , aZ,k, a′

Z,k, bl, and b′
l correspond to τl = (xi, yj , zk).

▶ Lemma 4. We have that a round is nice if and only if there is an element τl = (xi, yj , zk) ∈
T such that the round contains exactly the jobs that correspond to τl = (xi, yj , zk).

Given an optimal solution OPT3DM to 2-B-3-DM with |OPT3DM | ≥ β(q), we construct
a solution as follows:
1. Let M be any subset of OPT3DM with |M| = β(q). Create β(q) nice rounds corresponding

to the elements in M, i.e., for each element τl = (xi, yj , zk) ∈ M, create a round containing
the jobs that correspond to τl = (xi, yj , zk).

2. For each τl ∈ T \ M, create a round containing bl and b′
l along with a dummy job.

3. For each xi ∈ X (respectively yj ∈ Y , zk ∈ Z) not covered by M, pack aX,i and a′
X,i

(respectively aY,j , a′
Y,j and aZ,k, a′

Z,k) together with one dummy job in one round.

▶ Lemma 5. If |OPT3DM | ≥ β(q) then the constructed solution is feasible and it uses at
most 5q − 3β(q) rounds.

Proof. One can easily check that all constructed rounds are feasible. In step (1) we construct
exactly β(q) rounds. In step (2), we construct |T | − β(q) = 2q − β(q) rounds, since |T | = 2q.
In step (3), we construct 3|T \ M| = 3q − 3|OPT3DM | rounds. Hence, overall we construct
at most 5q − 3|OPT3DM | ≤ 5q − 3β(q) rounds. ◀

Conversely, assume that |OPT3DM | < α(q) and that we are given any feasible solution to
our constructed instance. We want to show that it uses at least 5q − 3β(q) + 1

7 (β(q) − α(q))
rounds. For this, a key property of our construction is given in the following lemma.
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▶ Lemma 6. If a round contains a dummy job, then it can have at most three jobs: at most
one dummy job, at most one job from A ∪ B, and at most one job from A′ ∪ B′.

Let ng denote the number of nice rounds in our solution, nd the number of rounds with a
dummy job, and nb the number of remaining rounds. Note that each of the latter rounds
can contain at most 7 jobs each. Since all jobs in A ∪ A′ ∪ B ∪ B′ need to be assigned to a
round, we have that 8ng + 7nb + 2nd ≥ 6q + 2|T | = 10q. Since the nice rounds correspond
to a matching of the given instance of 2-B-3-DM, we have that ng ≤ α(q). Using this, we
lower-bound the number of used rounds in the following lemma.

▶ Lemma 7. If |OPT3DM | < α(q) then the number of rounds in our solution is nd +ng +nb ≥
(5q − 3β(q)) + 1

7 (β(q) − α(q)).

Proof. Since 8ng + 7nb + 2nd ≥ 6q + 2|T | = 10q and nd = 5q − 4β(q), we obtain that
8ng + 7nb ≥ 8β(q). Thus ng + nb ≥ 8

7 β(q) − 1
7 ng. Since ng ≤ α(q) the number of rounds is

at least nd + ng + nb ≥ 5q − 4β(q) + 8
7 β(q) − 1

7 α(q) = (5q − 3β(q)) + 1
7 (β(q) − α(q)). ◀

Now Lemmas 5 and 7 yield our main theorem.

▶ Theorem 8. There exists a constant δ0 > 1/1398, such that it is NP-hard to approximate
Round-UFP and Round-SAP in the case of uniform edge capacities with an asymptotic
approximation ratio less than 1 + δ0.

4 Algorithms for Uniform Capacity Case

In this section, we provide asymptotic (2 + ε)-approximation for Round-SAP and Round-
UFP for the case of uniform edge capacities.

We distinguish two cases, depending on the value of dmax := maxj∈J dj compared to L.

4.1 Case 1: dmax ≤ ε7L

First, we invoke an algorithm from [11] for the dynamic storage allocation (DSA) problem.
Recall that in DSA the input consists of a set of jobs like in Round-SAP and Round-UFP,
but without upper bounds of the edge capacities. Instead, we seek to define a height hj

for each job j such that the resulting rectangles for the jobs are non-overlapping and the
makespan maxj(hj + dj) is minimized. The maximum load L is defined as in our setting.

We invoke the following theorem on our input jobs J with δ := ε.

▶ Theorem 9 ([11]). Assume that we are given a set of jobs J ′ such that dj ≤ δ7L for each
job j ∈ J ′. Then there exists an algorithm that produces a DSA packing of J ′ with makespan
at most (1 + κδ)L, where κ > 0 is some global constant independent of δ.

Let ξ denote the makespan of the resulting solution to DSA and let c∗ denote the (uniform)
edge capacity. For each h ∈ R, we define the horizontal line ℓh := R × {h}. A job j is said to
be sliced by ℓh if for the computed packing of the jobs it holds that hj < h < hj + dj. Now
we will transform this into Round-SAP or Round-UFP packing.

We define a set of rounds Γ1. The set Γ1 contains a round for each integer i with
0 ≤ i ≤ ⌊ξ/c∗⌋ and this round contains all jobs lying between ℓic∗ and ℓ(i+1)c∗ . In this
case, we define congestion r = ⌈L/c∗⌉ (clearly, r ≤ OPTUF P ≤ OPTSAP ). Thus, |Γ1| ≤
⌊(1 + κε)L/c∗)⌋ + 1 ≤ (1 + κε)r + 1. There are two subcases.

Subcase A: Assume that r > 1/(2κε). In this case |Γ1| ≤ (1 + 3κε)r. We define a set of
rounds Γ2 as follows. For each integer i with 1 ≤ i ≤ ⌊ξ/c∗⌋, Γ2 has a round containing
all jobs that are sliced by ℓic∗ . Thus |Γ2| ≤ ⌊(1 + κε)L/c∗⌋ ≤ (1 + κε)r. Hence, the total
number of rounds is bounded by (2 + 4κε)r ≤ (2 + O(ε))OPTUF P ≤ (2 + O(ε))OPTSAP .
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Subcase B: Assume that r ≤ 1/(2κε). Now ξ ≤ (1+κε)L, and therefore ξ−L ≤ κεL ≤ c∗/2.
Hence, we have |Γ1| ≤ r + 1 and the (r + 1)th round is filled up to a capacity of at most c∗/2
on each edge. Now the total load of the set of jobs that are sliced by (ℓic∗)1≤i≤r is at most
r · ε7L. We now invoke the following result on DSA to this set of jobs.

▶ Theorem 10 ([30]). Let J ′ be a set of jobs with load L. Then a DSA packing of J ′ of
makespan at most 3L can be computed in polynomial time.

Thus the makespan of the computed solution is at most 3r · ε7L ≤ 3 · 1
2κε · ε7 · c∗

2κε ≤ c∗/2,
if ε is small enough. Hence these jobs can be added to the (r + 1)th round of Γ1. Therefore,
we get a packing of J using at most r + 1 ≤ OPTUF P + 1 ≤ OPTSAP + 1 rounds.

4.2 Case 2: dmax > ε7L

For this case, we have c∗ ≥ dmax > ε7L and therefore r = ⌈L/c∗⌉ ≤ 1/ε7. We partition
the input jobs into large and small jobs by defining Jlarge := {j ∈ J |dj > ε56L} and
Jsmall := {j ∈ J |dj ≤ ε56L}.

We start with the small jobs Jsmall. First, we apply Theorem 9 to them with δ := ε8 and
obtain a DSA packing P for them. We transform it into a solution to Round-SAP with at
most r + 1 rounds as follows: we introduce a set Γ1 consisting of r + 1 rounds exactly as in
the previous case (when r ≤ 1/(2κε)). The (r + 1)th round would be filled up to a capacity
of at most κε8L ≤ κεc∗. Again applying Theorem 10 to the remaining jobs, we get a DSA
packing of makespan at most 3r · ε56L ≤ 3 · (1/ε7) · ε56 · (c∗/ε7) ≤ c∗/2, and therefore these
jobs can be packed inside the (r + 1)th round. Hence, there exists a packing of Jsmall using
at most r + 1 ≤ OPTUF P + 1 ≤ OPTSAP + 1 rounds.

Now we consider the large jobs Jlarge. Our strategy is to compute an optimal solution
for them via dynamic programming (DP). Intuitively, our DP orders the jobs in Jlarge
non-decreasingly by their respective source vertices and assigns them to the rounds in this
order. Since the jobs are large, each edge is used by at most 1/ε56 large jobs, and using
interval coloring one can show easily that at most 1/ε56 = Oε(1) rounds suffice (e.g., we can
color the jobs with 1/ε56 colors such that no two jobs with intersecting paths have the same
color). This already gives a packing into at most (2 + ε)OPTUF P + Oε(1) rounds. However,
our DP will return an improved packing with at most (2 + ε)OPTUF P + 1 rounds. In our
DP we have a cell for each combination of an edge e and the assignment of all jobs passing
through e to the rounds. Given this, the corresponding subproblem is to assign additionally
all jobs to the rounds whose paths lie completely on the right of e.

For Round-SAP we additionally want to bound the number of possible heights hj. To
this end, we restrict ourselves to packings that are normalized which intuitively means that
all jobs are pushed up as much as possible. Formally, we say that a packing for a set of jobs
J ′ inside a round is normalized if for every j ∈ J ′, either hj + dj = c∗ or hj + dj = hj′ for
some j′ ∈ J ′ such that Pj ∩ Pj′ ̸= ∅.

▶ Lemma 11. Consider a valid packing of a set of jobs J ′ ⊆ Jlarge inside one round. Then
there is also a packing for J ′ that is normalized.

Now the important insight is that in a normalized packing of large jobs, the height hj

of a job j is the difference of (the top height level) c∗ and the sum of at most 1/ε56 jobs in
Jlarge. Thus, the number of possible heights is bounded by nO(1/ε56) and we can compute all
these possible heights before starting our DP.
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▶ Lemma 12. Given Jlarge we can compute a set H of nO(1/ε56) values such that in any
normalized packing of a set J ′ ⊆ Jlarge inside one round, the height hj of each job j ∈ J ′ is
contained in H.

Now we can compute the optimal packing via a dynamic program as described above,
which yields the following lemma.

▶ Lemma 13. Consider an instance of Round-UFP or Round-SAP with a set of jobs J ′

satisfying the following conditions:
(i) The number of jobs using any edge is bounded by ω.
(ii) In the case of Round-SAP there is a given set H′ of allowed heights for the jobs.

Then we can compute an optimal solution to the given instance in time (n|H′|)O(ω).

We invoke Lemma 13 with J ′ := Jlarge, ω = 1/ε56, and in the case of Round-SAP we
define H′ to be the set H due to Lemma 12. This yields at most OPTUF P rounds in total for
the large jobs Jlarge. Hence, we obtain a packing of J using at most 2 · OPTUF P + 1 rounds.

Case 1 and 2 together imply a packing into at most (2 + ε)OPTUF P + 1 rounds. This
yields our main theorem for the case of uniform edge capacities.

▶ Theorem 14. For any ε > 0, there exist asymptotic (2 + ε)-approximation algorithms for
Round-SAP and Round-UFP, assuming uniform edge capacities.

We now derive some bounds on the absolute approximation ratios. If OPTSAP = 1, our
algorithm would return a packing using at most (2 + ε) · 1 + 1 rounds, and hence at most 3
rounds. If OPTSAP ≥ 2, then our algorithm uses at most (2 + ε) · OPTSAP + OPTSAP /2 =
(2.5 + ε)OPTSAP rounds. Hence, we obain the following result.

▶ Theorem 15. There exists a polynomial time 3-approximation algorithm for Round-SAP,
assuming uniform edge capacities.

For Round-UFP, it is easy to check whether OPTUF P = 1 by checking whether L ≤ c∗.
Otherwise, OPTUF P ≥ 2 and similar as above, the number of rounds used would be at most
(2.5 + ε) · OPTUF P . This gives an improvement over the result of Pal [49].

▶ Theorem 16. For any ε > 0, there exists a polynomial time (2.5 + ε)-approximation
algorithm for Round-UFP, assuming uniform edge capacities.

5 General Case

In this section, we present our algorithms for the general cases of Round-UFP and Round-
SAP. We begin with our O(log log min{n, m})-approximation algorithms where we consider
Round-UFP first and describe later how to extend our algorithm to Round-SAP. We
split the input jobs into large and small jobs. For each job j, we denote by bj the minimum
capacity of the edges in Pj, i.e., min{ce : e ∈ Pj}. We call bj the bottleneck capacity of the
job j. We define Jlarge := {j ∈ J |dj > bj/4} and Jsmall := {j ∈ J |dj ≤ bj/4}. For the small
jobs, we invoke a result by Elbassioni et al. [21] that yields a 16-approximation.

▶ Theorem 17 ([21]). We are given an instance of Round-UFP with a set of jobs J ′ such
that dj ≤ 1

4bj for each job j ∈ J ′. Then there is a polynomial time algorithm that computes a
16-approximate solution to J ′.
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Figure 2 (a) The capacity profile along with the sets of lines H and V and some top-drawn jobs;
(b) The jobs after processing;

Now consider the large jobs Jlarge. For each job j ∈ Jlarge, we define a rectangle
Rj = (sj, bj − dj) × (tj, bj). Note that Rj corresponds to the rectangle for j in Round-
SAP if we assign j the maximum possible height hj (which is hj := bj − dj). We say that a
set of jobs J ′ ⊆ Jlarge is top-drawn (underneath the capacity profile), if their rectangles are
pairwise non-overlapping, i.e., if Rj ∩Rj′ = ∅ for any j, j′ ∈ Rj. If a set of jobs J ′ is top-drawn,
then it clearly forms a feasible round in Round-UFP. However, not every feasible round of
Round-UFP is top-drawn. Nevertheless, we look for a solution to Round-UFP in which
the jobs in each round are top-drawn. The following lemma implies that this costs only a
factor of 8 in our approximation ratio.

▶ Lemma 18 ([10]). Let J ′ ⊆ Jlarge be a set of jobs packed in a feasible round for a given
instance of Round-UFP. Then J ′ can be partitioned into at most 8 sets such that each of
them is top-drawn.

Let Rlarge := {Rj|j ∈ Jlarge} denote the rectangles corresponding to the large jobs and
let ωlarge be their clique number, i.e., the size of the largest set R′ ⊆ Rlarge such that all
rectangles in R′ pairwise overlap. As a consequence of Helly’s theorem 3 for such a set of
axis-parallel rectangles R′ there must be a point in which all rectangles in R′ overlap. Note
that we need at least ωlarge rounds since we seek a solution with only top-drawn jobs in each
round.

We first reduce the original instance to the case where there are only O
(
m2)

many
distinct job demands. For each i ∈ {1, . . . , m}, let pi denote the point (i, cei). We draw a
horizontal and a vertical line segment passing through pi and lying completely under the
capacity profile (see Figure 2(a)). This divides the region underneath the capacity profile
into at most m2 regions. Let H denote the set of horizontal lines and V denote the set of
vertical lines drawn. Thus, the top edge of any rectangle corresponding to a large job must
touch a line in H. Now consider any rectangle Rj corresponding to a job j. Let h ∈ H be the
horizontal line segment lying just below the bottom edge of Rj. We increase the value of dj

so that the the bottom edge of Rj now touches the line segment h (see Figure 2(b)). Since
the rectangles were top-drawn, the clique number of this new set of large rectangles (denoted
by R′

large) does not change. Also any feasible packing of R′
large is a feasible packing of Rlarge.

Note that R′
large contains at most m4 distinct types of jobs: the endpoints sj and tj can

be chosen in
(

m+1
2

)
≤ m2 ways and the top and bottom edges of Rj must coincide with two

lines from H, which can be again chosen in
(

m
2
)

≤ m2 ways. Let U denote the number of
types of job of the given instance and let R′

large = J1 ∪ J2 ∪ . . . ∪ JU be the decomposition of
R′

large into the U distinct job types.

3 Project the family of rectangles onto both x and y dimensions. These projections are intervals that
are pairwise intersecting. Helly’s theorem states that a pairwise intersecting set of intervals share a
common point. Then the product of each of these 1 dimensional common intersections is shared by
each of the rectangles.
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We now formulate the configuration LP for this instance. Let C denote the set of all
possible configurations of a round containing jobs from R′

large, drawn as top-drawn sets. For
each C ∈ C, we introduce a variable xC , which stands for the number of rounds having
configuration C ∈ C. We write Jk ◁ C if configuration C contains a job from Jk (note that
C can contain at most one job from Jk). Then the relaxed configuration LP and its dual
(which contains a variable yk for each set Jk) are as follows.

minimize
∑
C∈C

xC maximize
U∑

k=1

|Jk|yk

subject to
∑

C:Jk◁C

xC ≥ |Jk|, k = 1, . . . , U subject to
∑

k:Jk◁C

yk ≤ 1, C ∈ C

xC ≥ 0, C ∈ C yk ≥ 0, k = 1, . . . , U

The dual LP can be solved via the ellipsoid method with a suitable separation oracle. We
interpret yk as the weight of each job in Jk. Given (yk)k∈{1,...,U}, the separation problem
asks whether there exists a configuration where jobs are drawn as top-drawn sets and the
total weight of all the jobs in the configuration exceeds 1. For this, we invoke the following
result of Bonsma et al. [10].

▶ Theorem 19 ([10]). Given an instance of UFP with a set of jobs J ′, the maximum-weight
top-drawn subset of J ′ can be computed in O

(
nm3)

time.

Let (x∗
C)C∈C be an optimal basic solution of the primal LP. By the rank lemma, there are

at most U configurations C for which x∗
C is non-zero. For each non-zero x∗

C , we introduce ⌊x∗
C⌋

rounds with configuration C, thus creating at most 8 · OPTUF P rounds (due to Lemma 18).
Now let R′′

large ⊆ R′
large be the large jobs that are yet to be packed and let ω′′

large be their
clique number (and note that ω′′

large ≤ 8 · OPTUF P ). In particular, a feasible solution to the
configuration LP for the rectangles in R′′

large is to select one more round for each configuration
C with x∗

C > 0. Therefore, we conclude that ω′′
large ≤ U ≤ m4 since there are at most U

configurations C with x∗
C > 0 and for each point, each configuration contains at most one

rectangle covering this point.
Our strategy is to invoke the following theorem on R′′

large.

▶ Theorem 20 ([12]). Given a set of rectangles with clique number ω, in polynomial time, we
can compute a coloring of the rectangles using O(ω log ω) colors such that no two rectangles
of the same color intersect.

Thus, if ω′′
large = O(log m) then we obtain an O(log log m)-approximation as desired.

However, it might be that ω′′
large is larger. In that case, we partition R′′

large into ω′′
large/ log m

sets, such that each of them has a clique size of O(log m).

▶ Lemma 21. There is a randomized polynomial time algorithm that w.h.p. computes a
partition R′′

large = R1∪̇...∪̇Rω′′
large/ log m such that for each set Ri, the corresponding clique

size is at most O(log m).

Proof. We split the rectangles R′′
large uniformly at random into ω′′

large/ log m sets
R1, . . . , Rω′′

large/ log m. Thus the expected clique size in each set Ri at any point p un-
der the profile is at most log m. Using the Chernoff bound, the probability that the clique
size at p is more than 8 log m is at most 2−8 log m = 1/m8. As before, we draw the set of
horizontal and vertical lines H and V, respectively, under the capacity profile, dividing the
region underneath the profile into at most m2 regions. Clearly, the clique number must
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be the same at all points inside any such region. Thus the probability that there exists
a point p under the capacity profile where the clique size is more than 8 log m is at most
m2/m8 ≤ 1/m6. Hence using union bound, probability that clique size is more than 8 log m

at some point in some set Ri is at most 1/m2 (since ω′′
large ≤ m4). ◀

We apply Theorem 20 to each set Ri separately and thus obtain a coloring
with O(log m log log m) colors. Thus, for all sets Ri together we use at most
ω′′

large
log m O(log m log log m) = O(ω′′

large log log m) colors. We pack the jobs from each color
class to a separate round for our solution to Round-UFP. This yields an O(log log m)-
approximation, together with Theorem 17. Since m ≤ 2n − 1 after our preprocessing, our
algorithms are also O(log log n)-approximation algorithms.

▶ Theorem 22. There exists a randomized O(log log min{n, m})-approximation algorithm
for Round-UFP for general edge capacities.

In order to obtain an algorithm for Round-SAP, we invoke the following lemma due
to [45] to each round of the computed solution to Round-UFP.

▶ Lemma 23 ([45]). Let J ′ be the set of jobs packed in a feasible round for a given instance
of Round-UFP. Then in polynomial time we can partition J ′ into O(1) sets and compute a
height hj for each job j ∈ J ′ such that each set yields a feasible round of Round-SAP.

This yields a solution to Round-SAP with only O(OPTUF P log log m) ≤
O(OPTSAP log log m) many rounds.

▶ Theorem 24. There exists a randomized O(log log min{n, m})-approximation algorithm
for Round-SAP for general edge capacities.

5.1 An O(log log 1
δ
)-approximation algorithm with (1 + δ)-resource

augmentation
We show that if we are allowed a resource augmentation of a factor of 1 + δ for some δ > 0,
we can get an O(log log 1

δ )-approximation for both Round-SAP and Round-UFP.
Consider Round-UFP first. Recall that bj denotes the bottleneck capacity of job j, i.e.

min{ce : e ∈ Pj}. For each i ∈ N we define the set J (i) := {j ∈ J | bj ∈ [1/δi, 1/δi+1)} and
consider one resulting set J (i). By definition no job in J (i) uses an edge whose capacity is
less than 1/δi. Also, we can assume that the capacity of each edge is at most 2/δi+1 since
for each edge e with a capacity of more than 1/δi+1, each jobs using it must also use the
closest edge on the left or on the right of e with a capacity of at most 1/δi+1. Thus, in a
feasible round, e is used by jobs from J (i) with a total demand of at most 2/δi+1. Thus, via
scaling we can assume that the edge capacities are in the range [1, 2/δ) if our input consists
of J (i) only.

▶ Lemma 25. Let J (i) := {j ∈ J | bj ∈ [1/δi, 1/δi+1)}. For packing jobs in J (i), it can be
assumed that the capacity of each edge lies in the range [1/δi, 2/δi+1).

Hence using the following theorem, we get a O(log log 1
δ )-approximate solutions for each J (i),

which in particular uses at most O(OPTUF P log log 1
δ ) rounds.

▶ Theorem 26 ([35]). There is a polynomial time O(log log cmax
cmin

)-approximation algorithm
for Round-UFP.
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Next, we argue that we can combine the rounds computed for the sets J (i). More precisely,
we show that if we take one round from each set J (0), J (2), J (4), ... and form their union, then
they form a feasible round for the given instance under (1 + δ)-resource augmentation: as
argued above, each set J (i) uses at most a capacity of 2/δi+1 on each edge e in any feasible
round. Also, if an edge e is used by a job from a set J (i′) for an even i′ ∈ N in a feasible round,
then e has a capacity of at least 1/δi′ . Therefore, if we have (1 + 2δ)-resource augmentation
available, then by a geometric sum argument the gained capacity on e is enough for one
round of each of the sets J (i′−2), J (i′−4), J (i′−6), ... .

With a similar argumentation we can show that we obtain a feasible solution if we take
one round from each set J (1), J (3), J (5), . . . .

▶ Lemma 27. Take one computed round for each set J (2k) with k ∈ N or one computed
round from each set J (2k+1) with k ∈ N, and let J ′ be their union. Then J ′ is a feasible
round for the given instance of Round-UFP under (1 + δ)-resource augmentation.

Thus, due to Lemma 27 we obtain a solution with at most O(OPTUF P log log 1
δ ) rounds

for the overall instance. As earlier, we take the given Round-UFP solution and apply
Lemma 23 to it, which yields a solution to Round-SAP with at most O(OPTSAP log log 1

δ )
rounds.

▶ Theorem 28. There exists an O(log log 1
δ )-approximation algorithm for Round-SAP and

Round-UFP for general edge capacities and (1 + δ)-resource augmentation.

6 Algorithms for the no-bottleneck-assumption

In this section, we present a (16 + ε)-approximation algorithm for Round-SAP and a
12-approximation for Round-UFP, both under the no-bottleneck-assumption (NBA).

6.1 Algorithm for Round-SAP
For our algorithm for Round-SAP under NBA, we first scale down all job demands and
edge capacities so that cmin := mine∈E ce = 1 (note that this implies that dj ≤ 1 for each job
j ∈ J). Then, we scale down all edge capacities to the nearest power of 2 and let (c′

e)e∈E

denote the new edge capacities. Define a set of horizontal lines L := {ℓ2k |k ∈ N}. Let
OPT ′

SAP denote the optimal solution for the rounded down capacities (c′
e)e∈E under the

additional constraint that there must be no job whose rectangle intersects a line in L.
It can be shown that given a valid Round-SAP packing P of a set of jobs J ′ for the edge

capacities (ce)e∈E , there exists a valid packing of J ′ into 4 rounds R1, R2, R3, R4, under profile
(c′

e)e∈E such that no job is sliced by a line in L. This implies that OPT ′
SAP ≤ 4 · OPTSAP .

We shall now obtain a valid packing of J for the edge capacities (c′
e)e∈E . Let c′

max :=
maxe∈E c′

e and for each i ∈ {0, 1, . . . , log c′
max} let J (i) ⊆ J denote the set of jobs with

bottleneck capacity 2i according to (c′
e)e∈E . For each set J (i) we create a new (artificial)

instance with uniform edge capacities: in the instance for J (0) all edges have capacity 1, and
for each i ∈ {1, 2, . . . , log c′

max} in the instance for J (i) all edges have capacity 2i−1. For each
i ∈ {0, 1, 2, . . . , log c′

max}, denote by OPT (i) the number of rounds needed in the optimal
solution to the instance for J (i). Since in the solution OPT ′

SAP , no rectangle is intersected
by a line in L, for each set J (i) we can easily rearrange the jobs in J (i) in OPT ′

SAP such that
we obtain a solution for J (i) with at most 2 · OPT ′

SAP rounds.
For each set J (i) we invoke our asymptotic (2 + ε)-approximation algorithm for Round-

SAP for uniform edge capacities (see Section 4) and obtain a solution Γ(i) which hence uses
Γ(i) ≤ (2 + ε) · OPT (i) + 1 ≤ (4 + O(ε)) · OPT ′

SAP + 1 ≤ (16 + O(ε)) · OPTSAP + 1 rounds.
Finally, we combine the solutions Γ(i) for all i ∈ {0, 1, 2, . . . , log c′

max} to one global solution
of J , which uses at most max(i){Γ(i)} many rounds. Hence we have the following theorem.
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▶ Theorem 29. For any ε > 0, there exists a polynomial-time asymptotic (16 + ε)-
approximation and an absolute 17-approximation algorithm for Round-SAP under the
NBA.

6.2 Algorithm for Round-UFP

In this section, we present a 12-approximation for Round-UFP under NBA. In Round-UFP,
it is not clear how to bootstrap the algorithm for the uniform case as we did for Round-SAP,
since in the optimal solution it might not be possible to draw the jobs as non-overlapping
rectangles. Instead, our algorithm refines combinatorial properties from [21] to obtain an
improved approximation ratio.

For any edge e, we define the congestion re := ⌈le/ce⌉, and r = maxe re denotes the
maximum congestion of any edge of the path. A result in [48] states that for the special case
when all jobs have identical demands and all edge capacities are integral multiples of the
demand, a Round-UFP packing using r rounds can be found efficiently.

Via scaling, we assume that cmin = 1 and the demand of each job is at most 1. Let
Jlarge := {j ∈ J | dj > 1/2} and Jsmall := J \ Jlarge. For jobs in Jlarge, applying the result
due to [48] after scaling up all the demands to 1 and scaling down the capacity of each edge
to the nearest integer directly yields a packing using at most 4r rounds.

Now for each job j ∈ Jsmall, we round up its demand to the next larger power of 1/2.
For each i ∈ N, let J (i) denote the set of jobs whose demands after rounding equal 1

2i . For
each edge e and each i ∈ N, we define ne,i := |{j ∈ J (i) | e ∈ Pj}|. We partition each
set J (i) into the sets J ′(i) = {j ∈ J (i) | ∃e ∈ Pj : ne,i < 2r} and J ′′(i) = J \ J ′(i). Let
n′

e,i := |{j ∈ J ′(i) | e ∈ Pj}| and n′′
e,i := |{j ∈ J ′′(i) | e ∈ Pj}|. Clearly, n′

e,i < 4r for each edge
e and each i.

Since there are at most 4r jobs from each J ′(i) over any edge, the jobs in
⋃

i J ′(i) can be
easily packed into 4r rounds using interval coloring. For the jobs in

⋃
i J ′′(i), we partition

the available capacity inside each round among the sets J ′′(i); formally for each edge e, we
reserve a capacity of 1

2i ·
⌊ ne,i

2r

⌋
for J ′′(i) (note

∑
i

1
2i

⌊ ne,i

2r

⌋
≤ ce). The resulting congestion of

any edge having non-zero capacity is
1

2i n′′
e,i

1
2i ⌊ ne,i

2r ⌋ ≤
ne,i

2r

⌊ ne,i
2r ⌋ · 2r ≤ 4r. Thus using the algorithm

due to [48], jobs in J ′′(i) can be packed into at most 4r rounds with these capacities. Hence
we obtain a valid packing of Jsmall using at most 4r + 4r = 8r rounds.

We thus have the following theorem.

▶ Theorem 30. There exists a polynomial-time 12-approximation algorithm for Round-UFP
under the NBA.

7 Algorithms for Round-Tree

Extending the results for Round-UFP, using results on path coloring [24] and multicom-
modity demand flow [14], we obtain the following results for Round-Tree (we refer the
reader to the full version of this paper for details).

▶ Theorem 31. For Round-Tree, there exists a polynomial-time asymptotic (resp. absolute)
5.1- (resp. 5.5-) approximation algorithm for uniform edge capacities and an asymptotic
(resp. absolute) 49- (resp. 55-) approximation algorithm for the general case under the NBA.
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Abstract

Network flow is one of the most studied combinatorial optimization problems having innumerable
applications. Any flow on a directed acyclic graph G having n vertices and m edges can be
decomposed into a set of O(m) paths. The applications of such a flow decomposition range from
network routing to the assembly of biological sequences. However, in some applications, each solution
(decomposition) corresponds to some particular data that generated the original flow. Given the
possibility of multiple optimal solutions, no optimization criterion ensures the identification of the
correct decomposition. Hence, recently flow decomposition was studied [RECOMB22] in the Safe
and Complete framework, particularly for RNA Assembly. The proposed solution reported all the
safe paths, i.e., the paths which are subpath of every possible solution of flow decomposition.

They presented a characterization of the safe paths, resulting in an O(mn+outR) time algorithm
to compute all safe paths, where outR is the size of the raw output reporting each safe path explicitly.
They also showed that outR can be Ω(mn2) in the worst case but O(m) in the best case. Hence, they
further presented an algorithm to report a concise representation of the output outC in O(mn+outC)
time, where outC can be Ω(mn) in the worst case but O(m) in the best case.

In this work, we study how different safe paths interact, resulting in optimal output-sensitive
algorithms requiring O(m + outR) and O(m + outC) time for computing the existing representations
of the safe paths. Our algorithm uses a novel data structure called Path Tries, which may be of
independent interest. Further, we propose a new characterization of the safe paths resulting in the
optimal representation of safe paths outO, which can be Ω(mn) in the worst case but requires optimal
O(1) space for every safe path reported. We also present a near-optimal algorithm to compute all
the safe paths in O(m + outO log n) time. The new representation also establishes tighter worst case
bounds Θ(mn2) and Θ(mn) bounds for outR and outC (along with outO), respectively.

Overall we further develop the theory of safe and complete solutions for the flow decomposition
problem, giving an optimal algorithm for the explicit representation, and a near-optimal algorithm
for the optimal representation of the safe paths.
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1 Introduction

Network flow is one of the most studied problems in theoretical computer science with
innumerable applications. For a flow network with a unique source s and a unique sink t,
every valid flow can be decomposed into a set of weighted s-t paths and cycles [7]. For a
directed acyclic graph (DAG) such a decomposition contains only paths. Such path (and
cycle) view of a flow indicates how information optimally passes from s to t, being a key step
in network routing problems (e.g. [10, 6, 9, 15]), transportation problems (e.g. [16, 17]), or
in the more recent and prominent application of reconstructing biological sequences (RNA
transcripts, see e.g. [18, 23, 8, 5, 22, 27], or viral quasi-species genomes, see e.g. [2, 1]).

Finding the minimum flow decomposition (i.e., having the minimum number of paths
and cycles) is NP-hard, even if the flow network is a DAG [25]. This hardness result led to
research on approximation algorithms [9, 21, 19, 15, 3], and FPT algorithms [12]. Practical
approaches usually employ the standard greedy width heuristic [25], repeatedly removing
an s-t path carrying the most amount of flow. Recently, another pseudo-polynomial-time
heuristic was proposed [20] for biological data, which tries to iteratively simplify the graph
such that the flow decomposition problem can be solved locally at some vertices.

In the routing and transportation applications, an optimal flow decomposition indicates
how to send some information from s to t, and thus any optimal decomposition is satisfactory.
However, this is not the case in the prominent application of reconstructing biological
sequences, since each flow path represents a reconstructed sequence: a different optimal set
of flow paths encodes different biological sequences, which may differ from the real ones.
For a concrete example, consider the following application. In complex organisms, a gene
may produce more RNA molecules (RNA transcripts, i.e., strings over an alphabet of four
characters), each having a different abundance. Currently, given a sample, one can read
the RNA transcripts and find their abundances using high-throughput sequencing [26]. This
technology produces short overlapping substrings of the RNA transcripts. The main approach
for recovering the RNA transcripts from such data is to build an edge-weighted DAG from
these fragments and to transform the weights into flow values by various optimization criteria,
and then to decompose the resulting flow into an “optimal” set of weighted paths (i.e., the
RNA transcripts and their abundances in the sample) [14]. Clearly, if there are multiple
optimal flow decomposition solutions, then the reconstructed RNA transcripts may not match
the original ones, and thus be incorrect. Thus, the best possible solution is to find whatever
can be safely reported as being correct.

1.1 Problem Definition and Related Work
Recently, Ma et al. [13] were the first to address the issue of multiple solutions to the flow
decomposition problem, under a probabilistic framework. Later, they [28] solve a problem
(AND-Quant), which, in particular, leads to a quadratic-time algorithm for the following
problem: given a flow in a DAG, and edges e1, e2, . . . , ek, decide if in every flow decomposition
there is always a decomposed flow path passing through all of e1, e2, . . . , ek. Thus, by taking
the edges e1, e2, . . . , ek to be the edges of a path p, the AND-Quant problem can decide if a
path p (i.e., a given biological sequence) appears in all flow decompositions. This indicates
that p is likely part of some original RNA transcript.

Another popular approach to address the issue of multiple solutions is the safety framework,
which was introduced by Tomescu and Medvedev [24] for the genome assembly problem
from bioinformatics. For a problem admitting multiple solutions, a partial solution is said to
be safe if it appears in all solutions to a problem. For the flow decomposition problem, a
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path p is safe if for any flow decomposition into paths P = {p1, . . . , pk}, it holds that p is a
subpath of some pi. Considering the weight, a path p is further called w-safe if, in any flow
decomposition, p is a subpath of some path(s) in Pf whose total weight is at least w.

Khan et al. [11] built upon the AND-Quant problem by addressing flow decomposition
under the safety framework. They presented a local characterization of safe flow paths
as compared to the global characterization of AND-Quant. It was directly adaptable to
give an optimal verification algorithm, and a simple enumeration algorithm enumerating
all safe paths in O(mn + out) time by applying the characterization on a candidate flow
decomposition using the standard two pointer algorithm1. They presented the maximal safe
paths out in two formats, the raw output outR reported each safe path explicitly, and a
concise representation outC which combined the safe paths occurring contiguously in the
candidate flow decomposition. Using a worst case example they also proved that the size
of outR can be Ω(mn2) in the worst case and O(m) in the best case, whereas that of outC

can be Ω(mn) in the worst case and O(m) in the best case. However, in their solution the
concise representation of the solution depends on the underlying candidate solution used,
which hence does not optimize the concise representation. Moreover, they did not address
whether the concise representation is the most succinct approach to represent the safe paths.

1.2 Our results
Our main contributions can be described as follows:
1. Merge-Diverge Property of safe paths. We develop the theory of safe paths for flow

decomposition further by studying the conditions for interaction of safe paths. We prove
that two safe paths cannot merge at a vertex (or a set of vertices) and later diverge.

2. Optimal output-sensitive enumeration algorithms for the current representa-
tions. We use the merge-diverge property to present optimal output-sensitive algorithms
for enumerating all safe paths explicitly in O(m + outR) time and their optimal concise
representation in O(m + outC) time. Our algorithms uses a novel application of the Trie
on paths, referred as Path Tries which may be of independent interest.

3. Optimal representation of safe paths. We present a novel characterization of safe
paths outO allowing us to represent a safe path optimally, requiring O(1) space for every
reported path.
▶ Remark 1. In the worst case both concise representation outC [11] and our optimal
representation outO may require Ω(mn) space, however space required per reported path
can be much larger for outC than the optimal O(1) of outO.

4. Near optimal algorithm for the optimal output format. We present an algorithm
to report all safe paths using the optimal representation in O(m + outO log n) time.

5. Tighter worst case bounds on outR and outC . Our characterization allows us to
prove matching upper bounds for the worst case lower bounds [11] on outR and outC .

2 Preliminary

Consider a directed acyclic flow graph G = (V, E) with |V | = n vertices and |E| = m edges,
where each edge e has a flow (or weight) f(e) passing through it. For simplicity we assume
the graph is connected giving m ≥ n − 1. For each vertex u, fin(u) and fout(u) denotes the

1 Along a sample solution, the keeping the left end at the start, the right end is moved along the solution
as long as the path is safe (evaluated using verification algorithm). This is reported as a maximal safe.
Then right end is extended by an edge making the path unsafe, followed by moving the left pointer
right until it is safe again. The process is repeated to report the next maximal safe path, and so on.

ESA 2022
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total flow on its incoming edges and total flow on its outgoing edges, respectively. A vertex
v in the graph is called a source if fin(v) = 0 and a sink if fout(v) = 0. The set of sources
and sinks of the graph G is denoted by Source(G) and Sink(G) respectively. Every other
vertex v satisfies the conservation of flow fin(v) = fout(v), making the graph a flow graph.

For the vertex u, fmax(·, u) (or fmax(u, ·)) denotes the maximum value of flow on the
incoming edges (or outgoing edges) of u. The corresponding edge is represented by emax(·, u)
(or emax(u, ·)) and its other endpoint (except u) is represented by vmax(·, u) (or vmax(u, ·)).
Note that in case multiple incoming edges (or outgoing edges) have the maximum flow
value, we prefer the edge whose other endpoint (except u) appears first in the topological
order, making emax(·, u) (or emax(u, ·)) and vmax(·, u) (or vmax(u, ·)) distinct. Hence, it is
referred as preferred maximum incoming (or outgoing) edge/vertex. Further, we represent
e∗

max(·, u) (or e∗
max(u, ·)) as the unique maximum incoming (or outgoing) edge if fmax(·, u)

(or fmax(u, ·)) corresponds to exactly one edge making it equal to emax(·, u) (or emax(u, ·)) in
such a case, and null otherwise. We similarly define its other endpoint (except u) v∗

max(·, u)
(or v∗

max(u, ·)) which is called unique maximum incoming (or outgoing) vertex.
For a path p in the graph, |p| represents the number of its edges. A vertex u is called as

being on the left of a vertex v on the path, if v is reachable from u on the path. Similarly, in
such a case the vertex v is called as being on the right of a vertex u on the path. For any path
p (or edge) we define its left extension to be a path created from p by repeatedly prepending
the path with the unique maximum incoming edge of the first vertex of the (updated) path.
Similarly, we define the right extension of a path to be a path created by repeatedly adding
the unique maximum outgoing edge of the last vertex of the (updated) path.

The flow decomposition of G is a set of weighted paths Pf such that the flow on each
edge in the G equals the sum of the weights of the paths containing it. A path p is called
w-safe if, in every possible flow decomposition, p is a subpath of some paths in Pf whose
total weight is at least w. A w-safe path with w > 0, is called a safe flow path, or simply
safe path. A safe path is left maximal (or right maximal) if extending it to the left (or right)
with any edge makes it unsafe. A safe path is maximal if it is both left and right maximal.
The safety of a path can be characterized by its excess flow (see Figure 1) and properties of
safe paths, described as follows.

Figure 1 The excess flow of a path is the incoming or outgoing flow (blue) that passes through
the path despite the flow (red) leaking at its internal vertices (reproduced from [11]).

▶ Definition 2 (Excess flow [11]). The excess flow fp of a path p = {u1, u2, ..., uk} is

fp = f(u1, u2) −
∑

ui∈{u2,...,uk−1}
v ̸=ui+1

f(ui, v) = f(uk−1, uk) −
∑

ui∈{u2,...,uk−1}
v ̸=ui−1

f(v, ui)

where the former and later equations are called diverging and converging criterion, respectively.

▶ Theorem 3 (Safe flow paths [11]). Safety of flow decomposition satisfy the following.
(a) A path p is w-safe iff its excess flow fp ≥ w > 0.
(b) The converging and diverging criteria for a path p = {u1, · · · , uk} are equivalent to

fp =
k−1∑
i=1

f(ui, ui+1) −
k−1∑
i=2

fout(ui) =
k−1∑
i=1

f(ui, ui+1) −
k−1∑
i=2

fin(ui).
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(c) Adding an edge (u, v) to the start or the end of a path in the flow graph, reduces its
excess flow by fin(v) − f(u, v), or fout(u) − f(u, v), respectively.
Additionally, we use the following data structure for answering the level ancestor queries.

▶ Theorem 4 (Level Ancestors [4]). A given tree with n vertices can be preprocessed in O(n)
time to report the level ancestor LA(v, d) for a vertex v at a depth d in O(1) time.

3 Interaction of Safe Paths

The previous work [11] focused on properties of safe paths useful for applying the characteriz-
ation directly in verification and enumeration algorithms. We now explore further properties
of safe walks particularly related to the interaction of safe paths and its consequences.

▶ Lemma 5 (Merge Diverge). Two safe paths cannot merge (through distinct edges) at an
intermediate vertex (or vertices) and then diverge (through distinct edges).

Proof. Let two safe paths p and p′ merge at a vertex v1, entering v1 respectively by distinct
edges e1 and e′

1, and then diverge at a vertex v2, leaving v2 respectively by distinct edges e2
and e′

2 (see Figure 2).

Figure 2 The diverging and converging criterion applied to path p and p′ respectively.

Using Theorem 3(c) we know that removing an edge from the end of a path increases
the excess flow and hence remains safe. Thus, the subpaths {e1 · · · , e2} and {e′

1, · · · , e′
2} of

safe paths p and p′ respectively, are also safe. By diverging criterion of the safe path p we
have f(e1) > f(e′

2). On the other hand, by converging criterion of the safe path p′ we have
f(e′

2) > f(e1), which is a contradiction. ◀

This merge-diverge property has an interesting consequence on the structure of a safe
path having an edge that is not a unique maximum outgoing edge of a vertex.

▶ Lemma 6. Any safe path having an edge e(u, v) ̸= e∗
max(u, ·), can be extended to the left

using only unique maximum incoming edges.

Proof. Consider a path p containing e1(u, v) ̸= e∗
max(u, ·), which extends to the left of u using

edges containing an edge which is not a unique maximum incoming edge e2(x, y) ̸= e∗
max(·, y).

Now, using Theorem 3(c) we know subpath created by removing edges from the end is safe,
as removing such edges only increases the excess flow. Hence, the subpath p : {e2 · · · e1} is
safe. Further, Theorem 3(c) also implies that a path p′ replacing (x, y) with an alternate
e′

2 = emax(·, y), and (u, v) with an alternate e′
1 = emax(u, ·) is also safe, as we replace an

edge with another having at least the same weight. Note that e′
1 and e′

2 always exists since e1
and e2 are not unique maximum edges. Thus, both p : {e2 · · · e1} and p′ : {e′

2 · · · e′
1} are safe

which merge at y and then diverge at u using distinct edges, which is a contradiction. ◀
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Figure 3 Problem with the simplistic approach. While processing the vertex e, we get two safe
paths p1 :< a, b, d, e > and p2 :< a, c, d, e >. As we continue processing to reach h, both p1 and
p2 are extended through f to get p11 :< a, b, d, e, f, h, i > and p21 :< a, c, d, e, f, h, i >. However,
when extending through g both get trimmed to give the same p12, p22 :< d, e, g, h, i >. Further, the
paths p11 and p22 are again extended through j and k (recall the two pointer algorithm) to get four
paths, p111, p211 :< d, e, f, h, i, j, l > and p112, p212 :< d, e, f, h, i, k, l >. Moreover, paths p12, p22

can also be extended through j and k to get p121, p221 :< h, i, j, l > and p122, p222 :< h, i, k, l >.
We thus obtain duplicate paths representing the same safe paths from different sources, and some
non-maximal paths (p122, p222) which are subpath of the other reported paths.

4 Optimal computation of Raw Safe paths

The essential bottle-neck of the previous approach [11] was the use of a candidate flow
decomposition, on whose subpaths the safety criteria was evaluated. The computation of a
candidate flow decomposition itself requires O(mn) time making it suboptimal. In order to
avoid it we are required to process the graph in a structured manner. Given the graph is a
DAG, the topological ordering of the graph serves this purpose.

A simple approach is to follow the topological order and maintain all maximal safe paths
ending at the currently processed vertex explicitly. And use the two pointer algorithm to
extend it as we continue processing the vertices in the topological order. However, to avoid
duplicate and non-maximal results we need to identify the common suffixes of the safe paths,
which can be processed accordingly (see Figure 3). Fortunately, for strings the data structure
Trie (considered on reversed strings) serves exactly for the same purpose which motivates us
to use Tries for storing all the left maximal safe paths ending at a vertex as follows.

4.1 Data structures Tu and Lu

We build a Trie structure Tu treating the reverse paths ending at a vertex u as strings, such
that the common suffixes of the paths are combined. Note that a vertex v can appear multiple
times in the Path Trie, if multiple paths containing v do not share v in their common suffix.

All left maximal safe paths ending at a vertex u are hence maintained in Tu. Additionally,
we maintain a linked list Lu of the leaves of Tu along with the path’s corresponding excess
flow, i.e. Lu = {(v1, f1), (v2, f2), · · · }. Consider Figure 4, we show the path tries at the
vertices e, i and l for the graph shown in Figure 3. Note that the leaves represent the left
maximal safe paths without repetition or storing subpaths as in the simplistic approach.

4.2 Algorithm
The main idea behind our approach is to uniquely extend each safe path ending at a vertex
to its preferred maximum out-neighbour in constant time associated with each edge. For
the rest of the out-neighbours, we can build their safe paths from scratch at the expense
of the path length. This requires us to process the vertices in the topological order of the
graph, such that all the safe paths ending at a vertex are computed before it is processed.
We maintain the left maximal safe paths ending at a vertex u in the Path Trie Tu and the
list of safe paths Lu. Our algorithm uses optimal O(m + outR) time, where outR is the size
of the raw output, i.e., each safe path stored explicitly, which is optimal.
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Figure 4 Path Trie structure storing the left maximal paths ending at vertices (a) Te with Le,
(b) Ti and Li, and (c) Tl and Ll.

Algorithm 1 describes our approach, where vertices are processed in topological order
such that while processing a vertex u, all the left maximal safe paths ending at u (along with
their excess flow) are stored in Tu and Lu. While processing u all its safe paths are evaluated
for a possible extension to its preferred maximum outgoing neighbour v∗ = vmax(u, ·), which
always exists except when u is a sink. Note that v∗ is not the unique maximum outgoing
neighbour (v∗

max(u, ·)) rather preferred (vmax(u, ·)), so that Tu can be used to extend to some
vertex in case there is no unique maximum. Additionally, when u is a source, we have an
empty Tu, so we have no safe paths to extend. Hence, for the other cases we check all paths
in Lu for possible extension to v∗ using Theorem 3(c). For this we add the complete Tu as a
child of Tv. Thereafter, we need to trim the prefixes of paths in Tv∗ which are not safe and
compute the list of safe paths Lv∗ . Further, we need to add the safe paths using every other
outgoing edge (u, v) (v ̸= v∗) in the corresponding Tv.

We now process each path in Lu. The paths which are not safe on extending to (u, v∗)
are clearly right-maximal (and hence maximal), and hence are reported in the solution Sol.
We extend all the paths in Lu with (u, v∗), and add their maximal suffixes which are safe to
Tv∗ . Note that the entire path may be safe or at least the edge (u, v∗) is safe. So we start
trimming Tv∗ until the path is safe. This is done by maintaining in fx the excess flow of the
path from x to v∗, where fx is updated using Theorem 3(c). When (u, v∗) is added fx may
become negative in which case the path is trimmed from the left until fx is positive. Now,
since in a Trie an edge can be shared by multiple paths having a common suffix, we trim the
edge only if it is a leaf, and similarly add to Lv∗ only if it starts from a leaf. Hence, multiple
paths from Lv will not add the same safe path to Lv∗ as it will start from a leaf only when
the last such path is processed. This also avoids adding a non-maximal path which is a
subpath of another safe path.

Finally, we need to add the safe paths to non-preferred maximum outgoing neighbours,
which by Lemma 6 is always on a single path containing the unique maximum incoming
edges. We thus compute the single safe left extension for all such neighbours explicitly using
Theorem 3(c). We do this again by maintaining the excess flow of the path from x to v in fx.
As we start the path is a single edge with fx necessarily positive, where we continue adding
the preferred maximum incoming edge to the left until fx is negative. Note that we do not
insist on a unique maximum incoming edge as required by Lemma 6 as the flow fx will itself
become negative if the preferred maximum incoming edge is not unique.

ESA 2022
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Algorithm 1 Optimally Computing Raw representation of Safe Paths.

Compute Topological Order of G

forall u ∈ V in topological order do
Compute-Safe(u)

Compute-Safe(u):
if u /∈ Sink(G) ∪ Source(G) then

v∗ ← vmax(u, ·)
else v∗ ← null

if u ∈ Source(G) then Initialize Tu with u

forall (u, v) ∈ G, v ̸= v∗ do // new paths
Add (u, v) to Tv

x← u, fx ← f(u, v)
while x /∈ Source(G) and fx − fin(x) +

fmax(·, x) > 0 do
Add emax(·, x) to Tv

fx ← fx − fin(x) + fmax(·, x)
x← vmax(·, x)

Add (x, fx) to Lv

if v∗ ̸= null then
Make Tu as child of v∗ in Tv∗

forall (x, fx) ∈ Lu do // Process Tu

if v∗ = null or fx − fout(u) + f(u, v∗) ≤ 0
then

p← Extract path from x to u in Tu

Add (p, fx) to Sol
if v∗ ̸= null then

fx ← fx − fout(u) + f(u, v∗)
while fx ≤ 0 and x is leaf of Tv∗ do

y ← Parent of x in Tv∗

fx ← fx + fin(y)− f(x, y)
Remove (x, y) from Tv∗

x← y

if x is a leaf in Tv∗ then
Add (x, fx) to Lv∗

4.3 Correctness
We prove the correctness of the algorithm by induction over the topological order of the
graph. The underlying invariant is as follows:

After Compute-Safe(u) is executed, all left maximal safe paths having starting vertex
and the internal vertices with topological order up to u, are stored in corresponding Tv and Lv.
Also, all maximal safe paths ending at vertices with topological order up to u, are reported in
Sol.

The base case is trivially true when no vertices are processed, as no safe paths exist.
Now, when we start processing u, using the invariant we know all the left maximal safe paths
not having u as internal vertex, and all the maximal safe paths ending at the vertex with
topological order less than u are already in Sol. So we need to process only the left maximal
paths having u, which necessarily have the last internal vertex as u, and all the maximal safe
paths ending at u must be added to Sol. The prefix (not necessarily proper) of both these
kinds of paths up to u, are clearly safe (using Theorem 3(c)) and hence are present in Tu

and Lu by the invariant.
Now, all the left maximal safe paths are checked for a possible extension to v∗ by

construction, and for the remaining out-neighbours we explicitly add the single safe path
possible (Lemma 6). Further, all the paths in Lu are checked for being maximal and added
to Sol in such a case. Note that processing the vertices in the topological order ensures that
all safe paths ending at u have internal vertices already processed so that the complete path
is present in Tu and Lu before it is processed.

4.4 Analysis
The total time required by the algorithm can be associated with the edges of the graph m or
the total length of safe paths reported, i.e. size of the raw representation of the output outR.
Computing the topological order of the graph requires O(m) time. Now, for each vertex u,
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processing the paths in Lu either extends it to v∗ in O(1) time or reporting a safe path p

and extending its subpath to v∗ in O(|p|) time. In the former case, the length of the safe
path is increased by one (adding u), and the latter case is associated with the length of the
reported path (as each safe path is reported exactly once). For residual out-neighbours, the
time required is proportional to the size of added safe path. Hence we have the following:

▶ Theorem 7. Given a flow graph (DAG) having n vertices and m edges, the set of all safe
paths can be optimally reported in its raw representation in O(m + outR) time.

5 Optimal computation of the optimal Concise Representation

Previous work [11] presented a simple algorithm for computing the concise representation of
the solution. Hence instead of reporting each safe path individually which may have overlaps
among each other, they combined several overlapping safe paths to report a single path p

along with indices representing the subpaths of p which are maximally safe.
However, their concise representation was dependent on the underlying candidate path

decomposition, which may be suboptimal. We shall now present an optimal algorithm for
computing the optimal concise representation of the solution. Our algorithm again uses
Path Tries Tu with a modified version L+

u of the list of safe paths to store the concise
representation.

5.1 Data structures Tu and L+
u

We again build a Trie structure on the reverse paths, whose common suffixes are combined.
Similar to the previous algorithm, it stores all the left maximal safe paths ending at u.

Now, the concise representation of safe paths are reported in the form
{(p1, I1), (p2, I2), · · · }, where each path pi has maximal safe subpaths denoted by inter-
vals Ii = {(l1, r1, f1), (l2, r2, f2), · · · }. Each (lj , rj) and fj denote the corresponding end
vertices of the maximal safe path on pi and its excess flow, respectively. While processing u,
the partial results are maintained in the list L+

u = {(p1, I1), (p2, I2), · · · } where pi are the
partially built concise representation of the safe paths, where the reported paths contain u.
Further, for each Ii the last interval (lj , rj , fj) has rj = u representing the left maximal safe
path ending at u, whereas the remaining intervals are maximal. Note that while processing
u, pi does not include the last path from lj to u.

5.2 Algorithm
The main idea behind our approach is to always attempt to extend a path pi of the concise
representation with the interval corresponding to a safe path that overlaps the most with pi.
Clearly, while extending the left maximal safe paths on u to its out-neighbours, the maximum
such overlap with pi would correspond to the safe path ending at the preferred maximum
outgoing neighbour v∗, which is hence added to pi. However, in case multiple paths pi, pj in
the concise representation add exactly the same safe path pv∗ corresponding to v∗, it is not
optimal to add pv∗ to both pi and pj . In such a case pv∗ can be added to anyone such path
(say pi), and pj will add the maximum overlapping path pv corresponding to some other
out-neighbour v of u, if it exists. If no such neighbour exists, we will report pj in the solution
having the last interval ending at u. And in case the safe path pv′ of some out-neighbour v′ of
u is not accommodated in the existing paths of the concise representation, we add a new path
pv′ to the concise representation. The optimality of our concise representation is guaranteed
by our choice of maximum overlap, ensuring a new path in the concise representation is
always of the minimum length.
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Consider Algorithm 2, similar to the previous algorithm we process each vertex in the
topological order, and when a vertex u is processed its Tu and L+

u have already been computed
by its incoming neighbours. Similar to the previous approach for each out-neighbour v of
u, that is not the preferred maximum out-neighbour of u exactly a single safe path exists
containing the unique maximum incoming edges (Lemma 6). We compute it similar to the
previous algorithm for each v from scratch, and update its corresponding Tv, inserting the
path pv temporarily to L+

v as a new path. This path can potentially be added to some
existing path in L+

u , for which we mark the starting vertex of pv in Tu.
Now, for the unique maximum outgoing neighbour v∗ of u, we add Tu as a child of v∗

in Tv∗ and attempt to extend each path pk in L+
u to v∗ using Theorem 3(c). Similar to the

previous algorithm, this is accompanied by triming the leaves of last interval of pk from Tu if
they are not safe in Tv∗ . Again, if the start of the safe path x for v∗ is no longer a leaf, then
the same safe subpath is shared by some other safe path in L+

u . In such a case we do not
extend pk to v∗, rather either (a) extend it to the out-neighbour v of u having the maximum
overlap (lowest vertex marked in Tu along the last interval of pk) which is not a unique
maximum out-neighbour of u, or (b) terminate pk at u including it as its last interval. Thus,
while processing Tu for each path in L+

u we deal with five distinct cases (see Algorithm 2).

(a) v∗ is null because u ∈ Source(G): The list L+
u is empty and each out-neighbour v

of u is addressed as non-preferred maximum out-neighbour adding the corresponding
edge to their Tv and L+

v computing from scratch.
(b) v∗ is null because u ∈ Sink(G): For all paths in L+

u , the left limit x reaches u (as fx

is always negative and no out-neighbour exists to mark a vertex in Tu), which is hence
updated to include the last interval of Ik and added to Sol.

(c) Path pk is extended to include v∗: The safe path is unique to pk and hence the left
limit of safe path x is always a leaf, terminating as soon as fx > 0 and added to L+

v∗

accordingly. Note that no vertex before reaching fx > 0 could have been marked, as left
limit of v∗ would be the lowest among all out-neighbours of u.

(d) Path pk is extended to include some v ̸= v∗: This is possible only if the safe path
for v∗ is not unique to pk, i.e., x is no longer a leaf. Then maximum overlap is the lowest
vertex along x to u path, to which pk is added accordingly.

(e) Path pk is not extended and reported in Sol: This is possible again when safe
path for v∗ is not unique, so x is no longer a leaf and x reaches u similar to case (b).

5.3 Correctness and Analysis
The optimality of outC is ensured by appending a path in outC with the safe path having
the maximum overlap with the existing path. This is ensured by processing the marked
vertices bottom-up, which represent the start vertex of the safe paths corresponding to the
out-neighbour v of u, which is not a unique maximum out-neighbour of u. This guarantees
that in case the path cannot be uniquely extended to v∗, the vertex v with the maximum
overlap is selected resulting in an optimal concise representation.

The total time taken while processing u is dominated by the processing of L+
u and building

the safe paths for those out-neighbours of u which are not unique maximum out-neighbours
of u, from scratch. Consider the cases (a), (b), (c) and (e), the time taken in processing L+

u

can be easily associated with the length of the path pk in L+
u since it will be reported exactly

once (cases (b) and (e)), and removed from the last interval exactly once (case (c)). Case
(a) is also easy to associate as it increases the corresponding paths in L+

v , and hence can be
associated with its length.
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The only hard case is (d) as it computes the safe path for v from scratch, but extends
it on an existing pk ∈ L+

u which takes more time than the increase in pk. However, note
that this is possible only when the left limit x is no longer a leaf, which implies that the
extra processed path is a common suffix of multiple paths in L+

u . And hence the suffix
was accounted for only once for multiple paths, and now when pk is detached from the
common suffix the cost of the processed path can be associated with that of the detached
path (previously unaccounted being a part of the common suffix). Thus, all the steps can be
accounted for with the length of outC and we get the following.

▶ Theorem 8. Given a flow graph (DAG) having n vertices and m edges, the optimal concise
representation outC of the safe paths can be optimally reported in O(m + outC) time.

Algorithm 2 Optimally Computing concise Representation of Safe Paths.

Compute Topological Order of G

forall u ∈ V in topological order do
Compute-Safe-CompR(u)

Compute-Safe-CompR(u): if u /∈ Sink(G) ∪
Source(G) then

v∗ ← vmax(u, ·)
else v∗ ← null

if u ∈ Source(G) then Initialize Tu with u

forall (u, v) ∈ G, v ̸= v∗ do // new paths
Add (u, v) to Tv

x← u in Tu, fx ← f(u, v)
while x ̸= leaf of Tu and fx − fin(x) +

fmax(·, x) > 0 do
Add emax(·, x) to Tv

fx ← fx − fin(x) + fmax(·, x)
x← vmax(·, x) in Tu

Add (∅, {(x, v, fx)}) to L+
v

Push v to Mark[x]
Add x to M

if v∗ ̸= null then
Add Tu as child of v∗ in Tv∗

forall (pk, Ik) ∈ L+
u do // Process Tu

(li, u, fi)← Last of Ik, x← li in Tu

if v∗ = null then fx ← −∞
else fx ← fi − fout(u) + f(u, v∗)
while fx ≤ 0 and Mark[x] = ∅ and x ̸= u

do
y ← Parent of x in Tu

if y is not a leaf in Tu then
fx ← fx + fin(y)− f(x, y)
Remove (x, y) from Tu

x← y

p← Path from li to x in Tu

pk ← pk ∪ {p \ {x}}
if fx > 0 then

if li ̸= x then Add (x, v∗, fx) to Ik

else Last of Ik ← (li, v∗, fx)
Add (pk, Ik) to L+

v∗

else
if Mark[x] ̸= ∅ then

v ← Pop from Mark[x]
(∅, Iv)← Pop from L+

v

Add (pk, Iv ∪ Ik) to L+
v

else Add (pk ∪ {x}, Ik) to Sol

forall x ∈M do Clear Mark[x]
Clear M

6 Optimal Representation of Safe paths

The raw representation of the safe paths outR can take Θ(mn2) space and hence time in
the worst case. The previous work [11] presented a concise representation of the safe paths
reporting a combination of the overlapping safe paths along with its indices, requiring total
Θ(mn) space. However, it may not be optimal as the total size of this concise representation
may be much larger than the number of safe paths. We thus present an optimal representation
of the safe path whose size requires Θ(1) space for every safe path reported.
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6.1 Representative edge with left and right extensions
Lemma 6 presents an interesting property about safe paths being extendible in a preferred
way to the left for edges which are not unique maximum outgoing edges of some vertex. We
extend the notion further by considering a representative edge for each safe path such that
the maximal path can always be generated by extending it to the left along unique maximum
incoming edges and to the right along unique maximum outgoing edges as follows.

▶ Theorem 9 (Representative edge). Given a flow graph (DAG), every safe path p can be
described using a representative edge ep, such that p can be constructed by extending ep to the
left along the unique maximum incoming edges and to the right along the unique maximum
outgoing edges.

Proof. Given a maximal safe path p, let e(x, y) ∈ p be the leftmost edge such that e(x, y) ̸=
e∗

max(·, y). If no such edge exists, we define the last edge as the representative edge of p,
where rest of p is along its unique maximum incoming edges (left extension of e) proving the
existence of the representative edge.

Now, by definition the prefix of p on the left of e is along the unique maximum incoming
edges (left extension of e), so we only need to prove that the suffix of p after e is along
the unique maximum outgoing edges (or the right extension of e). We shall prove it by
contradiction, hence assume there exist an edge e′(a, b) ∈ p to the right of e such that
e′(a, b) ̸= e∗

max(a, ·). Clearly, the path e∗
max(·, y) ∪ p[y, a] ∪ e∗

max(a, ·) is also safe using
Theorem 3(c). However, this violates the merge-diverge property (Lemma 5) contradicting
our assumption and proving the existence of e as the representative edge of p. ◀

▶ Remark 10. Every safe path contains a representative edge which is either the last edge
which is also unique maximum incoming edge, or an edge which is not a unique maximum
incoming edge. For the sake of uniformity, in case multiple edges satisfy this property (not
being unique maximum incoming edge) for a safe path p, we consider ep to be the rightmost
such edge.

Note that the safe paths when represented using such a representation requires O(1)
space per safe path to store the representative edge and its two endpoints, where a single
representative edge may store multiple pairs of endpoints representing individual safe paths.
We assume that the unique maximum incoming and outgoing edges of each vertex are known
which can be pre-computed in O(m) time and stored using O(n) space.

6.2 Approach
As described previously in Remark 10, the representative edge e can be either (a) an edge
which is not aunique maximum incoming edge, or (b) a unique maximum incoming edge.
The former case is non-trivial as the edge can represent multiple safe paths, whereas the
latter is trivial as the edge can represent at most one (can be zero) maximal safe path ending
at e. So here we describe only the non-trivial case as trivial can be computed similarly.

Consider Figure 5 (a), where the edge (d, e) is a edge which is not a unique maximum
incoming edge of e. The path < a, b, c, d > is its left extension (along unique maximum
incoming edges), and the path < e, f, g, h > is its right extension (along unique maximum
outgoing edges). Now, once we compute the left and right extensions we can easily compute
all the safe paths represented by (d, e) using two pointer approach in time proportional to
length of the path. We get the maximal safe paths < b, c, d, e, f > and < d, e, f, g, h >.

However, assuming we have pre-computed the left and right extensions we can compute
all the safe paths using binary search along the path in time O(log n) times the number
of safe paths. This can be done by pre-computing the loss for extension along each edge
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Figure 5 Graphs describing (a) the left and right extensions of a representative edge, and (b) the
cumulative losses on extension along each edge.

(Theorem 3(c)) and storing the cumulative value on the edge. Now, we find the safe paths as
follows. Given the flow on (d, e) is 30 we search for the leftmost minimum value greater than
−30 which we find as (b, c) with value −15 giving a left maximal safe path. We make it right
maximal (and hence maximal) by searching for the rightmost minimum value greater than
−30 + 15 = −15 which we find as (e, f), giving our maximal safe path from b to f using two
binary searches. Now, to find the next maximal we extend it to right including (f, g) and
again find the left maximal on −30 + 20 as (d, e), and thereafter right maximal on −30 + 0 as
(g, h), giving the second maximal safe path from d to h using another two binary searches.

6.3 Data structures
As described in our approach above we require pre-computed left and right extensions for
each edge along with the cumulative losses on each edge for efficient search of the maximal
safe paths. This can be efficiently computed by building all possible left and right extensions
separately which will form two forests corresponding to all unique maximum incoming and
outgoing edges. Further for O(1) time access to elements on these forests for binary search
we require the classical Level ancestor data structure.

1. Unique maximum incoming and outgoing forests Fi and Fo.
For each vertex in the graph, we add the unique maximum incoming edge (if exists) to
Fi. Clearly, each vertex has at most one incoming neighbour (parent) making Fi a forest.
Similarly, for each vertex, we add the reverse of the unique maximum outgoing edge (if
exists) and Fo. Again, each vertex has at most one incoming neighbour as a parent (as
we added reverse edges), making Fo.
Now, for each vertex v in the forest Fi we store the cumulative loss ci[v] (using The-
orem 3(c)) along the path v to the root of its tree root[Fi(v)]. The cumulative loss for
any subpath from v to u (where u is ancestor of v in Fi), can be simply computed as
ci[u] − ci[v]. Similarly, we store the cumulative loss for each vertex v on Fo in co[v].
The corresponding forests Fi and Fo for Figure 3 are shown in Figure 6. Clearly, these
structures can be computed in O(m) time.

2. Level ancestors LAi and LAo

We use Theorem 4 to compute the data structure on Fi and Fo using O(n) time, for
reporting the level ancestors LAi(v, d) and LAi(v, d) of a vertex v at depth d in O(1)
time.

6.4 Algorithm
We now describe how our approach (described on paths) can be used to compute the optimal
representation of all the maximal safe paths in O(m + outO log n) time.
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Figure 6 For the graph in Figure 3 we show (a) the unique maximum incoming forest Fi and (b)
the unique maximum outgoing forest Fo. Note that l (in Fi) and i (in Fo) do not have a parent in
the absence of corresponding unique maximum edges.

We first address computing all non-trivial safe paths. Consider each edge which is not
unique maximum incoming edge, say e(u, v) ̸= e∗

max(·, u). We use the two pointer algorithm
as described in [11] however in each step we perform a binary search to compute each safe
path in O(log n) time. The binary search computes the excess flow on a path using the values
of co[v], ci[v], and probes an element by considering ancestors of u in Fi and ancestors of v in
Fo which can be directly accessed in O(1) time using LAi and LAo structures. The optimal
output reports a list of pairs of end vertices for maximal safe paths represented by e(u, v).
However, we avoid this algorithm if the maximal safe path containing e is the single edge e,
which is typically not reported. This can be evaluated in O(1) time using Theorem 3(c) in
both left and right directions.

For computing the trivial paths, we need to compute all maximal safe paths containing
only unique maximum incoming edges. We simply look at the leaves of Fi and search for
the left maximal path ending on it, and thereafter continue the search using a modified two
pointer algorithm (using binary search) on its ancestors. However, we need to ensure two
aspects. Firstly, we do not perform a binary search in case there exist no maximal safe path,
which is only possible if (a) f(u, v) > |ci[u]|, implying the entire path to root is safe, and (b)
f(emax(v, ·)) > |ci[v]| implying the path till v is not maximal. In case only (a) is true we
report a single safe path from the root to v, and if both are true we skip the leaf. Secondly,
the two pointer algorithm on internal vertices may repeat the safe paths reported by other
leaves as the internal vertices may be shared. Hence we mark the internal vertices which
have been processed so as to avoid repetition of processing and results.

6.5 Implementation details
For the sake of completeness we now describe the two pointer algorithm using binary search
on Fi and Fo in detail.

The algorithm computes all pairs of end points for safe paths represented by e(u, v) as
follows. It first computes the start of left maximal safe path ending at v by performing a
binary search on the ancestors of u in Fi. It computes the highest ancestor l of u such that
excess flow of l to v is positive, i.e. ci[l] < ci[u] + f(e). This search involves accessing the
ancestor at mid-depth directly in O(1) time using LAi(u, d[u]/2) and so on for the whole
binary search. Thereafter, the algorithm computes the end r of right maximal path starting
from l in ancestors of v in Fo such that excess flow of the path < l, · · · , u, v, · · · , r > is
positive, i.e. highest ancestor of v such that to co[r] < f(e) + ci[u] + co[v] − ci[l]. We record
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[r, l] with the corresponding flow f(e) + ci[u] − ci[l] + co[v] − co[r] as a safe path for e. Then
we find the next start of the left maximal path ending at ancestor of r in Fo, i.e., using
f(e) + co[v] − co[r] instead of f(e) in the process described above. This continues until the
left maximal reaches v or the right maximal reaches the root of Fo containing v.

6.6 Correctness and Analysis
The correctness of our algorithm follows from that of the two pointer algorithm described
in [11]. By construction, we show that the algorithm requires O(1) time to check whether
a safe path exists corresponding to a representative edge, and thereafter O(log n) time to
report each safe path represented by the edge. Since any explicit representation of the safe
paths would require O(1) space for every safe path, outO is the number of safe paths. We
thus get the following result.

▶ Theorem 11. Given a flow graph (DAG) having n vertices and m edges, the optimal
representation outO of the safe paths can be reported in O(m + outO log n) time.

7 Space bounds for different representations of safe paths

Previous work [11] presented a worst case example demonstrating that outR and outC can
respectively be Ω(mn2) and Ω(mn) in the worst case and O(m) in the best case. The worst
case example graph they presented also gives a bound of Ω(mn) in the worst case and O(m)
in the best case for outO. In the light of the new characterization, we shall now understand
these bounds in more detail.

Using Theorem 9, we know that every safe path can be represented as an edge with a
subpath of its left and right extensions. Now, in the worst case each of the edge m edges
can have left and right extensions of length O(n) each, making a complete path of O(n) size.
Using the two pointer algorithm we know, that the number of maximal safe paths on a path
p are |p|. Hence, for each edge we can have O(n) safe paths, each of possibly O(n) edges in
the worst case.

This establishes an upper bound of O(mn2) on the size of outR matching the Ω(mn2)
bound of [11], proving the tight bound of Θ(mn2) on outR in the worst case. Further, since
each edge with its extensions creates a valid path for outC , having O(n) length and O(n)
indices on every path, we also get O(mn) bound for outC and outO, resulting in tight worst
case bound of Θ(mn) for both outC and outO.

8 Conclusion

We study the optimization of the solutions for the safety of flow paths in a given flow graph
(DAG), which has applications in various domains, including the more prominent assembly
of biological sequences. The previous work characterized such paths giving an optimal
verification algorithm but suboptimal enumeration algorithms, which required computing a
candidate flow decomposition taking Ω(mn) time even when the reported solution is small.

We present output-sensitive optimal algorithms for reporting the safe paths when repres-
ented in the raw format reporting each path explicitly, and optimal concise representation
previously described. This is achieved by exploiting a crucial property related to the inter-
action of safe paths and a novel data structure Path Tries, which may be of independent
interest. Further, we characterized an optimal representation of the safe paths, requiring
O(1) space for every safe path reported. We also presented a near optimal algorithm to
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compute the optimal representation of the safe paths. The new characterization additionally
allows us to understand the space bounds of various representations of all safe paths, where
we match the existing lower bounds with worst case upper bounds.

In the future, it would be interesting to see an optimal output-sensitive algorithm for
computing even the optimal representation of the safe paths (dropping the O(log n) factor).
It would also be interesting to see if similar properties or algorithms can be used to solve
related problems as path covers, or path decomposition for general graphs.
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Abstract

Makespan minimization (on parallel identical or unrelated machines) is arguably the most natural
and studied scheduling problem. A common approach in practical algorithm design is to reduce
the size of a given instance by a fast preprocessing step while being able to recover key information
even after this reduction. This notion is formally studied as kernelization (or simply, kernel) – a
polynomial time procedure which yields an equivalent instance whose size is bounded in terms of
some given parameter. It follows from known results that makespan minimization parameterized by
the longest job processing time pmax has a kernelization yielding a reduced instance whose size is
exponential in pmax. Can this be reduced to polynomial in pmax?

We answer this affirmatively not only for makespan minimization, but also for the (more
complicated) objective of minimizing the weighted sum of completion times, also in the setting of
unrelated machines when the number of machine kinds is a parameter.

Our algorithm first solves the Configuration LP and based on its solution constructs a solution of
an intermediate problem, called huge N -fold integer programming. This solution is further reduced
in size by a series of steps, until its encoding length is polynomial in the parameters. Then, we
show that huge N -fold IP is in NP, which implies that there is a polynomial reduction back to our
scheduling problem, yielding a kernel.

Our technique is highly novel in the context of kernelization, and our structural theorem about
the Configuration LP is of independent interest. Moreover, we show a polynomial kernel for huge
N -fold IP conditional on whether the so-called separation subproblem can be solved in polynomial
time. Considering that integer programming does not admit polynomial kernels except for quite
restricted cases, our “conditional kernel” provides new insight.
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1 Introduction

Kernelization, data reduction, or preprocessing: all of these refer to the goal of simplifying and
reducing (the size of) the input in order to speed up computation of challenging tasks. Many
heuristic techniques are applied in practice, however, we seek a theoretical understanding
in the form of a procedure with guaranteed bounds on the sizes of the reduced data. We
use the notion of kernelization from parameterized complexity (cf. [39, 9]), where along with
an input instance I we get a positive integer k expressing the parameter value, which may
be the size of the sought solution or some structural limitation of the input. A kernel is
an algorithm running in time poly(|I| + k) which returns a reduced instance I ′ of the same
problem of size bounded in terms of k; we sometimes also refer to I ′ as the kernel.

It is well known [6] that a problem admits a kernel if and only if it has an algorithm
running in time f(k) poly(|I|) for some computable function f (i.e., if it is fixed-parameter
tractable, or FPT, parameterized by k). The “catch” is that this kernel may be very large
(exponential or worse) in terms of k, while for many problems, kernels of size polynomial
in k are known. This raises a fundamental question for any FPT problem: does it have a
polynomial kernel? Answering this question typically provides deep insights into a problem
and the structure of its solutions.

Parameterized complexity has historically focused primarily on graph problems, but
it has been increasingly branching out into other areas. Kernelization, as arguably the
most important subfield of parameterized complexity (cf. a recent monograph [15]), follows
suit. Scheduling is a fundamental area in combinatorial optimization, with results from
parameterized complexity going back to 1995 [3]. Probably the most central problem in
scheduling is makespan minimization on identical machines, denoted as P ||Cmax, which we
shall define soon. It took until the seminal paper of Goemans and Rothvoß [20] to get an
FPT algorithm for P ||Cmax parameterized by the number of job types (hence also by the
largest job). Yet, the existence of a polynomial kernel for P ||Cmax remained open, despite
being raised by Mnich and Wiese in 2013 [38] and reiterated by van Bevern1. Here, we give
an affirmative answer for this problem:

▶ Corollary 1. There is a polynomial kernel for P ||Cmax when parameterized by the longest
processing time pmax.

Let us now introduce and define the scheduling problems P ||Cmax and P ||
∑

wjCj . There are
n jobs and m identical machines, and the goal is to find a schedule minimizing an objective.
For each job j ∈ [n], a processing time pj ∈ N is given and a weight wj are given; in the
case of P ||Cmax the weights play no role and can be assumed to be all zero. A schedule is
a mapping which to each job j ∈ [n] assigns some machine i ∈ [m] and a closed interval of
length pj , such that the intervals assigned to each machine do not overlap except for their
endpoints. For each job j ∈ [n], denote by Cj its completion time, which is the time when it
finishes, i.e., the right end point of the interval assigned to j in the schedule. In the makespan
minimization (Cmax) problem, the goal is to find a schedule minimizing the time when the
last job finishes Cmax = maxj∈[n] Cj , called the makespan. In the minimization of sum of
weighted completion times (

∑
wjCj), the goal is to minimize

∑
wjCj . (In the rest of the

paper we formally deal with decision versions of these problems, where the task is to decide
whether there exists a schedule with objective value at most k. This is a necessary approach
when speaking of kernels and complexity classes like NP and FPT.)

1 The question was asked at the workshop “Scheduling & FPT” at the Lorentz Center, Leiden, in February
2019, as a part of the opening talk for the open problem session.
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In fact, our techniques imply results stronger in three ways, where we handle:
1. the much more complicated

∑
wjCj objective function involving possibly large job

weights,
2. the unrelated machines setting (denoted R||Cmax and R||

∑
wjCj), and

3. allowing the number of jobs and machines to be very large, known as the high-multiplicity
setting.

For this, we need further notation to allow for different kinds of machines. For each machine
i ∈ [m] and job j ∈ [n], a processing time pi

j ∈ N is given. For a given scheduling instance,
say that two jobs j, j′ ∈ [n] are of the same type if pi

j = pi
j′ for all i ∈ [m] and wj = wj′ , and

say that two machines i, i′ ∈ [m] are of the same kind if pi
j = pi′

j for all jobs j ∈ [n]. We
denote by τ ∈ N and κ ∈ N the number of job types and machine kinds, respectively, call
this type of encoding the high-multiplicity encoding, and denote the corresponding problems
R|HM |Cmax and R|HM |

∑
wjCj .

Our approach is indirect: taking an instance I of scheduling, we produce a small equivalent
instance I ′ of a the so-called huge N -fold integer programming problem with a quadratic
objective function (see more details below). This is known as compression, i.e., a polynomial
time algorithm producing from I a small equivalent instance of a different problem:

▶ Theorem 2. The problems R|HM |Cmax and R|HM |
∑

wjCj parameterized by the number
of job types τ , the longest processing time pmax, and the number of machine kinds κ admit a
polynomial compression to quadratic huge N -fold IP parameterized by the number of block
types τ̄ , the block dimension t, and the largest coefficient ∥E∥∞.

If we can then find a polynomial reduction from quadratic huge N -fold IP to our scheduling
problems, we are finished. For this, it suffices to show NP membership, as we do in Lemma 13.

Configuration LP. Besides giving polynomial kernels for some of the most fundamental
scheduling problems, we wish to highlight the technique behind this result, because it is quite
unlike most techniques used in kernelization and is of independent interest. Our algorithm
essentially works by solving the natural Configuration LP of P ||Cmax (and other problems),
which can be done in polynomial time when pmax is polynomially bounded, and then using
powerful structural insights to reduce the scheduling instance based on the Configuration
LP solution. The Configuration LP is a fundamental tool in combinatorial optimization
which goes back to the work of Gilmore and Gomory in 1961 [18]. It is known to provide
high-quality results in practice, in fact, the “modified integer round-up property (MIRUP)”
conjecture states that the natural Bin Packing Configuration LP always attains a value x

such that the integer optimum is at most ⌊x⌋ + 1 [40]. The famous approximation algorithm
of Karmarkar and Karp [28] for Bin Packing is based on rounding the Configuration LP, and
many other results in approximation use the Configuration LP for their respective problems
as the starting point.

In spite of this centrality and vast importance of the Configuration LP, there are only
few structural results providing deeper insight. Perhaps the most notable is the work of
Goemans and Rothvoß [20] and later Jansen and Klein [26] who show that there is a certain
set of “fundamental configurations” such that in any integer optimum, all but few machines
(bins, etc.) will use these fundamental configurations. Our result is based around a theorem
which shows a similar yet orthogonal result and can be informally stated as follows:

▶ Theorem 3 (informal; see the full version). There is an optimum of the Configuration
IP where all but few configuration are those discovered by the Configuration LP, and the
remaining configurations are not far from those discovered by the Configuration LP.
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We note that our result, unlike the ones mentioned above [20, 26], also applies to arbitrary
separable convex functions. This has a fundamental reason: the idea behind both previous
results is to shift weight from the inside of a polytope to its vertices without affecting the
objective value, which only works for linear objectives.

Huge N -fold IP. Finally, we highlight that the engine behind our kernels, a conditional
kernel for the so-called quadratic huge N -fold IP, is of independent interest. Integer pro-
gramming is a central problem in combinatorial optimization. Its parameterized complexity
has been recently intensely studied [11, 31, 33, 10, 7]. However, it turns out that integer
programs cannot be kernelized in all but the most restricted cases [34, 35, 26]. We give a
positive result about a class of block-structured succinctly encoded IPs with a quadratic
objective function, so-called quadratic huge N -fold IPs, which was used to obtain many
interesting FPT results [29, 31, 4, 17, 32, 5]. However, our result is conditional on having
a polynomial algorithm for the so-called separation subproblem of the Configuration LP of
the quadratic huge N -fold IP, so there is a price to pay for the generality of this fragment
of IP. The separation subproblem is to optimize a certain objective function (which varies)
over the set of configurations. In the cases considered here, we show that this corresponds to
(somewhat involved) variations of the knapsack problem with polynomially bounded numbers;
in other problems expressible as n-fold IP, the separation subproblem corresponds to a known
hard problem. Informally, our result reads as follows:

▶ Theorem 4 (informal; see the full version). If the separation subproblem can be solved in
polynomial time, then quadratic huge N -fold IP has a polynomial kernel parameterized by
the block dimensions, the number of block types, and the largest coefficient.

Because huge N -fold IP is essentially equivalent to the Configuration IP, the kernel of
Theorem 3 can be viewed as a validation of the industry common wisdom that column
generation works really well. Another view is that methods from mathematical programming,
so far underrepresented in kernelization, deserve more attention.

One aspect of the algorithm above is reducing the quadratic objective function. The
standard approach, also used in kernelization of weighted problems [13, 8, 2, 19, 42, 41, 21]
is to use a theorem of Frank and Tardos [16] which “kernelizes” a linear objective function if
the dimension is a parameter. However, we deal with
1. a quadratic convex (non-linear) function,
2. over a space of large dimension.
We are able to overcome these obstacles by a series of steps which first “linearize” the
objective, then “aggregate” variables of the same type, hence shrinking the dimension, then
reduce the objective using the algorithm of Frank and Tardos, and then we carefully reverse
this process (see the full version for more details). This result has applications beyond this
work: for example, the currently fastest strongly FPT algorithm for R||

∑
wjCj (i.e., an

algorithm whose number of arithmetic operations does not depend on the weights wj) has
dependence of m2 poly log(m) on the number of machines m; applying our new result instead
of [11, Corollary 69] reduces this dependence to m poly log(m).

Other Applications. Theorem 4 can be used to obtain kernels for other problems which can
be modeled as huge N -fold IP. First, we may also optimize the ℓp norms of times when each
machine finishes, a problem known as R|HM |ℓp. Our results (Corollary 11) show that also
in this setting the separation problem can be solved quickly. Second, the P ||Cmax problem
is identical to Bin Packing (in their decision form), so our kernel also gives a kernel for
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Bin Packing parameterized by the largest item size. Moreover, also the Bin Packing with
Cardinality Constraints problem has a huge N -fold IP model [30, Lemma 54] for which
Corollary 11 indicates that the separation subproblem can be solved quickly. Third, Knop
et al. [30] give a huge N -fold IP model for the Surfing problem, in which many “surfers”
make demands on few different “services” provided by few “servers”, where each surfer may
have different costs of getting a service from a server; one may think of internet streaming
with different content types, providers, and pricing schemes for different customer types. The
separation problem there is polynomially solvable for an interesting reason: its constraint
matrix is totally unimodular because it is the incidence matrix of the complete bipartite
graph. Thus, Theorem 4 gives polynomial kernels for all of the problems above with the
given parameters.

Related Work – Scheduling. Let us finally review related results in the intersection of
parameterized complexity and scheduling; for a more comprehensive survey of parameterized
results in scheduling see, e.g., [37]. First, to the best of our knowledge, the first to study
scheduling problems from the perspective of multivariate complexity were Bodlaender and
Fellows [3]. Fellows and McCartin [14] study scheduling on single machine of unit length
jobs with (many) different release times and due dates. Single machine scheduling where
two agents compete to schedule their private jobs is investigated by Hermelin et al. [22].
There are few other result [43, 27, 24, 23] focused on identifying tractable scenarios for
various scheduling paradigms (such as flow-shop scheduling or e.g. structural limitations of
the job–machine assignment).

Paper Organization. We begin with preliminaries (Section 2) which, besides introducing
necessary notation and definitions, also states several results which we use later in the proofs
of our results. Section 3 discusses how our scheduling problems are modeled as huge N -fold
IP (3.1) and how to solve the ConfLP quickly for those models (3.2 and 3.3). Finally, in
the full version, we show our “conditional kernel” for quadratic huge N -fold IP, which first
reduces all parts of the instance except for the objective function, and finally deals with the
objective. In the full version, we conclude with a short section giving an interpretation of our
algorithm for P ||Cmax and R||Cmax. A word of caution: it is at first tempting to think that
most of the machinery of our algorithm is not necessary for our simplest considered problem
P ||Cmax; however, as we discuss in the full version in detail, while some minor simplifications
are possible, the only truly avoidable step is the objective reduction which is needed for the∑

wjCj objective.

2 Preliminaries

We consider zero to be a natural number, i.e., 0 ∈ N. We write vectors in boldface (e.g., x, y)
and their entries in normal font (e.g., the i-th entry of a vector x is xi). For positive integers
m ≤ n we set [m, n] := {m, . . . , n} and [n] := [1, n], and we extend this notation for vectors:
for l, u ∈ Zn with l ≤ u, [l, u] := {x ∈ Zn | l ≤ x ≤ u} (where we compare component-wise).
For two vectors x, y ∈ Rn, z = max{x, y} is defined coordinate-wise, i.e., zi = max xi, yi for
all i ∈ [n], and similarly for min{x, y}.

If A is a matrix, Ai,j denotes the j-th coordinate of the i-th row, Ai,• denotes the i-th
row and A•,j denotes the j-th column. We use log := log2, i.e., all our logarithms are base 2.
For an integer a ∈ Z, we denote by ⟨a⟩ := 1 + ⌈log(|a| + 1)⌉ the binary encoding length of
a; we extend this notation to vectors, matrices, and tuples of these objects. For example,

ESA 2022
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⟨A, b⟩ = ⟨A⟩ + ⟨b⟩, and ⟨A⟩ =
∑

i,j⟨Ai,j⟩.2 For a function f : Zn → Z and two vectors
l, u ∈ Zn, we define f

[l,u]
max := maxx∈[l,u] |f(x)|; if [l, u] is clear from the context we omit it

and write just fmax.

▶ Proposition 5 ([15, Theorem 1.6]). Let (Q, κ), (R, λ) be parameterized problems such that
Q is NP-hard and R is in NP. If (Q, κ) admits a polynomial compression into (R, λ), then it
admits a polynomial kernel.

The above observation is useful when dealing with NP-hard problems. The proof simply
follows by pipelining the assumed polynomial compression with a polynomial time (Karp)
reduction from R to Q.

2.1 Scheduling Notation
Overloading the convention slightly, for each i ∈ [κ] and j ∈ [τ ], denote by pi

j the processing
time of a job of type j on a machine of kind i, by wj the weight of a job of type j, by nj the
number of jobs of type j, by mi the number of machines of kind i, and denote n = (n1, . . . , nτ ),
m = (m1, . . . , mκ), p =

(
p1

1, . . . , p1
τ , p2

1, . . . , pκ
τ

)
, w := (w1, . . . , wτ ), pmax := ∥p∥∞, and

wmax := ∥w∥∞. We denote the high multiplicity versions of the previously defined problems
R|HM |Cmax and R|HM |

∑
wjCj .

For an instance I of R||Cmax or R||
∑

wjCj , we define its size as ⟨I⟩ :=
∑κ

i=1
∑τ

j=1⟨pi
j , wj⟩,

whereas for an instance I of P |HM |Cmax or P |HM |
∑

wjCj we define its size as ⟨I⟩ =
⟨n, m, p, w⟩. Note that the difference in encoding actually leads to different problems:
for example, an instance of R|HM |Cmax with 2k jobs with maximum processing time
pmax can be encoded with O(kτκ log pmax) bits while an equivalent instance of R||Cmax
needs Ω(2k log pmax) bits, which is exponentially more if τ, κ ∈ kO(1). The membership
of high-multiplicity scheduling problems in NP was open for some time, because it is not
obvious whether a compactly encoded instance also has an optimal solution with a compact
encoding. This question was considered by Eisenbrand and Shmonin, and we shall use their
result. For a set X ⊆ Zd define the integer cone of X, denoted coneN(X), to be the set
coneN(X) :=

{∑
x∈X λxx | λ ∈ NX

}
, where NX is the set of functions mapping X → N

viewed as vectors.

▶ Proposition 6 (Eisenbrand and Shmonin [12, Theorem 2]). Let X ⊆ Zd be a finite set
of integer vectors and let b ∈ coneN(X). Then there exists a subset X̃ ⊆ X such that
b ∈ coneN(X̃) and the following holds for the cardinality of X̃:
1. if all vectors of X are nonnegative, then |X̃| ≤ ⟨b⟩,
2. if M = maxx∈X ∥x∥∞, then |X̃| ≤ 2d(log 4dM).
One can use Proposition 6 to show that the decision version of R|HM |Cmax and
R|HM |

∑
wjCj have short certificates and thus belong to NP. We will later derive the

same result as a corollary of the fact that both of these scheduling problems can be encoded
as a certain form of integer programming, which we will show to have short certificates as
well.

2.2 Conformal Order and Graver Basis
Let g, h ∈ Zn be two vectors. We say that g is conformal to h (we denote it g ⊑ h) if
both gi · hi ≥ 0 and |gi| ≤ |hi| for all i ∈ [n]. In other words, g ⊑ h if they are in the same

2 We note that our encoding of integers already contains the delimiter symbol.
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orthant (the first condition holds) and g is component-wise smaller than h. For a matrix A

we define its Graver basis (A) to be the set of all ⊑-minimal vectors in Ker(A) \ {0}. We
define g∞(A) = max {∥g∥∞ | g ∈ (A)} and g1(A) = max {∥g∥1 | g ∈ (A)}.

We say that two functions f, g : Zd → Z are equivalent on a polyhedron P ⊆ Zd if
f(x) ≤ f(y) if and only if g(x) ≤ g(y) for all x, y ∈ P . Note that if f and g are equivalent
on P , then the sets of minimizers of f(x) and g(x) over P coincide.

▶ Proposition 7 (Frank and Tardos [16]). Given a rational vector w ∈ Qd and an integer M ,
there is a polynomial algorithm which finds a w̃ ∈ Zd such that the linear functions wx and
w̃x are equivalent on [−M, M ]d, and ∥w̃∥∞ ≤ 2O(d3)MO(d2).

The dual graph GD(A) = (V, E) of a matrix A ∈ Zm×n has V = [m] and {i, j} ∈ E if rows i

and j contain a non-zero at a common coordinate k ∈ [n]. The dual treewidth twD(A) of A

is tw(GD(A)). We do not define treewidth here, but we point out that tw(T ) = 1 for every
tree T .

▶ Proposition 8 (Eisenbrand et al. [11, Theorem 98]). An IP with a constraint matrix A can
be solved in time (∥A∥∞g1(A))O(twD(A)) poly(n, L), where n is the dimension of the IP and
L is the length of the input.

▶ Proposition 9 (Eisenbrand et al. [11, Lemma 25]). For an integer matrix A ∈ Zm×n, we
have g1(A) ≤ (2∥A∥∞m + 1)m.

2.3 N -fold Integer Programming

The Integer Programming problem is to solve:

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn, (IP)

where f : Rn → R, A ∈ Zm×n, b ∈ Zm, and l, u ∈ (Z ∪ {±∞})n.
A generalized N -fold IP matrix is defined as

E(N) =


E1

1 E2
1 · · · EN

1
E1

2 0 · · · 0
0 E2

2 · · · 0
...

...
. . .

...
0 0 · · · EN

2

 . (1)

Here, r, s, t, N ∈ N, E(N) is an (r + Ns) × Nt-matrix, and Ei
1 ∈ Zr×t and Ei

2 ∈ Zs×t for
all i ∈ [N ], are integer matrices. Problem (IP) with A = E(N) is known as generalized
N -fold integer programming (generalized N -fold IP). “Regular” N -fold IP is the problem
where Ei

1 = Ej
1 and Ei

2 = Ej
2 for all i, j ∈ [N ]. Recent work indicates that the majority of

techniques applicable to “regular” N -fold IP also applies to generalized N -fold IP [11].
The structure of E(N) allows us to divide any Nt-dimensional object, such as the variables

of x, bounds l, u, or the objective f , into N bricks of size t, e.g. x =
(
x1, . . . , xN

)
. We use

subscripts to index within a brick and superscripts to denote the index of the brick, i.e., xi
j

is the j-th variable of the i-th brick with j ∈ [t] and i ∈ [N ]. We call a brick integral if all of
its coordinates are integral, and fractional otherwise.
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Huge N -fold IP. The huge N -fold IP problem is an extension of generalized N -fold IP to
the high-multiplicity scenario, where blocks come in types and are encoded succinctly by type
multiplicities. This means there could be an exponential number of bricks in an instance with
a polynomial encoding size. The input to the huge N -fold IP problem with τ̄ types of blocks
is defined by matrices Ei

1 ∈ Zr×t and Ei
2 ∈ Zs×t, i ∈ [τ̄ ], vectors l1, . . . , lτ̄ , u1, . . . , uτ̄ ∈ Zt,

b0 ∈ Zr, b1, . . . , bτ̄ ∈ Zs, functions f1, . . . , f τ̄ : Rt → R satisfying ∀i ∈ [τ̄ ], ∀x ∈ Zt we
have f i(x) ∈ Z and given by evaluation oracles, and integers µ1, . . . , µτ̄ ∈ N such that∑τ̄

i=1 µi = N . We say that a brick is of type i if its lower and upper bounds are li and ui,
its right hand side is bi, its objective is f i, and the matrices appearing at the corresponding
coordinates are Ei

1 and Ei
2. Denote by Ti the indices of bricks of type i, and note |Ti| = µi

and |
⋃

i∈[τ̄ ] Ti| = N . The task is to solve (IP) with a matrix E(N) which has µi blocks of
type i for each i. Knop et al. [30] have shown a fast algorithm solving huge n-fold IP. The
main idea of their approach is to prove a powerful proximity theorem showing how one can
drastically reduce the size of the input instance given that one can solve a corresponding
configuration LP (which we shall formally define later). We will build on this approach here.
When f i are restricted to be separable quadratic (and convex) for all i ∈ [τ̄ ], we call the
problem quadratic huge N -fold IP.

2.4 Configuration LP of Huge N -fold IP
Let a huge N -fold IP instance with τ̄ types be fixed. Recall that µi denotes the number of
blocks of type i, and let µ =

(
µ1, . . . , µτ̄

)
. We define for each i ∈ [τ̄ ] the set of configurations

of type i as

Ci =
{

c ∈ Zt | Ei
2c = bi, li ≤ c ≤ ui

}
.

Here we are interested in four instances of convex programming (CP) and convex integer
programming (IP) related to huge N -fold IP. First, we have the Huge IP

min f(x) : E(N)x = b, l ≤ x ≤ u, x ∈ ZNt . (HugeIP)

Then, there is the Configuration LP of (HugeIP),

min vy =
τ̄∑

i=1

∑
c∈Ci

f i(c) · y(i, c) (2)

τ̄∑
i=1

Ei
1

∑
c∈Ci

cy(i, c) = b0

∑
c∈Ci

y(i, c) = µi ∀i ∈ [τ̄ ]

y ≥ 0 . (3)

Let B be its constraint matrix and d = (b0, µ) be the right hand side and shorten (2)-(3) to

min vy : By = d, y ≥ 0 . (ConfLP)

Finally, by observing that By = d implies y(i, c) ≤ ∥µ∥∞ for all i ∈ [τ̄ ], c ∈ Ci, defining
C =

∑
i∈[τ̄ ]

∣∣Ci
∣∣, leads to the Configuration ILP,

min vy : By = d, 0 ≤ y ≤ (∥µ∥∞, . . . , ∥µ∥∞), y ∈ NC . (ConfILP)
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The classical way to solve (ConfLP) is by solving its dual using the ellipsoid method
and then restricting (ConfLP) to the columns corresponding to the rows encountered while
solving the dual, a technique known as column generation. The Dual LP of (ConfLP) in
variables α ∈ Rr, β ∈ Rτ̄ is:

max b0α +
τ̄∑

i=1
µiβi

s.t. (αEi
1)c − f i(c) ≤ −βi ∀i ∈ [τ̄ ], ∀c ∈ Ci (4)

To verify feasibility of (α, β) for i ∈ [τ̄ ], we need to maximize the left-hand side of (4) over
all c ∈ Ci and check if it is at most −βi. This corresponds to solving the following separation
problem: find integer variables c which for a given vector (α, β) solve

min f i(c) − (αEi
1)c : Ei

2c = bi, li ≤ c ≤ ui, c ∈ Zt . (sep-IP)

Denote by sep(li, ui, f i
max, Ei

1, Ei
2) the time needed to solve (sep-IP).

▶ Lemma 10 (Knop et al. [30, Lemma 12]). An optimal solution y∗ of (ConfLP) with
| supp(y∗)| ≤ r+ τ̄ can be found in (rtτ̄⟨fmax, l, u, b, µ⟩)O(1) ·maxi∈[τ̄ ] sep(li, ui, f i

max, Ei
1, Ei

2)
time.

Since (sep-IP) is an IP, it can be solved using Proposition 8 in time g1(Ei
2)twD(Ei

2) ·
poly(⟨li, ui, bi, ∥Ei

1∥∞fmax⟩, t, τ̄). Hence, together with Lemma 10, we get the following
corollary:

▶ Corollary 11. An optimal solution y∗ of (ConfLP) with | supp(y∗)| ≤ r + τ̄ can be found
in time (rtτ̄⟨fmax, l, u, b, µ⟩)O(1) · maxi∈[τ̄ ] g1(Ei

2)twD(Ei
2).

We later show how that for our formulations of R|HM |Cmax and R|HM |
∑

wjCj , indeed
g1(Ei

2) is polynomial in τ, pmax, and twD(Ei
2) = 1, hence the (ConfLP) optimum can be

found in polynomial time.

3 Compressing High Multiplicity Scheduling to Quadratic N -fold IP

In this section we are going to prove Theorem 2. To that end, we use the following assumption,
mainly to simplify notation.

▶ Remark 12. From here on, we assume τ ≥ ∥p∥∞, i.e., there is a job type for each possible
job length {1, 2, . . . , ∥p∥∞}. This is without loss of generality in our regime since both
quantities are parameters.

▶ Theorem 2 (repeated). The problems R|HM |Cmax and R|HM |
∑

wjCj parameterized by
the number of job types τ , the longest processing time pmax, and the number of machine kinds
κ admit a polynomial compression to quadratic huge N -fold IP parameterized by the number
of block types τ̄ , the block dimension t, and the largest coefficient ∥E∥∞.

Recall that in order to use Theorem 2 to provide kernels for selected scheduling problems
(which are NP-hard) we want to utilize Proposition 5. Thus, we have to show that the “target
problem” quadratic huge N -fold IP is in NP.

▶ Lemma 13. The decision version of quadratic huge N -fold IP belongs to NP.

ESA 2022
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Proof. We will use Proposition 6 to show that there exists an optimum whose number of
distinct configurations is polynomial in the input length. Such a solution can then be encoded
by giving those configurations together with their multiplicities, and constitutes a polynomial
certificate. Recall that (ConfILP) corresponding to the given instance of huge N -fold is

min vy : By = d, 0 ≤ y ≤ (∥µ∥∞, . . . , ∥µ∥∞), y ∈ NC .

Let X be the set of columns of the matrix B extended with an additional coordinate
which is the coefficient of the objective function v corresponding to the given column, that
is, vb for a column b (i.e., the objective value of configuration b). Hence X ⊆ Zr+τ̄+1

and ∥x∥∞ ≤ ∥l, u, fmax∥∞ =: M for any x ∈ X. Applying Proposition 6, part 2, to X,
yields that there exists an optimal solution y of (ConfILP) with supp(y) = X̃ satisfying
|X̃| ≤ 2(r + τ̄ + 1) log(4(r + τ̄ + 1)M), hence polynomial in the input length of the original
instance. ◀

▶ Remark 14. Clearly Lemma 13 holds for any huge N -fold IP whose objective is restricted
by some, not necessarily quadratic, polynomial. Moreover, using the newer technique of
Aliev et al. [1] it is likely possible to remove any restrictions on the objective.

Using Theorem 2. Before we move to the proof of Theorem 2 we first derive two simple
yet interesting corollaries.

▶ Corollary 15. The problems R||Cmax and R||
∑

wjCj admit polynomial kernelizations
when parameterized by τ, κ, pmax.

Proof. Let obj ∈ {Cmax,
∑

wjCj}. We describe a polynomial compression from R||obj to
quadratic huge N -fold IP which, by Lemma 13, yields the sought kernel, since R||obj is
NP-hard and huge N -fold with a quadratic objective is in NP.

We first perform the high-multiplicity encoding of the given instance I of R||obj, thus
obtaining an instance IHM of R|HM |obj with the input encoded as (n, m, p, w). Now, we
can apply Theorem 2 and obtain an instance Īhuge N-fold equivalent to IHM with size bounded
by a polynomial in κ, τ, pmax. ◀

Proof of Corollary 1. This is now trivial, since it suffices to observe that P ||Cmax is a special
case of R||Cmax, where there is only a single machine kind (i.e., κ = 1) and τ ≤ pmax job
types. Our claim then follows by Corollary 15 (combined with the fact that P ||Cmax is
NP-hard and R||Cmax is in NP). ◀

3.1 Huge n-fold IP Models
Denote by nmax the τ -dimensional vector whose all entries are ∥n∥∞. It was shown [29, 30]
that R|HM |Cmax is modeled as a feasibility instance of huge n-fold IP as follows. Recall
that we deal with the decision versions and that k is the upper bound on the value of the
objective(s). We set b0 = n, the number of block types is τ̄ = κ, Ei

1 := (I 0) ∈ Zτ×(τ+1),
Ei

2 := (pi 1), li = 0, ui = (n, ∞), bi = k, for i ∈ [κ], and the multiplicities of blocks are
µ = m. The meaning is that the first type of constraints expressed by the Ei

1 matrices
ensures that every job is scheduled somewhere, and the second type of constraints expressed
by the Ei

2 matrices ensures that every machine finishes in time Cmax.
In the model of R|HM |

∑
wjCj , for each machine kind i ∈ [κ], we define ⪯i to be

the ordering of jobs by the wj/pi
j ratio non-increasingly, and let a = (a1, a2, . . . , aτ ) be a

reordering of pi according to ⪯i. We let
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Gi :=


a1 0 0 . . . 0
a1 a2 0 . . . 0
a1 a2 a3 . . . 0
...

. . .
a1 a2 a3 . . . aτ

 , H := −I,

with I the τ × τ identity, and define F i := (Gi H) in two steps. Denote by I⪯i a matrix
obtained from the τ × τ identity matrix by permuting its columns according to ⪯i. The
model is then b0 = n, the number of block types is again τ̄ = κ, for each i ∈ [κ] we have
Ei

1 = (I⪯i 0) ∈ Zτ×2τ , Ei
2 = F̄ i, li = 0, ui = (nmax, pmaxτnmax), bi = 0, f i is a separable

convex quadratic function (whose coefficients are related to the wj/pi
j ratios), and again

µ = m. Intuitively, in each brick, the first τ variables represent numbers of jobs of each
type on a given machine, and the second τ variables represent the amount of processing time
spend by jobs of the first j types with respect to the ordering ⪯i.

3.2 Solving The Separation Problem Quickly: Cmax

The crucial aspect of complexity of (sep-IP) is its constraint matrix Ei
2. For R|HM |Cmax,

this is just the vector (pi, 1). Clearly twD((pi, 1)) = 1 since GD((pi, 1)) is a single vertex.
By Proposition 9, g1((pi, 1)) ≤ 2∥p∥∞ + 1. Moreover, fmax depends polynomially on
∥n, m, p∥∞. Hence, Corollary 11 states that (ConfLP) of the R|HM |Cmax model can be
solved in time (rtτ̄⟨fmax, l, u, b, µ⟩)O(1) ·maxi g1(Ei

2)twD(Ei
2) = poly(pmax, τ, log ∥n, m, p∥∞),

which is polynomial in the input.

3.3 Solving The Separation Problem Quickly: ∑
wjCj

The situation is substantially more involved in the case of R|HM |
∑

wjCj : in order to
apply Corollary 11, we need to again bound g1(Ei

2) and twD(Ei
2), but the matrix Ei

2 is more
involved now. Let

Ḡi :=


a1 0 . . . 0
0 a2 . . . 0
...

. . .
...

0 0 . . . aτ

 , H̄ :=


−1 0 0 . . . 0
1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . . . . .
...

0 0 . . . 1 −1

 ,

and define F̄ i = (Ḡi H̄). Now observe that F i and F̄ i are row-equivalent3. This means that
we can replace F i with F̄ i without changing the meaning of the constraints and without
changing the feasible set. But while twD(Fi) = τ (because it is the clique Kτ ), we have

▶ Lemma 16 (⋆). For each i ∈ [κ], twD(F̄ i) = 1.

Note that application of Proposition 9 yields g1(Ei
2) ≤ O(τ τ ). This general upper bound,

as we shall see, is not sufficient for our purposes, since we need g1(Ei
2) ≤ poly(τ). However,

we can improve it significantly:

3 Two matrices A, A′ are row-equivalent if one can be transformed into the other using elementary row
operations.
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▶ Lemma 17 (Hill-cutting). We have g∞(F i), g∞(F̄ i) ≤ O(τ4) and g1(F i), g1(F̄ i) ≤ O(τ5)
for every i ∈ [κ].

Proof. Let F = F i for some i ∈ [κ]. Let (x, z) ∈ Z2τ be some vector satisfying F · (x, z) = 0.
Our goal now is to show that whenever there exists k ∈ [τ ] with |zk − zk−1| > 2τ3 + 1
(where we define z0 := 0 for convenience), then we can construct a non-zero integral vector
(g, h) ∈ KerZ(F ) satisfying (g, h) ⊑ (x, z), which shows that (x, z) ̸∈ (A). If no such index
k exists, it means that ∥x∥∞ ≤ O(τ3) because zk − zk−1 = akxk holds in F (and F̄ i).
Moreover, if |zk − zk−1| ≤ 2τ3 + 1 for all k ∈ [τ ], then |zk| ≤ O(τ4) for every k ∈ [τ ],
hence ∥(x, z)∥∞ ≤ O(τ4). Note that, since the dimension of (x, z) is 2τ , this also implies
∥(x, z)∥1 ≤ O(τ5). Thus we now focus on the case when ∃k ∈ [τ ] : |zk − zk−1| > 2τ3 + 1.

Let us now assume that (zk −zk−1) is positive and zk ≥ τ3. There are three other possible
scenarios: when (zk − zk−1) is positive but zk < τ3, or when (zk − zk−1) is negative and
zk < −τ3 or zk ≥ −τ3. We will later show that all these situations are symmetric to the one
we consider and our arguments carry over easily, hence our assumption is without loss of
generality.

▷ Claim 18 (⋆). If (zk − zk−1) is positive and zk ≥ τ3, then there exists nonzero (g, h) ∈
KerZ(F ) with (g, h) ⊑ (x, z).

Let us consider the remaining symmetric cases. If zk − zk−1 is negative and zk < −τ3,
then (−x, −z) satisfies the original assumption, leading to some (g′, h′) ⊑ (−x, −z), hence
(−g′, −h′) ⊑ (x, z) and we are done. If zk − zk−1 is negative but zk > −τ3, then we would
pick the largest index ℓ smaller than k with xℓ > τ and continue as before (the symmetry
is that now ℓ is to the left of k rather than to its right; that is, the case distinction from
the previous paragraph is according to the value of z1). Lastly, if zk − zk−1 is positive but
zk < τ3, negating (x, z) gives a reduction to the previous case. ◀

Together with the observation from the previous section and using our newly obtained
bounds together with Corollary 11, we obtain:

▶ Corollary 19. Let I = (n, m, p, w) be an instance of R|HM |Cmax or R|HM |
∑

wjCj.
A (ConfLP) optimum y∗ with | supp(y∗)| ≤ r + τ̄ can be found in time
poly(pmax, τ, κ, ⟨n, m, p, w⟩).

4 Conclusions and Research Directions

On the side of theory, one may wonder why not apply the approach developed here to
other scheduling problems, in particular those modeled as quadratic huge N -fold IP in [30],
such as R|rj , dj |

∑
wjCj . The answer is simple: we are not aware of a way to solve the

separation problem in polynomial time; in fact, we believe this to be a hard problem roughly
corresponding to Unary Vector packing in variable dimension. However, the typical use
of Configuration LP is not to obtain an exact optimum (which is often hard), but to obtain an
approximation which is good enough. Perhaps a similar approach within our context may lead
to so-called lossy kernels [36]? However, it is not even clear that an approximate analogue of
Theorem 3 holds, because getting an LP solution whose value is close to optimal does not
immediately imply getting a solution which is (geometrically) close to some optimum; cf. the
discussions on ϵ-accuracy in [11, Definition 31] and [25, Introduction]. Another interesting
problem highlighted here is to find a combinatorial algorithm computing the Carathéodory
decomposition of the average configuration n/m into machine configurations. The only
approach we are aware of so far uses the equivalence of separation and optimization (thus,
the ellipsoid method), which is impractical.
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Abstract
This paper introduces two new abstract morphs for two 2-dimensional shapes. The intermediate
shapes gradually reduce the Hausdorff distance to the goal shape and increase the Hausdorff distance
to the initial shape. The morphs are conceptually simple and apply to shapes with multiple
components and/or holes. We prove some basic properties relating to continuity, containment, and
area. Then we give an experimental analysis that includes the two new morphs and a recently
introduced abstract morph that is also based on the Hausdorff distance [23]. We show results on the
area and perimeter development throughout the morph, and also the number of components and
holes. A visual comparison shows that one of the new morphs appears most attractive.
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1 Introduction

Morphing, also referred to as shape interpolation, is the changing of a given shape into a
target shape over time. Applications include animation and medical imaging. Animation
is often motivated by the film industry, where morphing can be used to create cartoons or
visual effects. In medical imaging, the objective is a 3D reconstruction from cross-sections,
such as those from MRI or CT scans. Reconstruction between two 2D slices is essentially 2D
interpolation between shapes, which is a form of morphing. We regard morphing itself as the
change of one shape into another shape by a parameter, or, more precisely, a function from
the interval [0, 1] to shapes in a space, such that the image at 0 is the one input shape and
the image at 1 is the other input shape. It is often convenient to see the morphing parameter
as time. In the rest of this paper, we will refer to the shape of the morph at any particular
time value as an intermediate shape. See Figure 1 for an example of two halfway shapes
between polygons resembling a butterfly and a spider.

The quality of a morph depends on the application. For medical imaging, the implied 3D
reconstruction must be anatomically plausible. For morphing between two drawings of a
cartoon character, the shapes in between must keep the dimensions of the limbs, for example.
Furthermore, semantically meaningful features (nose, chin) should morph from their position
in the one shape to their position in the other shape.
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Figure 1 The intermediate shapes of two different morphing methods at time value 1/2 when
morphing between the input shapes on the left. The middle shows the dilation morph (introduced
in [23]), the right shows the Voronoi morph (introduced in this paper).

In this paper we concentrate on abstract morphing of shapes. A morphing task is abstract
if there is no (semantic) reason to transform certain parts of a starting shape into certain
parts of a goal shape. In a recent paper, van Kreveld et al. [23] presented a new type of
abstract morphing based on the Hausdorff distance. It takes any two compact planar shapes
A and B as input, and produces a morphed shape that interpolates smoothly between them.
For a time value α ∈ [0, 1], this morph is equal to A at α = 0 and to B at α = 1. For
any value of α it has Hausdorff distance α to A and Hausdorff distance 1 − α to B, if the
initial Hausdorff distance is 1 (the input can be scaled to make this true without changing
intermediate shapes). Morphs with this property are called Hausdorff morphs [23]. The
Hausdorff morph introduced by van Kreveld et al. is based on Minkowski sums with a disk,
and hence we refer to this specific one as the dilation morph.

While the dilation morph has nice theoretical properties, in practice it will often grow
intermediate shapes from A until α = 1/2, at which point the greatly dilated shape will
shrink back towards B. For α close to 1/2, the morphed shape typically resembles neither of
the input shapes unless they already looked alike. We can see this in Figure 1.

In this paper we present a new Hausdorff morph called Voronoi morph that gives a more
visually convincing morph, while maintaining many of the properties of the previous work.
Our morph uses Voronoi diagrams to partition each input shape into regions with the same
closest point on the other shape, and then scales and moves each such region to that closest
point based on the value of α. We show that the Voronoi morph is also a Hausdorff morph. It
interpolates smoothly between A and B, but does not have the same problem of significantly
increasing the area during the morph. We also present a variant called mixed morph that
reduces the problem of unnecessarily increasing the perimeter of the interpolated shape. It
uses dilation and erosion to overcome some shortcomings of the Voronoi morph.

Related work. The Hausdorff distance is a widely used distance metric that can be used for
any two subsets of a space. It is a bottleneck measure: only a maximum distance determines
the Hausdorff distance. Efficient algorithms to compute the Hausdorff distance between
two simple polygons or their higher-dimensional equivalents exist [3, 4, 7]. The Hausdorff
distance is used in computer vision [19] and computer graphics [6, 17] for template matching,
and the computation of error between a model and its simplification.
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Several algorithmic approaches to morphing have been described. Many of these are
motivated by shape interpolation between slices (e.g., [2, 9, 10, 12], an overview can be
found in [11]). Other papers discuss morphing explicitly and not as an interpolation problem.
Many of these results use compatible triangulations [20, 24], in particular those that avoid
self-intersections. It is beyond the scope of this paper to give a complete overview of morphing
methods. For (not so recent) surveys of shape matching, interpolation, and correspondence,
see [5, 22]. Our paper builds upon the morphing approach given in [23], which introduced
Hausdorff morphs as a new technique for abstract morphing, and the dilation morph as a
specific example of a Hausdorff morph.

Another shape similarity measure than the Hausdorff distance, the Fréchet distance,
can also be used to define a morph. In particular, locally correct Fréchet matchings [14]
immediately imply a smooth transition of one shape outline into another, because they match
all pairs of points on the two curves. Similar approaches were given in [25, 26]. During
the transition, however, the outline may be self-intersecting. This problem was addressed
in [15, 16]. A more important shortcoming of morphing using the Fréchet distance is that it
is unclear how to morph between shapes with different numbers of components and holes.

Much of the commercial software for morphing applies to images, with or without
additional human control. Other software is meant as toolkits for designers to design their
own morphs, most notably Adobe After Effects.

Our results. We introduce two new abstract morphs based on the Hausdorff distance. They
are – just like the dilation morph – conceptually simple and easy to implement if one has code
for Minkowski sum and difference with a disk, Voronoi diagrams, and polygon intersection
and union. We examine basic properties of the two new morphs and compare how they relate
to the dilation morph. In particular, we show that the Voronoi morph is a Hausdorff morph
and that it is 1-Lipschitz continuous. We also show that for any morphing parameter (time),
the Voronoi-morph intermediate shape is a subset of the mixed-morph intermediate shape,
which in turn is a subset of the dilation-morph intermediate shape.

We then proceed with an extensive experimental analysis where we compare four basic
quantities: area, perimeter, number of components, and number of holes. We show how these
quantities develop throughout the three morphs. We also present visual results. As data we
use simple drawings of animals, country outlines, and text (letters and whole words).

2 Preliminaries

Given two sets A and B, we can define the directed Hausdorff distance from A to B as

dH⃗(A,B) := sup
a∈A

inf
b∈B

d(a, b),

where d denotes the Euclidean distance. The undirected Hausdorff distance between A and
B is then defined as the maximum of both directed distances:

dH(A,B) := max(dH⃗(A,B), dH⃗(B,A)).

When A and B are closed sets, we can alternatively define the Hausdorff distance using
Minkowski sums. Recall that the Minkowski sum A⊕B is defined as {a+ b | a ∈ A, b ∈ B};
the directed Hausdorff distance between A and B is then the smallest value r for which
A ⊆ B ⊕Dr, where Dr is a disk of radius r.

Van Kreveld et al. [23] then define a function that interpolates between two shapes in a
Hausdorff sense: For any time parameter α ∈ [0, 1], they define the dilation morph

Sα(A,B) := (A⊕Dα) ∩ (B ⊕D1−α),

ESA 2022
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and prove that this shape has Hausdorff distance α to A and 1 − α to B, and that it is the
maximal shape with this property. Additionally, they show that this morph is 1-Lipschitz
continuous: for two time parameters α and β, dH(Sα(A,B), Sβ(A,B)) ≤ |β − α|. Note that
we will omit the arguments A,B when they are clear from context.

Structurally, it turns out that the intermediate shapes may have quadratic complexity,
even when the input is two simple polygons with n vertices each. For instance, if the input
consists of a horizontal comb and an overlapping vertical comb, each with n/4 prongs, Sα
will consist of Ω(n2) components for any α ∈ (0, 1). In fact, this is not limited to the dilation
morph: any intermediate shape with Hausdorff distance α to A and 1 − α to B will have
Ω(n2) components [23], so every Hausdorff morph has this feature.

Note that both Sα and the morphing methods described below change when we translate
one of the input shapes. That is, if we write t+B to be the translation of B over a vector t,
it is not true that Sα(A, t + B) = α ∗ t + Sα(A,B), as one might expect. This is because
the positions of the input shapes are important both for the Hausdorff distance and for the
shape of Sα. However, we can simply calculate Sα(A,B) with A and B aligned in some
way, and then generate Sα(A, t + B) by explicitly translating Sα(A,B) by α ∗ t. Sensible
alignment methods include aligning the centroids, maximising the overlap of the shapes, and
minimising the Hausdorff distance.

3 Voronoi morph

As demonstrated in Figure 1, one of the problems with the dilation morph is that the
intermediate shapes tend to lose any resemblance to the input during the morphing process.
The main reason for this is that the dilated shapes we are intersecting contain many points
that do not influence the Hausdorff distance in any way, because they are not on the shortest
path from a point on one shape to the closest point on the other. In other words, much of Sα
can be removed without changing the Hausdorff distance to and from the input. That said,
there is no obvious “correct” way to determine which parts should be removed to obtain the
greatest resemblance to the input.

We propose a morph in which we only take the points of Sα that are on the shortest path
between points in one input shape and the closest point on the other. Specifically, we only
take the points where the ratio of distances to the one shape and the closest point on the
other is α : 1 − α. More formally, we define our new morph Tα as follows:

Tα(A,B) := {a+ α(c(a,B) − a) | a ∈ A} ∪ {b+ (1 − α)(c(b, A) − b) | b ∈ B},

where c(a,B) denotes the point on B closest to a. In other words, we move each point in A

closer to the closest point in B by a fraction α of that distance, and each point in B closer
to the closest point in A by a fraction 1 − α, and take the union of those two shapes. If a
point is equidistant to multiple points in the other shape, we include all options. We can
prove that this morph has the desired Hausdorff distances to the input.

▶ Theorem 1. Let A and B be two compact sets in the plane with dH(A,B) = 1. Then for
any 0 ≤ α ≤ 1, we have dH(A, Tα) = α and dH(B, Tα) = 1 − α.

Proof. We first show that dH(A, Tα) ≤ α, and then show strict equality. The case for
dH(B, Tα) is analogous and therefore omitted.

By construction, any point a ∈ A has a point at distance ≤ α in Tα, showing that
dH⃗(A, Tα) ≤ α. Similarly, by construction, for each point b ∈ B there is a point tb ∈ Tα such
that tb = (1 − α)(c(b, A) − b). As d(b, c(b, A)) ≤ 1, it must be the case that tb has distance
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BA

V(B) Pα

Qα

Figure 2 On the left, A is partitioned by the Voronoi diagram V (B) of B. On the right, each
partitioned part of A, shown in green, is scaled towards the closest point on B by a factor α.

at most α to c(b, A). It follows that all points in Tα have distance at most α to a point in A,
thereby showing that dH⃗(Tα, A) ≤ α. As we have both dH⃗(A, Tα) ≤ α and dH⃗(Tα, A) ≤ α,
it follows that dH(A, Tα) ≤ α.

To show strict equality, assume the Hausdorff distance is realised by some point â ∈ A

with closest point b̂ ∈ B, i.e., d(â, b̂) = 1. By construction, there is a point t̂ ∈ Tα at
distance α from â and at distance 1 − α from b̂. As t̂ is the closest point to â in Tα, we have
dH(A, Tα) = α, and as b̂ is the closest point to t̂ in B, we have dH(B, Tα) = 1 − α. If the
Hausdorff distance is realised by a point on B, we use a symmetric argument. ◀

We can additionally show that the Voronoi morph, like the dilation morph, is 1-Lipschitz
continuous in a Hausdorff sense:

▶ Lemma 2. Let α, β ∈ [0, 1]. Then dH(Tα, Tβ) ≤ |β − α|.

Proof. Let tα be any point on Tα. Assume without loss of generality that there is some
a ∈ A such that tα = a+α(c(a,B) − a) (the case for tα being included due to a point in B is
analogous). Now consider the point tβ = a+β(c(a,B)−a): tα and tβ are on the same straight
line segment between a and c(a,B), and have distance |β − α| · |c(a,B) − a| to each other.
As dH(A,B) = 1, we know that |c(a,B) − a| ≤ 1, and therefore that |tβ − tα| ≤ |β − α|.
This holds for any tα ∈ Tα, and the argument is symmetric for Tβ . ◀

Note that this type of continuity implies that components of Tα can only form or disappear
by merging with or splitting from another component.

In addition to the Hausdorff distance-related properties, it is also interesting to study
the general geometric and topological properties of Tα. We first show that the number of
components #C(Tα) of Tα does not change during the morph, except possibly at α = 0 and
α = 1. We prove this for the case of polygonal input; the proof can likely be generalised, but
the formalisation is somewhat tedious and not particularly interesting.

Let V (A) be the Voronoi diagram of the vertices, open edges and the interior components
of A. We now define Par(A,B) to be the input shape A partitioned into regions by V (B).
Note that Par(A,B) is a set of regions of A that each have the closest point of B on the same
vertex, edge or face of B. For some region P ∈ Par(A,B), let Pα be the region obtained
by scaling P towards the site of the Voronoi cell of B it is in by a factor α. If this site is a
vertex, we simply scale P uniformly towards it; if it is an edge, we scale it perpendicular
to the supporting line of that edge; and if it is a face, it does not scale or move at all; see
Figure 2 for an illustration. Now let Parα(A,B) := {Pα | P ∈ Par(A,B)}. Note that Tα is
the union of all elements of Parα(A,B) and Par1−α(B,A).

ESA 2022



74:6 Abstract Morphing Using the Hausdorff Distance and Voronoi Diagrams

▶ Lemma 3. Let 0 < α < β < 1. Then #C(Tα) = #C(Tβ).

Proof. Assume that #C(Tα) ̸= #C(Tβ). We can assume without loss of generality that
#C(Tα) > #C(Tβ), as in the other case we can take Tα(B,A) instead of Tα(A,B) and get
the same morph, but parametrised in reverse. We can also assume that for fixed α, β is the
smallest value such that #C(Tα) > #C(Tβ). In this case, there are two regions P and Q of
Par(A,B) or Par(B,A) that are disjoint and in different components of Tα, but intersect and
are in the same component of Tβ . This is because, as a consequence of Lemma 2, components
cannot appear or disappear. In the following we assume P,Q ∈ Par(A,B); the arguments
for when one or both are in Par(B,A) are identical.

As Pβ ∩ Qβ ≠ ∅, there must be some point p in both Pβ and Qβ . As both Pβ and Qβ
are formed by regions moving towards the closest point on the other shape, this point is
then on the intersection of two shortest paths between A and B. Let a1, b1, a2 and b2 be
the endpoints of these paths intersecting in p. One of the two segments pb1, pb2 will be
the shortest; assume without loss of generality that it is pb1. In this case the path a2pb1 is
shorter than a2pb2, and by the triangle inequality b1 must be closer to a2 than b2.

This contradicts the assumption that b2 was the closest point to a2. We conclude that
such shortest paths can never intersect, and therefore Pα ∩Qα = ∅ for any α ∈ (0, 1). As
such, components can never merge or split for α ∈ (0, 1), and as they also cannot appear or
disappear by Lemma 2, the statement in the lemma follows. ◀

Note that the number of components can change at α = 0 or α = 1, as in these limit cases
elements of Parα(A,B) and Parα(B,A) turn into points or line segments. Using the strategy
from this proof, it also follows that Parα(A,B) and Par1−α(B,A) are interior-disjoint. An
interesting corollary of this observation is that the area |Tα| of Tα is bounded from below
by (1 − α)2 |A| + α2 |B|, which is attained when both shapes are disjoint and all parts are
moving to a finite number of points (vertices) on the other shape.

3.1 A variant morph
One problem with the Voronoi morph is that it can introduce many slits into the boundary,
thereby greatly increasing the perimeter of the shape. This is because parts of the input
that have different closest points on the other shape will tend to move away from each other.
We present a variant of the Voronoi morph that tries to reduce these problems. As it uses
both the Voronoi morph and the dilation morph, we call this variant the mixed morph. The
mixed morph Mα,φ is defined as follows:

Mα,φ(A,B) := ((Tα(A,B) ⊕Dφ) ⊖Dφ) ∩ Sα,

where ⊖ is the Minkowski difference, defined as A ⊖ B := (Ac ⊕ B)c, where Ac is the
complement of A. Taking a Minkowski sum with a disk is also known as dilation, and the
Minkowski difference with a disk is known as erosion. Performing first a dilation and then
an erosion with disks of the same radius is known as closing, and can be used to close small
gaps and holes in a shape without modifying the rest too much. The closing operator is
widely used and studied in the field of image analysis [21].

The resulting morph may no longer be a Hausdorff morph: we may have increased the
Hausdorff distance by closing certain gaps or holes. We therefore intersect the closed version
of Tα with the dilation morph Sα, so that gaps that are necessary to obtain the appropriate
Hausdorff distance are maintained. This results in the mixed morph Mα,φ.
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The mixed morph has a new parameter, φ, being the radius of the disk used in the closing.
Note that Mα,0 = Tα. We can show that Mα,φ contains all shapes obtained with the same α
but smaller value of φ:

▶ Lemma 4. Let φ,ψ ∈ R+ and φ ≤ ψ. Then Mα,φ ⊆ Mα,ψ.

Proof. Let us assume that Mα,φ ⊃ Mα,ψ instead. Then there is some point p such that
p ∈ Mα,φ, but p /∈ Mα,ψ. There are two reasons why p might not be in Mα,ψ: either
p /∈ Tα ⊕Dψ, or p ∈ Tα ⊕Dψ but p /∈ (Tα ⊕Dψ) ⊖Dψ.

It can clearly not be the case that p ∈ Mα,φ but p /∈ Tα ⊕ Dψ: Mα,φ is a subset of
Tα ⊕Dφ, and as φ ≤ ψ, we have that Tα ⊕Dφ ⊆ Tα ⊕Dψ.

It must then be the case that p ∈ Tα ⊕Dψ but p /∈ (Tα ⊕Dψ) ⊖Dψ. In this case, the
distance between p and the boundary ∂T⊕

α of Tα ⊕Dψ must be less than ψ. Let q ∈ ∂T⊕
α be

the point on the boundary closest to p. As p ∈ Tα⊕Dφ and Tα⊕Dφ ⊆ Tα⊕Dψ, the segment
pq must intersect the boundary of Tα ⊕Dφ in some point q′. We must have that d(p, q′) ≥ φ,
or p would not be in Mα,φ, and we must have d(q, q′) ≥ ψ−φ, as Tα⊕Dψ = (Tα⊕Dφ)⊕Dψ−φ.
But then, by the triangle inequality, d(p, q) ≤ d(p, q′) + d(q, q′) ≥ ψ, which is a contradiction.
Hence, p ∈ Mα,ψ. As this holds for all p ∈ Mα,φ, the statement in the lemma follows. ◀

Note that this means we now have the following hierarchical containment of morphs:
Tα ⊆ Mα,φ ⊆ Mα,ψ ⊆ Sα, for φ ≤ ψ. As Tα is a Hausdorff morph, and Sα is the maximal
Hausdorff morph, this shows that Mα,φ is a Hausdorff morph as well. However, Mα,φ is not
1-Lipschitz continuous: components may suddenly merge when their distance falls below 2φ.

3.2 Algorithm
To give an algorithm for computing Tα, we assume A and B are (sets of) polygons, possibly
with holes. As Tα is based on moving all points on the one shape to the closest point on the
other shape, we can compute the Voronoi diagram of each input shape, and then use these
to partition the other shapes. This gives us a partitioning of A into pieces that overlap B, or
have the same closest point or edge on B, and vice versa. Pieces of A completely inside B are
unchanged, pieces with a vertex as closest element are scaled uniformly towards that vertex
by a factor α, and pieces with an edge as closest element are scaled perpendicular to the
supporting line of that edge by a factor α. For pieces of B we do the same, except that we
scale them with a factor 1 − α. Figure 2 shows an example of how a shape A is partitioned
by the Voronoi diagram V (B) of B, and each piece is scaled towards the closest point on B.

Given this algorithm, we can also straightforwardly compute Mα,φ by computing Tα and
Sα, dilating and eroding Tα by a distance φ, and then intersecting the result with Sα.

Our computations rely solely on Voronoi diagrams, Minkowski sums and differences with
disks, intersections and unions of polygons, all of which can be found in standard books or
surveys [1, 8, 18] and an intermediate shape can be calculated in O(n2 log n) time.

4 Experiments

We compare the dilation, Voronoi and mixed morphs experimentally on three data sets. The
first data set is a collection of outlines of animals taken from [13]. The second is a selection of
the outlines of European countries obtained from the Thematic Mapping World Borders data
set;1 we use the outlines of Austria, Belgium, Croatia, Czechia, France, Germany, Greece,
Ireland, Italy, the Netherlands, Poland, Spain and Sweden. For these two sets we compute

1 http://www.thematicmapping.org/downloads/world_borders.php
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the morphs for all pairs of animals and all pairs of countries in the sets. None of the three
morphs is translation-invariant or scale-invariant, so it matters where we place the shapes
with respect to each other and what sizes they initially have. We choose to scale the shapes
to have the same area and translate them to have a common centroid.

The third data set is a small collection of words and letters manually traced as polygons.
We use three pairs of words (wish/luck, kick/stuff, try/it), and the letters f, i and u in a serif
and a sans serif font. Observe that our morphs could in theory be used to define an infinite
family of fonts by interpolating between the glyphs of each element. For these experiments
we do not scale the shapes but use the font size, and we align them manually.

For each experiment, we measure the area, perimeter, number of components and number
of holes of the morph for α values starting at zero and increasing in steps of 1/8. The parameter
φ of the mixed morph was universally set to 0.02 based on preliminary experimentation.

It is not necessarily insightful to compare areas and especially perimeters between
experiments. To make the results more comparable, we make the assumption that an ideal
morph linearly interpolates the area and perimeter between those of the input shapes. For
each experiment, we can then give the ratio between the measured area and perimeter and
these “ideal” values. For the number of components and holes this is less meaningful, as
these are discrete values, so we simply record the numbers directly.

Each morphing method was implemented in C++, using Boost2 to calculate intersections
and unions of polygons, Voronoi diagrams, and Minkowski sums. Although efficiency is not
the focus of this paper, running all our experiments only took a few minutes in total.

5 Results

A summary of our measurements of area and perimeter can be seen in Tables 1 and 2. A
summary of the number of components and holes for only the animals data set can be seen
in Table 3; we exclude the other data sets because the inputs have different numbers of
components. Topological measurements for the animals data set can be viewed in Table 4;
the measurements for the other experiments can be viewed in the full version. We note that
the Voronoi and mixed morphs sometimes have spurious holes caused by numerical precision
issues (e.g., the Voronoi morph should not have an intermediate shape with five holes in our
experiment with the letter i). Animations of the different morphs for each experiment can
be viewed online.3

In Figure 3 we can see that the average area of the dilation morph quickly grows as α
increases, until reaching its peak at α = 1/2, to about three times the desired size. For
the perimeter we see the opposite trend, with the dilation morph typically having a lower
perimeter than desired. This is a consequence of the dilation erasing details in the boundary
of the input shapes. We can see in Figure 4 that this happens more quickly in the experiments
with country shapes. This is expected, as most of the country shapes have more sharp
coastline features and islands that quickly disappear, whereas the animal shapes are generally
smoother and only have one component.

Our Voronoi morph on average has an area that is much closer to the desired value, and
with much lower variance than the dilation morph. However, we see that on average the
perimeter is much higher than the desired value. This is because points on opposite sides of
a Voronoi edge move in different directions, causing new boundaries to appear in the interior

2 https://www.boost.org
3 https://hausdorff-morphing.github.io

https://www.boost.org
https://hausdorff-morphing.github.io
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Table 1 The distributions of areas for each morphing method over all experiments for all nine
tested values of α, separated by experiment category.

Dilation Voronoi Mixed

Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Animals 1.977 0.763 0.969 0.024 0.986 0.019
Countries 2.249 1.498 0.960 0.039 0.987 0.039
Text 2.118 1.046 0.980 0.035 0.989 0.028

Table 2 The distributions of perimeters for each morphing method over all experiments for all
nine tested values of α, separated by experiment category.

Dilation Voronoi Mixed

Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Animals 0.857 0.137 1.725 0.432 1.183 0.155
Countries 0.876 0.237 1.610 0.471 1.129 0.184
Text 0.955 0.142 1.401 0.418 1.155 0.192

Table 3 The distributions of the number of components and holes for each morphing method for
all tested values of α except 0 and 1. This only includes the animals data set, as these shapes have
only one component and no holes.

Dilation Voronoi Mixed

Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Components 1.004 0.063 18.556 8.089 5.317 3.213
Holes 0.218 0.602 2.544 2.699 0.218 0.532
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Figure 3 The average area over all experiments as a function of α, for both the animals and
countries data sets.
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Table 4 The minimum and maximum number of components and the maximum number of holes
for the experiments with animal shapes, separated by morph type.

Dilation Voronoi Mixed

Experiment min max holes min max holes min max holes

bird → butterfly 1 1 0 1 11 6 1 4 1
bird → cat 1 1 1 1 12 6 1 5 0
bird → dog 1 1 1 1 23 4 1 7 1
bird → horse 1 2 1 1 27 6 1 8 2
bird → ostrich 1 1 0 1 26 5 1 12 0
bird → shark 1 1 0 1 14 4 1 6 0
bird → spider 1 1 0 1 30 8 1 9 1
bird → turtle 1 1 0 1 21 3 1 9 1
butterfly → cat 1 1 1 1 6 2 1 3 1
butterfly → dog 1 1 1 1 9 4 1 4 1
butterfly → horse 1 1 1 1 28 3 1 9 2
butterfly → ostrich 1 1 1 1 11 7 1 4 2
butterfly → shark 1 1 0 1 8 4 1 3 1
butterfly → spider 1 1 1 1 30 9 1 10 2
butterfly → turtle 1 1 0 1 13 6 1 3 2
cat → dog 1 1 1 1 17 1 1 3 1
cat → horse 1 1 1 1 17 2 1 5 1
cat → ostrich 1 1 0 1 13 4 1 4 0
cat → shark 1 1 0 1 9 0 1 5 0
cat → spider 1 1 2 1 29 3 1 7 3
cat → turtle 1 1 0 1 14 1 1 7 0
dog → horse 1 1 2 1 31 4 1 9 1
dog → ostrich 1 1 1 1 22 2 1 7 1
dog → shark 1 1 1 1 17 3 1 6 1
dog → spider 1 1 3 1 32 2 1 14 2
dog → turtle 1 1 1 1 16 1 1 6 0
horse → ostrich 1 1 2 1 27 7 1 15 1
horse → shark 1 1 1 1 22 5 1 7 1
horse → spider 1 1 4 1 38 3 1 9 1
horse → turtle 1 1 1 1 22 4 1 12 0
ostrich → shark 1 1 0 1 15 8 1 5 0
ostrich → spider 1 1 4 1 38 9 1 17 0
ostrich → turtle 1 1 0 1 21 12 1 4 0
shark → spider 1 1 0 1 23 2 1 5 2
shark → turtle 1 1 0 1 11 3 1 3 0
spider → turtle 1 1 4 1 25 14 1 8 3
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Figure 4 The average perimeter over all experiments as a function of α, for both the animals
and countries data sets.

of a shape as soon as α > 0. We can see this happen in the middle column of Figure 5,
and this is reflected in Figure 4, where we see the perimeter sharply increase and then stay
mostly the same, before sharply dropping back down.

Our mixed morph achieves its purpose of reducing the perimeter of the Voronoi morph:
the measured perimeters are close to the desired values, while the measured areas stay
comparable to those of the Voronoi morph. In Figure 4, we see that the perimeter typically
still increases during the morphing process, but does not jump up sharply as soon as α > 0.
This is because the small value of φ lets us close only the narrow gaps that appear around
the edges of the Voronoi diagram, but not the gaps that develop as pieces of the shapes
move apart significantly. We can see this when comparing the middle and right columns of
Figure 5: fewer gaps are closed at α = 1/2 than at the other time values.

In addition to area and perimeter, we also tracked the number of components and holes
for each morph type. We observe that for the dilation morph, there is an intermediate shape
with only one component in all but one of our experiments, showing that this morph tends
to turn everything into a blob during the morphing process. On the other hand, the Voronoi
morph tends to have an intermediate shape with a number of components much larger than
either of the input shapes. The mixed morph exhibits neither of these behaviours. This is
illustrated in Figure 5.

Inspecting the morphs visually (see both the full version online for more figures, as well
as https://hausdorff-morphing.github.io for all experiments), our mixed morph looks
quite reasonable, especially when the area of symmetric difference between the input shapes
is small. In many cases, the intermediate shape at α = 1/2 is a recognisable mix of the two
input shapes. This is not the case for the dilation morph, where the Hausdorff distance needs
to be very small compared to the size of the input shapes for it to look good. For instance,
when one shape has some small islands far away, the dilation morph will grow to have a
very large area, whereas with the Voronoi and mixed morphs, the islands just slowly move
towards the closest point on the other shape; see the full version online. However, both the
Voronoi and mixed morph can still look bad when the area of symmetric difference is large.
It may therefore be best to align the input shapes such that the area of symmetric difference
is minimised, rather than simply aligning the centroids.

ESA 2022
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Figure 5 Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between the outlines of
Germany and Italy. The columns show the dilation morph, Voronoi morph and mixed morph from
left to right.
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Figure 6 Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between the outlines of
the words try and it. The columns show the dilation morph, Voronoi morph and mixed morph from
left to right. Note that some artefacts in the Voronoi and mixed morphs, such as in the curved part
of the letter r, are caused by having polygonal input instead of smooth curves.
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The morphs generally look less convincing on our experiments with text, as the shapes
can be very different. For single letters the morphs can look convincing, but when morphing
between words, especially of different numbers of letters, the intermediate shape at α = 1/2
does not necessarily resemble both input shapes (see Figure 6). However, the intermediate
shapes at α = 1/4 and α = 3/4 still do clearly resemble input shapes A and B, respectively,
for the Voronoi and mixed morphs, but less so for the dilation morph. A better approach to
morphing text may be to morph on a per-letter basis, rather than treating the whole text as
a single shape. Some strategy would then have to be devised that determines which letter
will morph to which, and how to deal with different Hausdorff distances between the letter
pairs.

Both the Voronoi morph and the mixed morph often have small parts separating, moving,
and then merging somewhere else (for example, the beak in the bird-to-ostrich morphs
on https://hausdorff-morphing.github.io). Such artifacts may be circumvented by
choosing a slightly warped Voronoi diagram, but this upsets the simplicity of the current
methods. We can sometimes notice in the animations that the mixed morph is indeed not
Lipschitz continuous, but since φ is rather small, this does not show clearly.

6 Conclusion

We introduced a new abstract morphing method based on Voronoi diagrams. This new
method satisfies the same bounds on the Hausdorff distance as the previously introduced
dilation morph, and is also 1-Lipschitz continuous. We have shown experimentally that
the intermediate shapes of the Voronoi morph have areas that more closely match those
of the input shapes than the dilation morph, but tends to have a perimeter that is larger
than desired. To remedy this, we introduced a variant morph, the mixed morph, that we
experimentally show to reduce this problem of increasing the perimeter. This mixed morph
still satisfies the bounds on the Hausdorff distance, but is no longer 1-Lipschitz continuous.
Our experimental analysis is the first we are aware of that analyses the development of area,
perimeter, number of components and number of holes throughout the morphs.

An interesting open question is whether we can prevent the increase in perimeter caused
by the Voronoi morph without losing 1-Lipschitz continuity. This would require somehow
anticipating the moment when two pieces of boundary will meet, and smoothly bridging
the gap between them over time, instead of just instantly filling it. To optimise the mixed
morph, we can study the effects of choosing different φ, or even changing φ throughout the
morph. Another direction is to develop other morphs that guarantee a smooth change of
some distance measure other than the Hausdorff distance; we noted that it is unclear how to
employ the Fréchet distance for morphing in the presence of multiple components.

A more practically oriented direction for further research would be to develop a less naive
method of filling gaps than the mixed morph. It does not necessarily make sense to use the
same radius for the closing operator everywhere, which sometimes closes gaps that will be
opened again. However, any adaptation of this type will disrupt the conceptual simplicity of
the Voronoi and mixed morphs.
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Abstract
In resource allocation, we often require that the output allocation of an algorithm is stable against
input perturbation because frequent reallocation is costly and untrustworthy. Varma and Yoshida
(SODA’21) formalized this requirement for algorithms as the notion of average sensitivity. Here, the
average sensitivity of an algorithm on an input instance is, roughly speaking, the average size of the
symmetric difference of the output for the instance and that for the instance with one item deleted,
where the average is taken over the deleted item.

In this work, we consider the average sensitivity of the knapsack problem, a representative
example of a resource allocation problem. We first show a (1 − ϵ)-approximation algorithm for
the knapsack problem with average sensitivity O(ϵ−1 log ϵ−1). Then, we complement this result by
showing that any (1 − ϵ)-approximation algorithm has average sensitivity Ω(ϵ−1). As an application
of our algorithm, we consider the incremental knapsack problem in the random-order setting, where
the goal is to maintain a good solution while items arrive one by one in a random order. Specifically,
we show that for any ϵ > 0, there exists a (1 − ϵ)-approximation algorithm with amortized recourse
O(ϵ−1 log ϵ−1) and amortized update time O(log n + fϵ), where n is the total number of items and
fϵ > 0 is a value depending on ϵ.
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1 Introduction

1.1 Background and Motivation

The knapsack problem is one of the most fundamental models in resource allocation, which
handles the selection of good candidates under a budget constraint. For example, it can
model the hiring process of employees in a company and the selection process of government
projects. The knapsack problem is formally defined as follows. The input is a pair (V, W ),
where V is a set of n items, W ∈ R>0 is a weight limit, and each item i ∈ V has a positive
weight w(i) ≤ W and value v(i). The goal of the problem is to find a set of items S ⊆ V

that maximizes the total value
∑

i∈S v(i), subject to the weight constraint
∑

i∈S w(i) ≤ W .
Sometimes, the information used to allocate resources is uncertain or outdated. For

example, suppose that a satellite isolated from the Earth is taking actions. The satellite has
a list of potential actions V , and each action has a fixed value v(i) and fuel consumption
w(i). Some of the actions may be infeasible at the moment due to the satellite’s conditions,
such as the atmosphere or surrounding space debris. The satellite’s objective is to find a
combination of feasible actions with the highest possible total value without running out of
W amount of fuel.
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The control room on the Earth wants to know the satellite’s action for future planning.
Since direct communication to the satellite is not always possible, the control room would
simulate the satellite’s decision process. However, the list V that the control room has as
potential actions for the satellite may be different from the list that the satellite uses. Even
in such a situation, the control room would like to predict the actual actions taken by the
satellite with some accuracy. Such a purpose can be achieved by designing algorithms with
small average sensitivity [24, 30].

The following definitions are necessary to formally define the average sensitivity. Let V

be a finite set. Then, the Hamming distance1 between two sets S, S′ ⊆ V is |S△S′|, where
S△S′ = (S \ S′) ∪ (S′ \ S) is the symmetric difference. For two probability distributions S
and S ′ over sets in V , the earth mover’s distance EM(S, S ′) between them is given by

min
D

E
(S,S′)∼D

|S△S′|, (1)

where the minimum is taken over distributions of a pair of sets such that its marginal
distributions on the first and the second coordinates are equal to S and S ′, respectively. Let
A be a (randomized) algorithm for the knapsack problem, and let (V, W ) be an instance
of the knapsack problem. We abuse the notation A (resp., Ai) to represent the output
(distribution) of the algorithm A on the instance (V, W ) (resp., (V \ {i}, W )). Then, the
average sensitivity of the algorithm (on the instance (V, W )) is

1
n

∑
i∈V

EM(A, Ai). (2)

An algorithm is informally called stable-on-average if its average sensitivity is small.

1.2 Our Contributions
Our main contribution is a fully polynomial-time randomized approximation scheme (FPRAS)
for the knapsack problem with a small average sensitivity:

▶ Theorem 1. For any ϵ > 0, there is a (1 − ϵ)-approximation algorithm for the knapsack
problem with time complexity polynomial in ϵ−1n and average sensitivity O(ϵ−1 log ϵ−1),
where n is the number of items.

It is noteworthy that Kumabe and Yoshida [20] have presented a (1 − ϵ)-approximation
algorithm with O(ϵ−1 log3(nW )) average sensitivity for the knapsack problem with integer
weights. In contrast, our algorithm can be applied to an instance with non-integer weight
and has a smaller average sensitivity bound independent of the weight limit W .

The following proposition states that the algorithm that outputs an optimal solution has
an unbounded average sensitivity. Thus to bound the average sensitivity, we should allow for
approximation as in Theorem 1.

▶ Proposition 2. The average sensitivity of the algorithm that outputs an optimal solution
can be as large as Ω(n).

Let opt(V ) be the optimal value of the original instance. The basic idea behind the
algorithm of Theorem 1 is classifying items into two categories according to whether their
values are more than a threshold ≈ ϵ · opt(V ). It is not difficult to design stable-on-average

1 The Hamming distance is usually defined for strings, but our definition matches the formal definition by
considering a set S ⊆ V as a binary string of length |V |.
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(1 − ϵ)-approximation algorithms when all the items belong to one of the two categories.
Indeed, if all the items are small, i.e., with values at most ϵ · opt(V ), then we can prove that a
variant of the greedy algorithm has an approximation ratio (1 − O(ϵ)) and an O(ϵ−1) average
sensitivity. If all items are large, i.e., with values at least ϵ · opt(V ), then any algorithm
has a small average sensitivity because any feasible solution contains at most ϵ−1 items. To
combine these two algorithms, we add a subset of the large items selected by the exponential
mechanism [23] to the output. However, if we apply the exponential mechanism to all
possible sets of large items, the average sensitivity becomes too high because the number of
such sets is exponentially large. Therefore, we need to reduce the number of candidate sets
appropriately without sacrificing the approximation guarantee. A more detailed overview is
provided in Section 4.1.

Next, we show that our upper bound on the average sensitivity is tight up to a logarithmic
factor in ϵ−1.

▶ Theorem 3. Let ϵ > 0. Then any (1−ϵ)-approximation algorithm for the knapsack problem
has average sensitivity Ω(ϵ−1).

The simple knapsack problem is a special case of the general knapsack problem in which the
value of each item is proportional to its weight. For this problem, we obtain a deterministic
algorithm with a better average sensitivity:

▶ Theorem 4. For any ϵ > 0, there is a deterministic (1 − ϵ)-approximation algorithm for
the simple knapsack problem with time complexity polynomial in ϵ−1n and average sensitivity
O(ϵ−1), where n is the number of items.

Finally, we discuss the connection to dynamic algorithms. In the incremental dynamic
knapsack problem, items arrive one by one, and the goal is to maintain an approximate
solution for the current set of items. The amortized recourse of a dynamic algorithm is
the average Hamming distance between the outputs before and after an item arrives. More
formally, the amortized recourse of a deterministic algorithm over a stream v1, . . . , vn of
items is defined as 1

n

∑n
i=1 |Xi−1△Xi|, where Xi is the solution of the algorithm right

after vi is added. The amortized recourse of a randomized algorithm is the expectation of
amortized recourse over the randomness of the algorithm. When the arrival order is random,
we can construct an algorithm for the incremental dynamic knapsack problem using our
stable-on-average algorithm:

▶ Theorem 5. For any ϵ > 0, there exists fϵ > 0 such that there is a (1 − ϵ)-approximation
algorithm with amortized recourse O(ϵ−1 log ϵ−1) and update time O(fϵ + log n) for the
incremental knapsack problem in the random-order setting.

The fact that the output of our stable-on-average algorithm does not depend on the arrival
order of the items but depends only on the current set of items implies that this result can
also be applied to the decremental knapsack problem, in which we are to maintain a good
solution while the items are removed one by one from the initial set of items.

1.3 Related Work
1.3.1 Knapsack Problem
The knapsack problem is one of the 21 problems that was first proved to be NP-hard by
Karp [16], but admits a pseudo-polynomial time algorithm via dynamic programming [19].
Ibarra and Kim [13] proposed the first fully polynomial-time approximation scheme (FPTAS)
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for the knapsack problem. The main idea is to round the values of items into multiples of
a small value, and run a dynamic programming algorithm on the resulting instance. Since
then, several faster algorithms have been developed [5, 15, 17, 18, 21, 27].

The knapsack problem has been studied in the context of online settings. In the most
basic online knapsack problem, items arrive one by one, and when an item arrives, it is
irrevocably added it to the knapsack or discarded. The difference from our dynamic model
is that, in the online knapsack problem, once an item is accepted or rejected, the decision
cannot be reverted. However, this is not the case in our model. While Marchetti-Spaccamela
and Vercellis [22] showed that no algorithm has a bounded competitive ratio for this problem
in general, Buchbinder and Naor [4] proposed an O(log(U/L))-competitive algorithm for
the case where all weights are much smaller than the weight limit, where U and L are the
upper and lower bounds on the efficiency w(i)/v(i). Zhou, Chakrabarty, and Lukose showed
that this bound is tight [32]. Several variations of the online knapsack problem have been
investigated, such as the removable online knapsack problem [14], which allows removing
items added from the knapsack, the knapsack secretary problem [2], which concerns items
arriving in random order, and the online knapsack problem with a resource buffer [12], in
which we have a buffer that can contain higher weights of items than the weight limit, and
at the end, we can select a subset of the stored items as the output.

The problem most closely related to ours is the dynamic setting. In this problem, the
goal is to maintain a good solution while items are added or deleted dynamically. In this
model, there is no restriction on adding items that were previously deleted from the knapsack
(and vice versa). While designing fast algorithms that maintain an exact solution is a major
issue of focus in the context of data structures [1], the problem of maintaining approximate
solutions has also been investigated in a variety of problems including the shortest path
problem [28, 29], maximum matching problem [11, 25], and set cover problem [9]. Recently,
dynamic approximation algorithms with bounded recourse have been studied for several
problems including the bin-packing problem [8], set cover problem [9], and submodular cover
problem [10]. As for the knapsack problem, a recent work of Böhm et al. [3] presented an
algorithm that maintains a (1 − ϵ)-approximate solution with polylogarithmic update time in
the fully dynamic setting, where both additions and deletions of items are allowed. Because
this model considers both additions and deletions, the solution must be drastically changed
even after a single update operation. Therefore, they proposed an algorithm that maintains
a data structure from which a good solution can be recovered (with a time proportional to
the size of the output), rather than explicitly maintaining the solution as a set of items.

1.3.2 Average Sensitivity
Murai and Yoshida [24] introduced the notion of average sensitivity for centralities, i.e.,
importance of nodes and edges, on networks to compare various notions of centralities. The
notion of average sensitivity for graph problems was recently introduced by Varma and
Yoshida [30], in which they studied various graph problems, including the minimum spanning
tree problem, minimum cut problem, maximum matching problem, and minimum vertex
cover problem. Zhou and Yoshida [31] presented a (1 − ϵ)-approximation algorithm for the
maximum matching problem with sensitivity solely depending on ϵ, where the (worst-case)
sensitivity is defined as (2) with the average replaced by the maximum over i. Kumabe
and Yoshida [20] presented a stable-on-average algorithm for the maximum weight chain
problem on directed acyclic graphs. The approximation ratio of their algorithm is (1 − ϵ)
and average sensitivity is polylogarithmic in the number of vertices in the graph, which
roughly corresponds to the number of states of the dynamic programming. They designed



S. Kumabe and Y. Yoshida 75:5

stable-on-average algorithms for a wide range of dynamic programming problems, including
the knapsack problem with integer weights, by reducing them to the maximum weight chain
problem. Peng and Yoshida [26] analyzed the average sensitivity of spectral clustering and
showed that it is proportional to λ2/λ2

3, where λi is the i-th smallest eigenvalue of the
(normalized) Laplacian of the input graph. Intuitively, this bound indicates that spectral
clustering is stable on average when the input graph can be well partitioned into two
communities but not into three. This implies that spectral clustering is stable on average at
relevant instances. The relation between Differential privacy, proposed by Dwork et al. [7],
is given in the full version.

1.4 Organization
The rest of this paper is organized as follows. In Section 2, we review the basics of the
knapsack problem, especially focusing on the fractional knapsack problem. In Section 3, we
present a stable-on-average (1 − O(ϵ))-approximation algorithm when all items have value at
most ϵ, where the analysis is given in the full version. In Section 4, we present an (inefficient)
stable-on-average algorithm for the general setting, while some proofs are given in the full
version. In the full version, we discuss on improving the time complexity to obtain an FPRAS,
prove the O(ϵ−1) lower bound on the average sensitivity of (1 − ϵ)-approximation algorithms,
present a deterministic (1−ϵ)-approximation algorithm with O(ϵ−1) sensitivity for the simple
knapsack problem, and discuss the application to the dynamic knapsack problem in the
random-order setting.

2 Basic Facts about the Knapsack Problem

For an instance (V, W ) of the knapsack problem, let opt(V, W ) be the optimal value for the
instance. As W is often set to 1, we define opt(V ) := opt(V, 1) for convenience. In this work,
we assume that each item has a unique (comparable) identifier that remains unchanged with
the deletion of other items. This naturally defines the ordering of items. In our algorithms,
we implicitly use this ordering for the tiebreak. For example, when we sort items, we use a
sorting algorithm that is stable with respect to this ordering. For a set S ⊆ V , let v(S) and
w(S) denote

∑
i∈S v(i) and

∑
i∈S w(i), respectively.

We consider the following fractional relaxation of the knapsack problem, which we call
the fractional knapsack problem:

maximize
∑
i∈V

v(i)x(i),

subject to
∑
i∈V

w(i)x(i) ≤ W,

0 ≤ x(i) ≤ 1 (i ∈ V ).

Then, we denote the optimal value of this problem by fopt(V, W ). We also define fopt(V ) :=
fopt(V, 1), and the efficiency of an item i is v(i)/w(i). The following is well known:

▶ Lemma 6 ([6]). Suppose that items in V are sorted in non-increasing order of efficiency,
i.e., v(1)/w(1) ≥ · · · ≥ v(n)/w(n). Let k be the largest index with w(1) + · · · + w(k) ≤ 1.
Then, fopt(V, 1) is achieved by the solution

x(i) =


1 (i = 1, . . . , k),
1−
∑k

j=1
w(j)

w(i+1) (i = k + 1),
0 (i ≥ k + 2).
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Algorithm 1 A (1 − O(ϵ))-approximation algorithm with small average sensitivity.

1 Procedure ModifiedGreedy(ϵ, V )
2 Reorder the items of V so that v(1)/w(1) ≥ · · · ≥ v(n)/w(n);
3 Let W be sampled from [1 − ϵ, 1] uniformly at random;
4 Let t be the maximum index with

∑t
i=1 w(i) ≤ W ;

5 return {1, . . . , t}.

Using Lemma 6, fopt(V, W ) can be computed in polynomial time. The following is a direct
consequence of Lemma 6:

▶ Lemma 7. For W ≤ 1, we have fopt(V, W ) ≥ W · fopt(V ).

We give the proofs in the following two lemmas in full version.

▶ Lemma 8. opt(V ) ≤ fopt(V ) ≤ 2opt(V ) holds.

▶ Lemma 9. For an item set U and weight limit W , we have∑
i∈U

(fopt(U, W ) − fopt(U \ {i}, W )) ≤ fopt(U, W ).

3 Items with Small Values

In this section, we provide a stable-on-average algorithm for instances with each item having
a small value. Specifically, we show the following:

▶ Theorem 10. For any ϵ, δ > 0, there exists an algorithm for the knapsack problem with
average sensitivity O(ϵ−1) that, given an instance (V, W ) with each item having value at most
δ, outputs a solution with value at least (1 − ϵ)fopt(V, W ) − δ.

This algorithm will be used in our algorithm for the general case as a subroutine in Section 4.
Note that it suffices to design an algorithm for the case in which the weight limit is 1 because
we can first divide the weight of each item by W and feed the resulting instance to the
algorithm. Hence in the rest of this paper, we assume that the weight limit is 1 (and use the
symbol W for a different purpose). A pseudocode of our algorithm is given in Algorithm 1.
The proof of Theorem 10 is given in the full version.

4 General Case

In this section, we consider the general case of the knapsack problem, and prove the following:

▶ Theorem 11. For any ϵ > 0, there exists a (1 − ϵ)-approximation algorithm for the
knapsack problem with average sensitivity O(ϵ−1 log ϵ−1).

Note that this algorithm takes exponential time. We will discuss on improving time complexity
in the full version.
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4.1 Technical Overview and Algorithm Description

First, we explain the intuition behind our algorithm (Algorithm 2). As in Section 3, we
assume that the weight limit is 1 without loss of generality. We fix a parameter 0 < ϵ < 0.05.
We say that an item is large if its value is at least ϵ · fopt(V ) and small otherwise. If all items
are small, ModifiedGreedy (Algorithm 1) with the parameter ϵ has an approximation
ratio 1 − O(ϵ) and average sensitivity O(ϵ−1), and we are done. On the contrary, if all items
are large, the procedure of outputting the optimal solution has average sensitivity O(ϵ−1)
because any feasible solution has cardinality at most ϵ−1. We combine these two observations
to obtain an algorithm for the general case as follows. Note that here we don’t concern about
the running time; we accelerate it in the full version.

Let L ⊆ V be the set of large items. First, we take a subset R ⊆ L with w(R) ≤ 1 that
maximizes v(R) + opt(V \ L, 1 − w(R)). (Note that in this section, we do not take efficiency
into consideration and therefore we assume that opt(V \L, 1−w(R)) can be computed.) Then,
we output R ∪ ModifiedGreedy(ϵ, V \ L, 1 − w(R)), where ModifiedGreedy(ϵ, U, W )
runs ModifiedGreedy(ϵ, U ) after replacing w(i) with w(i)/W for each i ∈ U .

However, this algorithm has the following two issues.
1. If the value of fopt(V ) changes upon deleting an item, the set L may drastically change.

For example, consider the case when there are many items with values slightly less than
ϵ · fopt(V ). Then, the set of small items added to the output may drastically change.

2. Even when the value fopt(V ) does not change, if the choice of R changes upon deleting
an item, the value of 1 − w(R) also changes. Thus, the set of small items added to the
output may drastically change.

To resolve the first issue, we sample a value threshold c = O(ϵ · fopt(V )) that classifies
items as large or small from an appropriate distribution, instead of fixing it to ϵ · fopt(V ).

Now, we consider the second issue. Suppose we have sampled the same value threshold c

both before and after deleting an item i ∈ V . There are two cases in which R changes after
deleting the item i.
1. If the item i is large and i ∈ R, then the algorithm should change the choice of R because

the item i would no longer exist.
2. If the item i is small, then the algorithm may change the choice of R because the value

fopt(V \ L, 1 − w(R)) (for the original R) may decrease.
The first case is easy to resolve; R contains O(ϵ−1) many items and therefore, by taking
average over i, this case contributes to the average sensitivity by O(ϵ−1).

To address the second case (deleting small items), we ensure that the distribution of
R does not change significantly with small decreases in fopt(V \ L, 1 − w(R)). To this
end, instead of considering the R with the maximum value of v(R) + fopt(V \ L, 1 − w(R))
among R ⊆ L, we apply the exponential mechanism [23]. Specifically, we sample R with
probability proportional to the exponential of this value with appropriate scaling and
rounding (see Line 13 in Algorithm 2). To ensure that the mechanism outputs a (1 − ϵ)-
approximate solution, we reduce the number of candidates that can possibly be R to a
constant. This is implemented by taking only one candidate At from the family of sets R

with w(R) ∈ [tc, (t + 1)c) for each integer t (see Line 7 in Algorithm 2). For technical reasons,
we apply an exponential mechanism for the value tc + fopt(V \ L, 1 − w(At)), rather than
the exact value v(At) + opt(V \ L, 1 − w(At)) (see Line 9).

In Sections 4.2 and 4.3, we analyze the approximation ratio and average sensitivity of
Algorithm 2, respectively.
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Algorithm 2 A (1 − O(ϵ))-approximation algorithm with small average sensitivity.

1 Procedure StableOnAverageKnapsack(ϵ, V )
2 Sample c from the uniform distribution over [ϵ · fopt(V ), 2ϵ · fopt(V )];
3 Let L ⊆ V be the set of items with value at least c;
4 Let l = ⌊fopt(V )/c⌋;
5 for t = 0, . . . , l do
6 if there is a subset of L with value in [tc, (t + 1)c) then
7 Let At ⊆ L be the set of items with smallest weight that satisfies

tc ≤ v(At) < (t + 1)c;
8 (if there are multiple choices, choose the lexicographically smallest one);
9 Let xt = tc + fopt(V \ L, 1 − w(At));

10 else
11 Let At = ∅ and xt = −∞;

12 Let d = c
10 log(ϵ−1) = O

(
ϵ

log(ϵ−1) fopt(V )
)

;
13 Sample t◦ ∈ {0, . . . , l} with probability proportional to exp(xt◦/d) and let

R = At◦ ;
14 return R ∪ ModifiedGreedy(V \ L, 1 − w(At));

4.2 Approximation Ratio

First, we analyze the approximation ratio of Algorithm 2. Let S∗ be a set of items that
attains opt(V ). Let t∗ ≥ 0 be an integer such that v(S∗ ∩ L) ∈ [t∗c, (t∗ + 1)c).

The following lemma bounds the loss in the approximation ratio caused by considering
only A0, . . . , Al instead of all subsets of L as candidate sets that can possibly be R.

▶ Lemma 12. xt∗ ≥ (1 − 4ϵ) opt(V ) holds.

Proof. We have

xt∗ = t∗c + fopt(V \ L, 1 − w(At∗)) ≥ t∗c + fopt(V \ L, 1 − w(S∗ ∩ L))
≥ t∗c + v(S∗ \ L) ≥ v(S∗ ∩ L) − c + v(S∗ \ L) = opt(V ) − c ≥ (1 − 4ϵ)opt(V ),

where the first equality is from the definition of xt∗ , the first inequality is from w(At∗) ≤
w(S∗ ∩ L), which is ensured by Line 7 in the algorithm, the second inequality is from
fopt(V \ L, 1 − w(S∗ ∩ L)) ≥ opt(V \ L, 1 − w(S∗ ∩ L)) = v(S∗ \ L), the third inequality
is from the definition of t∗, the second equality is from the optimality of S∗, and the last
inequality is from c ≤ 2ϵ · fopt(V ) ≤ 4ϵ · opt(V ). ◀

Next we analyze the loss in the approximation ratio caused by the exponential method
applied at Line 13. We prove the following.

▶ Lemma 13. E[xt◦ ] ≥ (1 − 3ϵ)xt∗ holds.
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Proof. We have

Pr[xt◦ ≤ (1 − ϵ)xt∗ ] =
∑

t∈{0,...,l}:xt≤(1−ϵ)xt∗ exp
(

xt

d

)∑
t∈{0,...,l} exp

(
xt

d

) ≤
(l + 1) exp

(
(1−ϵ)xt∗

d

)
exp

(
xt∗

d

)
= (l + 1) exp

(
−ϵxt∗

d

)
≤ (l + 1) exp

(
−ϵ(1 − 4ϵ)opt(V )

d

)
≤ (l + 1) exp

(
−5

2 log ϵ−1(1 − 4ϵ)
)

= (l + 1)ϵ 5
2 (1−4ϵ) ≤ 2ϵ−1 · ϵ2 = 2ϵ. (3)

Here, the first equality is from Line 13 of the algorithm, the first inequality is from the fact
that there are at most l + 1 indices t with xt ≤ (1 − ϵ)xt∗ , the second inequality is from
Lemma 12, the third inequality is from

d = c

10 log ϵ−1 ≤ ϵ

5 log ϵ−1 · fopt(V ) ≤ 5
2 · ϵ

log ϵ−1 · opt(V ),

and the last inequality is from l + 1 ≤ ϵ−1 + 1 ≤ 2ϵ−1 and 5
2 (1 − 4ϵ) ≥ 2, which is from

ϵ ≤ 0.05. Therefore, we have

E[xt◦ ] ≥ (1 − ϵ)xt∗ Pr[xt◦ > (1 − ϵ)xt∗ ] ≥ (1 − ϵ) (1 − 2ϵ) xt∗ ≥ (1 − 3ϵ)xt∗ .

Here, the second inequality is from (3). ◀

Combining the lemmas above yields the following.

▶ Lemma 14. E[v(At◦) + fopt(V \ L, 1 − w(At◦))] ≥ (1 − 7ϵ)opt(V ) holds.

Proof. We have

E[v(At◦) + fopt(V \ L, 1 − w(At◦))]
≥ E[xt◦ ] ≥ (1 − 3ϵ)xt∗ ≥ (1 − 3ϵ)(1 − 4ϵ)opt(V ) ≥ (1 − 7ϵ)opt(V ),

where the first inequality is from Line 9 of the algorithm, the second inequality is from
Lemma 13, and the third inequality is from Lemma 12. ◀

Now we bound the approximation ratio of Algorithm 2. Let ASMALL(V ′, W ′) be the
output of Algorithm 1 on V ′, where all weights in the input are divided by W ′.

▶ Lemma 15. The approximation ratio of Algorithm 2 is at least 1 − 12ϵ.

Proof. Let A be the output distribution of Algorithm 2 applied on the instance (V, 1). We
have

E[A] = E[v(At◦) + v (ASMALL(V \ L, 1 − w(At◦)))]
≥ E[v(At◦) + (1 − ϵ)fopt(V \ L, 1 − w(At◦)) − c]
≥ E[(1 − ϵ)(v(At◦) + fopt(V \ L, 1 − w(At◦))) − c]
≥ E[(1 − ϵ)(1 − 7ϵ)opt(V ) − c] ≥ (1 − 12ϵ)opt(V ),

where the first inequality is from the analysis of Algorithm 1 given in the full version, the third
inequality is from Lemma 14, and the last inequality is from c ≤ 2fopt(V ) ≤ 4opt(V ). ◀
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4.3 Average Sensitivity
In this section, we discuss bounding the average sensitivity of Algorithm 2. For the parameters
used in the algorithm applied on the instance (V \ {i}, 1), we use symbols ci, di, and Ri to
denote c, d, and R, respectively (and use c, d, and R for the instance (V, 1)). Similarly, we
use the symbols Ai

t and xi
t for t = 0, . . . , l to denote At and xt, respectively, for the instance

(V \ {i}, 1). We first prove that the distributions of R and Ri are sufficiently close on average,
where the average is taken over i ∈ V (Lemma 22). Subsequently, we combine the analysis
for large and small items (Lemma 24).

The distributions of R and Ri may differ for the following two reasons: the difference
between the distributions of c and ci, and the absence of the item i in the instance V \ {i}.
We first forcus on the second reason. Specifically, we fix the value ĉ and assume c = ci = ĉ.
In this case, we prove that the distribution of R is sufficiently close to that of Ri on average,
where the average is taken over i ∈ V . To this end, we analyze the following quantity:∑

i∈V

∑
A⊆V

max
(
0, Pr[R = A | c = ĉ] − Pr[Ri = A | ci = ĉ]

)
. (4)

Because Pr[R = A | c = ĉ] is positive only if A = At for some t ∈ {0, . . . , l}, we have

(4) =
∑
i∈V

∑
t∈{0,...,l}

max
(
0, Pr[R = At | c = ĉ] − Pr[Ri = At | ci = ĉ]

)
. (5)

We analyze the sum in (5) by dividing it into two cases: i ∈ L and i ∈ V \ L. We first show
that xt ≥ xi

t holds for all i and t.

▶ Lemma 16. For any t ∈ {0, . . . , l} and i ∈ V , we have xt ≥ xi
t.

Proof. If xt = −∞, then we have xi
t = −∞ due to Line 6 of Algorithm 2. Hereafter, we

assume xt ̸= −∞. We prove the lemma by considering the following three cases:

▷ Claim 17. If i ∈ L \ At, we have xt = xi
t.

▷ Claim 18. If i ∈ At, we have xt ≥ xi
t.

▷ Claim 19. If i ∈ V \ L, we have xt ≥ xi
t.

We give the proofs of these claims in the full version. Then we complete the case analysis
and the lemma is proved. ◀

The next lemma handles the case i ∈ L. We give the proof in the full version.

▶ Lemma 20. For any ĉ ∈ R, we have∑
i∈L

∑
t∈{0,...,l}

max
(
0, Pr[R = At | c = ĉ] − Pr[Ri = At | ci = ĉ]

)
≤ ϵ−1.

Now we consider the case i ∈ V \ L.

▶ Lemma 21. For any ĉ ∈ R, we have∑
i∈V \L

∑
t∈{0,...,l}

max
(
0, Pr[R = At | c = ĉ] − Pr[Ri = At | ci = ĉ]

)
≤ 10ϵ−1 log ϵ−1.
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Proof. Let d̂ = ĉ
10 log(ϵ−1) . Then, we have

Pr[R = At | c = ĉ] − Pr[Ri = At | ci = ĉ]

= exp(xt/d̂)∑
t∈{0,...,l} exp(xt/d̂)

− exp(xi
t/d̂)∑

t∈{0,...,l} exp(xi
t/d̂)

≤ exp(xt/d̂) − exp(xi
t/d̂)∑

t∈{0,...,l} exp(xt/d̂)

=
(

1 − exp
(

−xt − xi
t

d̂

))
exp(xt/d̂)∑

t∈{0,...,l} exp(xt/d̂)
≤ xt − xi

t

d̂
Pr[R = At | c = ĉ]. (6)

Here, the first equality is from Line 13 of Algorithm 2, the first inequality is from Lemma 16,
and the last inequality is from 1 − exp(−x) ≤ x. Now, we have∑

i∈V \L

∑
t∈{0,...,l}

max
(
0, Pr[R = At | c = ĉ] − Pr[Ri = At | ci = ĉ]

)
≤
∑

i∈V \L

∑
t∈{0,...,l}

xt − xi
t

d̂
· Pr[R = At | c = ĉ]

≤
∑

t∈{0,...,l}

fopt(V \ L, 1 − w(At))
d̂

· Pr[R = At | c = ĉ]

≤ fopt(V )
d̂

∑
t∈{0,...,l}

Pr[R = At | c = ĉ] ≤ 10ϵ−1 log ϵ−1.

Here, the first inequality is obtained from (6) and Claim 19. The second inequality is obtained
from:∑

i∈V \L

(xt − xi
t) =

∑
i∈V \L

(fopt(V \ L, 1 − w(At)) − fopt((V \ L) \ {i}, 1 − w(At)))

≤ fopt(V \ L, 1 − w(At)),

which is obtained from Lemma 9. The last inequality is from Line 12 of Algorithm 2. ◀

Combining Lemmas 20 and 21, we obtain the following.

▶ Lemma 22. We have∑
i∈V

∑
A⊆V

max
(
0, Pr[R = A | c = ĉ] − Pr[Ri = A | ci = ĉ]

)
≤ 11ϵ−1 log ϵ−1.

Proof. The claim immediately follows from Lemmas 20 and 21 and the fact that V is a
disjoint union of V \ L and L. ◀

Now, we evaluate the average sensitivity. Let Ai be the output distribution of Algorithm 2
applied on the instance V \ {i}.

To bound the earth mover’s distance, we consider transporting the probability mass
in such a way the mass of A corresponding to a particular choice of c is transported to
that of Ai for the same ci (as far as we can). For the same choice of c and ci, we consider
transporting the probability mass in such a way that the mass corresponding to a particular
choice of R is transported to that for the same Ri (as far as we can). For the same choice
of c, R and ci, Ri, we consider transporting the probability mass in a manner similar to the
analysis of Algorithm 1. The remaining mass is transported arbitrarily.

First, we bound the contribution of the difference between the distributions of c and ci

to the earth mover’s distance. Let f and f i be the probability density functions of c and
ci, respectively. Precisely, f(c) = 1

ϵ·fopt(V ) if ϵ · fopt(V ) ≤ c ≤ 2ϵ · fopt(V ) and 0 otherwise.
Similarly, f i(ci) = 1

ϵ·fopt(V \{i}) if ϵ · fopt(V \ {i}) ≤ ci ≤ 2ϵ · fopt(V \ {i}) and 0 otherwise.
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▶ Lemma 23. We have∑
i∈V

∫ 2ϵ·fopt(V )

ϵ·fopt(V )
max

(
0, f(ĉ) − f i(ĉ)

)
dĉ ≤ 2.

Proof. We have∑
i∈V

∫ 2ϵ·fopt(V )

ϵ·fopt(V )
max

(
0, f(ĉ) − f i(ĉ)

)
dĉ =

∑
i∈V

∫ 2ϵ·fopt(V )

max{ϵ·fopt(V ),2ϵ·fopt(V \{i})}

1
ϵ · fopt(V )dĉ

≤ 1
ϵ · fopt(V )

∑
i∈V

(2ϵ · (fopt(V ) − fopt(V \ {i}))) ≤ 1
ϵ · fopt(V ) · 2ϵ · fopt(V ) = 2,

where the first inequality is from the fact that f(ĉ) ≤ f i(ĉ) holds if ϵ · fopt(V ) ≤ ĉ ≤
2ϵ · fopt(V \ {i}), and the last inequality is from Lemma 9. ◀

Finally, we bound the average sensitivity.

▶ Lemma 24. The average sensitivity of Algorithm 2 is at most 12ϵ−1 log ϵ−1.

Proof. We have
1
n

∑
i∈V

EM(A, Ai)

≤ 1
n

∑
i∈V

∫ 2ϵ·fopt(V )

ϵ·fopt(V )
max

(
0, f(ĉ) − f i(ĉ)

)
dĉ · n

+ 1
n

∑
i∈V

∫ 2ϵ·fopt(V )

ϵ·fopt(V )

∑
A⊆V

(
max

(
0, Pr[R = A | c = ĉ] − Pr[Ri = A | ci = ĉ]

)
· n

+ Pr[R = A | c = ĉ] · EM (ASMALL(V \ L, 1 − w(A)), ASMALL((V \ L) \ {i}, 1 − w(A)))
)

f(ĉ)dĉ

≤ 2 + 1
n

∫ 2ϵ·fopt(V )

ϵ·fopt(V )

(
11ϵ−1 log ϵ−1n +

∑
i∈V

∑
A⊆V

Pr[R = A | c = ĉ](ϵ−1 + 1)

)
f(ĉ)dĉ

= 2 + 1
n

∫ 2ϵ·fopt(V )

ϵ·fopt(V )

(
11ϵ−1 log ϵ−1n + (ϵ−1 + 1) · n

)
f(ĉ)dĉ

= 2 + 11ϵ−1 log ϵ−1 + ϵ−1 + 1 ≤ 12ϵ−1 log ϵ−1,

where the first inequality is due to the transport of the probability mass, and the second
inequality is from Lemmas 23, 22, and the analysis of Algorithm 1 given in the full version. ◀

Proof of Theorem 11. Applying Lemma 15 and Lemma 24 and replacing ϵ with
min(0.05, ϵ/12) proves this theorem. ◀
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Abstract
Cardinality estimation is the task of approximating the number of distinct elements in a large
dataset with possibly repeating elements. LogLog and HyperLogLog (c.f. Durand and Flajolet [ESA
2003], Flajolet et al. [Discrete Math Theor. 2007]) are small space sketching schemes for cardinality
estimation, which have both strong theoretical guarantees of performance and are highly effective in
practice. This makes them a highly popular solution with many implementations in big-data systems
(e.g. Algebird, Apache DataSketches, BigQuery, Presto and Redis). However, despite having simple
and elegant formulation, both the analysis of LogLog and HyperLogLog are extremely involved –
spanning over tens of pages of analytic combinatorics and complex function analysis.

We propose a modification to both LogLog and HyperLogLog that replaces discrete geometric
distribution with the continuous Gumbel distribution. This leads to a very short, simple and
elementary analysis of estimation guarantees, and smoother behavior of the estimator.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Streaming algorithms, Cardinality estimation, Sketching, Gumbel distribution

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.76

Related Version Full Version: https://arxiv.org/abs/2008.07590

Funding Aleksander Łukasiewicz : Polish National Science Centre grant 2019/33/B/ST6/00298.
Przemysław Uznański: Polish National Science Centre grant 2019/33/B/ST6/00298.

Acknowledgements We would like to thank Seth Pettie for useful remarks that helped us improve
the paper.

1 Introduction

In the cardinality estimation problem we are presented with a dataset consisting of many
items, and some of these items might appear more than once. Our goal is to process this
dataset efficiently, in order to estimate the number n of distinct elements it contains. Here,
efficiently means in small auxiliary space, and with fast processing time per each item. A
natural scenario to consider is a stream processing of a dataset, with stream of events being
either element insertions to the multiset or queries of the multiset cardinality.

A folklore information theoretic analysis reveals that this problem over universe of u

elements requires at least u bits of memory to answer queries exactly. However, in many
practical settings it is sufficient to provide an approximation of the actual cardinality. One of
the possible real-world scenarios is a problem of estimating the number of unique addresses in
packets that a router observes, in order to detect malicious behaviors and attacks. Here, the
challenge arises from the limited computational capabilities of the router and sheer volume
of the data that can be observed over e.g. a day.

The theoretical study of the cardinality estimation was initiated by the seminal work of
Flajolet and Martin [20]. From that point, two separate lines of research follow. First, there
has been a considerable effort put into developing approximation schemes with so called (ε, δ)-
guarantees, meaning that they guarantee outputting (1 + ε)-multiplicative approximation of

© Aleksander Łukasiewicz and Przemysław Uznański;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 76; pp. 76:1–76:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleksander.lukasiewicz@cs.uni.wroc.pl
https://orcid.org/0000-0003-1808-8330
mailto:puznanski@cs.uni.wroc.pl
https://orcid.org/0000-0002-8652-0490
https://doi.org/10.4230/LIPIcs.ESA.2022.76
https://arxiv.org/abs/2008.07590
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


76:2 Cardinality Estimation Using Gumbel Distribution

the cardinality, with probability at least 1− δ. Here, we mention [6, 7, 8, 11, 22, 23, 29] on
the upper-bound side and [6, 10, 27, 28, 36] on lower-bound side. The high-level takeaway
message is that one can construct approximate schemes that provide (1 + ε)-multiplicative
approximation to the number of distinct elements, using an order of ε−2 space, and that
this dependency on ε is tight. More specifically, the work of Błasiok [11] settles the bit-
complexity of the problem, by providing O( log δ−1

ε2 + log n) bits of space upper-bound, and
this complexity is optimal by a matching lower bound [28]. To achieve such small space usage,
a number of issues have to be resolved, and a very sophisticated machinery of expanders and
pseudo-randomness is deployed.

The other line of work is more practical in nature, and focuses on providing variance bounds
for efficient algorithms. The bounds are usually of the form ∼ 1/

√
k where k is some measure

of space-complexity of algorithms (usually, corresponds to the number of parallel estimation
processes). This approach includes work of [9, 12, 14, 16, 18, 19, 21, 24, 30, 31, 34, 35].
Recently, Pettie and Wang started the study of the intrinsic tradeoff between the space
complexity of the cardinality estimation sketch and its estimation error by introducing the
notion of memory-variance product (MVP) [31]. They proposed a Fishmonger sketch that
has an MVP equal to H0/I0 ≈ 1.98 (where H0, I0 are some precisely defined constants) and
they also proved that this is the best MVP that one can get in a class of linearizable sketches
(in fact all the popular mergeable sketches are linearizable). In the very recent follow-up
work Pettie, Wang and Yin studied the MVPs of non-mergeable sketches [32].

We now focus on two specific algorithms, namely LogLog [16] and its refined version
called HyperLogLog [19]. The guarantees that these algorithms provide for variance are
approximately 1.3/

√
k and 1.04/

√
k respectively, when using k integer registers. Both are

based on a simple principle of observing the maximal number of trailing zeroes in the binary
representation of hashes of elements in the stream, although they vary in the way they extract
the final estimate from this observed value (we will discuss those details in the following
section). In addition to being easy to state and provided with theoretical guarantees, they
are highly practical in nature. We note the following works on algorithmic engineering of
practical variants [17, 26, 37], with actual implementations e.g. in Algebird [1], BigQuery [2],
Apache DataSketch [3], Presto [4] and Redis [5].

Despite its simplicity and popularity, LogLog and HyperLogLog are exceptionally tough
to analyze. We note that both papers analyzing LogLog and later HyperLogLog use a heavy
machinery of tools from analytic combinatorics and complex function analysis e.g. Mellin
transform, poissonization and analytical depoissonization. In fact, unpacking the main tool
used in the paper requires understanding of another tens of pages from [33]. Additionally,
both papers are presented in a highly compressed form. Thus, the analysis is not easily
digestible by a typical computer scientist, and has to be accepted “as it is” in a black-box
manner, without actually unpacking it.

This creates an unsatisfactory situation where one of the most popular and most elegant
algorithms for the cardinality estimation problem has to be treated as a black-box from the
perspective of its performance guarantees. It is an obstacle both in terms of popularization
of the LogLog and HyperLogLog algorithms, and in terms of scientific progress. We note that
those algorithms are generally omitted during majority of theoretical courses on streaming
and big data algorithms.

Our contribution: Gumbel distribution
Our contribution comes in two factors. First, we observe that the key part of LogLog and
HyperLogLog algorithms is counting the trailing zeroes in the binary representation of a hash
of element. This random variable is distributed according to a geometric distribution. Both
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Figure 1 Distribution of max{X1, . . . , Xk} for k ∈ {1, 2, 4, 8, 16, 32, 64} where Xi iid random
variables distributed according to discrete Geometric distribution (on the left) and Gumbel distribu-
tion (on the right). Discrete distribution given by fk(x) = (1 − 2−x−1)k − (1 − 2−x)k is drawn with
continuous intermediate values for smooth drawing.

LogLog and HyperLogLog estimate the cardinality using the maximum value of the count of
trailing zeroes observed over all elements of the dataset. However, the distribution of the
maximum of many discrete random variables drawn from an identical geometric distribution
is not distributed according to a geometric distribution. This is unwieldy to handle in the
analysis in [19].

We propose the following: as the first step we replace the discrete geometric distribution
with its continuous counterpart, i.e. the exponential distribution with the CDF 1 − e−x.
Next, we take a maximum of N independent repetitions of our algorithm which can be
simulated by, e.g., replacing each update x with N updates of the form (x, i) for i ∈ [N ].
This yields the CDF of the form (1 − e−x)N . Intuitively, we expect this manipulation to
have a smoothing effect on the irregularities of LogLog and HyperLogLog (which performance
deteriorate greatly for very small values of n). Third and the final step is to take a limit of
N →∞, while maintaining a proper normalization of the distribution (i.e., we take a shift
by ln N), resulting in a CDF of the form F (X) = limN→∞(1− e−x−ln N )N .

A little manipulation gives us F (X) = limN→∞(1 − e−x

N )N = e−e−x which is precisely
the CDF of the Gumbel distribution, with the following crucial property

If X1, . . . , Xk are independent random variables drawn from a Gumbel distribution, then
Z = max(X1, . . . , Xk)− ln(k) is also distributed according to the same Gumbel distribution.

This allows us to simplify extraction of the value of k from max(X1, . . . , Xk), since we are
always dealing with the same type of error (distributed according to the Gumbel distribution)
on top of the value ln(k).

Our contribution: Simpler analysis
Our second contribution comes in the form of a simple analysis of the performance guarantees
of the estimation. We note that since our observable can be interpreted as an observable from
LogLog or HyperLogLog repeated N -times (for some very large value of N), we expect to get
a similar type of the guarantees. One should be able to go with the tour-de-force analysis
analogous to [16, 19]. However, we find it valuable to provide analysis that is tractable
using just elementary and short proofs. We show that by taking advantage of the Gumbel
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distribution being the limiting distribution, one can isolate a very simple combinatorial
problem capturing the essence of the stochastic averaging. The analysis of this problem
requires application of only some basic probabilistic inequalities and multinomial identities.1

2 Related work

The key concept used in virtually all cardinality estimation results, can be summarized as
follows: given a universe U of elements, we start by picking a hash-function. Then, given a
subset M ⊆ U which cardinality we want to estimate, we proceed by applying h to every
element of M and operate only on M ′ = {h(x) : x ∈M} ⊂ [0, 1]. The next step is computing
an observable – i.e. a quantity that only depends on the underlying set and is independent
of replications. In the final step we somehow extract the estimate of the cardinality from the
observable.

For example [7] uses h : M → [0, 1] and the value y = min M ′ = minx∈M h(x) as an
observable. We expect y ∼ 1

n+1 , thus 1
y − 1 is used as an estimate of the cardinality n.

However, since we need to overcome the variance, one might need to average over many
independent instances of the process, in order to achieve a good estimation. In this particular
example, to get an (1+ε) approximation, we need to average over O(ε−2) independent copies
of the algorithm. Therefore, the total memory usage becomes O(ε−2 log n) bits.

Stochastic averaging
Naively averaging over k independent copies of the algorithm has an important drawback
- the time for processing each query grows from O(1) to O(k). Stochastic averaging is a
technique designed to address that issue. In our setting it works as follows: instead of
processing each element in each of the k processes independently (which is a bottleneck), we
randomly partition our input into k disjoint sub-inputs: M = M1 ∪ . . . ∪Mk, and we run
each copy of an algorithm only on its corresponding sub-input. This is simulated by picking
a second hash function h′ : M → {1, . . . , k}, and when we are processing an element x, it
is assigned to Mi where i = h′(x) is decided solely on the hash of x. Intuitively, we expect
each Mi to contain roughly n/k elements. Note that the actual number of elements in all Mi

follows a multinomial distribution, and this presents an additional challenge in the analysis.

LogLog sketching
Consider the following: we hash the elements to bitstrings, that is h : M → {0, 1}∞, and
consider the bit-patterns observed. For each element find the value bit(x) such that h(x) has
a prefix 0bit(x)1. The particular value bit(x) = c should be observed once every ∼ 2c different
hashes, and can be used to estimate the cardinality. The observable used in the LogLog is
the value maxx bit(x) among all elements. Since we expect its value to be roughly of order
log n, we maintain the value of max bit(x) on O(log log n) bits.

Denote the observables produced in the concurrent copies of the algorithm as t1, . . . , tk.
We expect the values of ti to be such that 2ti ∼ n/k. One can easily show, that for any ti,
we have E[2ti ] = ∞, thus taking the arithmetic average over 2ti is not a feasible strategy.

1 It is important to note that this is not the first cardinality estimation algorithm with a simple analysis,
e.g. [7, 20] algorithms have relatively straightforward analysis. However, none of those techniques apply
to the simplification of LogLog or HyperLogLog specifically, which are default practical choices for the
cardinality estimation.
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However, it turns out that the geometric average works in this setting, and we expect the
k (

∏
i 2ti)1/k to be an estimate for n (one also needs a normalizing constant that depends

solely on k). The analysis in [16] shows that the variance of the estimation is roughly 1.3/
√

k.

HyperLogLog sketching
HyperLogLog ([19]) is an improvement over LogLog with the observation that the harmonic
average achieves a better averaging performance over geometric average. Thus HyperLogLog
is constructed by setting the estimator to k2 (

∑
i 2−ti)−1 with some normalizing constant

(depending on k). The resulting algorithm has a variance which is roughly 1.04/
√

k.
In fact it can be shown that the harmonic average is optimal in that setting: among

observables that constitute of taking maximum of a hash function, harmonic average is a
maximum likelihood estimator (see e.g. [13]). However, this claim is strict only without
stochastic averaging.

Due to the space limitations, in this article we provide only the analysis of the LogLog
version (with geometric average estimation) of our algorithm. The HyperLogLog version
(using harmonic average estimation) is available in the full version of the paper. 2

3 Preliminaries

Computational model

We assume oracle access to a perfect source of randomness, that is a hash function h : [u]→
{0, 1}∞. If the sketch demands it, we allow it to access multiple independent such sources,
which can be simulated with a help of bit and arithmetic operations. The oracle access is
a standard assumption in this line of work (c.f. discussion in [31]) – the purpose of this
assumption is to separate the analysis of the space complexity of the algorithm from the
space complexity of the source of the randomness.

Besides that, we assume standard RAM model, with words of size log u and standard
arithmetic operations on those words taking constant time.

Gumbel distribution

We use the following distribution, which originates from the extreme value theory.

▶ Definition 1 (Gumbel distribution [25]). Let Gumbel(µ) denote the distribution given by a
following CDF:

F (x) = e−e−(x−µ)
.

Its probability density function is given by

f(x) = e−e−(x−µ)
e−(x−µ).

Observe that, directly from the definition, if X ∼ Gumbel(µ), then X +c ∼ Gumbel(µ+c).
We also note that when x→∞, then f(x) ≈ e−(x−µ), thus the Gumbel distribution has

an exponential tail on the positive side. The distribution has a doubly-exponential tail when
x→ −∞.

2 The full version of the paper is available under the following link: https://arxiv.org/abs/2008.07590.
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We have the following basic property when X ∼ Gumbel(µ) (c.f. [25]):

E[eαX ] = eαµ

∫ ∞

−∞
e−e−x

e(α−1)xdx = eαµΓ(1− α), (1)

from which it follows that E[e−X ] = e−µ and Var[e−X ] = e−2µ.

▶ Property 2 (Sampling from Gumbel distribution.). If t ∈ [0, 1] is drawn uniformly at random,
then X = − ln(− ln t) + µ has the distribution Gumbel(µ).

The following property is the key property used in our algorithm analysis. It essentially
states that Gumbel distribution is invariant under taking the maximum of independent
samples (up to normalization).3

▶ Property 3. If x1, x2, . . . , xn ∼ Gumbel(0) are independent random variables, then for
Z = max(x1, . . . , xn) we have Z ∼ Gumbel(ln n).

Proof.

Pr(Z < x) =
∏

i

Pr(xi < x) = (ee−x

)n = ee−x+ln n

. ◀

Multinomial distribution

We now discuss the multinomial distribution and its role in the analysis of the stochastic
averaging.

▶ Definition 4. We say that X1, . . . , Xk are distributed according to Multinomial(n; p1, . . . , pk)
distribution for some

∑
i pi = 1, if, for any n1 + . . . + nk = n there is

Pr[X1 = n1 ∧ . . . ∧Xk = nk] =
(

n

n1, . . . , nk

)
pn1

1 . . . pnk

k .

Consider a process of distributing n identical balls to k urns, where for each ball we
place it in the urn i with probability pi, fully independently between the balls. Then, the
vector of the total number of balls in each urn X1, . . . , Xk follows Multinomial(n; p1, . . . , pk)
distribution.

For our purposes we are interested in the following setting: let f be some real-valued
function. Lets say that we have a stochastic process of estimating cardinality in a stream,
that is if n distinct elements appear, the process outputs a value that is concentrated around
its expected value f(n). Now, we apply stochastic averaging, by splitting the stream into
sub-streams, and feed each sub-stream to estimation process separately, say ni going into
sub-stream i. We can look at the following random variables:

Sn = E[
∑

i

f(ni)] and Pn = E[
∏

i

f(ni)].

3 In fact, the Fisher–Tippett–Gnedenko theorem (c.f. [15]) states, that for any distribution D, if for
some an, bn the limit limn→∞( max(X1,...,Xn)−bn

an
) converges to some non-degenerate distribution, where

X1, . . . Xn ∼ D (and are independent), then it converges to one of three possible distribution families:
a Fréchet distribution, a Weibull distribution or a Gumbel distribution. Thus, those three distributions
can be viewed as a counterpart to normal distribution, w.r.t. to taking maximum (instead of repeated
additions).
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We expect Sn ≈ kf(n/k) and Pn ≈ f(n/k)k. Deriving actual concentration bounds for
specifically chosen functions f gives us insight on how well harmonic average or geometric
average performs when concentrating cardinality estimation processes under stochastic
averaging.

The analysis of the stochastic averaging for a generic function f (under some regularity
constraints) has been done in [13]. We actually derive a stronger set of bounds for very
specific functions: f(x) = ln(x + 1) and f(x) = 1

x+1 .

4 Geometric average estimation

We start by showing a simple concentration result for geometric average of independent
random variables distributed according to the Gumbel distribution.

▶ Lemma 5. Let G1, . . . , Gk be independent random variables distributed according to
Gumbel(0), and let G =

∑
i Gi. If k > 1, then E[exp(G/k)] = Γ(1 − 1/k)k = exp(γ)(1 +

π2

12
1
k + O(k−2)). If k > 2, then Var[exp(G/k)] = Γ(1 − 2/k)k − Γ(1 − 1/k)2k = exp(2γ) ·(

π2

6k +O(k−2)
)

Proof.

E[exp(G/k)] =
∏

i

E[exp(Gi/k)] = Γ(1− 1/k)k

Var[exp(G/k)] =
∏

i

E[exp(Gi/k)2]−
∏

i

E[exp(Gi/k)]2

= Γ(1− 2/k)k − Γ(1− 1/k)2k.

From the Taylor expansion of the log-gamma function we get that Γ(1−z) = exp(γz + π2

12 z2 +
O(z3)), which yields the desired approximations. ◀

The following algorithm shows that if we are fine with slower updates, then the Gumbel
distribution fits nicely into the standard cardinality estimation framework. The main idea
is just to hash each element into a real-value distributed according to Gumbel distribution,
and take the maximum across the values.

Algorithm 1 Cardinality estimation using Gumbel distribution.

1 Procedure Init()
2 pick r1, . . . , rk : U → [0, 1] as independent hash functions
3 X1 ← −∞, . . . , Xk ← −∞
4 Procedure Update(x)
5 for 1 ≤ i ≤ k do
6 v ← − ln(− ln ri(x)) // Gumbel(0) RV
7 Xi ← max(v, Xi)

8 Procedure GeometricEstimate()
9 αk ← Γ(1− 1/k)−k // normalizing factor, for large k: αk ≈ exp(−γ)

10 return Z = exp( 1
k

∑
i Xi) · αk
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▶ Theorem 6. Applied to a stream of n distinct elements, Algorithm 1 outputs Z such that
E[Z] = n and if k > 2 then Var[Z] = n2

k

(
π2

6 + O(k−1)
)

. It uses k real-value registers and
spends O(k) operations per single processed element of the input.

Proof. We analyze the Algorithm 1 after processing a stream of n distinct elements. For
each Xi, its value is a maximum of n random variables drawn from Gumbel(0) distribution,
so by Property 3 we have that Xi ∼ Gumbel(ln n). Hence, Xi = Gi + ln n where all Gi are
identically distributed according to the Gumbel(0). Moreover, repeated occurrences of the
elements do not change the state of the algorithm. Denoting G =

∑
i Gi, we get

E[Z] = Γ(1− 1/k)−k E[exp(ln n + G/k)] = nΓ(1− 1/k)−kΓ(1− 1/k)k = n

and

Var[Z] = n2Γ(1− 1/k)−2k Var[exp(G/k)] = n2
(

Γ(1− 2/k)k

Γ(1− 1/k)2k
− 1

)
. ◀

4.1 Stochastic averaging
We refine the Algorithm 1 by adding stochastic averaging. Application of the technique is
straightforward, but for technical reasons we need to take care of the initialization of the
registers – since the expected value of Xi is the logarithm of the number of the elements
assigned to the i-th register, we don’t want any of the registers to be empty at the and.
Therefore, at the beginning we feed each of them with an artificial random element.

Algorithm 2 Cardinality estimation using Gumbel distribution and stochastic averaging.

1 Procedure Init()
2 pick h : U → {1, . . . , k} and r : U → [0, 1] as independent hash functions
3 for 1 ≤ i ≤ m do
4 Xi ← − ln(− ln ui) where ui is picked uniformly from [0, 1]. // Gumbel(0) RV

5 Procedure Update(x)
6 t← h(x)
7 v ← − ln(− ln r(x)) // Gumbel(0) RV
8 Xt ← max(v, Xt)
9 Procedure GeometricEstimate()

10 αk ← Γ(1− 1/k)−k // normalizing factor, for large k: αk ≈ exp(−γ)
11 return Z = k · exp( 1

k

∑
i Xi) · αk

▶ Theorem 7. Applied to a stream of n distinct elements, Algorithm 2 outputs Z such that
if k > 1 then n k

k+1 ≤ E[Z] ≤ n + k and if k > 2 then Var[Z] ≤ 3.645n2

k + O(n2/k2 + k2).
It uses k real-value registers and spends constant number of operations per single processed
element of the input.

Proof. We analyze Algorithm 2 after processing stream S of n distinct elements. Let
n1, . . . , nk be the respective numbers of unique items hashed by h into registers {1, . . . , k}
respectively. It follows that n1, . . . , nk ∼ Multinomial(n; 1

k , . . . , 1
k ). For each Xi, its value is a

maximum of ni + 1 random variables drawn from the Gumbel(0) distribution (taking into
account ni updates to its value and the initialization). Thus, conditioned on the specific
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values of n1, . . . , nk, we have that Xi follows the Gumbel distribution – more specifically
Xi|n1, . . . , nk ∼ Gumbel(ln(ni + 1)). Let us denote Gi = Xi − ln(ni + 1), G =

∑
i Gi and

Y =
∑

i ln(ni + 1). We observe that Gi’s are independent random variables distributed
according to Gumbel(0) (and independent from Y ).

We now have

Z = kΓ(1− 1/k)−k exp(Y/k) exp(G/k).

Since E[exp(G/k)] = Γ(1− 1/k)k and G and Y are independent, using Lemma 8 we get

E[Z] = k E[exp(Y/k)] ≥ n · k

k + 1

and

E[Z] = k E[exp(Y/k)] ≤ n + k.

Now, using Var[AB] = Var[A]E[B2] + E[A]2 Var[B] identity for independent random
variables and Lemma 8 we can bound

Var[Z] = k2Γ(1− 1/k)−2k
(
Var[exp(Y/k)]E[exp(G/k)2] + E[exp(Y/k)]2 Var[exp(G/k)]

)
≤ (k2 + 2n2/k + O(n2/k2)) Γ(1− 2/k)k

Γ(1− 1/k)2k
+ (n + k)2( Γ(1− 2/k)k

Γ(1− 1/k)2k
− 1)

= (k2 + 2n2/k + O(n2/k2))(1 + O(k−1)) + (n + k)2(π2

6k
+ O(k−2)),

and the claim follows. ◀

▶ Lemma 8. Let n1, . . . , nk ∼ Multinomial(n; 1/k, . . . , 1/k) and let T = k
√∏

i(ni + 1) =
exp( 1

k

∑
i ln(ni + 1)). Then there is n/(k + 1) ≤ E[T ] ≤ n/k + 1 and Var[T ] ≤ 1 + 2n2/k3 +

O(n2/k4).

Proof. Denote Y =
∑

i ln(ni + 1). By Lemma 9 bound we have

E[exp(Y/k)] ≥
∫ ∞

0
exp(ln(n/k)− t/k)e−tdt

= n/k

∫ ∞

0
exp(−k + 1

k
t)dt

= n/(k + 1).

By concavity of a logarithm we have Y =
∑

i ln(ni + 1) ≤ k ln(n/k + 1), so exp(Y/k) ≤
n/k + 1. Finally, by Lemma 9 bound we get

Var[exp(Y/k)] ≤ E[(exp(Y/k)− n/k)2]

≤ ((n/k + 1)− n/k)2 + n2

k2

∫ ∞

0
(1− e−t/k)2e−tdt

= 1 + n2

k2

(
1− 2 k

k + 1 + k

k + 2

)
. ◀

▶ Lemma 9. Let n1, . . . , nk ∼ Multinomial(n; 1/k, . . . , 1/k) and let Y =
∑

i ln(ni + 1). Then
Y ≥ k ln(n/k)− t with probability at least 1− e−t.
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Proof. Consider E[e−Y ]. We have

E
n1,..,nk∼
Multinomial

[e−Y ] = E
n1,..,nk∼
Multinomial

[∏
i

1
ni + 1

]

=
∑

i1+...+ik=n

Pr[n1 = i1 ∧ . . . ∧ nk = ik]
∏

i

1
ii + 1

=
∑

i1+...+ik=n

k−n

(
n

i1, . . . , ik

) ∏
i

1
ii + 1

= k−n
∑

i1+...+ik=n

n!
(i1 + 1)! · . . . · (ik + 1)!

= k−n
∑

i1+...+ik=n

(
n + k

i1 + 1, . . . , ik + 1

)
n!

(n + k)!

≤ k−nkn+k n!
(n + k)!

≤
(

k

n

)k

.

Thus, for any t > 0, by Markov’s inequality

Pr[Y ≤ k ln(n/k)− t] = Pr[e−Y ≥ et−k ln(n/k)]
≤ Pr[e−Y ≥ et · E[e−Y ]]
≤ e−t. ◀

4.2 Discretization
Presented sketches use k real-value registers, which is in disadvantage when compared with
LogLog and HyperLogLog, where only k integers are used, each taking O(log log n) bits. We
now discuss how to reduce the memory footprint of the algorithms. This section exemplifies
the usefulness of Gumbel distributions. In particular, this is a family of the limit distributions
where additive error of registers corresponds to multiplicative error of estimation.

Simple rounding

First, we note that rounding the registers to nearest multiplicity of ε for some ε > 0
introduces at most exp(ε) = 1 + ε + O(ε2) multiplicative distortion in the estimation
procedure GeometricEstimate() from both Algorithm 1 and 2. For example, for 1, we have,
assuming X ′

i are rounded registers: |X ′
i −Xi| ≤ ε, and so for Z ′ = αk exp( 1

k

∑
i X ′

i) there
is Z′

Z = exp( 1
k

∑
i(X ′

i −Xi)), so exp(−ε) ≤ Z′

Z ≤ exp(ε). Since each register stores w.h.p.
values of magnitude 2 log n, it can be implemented on integer registers using O(log log n

ε ) =
O(log log n + log ε−1) bits.

Randomized rounding

We now show how to eliminate the log ε−1 term. We define the following shift-rounding, for
shift value c ∈ [0, 1):

fc(x) def= ⌊x + c⌋ − c.
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We note two key properties:

1. shift-rounding commutes with maximum, that is, for any x1, . . . , xk, we have
max(fc(x1), . . . , fc(xk)) = fc(max(x1, . . . , xk)),

2. If c ∼ U [0, 1], then fc(x) ∼ U [x − 1, x], where U [a, b] denotes uniform distribution on
range [a, b].

We thus show how to adapt the Algorithm 2 using shift-rounding.
The analysis of Algorithm 3 comes from following invariant: if Algorithms 3 and 2 are

run side-by-side on the same input stream, at any given moment there is X ′
i = fci

(Xi). Thus,
we have the following X ′

i ∼ Gumbel(ln(ni + 1))−U [0, 1] = ln(ni + 1) + Gumbel(0)−U [0, 1].

Algorithm 3 Algorithm 2 with shift-rounding.

1 Procedure Init()
2 pick h : U → {1, . . . , k} and r : U → [0, 1] as independent hash functions
3 for 1 ≤ i ≤ m do
4 ci is picked uniformly from [0, 1]
5 X ′

i ← ⌊− ln(− ln ui) + ci⌋ − ci

6 where ui is picked uniformly from [0, 1]. // Gumbel(0) RV + randomized
rounding

7 Procedure Update(x)
8 t← h(x)
9 v ← ⌊− ln(− ln h(x)) + ui⌋ − ui

10 X ′
t ← max(v, X ′

t)
11 Procedure GeometricEstimate()
12 α′

k ← Γ(1− 1/k)−k(1− exp(−1/k))−kk−k // normalizing factor, for large
k: α′

k ≈ exp(1/2− γ)
13 return Z = k · exp( 1

k

∑
i X ′

i) · α′
k

Additionally, X ′
i are independent as Xi were independent. We observe that for X ′ ∼

Gumbel(0)−U [0, 1], there is E[exp(X ′/k)] = Γ(1−1/k)(1− exp(−1/k))k, so we have equival-
ents of Lemma 5 in the following sense: E[exp( 1

k

∑
i G′

i)] = Γ(1−1/k)k(1−exp(−1/k))kkk ≈
exp(γ − 1/2)(1 + ( π2

12 + 1
6 ) 1

k +O(k−2)), and Var[exp( 1
k

∑
i G′

i)] ≈ exp(2γ − 1)(( π2

6 + 1
3 ) 1

k +
O(k−2)).

Thus an equivalent of Theorem 7 applies to Algorithm 3 with slightly worse constants.

▶ Theorem 10. Applied to a stream of n distinct elements, Algorithm 3 outputs Z such that
if k > 1 then n k

k+1 ≤ E[Z] ≤ n + k and if k > 2 then Var[Z] ≤ 3.98n2

k +O(n2/k2 + k2). It
uses k integer registers of size O(log log n) bits each and spends constant number of operations
per single processed element of the input.

We note that each X ′
i takes values only from set Z− ci of magnitude at most 2 log n, it

can be stored using O(log log n) bits. Values of ci do not need to be stored explicitly, as
those can be extracted by picking a hash function c : {1, . . . , k} → [0, 1] and setting ci = c(i).
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Abstract
We consider variants of the restricted assignment problem where a set of jobs has to be assigned
to a set of machines, for each job a size and a set of eligible machines is given, and the jobs may
only be assigned to eligible machines with the goal of makespan minimization. For the variant with
interval restrictions, where the machines can be arranged on a path such that each job is eligible on a
subpath, we present the first better than 2-approximation and an improved inapproximability result.
In particular, we give a (2 − 1

24 )-approximation and show that no better than 9/8-approximation is
possible, unless P=NP. Furthermore, we consider restricted assignment with R resource restrictions
and rank D unrelated scheduling. In the former problem, a machine may process a job if it can
meet its resource requirements regarding R (renewable) resources. In the latter, the size of a job is
dependent on the machine it is assigned to and the corresponding processing time matrix has rank
at most D. The problem with interval restrictions includes the 1 resource variant, is encompassed by
the 2 resource variant, and regarding approximation the R resource variant is essentially a special
case of the rank R + 1 problem. We show that no better than 3/2, 8/7, and 3/2-approximation is
possible (unless P=NP) for the 3 resource, 2 resource, and rank 3 variant, respectively. Both the
approximation result for the interval case and the inapproximability result for the rank 3 variant are
solutions to open challenges stated in previous works. Lastly, we also consider the reverse objective,
that is, maximizing the minimal load any machine receives, and achieve similar results.
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1 Introduction

Makespan minimization on unrelated parallel machines, or unrelated scheduling for short, is
considered a fundamental problem in approximation and scheduling theory. In this problem,
a set J of jobs has to be assigned to a set M of machines via a schedule σ : J → M. Each
job j has a processing time pij depending on the machine i it is assigned to and the goal
is to minimize the makespan Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pij . In 1990, Lenstra, Shmoys,

and Tardos [10] presented a 2-approximation for this problem and further showed that no
better than 1.5-approximation can be achieved (unless P=NP) already for the restricted
assignment problem, where each job j has a size pj and pij ∈ {pj ,∞} for each machine i.
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For each job j we denote its set of eligible machines by M(j) = {i ∈ M | pij = pj}. Closing
or narrowing the gap between 2-approximation and 1.5-inapproximability is a famous open
problem in approximation [18] and scheduling theory [15]. The present paper deals with
certain subproblems of both unrelated scheduling and restricted assignment.

Interval Restrictions. In the variant of restricted assignment with interval restrictions,
denoted as RAI in the following, there is a total order of the machines and each job j

is eligible on a discrete interval of machines, i.e., M = {M1,M2, . . . ,Mm} and M(j) =
{Mℓ,Mℓ+1, . . .Mr} for some ℓ, r ∈ [m]. There are several variants and special cases of
this problem that are known to admit a polynomial time approximation scheme (PTAS),
see [6, 8, 9, 11,14,16], the most prominent of which is probably the hierarchical case [11] in
which each job is eligible on an interval of the form {M1,M2, . . .Mr}, i.e., the first machine
is eligible for each job. For RAI, on the other hand, there is an (1 + δ)-inapproximability
result for some small but constant δ > 0 [12]. Furthermore, Schwarz [16] designed a
(2 − 2/(maxj∈J pj))-approximation (assuming integral processing times); and Wang and
Sitters [17] studied an LP formulation that provides an optimal solution for the special case
with two distinct processing times and some additional assumption.

Resource Restrictions. In the restricted assignment problem with R resource restrictions,
or RAR(R), a set R of R (renewable) resources is given, each machine i has a resource
capacity cr(i) and each job j has a resource demand dr(j) for each r ∈ R. The eligible
machines are determined by the corresponding resource constraints, i.e., M(j) =

{
i ∈

M
∣∣ ∀r ∈ R : dr(j) ≤ cr(i)

}
for each job j. It is easy to see, that RAR(1) corresponds to the

mentioned hierarchical case which admits a PTAS [11]. On the other hand, there can be
no approximation algorithm with ratios smaller than 48/47 ≈ 1.02 or 1.5 for RAR(2) and
RAR(4), respectively, unless P=NP, see [12]. The same paper also points out that the case
with one resource is a special case of the interval case which in turn is a special case of the
two resource case, i.e., RAR(1) ⊂ RAI ⊂ RAR(2). While the hierarchical case, i.e. RAR(1),
has been studied extensively before, RAR(R) was first introduced in a work by Bhaskara et
al. [1], who mentioned it as a special case of the next problem that we consider.

Low Rank Scheduling. In the rank D version of unrelated scheduling, or LRS(D), the
processing time matrix (pij) has a rank of at most D. Alternatively (see [3]), we can assume
that each job j has a D dimensional size vector s(j) and each machine i a D dimensional speed
vector v(i) such that pij =

∑D
k=1 sk(j)vk(i). Now, LRS(1) is exactly makespan minimization

on uniformly related parallel machines, which is well known to admit a PTAS [7]. Bhaskara
et al. [1], who introduced LRS(D), presented a QPTAS for LRS(2) along with some initial
inapproximability results for D > 2. Subsequently, Chen et al. [4] showed that there can
be no better than 1.5-approximation for LRS(4) unless P=NP, and for LRS(3) the same
authors together with Marx [3] ruled out a PTAS. On an intuitive level, resource restrictions
can be seen as a restricted assignment version of low rank scheduling. However, there is a
more direct relationship between the two problems: for each RAR(R) instance there exist
LRS(R + 1) instances that are arbitrarily good approximations of the former (see [12]).
Hence, any approximation algorithm for LRS(R + 1) can also be used for RAR(R), and any
inapproximability result for RAR(R) carries over to LRS(R+ 1). In fact many (but not all)
inapproximability results for low rank scheduling essentially have this form.

Results. We present improved approximation and inapproximability results for this family
of problems. In particular:
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An approximation algorithm for RAI with ratio 2 − 1
24 ≈ 1.96 presented in Section 2;

a reduction that rules out a better than 1.5 approximation unless P=NP, i.e., a 1.5-
inapproximability result, for RAR(3) presented in Section 3.1;
a 8/7-inapproximability result for RAR(2) not included in this version of the paper;
a 9/8-inapproximability result for RAI presented in Section 3.2;
and a 1.5-inapproximability result for LRS(3) not included in this version of the paper.

All the missing proofs and results can be found in the long version of the paper. The
positive result for RAI can be considered the first of the two main contributions of this
paper. Finding a better than 2-approximation for RAI was posed as an open challenge
in previous works [8, 16, 17]. When considering the respective results in [17] and [16], in
particular, it seems highly probable that the actual goal of the research was to address exactly
that challenge. The presented approximation algorithm follows the approach of solving and
rounding a relaxed linear programming formulation of the problem, which has been used in
the classical work by Lenstra et al. [10] and many of the results thereafter. In particular,
we extend the so called assignment LP due to Lenstra et al. [10] and design a customized
rounding approach. Both the linear programming extension and the rounding approach
utilize extensions and refinements of ideas from [16] and [17]. Our result joins the relatively
short list of special cases of the restricted assignment problem that do not allow a PTAS
and for which an approximation algorithm with rate smaller than 2 is known. Other notable
entries are the restricted assignment problem with only two processing times [2] and the
so-called graph balancing case [5], where each job is eligible on at most two machines.

The inapproximability results directly build upon the results presented in the paper [12],
which in turn utilizes many of the previously published ideas, e.g., from [1,3–5,10]. We use
the satisfiability problem presented in [12] as the starting point for all of our reductions.
For the RAI result in particular, we refine and restructure the respective results from [12]
aiming for a significantly better ratio. The respective reduction involves a sorting process
and curiously the main improvement in the reduction involves changing a sorting process
resembling insertion sort into one resembling bubble sort. Due to this change, the construction
becomes locally less complex enabling the use of smaller processing times and hence a stronger
inapproximability result. Furthermore, the simplified construction in the result enables us
to use the basic structure of the reduction as a starting point for the second main result of
the paper, namely, the 1.5-inapproximability result for RAR(3). For this reduction several
additional considerations and gadgets are needed, arguably making it the most elaborate of
the presented results. The search for an inapproximability result with a reasonably big ratio
for RAR(3) was stated as an open challenge in the long version of [3]. Adding the new result
yields a very clear picture regarding the approximability of low rank makespan minimization:
There is a PTAS for LRS(1), a QPTAS for LRS(2), and a 1.5-inapproximability result for
LRS(D) with D ≥ 3. The last two reductions regarding RAR(2) and RAR(3) yield much
improved inapproximability results for the respective problems using comparatively simple
and elegant reductions. The result regarding RAR(3), in particular, closes a gap in the
results of [12] and also yields an (arguably) easier, alternative proof for the result of [4].
Finally, we note that all of the inapproximability results regarding restricted assignment with
resource restrictions can be directly applied to the so called fair allocation or santa claus
versions of the problems. In these problem variants, we maximize the minimum load received
by the machines rather than minimization of the maximum load, i.e., the objective function
is given by Cmin(σ) = mini∈M

∑
j∈σ−1(i) pij in this case.

Further Related Work. For a more detailed discussion of related work, we refer to [12] and
the long version of this paper.
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2 Approximation Algorithm for Makespan Minimization with Interval
Restrictions

We establish the first approximation for RAI with an approximation factor better than 2:

▶ Theorem 1. There is a (2 − γ)-approximation for RAI with γ = 1
24 .

The particular value of the parameter γ is justified in the end. To achieve this result, we
first formulate a customized linear program based on the assignment LP due to Lenstra et
al. [10] and develop a rounding approach that places different types of jobs in phases. Note
that the placement of big jobs with size close to opt (where opt is the makespan of an
optimal schedule) is often critical when aiming for an approximation ratio of smaller than
2 for a makespan minimization problem. For instance, the classical 2-approximation [10]
for restricted assignment produces a schedule of length at most opt + maxj∈J pj where
opt is the makespan of an optimal schedule and hence the approximation ratio is better if
maxj∈J pj is strictly smaller than opt. This is also the case with our approach – the main
effort goes into the careful placement of such big jobs. In particular, we place the largest
jobs in a first rounding step and the remaining big jobs in a second. All of these jobs have
the property that each machine should receive at most one of them and they are placed
accordingly. Moreover, the placement is designed to deviate not too much from the fractional
placement due to the LP solution. In a last step, the remaining jobs are placed. Each
rounding step is based on a simple heuristic approach that considers the machines from left
to right and places the least flexible eligible jobs first, i.e., the jobs that have not been placed
yet, are eligible on the current machine, and have a minimal last eligible machine in the
ordering of the machines. Both the LP and the rounding approach reuse ideas from [16,17].
Hence, the main novelty lies in the much more elaborate approach for placing the mentioned
big jobs in two phases.

In the following, we first establish some preliminary considerations; then formulate the
LP and argue that it is indeed a relaxation of the problem at hand; and then discuss and
analyze the different phases of the rounding procedure step by step.

Preliminaries. For any integer k, we set [k] = {0, . . . , k − 1}. We apply the standard
technique (see [10]) of using a binary search framework to guess a candidate makespan T .
The goal is then to either correctly decide that no schedule with makespan T exists, or to
produce a schedule with makespan at most (2 − γ)T . Given this guess T , we divide the jobs
j into small (pj ≤ 0.5T ), large (0.5T < pj ≤ (0.5 + ξ)T ) and huge ((0.5 + ξ)T < pj) jobs
depending on some parameter ξ = 1

24 which is justified later on. We denote the sets of small,
large, and huge jobs as S, L, and H, respectively. Furthermore, we fix the (total) order of
the machines such that each job is eligible on consecutive machines. This is possible since
we are considering RAI. For the sake of simplicity, we assume M = [m] with the ordering
corresponding to the natural one and set M(ℓ, r) = {ℓ, . . . , r} for each ℓ, r ∈ M. When
considering the machines, we use a left to right intuition with predecessor machines on the
left and successor machines on the right. Note, that for each job j there exists a left-most
and right-most eligible machine and we denote these by ℓ(j) and r(j), respectively, i.e.,
M(j) = M(ℓ(j), r(j)). For a set of jobs J ⊆ J , we call a job j ∈ J least flexible in J if r(j)
is minimal in {r(j′) | j′ ∈ J}, and a job j is called less flexible than a job j′ if r(j) ≤ r(j′).
Lastly, we set J(ℓ, r) =

{
j ∈ J

∣∣ M(j) ⊆ M(ℓ, r)
}

for each set of jobs J ⊆ J and pair of
machines ℓ, r ∈ M, and p(J) =

∑
j∈J pj .
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Linear Program. The classical assignment LP (see [10]) is given by assignment variables
xij ∈ [0, 1] for each i ∈ M and j ∈ J and the following constraints:∑

i∈M
xij = 1 ∀j ∈ J (1)∑

j∈J
pjxij ≤ T ∀i ∈ M (2)

xij = 0 ∀j ∈ J , i ∈ M \ M(j) (3)

Equation (1) guarantees that each job is (fractionally) placed exactly once; Equation (2)
ensures that each machine receives at most a load of T ; and due to Equation (3) jobs are
only placed on eligible machines. We add additional constraints that have to be satisfied
by any integral solution. In particular, we add the following constraints using parameters
UB(ℓ, r) for each ℓ, r ∈ M with ℓ ≤ r, which will be properly introduced shortly:∑

j∈L∪H
xij ≤ 1 ∀i ∈ M (4)

∑
i∈M(ℓ,r)

∑
j∈H

xij ≤ UB(ℓ, r) ∀ℓ, r ∈ M, ℓ ≤ r (5)

Equation (4) captures the simple fact that no machine may receive more than one job of
size larger than 0.5T and was used in [5] as well. The bound UB(ℓ, r), on the other hand, is
defined in relation to the total load of small jobs that has to be scheduled in the respective
interval M(ℓ, r). In particular, we consider the overall load of small jobs that have to be
placed in the interval together with the load due to huge jobs with their sizes rounded down
to their minimum size. The respective load has to be bounded by T times the number of
machines in the interval, i.e.,

∑
i∈M(l,r)

∑
j∈H(0.5 + ξ)Txij + p(S(ℓ, r)) ≤ T |M(l, r)|. Since

the number of huge jobs placed in an interval is integral for an integral solution, we can
therefore set UB(ℓ, r) =

⌊
(T |M(l, r)| − p(S(ℓ, r)))/((0.5 + ξ)T )

⌋
. We note that a constraint

similar to Equation (5) is also used in [16, 17]. Summing up, we try to solve the linear
program given by Equations (1)–(5) which is indeed a relaxation for RAI. If this is not
successful, we reject T and otherwise round the solution x using the procedure described in
the following and yielding a rounded solution x̄.

Placement of Huge Jobs. Starting with the first machine in the ordering, we place the
huge jobs as follows:

Let i∗ be the current machine and H the set of huge jobs that have not been placed yet
and are eligible on i∗.
If

⌊∑
i∈M(0,i∗)

∑
j∈H xij

⌋
>

⌊∑
i∈M(0,i∗−1)

∑
j∈H xij

⌋
and H ̸= ∅, place a least flexible

job j ∈ H on i∗, i.e., we set x̄i∗j = 1.
Consider the next machine in the ordering or stop if there is none.

This procedure indeed works and we preserve a connection to the original LP solution:

▶ Lemma 2. All of the huge jobs are placed (on eligible machines) by the above procedure
and, for each ℓ, r ∈ M with ℓ ≤ r, we have

∑
i∈M(ℓ,r)

∑
j∈H x̄ij ≤

⌈∑
i∈M(ℓ,r)

∑
j∈H xij

⌉
.

We note that this first rounding step is very similar to the first rounding step in [17].

Mapping out the Regions. In the next step, we divide the machines into regions, where
each region did receive fractional large load of (roughly) one. To that end, we define a
set of border machines B as the machines considered from left to right where the sum of

ESA 2022



77:6 Interval, Resource Restricted, and Low Rank Scheduling

fractionally placed large jobs hits a new integer, i.e., B =
{
i′ ∈ M

∣∣ ⌊∑
i∈M(0,i′)

∑
j∈L xij

⌋
>⌊∑

i∈M(0,i′−1)
∑

j∈L xij

⌋}
. Moreover, let B = {i1, . . . , iq} with i1 < · · · < iq and i0 the

left-most machine with
∑

j∈L xi0j > 0. For each s ∈ [q] = {0, . . . , q − 1}, we may initially
define the s-th region as Rs = M(is, is+1). At this point consecutive regions overlap by one
machine. We want to change this, while guaranteeing that each region retains at least one
candidate machine that may receive a large job in the following. In particular, a machine
i ∈ M is a candidate if it did receive some fractional large or huge job in the LP solution,
i.e.,

∑
j∈H∪L xij > 0, but no huge job afterwards, i.e.,

∑
j∈H x̄ij = 0. We denote the set

of candidate machines as C. For each s ∈ [q − 1], we apply the following procedure in
incremental order:

Check whether region Rs needs the last machine to have at least one candidate, i.e.,
M(is, is+1 − 1) ∩ C = ∅.
If this is the case, we set Rs+1 = M(is+1 +1, is+2) and otherwise set Rs = M(is, is+1 −1).

After applying this procedure, we have:

▶ Lemma 3. The regions are non-overlapping and each contain at least one candidate.

Before proceeding with the placement of the large jobs, we note the following technical
observation:

▶ Lemma 4. Let ℓ, r ∈ M with ℓ ≤ r, ℓ ∈ Rs, r ∈ Rt, k = |{s, . . . , t}|, and fracLarge =∑
i∈M(ℓ,r)

∑
j∈L xij . Then we have k− 2 < fracLarge < k+ 2. Furthermore, fracLarge <

k + 1 if either ℓ > is or r < it+1 and fracLarge < k if both of these conditions hold.

Placement of Large Jobs. Using the regions, we place the large jobs via the following
procedure starting with the first region:

Let R∗ be the current region and L the set of large jobs that have not been placed yet
and are eligible on at least one candidate machine from R∗.
Do the following twice: Pick a least flexible large job j ∈ L, place it on the leftmost
eligible candidate machine i ∈ R∗, i.e. x̄ij = 1, and update L.
Consider the next region in the ordering or stop if there is none.

Observe that the placement of both the large and huge jobs guarantees that only machines
that did receive fractional large or huge load in the LP solution may receive any large or
huge job and each such machine receives at most one such job. We argue that this procedure
works and also retains some connection to the original LP solution x.

▶ Lemma 5. All large jobs are placed (on eligible machines) by the described procedure and,
for each ℓ, r ∈ M with ℓ ≤ r, we have

∑
i∈M(ℓ,r)

∑
j∈L x̄ij < 2(

∑
i∈M(ℓ,r)

∑
j∈L xij + 2).

Proof. Regarding the second statement note that we place at most 2 jobs in each region
and hence Lemma 4 directly yields the proof. As usual, we proof the first statement by
contradiction. To that end, assume that there exists a large job j∗ that is not placed by
the procedure. First note, that there is at least one eligible candidate machine for j∗. To
see this, consider the set M of eligible machines i ∈ M(j) that either received fractional
load of j∗ or some huge load, i.e., xij > 0 for j ∈ {j∗} ∪ H. Then Equation (4) implies∑

i∈M

∑
j∈H xij ≤ |M | − 1. Hence, at most |M | − 1 many huge jobs are placed on machines

from M due to Lemma 2 and therefore at least one of these machines is a candidate. There
are two possibilities why j∗ was not placed on such a machine: either a less flexible job got
placed on the machine, or two other less flexible jobs were already placed in the same region.
Let r∗ = r(j∗) and ℓ∗ ≤ ℓ be minimal with the property that each large job that was placed
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in M(ℓ∗, r∗) is less flexible than j∗ and each free candidate machine in the interval is free
because two other machines in the same respective region already received a large job less
flexible than j∗. Furthermore, let J∗ be the set of large jobs placed in M(ℓ∗, r∗) together
with j∗. We argue that ℓ(j) ≥ ℓ∗ for each j ∈ J∗. Otherwise, there exists a job j ∈ J∗ eligible
on machine ℓ∗ − 1. Then there are three possibilities regarding this machine. It was not a
candidate before the procedure; it was a candidate and received a job less flexible then j

(and therefore also less flexible then j∗); or it was a candidate and did not receive a large job
because two other machines in the same region received a job less flexible then j. Each yields
a contradiction to the definition of ℓ∗. Let fracLarge =

∑
i∈M(ℓ∗,r∗)

∑
j∈L xij be the sum

of fractional large jobs in M(ℓ∗, r∗) according to x. Note that we did show J∗ ⊆ J (ℓ∗, r∗)
and hence fracLarge ≥ |J∗|.

Let M∗ ⊆ M(ℓ∗, r∗) be the set of machines that did receive a fraction of a job from J∗ ∪H.
Then Equation (4) implies

∑
i∈M∗

∑
j∈H xij ≤ |M∗| − |J∗|, and furthermore Lemma 2 yields

that at most |M∗| − |J∗| huge jobs are placed on machines from |M∗|. Hence, there are
at least |J∗| candidate machines in M(ℓ∗, r∗). Since not all of the jobs from J∗ have been
placed by the procedure, there is therefore at least one free machine in i∗ ∈ M(ℓ∗, r∗). The
definition of ℓ∗ yields, that two jobs less flexible then j∗ have been placed in the same region
as i∗ and these jobs have to be included in J∗ (and the machines they are placed on in
M(ℓ∗, r∗)).

We now take a closer look at the regions (partially) included in M(ℓ∗, r∗). Let ℓ∗ ∈ Rs,
r∗ ∈ Rt, and k = |{s, . . . , t}|. We consider three cases: If we have ℓ∗ = is and r∗ = it+1,
i.e., the borders of the interval correspond to the (original) outer borders of their regions,
then each of the regions Rs, . . . , Rt did receive at least one job from J∗ and one received
at least two yielding k ≤ |J∗| − 2 ≤ fracLarge − 2. Moreover, if ℓ∗ > is or r∗ < it+1, then
one of the regions Rs, . . . , Rt may not have received a job from J∗ changing the inequality
to k ≤ fracLarge − 1. Lastly, if both ℓ∗ > is and r∗ < it+1, then the two outer regions
may have received no job from J∗ yielding k ≤ fracLarge. However, Lemma 4 considers
the same three cases, yielding fracLarge < k + 2, fracLarge < k + 1, and fracLarge < k,
respectively. � ◀

Placement of Small Jobs. Lastly we place the small jobs. Starting with the first machine,
we do the following:

Let i∗ be the current machine and J the set of jobs that have not been placed yet and
are eligible on i∗.
Successively place least flexible jobs j on i∗, i.e., set x̄i∗j = 1, until either J = ∅ or placing
the next job would raise the load of i∗ above (2 − γ)T .
Consider the next machine in the ordering or stop if there is none.

We argue that this procedure works under certain conditions:

▶ Lemma 6. All small jobs are placed (on eligible machines) by the described procedure if
γ ≤ ξ, γ + ξ ≤ 1

12 , and 8ξ + 7γ ≤ 0.75 hold. In the resulting schedule, each machine has a
load of at most (2 − γ)T .

Proof (Idea). The main idea of the proof is to assume that some job cannot be placed and to
use this to construct some interval in which each machine received some minimum amount of
load and in which each placed job had to be placed in the respective interval. Then Lemma 2,
Lemma 5, and the constraints of the LP are used to show a contradiction. Depending on the
number of large jobs in the interval, either Equation (2) or Equation (5) are critical. ◀
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Lastly, we choose values for ξ and γ which satisfy all the requirements of the above lemma
and maximize γ. The biggest γ is achieved by setting γ = ξ = 1

24 . This concludes the proof
of Theorem 1.

3 Complexity Results

Remember that we use the notation [n] = {0, . . . , n− 1} for each integer n. The complexity
result in this work directly build upon the ones in [12]. In that work, a satisfiability problem
denoted as 3-SAT∗ was introduced and shown to be NP-hard, and all reductions in the
present work start from this problem. An instance of the problem 3-SAT∗ is a conjunction
of clauses with exactly 3 literals each. Each of the clauses is either a 1-in-3-clause or a
2-in-3-clause, that is, they are satisfied if exactly one or two of their literals, respectively,
evaluate to true in a given truth assignment. We denote a k-in-3-clause with literals x,
y, and z as (x, y, z)k and the truth values true and false are denoted as ⊤ and ⊥ in the
following. There are as many 1-in-3-clauses in a 3-SAT∗ instance as there are 2-in-3-clauses,
and, furthermore, each literal occurs exactly twice. Hence, a minimal example for a 3-SAT∗

instance is given by (x0, x1,¬x2)1 ∧ (¬x0, x1, x2)1 ∧ (x0,¬x1,¬x2)2 ∧ (¬x0,¬x1, x2)2: We
have two 1-in-3-clauses and two 2-in-3-clauses, and two occurrences of xi and ¬xi for each
i ∈ [3]. The formula is satisfied if we map every variable to ⊥.

In each reduction, we start with an instance I of 3-SAT∗ with m many 1-in-3-clauses
C0, . . . , Cm−1, m many 2-in-3-clauses Cm, . . . , C2m−1 and n variables x0, . . . , xn−1. Since
there are 2m clauses with 3 literals each and 4 occurrences for each variable, we have
6m = 4n. In the following, the precise positions of the occurrences of the variables are
important and we have to make them explicit. To this end, let for each j ∈ [n] and t ∈ [4]
the pair (j, t) correspond to the first or second positive occurrence of variable xj if t = 0 or
t = 1, respectively, and to the first or second negative occurrence of variable xj if t = 2 or
t = 3. Furthermore, let κ : [n] × [4] → [2m] × [3] be the bijection that maps (j, t) to the
corresponding clause index and position in that clause. For instance, in the above example
we have κ(0, 2) = (1, 0) and κ(2, 1) = (3, 2).

Next, we construct an instance I ′ of the problem considered in the respective case. For
the restricted assignment type problems, all job sizes are integral and upper bounded by some
constant T such that the overall size of the jobs equals |M|T . Hence, if a machine receives
jobs with overall size more or less than T , the objective function value is worse than T for
both the makespan and fair allocation case. The goal is to show, that there is a schedule with
makespan T for I ′, if and only if I is a yes-instance. This rules out approximation algorithms
with rate smaller than (T + 1)/T for the makespan problem, and with rate smaller than
T/(T − 1) for the fair allocation variant since the overall load is |M|T . For the low rank
problem, we first design a restricted assignment reduction using the above approach and
then show that there exist low rank scheduling instances that approximate the restricted
assignment instance with arbitrary precision.

Simple Reduction. We start with a simple reduction for the general restricted assignment
problem (with arbitrary restrictions) introducing several ideas and gadgets relevant for all of
the following reductions. Note that the reduction is very similar to the one by Ebenlendr et
al. [5] and to a reduction in [12].

We have three types of basic jobs and machines, namely, truth assignment machines and
jobs that are used to assign truth values to variables, clause machines and jobs that model
clauses being satisfied, and variable jobs that connect the first two types:
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Table 1 Resource demands and capacities of the jobs and machines, respectively, for the case
with 3 resources.

Job/Mach. Res. 1 Res. 2 Res. 3

TMach(j, 0) 4j + 1 4n − 4j 1
TMach(j, 1) 4j + 3 4n − 4j 0
TJob(j) 4j 4n − 4j 0
CMach(i, s), κ−1(i, s) = (j, t) 4j + t 4n − (4j + t) 2 + i

CJob(i, s) 0 0 2 + i

VJob(j, t) 4j + t 4n − (4j + t) 1 − ⌊ t
2 ⌋

There are truth assignment machines TMach(j, q) with j ∈ [n] and q ∈ [2] and one truth
assignment job TJob(j) with size 2 and eligible on {TMach(j, 0), TMach(j, 1)}.
There are clause machines CMach(i, s) for each i ∈ [2m] and s ∈ [3] and three clause jobs
CJob(i, s) each eligible on {CMach(i, s′) | s′ ∈ [3]}. The job CJob(i, 0) has size 1, CJob(i, 2)
has size 2, and CJob(i, 1) has size 2 if clause Ci is a 1-in-3-clause and size 1 otherwise.
Lastly, there are variable jobs VJob(j, t) for each j ∈ [n] and t ∈ [4] each of size 1 and
eligible on {TMach(j, ⌊ t

2 ⌋), CMach(κ(j, t))}.
First note:

▷ Claim 7. The overall job size
∑

j∈J p(j) is equal to 2|M|.

Consider the case that we have a satisfying truth assignment for instance I. If variable xj is
assigned to ⊤, we place TJob(j) on TMach(j, 0), VJob(j, 0) and VJob(j, 1) on CMach(κ(j, 0))
and CMach(κ(j, 1)), respectively, together with local size 1 clause jobs. Furthermore, VJob(j, 2)
and VJob(j, 3) are placed on TMach(j, 1) and CMach(κ(j, 2)) and CMach(κ(j, 3)) each receive
a local size 2 clause job. If variable xj is assigned to ⊥, we place TJob(j) on TMach(j, 1), and
the placement strategy of the positive and negative variable jobs is reversed. Note that the
placement of the clause jobs has to work out since the truth assignment is satisfying. This
approach yields a schedule with makespan 2. However, it is also easy to see that a schedule
with makespan 2 yields a satisfying truth assignment by basing the assignment of xj on the
placement of TJob(j), and hence we have:

▶ Lemma 8. There is a satisfying truth assignment for I, if and only if there is a schedule
with makespan 2 for I ′.

This reduction can be considered the basis of all the other ones considered in this work.

3.1 Three Resources
In the RAR(3) case, we can use essentially the same construction as above. However, the sets
of eligible machines are defined using the resources and are slightly different. The resource
demands and capacities are specified in Table 1. The choice of resources implies:

▷ Claim 9. We have M(TJob(j)) = {TMach(j, 0), TMach(j, 1)} for each j ∈ [n] and
M(VJob(j, t)) = {TMach(j, ⌊ t

2 ⌋), CMach(κ(j, t))} for each j ∈ [n] and t ∈ [4].

Hence, the truth assignment and variable jobs have the same sets of eligible machines as
before. For the clause jobs this is not true, however, a similar claim holds. We call a schedule
that assigns a load of exactly T to each machine a T -schedule. Using the fact, that in a
2-schedule each clause machine has to receive at least one clause job, it is easy to show the
following:
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▷ Claim 10. In any 2-schedule each machine from {CMach(i, s) | s ∈ [3]} receives exactly one
job from {CJob(i, s) | s ∈ [3]}.

Hence, Lemma 8 works the same as before and we have:

▶ Theorem 11. There is no better than 1.5-approximation for RAR(3) and no better than
2-approximation for the fair allocation version of this problem, unless P=NP.

3.2 Interval Restrictions
In order to motivate the new ideas for the RAI reduction and to make them easier to
understand, it is helpful to revisit the reduction from [12] first. One of the main ingredients
in that result is a simple trick that we will also use extensively.

Pyramid Trick. Consider the following setting: We have 2ℓ consecutive machines and ℓ

pairs of jobs. The i-th pair of jobs is eligible on the i-th machine and up to and including
the (2ℓ+ 1 − i)-th machine. Furthermore, we assume that each machine has to receive at
least one of the jobs. Then the first and last machine each have to receive one job from the
first pair because there are no other eligible jobs that can be processed on these machines.
Now, the same argument can be repeated for the second and second to last machine and so
on. Hence, machine i and (2ℓ+ 1 − i) each have to receive exactly one job from pair i.

Sorting. Next, consider that in the ordering of the machines the truth assignment machines
are placed on the left and the clause machines on the right. We could use similar truth
assignment and clause jobs as in the reduction in the beginning of this chapter. However,
variable jobs each are eligible on one truth assignment and one clause machine. Hence
they have to be eligible on all machines in between in a naive adaptation of the reduction
to the interval case. If we want to use the pyramid trick to deal with this problem, then
intuitively decisions regarding variables in later clauses have to be made before the decisions
for variables in earlier clauses and this, of course, cannot be guaranteed regardless of the
fixed order of the clauses or variables. The main work in [12] was to remedy this situation
by – roughly speaking – sorting the information regarding the variables made in the truth
assignment gadget to enable the use of the pyramid trick. To do so several gadgets have
been introduced that were intertwined with the truth assignment gadget and carefully build
up the ordered information using the pyramid trick and interlocking job sizes. The problem
with this approach is that the job sizes can get big rather fast if too many different job types
are eligible on the same machines resulting in a high value for T . Now, the main idea in the
present work is to decouple the decision and the sorting process and make the sorting process
as simple as possible to enable smaller job sizes and therefore a stronger result. Curiously,
the sorting process in [12] could be interpreted as some variant of insertion sort, while the
one used in the present reduction resembles bubble sort.

Machines and Order. Let k ∈ O(n2) be a parameter to be specified later in this paragraph.
In addition to the truth assignment and clause machines, we introduce the following ones:

For each j ∈ [n] and t ∈ [4] there are two gateway machines: one forward FGMach(j, t)
and one backward gateway machine BGMach(j, t).
For each ℓ ∈ [k], j ∈ [n], and t ∈ [4] there are two sorting machines: one forward
FSMach(ℓ, j, t) and one backward sorting machine BSMach(ℓ, j, t).
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Let T , G, and C be the sets of truth assignment, gateway, and clause machines, respectively.
Moreover, for each ℓ ∈ [k] let Sℓ = {BSMach(ℓ, j, t), FSMach(ℓ, j, t) | j ∈ [n], t ∈ [4]} be the
ℓ-th set of sorting machines. We define the overall order of the machines by setting an
internal order for each set of machines as well as an order of the machine sets. However,
before we can do so, we need some additional concepts and notation. In particular, let
φ0 be the sequence of (j, t)-pairs with j ∈ [n], t ∈ [4] with increasing lexicographical
order and ψ0 = κ(φ0), i.e., φ0 = ((0, 0), . . . , (0, 3), . . . , (n − 1, 0), . . . , (n − 1, 3)) and ψ0 =
(κ(0, 0), . . . , κ(0, 3), . . . , κ(n− 1, 0), . . . , κ(n− 1, 3)). Hence, ψ0 is a permutation of the pairs
(i, s) with i ∈ [2m] and s ∈ [3]. We consider sorting ψ0 with the goal of reaching the
increasing lexicographical order. Let k be the number of transpositions performed by bubble
sort if we do this. Furthermore, let ψℓ+1 for ℓ ∈ [k] be the sequence we get after the
first (ℓ+ 1)-transpositions and φℓ+1 = κ−1(ψℓ+1). The use of bubble sort guarantees that
k ∈ O(n2) and that two consecutive sequences φℓ, φℓ+1 differ only by two consecutive entries
that are transposed. For any finite sequence χ, we denote the reversed sequence as χ̄. Now,
the ordering is specified as follows:

The sets are ordered as follows: T ,G,S0, . . . ,Sk−1, C.
The truth assignment machines are ordered in increasing lexicographical order of the
indices (j, q).
The clause machines are ordered in decreasing lexicographical order of the indices (i, s).
The backward gateway machines are placed before the forward gateway machines and
for each ℓ ∈ [k] the backward sorting machines are placed before the forward sorting
machines from Sℓ as well.
The forward and backward gateway machines are ordered in increasing and decreasing
lexicographical order of the indices (j, t), i.e., φ0 and φ̄0, respectively.
For each ℓ ∈ [k], the backward sorting machines are sorted according to the placement of
the (j, t) indices in φ̄ℓ.
For each ℓ ∈ [k], the forward sorting machines are sorted according to the placement of
the (j, t) indices in φℓ+1.

The peculiar ordering of the machines is designed to enable the use of the pyramid trick.

Jobs, Sizes, and Eligibilities. We give a full list of all jobs together with their sizes and
define the sets of eligible machines by stating the respective first and last eligible machine
for each job. We will need one more definition: Let ξ : [k] → [n] × [4] be the function that
maps ℓ to the distinct pair (j, t) that has a higher index in φℓ+1 than in φℓ.

Truth assignment jobs: For each j ∈ [n] there is a job TJob(j) with size 2, first machine
TMach(j, 0) and last machine TMach(j, 1).
Variable jobs: For each j ∈ [n], t ∈ [4], and ◦ ∈ {⊤,⊥} there is a job VJob(j, t, ◦) with size
2 if ◦ = ⊥ and 3 otherwise, first machine TMach(j, ⌊t/2⌋) and last machine BGMach(j, t).
Gateway jobs: For each j ∈ [n], t ∈ [4], and ◦ ∈ {⊤,⊥} there is a job GJob(j, t, ◦) with
size 5 if ◦ = ⊥ and 4 otherwise, first machine BGMach(j, t) and last machine FGMach(j, t).
Bridge jobs: For each ℓ ∈ [k + 1], j ∈ [n], t ∈ [4], and ◦ ∈ {⊤,⊥} there is a bridge job
BJob(ℓ, j, t, ◦) with size 1 if ◦ = ⊥ and 2 otherwise, first machine either FGMach(j, t) if
ℓ = 0 or FSMach(ℓ− 1, j, t) otherwise, and last machine either BSMach(ℓ, j, t) if ℓ < k or
CMach(κ(j, t)) otherwise.
Sorting jobs: For each ℓ ∈ [k], j ∈ [n], t ∈ [4], and ◦ ∈ {⊤,⊥} there is a job SJob(ℓ, j, t, ◦).
If ξ(ℓ) = (j, t), it has size 4 if ◦ = ⊥ and 3 otherwise, and, if ξ(ℓ) ̸= (j, t), it has size 7 if
◦ = ⊥ and 6 otherwise. The first machine of SJob(ℓ, j, t, ◦) is BSMach(ℓ, j, t) and the last
machine is FSMach(ℓ, j, t).
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T G S0 Sk−1 C
. . .

VJob(∗, ∗, ∗)

GJob(∗, ∗, ∗)

BJob(0, ∗, ∗, ∗)

SJob(0, ∗, ∗, ∗)

BJob(1, ∗, ∗, ∗) BJob(k − 1, ∗, ∗, ∗)

SJob(k − 1, ∗, ∗, ∗)

BJob(k, ∗, ∗, ∗)

Figure 1 A visualization of the job and machine structure for the reduction regarding RAI.
The lower part corresponds to sets of machines with arrows corresponding to the direction of their
ordering; and the upper part to different job sets with lines corresponding to intervals of eligible
machines for pairs of jobs. Truth assignment and clause jobs as well as private loads are not depicted.

Clause jobs: For each i ∈ [2m] and s ∈ [3] there is a job CJob(i, s) with size 7 if s = 1,
8 − k if s = 2 and Ci is a k-in-3-clause, and 6 if s = 3, first machine CMach(i, 2) and last
machine CMach(i, 0).
Private loads: Each truth assignment machine has a private load (a job eligible only
one one machine) of 2, each backward or forward gateway machine a load of 1 or 2,
respectively, and for each ℓ ∈ [k] the sorting machines BSMach(ℓ, ξ(ℓ)) and FSMach(ℓ, ξ(ℓ))
have a private load of 3.

Using this reduction, we can show:

▶ Theorem 12. There is no better than 9
8 -approximation for RAI and no better than

8
7 -approximation for the fair allocation version of this problem, unless P=NP.

While the formal proof of this result exceeds the scope of this short version of the paper,
we briefly discuss the main idea: We have a truth assignment gadget that determines the
truth values of the variables and is followed by the gateway gadget, whose sole purpose is
to decouple the used job sizes in the truth assignment gadget and the sorting gadget. Next
there is the sorting gadget that slowly reorders the information about the decisions in the
truth assignment gadget, and lastly there is the clause gadget in which the truth assignment
is evaluated. The connection between the truth assignment and gateway gadget is provided
by the variable jobs and all other connections are realized via bridge jobs. A sketch of the
overall structure of the reduction is provided in Figure 1.

4 Conclusion

We conclude this work with a brief discussion of possible future research directions. There are
some obvious questions that can be pursued directly building upon the presented results, i.e.,
a better approximation ration for RAI or even stronger inapproximability results for RAI or
RAR(2). Of course, an improved approximation ratio for any problem of the family would be
interesting to develop. We would like to highlight LRS(2), in particular, as the in some sense
easiest problem in the family without a known polynomial time approximation with ratio
better than 2. Lastly, only very little is known regarding fixed-parameter tractable algorithms
for this family of problems. For instance, it is open whether RAR(1) is fixed-parameter
tractable with respect to the objective value.
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Abstract
A fundamental way to study 3-manifolds is through the geometric lens, one of the most prominent
geometries being the hyperbolic one. We focus on the computation of a complete hyperbolic structure
on a connected orientable hyperbolic 3-manifold with torus boundaries. This family of 3-manifolds
includes the knot complements.

This computation of a hyperbolic structure requires the resolution of gluing equations on a
triangulation of the space, but not all triangulations admit a solution to the equations.

In this paper, we propose a new method to find a triangulation that admits a solution to the
gluing equations, using convex optimization and localized combinatorial modifications. It is based
on Casson and Rivin’s reformulation of the equations. We provide a novel approach to modify a
triangulation and update its geometry, along with experimental results to support the new method.
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1 Introduction

A main problem of knot theory is to tell whether two knots are equivalent or distinct.
Equivalence between knots is defined by the existence of an isotopy of the ambient space
that would turn one knot into the other, i.e., a continuous deformation of the space that
preserves the entanglement.

Isotopies are too difficult to compute in practice, and practitioners use invariants to
tackle the knot equivalence problem. A topological invariant is a quantity assigned to a
presentation of a knot, that is invariant by isotopy.

An important family of knots are the hyperbolic knots, which are the knots whose
complements admit a complete hyperbolic metric. They are the subjects of active mathematical
research, which motivates the introduction of efficient algorithmic tools to study their
geometric properties, and most notably their hyperbolic volume. The hyperbolic volume
of a hyperbolic knot is a topological invariant which is powerful at distinguishing between
non-equivalent knots, is non-trivial to compute, and is at the heart of several deep conjectures
in topology [11].

If it exists, the complete hyperbolic metric on a 3-manifold is unique[10], and may be
combinatorially represented by a complete hyperbolic structure (CHS). In order to compute
geometric properties (such as volume) of a hyperbolic knot, one triangulates the knot
complement, and try to assign hyperbolic shapes to its tetrahedra. If these shapes verify a
set of non-linear constraints called the gluing equations, they form a CHS and encode the
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Table 1 On all ∼ 9.7 millions prime knots with crossing numbers ranging from 12 to 17, alternating
and non-alternating, we indicate (% Failure on first try) the percentage of knot complements (after
triangulation and simplification) on which SnapPy fails to compute a CHS on first try. We also
indicate (Highest expected nb of retriang.) the highest, over all knots, expected number of random
re-triangulations necessary for SnapPy to succeed finding a CHS.

Alternating Non-Alternating
#crossings 12 13 14 15 16 17 12 13 14 15 16 17

% Failure on first try 0.9 1.6 2.4 3.3 4.4 5.7 0.8 0.7 1.2 1.7 2.4 3.3
Expected nb of retriang. 2.9 3.9 6.2 7.1 9.5 15.9 2.0 3.1 6.1 11.8 9.7 13.5

Figure 1 Distribution of the number of randomizations required to find a CHS for the complement
of the knot “17nh_2654001” of the census, for 10000 tries. The mean is 10.3 randomizations, and
the standard deviation is 8.7. The minimum number of re-triangulations is 1, and the maximum 92.

complete hyperbolic metric of the space. A major issue with this approach is that a solution
to the constraints may not exist on all triangulations of a manifold, even if, as topological
object, the manifold can carry a complete hyperbolic metric. Worst, it is not known whether
every hyperbolic 3-manifold admits a triangulation on which a solution as CHS exists.

In practice, given an input knot, software can construct a triangulation of the knot
complement, and simplify it to have a CHS. But if this fails, the only implemented practical
solution, proposed by SnapPy[3], is to randomly modify and simplify the triangulation before
trying again until a CHS is found.

Table 1 provides data on the search for a CHS with SnapPy, on the ∼ 9.7 millions prime
knots with crossing numbers up to 17. As observed, SnapPy has a high rate of success in
finding a CHS after a standard triangulation and simplification of the knot complement.
However, this standard construction of a triangulation fails to admit a CHS on more than
350 thousand knots in the census, and the percentage of problematic triangulations needing
re-triangulations tends to increase with the number of crossings. Additionally, we observe
that some knot complements may require in expectation a high number of random re-
triangulations (up to 15.9), and the number of re-triangulations may itself suffer a high
variance, as illustrated in Figure 1.
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Figure 2 Left: ideal triangulation of the complement of the 8-knot with two tetrahedra. The
ideal vertex is truncated, and the red surface gives the torus link of the ideal vertex after gluing of
the tetrahedra following the edge identifications. Middle: ideal tetrahedron in the upper half-space
model, the dihedral angles are denoted α, β and γ, the complex shape parameter z is associated to
the edge between 0 and ∞. Right: example of shearing singularity, each triangle corresponds to a
ideal tetrahedron seen from above (gray arrow).

Checking for the existence of a CHS requires the resolution of the non-linear gluing equa-
tions (with, e.g., Newton optimization method). Reducing the number of re-triangulations
is consequently critical for performance of computation in knot theory, most notably for
knots on which the state-of-the-art methods implemented in SnapPy require large numbers
of re-triangulations, and even more so when proceeding to very large scale experiments such
as the computation of the knot censuses [1] that are of great use to practitioners, where
“difficult” knots are many.

Contribution. This paper introduces a new heuristic based algorithm to improve on the
random approach for re-triangulating. The method is inspired by Casson and Rivin’s
reformulation of the gluing equations [15, 4]: the gluing equations are split into a linear part
and a non-linear part, and the resolution reduces to a convex optimization problem on a
polytope domain. If the triangulation does not admit a complete structure, the optimization
problem will converge on the boundary of the polytope and we exploit this information to
introduce new localized moves to modify combinatorially the triangulation while reusing the
partially computed geometry. We introduce necessary background on triangulations and
geometry in Section 2, and the computation of hyperbolic structures with optimization in
Section 3. We analyze precisely the behavior of the optimization phase on triangulations not
admitting a CHS in Section 4, and introduce a re-triangulation algorithm in Section 5 guided
by the partially computed geometry of the optimization phase. We illustrate experimentally
the interest of the approach in Section 6 and propose a hybrid method with SnapPy in
Section 6.2, that outperforms the state-of-the-art.

Note that, in this article we focus on complements of hyperbolic knots. However, the
techniques introduced extend to more general hyperbolic 3-manifolds with torus boundar-
ies [4].

2 Background

In this article, we focus on knot complements, i.e., non-compact 3-manifolds obtained by
removing a closed regular neighborhood of a knot K in the sphere S3.
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Figure 3 Illustration of the Pachner moves 2-3 and 3-2.

2.1 Generalized and ideal triangulations
A generalized triangulation T is a collection of n abstract tetrahedra whose triangular facets
are identified (e.g. Figure 2 (left)), or glued, in pairs. Note that the facets of the same
tetrahedron may be glued together, and generalized triangulations are more general than
simplicial complexes. The link of a vertex in T is the frontier of a closed regular neighborhood,
and is itself a closed triangulated surface embedded in the triangulation. If the link of a
vertex v is a 2-sphere, we call v an internal vertex, otherwise (e.g., if the link if a torus), we
call v an ideal vertex.

A 1-vertex ideal triangulation is a triangulation with exactly 1 ideal vertex, and no
internal vertices. They represent non-compact 3-manifolds, that can be recovered from
the 1-vertex ideal triangulation by considering their realization where the vertex has been
removed. Every knot complement can be represented by a 1-vertex ideal triangulation, where
the link of the ideal vertex gives the frontier of a closed regular neighborhood of the knot.
Intuitively, this is a triangulation of the sphere S3 where the knot has been shrunk into
a single point, distorting its neighborhood. Such 1-vertex ideal triangulations of a knot
complement can be computed in polynomial time [6, 5] from a planar drawing of a knot.

Any two ideal triangulations of the same 3-manifold can be connected by a sequence of
Pachner moves [13]. For 1-vertex ideal triangulations, they consist of the moves 2-3 and 3-2,
inverse of each other, pictured in Figure 3.

2.2 Combinatorial description of hyperbolic geometry
Certain topological 3-manifolds can be equipped uniformly with a complete hyperbolic metric,
which is unique up to isometry. They are called hyperbolic manifolds. They include the vast
and important family of complements of hyperbolic knots.

We use the upper half-space model to represent the hyperbolic space H3. This represen-
tation corresponds to {(z, r)|z ∈ C, r ∈ R∗

+} with ∂H3 = C ∪ {∞} (from now on denoted
∂H3) consisting of the bottom plane C × {0}, together with the point at infinity, where
geodesics are arcs of circles orthogonal to ∂H3. This model is conformal, i.e., Euclidean
angles in the upper half space give the values of the angles in the hyperbolic space.

An ideal hyperbolic tetrahedron is the hyperbolic convex hull of four distinct points of
∂H3. These points are the (ideal) vertices of the tetrahedron.

A vertex on ∂H3 is a vertex at infinity, thus it is not part of the tetrahedron. An example
of ideal tetrahedron is shown in Figure 2 (middle). Up to isometry, the geometric shape of
an ideal tetrahedron can be represented by a single complex number:
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▶ Definition 1 (Shape parameter). Given an ideal hyperbolic tetrahedron, there exists an
isometry sending three of its vertices to 0, 1, and ∞, and ensuring that the fourth vertex has
positive imaginary part in the complex plane in ∂H3 = C ∪ {∞}. The coordinate z of this
fourth vertex is the shape parameter of the tetrahedron.

The shape parameter defines and illustrates the shape of an ideal tetrahedron. It depends
on which vertices are sent to 0, 1, and ∞. Other permutations of the vertices give other
equivalent shape parameters z′ = z−1

z and z′′ = 1
1−z but the underlying tetrahedron is the

same. The construction is well defined as isometries of H3 are determined by their action on
three vertices of ∂H3.

Another way of characterizing the shape of an ideal hyperbolic tetrahedron is to consider
its dihedral angles, i.e., the angle formed by two faces meeting on a common edge; see
Figure 2 (middle). In an ideal tetrahedron, opposite angles are equal, and the sum of the six
dihedral angles is 2π. We denote in the following the dihedral angles of a tetrahedron by a
triplet (α, β, γ) with (α + β + γ) = π.

3 Angle structures and hyperbolic volume

In this section, we introduce notions connected to the computation of complete hyperbolic
structures on triangulations, via optimization methods. The approach given in this section
is another formulation of Thurston’s gluing equations, which are non-linear in the complex
shape parameters mentioned above, we refer the reader to [4, 15] for more details.

3.1 Linear equations and angle structures
Let T be a 1-vertex ideal triangulation of a knot complement M with n tetrahedra. Since
opposite edges have the same dihedral angles, all possible shapes of the tetrahedra can be
represented by a vertex in R3n. We define an angle structure:

▶ Definition 2 (Angle structures). Given an ideal triangulation T , an angle structure is a
value assignment to the dihedral angles of the tetrahedra of T such that:
1. all the angles are strictly positive;
2. the three dihedral angles (α, β, γ) of a tetrahedron sum to π;
3. the dihedral angles around each edge of T sum to 2π.

The set of angle structures on T is denoted A(T ).

Conditions 1 and 2 ensure the angles are in (0, π) and that the tetrahedra have the
same orientation. Condition 3 is necessary for points on the interior of edges to have a
neighborhood isometric to a hyperbolic ball.

Constraints 1, 2, 3 are linear, hence the set A(T ) of angle structures of a triangulation
is the relative interior of a polytope in R3n. It is of dimension n + |∂M | where |∂M | is the
number of cusps of M ; in the case of knot complements, there is a single cusp. This polytope
satisfies:

▶ Theorem 3 (Casson; see [8]). Let T be an ideal triangulation of M , an orientable 3–manifold
with toric cusps. If A(T ) ̸= ∅, then M admits a complete hyperbolic metric.

Furthermore, [4] describes precisely a generating family for the tangent space of A(T )
that can be computed in polynomial time.
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3.2 Maximizing the hyperbolic volume
The hyperbolic volume of an ideal hyperbolic tetrahedron with dihedral angles (α, β, γ) ∈
(0, π)3 is given by the function vol:

vol(α, β, γ) = L(α) + L(β) + L(γ)

where L is the Lobachevsky function L(x) = −
∫ x

0 log |2 sin t| dt. The volume functional
can be extended to the whole polytope A(T ) by summing the volumes of the hyperbolic
tetrahedra. The following result is due independently to Casson and Rivin.

▶ Theorem 4 (Casson, Rivin[14]). Let T be an ideal triangulation with n tetrahedra of M ,
an orientable 3–manifold with boundary consisting of tori. Then a point p ∈ A(T ) ⊂ R3n

corresponds to a complete hyperbolic metric on the interior of M if and only if p is a critical
point of the function vol.

Additionally, the volume functional is concave on A(T ) and the maximum can be computed
via convex optimization methods.

We can finally define CHS that represent combinatorially complete hyperbolic metrics:

▶ Definition 5 (Complete Hyperbolic Structure). A Complete Hyperbolic Structure (CHS) is
a triangulation T equipped with an angle structure corresponding to the maximum of vol over
A(T ).

▶ Remark 6. Angle structures are not CHS as they do not prevent shearing singularities, see
Figure 2 (right), and consequently may represent non-complete hyperbolic metrics.

4 Behavior of the optimization

Exploiting the formalism of the previous section, one can design an algorithm [4] to find and
compute a CHS by first finding a point in the polytope A(T ), then computing a basis of
the tangent space of A(T ), and then maximizing the (concave) hyperbolic volume functional
on this subspace. If A(T ) ̸= ∅ and the procedure finds the point maximizing the volume in
the inside of the polytope, then the triangulation admits a complete hyperbolic structure
represented by this point. Finally, if A(T ) ̸= ∅ but the maximum of the volume functional
is on the boundary, then one needs to re-triangulate the manifold in order to search for a
triangulation admitting a CHS.

In this section, we study the outcome of the hyperbolic volume maximization on the
space of angle structures. The result is given by the following lemma, which also appeared
independently in [12]:

▶ Lemma 7. Let T be an ideal triangulation of M , a non-compact orientable 3–manifold with
toric cusps. Let p be the point maximizing vol over A(T ) (the topological closure of A(T )),
then at p, if a tetrahedron has an angle equal to 0, then all other angles of the tetrahedron
are in {0, π}.

In other words, either the maximization succeeds on the interior of A(T ), or there is at least
one tetrahedron with angles (0, 0, π) in p. Such tetrahedron is called flat. It is not possible
to have a tetrahedron with angles (0, a, b), (a, b) ∈ (0, π) in p.

This lemma is proven by looking at the derivative of the volume around the boundary of
A(T ), see [9].

We introduce in the next section an algorithm that performs localized combinatorial
modifications on a triangulation equipped with an angle structure, in order to get rid of flat
tetrahedra.
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5 Localized combinatorial modifications of triangulations

According to Lemma 7, the volume maximization either leads to a solution to the gluing
equations, or to flat tetrahedra. In this section, we discuss a method to get rid of flat
tetrahedra by combinatorial modifications of the triangulation, while attempting to maintain
the value of the volume functional. This would lead to a triangulation admitting an angle
structure with larger volume than the previous one, allowing to resume the maximization. In
order to maintain the value of the volume functional, we introduce geometric Pachner moves.

5.1 Geometric Pachner moves
We perform Pachner moves on the triangulation that preserves the partial geometric data
computed. More precisely, we define:

▶ Definition 8 (Geometric Pachner move). A geometric Pachner move in a triangulation T

with angle structure is a Pachner move in T such that the resulting triangulation admits an
angle structure with identical dihedral angles for the tetrahedra not involved in the move.

To check if a geometric Pachner move can be done, it must be valid combinatorially, and
it should be possible to assign dihedral angles to the new tetrahedra without altering the rest
of the angle structure. The combinatorial conditions are simple [13]: for the 2-3 moves (resp.
3-2 move) in Figure 3, the tetrahedra sharing the common triangle BDC (resp. common
edge AE) must be distinct. The conditions on the angle structures are given by the following
lemma:

▶ Lemma 9. Given a triangulation with angle structure T , if the combinatorial conditions
given above are satisfied:

a 3-2 move is always geometric;
a 2-3 move is geometric if and only if the sum of the two dihedral angles around each
edge of the common face is smaller than π.

The idea to prove the lemma is to study the system of equations given by the assumption
that the angle structure is not altered outside the move. Furthermore there are formulas to
compute the new angles. The proofs of Lemma 9 and of this later claim are technical and
can be found in [9].
▶ Remark 10 (Non-conservation of the volume). In Lemma 9, several angle structures are
possible after the 2-3 move. Conversely, several angle structures lead to the same result for
the 3-2 move. This is because angle structures are blind to shearing singularities, see Figure 2
(right). If such a singularity exists, a 3-2 move can still be performed while maintaining the
whole angle structure, but it will decrease the hyperbolic volume of the structure. It is due
to the fact that the singularity, which maximized the volume, is fixed in the process.

5.2 Getting rid of flat tetrahedra
Let T be a triangulation with an angle structure admitting a flat tetrahedron t, and (e, e′)
the associated edges with dihedral angle π. By Lemma 9, it is not possible to get rid of a
tetrahedron with a geometric 2-3 move. Indeed, if an edge of t has a dihedral angle equal to
π, the second tetrahedron concerned by the 2-3 move must have a dihedral angle equal to 0,
and consequently a 2-3 move will produce a flat tetrahedron (see [9]).

In order to get rid of t, our strategy is to turn either e or e′ into an edge of degree three,
at the center of three tetrahedra on which a 3-2 move can be performed (central edge of
Figure 3, right). Note that edges of degree 2 prevent the existence of an angle structure
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Figure 4 A sequence of moves getting rid of a flat tetrahedron. The bold vertical edge is contained
in 4 tetrahedra, three of which are represented behind the edge. The fourth tetrahedron is implicit,
situated at the front, and flat. First, create the red edge of the first drawing with a 2-3 move. Then
delete the red edge of the second drawing with a 3-2 move.

as they force the two tetrahedra sharing the edge to be flat. As a consequence, we assume
these configurations are removed, which can be done by SnapPy’s simplification for instance,
see Section 6. Consequently, all edges have degree at least 3, and our strategy focuses on
reducing the incidence degree of angle π edges.

To reduce the degree of an edge e, the strategy is to perform 2-3 moves on the tetrahedra
containing e, such that each move reduces the degree of the edge by one. Either for topological
(tetrahedron glued to itself) or geometrical reasons, these moves will not always be possible,
and the order in which they are done matters. This is described in Figure 4.
▶ Remark 11. Doing a 2-3 move does not always reduce the degree of the edge, e.g., when a
tetrahedron is represented several times around an edge. However, doing a move that does
not decrease the degree of the edge may delete the multiple occurrences of a tetrahedron
around the edge and allow to continue with the simplification.
▶ Remark 12. When a 2-3 move is performed around e, the value of the dihedral angle of the
new tetrahedron around e is equal to the sum of the previous two dihedral angles around e.
Since the sum of the dihedral angles of a tetrahedron is equal to π, this means successfully
reducing the degree of e may unlock previously forbidden moves.

Recursive moves. If no geometric Pachner move is possible on an edge e, we attempt to
reduce the degree of a nearby edge ef , i.e., an edge for which there exists a tetrahedron
containing e and ef ; see Figure 5 where ef is represented by the red dot, as it is seen from
above. More precisely, let f be a triangle containing e such that the associated 2-3 move is
forbidden for geometric reasons, then by Lemma 9 there is an edge ef of f for which the
associated dihedral angle is at least π.

In consequence, reducing the degree of ef to three without modifying the tetrahedra
containing f and then performing a 3-2 move at ef will reduce the degree of e by one; see
Figure 5.

Note that in case a geometric Pachner move is not possible on any pair of tetrahedra
containing ef either, we can call the procedure recursively in a neighborhood of ef , using
the argument above to pass from e to ef .
▶ Remark 13. The choice of ef in f is unique: it is not possible to have two dihedral angles
larger than π; selecting a move to reduce the degree of e boils down to selecting a triangle
containing e.
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e e eef ef

(A) (B) (C)

Figure 5 Sequences of moves to reduce the degree of an edge when no 2-3 move is available, seen
from above (triangles represent sections of tetrahedra, edge section of triangles and dots section of
edges, see Figure 2 (Right)). In all drawings, the gray rectangle represents the flat tetrahedron, e

(light blue dot) is the edge of the flat tetrahedron of which we want to reduce the degree. Assuming
no 2-3 move is available, we pick another edge ef (red dot), if a 3-2 move can be performed on ef ,
we are in case (B) and the 3-2 move reduces the degree of e (case (C)). Otherwise, we are in case
(A) we need to create the red dashed tetrahedron by decreasing the degree of ef , this can be done
by calling recursively our procedure on ef .

Procedure summary. The procedure to get rid of a flat tetrahedron is a tree-like backtracking
search, each branch corresponding to a choice of 2-3 or 3-2 move to perform. The moves
used are geometric to preserve the volume maximization advancement. A flat tetrahedron
can only be deleted with a 3-2 move: the first step is to reduce the degree of one of its edges
to three. To reduce the degree of an edge, the solution is to perform 2-3 moves on two
tetrahedra containing this edge. If a 2-3 move is not possible for geometric reasons, we are
in the situation of Figure 5, and the procedure to reduce the degree can be called recursively
on a neighboring edge. Performing a 3-2 move on this latter edge resulting in a decrease of
the degree of the initial one. The procedure ends when the initial edge has degree three and
the flat tetrahedron can be removed or when no move can be applied.

5.3 Implementation details

The implementation faces several practical challenges.

Breaking infinite loops. As such, the algorithm may loop infinitely on some instance, as 2-3
and 3-2 moves may reverse themselves. To counteract this phenomenon and avoid redundant
modifications, a solution is to store at each modification the isomorphism signature of the
triangulation [2], characterizing uniquely the isomorphism type of the triangulation. This
allows us to recognize already processed triangulations and break branches of the backtracking
algorithms. Note however that this is costly compared to the Pachner moves, and it makes
the procedure no longer local.

Selecting the edge e. When attempting to remove a flat tetrahedron, one needs to choose
between the two π-angled edges e and e′ to reduce. In our implementation, we consider both
edges, and select the one that has the larger smallest angle in its link. This performs better
than a random choice in our experiments.

Pruning the backtrack search. Some triangulations may have edges of large degree (more
than 10), which produces wide search trees. Additionally, the recursive calls to the degree
reduction procedure may induce trees of large depth. Experimentally, the better strategy
consists of exploring exhaustively the first levels of the tree. We set the width of exploration
to 8 and explore the first 2 levels of the search tree.
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Sequencing of Pachner moves. Different sequencings of Pachner moves lead to different
triangulations. In practice, we favor 2-3 moves over recursive ones, which performs best.
Additionally, among the 2-3 moves performed to get rid of a flat tetrahedron containing edge
e of angle π, we prioritize moves that eliminate tetrahedra for which e has a small dihedral
angle. Among the recursive ones, we used the same method as the one choosing between
e and e′, indeed choosing a recursive move boils down to choosing an edge to minimize its
degree.

6 Experiments

In this section, we study the experimental performance of our approach1 to find a triangulation
with a CHS, and compare its behavior with the software SnapPy [3]. SnapPy is the state-of-
the-art software to study the geometric properties of knots and 3-manifolds, and is widely
used in the low-dimensional topology community. Following this analysis, we propose and
study a hybrid method with practical interest.

SnapPy. SnapPy’s method is based on a random re-triangulation followed by a simplification.
The first step is constituted of 4n random 2-3 moves, where n is the number of tetrahedra in the
input triangulation. The simplification performs non-deterministic modifications to decrease
the number of tetrahedra in the triangulation. Notably it removes some configurations that
prevent angle structures from existing. The verification of the existence of a CHS is based
on a Newton’s method to solve the gluing equations [17].

Data set. We apply our algorithms to the census of prime hyperbolic knots with up to 19
crossings. This census has been constituted by the efforts of many researchers in the field,
and recently completed with the exhaustive enumeration of all knots with crossing number
smaller than 202 [1].

For each knot, given by a knot diagram, we compute a triangulation of the knot com-
plement using Regina [2], and simplify it with SnapPy. We then keep the triangulations
admitting an angle structure but not a CHS, and hence requiring re-triangulation. All the
others, without angle structure or admitting a CHS, were discarded. They constitute the
Failure on first try data of Table 1.

The knots are grouped by crossing numbers (from 14 to 19), and on whether they are
alternating or not. In Section 6.1, our experiments are run on the first 2500 knots of each
of the 12 groups having an angle structure but no CHS, and in Section 6.2 we use the first
10.000 knots of the same data sets.

6.1 Success rate and combinatorial performance
In terms of Pachner moves. Figure 6 (left) represents the rate of knots on which our
algorithm succeeds to find a triangulation with a CHS, for all the 12 groups of knots. It
represents the success rate as a function of the number of Pachner moves, the higher success
rate groups are the alternating knots.

While there is a significant difference between the efficiency on alternating and non-
alternating knots, all the curves have the same behavior: the first few Pachner moves are very
effective. An important point is that, compared to the number of moves done by SnapPy,

1 Our implementation uses the SLSQP [7] optimization method from SciPy [16].
2 The census is available at https://regina-normal.github.io/data.html

https://regina-normal.github.io/data.html
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Figure 6 Left: on the sample of triangulations, success rate in finding a CHS against the number
of Pachner moves for different crossing numbers and alternabilities. The limit rate of success
for alternating knots is 0.98, the limit rate for non-alternating knots is 0.87. Right: Number of
re-triangulations required by our method over the number of re-triangulations required by SnapPy
on the 12 groups of knots, gathered in bins (the color indicates the log of the number of points
inside). Since our method is deterministic, the points have discrete ordinates. The diagonal x = y

appears in red.

at least four times the number of tetrahedra and then roughly the same number for the
simplification times the number of re-triangulation, our method uses a much lower number
of Pachner moves on average (see Figure 6,left). This is of combinatorial interest, as doing a
small number of moves can mitigate the impact of the procedure on the properties of the
triangulation, such as keeping a small treewidth for instance.

After the first few steps, the growth of the success rate slows down drastically. An
interpretation of this phenomenon is that the tetrahedra created by the 2-3 moves tend to
to be more flat than the original ones. This leads to an increase in the number of required
re-triangulations and issues with floating point arithmetic.

In terms of re-triangulation. In order to compare the behaviors of our method and of the
state of the art: we want to know if the two methods struggle on the same triangulations.
Both methods using sequences of re-triangulations, we use the length of these sequences as
metrics.

We compare in Figure 6 (right) the average number of randomized re-triangulations
required by SnapPy to find a triangulation with a CHS, and the (deterministic) number of re-
triangulations of our method. The majority of the CHS are found within few re-triangulations
on average: both methods manage to find 78% of them within two steps.

However, it appears that for the manifolds requiring a large number of re-triangulations
with either method, the other one will perform well on it: the performance of the methods
are substantially orthogonal for the difficult cases. This phenomenon highlights the fact that
the methods are complementary.

Limitations. It is to be noted that our method suffers from several phenomena: there are
manifolds on which our method fails, the reasons to this being convergence problems because
of the floating point arithmetic, the creation of flatter tetrahedra or the volume modification
mentioned in Remark 10. Furthermore some triangulations have several very high degree
edges and looking for the correct sequence of geometric Pachner moves can be costly. In
terms of time performance, the constraint convex optimization is an important bottleneck,
as well as the computation and book-keeping of a large number of isomorphism signatures.
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However, in light of the previous results, we design a hybrid algorithm, mixing SnapPy’s
pipeline together with the heuristics based on localized geometric Pachner moves introduced
in this article, in order to outperform both methods in terms of experimental timings.

6.2 Hybrid algorithm and time performance
As is, SnapPy does not produce angle structures as defined in Section 3, as it constructs
negative tetrahedra, i.e., tetrahedra whose shape has a negative imaginary part. Our hybrid
method consists of calling SnapPy to randomize and simplify the triangulation, and, in case
the triangulation admits only few negative tetrahedra (less than four in our experiments), call
the resolution of flat tetrahedra with geometric Pachner moves on these negative tetrahedra,
as introduced in Section 5. Loop until a CHS is found.

Our implementation is done in C directly in SnapPy’s kernel and consists of a simplified
version of Section 5’s method. For each negative tetrahedron, we try to reduce the degree of
one of its edges down to 3 in turn using only geometric 2-3 moves, we try all the edges, and
we do not use recursive moves or heuristics to perform the geometric moves.

The results of this method are summarized in Figure 7, where the time to compute
the CHS are compared for the new hybrid method and the usual SnapPy pipeline, on the
first 10.000 triangulations of the datasets of Section 6. The hybrid method using localized
geometric Pachner moves shows, at worst, similar time performance compared to SnapPy, and
performs significantly better overall. On average, the hybrid method is 20% faster, however,
it is to be noted that, on most cases, few re-triangulations are required in which case the
hybrid method and SnapPy show naturally similar time performance. More interestingly,
on cases requiring many more re-triangulations in the SnapPy pipeline, the hybrid methods
performs much better than SnapPy, with running times up to 18 times faster.

As indicator of the global behavior of both algorithms, we indicate the linear regression
of the data points (purple dashed line, slope = 0.4) in Figure 7, to illustrate that the dense
region is not concentrated on the x = y diagonal.

Figure 7 Left: time comparison of the hybrid method and SnapPy in seconds for the 10.000 first
triangulations of each crossing number of the data set of the previous section, gathered in bins
(the color indicates the log of the number of points inside). Line x = y is plain and red, a linear
regression through the data set is dashed and black. For readability, four outlayers favoring the
hybrid method are omitted. Right: distribution, in logarithmic scale, of the time required by SnapPy
over the time required by the hybrid method.
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Abstract
The treedepth of a graph G is the least possible depth of an elimination forest of G: a rooted forest on
the same vertex set where every pair of vertices adjacent in G is bound by the ancestor/descendant
relation. We propose an algorithm that given a graph G and an integer d, either finds an elimination
forest of G of depth at most d or concludes that no such forest exists; thus the algorithm decides
whether the treedepth of G is at most d. The running time is 2O(d2) · nO(1) and the space usage
is polynomial in n. Further, by allowing randomization, the time and space complexities can be
improved to 2O(d2) · n and dO(1) · n, respectively. This improves upon the algorithm of Reidl et
al. [ICALP 2014], which also has time complexity 2O(d2) · n, but uses exponential space.
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1 Introduction

An elimination forest of a graph G is a rooted forest F whose vertex set is the same as that
of G, where for every edge uv of G, either u is an ancestor of v in F or vice versa. The
treedepth of G is the least possible depth of an elimination forest of G. Compared to the
better-known parameter treewidth, treedepth measures the depth of a tree-like decomposition
of a graph, instead of width. The two parameters are related: if by td(G) and tw(G)
we denote the treedepth and the treewidth of an n-vertex graph G, then it always holds
that tw(G) ⩽ td(G) ⩽ tw(G) · log2 n (Section 6.4 of [16]). However, the two notions are
qualitatively different: for instance, a path on t vertices has treewidth 1 and treedepth
Θ(log t).

Treedepth appears prominently in structural graph theory, especially in the theory of
sparse graphs of Nešetřil and Ossona de Mendez. There, it serves as a basic building block
for fundamental decompositions of sparse graphs – low treedepth colorings – which can
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79:2 Computing Treedepth in Polynomial Space and Linear FPT Time

be used for multiple algorithmic purposes, including designing algorithms for Subgraph
Isomorphism and model-checking First-Order logic. See [16, Chapters 6 and 7] for an
introduction and [8, 9, 15, 17, 18, 19, 21, 20] for examples of applications.

In this work we are interested in using treedepth as a parameter for the design of fixed-
parameter (FPT) algorithms. Clearly, every dynamic programming algorithm working on a
tree decomposition of a graph can be adjusted to work also on an elimination forest, just
because an elimination forest of depth d can be easily transformed into a tree decomposition
of width d− 1. However, it has been observed in [7, 22, 10, 14, 20] that for multiple basic
problems, one can design FPT algorithms working on elimination forests of bounded depth
that have polynomial space complexity without sacrificing on the time complexity. These
include the following: (In all results below, n is the vertex count and d is the depth of the
given elimination forest.)

A 3d · nO(1)-time O(d+ log n)-space algorithm for 3-Coloring [22].
A 2d · nO(1)-time nO(1)-space algorithm for counting perfect matchings [7].
A 3d · nO(1)-time nO(1)-space algorithm for Dominating Set [7, 22].
A d|V (H)| · nO(1)-time nO(1)-space algorithm for Subgraph Isomorphism [20].
(Here, H is the sought pattern graph.)
A 3d · nO(1)-time nO(1)-space algorithm for Connected Vertex Cover [10].
A 5d · nO(1)-time nO(1)-space algorithm for Hamiltonian Cycle [14].

We note that the approach used in [10, 14] to obtain the last two results applies also to
several other problems with connectivity constraints. However, as these algorithms are based
on the Cut&Count technique [4], they are randomized and no derandomization preserving
the polynomial space complexity is known. An in-depth complexity-theoretical analysis of
the time-space tradeoffs for algorithms working on different graph decompositions can be
found in [22].

In the algorithms mentioned above one assumes that the input graph is supplied with
an elimination depth of depth at most d. Therefore, it is imperative to design algorithms
that given the graph alone, computes, possibly approximately, such an elimination forest.
Compared to the setting of treewidth and tree decompositions, where multiple approaches
have been proposed over the years (see e.g. [2, 11] for an overview), so far there is only a
handful of algorithms to compute the treedepth exactly or approximately.

It is well-known (see e.g. [16, Section 6.2]) that just running depth-first search and
outputing the forest of recursive calls gives an elimination forest of depth at most
2td(G). So this gives a very simple linear-time approximation algorithm, but with the
approximation factor exponential in the optimum.
Czerwiński et al. [5] gave a polynomial-time algorithm that outputs an elimination forest
of depth at most O(td(G)tw(G) log3/2 tw(G)), which is thus an O(tw(G) log3/2 tw(G))-
approximation algorithm.
Reidl et al. [23] gave an exact FPT algorithm that in time 2O(d·tw(G)) ·n either constructs
an elimination forest of depth at most d, or concludes that the treedepth is larger than d.
There is a naive algorithm computing treedepth directly from its definition that works in
O(ntd(G)) time and uses polynomial space.
Using a tradeoff that runs either of the last two approaches, depending on whether d is
greater than

√
ϵ · log n or not, for any fixed ϵ > 0, one can obtain an algorithm running

in time 2O( d3
ϵ ) + O(n1+ϵ) and using polynomial space.

Recall here that tw(G) ⩽ td(G), hence when parameterized by treedepth only, the mentioned
results can be seen as an O(td(G) log3/2 td(G))-approximation in polynomial time, as well as
an exact FPT algorithm with running time 2O(d2) ·n. In particular, obtaining a constant-factor
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approximation for treedepth running in time 2O(td(G)) · nO(1) is a well-known open problem,
see e.g. [5]. We note that implementation of practical FPT algorithms for computing treedepth
was the topic of the 2020 Parameterized Algorithms and Computational Experiments (PACE)
Challenge [12].

Our contribution. The exact algorithm of Reidl et al. [23] uses not only exponential time
(in the treedepth), but also exponential space. This would make it a space bottleneck when
applied in combination with any of the polynomial-space algorithms developed in [7, 22, 10,
14, 20]. The mentioned tradeoff trick brings back the polynomial space, but significantly
deteriorates the running time both in terms of the factor exponential in d and the one
polynomial in n. In this work we bridge these issues by proving the following result.

▶ Theorem 1. There is an algorithm that given an n-vertex graph G and an integer d, either
constructs an elimination forest of G of depth at most d, or concludes that the treedepth of G
is larger than d. The algorithm runs in 2O(d2) · nO(1) time and uses nO(1) space.

The space and time complexities can be improved to dO(1) · n and expected 2O(d2) · n,
respectively, at the cost of allowing randomization: the algorithm may return a false negative
with probability at most 1

c·nc , where c is any constant fixed a priori; there are no false positives.

Thus, the randomized variant of the algorithm of Theorem 1 has the same time complexity
as the algorithm of Reidl et al. [23], but uses polynomial space. However, the algorithm
of Reidl et al. [23] is deterministic, contrary to ours. Note that apart from possible false
negatives, the bound on the running time is only in expectation and not worst-case (in other
words, our algorithm is both Monte Carlo and Las Vegas). However, one can turn this into
a worst-case bound at the cost of increasing the probability of false negatives to 1/2 by
forcefully terminating the execution if the algorithm runs for twice as long as expected.

Simultaneously achieving time complexity linear in n and polynomial space complexity is
a property that is desired from an algorithm for computing the treedepth of a graph. While
many of the polynomial-space FPT algorithms working on elimination forests do not have
time complexity linear in n due to the usage of various algebraic techniques, the simplest
ones that exploit only recursion – like the ones for 3-Coloring or Independent Set
considered in [22] – can be easily implemented to run in time 2O(d) · n and space dO(1) · n.
Thus, the randomized variant of the algorithm of Theorem 1 would neither be a bottleneck
from the point of view of space complexity nor from the point of view of the dependency of
the running time on n. Admittedly, the parametric factor in the runtime of our algorithm is
2O(d2), as compared to 2O(d) in most of the aforementioned polynomial-space FPT algorithms
working on elimination forests; this brings us back to the open problem about constant-factor
approximation for treedepth running in time 2O(td(G)) · nO(1) raised in [5].

Let us briefly discuss the techniques behind the proof of Theorem 1. The algorithm
of Reidl et al. [23] starts by approximating the treewidth of the graph (which is upper
bounded by the treedepth) and tries to constructs an elimination forest of depth at most
d by bottom-up dynamic programming on the obtained tree decomposition. By applying
the iterative compression technique, we may instead assume that we are supplied with an
elimination forest of depth at most d+ 1, and the task is to construct one of depth at most d.

Applying now the approach of Reidl et al. [23] directly (that is, after a suitable adjustment
from the setting of tree decompositions to the setting of elimination forests) would not give an
algorithm with polynomial space complexity. The reason is that their dynamic programming
procedure is quite involved and in particular keeps track of certain disjointness conditions;
this is a feature that is notoriously difficult to achieve using only polynomial space. Therefore,
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we resort to the technique of inclusion-exclusion branching, used in previous polynomial-
space algorithms working on elimination forests; see [7, 22] for basic applications of this
approach. In a nutshell, the idea is to count more general objects where the disjointness
contraints are relaxed, and to use inclusion-exclusion at each step of the computation to
make sure that objects not satisfying the constraints eventually cancel out. We note that
while the application of inclusion-exclusion branching was rather simple in [7, 22], in our
case it poses a considerable technical challenge. In particular, along the way we do not
count single values, but rather polynomials with one formal variable that keeps track of how
much the disjointness constraints are violated. In the exposition layer, our application of
inclusion-exclusion branching mostly follows the algorithm for Dominating Set of Pilipczuk
and Wrochna [22].

In this way, we can count the number of elimination forests1 of depth at most d in time
2O(d2) · nO(1) and using polynomial space. So in particular, we can decide whether there
exists at least one such elimination forest. Such a decision algorithm can be quite easily
turned into a construction algorithm using self-reducibility of the problem. This establishes
the first part of Theorem 1.

As for the second part – the randomized linear-time FPT algorithm using polynomial
space – there are several obstacles that need to be overcome. First, there is a multiplicative
factor n in the running time coming from the iterative compression scheme. We mitigate
this issue by replacing iterative compression with the recursive contraction scheme used
by Bodlaender in his linear-time FPT algorithm to compute the treewidth of a graph [1].
Second, when using self-reducibility, we may apply the decision procedure n times, each
taking at least linear time. This is replaced by an approach based on color coding, whose
correctness relies on the fact that in a connected graph of treedepth at most d there are
at most dO(d) different feasible candidates for the root of an optimum-depth elimination
tree [3]. Finally, in the counting procedure we may operate on numbers of bitsize as large as
polynomial in n. This is resolved by hashing them modulo a random prime of magnitude
Θ(log n), so that we may assume that arithmetic operations take unit time.

We remark that it is relatively rare that a polynomial-space algorithm based on algebraic
techniques can be also implemented so that it runs in time linear in the input size. Therefore,
we find it interesting and somewhat surprising that this can be achieved for the problem of
computing the treedepth of a graph, which combinatorially is rather involved.

Organization. After brief preliminaries in Section 2, in Section 3 we prove the first part of
Theorem 1: we give a deterministic algorithm that runs in time 2O(d2) · nO(1) time and uses
polynomial space. Then, in Section 4 we improve the time and space complexities to 2O(d2)n

and dO(1)n respectively, at the cost of introducing randomization. The proofs of the results
marked ⋆ are deferred to the full version of the work due to the space constraints.

2 Preliminaries

Standard notation. All graphs in this paper are finite, undirected, and simple (i.e. with no
loops on vertices or multiple edges with the same endpoints). For a graph G and a vertex
subset A ⊆ V (G), by NG[A] we denote the closed neighborhood of A: the set consisting of all
vertices that are in A or have a neighbor in A.

1 Formally, we count only elimination forests satisfying some basic connectivity property, which we call
sensibility.
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For a function f : A → B and a subset of the domain X ⊆ A, by f(X) we denote the
image of f on X. The image of f is denoted im(f) = f(A). For an element e outside of the
domain and a value α, by f [e → α] we denote the extension of f obtained by additionally
mapping e to α.

We denote the set {1, 2, . . . , k} as [k]. We assume the standard word RAM model of
computation with words of length log n, where n is the vertex count of the input graph.

(Elimination) forests and treedepth. Consider a rooted forest F . By AncF we denote
the ancestor/descendant relation in F : for u, v ∈ V (F ), AncF (u, v) holds if and only if u is
an ancestor of v or v is an ancestor of u in F . We assume that a vertex is an ancestor of
itself, so in particular AncF (u, u) is always true. We also use the following notation. For
u ∈ V (F ), by tailF [u] we denote the set of all ancestors of u (including u) and by treeF [u]
we denote the set of all descendants of u, including u. Further, let tailF (u) = tailF [u] − {u},
treeF (u) = treeF [u] − {u}, and compF [u] = tailF [u] ∪ treeF [u]. Note that v ∈ compF [u] if
and only if AncF (u, v) holds. By chldF (u) we denote the set of children of u in F , and by
depthF (u) we denote the depth of u in F , that is, depthF (u) = |tailF [u]| (in particular, roots
have depth one). The depth of a rooted forest F is the maximum depthF among its vertices.
For a set of vertices A ⊆ V (F ), by clF (A) =

⋃
u∈A tailF [u] we denote the ancestor closure

of A. A prefix of a rooted forest F is a rooted forest induced by some ancestor-closed set
A ⊆ V (F ); that is, it is the forest on A with the parent-child relation inherited from F .

In this paper we are mostly interested in the notion of an elimination forest and of the
treedepth of a graph.

▶ Definition 2. An elimination forest of a graph G is a rooted forest F on the same set
of vertices as G such that for every edge uv ∈ E(G), we have that AncF (u, v) holds. The
treedepth of a graph G is the least possible depth of an elimination forest of G.

Note that an elimination forest of a connected graph must be connected as well, so in this
case we may speak about an elimination tree (however, elimination forest of a disconnected
graph could be a tree as well). Sometimes, instead of identifying V (G) and V (F ), we treat
them as disjoint sets and additionally provide a bijective mapping ϕ : V (G) → V (F ) such
that uv ∈ E(G) entails AncF (ϕ(u), ϕ(v)). In such case we consider the pair (F, ϕ) to be
an elimination forest of G. This will be always clear from the context. More generally, for
B ⊆ V (G) and a rooted forest F , we shall say that a mapping ϕ : B → V (F ) respects edges
if uv ∈ E(G) entails AncF (u, v) for all u, v ∈ B. In this notation, (F, ϕ) is an elimination
forest of G if and only if ϕ is a bijection from V (G) to V (F ) that respects edges on V (G).

3 Deterministic FPT algorithm

In this section we prove the first part of Theorem 1: we give a deterministic polynomial-space
algorithm with running time 2O(d2) · nO(1) that for a given n-vertex graph G, either outputs
an elimination forest of G of depth at most d or concludes that no such forest exists. The
most complex part of the algorithm will be procedure CountElimTrees, which, roughly
speaking, counts the number of different elimination trees of a connected graph G of depth at
most d. We describe CountElimTrees first, and then we utilize it to achieve the main result.

3.1 Description of CountElimTrees

As mentioned above, procedure CountElimTrees counts the number of different elimination
trees of G of depth at most d. However, we will not count all of them, but only such that are
in some sense minimal; a precise formulation will follow later. We remark that this part is
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79:6 Computing Treedepth in Polynomial Space and Linear FPT Time

inspired by the 3d · nO(1)-time polynomial space algorithm of Pilipczuk and Wrochna [22] for
counting dominating sets in a graph of bounded treedepth. This algorithm exploits the same
underlying trick – sometimes dubbed “inclusion-exclusion branching” – but the application
here is technically more involved than in [22].

Before describing CountElimTrees, let us carefully define objects that we are going to
count. We start by recalling the following standard fact about the existence of elimination
forests with basic connectivity properties.

▶ Lemma 3 (⋆). Let H be a graph and let R be an elimination forest of H. Then there
exists an elimination forest R′ of H such that

for every vertex u of H, we have depthR′(u) ⩽ depthR(u); and
whenever vertices u, v ∈ V (H) belong to the same connected component of R′, they also
belong to the same connected component of H.

We remark that computing R′ can be easily done in linear time by using depth-first
search from the root of each elimination tree in R. This procedure will be used many times
throughout the algorithm when justifying the usual assumption that our current graph is
connected. (Disconnected graphs will often naturally appear when recursing after performing
some deletions in the original graph.)

The following lemma can be proved using a very similar, though a bit more involved
reasoning. We will work with a fixed connected graph G and its elimination tree T .

▶ Lemma 4 (⋆). Let G be a connected graph of treedepth at most d and T be an elimination
tree of G (possibly of depth larger than d). Then there exists an elimination tree R of G of
depth at most d that satisfies the following property: for every u ∈ V (G) and v1, v2 ∈ chldT (u),
v1 ̸= v2, we have

clR(compT [v1]) ∩ clR(compT [v2]) = clR(tailT [u]). (1)

An elimination tree R of a graph G satisfying the conclusion of Lemma 4 (that is, the
depth of R is at most d and for all u ∈ V (G) and distinct v1, v2 ∈ chldT (u) we have (1)) will
be called sensible with respect to T . In our search for elimination trees of low depth, we will
restrict attention only to trees that are sensible with respect to some fixed elimination tree
T . Then Lemma 4 justifies that we may do this without losing all solutions.

With all ingredients introduced, we may finally precisely state the goal of this section.

▶ Lemma 5. There exists an algorithm CountElimTrees(G,T, d) that, given a connected
graph G on n vertices, an elimination tree T of depth k, and an integer d, runs in time
2O(dk) · nO(1), uses nO(1) space, and outputs the number of different elimination trees of G
of depth at most d that are sensible with respect to T .

Note here that the input to CountElimTrees consists not only of G and d, but also of an
auxiliary elimination tree T of G. The depth k of T may be, and typically will be, larger than
d. Also, we assume that an elimination tree is represented solely by its vertex set and the
ancestor relation. In particular, permuting children of a vertex yields the same elimination
tree, which should be counted as the same object by procedure CountElimTrees.

The remainder of this section is devoted to the proof of Lemma 5. We first need to
introduce some definition.

Let us arbitrarily enumerate the vertices of G as v1, v2, . . . , vn in a top-down manner
in T . That is, whenever vi is an ancestor of vj , we have i ⩽ j. Consider another rooted tree
R and a mapping ϕ : V (T ) → V (R). For a vertex u of T , we call a vertex vi ∈ treeT (u) a
proper surplus image (for u and (R,ϕ)) if at least one of the following conditions holds:
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(i) ϕ(vi) ∈ clR(ϕ(tailT [u])), or
(ii) there exists j such that j < i, vj ∈ treeT (u), and ϕ(vj) = ϕ(vi).

We define non-proper surplus images analogously, but using sets tailT (u) and treeT [u] instead
of tailT [u] and treeT (u), respectively.

We will work in the ring of polynomials Z[x], where x is a formal variable. By an abuse
of notation, we equip this ring with an operation of division by x defined through equations:

xi

x
=

{
xi−1 if i ⩾ 1,
0 if i = 0

αA+ βB

x
= α · A

x
+ β · B

x
for all A,B ∈ Z[x] and α, β ∈ Z.

Formally speaking, division by x is just the unique function from Z[x] to Z[x] satisfying the
two properties above.

Even though our final goal is to count the number of elimination trees, along the way we
are going to count more general objects, called generalized elimination trees. A generalized
elimination tree of a graph H is a rooted tree R along with a mapping ϕ : V (H) → V (R)
such that ϕ respects edges. Note that in particular, it may be the case that im(ϕ) ⊊ V (R)
or that ϕ(u) = ϕ(v) for some u, v ∈ V (H). Clearly, a generalized elimination tree is an
elimination tree in the usual sense if and only if ϕ is a bijection between V (H) and V (R).
We shall call two generalized elimination trees (R,ϕ) and (R′, ϕ′) isomorphic if there is an
isomorphism of rooted trees ψ mapping R to R′ such that ϕ′ = ψ ◦ ϕ.

A generalized elimination tree (R,ϕ) of an induced subgraph H of G is sensible for T
if for every u ∈ V (H) and distinct v1, v2 ∈ chldT (u) ∩ V (H), we have clR(ϕ(compT [v1])) ∩
clR(ϕ(compT [v2])) = clR(ϕ(tailT [u])). Thus, this notion projects to sensibility of (standard)
elimination trees when H = G and (R,ϕ) is an elimination tree of G. Generalized elimination
trees of induced subgraphs of G that are sensible for T shall be called monsters.

For a rooted tree K, a mapping ϕ with co-domain V (K) is called a cover of K if
clK(im(ϕ)) = V (K), or equivalently, every leaf of K is in the image of ϕ. For a vertex
u ∈ V (G), rooted tree K of depth at most d, a subset of vertices A ⊆ V (K) that contains
all leaves of K, and a mapping ϕ : tailT (u) → A that is a cover of K, we define

f(u,K, ϕ,A) =
n∑

i=0
aix

i ∈ Z[x],

where ai is the number of non-isomorphic monsters (R, ϕ) such that:
(i) (R, ϕ) is a generalized elimination tree of G[compT [u]] of depth at most d;
(ii) K is a prefix of R;
(iii) ϕ is an extension of ϕ satisfying

V (R) − V (K) ⊆ im(ϕ) ⊆ (V (R) − V (K)) ∪A; and

(iv) in treeT [u] there are exactly i non-proper surplus images for u and (R, ϕ).
Note that since ϕ is assumed to be a cover of K, and by the second and third condition, the
last condition can be rephrased as follows:

i = |treeT [u]| − |V (R) − V (K)|.

We define polynomial g(u,K, ϕ, L) analogously, but using tailT [u], treeT (u), and proper
surplus images, instead of tailT (u), treeT [u] and non-proper surplus images. That in treeT (u)
there are i proper surplus images is then equivalent to i = |treeT (u)| − |V (R) − V (K)|.
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Informally, f and g count partial solutions on subgraphs induced on subtrees of T , where in
g we exclude the root u of the subtree. Values of g are computed by combining results of f
from separate subtrees rooted at the children u into the result for the forest representing
their union. Values of f are computed from the values of g by including a new vertex u that
connects that forest into one tree.

Our goal now is to compute the polynomials f(·, ·, ·, ·) and g(·, ·, ·, ·) recursively over the
elimination tree T . It can be easily seen that if chldT (u) = ∅ then

g(u,K, ϕ,A) =
{

1 if ϕ respects edges,
0 otherwise.

(2)

Indeed, (R, ϕ) = (K,ϕ) is the only possible pair that can satisfy the last three conditions,
and it is a sensible generalized elimination tree of G[compT [u]] if and only if ϕ respects edges.

First, we show how to compute polynomials g(u, ·, ·, ·) based on the knowledge of polyno-
mials f(v, ·, ·, ·) for children v of u.

▶ Lemma 6 (⋆). If chldT (u) ̸= ∅, then for all relevant u,K, ϕ,A we have

g(u,K, ϕ,A) =
∏

v∈chldT (u)

f(v,K, ϕ,A)

The detailed proof of this Lemma can be found in the full version, however a short justification
is that monsters counted in the definition of g(u,K,Φ, A) can be expressed in a product struc-
ture of monsters counted in the definitions of f(vi,K,Φ, A), where chldT (u) = {v1, . . . , vc}.

Let us elaborate on the intuition on what happened in Lemma 4. Intuitively, we aggregated
information about the children of u to the information about u itself. Since in the definitions
of monsters we do not insist on the mappings being injective, this aggregation could have
been performed by a simple product of polynomials (though, the assumption of sensibility
was crucial for arguing the correctness). In a natural dynamic programming, such as the
one in [23], one would need to ensure injectivity when aggregating information from the
children of u, which would result in a dynamic programming procedure that would need to
keep track of all subsets of K (and thus use exponential space). Thus, relaxing injectivity
here allows us to use simple multiplication of polynomials, but obviously we will eventually
need to enforce injectivity. The idea is that we enforce surjectivity instead, and make sure
that the size of the co-domain matches the size of the domain. In turn, surjectivity is
enforced using inclusion-exclusion in the computation of polynomials f(u, ·, ·, ·) based on
polynomials g(u, ·, ·, ·), which is the subject of the next lemma. Ensuring that the size of the
co-domain matches the size of the domain is done through maintaining the number of surplus
images. The intuition behind their somewhat intricate definition is the following. We want
to maintain the difference between (i) the number of vertices we have already processed and
forgotten about, and (ii) the number of forgotten vertices in a monster that we introduced in
order to accommodate the vertices (i). Vertices contributing to this difference are exactly the
vertices that have been mapped to forgotten vertices of a monster that have already been
“taken” or that have not been forgotten yet; this corresponds to the definition of surplus
images. We know that if multiple vertices were mapped to the same vertex of a partial
monster, then this partial monster will not become a valid treedepth decomposition. We do
not have a way of discovering this immediately (as we cannot keep track of any disjointness
conditions), but extensions of such partial monsters will not be counted in the final result.
The reason for that is that either the sizes of the co-domains will not match the sizes of the
domains, or they will cancel out in the exclusion-inclusion computation due to not being
surjective.
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▶ Lemma 7 (⋆). For all relevant u,K, ϕ,A, we have:

f(u,K, ϕ,A) =
∑
v∈A

x · g(u,K, ϕ[u → v], A)+

∑
w∈K

d−depth(w)∑
p=1

1
xp−1∑

B⊆{w1,...,wp−1}

(−1)p−1−|B|g(u,K[w,w1, . . . , wp], ϕ[u → wp], A ∪B ∪ {wp}),

where K[w,w1, . . . , wp] denotes the rooted tree obtained from K by adding a path
[w,w1, . . . , wp] so that w is the parent of w1 and each wi is the parent of wi+1, for
i ∈ {1, . . . , p− 1}.

We need to take an additional care of how to deduce the overall number of elimination
trees based on the polynomial f(·, ·, ·, ·) and g(·, ·, ·, ·). Define polynomial

h =
d∑

p=1

1
xp−1

∑
B⊆{w1,...,wp−1}

(−1)p−1−|B|g(r, [w1, . . . , wp], [r → wp], B ∪ {wp}) ∈ Z[x],

where r is the root of T , [w1, . . . , wp] is a path on p vertices rooted at w1, and [r → wp]
denotes the function with domain {r} that maps r to wp.

▶ Lemma 8. The number of elimination trees of G that are sensible with respect to T and
have depth at most d is the term in h standing by x0.

Proof. By Lemma 7, the formula can be seen as the formula for f(r,K, ϕ,A) for empty
K, ϕ, and A. Therefore, h can be written as h =

∑n
i=0 aix

i, where ai is the number of
non-isomorphic sensible generalized elimination trees (R, ϕ) such that R has depth at most
d, ϕ : V (G) → V (R) is surjective, and in G there are i non-proper surplus images for r and
(R, ϕ). However, since K is empty, the number of surplus images is exactly the number of
vertices vj ∈ V (G) that are mapped by ϕ to the same vertex of R as some other vertex of G
with a smaller index. Then the assertion that ϕ is injective is equivalent to the assertion
that the number of such surplus images is 0. It follows that the number of non-isomorphic
sensible elimination trees of G of depth at most d is equal to the term in h that stands by
x0. ◀

Having established Lemmas 6, 7 and 8, we can conclude the description of procedure
CountElimTrees. By 8, the goal is to compute polynomial h and return the coefficient
standing by x0. We initiate the computation using the formula for h, and then we use two
mutually-recursive procedures to compute polynomials f(·, ·, ·, ·) and g(·, ·, ·, ·) using formulas
provided by Lemmas 6 and 7. The base case of recursion is for a leaf of T , where we use
formula (2).

The correctness of the procedure is established by Lemmas 6, 7 and 8. So it remains to
bound its time complexity and memory usage. It is clear that polynomials that we compute
will always have degrees at most n. Trees K relevant in the computation will never have
more than dk vertices, for at every recursive call the tree K can grow by at most d new
vertices.

As the next step, we bound the numbers that can be present in the computations.

▶ Lemma 9 (⋆). Every coefficient of f(u,K, ϕ,A) is an integer from the range
[0, (dk · 2d)|treeT [u]|] and every coefficient of g(u,K, ϕ,A) is an integer from the range
[0, (dk · 2d)|treeT (u)|]. Hence, all integers present in the computations are at most (dk2d)n.
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It follows that all integers present in the computation have bitsize bounded polynomially
in n.

As for the memory usage, the run of the algorithm is a recursion of depth bounded by 2k.
The memory used is a stack of at most 2k frames for recursive calls of procedures computing
polynomials f(·, ·, ·, ·) and g(·, ·, ·, ·) for relevant arguments. Each of these frames requires
space polynomial in n, hence the total space complexity is polynomial in n.

As for the time complexity, each call to a procedure computing a polynomial of the form
f(u, ·, ·, ·) makes at most dk · 2d recursive calls to procedures computing polynomials of the
form g(u, ·, ·, ·). In turn, each of these calls makes one call to a procedure computing a
polynomial of the form f(v, ·, ·, ·) for each child v of u. It follows that the total number of
calls to procedures computing polynomials of the form f(u, ·, ·, ·) and g(u, ·, ·, ·) is bounded by
2·(dk·2d)k = 2O(dk). The internal work needed in each recursive call is bounded by 2O(d)·nO(1).
As T has n vertices, the total time complexity is 2O(dk) · 2O(d) · nO(1) · n = 2O(dk) · nO(1), as
claimed. This concludes the proof of Lemma 5.

We note that having designed CountElimTrees(G,T, d), it is easy to design a similar
function CountElimForest(G,T, d) that does not need an assumption of G being connected
and where T is some elimination forest instead of an elimination tree (by using the procedure
described after Lemma 3).

3.2 Utilizing CountElimTrees

With the description of CountElimTrees completed, we can describe how we can utilize it in
order to construct a bounded-depth elimination tree of a graph. That is, we prove the first
part of Theorem 1.

First, we lift CountElimTrees to a constructive procedure that still requires to be provided
an auxiliary elimination tree of the graph.

▶ Lemma 10. There is an algorithm ConstructElimForest(G,T, d) that, given an n-vertex
graph G, an elimination forest T of G of depth at most k, and an integer d, runs in time
2O(dk) · nO(1), uses nO(1) space, and either correctly concludes that td(G) > d or returns an
elimination forest of G of depth at most d.

Proof. By treating every connected component separately, we may assume that G is connected
(see the remark after Lemma 3). Thus T is an elimination tree of G.

The first step of ConstructElimForest(G,T, d) is calling CountElimTrees(G,T, d). If
this call returns 0, we terminate ConstructElimForest and report that td(G) > d; this is
correct by Lemma 4. Otherwise we are sure that td(G) ⩽ d, and we need to construct any
elimination tree of depth at most d. In order to do so, we check, for every vertex v ∈ V (G),
whether v is a feasible candidate for the root of desired elimination tree. Note that a vertex
v can be the root of an elimination tree of G of depth at most d if and only if td(G− v) < d,
or equivalently, if an only if the procedure CountElimForest(G− v, T − v, d− 1) returns a
positive value. (Here, by T − v we mean the forest T with v removed and all former children
of v made into children of the parent of v, or to roots in case v was a root.) As td(G) ⩽ d,
we know that for at least one vertex v, this check will return a positive outcome. Then we
recursively call ConstructElimForest(G − v, T − v, d − 1), thus obtaining an elimination
forest F ′ of G− v of depth at most d− 1, and we turn it into an elimination tree F of G by
adding v as the new root and making it the parent of all the roots of F ′. As F has depth at
most d, it can be returned as the result of the procedure.
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That the procedure is correct is clear. As for the time and space complexity, it is easy to
see that there will be at most dn calls to the procedure CountElimTrees in total, because
at each level of the recursion there will be at most one invocation of CountElimTrees per
vertex of the original graph. As each of these calls uses 2O(dk) · nO(1) time and nO(1) space,
the same complexity bounds also follow for ConstructElimForest. ◀

It remains to show how to lift the assumption of being provided an auxiliary elimination
forest of bounded depth. For this we use the iterative compression technique.

Proof of the first part of Theorem 1. Arbitrarily enumerate the vertices of G as v1, . . . , vn.
For i ∈ {1, . . . , n}, let Gi = G[{v1, . . . , vi}] be the graph induced by the first i vertices.
For each i = 1, 2, . . . , n we will compute Fi, an elimination forest of Gi of depth at most
d. For i = 1 this is trivial. Assume now that we have already computed Fi and want to
compute Fi+1. We first construct Ti+1, an elimination tree of Gi+1, by taking Fi, adding
vi+1, and making vi+1 the parent of all the roots of Fi. Note that Ti+1 has depth at most
d+ 1. We now call ConstructElimForest(Gi+1, Ti+1, d). If this procedure concludes that
td(Gi+1) > d, then this implies that td(G) > d as well, and we can terminate the algorithm
and provide a negative answer. Otherwise, the procedure returns an elimination forest Fi+1
of Gi+1 of depth at most d, with which we can proceed. Eventually, the algorithm constructs
an elimination forest F = Fn of G = Gn of depth at most d.

The algorithm is clearly correct. Since every call to ConstructElimForest is supplied
with an elimination forest of depth at most d+ 1, and there are at most n calls, the total
time complexity is 2O(d2) · nO(1) and the space complexity is nO(1), as desired. ◀

4 Randomized linear FPT algorithm

In this section we sketch the second part of Theorem 1, where we reduce the time and space
complexities to linear in n at the cost of relying on randomization. There are three main
reasons why the algorithm presented in the previous section does not run in time linear in n.

First, in procedure ConstructElimForest, we applied CountElimTrees O(dn) times.
Even if CountElimTrees runs in time linear in n, this gives at least a quadratic time
complexity for ConstructElimForest.
Second, in the iterative compression scheme we add vertices one by one and apply
procedure ConstructElimForest n times. Again, even if ConstructElimForest runs in
linear time, this gives at least a quadratic time complexity.
Third, in procedure CountElimTrees we handle polynomials of degree at most n and
with coefficients of bitsize bounded only polynomially in n. Algebraic operations on those
need time polynomial in n.

In short, the second and third obstacles are mitigated as follows:
Iterative compression is replaced by a contraction scheme of Bodlaender [1] that allows us
to replace iteration with recursion, where every recursive step reduces the total number
of vertices by a constant fraction, rather than peels off just one vertex.
We observe that in CountElimTrees, we may care only about monomials with degrees
bounded by dk, so the degrees are not a problem. As for coefficients, we hash them
modulo a sufficiently large prime. This is another source of randomization.

As the techniques discussed above are rather standard, their details can be found in
the full version only. Here we provide an overview of how we optimize the procedure
ConstructElimForest, as this part contains original ideas.
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Faster root recovery
We assume we have already improved the running time of CountElimTrees to linear. Now
we are going to improve the running time of ConstructElimForest to linear. Recall that
ConstructElimForest in its current version works over a connected graph G, iterates over
all vertices v ∈ V (G) and checks whether td(G− v) ⩽ d− 1 by calling CountElimTrees with
appropriate parameters. Such vertices v could be placed as roots of an elimination tree of G
of depth at most d. Finding any feasible root is the crucial part that needs to be optimized
in order to achieve a linear running time for ConstructElimForest. The key fact we are
going to use is that the number of possible roots of optimum-depth elimination forests of a
connected graph is bounded in terms of the treedepth [3, 6].

▶ Lemma 11 (⋆). Suppose G is a graph whose treedepth is equal to d. Then there are at
most dO(d) vertices v ∈ V (G) such that td(G− v) < d.

Observe that supposing G is connected, vertices v satisfying td(G−v) < td(G) are exactly
those that can be placed as roots of an optimum-depth elimination tree.

We are going to modify the procedure CountElimTrees(G,T, d) by introducing weights.
Let G be a connected graph. Enumerate vertices of G as V (G) = {v1, . . . , vn} and let ti be
the number of elimination trees of G that are sensible with respect to T and in which vi is
the root. Then the result of CountElimTrees(G,T, d) can be expressed as t1 + t2 + . . .+ tn.
However, with a slight modification, we are able to compute t1µ1 + t2µ2 + . . .+ tnµn for any
sequence µ1, µ2, . . . , µn ∈ Z. That can be achieved by multiplying by µi the contribution of
transitions when we map vi to the root of a monster.

Assume wishfully that there is exactly one vertex vi ∈ V (G) that could serve as the
root of an elimination tree of G of depth d; equivalently, vi is the only vertex such that
td(G − vi) < d. In other words, tj is nonzero if and only if i = j. Note that in such case

we have i =
∑n

j=1
j·tj∑n

j=1
tj

. The denominator of this expression is simply the number of all

elimination trees of G of depth at most d that are sensible with respect to T , while the
numerator is the result of the modified version of CountElimTrees where we set µj = j for
all j ∈ [n]. Hence, we can find i (that is: pinpoint the unique root) by dividing the outcomes
of two calls to weighted CountElimTrees, instead of calling CountElimTrees n times, as we
did previously.

Next, we lift the assumption about the uniqueness of the candidate for the root of an
elimination tree. There are two key ingredients here. The first one is Lemma 11, which
bounds the number of possible candidate roots for elimination trees of optimum depth. The
second one is the color coding technique. The idea is to randomly color vertices into dO(d)

colors. Because there are at most dO(d) possible roots, with high probability there will exist
a color such that there is exactly one possible root in it. By modifying the idea from the
previous paragraph, we can generalize it to identifying root within a color class provided
there is exactly one possible root of this color.

Similarly as in the slower version, after identifying any possible root, we can delete it and
recurse to connected components of the remaining part of the graph.
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Abstract
We introduce the problem of finding a set B of k points in [0, 1]n such that the expected cost of the
cheapest point in B that dominates a random point from [0, 1]n is minimized. We study the case
where the coordinates of the random points are independently distributed and the cost function
is linear. This problem arises naturally in various application areas where customers’ requests are
satisfied based on predefined products, each corresponding to a subset of features. We show that
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1 Introduction

Let f : [0, 1]n → R be a continuous cost function and B ⊆ [0, 1]n be a finite set. We consider
the function

fB : [0, 1]n → R ∪ {∞}, fB(x) := min{f(b) : x ⩽ b, b ∈ B},

where we write x ⩽ b if x is less or equal than b in every coordinate and say that b covers x.
In other words, fB(x) is the smallest cost needed to cover x with a point from B. We say that
B is a Pareto cover1 of a probability measure µ on [0, 1]n if a random point can be covered
by at least one point from B almost surely, i.e., µ({x ∈ [0, 1]n : x ⩽ b for some b ∈ B}) = 1.
Note that B is always a Pareto cover if it contains the all-ones vector 1 (but for some
probability measures, B is not required to contain 1).

Given f , µ, and an integer k ⩾ 1, we study the problem of finding a Pareto cover B of µ

with |B| = k such that Eµ[fB ] is minimized. That is, we are searching for a Pareto cover B

of predefined size such that the expected cost of covering a random point with a point from
B is smallest possible.

As an illustration, imagine a city with tourist attractions [n] := {1, . . . , n} and suppose
that the city wants to design k books B of vouchers for subsets of these attractions. Each
tourist x will pick the cheapest book b ∈ B that covers all attractions that x wants to visit.
We can think of x as a binary vector in {0, 1}n. Assuming that we have some probability

1 In the context of multi-objective optimization, x ⩽ b is commonly referred to as b Pareto-dominates x.
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80:2 The Pareto Cover Problem

Figure 1 For the Lebesgue measure (uniform distribution) on [0, 1]2 with cost f(x1, x2) =
x1 + x2, the optimal Pareto covers of size k = 3 are {(12/23, 12/23), (18/23, 18/23), (1, 1)},
{(10/23, 18/23), (22/23, 12/23), (1, 1)}, and {(18/23, 10/23), (12/23, 22/23), (1, 1)}.

distribution over the tourists x, we want to determine k books that, in expectation, cover the
tourists requests in the cheapest way. Note that, in this example, µ is a discrete measure on
{0, 1}n. Defining an appropriate cost function, an optimal Pareto cover of size k is attained
by a set of vectors in {0, 1}n, each corresponding to a book.

Similar applications can be given for other areas where customer’s requests are satisfied
based on predefined products, each corresponding to a subset of features. Note that our
model also allows for non-binary requests x ∈ [0, 1]n \ {0, 1}n, which may correspond to
features that are available in different quality ranges.

For another application, imagine a gang of robbers that wants to steal paintings in an
art gallery. To this end, every gang member studies one painting i ∈ [n] and estimates the
probability pi of being able to steal it. Their boss decides in advance which subset S ⊆ [n]
of paintings to steal. If all corresponding gang members are successful (assuming that they
act independently), then the gang will receive a value v(S). Otherwise, they all get caught
and the gang receives v(∅) = 0. The problem of finding a subset of paintings that maximizes
the expected return can be modeled within the above framework as follows. Let µ be the
probability measure on {0, 1}n that corresponds to setting each coordinate independently to
1 with probability 1 − pi, and set f(x) := v([n]) − v({i ∈ [n] : xi = 0}) for all x ∈ {0, 1}n.
Denoting by B∗ = {b∗, 1} an optimal Pareto cover of size k = 2, it is easy to see that
S = {i ∈ [n] : b∗

i = 0} maximizes the expected return.
Determining optimal Pareto covers of a given size is a difficult problem. Finding an

analytical solution seems to be non-trivial even for very basic probability measures and
cost functions, see Figure 1. In this work, we study the problem from the point of view of
complexity theory. We particularly focus on product measures and linear cost functions, for
which the problem is already hard as our first results show.

Here, for A = {a0, . . . , aM+1} with 0 = a0 < a1 < · · · < aM < aM+1 = 1 and a vector
p =

(
(pi

ℓ)
M+1
ℓ=0

)n

i=1 ∈ [0, 1](M+2)×n with
∑M+1

ℓ=0 pi
ℓ = 1 for all i ∈ [n], let µA,p denote the

discrete product measure on [0, 1]n where xi assumes aℓ with probability pi
ℓ, that is,

µA,p({(aℓi
)n
i=1}) =

n∏
i=1

pi
ℓi

for all (aℓi
)n
i=1 ∈ An. (1)

In addition, for A = {0, 1} and p ∈ [0, 1]n, we define the binary product measure µp := µ{0,1},q

where qi
0 = 1− pi and qi

1 = pi for i ∈ [n], that is, xi is set to a1 = 1 with probability pi, and
to a0 = 0 with probability 1− pi. Finally, for a linear cost function f given by f(x) = c⊺x

for some c ∈ Rn and a finite set B, we overload our notation cB := fB .
The Pareto cover problem turns out to be computationally difficult even in a setting

where we restrict ourselves to binary product measures and linear cost functions.
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▶ Theorem 1. Let k ∈ Z, k ⩾ 2. Given p ∈ ([0, 1] ∩ Q)n, c ∈ Qn, γ ∈ Q, the problem of
deciding whether there is some Pareto cover B of µp such that |B| = k and Eµp

[cB] ⩽ γ is
weakly NP-complete for k constant. Moreover, there are values of k ∈ Θ(n) for which it is
strongly NP-hard.

If the size of the Pareto cover is part of the input, we do not know whether the corresponding
problem is in NP. In fact, computing the objective value of a single Pareto cover is already
difficult:

▶ Proposition 2. Given a Pareto cover B for the uniform distribution µ on {0, 1}n, the
problem of computing Eµ[1B ] is #P-hard.

Even when k is constant, it is not immediate how to determine, in polynomial time, the
objective value Eµp

[cB ] a certain Pareto cover B = {b1, . . . , bk} attains for given probabilities
p ∈ ([0, 1]∩Q)n and a positive cost vector c ∈ Qn. In this respect, observe that it is infeasible
to simply sum over all vectors x ∈ {0, 1}n since there is an exponential number of them.
However, for constant k, we can afford to iterate over all subsets of [k] instead. Moreover,
it is not hard to see that for every J ⊆ [k], cB is constant on the set XJ consisting of all
vectors x ∈ [0, 1]n that are covered precisely by those vectors bj for which j ∈ J .

We show how to employ dynamic programming in order to compute the values µ(XJ )J⊆[k]
for arbitrary discrete product measures µ on [0, 1]n. Using this observation as a starting
point, we manage to derive a fully polynomial-time approximation scheme (FPTAS) for the
case where k is constant.

▶ Theorem 3. Let k ∈ N be fixed. Given a discrete product measure µ on [0, 1]n and c ∈ Qn
⩾0,

the problem of computing an optimal Pareto cover of size k with respect to µ and c admits
an FPTAS.

We further show how to extend our approach to general product measures that satisfy
some mild assumptions. Essentially, we will consider products of nice measures (µi)n

i=1 on
[0, 1] that allow us to efficiently query an approximation of µi((a, b]) for each a, b, i as well as
a positive lower bound on the expectation of the identity on [0, 1] with respect to each µi. A
more formal definition will be given later.

Our paper is structured as follows. In Section 2 we briefly discuss related work. The
proofs of Theorem 1 and Proposition 2 are given in Section 3, where we also derive results
for general discrete product measures that will be used in our FPTAS. The latter and hence
the proof of Theorem 3 is presented in Section 4. The full version of this paper shows how
to extend our FPTAS result to very general (product) measures. We close with some open
questions in Section 5.

2 Related Work

To the best of our knowledge our setting for the general case k > 2 has not been studied in
the literature. For the case k = 2 similar problems have been studied in the area of stochastic
optimization in the context of chance constrained optimization. Here one aims to find an
optimal solution to a problem with stochastic constraints. A solution to the problem then
needs to fulfill the constraints with probability 1− δ for some δ > 0.

Linear chance constrained problems are of the form

min{⟨c, x⟩ : x ∈ X,Pξ∼µ[Ax ⩾ ξ] ⩾ 1− δ} (2)
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80:4 The Pareto Cover Problem

for a domain X, a distribution µ, matrix A and parameter δ. Note that our problem for
k = 2 with linear cost functions f can be formulated as such a problem under the assumption
that every Pareto cover has to contain 1. It remains to find the second vector in the optimal
Pareto cover, for which one can guess the probability that it covers an element drawn from
µ. This fits exactly into the framework of (2) where A is the identity matrix and X = [0, 1]n.
For an overview on the topic, we refer to the work of Nemirovski and Shapiro [4] and Luedtke,
Ahmed, and Nemhauser [3]. In principle, it is possible to extend this idea to the case k ⩾ 3,
for instance by using techniques from [3]. However, it is unclear whether theoretically efficient
(approximation) algorithms can be obtained by such an approach.

The Pareto cover problem has an interesting interpretation in the context of tropical
geometry. It can be equivalently phrased as a problem of partitioning [0, 1]n into k regions Ri.
For each region, one selects the tropical barycenter, which is the coordinate-wise maximum
of all its elements. This resembles a tropicalized version of classical Euclidean clustering
algorithms and barycenters.

For randomized algorithms, tools from statistical learning theory (sample complexity,
coresets, . . . ) can be used to study the Pareto cover problem. A natural approach would
be to replace µ by a probability distribution µ̃ that is a combination of polynomially many
Dirac-distributions such that µ̃ is “close” to µ, and reduce the problem to finding an optimal
Pareto cover for µ̃. In this work, however, we focus on deterministic algorithms and defer a
discussion of such techniques to the full version of our paper.

3 Hardness results

In this section, we show that finding optimal Pareto covers (of given sizes) is a computationally
hard problem, even for simple binary product measures and linear cost functions. In particular,
we prove Theorem 1 and Proposition 2.

In the first part, we focus on the case where µ is a binary product measure given by some
input vector p ∈ [0, 1]n such that µ = µp, see (1). We consider the following problem.

▶ Definition 4. The decision variant of the binary Pareto cover problem is defined as follows:
Given p ∈ ([0, 1] ∩Q)n, c ∈ Qn

⩾0, γ ∈ Q, and k ∈ Z⩾1, decide whether there is some Pareto
cover B of µp such that |B| = k and Eµp

[cB ] ⩽ γ.

We assume that p, c, and γ are given by their binary encodings. We leave open how
k is encoded since in our applications it will be always polynomially bounded in n (see
Proposition 2) or mostly be even a constant.

In Section 3.1, we show that the binary Pareto cover problem is weakly NP-hard if k is
a fixed constant. In addition, we show that for k = n+5

3 , the problem is strongly NP-hard.
For the case that k is part of the input, we prove Proposition 2 showing that the problem of
computing Eµp

[cB ] for a given Pareto cover B is #P-hard in Section 3.2. In view of this, it is
unclear whether the binary Pareto cover problem is in NP if k is part of the input. However,
for constant k, we establish in Section 3.3 that the problem is in NP, even for general discrete
product measures. This result completes the proof of Theorem 1 and plays an important
role in the design of our approximation algorithm.

3.1 NP-hardness
In this section, we consider the binary Pareto cover problem. Note that it can be solved
efficiently in the case k = 1 since then B = {b} is an optimal solution, where b ∈ {0, 1}n

with bi = 1 if and only if pi > 0. In the remainder, we show that the binary Pareto cover
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problem is weakly NP-hard for k = 2. Similar, but slightly different proofs for the cases
k = 3 and k ⩾ 4 can be found in the full version of this paper. Moreover, our reduction for
k ⩾ 4 proves strong NP-hardness for k = n+5

3 .

In order to show that the binary Pareto cover problem is NP-hard for k = 2, let us
recall the PARTITION problem [2], which is well-known to be (weakly) NP-hard: Given
a1, . . . , an ∈ Z⩾1 with

∑n
i=1 ai even, decide whether there is a subset I ⊆ [n] such that∑

i∈I ai = 1
2

∑n
i=1 ai. We provide a reduction from PARTITION to the binary Pareto cover

problem with k = 2.
Before defining it precisely, let us describe the idea first. Given a PARTITION instance

a1, . . . , an, set α := 2
a1+···+an

and consider an instance of the binary Pareto cover problem
with pi = 1− e−α·ai and ci = ai for all i ∈ [n]. Since all ci and pi are positive, every optimal
Pareto cover of µp is of the form B = {b, 1} where b ∈ {0, 1}n. Setting I := {i ∈ [n] : bi = 0},
we see that the cost Eµp

[cB ] of B satisfies

n∑
i=1

ai − Eµp [cB ] = 1⊺c− Eµp [cB ]

= 1⊺c− c⊺b · µp({x ∈ {0, 1}n : x ⩽ b})− c⊺1 · µp({x ∈ {0, 1}n : x ̸⩽ b})
= c⊺(1− b) · µp({x ∈ {0, 1}n : x ⩽ b})

=
∏

i∈I
(1− pi) ·

∑
i∈I

ai

= e−α
∑

i∈I
ai ·

∑
i∈I

ai

= h
(∑

i∈I
ai

)
,

where h : R → R, h(x) = x · e−α·x. Since h has its unique maximum at x = α−1, we
see that B = {b, 1} is a Pareto cover with Eµp

[cB] ⩽
∑n

i=1 ai − h(α−1) if and only if
I = {i ∈ [n] : bi = 0} satisfies

∑
i∈I ai = α−1 = 1

2
∑n

i=1 ai. In other words, if a1, . . . , an is a
“yes” instance for PARTITION, then there is a Pareto B cover of size k = 2 of µp with cost
Eµp

[cB ] ⩽
∑n

i=1 ai − h( 1
2

∑n
i=1 ai). If a1, . . . , an is a “no” instance, then every Pareto cover

of size k = 2 will have cost Eµp [cB ] >
∑n

i=1 ai − h( 1
2

∑n
i=1 ai).

Unfortunately, the probabilities that we have used in the above argument cannot be
polynomially represented. However, we show that we can efficiently round them such that
the above strategy still works. More specifically, our probabilities and the threshold cost γ

will be defined as follows.

▶ Lemma 5. Given a1, . . . , an ∈ Z⩾1, we can compute p1, . . . , pn ∈ [0, 1] and γ ∈ Q in
polynomial time such that

1− β

eα·ai
⩽ 1− pi ⩽

1 + β

eα·ai
for all i ∈ [n], and (1− β)n+2

α · e ⩽
n∑

i=1
ai − γ ⩽

(1− β)n

α · e ,

where α := 2∑n

i=1
ai

and β := α2

48(n+1) .

Let p1, . . . , pn and γ be given as in the above statement. Note that we have 0 < pi ⩽ 1
for all i ∈ [n] since pi ⩽ 1− 1−β

eα·ai
⩽ 1 and

pi ⩾ 1− 1 + β

eα·ai
> 1− 1 + β

1 + α · ai
⩾ 1− 1 + β

1 + α
> 0.

Finally, set ci := ai for all i ∈ [n]. It remains to prove the following lemma.

ESA 2022



80:6 The Pareto Cover Problem

▶ Lemma 6. There is a subset I ⊆ [n] with
∑

i∈I ai = 1
2

∑n
i=1 ai if and only if there is a

Pareto cover B of µp with |B| = 2 and Eµp
[cB ] ⩽ γ.

The proves of the above lemmas can be found in the full version.
Note that we have shown that the binary Pareto cover problem is weakly NP-hard for

constant k. We remark that, unless P = NP , the problem cannot be strongly NP-hard, as
we derive an FPTAS in Section 4.

3.2 #P-hardness
In the previous section we have seen that the binary Pareto cover problem is NP-hard,
already for constant k. The next natural question is whether the problem is in NP. At
first sight, a Pareto cover B ⊆ {0, 1}n itself seems to be a canonical certificate for a “yes“
instance. However, with this choice, we should be able to compute the cost Eµp

[cB ] efficiently.
Unfortunately, if k is not part of the input, i.e., B is not of constant size, computing Eµp [cB ]
is hard. More precisely, let us prove Proposition 2, which states that, given a Pareto cover B

for the uniform distribution µ on {0, 1}n, the problem of computing Eµ[1B ] is #P-hard.

Proof of Proposition 2. We use the fact that the problem of computing the number of
vertex covers in a given undirected graph is #P-hard [5]. Given a graph G = (V, E), identify
V with [n] and for every edge e ∈ E, let be denote the characteristic vector of V \ e, the set
of nodes that are not part of e. Let µ denote the uniform distribution on {0, 1}n, i.e., µ = µp

with p = 1
2 · 1. Consider the Pareto cover B := {be : e ∈ E} ∪ {1}. Setting c = 1, the cost of

B is equal to

Eµ[cB ] = (n− 2) · µ({x ∈ {0, 1}n : x ⩽ be for some e ∈ E})
+ n · µ({x ∈ {0, 1}n : x ̸⩽ be for all e ∈ E})

= (n− 2) + 2 · µ({x ∈ {0, 1}n : x ̸⩽ be for all e ∈ E})

= (n− 2) + |{x ∈ {0, 1}n : x ̸⩽ be for all e ∈ E}|
2n−1

= (n− 2) + |{U ⊆ [n] : U ∩ e ̸= ∅ for all e ∈ E}|
2n−1 ,

and hence we see that 2n−1 · (Eµ[cB ]− (n− 2)) is the number of vertex covers in G. ◀

3.3 Membership in NP for constant k

For the binary Pareto cover problem, we have seen that computing the cost of a given Pareto
cover B is hard if B can be of any size. In this section, we show that the cost can be
computed efficiently if B is of constant size. In fact, we prove that this is the case for the
discrete version of our problem (see (1)).

We introduce the following notation: For probability measures (µi)n
i=1 defined on

(the Borel σ-algebra on) [0, 1], we define their product µ :=
∏n

i=1 µi to be given by
µ (I1 × · · · × In) =

∏n
i=1 µi(Ii), where (Ii)n

i=1 are intervals contained in [0, 1]. In partic-
ular, for A = {a0, . . . , aM+1} and p =

(
(pi

j)M+1
j=0

)n

i=1 as in (1), µ = µA,p is the product of
the measures µi = µi,A,p given by µi({aj}) = pi

j , i ∈ [n], j = 0, . . . , M + 1. We study the
following problem.

▶ Definition 7. The decision variant of the discrete Pareto cover problem is the following:
Given A = {a0, . . . , aM+1} with 0 = a0 < a1 < · · · < aM < aM+1 = 1, p =

(
(pi

j)M+1
j=0

)n

i=1
with pi

j ∈ [0, 1] and
∑M+1

j=0 pi
j = 1 for all i, c ∈ Qn

⩾0, γ ∈ Q, and k ∈ Z⩾1, decide whether
there is some Pareto cover B of µA,p such that |B| = k and Eµp

[cB ] ⩽ γ.
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Again, we assume that A, p, c, and γ are given by their binary encodings. In our
applications, k will be always constant.

Note that it is easy to check whether a finite set B ⊆ [0, 1]n is feasible for the above
problem, i.e., that it is a Pareto cover of µA,p. In fact, let x∗ ∈ [0, 1]n be given by
x∗

i := max{aj : pi
j > 0} for i ∈ [n]. Then B is a Pareto cover of µA,p if and only if |B| = k

and B contains at least one point that covers x∗.
Moreover, note that if B is feasible for the above problem, then we may assume that

B ⊆ An holds since otherwise we may lower entries of points in B without changing the set
of points they cover and without increasing their cost.

▶ Proposition 8. Let k ∈ Z⩾1 be fixed. Given A, p, c as in the discrete Pareto cover problem
and a Pareto cover B ⊆ An for µ = µA,p with |B| = k, we can compute Eµ[cB ] in polynomial
time.

Note that this shows that the discrete Pareto cover problem (and hence also the binary
Pareto cover problem) is in NP if k is constant.

In order to prove Proposition 8, we make use of the following notation. For i ∈ [n] vectors
b1, . . . , bk, x ∈ [0, 1]n, we define J i(x) to consist of all indices j ∈ [k] such that bj covers x, if
we restrict both vectors to the first i coordinates. More precisely, we set

J i(x) :=
{

j ∈ [k] : x1 ⩽ bj
1, . . . , xi ⩽ bj

i

}
for i ∈ [n], and let J(x) := Jn(x).

Whenever we refer to J(x), J1(x), . . . , Jn(x), the vectors b1, . . . , bk will be clear from the
context. Observe that for i ∈ [n] and J ⊆ [n], the set {x ∈ [0, 1]n : J i(x) = J} is a Borel set.

Note that {b1, . . . , bk} is a Pareto cover for µ if and only if µ({x ∈ [0, 1]n : J(x) = ∅}) = 0.
Let us rephrase the cost of a Pareto cover using this new notation:

▶ Lemma 9. Let µ be a probability measure on (the Borel σ-algebra on) [0, 1]n and let
B = {b1, . . . , bk} be a Pareto cover of µ. Then for every c ∈ Rn we have

Eµ[cB ] =
∑

∅̸=J⊆[k]

µ({x ∈ [0, 1]n : J(x) = J}) ·min
j∈J

c⊺bj .

Proof. For J ⊆ [k], note that cB(x) = minj∈J c⊺bj holds for all x ∈ [0, 1]n with J(x) = J .
The claim follows since the sets ({x ∈ [0, 1]n : J(x) = J})J⊆[k] are disjoint. ◀

Thus, in order to prove Proposition 8, it suffices to show that we can compute the values
µA,p({x ∈ [0, 1]n : J(x) = J}) for all J ⊆ [k] in polynomial time. To this end, we show how
to iteratively compute the values µA,p({x ∈ [0, 1]n : J i(x) = J}) for all J ⊆ [k] and i ∈ [n].
Lemma 10 takes care of the base case i = 1, whereas Lemma 11 explains how to proceed
from i to i + 1.

▶ Lemma 10. Let µ1, . . . , µn be probability measures on [0, 1] and let b1, . . . , bk ∈ [0, 1]n.
For µ =

∏n
i=1 µi and J ⊆ [k] we have

µ({x ∈ [0, 1]n : J1(x) = J}) = µ1 ((α, β] ∩ [0, 1]) ,

where α = maxj∈[k]\J bj
1 and β = minj∈J bj

1.

Here, we use the convention max ∅ := −∞ and min ∅ := +∞.

Proof of Lemma 10. We have J1(x) = J if and only if x1 ⩽ bj
1 for all j ∈ J and x1 > bj

1 for
all j ∈ [k] \ J . That is, {x ∈ [0, 1]n : J1(x) = J} = {x ∈ [0, 1]n : x1 ∈ (α, β]}. ◀

ESA 2022



80:8 The Pareto Cover Problem

▶ Lemma 11. Let µ1, . . . , µn be probability measures on [0, 1] and let b1, . . . , bk ∈ [0, 1]n.
For µ =

∏n
i=1 µi, J ⊆ [k], and i ∈ {2, . . . , n} we have

µ({x ∈ [0, 1]n : J i(x) = J}) =
∑

J⊆L⊆[k]

µ({x ∈ [0, 1]n : J i−1(x) = L}) ·µi((αL, βL]∩ [0, 1]),

where αL = maxj∈L\J bj
i and βL = minj∈J bj

i .

Proof. The claim follows from the fact that {x ∈ [0, 1]n : J i(x) = J} is equal to⋃
J⊆L⊆[k]

[
{x ∈ [0, 1]n : J i−1(x) = L}

∩ {x ∈ [0, 1]n : xi ⩽ bj
i for all j ∈ J, xi > bj

i for all j ∈ L \ J}
]

and the observation that the above sets are disjoint. ◀

Note that for measures µ = µA,p =
∏n

i=1 µi and α, β ∈ Q ∪ {±∞}, we can compute
µi((α, β] ∩ [0, 1]) in polynomial time. Moreover, for constant k, the sum in Lemma 11 only
has a constant number of summands. This yields Proposition 8.

4 Approximation algorithm

The goal of this section is to develop an FPTAS (see [1]) for the discrete Pareto cover
problem, see Theorem 3. More precisely, we provide an algorithm that receives an instance
I of the discrete Pareto cover problem and a parameter γ ∈ (0, 1) ∩ Q, and computes a
(1 + γ)-approximate solution to I in time polynomial in γ−1 and the encoding length of I.
All proofs and an extension of our FPTAS to more general product measures can be found
in the full version.

Let A, p, c, k define an instance of the discrete Pareto cover problem, where k is a constant.
For every i ∈ [n] let li := max{l : pi

l > 0} and define a∗ := (al1 , . . . , aln). Recall that every
Pareto cover B of µ = µA,p must contain a point that covers a∗. Conversely, every finite set
B ⊆ [0, 1]n containing a∗ is a Pareto cover of µ. Since the costs are non-negative, we can
restrict ourselves to Pareto covers that contain a∗.

Next, we discuss how to determine a cover of approximately minimum cost. Recall that
in Section 3.3, Lemma 9, given a Pareto cover B = {b1, . . . , bk}, we have seen that we can
express our objective as

Eµ[cB ] =
∑

∅̸=J⊆[k]

µ({x ∈ [0, 1]n : J(x) = J}) ·min
j∈J

c(bj).

Even more, we know that we can iteratively compute the values µ({x ∈ [0, 1]n : J i(x) = J})
for i ∈ [n] and J ⊆ [k] in polynomial time, see Lemma 11. In doing so, the only information
we need to proceed from i to i + 1 are the probabilities µ({x ∈ [0, 1]n : J i(x) = J}) for
J ⊆ [k] and the values (bj

i+1)k
j=1, but no further information on the values bj

l for l ∈ [i] and
j ∈ [k]. What is more, by definition, the values µ({x ∈ [0, 1]n : J i(x) = J}) for J ⊆ [k] and∑i

l=1 cl · bj
l for j ∈ [k] do not depend on the coordinates bj

l , l = i + 1, . . . , k, j ∈ [k]. All in
all, these are the best preconditions for a dynamic programming approach and motivate the
following definition:

▶ Definition 12. For a Pareto cover B = (bj)k
j=1 with bk = a∗ and i ∈ [n] let

Candi(B) := (i, (PJ)J⊆[k], (Cj)k
j=1),

where PJ = µ({x ∈ [0, 1]n : J i(x) = J}) for J ⊆ [k] and Cj =
∑i

l=1 cl · bj
l for j ∈ [k].
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▶ Definition 13. A candidate is a triple C = (i, (PJ)J⊆[k], (Cj)k
j=1).

The cost of the candidate C is given by Cost(C) :=
∑

∅̸=J⊆[k] PJ ·minj∈J Cj .

We call C valid if there exists a Pareto cover B = (bj)k
j=1 with bk = a∗ such that

C = Candi(B), and say that B witnesses the validity of the candidate.

Note that the definition of the cost of a candidate is in accordance with Lemma 9.
A naive approach to tackle the discrete Pareto cover problem would now be to iteratively

enumerate all valid candidates for i = 1, . . . , n, select a candidate for i = n that yields
the minimum objective value, and then back-trace to compute a corresponding cover. The
problem with this idea is of course that we do not have a polynomial bound on the number
of candidates we generate. To overcome this issue, we round the candidates appropriately to
ensure a polynomial number of possible configurations, whilst staying close enough to the
original values to obtain a good approximation of the objective for i = n. Observe that for
constant k, the number of entries of each candidate is constant, which means that it suffices
to polynomially bound the number of values each of them may attain.

To this end, consider Algorithm 1. The gray lines are not part of the algorithm itself, but
only needed for its analysis. Before diving into the analysis of Algorithm 1, we would like
to provide some intuition about what is happening. We start by enumerating all possible
values (bj

1)k
j=1 may attain in a solution B with bk = a∗ and use this information to compute

Cand1(B) according to Definition 12. (Recall that this is independent of the values bj
l for

l ⩾ 2, j = 1, . . . , k.) Then, we round all non-zero entries of Cand1(B) (except for the first
one, which is 1) down to the next power of 1 + δ, δ = ϵ

4n . Each rounded candidate C is
added to our table T , and for back-tracing purposes, we store a cover B that leads to C
as Witness(C). For the analysis, we further maintain an imaginary map AllWits mapping
each rounded candidate C ∈ T to the set of all possible witness covers that result in C after
(iterative) rounding.

After dealing with the base case i = 1, we enumerate possible values of (bj
i )k

j=1 for
i = 2, . . . , n, loop over all rounded candidates for i− 1 and compute new rounded candidates
for i according to Lemma 11. Moreover, we deduce witnesses for our new candidates for i

from those stored for the candidates for i− 1 and the values (bj
i )k

j=1. This might of course
lead to an exponential growth of the size of the imaginary map AllWits. However, the fact
that the Witness-map only memorizes one witness per candidate keeps the total running
time under control, provided we can come up with a polynomial bound on the number of
candidates we generate. Lemma 14 takes care of this, and is the main ingredient of the proof
of Theorem 15, which guarantees a polynomial running time.

▶ Lemma 14. At each point during the algorithm, we have |T | ⩽ α2k · βk · n, where

α = n + 2− n ·min
{

log1+δ(pi
l) : i ∈ [n], l ∈ {0, . . . , M + 1}, pi

l > 0
}

,

β = n + 2 + log1+δ(c1 + · · ·+ cn)− log1+δ(a1)−min{log1+δ(ci) : i ∈ [n]}.

In particular, for constant k, |T | is polynomially bounded in the encoding length of the given
instance of the discrete Pareto cover problem and ϵ−1.

▶ Theorem 15. Given an instance I of the discrete Pareto cover problem and a parameter
ϵ ∈ (0, 1) ∩Q as input, Algorithm 1 runs in time polynomial in size(I) and ϵ−1.

Denote the set of all candidate in T starting with i by Ti. In order to finally obtain an
FPTAS for the discrete Pareto cover problem, our goal for the remainder of this section is to
prove the following result:

▶ Theorem 16. Running Algorithm 1 and choosing the witness of a candidate of minimum
cost in Tn yields a (1 + ϵ)-approximation.

ESA 2022



80:10 The Pareto Cover Problem

Algorithm 1 Dynamic program to compute rounded candidates.

Input: (al)M+1
l=0 , ((pi

l)
M+1
l=0 )n

i=1, (ci)n
i=1, k, ϵ ∈ Q ∩ (0, 1)

Output: a table T of rounded candidates
1

2 For i = 1, . . . , n compute li := max{l : pi
l > 0}.

3 a∗ ← (ali
)n
i=1, A← {a0, . . . , aM+1},T ← ∅

4 AllWits(−)← ∅
5 δ ← ϵ

4n

6 foreach (βj)k
j=1 ∈ Ak with βk = a∗

1 do
7 Define (PJ)J⊆[k] by PJ ← µ1((maxj∈[k]\J βj , minj∈J βj ] ∩ [0, 1])

8 PJ ←

{
(1 + δ)⌊log1+δ PJ ⌋ , PJ > 0
0 , PJ = 0

9 Define (Cj)k
j=1 by Cj ←

{
(1 + δ)⌊log1+δ(c1·βj)⌋ , c1 · βj > 0
0 , c1 · βj = 0

10 T ← T ∪ {(1, (PJ)J⊆[k], (Cj)k
j=1)}

11 bj
1 ← βj , j = 1, . . . , k, bj

i ← 0, i = 2, . . . , n, j = 1, . . . , k − 1, bk
i ← a∗

i , i = 2, . . . , n

12 Witness((1, (PJ)J⊆[k], (Cj)k
j=1))← (bj)k

j=1
13 AllWits((1, (PJ)J⊆[k], (Cj)k

j=1))← AllWits((1, (PJ)J⊆[k], (Cj)k
j=1)) ∪ {(bj)k

j=1}
14 for i = 2 to n do
15 foreach (i− 1, (P i−1

J )J⊆[k], (Ci−1
j )k

j=1) ∈ T do
16 foreach (βj)k

j=1 ∈ Ak with βk = a∗
i do

17 Define (P i
J)J⊆[k] by

P i
J ←

∑
L:

J⊆L⊆[k]
P i−1

L · µi((maxj∈L\J βj , minj∈J βj ] ∩ [0, 1])

18 P i
J ←

{
(1 + δ)⌊log1+δ P i

J ⌋ , P i
J > 0

0 , P i
J = 0

19 Define (Ci
j)k

j=1 by Ci
j ← Ci−1

j + ci · βj

20 Ci
j ←

{
(1 + δ)⌊log1+δ Ci

j⌋ , Ci
j > 0

0 , Ci
j = 0

21 T ← T ∪ {(i, (P i
J)J⊆[k], (Ci

j)k
j=1)}

22 (bi−1,j)k
j=1 ←Witness((i− 1, (P i−1

J )J⊆[k], (Ci−1
j )k

j=1))

23 Define (bi,j)k
j=1 by bi,j

l :=
{

bi−1,j
l , l ̸= i

βj , l = i

24 Witness((i, (P i
J)J⊆[k], (Ci

j)k
j=1))← (bi,j)k

j=1
25 foreach (b̃i−1,j)k

j=1 ∈ AllWits((i− 1, (P i−1
J )J⊆[k], (Ci−1

j )k
j=1)) do

26 Define (b̃i,j)k
j=1 by b̃i,j

l :=
{

b̃i−1,j
l , l ̸= i

βj , l = i

27 AllWits((i, (P i
J)J⊆[k], (Ci

j)k
j=1))←

AllWits((i, (P i
J)J⊆[k], (Ci

j)k
j=1)) ∪ {(b̃i,j)k

j=1}

28 return T
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The proof of Theorem 16 consists of two main steps. Lemma 17 shows that any rounded
candidate C̃ we store in T invokes similar costs to those of any of its witness covers.
Proposition 18 ensures that every cover B = (bj)k

j=1 with bk = a∗ occurs as a possible
witness for some candidate. In particular, this holds for an optimum cover B∗ (with
b∗,k = a∗) and by Lemma 17, we can therefore infer that the costs of the solution we return
can only be by a factor of 1 + ϵ larger than the optimum.

▶ Lemma 17. Let C̃ ∈ Tn and let B ∈ AllWits(C̃). Then Cost(C̃) ⩽ Eµ[cB ] ⩽ (1+ϵ)·Cost(C̃).

▶ Proposition 18. Let an instance of the discrete Pareto cover problem be given. For each
i ∈ [n] and each cover B = (bj)k

j=1 such that bk = a∗ and bj
l = 0 for j = 1 . . . , k − 1 and

l = i + 1, . . . , n, there exists C ∈ Ti such that B ∈ AllWits(C).

Combining Theorem 16, Lemma 14 and Theorem 15 and observing that we can compute
the cost of a candidate in polynomial time for constant k, we obtain Theorem 3, which we
restate once again:

▶ Theorem 3. Let k ∈ N be fixed. Given a discrete product measure µ on [0, 1]n and c ∈ Qn
⩾0,

the problem of computing an optimal Pareto cover of size k with respect to µ and c admits
an FPTAS.

5 Conclusion

In this paper, we have introduced the Pareto cover problem and studied the case of product
measures and linear cost functions. For fixed k, we have come to a pretty good understanding
of its complexity: On the one hand, we could show weak NP-hardness of the problem. On
the other hand, we have established the existence of an FPTAS.

However, there are several questions that remain open and constitute an interesting
subject for future research. To begin with, we have seen that even in a very restricted
setting such as the uniform probability distribution on [0, 1]n, it seems non-trivial to find
an optimum cover (see Figure 1). Consequently, in order to obtain a better feeling for the
problem at hand, it can be worthwhile to examine the structure of optimum solutions for
such special cases.

When dealing with the binary problem variant, another question that comes up is for
which subsets of {0, 1}n, there exists an instance they are optimum for. Any insights towards
this question may lead to new, perhaps more efficient strategies to tackle the Pareto cover
problem.

In addition to these rather concrete questions, there are also several more fundamental
issues one may want to address. For instance, even though we have seen that computing the
objective value attained by an arbitrary solution is #P-hard in general (i.e., for non-fixed k),
this does not resolve containment in NP since there might be another choice of a certificate
that does the trick. More generally, it would be interesting to fully understand the dependence
of the problem complexity on the parameter k. To this end, note that the complexity does
not simply “increase” with larger values of k, given that in the discrete setting, the problem
is weakly NP-hard for constant k ⩾ 2, and strongly NP-hard, e.g., for k = n+5

3 , but once
k is at least as large as the number of all possible discrete vectors b, it is obvious what an
optimum solution should look like (and we can output it in polynomial time, assuming an
appropriate output encoding is chosen). Hence, it seems interesting to further investigate
the hardness transition of the problem: When exactly does the problem become strongly
NP-hard? When does it become easier again?
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Finally, as all of our results apply to the case of product measures, it appears natural to
ask what can be done for general probability measures. To this end, as alluded to in Section 2,
it could be fruitful to explore connections to existing results from statistical learning theory.
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Abstract
Given an undirected graph G = (V, E), an (α, β)-hopset is a graph H = (V, E′), so that adding its
edges to G guarantees every pair has an α-approximate shortest path that has at most β edges
(hops), that is, dG(u, v) ≤ d

(β)
G∪H(u, v) ≤ α ·dG(u, v). Given the usefulness of hopsets for fundamental

algorithmic tasks, several different algorithms and techniques were developed for their construction,
for various regimes of the stretch parameter α.

In this work we devise a single algorithm that can attain all state-of-the-art hopsets for general
graphs, by choosing the appropriate input parameters. In fact, in some cases it also improves upon
the previous best results. We also show a lower bound on our algorithm.

In [3], given a parameter k, a (O(kϵ), O(k1−ϵ))-hopset of size Õ(n1+1/k) was shown for any
n-vertex graph and parameter 0 < ϵ < 1, and they asked whether this result is best possible. We
resolve this open problem, showing that any (α, β)-hopset of size O(n1+1/k) must have α · β ≥ Ω(k).
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1 Introduction

Hopsets are graph theoretic structures that have gained much attention recently [5, 20,
14, 13, 8, 1, 10, 15, 7, 3]. They play a role in central algorithmic applications such as
approximating shortest paths [16, 5, 2, 11], distributed computing tasks [9, 18, 4, 6], dynamic
graph algorithms [14, 17], and many more.

Given a graph G = (V, E), possibly with non-negative weights on the edges w : E → R,
an (α, β)- hopset is a graph H = (V, E′) such that every pair in V has an α-approximate
shortest path in G ∪H with at most β hops. That is, for all u, v ∈ V ,

dG(u, v) ≤ d
(β)
G∪H(u, v) ≤ α · dG(u, v) ,

where dG(u, v) is the distance between u, v in G, and d
(β)
G∪H(u, v) stands for the length of

the shortest path in G ∪H between u, v that has at most β edges. The weight of an edge
(x, y) ∈ E′ of H is defined to be the length of the shortest path in G that connects x and y.

Hopsets were first introduced by [5], although they were implicitly used before in [16].
In her seminal work, given a parameter k that determines the hopset size, [5] devised a

construction of (1 + ϵ, β)-hopsets of size O(n1+1/k · log n) with β = O
(

log n
ϵ

)log k

. This result

was recently improved by [8, 15, 10], who obtained β = O
(

log k
ϵ

)log k

and size O(n1+1/k).
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On the opposite end of the stretch spectrum, for a stretch factor linear in k, it is folklore
that the distance oracle of [21] (henceforth the TZ algorithm) is in a fact a (2k− 1, 2)-hopset
of size O(k · n1+1/k).

A lower bound of [1] asserts that any (1 + ϵ, β)-hopset of size O(n1+1/k) must have

β = Ω
(

1
ϵ·log k

)log k

. This lower bound is meaningful only when the stretch is smaller than
1 + 1/ log k, so it motivates the natural question: allowing the stretch to be larger than
1 + 1/ log k, what is the trade off between stretch and hopbound?

This question was partially studied by [7, 3], who showed (3 + ϵ, β)-hopsets of size
O(n1+1/k · log Λ) with improved β = klog(3+O(1/ϵ)), where Λ is the aspect ratio of the graph1

(In fact, [7] did not have the log Λ factor in the size, albeit their β had a somewhat worse
exponent). More generally, for any 0 < ϵ < 1, [3] devised a (O(kϵ), Oϵ(k1−ϵ))-hopset of size
O(kϵ · n1+1/k · log Λ). We note that by choosing ϵ = O( 1

log k ) they get a (O(c), k1+O(1/ log c))-
hopset for any constant c > 1. The previous state-of-the-art results for hopsets are summarized
in Table 1.

There are two main concerns with the current state of affairs regarding hopsets. First,
there is no lower bound for any constant (or larger) stretch. Indeed, the tightness of the
(O(kϵ), Oϵ(k1−ϵ))-hopset was asked as an open question in [3]. The second concern is that
previous hopset constructions use a variety of different techniques for each possible range of
the stretch α: from the sparse covers used by [5], to two types of the TZ sampling algorithm
[21, 22], the superclustering technique of [12], and in some cases a certain combination of
these with other ingredients. For instance, the algorithms of [3] for hopsets with stretch
3 + ϵ and O(kϵ) are rather complicated, and contain a three-stage construction, involving a
truncated application of the [22] algorithm, a superclustering phase, and a multiplicative
spanner built on some cluster graph.

In this paper we devise a single framework that unifies all previous results for hopsets,
matching and even improving upon the state-of-the-art in all the possible stretch regimes. In
addition, we answer affirmatively the question of [3] mentioned above.

Table 1 Previous results on (α, β)-hopsets for n-vertex weighted graphs, with parameter k ≥ 1
(the dependence on k in the size is omitted for brevity).

Stretch Hopbound Hopset Size Paper
1 + ϵ O( log k

ϵ
)log k O(n1+ 1

k ) [15, 10]
3 + ϵ klog(3+O(1/ϵ)) O(n1+ 1

k · log Λ) [3]
O(c) k1+O(1/ log c) O(n1+ 1

k · log Λ) [3]
O(kϵ) Oϵ(k1−ϵ) O(n1+ 1

k · log Λ) [3]
2k − 1 2 O(n1+ 1

k ) [21]

1.1 Our Results
We develop a generalization of the TZ-algorithms [21, 22], that achieves (and in some cases
improves on) the state-of-the-art for hopsets. This unifies all previous results in a single
framework, and greatly simplifies the constructions for hopsets with intermediate stretch
(above 1 + ϵ and below 2k − 1). We also remove all the log Λ factors from the size. This
result is summarized in Theorem 1 below.

1 The aspect ratio is the ratio between the largest distance to the smallest distance in the graph.
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In addition, we affirmatively resolve the open problem of [3] mentioned above, by prov-
ing that an (α, β)-hopset of size O(n1+1/k) must have α · β ≥ Ω(k). This lower bound
asymptotically matches the upper bound of (kϵ, Oϵ(k1−ϵ))-hopset by [3] for every 0 < ϵ < 1.

In the full version of this paper, we also show that whenever our algorithm produces
a hopset of size O(n1+1/k) with stretch α, it must have a superlinear hopbound of β =
Ω( 1

α2 k1+1/(2 log α)). This matches the upper bound shown in [3] and here, for all constant α.
As our algorithm generalizes all previous constructions, we believe it is an indication that the
question whether there exists an (O(1), O(k))-hopset of size O(n1+1/k), may have a negative
answer.

▶ Theorem 1. Let G = (V, E) be a weighted undirected graph with n vertices, and fix an
integer k ≥ 1. Then there is an algorithm that can compute each of the following:
1. A hopset H of size O(log k · n1+1/k), which is a

(
1 + ϵ, O( log k

ϵ )log k
)

-hopset for all
0 < ϵ < 1 simultaneously.

2. A hopset H of size O(log k · n1+1/k), which is a
(

3 + ϵ, O(klog2(3+ 16
ϵ ))

)
-hopset for all

0 < ϵ < 1 simultaneously.
3. For any integer c ≥ 1, an

(
8c + 3, O(k1+ 2

ln c )
)

-hopset of size O(c · logc k · n1+1/k).
4. For any 0 < ϵ < 1, an

(
O(e2/ϵ · kϵ), O(k1−ϵ)

)
-hopset of size O(n1+1/k/ϵ2).

5. A (2k − 1, 2)-hopset of size O(k · n1+1/k).

1.1.1 Spanners
A closely related concept to hopsets is that of spanners: An (α, β)-spanner of G is a subgraph
H = (V, E′′) such that for all u, v ∈ V , dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) + β. In the
full version of this paper, we describe a unified framework for building spanners, which is
a variation of our unified framework for hopsets described here. This unified framework
achieves the state-of-the-art results for spanners in essentially all possible values of α.

1.2 Our Techniques
1.2.1 Lower bound
The lower bound on the triple tradeoff between stretch, hopbound and size of (α, β)-hopsets,
showing that α · β = Ω(k) whenever the size is O(n1+1/k), uses the existence of n1/g-regular
graphs with girth g. The basic idea is simple: locally (within distance less than g/2) the
graph looks like a tree, so when considering short enough paths, of length less than g/α,
there are no alternative paths with stretch at most α. This means that any hopset edge (u, v)
can only be useful to pairs whose shortest path is “nearby” to u, v. Making this intuition
precise, and defining what exactly is “nearby”, requires some careful counting arguments.

We remark that for (α, β)-spanners of size O(n1+1/k), there is a better lower bound of
α + β ≥ Ω(k), which also follows from the family of high girth graphs. (This is because such
spanners are in particular (α + β, 0)-spanners.) However, this lower bound cannot hold for
hopsets, as indicated by the existence of (O(kϵ), O(k1−ϵ))-hopsets for ϵ = 1/2, say. Indeed,
the analysis we use is inherently different, and more intricate, than the one used in the lower
bound for spanners.

1.2.2 General algorithm
Before discussing our general algorithm for hopsets, let us review the previous TZ algorithm.
Let G = (V, E) be a (possibly weighted) graph with n vertices, and fix an integer parameter
k. The algorithms of [21, 22] randomly sample a sequence of sets V = A0 ⊇ A1 ⊇ ... ⊇ AF ,
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for some F , where each Ai+1, 0 ≤ i < F , is sampled by including each vertex from Ai

independently with some predefined probability. Then they define for each v ∈ V its i-th
pivot pi(v) as the closest vertex in Ai to v, and the i-th bunch as Bi(v) = {u ∈ Ai : d(u, v) <

d(v, pi+1(v))}. The hopset consists of all edges between each v and some of its bunches.
In [21], the sampling probabilities of each Ai+1 from Ai were uniform n−1/k, i.e., the

exponent of n−1/k was linear, so we call this a linear-TZ. In this version, each vertex v ∈ V

can connect to vertices in Bi(v) for all 0 ≤ i ≤ F . The analysis can give a hopset with β = 2
and stretch 2k − 1.

In [22], the sampling probabilities of each Ai+1 from Ai were roughly n−2i/k, i.e., the
exponent of n−2i/k was exponential in i, so we naturally call this an exponential-TZ. As the
probabilities are much lower here, the bunches will be larger, so vertices in Ai \ Ai+1 can
only connect to their i-th bunch (in order to keep the size under control). This version can
provide a near-exact stretch for the hopset.

1.2.3 Our algorithm

In this work, we devise the following generalization of both of these algorithms. Our algorithm
expects as a parameter a function f : N→ N that determines, for each level i, the highest
bunch-level that vertices in Ai \ Ai+1 will connect to (in the linear-TZ we have f(i) = F ,
while in the exponential-TZ, f(i) = i for all i). This function f implies what should the
sampling probability be for each level i, in order to keep the total size of the hopset roughly
O(n1+1/k). We denote these probabilities by n−λi/k, for parameters λ0, λ1, ..., λF −1. The
number of sets F is in turn determined by these λi (roughly speaking, it is when we expect
AF to be empty).

As this is a generalization of the algorithms of [21, 22], clearly it may achieve their results.
One of our main technical contributions is showing that an interleaving of the linear-TZ and
exponential-TZ probabilities, yields a hopset with a low hopbound, for any intermediate
stretch between 3 + ϵ and k. This means that we divide the integers in [F ] to F/t intervals,
so that the λi’s are the same within each interval, and decays exponentially between intervals.
The parameter t controls the stretch.

Our analysis combines ideas from previous works [22, 7, 3], with some novel insights that
simplify some of the previously used arguments. In particular, [3] truncated the connections
from every vertex in Ai to within a certain range. We show that in our approach, such
truncation can be avoided at essentially no cost: this enables our analysis to be scale-free,
thereby removing the log Λ factors from the size. In addition, our (3 + ϵ, β)-hopsets combine
the best attributes of the hopsets of [7] and [3]: they have no dependence on log Λ and
work for all ϵ simultaneously like [7], and have the superior β like [3]. The simplicity of our
algorithm has other benefits: for instance, [3] devised two different algorithms, using different
tools, for (O(kϵ), O(k1−ϵ))-hopsets; one for ϵ ∈ (0, 1/2] and the other for ϵ ∈ [1/2, 1). Our
unified algorithm has no need for such separation.

1.3 Organization

In Section 2 we show our lower bound for hopsets. In Section 3 we describe our general
algorithm for hopsets, and provide an analysis of its stretch and hopbound in Section 4.
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2 Lower Bound for Hopsets

In this section we build a graph G, such that every hopset for G with stretch α and size
O(n1+ 1

k ) must have a hopbound of at least ≈ k
α . G has high girth (the size of the smallest

simple cycle) and high degree for each vertex, and we prove our lower bound by using
counting arguments.

For the construction, we use the following result, which is a well known corollary from a
paper by Lubotzky, Phillips and Sarnak [19]:

▶ Theorem 2 ([19]). Given an integer γ ≥ 1, there are infinitely many integers n ∈ N such
that there exists a (p + 1)-regular graph G = (V, E) with |V | = n and girth ≥ 4

3 γ(1− o(1)),
where p = D · n

1
γ , for some universal constant D.

Fix α, γ ≥ 1 and a large enough n as above, and let G = (V, E) be the matching (p + 1)-
regular graph from the theorem. The girth of G is ≥ 4

3 γ(1− o(1)) > γ. We look at paths in
G of distance δ := ⌊ γ−1

α+1⌋. For a path P , denote by |P | its length. For u, v ∈ V , denote by
Pu,v a shortest path between them.

▶ Lemma 3. Suppose d(u, v) = δ. Then for every path P ′ between u, v such that |P ′| ≤ αδ,
Pu,v ⊆ P ′.

Proof. If Pu,v ⊈ P ′, then Pu,v ∪ P ′ contains a simple cycle of length ≤ |Pu,v| + |P ′| ≤
δ + αδ = (α + 1)δ ≤ γ − 1, in contradiction to the girth of G being ≥ γ. ◀

Lemma 3 implies if d(u, v) = δ, then Pu,v is unique. Let Qδ = {Pu,v | d(u, v) = δ}.

▶ Lemma 4. |Qδ| ≥ 1
2 npδ.

Proof. Given a vertex u ∈ V , denote its BFS tree, up to the δ’th level, by T . Since G’s girth
is > (α + 1)δ, there are no edges between the vertices of T , apart from the edges of T itself.
That means that each vertex of T has at least p children at the next level, so we have at
least pδ leaves in T . Each of these leaves is a vertex of distance δ from u, and is connected
to u with a δ-path. When summing this quantity over all the vertices u ∈ V , we count every
path twice, so we get at least 1

2
∑

u∈V pδ = 1
2 npδ paths of length δ. ◀

We are now ready to prove the main theorem:

▶ Theorem 5. For every positive integer k, a real number α > 0, a constant C > 0 and for
infinitely many integers n, there exists a graph G with n vertices such that every hopset H

for G with size ≤ Cn1+ 1
k and stretch ≤ α, H has a hopbound β ≥ ⌊ k−2

α+1⌋.

Proof. For α, n and a fixed γ ≥ 1 that will be chosen later, let G = (V, E) be the (p + 1)-
regular graph from Theorem 2 (|V | = n, girth ≥ γ and p = D · n

1
γ ). Define δ, Qδ the same

way as above.
Let H be an (α, β)-hopset for G with size ≤ Cn1+ 1

k , where β < δ. For e = (x, y) ∈ H,
we denote the weight of e, which is defined to be the distance d(x, y), by w(e) (d(x, y)
is the distance in the graph G. We omit the subscript from dG(u, v) for brevity). To
formalize our next arguments, we think of a bipartite graph (A, B, Ê), where A = Qδ,
B = {e ∈ H | w(e) ≤ αδ} and Ê = {(P, (x, y)) ∈ A × B | P ∩ Px,y ̸= ∅}. We prove the
following two properties of this graph (degÊ denotes the degree of a vertex in this graph):
1. ∀P ∈A degÊ(P ) ≥ 1,
2. ∀e∈B degÊ(e) ≤ αδ2pδ−1.
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For (1), we need to show that if d(u, v) = δ, then ∃(x, y) ∈ H : Pu,v ∩ Px,y ̸= ∅ and
w(x, y) ≤ αδ. Let P ⊆ G ∪H be the shortest path from u to v, that has at most β edges,
and let P̂ be the same path as P , with every H-edge (x, y) replaced by Px,y. In P̂ , we call
the original edges from P blue edges, and the other edges red edges. By the hopset property:
|P̂ | = w(P ) = d

(β)
G∪H(u, v) ≤ α · d(u, v) = αδ.

From lemma 3, we know that Pu,v ⊆ P̂ , but since P̂ contains at most β < δ = |Pu,v| blue
edges, that means that there is a red edge in P̂ which is in Pu,v. By the definition of red edges,
there is some (x, y) ∈ H such that Px,y contains this red edge, therefore Pu,v ∩ Px,y ̸= ∅.
This edge (x, y) is part of P , so we also have w(x, y) ≤ w(P ) ≤ αδ.

For (2), given (x, y) ∈ H such that w(x, y) ≤ αδ, we need to bound the number of pairs
u, v ∈ V such that d(u, v) = δ and Pu,v ∩ Px,y ≠ ∅. Let (a, b) ∈ Px,y. Every path of length δ

that passes through (a, b) is a concatenation of a path of length i that ends in a, the edge
(a, b) and a path of length δ− 1− i from b, for some i ∈ [0, δ− 1]. Fixing i, we can look at the
BFS trees Ta, Tb of a, b respectively, up to the i’th and (δ − 1− i)’th level respectively. Since
the degree of any vertex in G is p + 1, Ta contains at most pi leaves, and Tb contains at most
pδ−1−i leaves. Therefore, the number of concatenations of paths as above is bounded by:

δ−1∑
i=0

pi · pδ−1−i =
δ−1∑
i=0

pδ−1 = δpδ−1 .

Since Px,y contains at most αδ edges, we get that the number of paths Pu,v such that
Pu,v ∩Px,y ̸= ∅ and |Pu,v| = δ, is bounded by αδ · δpδ−1 = αδ2pδ−1. This concludes the proof
of (2).

Finally, using the two properties of the bipartite graph, we bound its number of edges
from both sides:

|Ê| =
∑
P ∈A

degÊ(P )
(1)
≥ |A| = |Qδ|

lemma 4
≥ 1

2npδ ,

|Ê| =
∑
e∈B

degÊ(e)
(2)
≤ |B|αδ2pδ−1 ≤ |H|αδ2pδ−1 .

Using these inequalities, we get

|H| ≥ 1
2αδ2 np = D

2αδ2 n · n
1
γ = D

2αδ2 n1+ 1
γ .

Recall that |H| ≤ Cn1+ 1
k , so when choosing large enough n, it must be that k ≤ γ.

Summarizing our proof so far, we showed that for fixed γ ≥ 1, α > 0 and a constant C,
there is a graph G such that every (α, β)-hopset H for G, with size ≤ Cn1+ 1

k , either satisfies
β ≥ δ, or satisfies k ≤ γ.

Choose γ = k − 1. Now the matching graph G has the property that every (α, β)-hopset
H for G, with size ≤ Cn1+ 1

k , must have β ≥ δ. By δ’s definition:

β ≥ δ = ⌊ γ − 1
α + 1⌋ = ⌊ k − 2

α + 1⌋ . ◀
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3 A Unified Construction of Hopsets

Let G = (V, E) be a weighted undirected graph, and let k be some positive integer.
Our construction of a hopset is a simple generalization of the construction of [21]. We

start by constructing a sequence of sets V = A0 ⊇ A1 ⊇ A2 ⊇ .... The set Aj+1 is defined by
selecting each vertex from Aj independently with some probability that will be defined later.

Given this sequence, define some useful notations:
1. For a vertex u ∈ V , denote by i(u) the level of u, which is the only i such that u ∈ Ai\Ai+1.
2. The j’th pivot of u, pj(u), is the vertex of Aj which is the closest to u.
3. The j’th bunch of u is the set Bj(u) = {v ∈ Aj | d(u, v) < d(u, pj+1(u))}.

(Whenever Aj+1 = ∅ or Aj+1 is undefined, then also pj+1(u) is undefined, and we say
that d(u, pj+1(u)) =∞, so Bj(u) = Aj).

The hopset construction that relies on [21] adds an hopset edge from each u ∈ V to
the vertices in all of its bunches. Instead, in our case, we add a new parameter to the
construction: A non-decreasing function f : N→ N such that ∀i≥0 i ≤ f(i). Now instead of
connecting u ∈ V to all of its bunches, we connect it only to bunches Bj(u) with index j

between i(u) and f(i(u)).
This choice gives us the freedom to change the sampling probability, i.e. the probability

that some v ∈ Aj is chosen to Aj+1; As we will see later, this probability controls the size
of the bunches Bj(u), and since u now has less bunches to connect to, they can be larger.
In turn, the sampling probability implies how many non-empty sets there will be in the
sequence V = A0 ⊇ A1 ⊇ ....

For specifying this dependency between the sampling probability and the parameter f ,
we use here and throughout this paper, the following notation:

f−1(j) = min{i | j ≤ f(i)}.

Given the parameters k, f , we define a sequence {λj} by2 λj = 1 +
∑

l<f−1(j) λl.

The sampling probability of a vertex v ∈ Aj into Aj+1 is now defined as n−
λj
k (recall

that n = |V |). We also define F = min{F ′ |
∑

l<F ′ λl ≥ k + 1}, and one can simply check
that w.h.p. AF = ∅.

▶ Definition 6. Given an integer k ≥ 1 and a non-decreasing function f : N→ N such that
∀i f(i) ≥ i, the General Hopset H(k, f), is the hopset:

H(k, f) =
⋃

u∈V

F −1⋃
j=0
{(u, pj(u))} ∪

⋃
u∈V

f(i(u))⋃
j=i(u)

{(u, v) | v ∈ Bj(u)}.

The following lemma bounds the expected size of our hopset. Its proof appears in the
full version of this paper.

▶ Lemma 7. E[|H(k, f)|] = O(Fn1+ 1
k ).

2 Note that in the definition of the sequence {λj}, no explicit base case was provided (i.e. a definition of
λ0). But, notice that the definition of {λj} actually does contain a definition for λ0:

λ0 = 1 +
∑

l<f−1(0)

λl = 1 +
∑
l<0

λl = 1,

where f−1(0) = 0 is true by the definition of f−1 and the fact that f(0) ≥ 0.
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3.1 Examples
3.1.1 Linear TZ
When choosing f(j) = k for all j ≤ k, we get λj = 1 for all j (since f−1(j) = 0 for all j ≤ k),
and k + 1 =

∑
j<F λj = F . The resulting hopset H(k, f) relies on the same construction as

in [21], and as observed in [3], it is a (2k − 1, 2)-hopset.

3.1.2 Exponential TZ
Choose f(j) = j for every j. Since f−1(j) = j for every j, we get λj = 1 +

∑
l<j λl ⇒

λj = 2j (proof by induction). Also, k + 1 ≈
∑

j<F λj = 2F − 1 ⇒ F = ⌈log2(k + 2)⌉. The
resulting construction is the same as the emulator from section 4 in [22]. By the analysis of
[15, 10], this emulator from [22] is actually a (1+ϵ, O( log k

ϵ )log k)-hopset of size O(log k ·n1+ 1
k ),

for every 0 < ϵ < 1 simultaneously.

4 Stretch and Hopbound Analysis Method

In this section we show that our general hopset can provide the state-of-the-art results for
(α, β)-hopsets, for various regimes of α.

Given a weighted undirected graph G, and given k, f , we add another parameter, which
is a sequence of non-negative real numbers: {ri}F

i=0. We stress that these parameters only
play a part in the analysis.

The following definition of the score of a vertex is needed for the lemma that will be
proved afterwards.

▶ Definition 8. Given the function f and the sequence {ri}, the Score of a vertex u ∈ V is:

score(u) = max{i > 0 | d(u, pi(u)) > ri and ∀j∈[f−1(i−1),i−1] d(u, pj(u)) ≤ rj} ,

where if pi(u) is not defined (e.g. when i = F and AF = ∅), we consider d(u, pi(u)) to be ∞.

▶ Remark 9. The set in the definition of score(u) is not empty, so the score of each vertex
is well defined and positive. To see this, note that if i is the minimal index such that
d(u, pi(u)) > ri, then i > 0 (because p0(u) = u, so d(u, p0(u)) = 0 ≤ r0), i ≤ F (because
d(u, pF (u)) = ∞ > rF ) and also for every j ∈ [f−1(i − 1), i − 1], by the minimality of i,
d(u, pj(u)) ≤ rj .

Denote H = H(k, f).

▶ Lemma 10 (Jumping Lemma). Suppose that score(u) = i, then for every u′ ∈ V such that
d(u, u′) ≤ ri−ri−1

2 − rf−1(i−1),

d
(3)
G∪H(u, u′) ≤ 3d(u, u′) + 2(ri−1 + rf−1(i−1)).

Moreover, if also d(u, u′) ≥ 2
t (ri−1 + rf−1(i−1)) for some t > 0, then:

d
(3)
G∪H(u, u′) ≤ (t + 3)d(u, u′).

Proof. Let u ∈ V be some vertex with score(u) = i and let u′ ∈ V be some other vertex.
We have:

d(u′, pi−1(u′)) ≤ d(u′, pi−1(u)) ≤ d(u′, u) + d(u, pi−1(u)) ≤ d(u′, u) + ri−1 . (1)
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Since score(u) = i, ∀j ∈ [f−1(i − 1), i − 1], we have d(u, pj(u)) ≤ rj . In particular,
d(u, pf−1(i−1)(u)) ≤ rf−1(i−1), and now we can see that:

d(pf−1(i−1)(u), pi−1(u′)) ≤ d(pf−1(i−1)(u), u) + d(u, u′) + d(u′, pi−1(u′))
(1)
≤ rf−1(i−1) + d(u, u′) + (d(u, u′) + ri−1)
= 2d(u, u′) + rf−1(i−1) + ri−1 .

For convenience, we denote u0 = pf−1(i−1)(u), and we also bound the distance d(u0, pi(u0)).

ri < d(u, pi(u)) ≤ d(u, pi(u0)) ≤ d(u, u0) + d(u0, pi(u0)) ≤ rf−1(i−1) + d(u0, pi(u0))

⇒ d(u0, pi(u0)) > ri − rf−1(i−1).

Figure 1 The potential path between u and u′. Notice that d(u, pi−1(u)) ≤ ri−1 and
d(u, pf−1(i−1)(u)) ≤ rf−1(i−1), since score(u) = i.

Since u0 is a f−1(i − 1)’th pivot: i(u0) ≥ f−1(i − 1), so using the fact that f is non-
decreasing: i− 1 ≤ f(f−1(i− 1)) ≤ f(i(u0)). Also, since d(u0, pi(u0)) > ri − rf−1(i−1) > 0,
it cannot be that i(u0) ≥ i (otherwise u0 = pi(u0), so d(u0, pi(u0)) = 0). Then we got that
i− 1 ∈ [i(u0), f(i(u0))].

Therefore, u0 is connected to every vertex of Bi−1(u0). Since pi−1(u′) ∈ Ai−1, a sufficient
condition for pi−1(u′) to be in Bi−1(u0), which would imply that (u0, pi−1(u′)) ∈ H, is
2d(u, u′) + rf−1(i−1) + ri−1 ≤ ri − rf−1(i−1), i.e.

d(u, u′) ≤ ri − ri−1

2 − rf−1(i−1).

In case that this criteria is satisfied, and we get a 3-hops path from u to u′ with weight:

d
(3)
G∪H(u, u′) ≤ rf−1(i−1) + (2d(u, u′) + rf−1(i−1) + ri−1) + (d(u, u′) + ri−1)

= 3d(u, u′) + 2(ri−1 + rf−1(i−1)) .

If also ri−1 + rf−1(i−1) ≤ t
2 d(u, u′) (or equivalently d(u, u′) ≥ 2

t (ri−1 + rf−1(i−1))), then
this path is of weight ≤ 3d(u, u′) + td(u, u′) = (t + 3)d(u, u′). ◀
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Given lemma 10, it’s best to choose {ri} such that 2
t (ri−1+rf−1(i−1)) ≤ ri−ri−1

2 −rf−1(i−1),
i.e.

ri ≥ (1 + 4
t
)ri−1 + (2 + 4

t
)rf−1(i−1) (2)

From now on, we assume that {ri} we chose satisfies this inequality. In particular, {ri} is
non-decreasing.

Fix u, v ∈ V , and let u = u0, u1, u2, ..., ud = v be the shortest path between them.

▶ Lemma 11. Suppose that score(uj) = i and let l = max{l′ ≥ j | d(uj , ul′) ≤ ri−ri−1
2 −

rf−1(i−1)}. Then if l < d, we have:
1. d

(4)
G∪H(uj , ul+1) ≤ (t + 3)d(uj , ul+1)

2. d(uj , ul+1) ≥ 4
t rf−1(i−1)

Proof. Denote by W the weight of the edge (ul, ul+1). We look at two different cases.
The first case is that d(uj , ul) ≥ 2

t (ri−1 + rf−1(i−1)). In this case, by lemma 10:

d
(4)
G∪H(uj , ul+1) ≤ d

(3)
G∪H(uj , ul) + W ≤ (t + 3)d(uj , ul) + W

< (t + 3)(d(uj , ul) + W ) = (t + 3)d(uj , ul+1) .

The second case is that d(uj , ul) < 2
t (ri−1 + rf−1(i−1)). By lemma 10, inequality (2) and

l’s definition:

d
(4)
G∪H(uj , ul+1) ≤ d

(3)
G∪H(uj , ul) + W

10
≤ 3d(uj , ul) + 2(ri−1 + rf−1(i−1)) + W

(2)
≤ 3d(uj , ul) + t(ri − ri−1

2 − rf−1(i−1)) + W

≤ 3d(uj , ul) + t(d(uj , ul) + W ) + W

< (t + 3)(d(uj , ul) + W ) = (t + 3)d(uj , ul+1) .

In both cases, we saw that d(uj , ul+1) ≥ 2
t (ri−1 + rf−1(i−1)), so d(uj , ul+1) ≥ 4

t rf−1(i−1).
◀

The following theorem presents the size, the stretch and the hopbound for our hopset,
H(k, f). It uses lemma 11 repeatedly between every pair of vertices u, v ∈ V . Note that we
choose the minimal sequence {ri}, for minimizing the hopbound.

▶ Theorem 12. Fix an integer k > 0, a non-decreasing f : N → N such that ∀if(i) ≥ i,
parameters {λj} such that ∀jλj ≤ 1 +

∑
l<f−1(j) λl and F such that

∑
j<F λj ≥ k + 1. We

can build a (2t + 3, O(rF ))-hopset for an undirected weighted graph G, simultaneously for
every t > 0, with size O(Fn1+1/k), where {ri} satisfies r0 = 1 and ∀i>0 ri = (1 + 4

t )ri−1 +
(2 + 4

t )rf−1(i−1).

Proof. Given G, k, f , build H(k, f) on G. By lemma 7, this hopset has the wanted size. Fix
u, v ∈ V , and let u = u0, u1, u2, ..., ud = v be the shortest path between them. We use lemma
11 to find a path between u and v.

Starting with j = 0, find l = max{l′ ≥ j | d(uj , ul′) ≤ ri−ri−1
2 − rf−1(i−1)}, where

score(uj) = i. If l = d, stop the process and denote v′ = uj . Otherwise, set j ← l + 1, and
continue in the same way.

This process creates a subsequence of u0, ..., ud: u = v0, v1, v2, ..., vb = v′, such that for
every j < b we have d

(4)
G∪H(vj , vj+1) ≤ (t + 3)d(vj , vj+1) (by lemma 11). For v′ = vb we have

d(v′, v) ≤ ri−ri−1
2 − rf−1(i−1), where score(v′) = i. For this last segment, we get from lemma

10 that

d
(3)
G∪H(v′, v) ≤ 3d(v′, v) + 2(ri−1 + rf−1(i−1)) ≤ 3d(v′, v) + 4rF .
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When summing over the entire path, we get:

d
(4b+3)
G∪H (u, v) ≤

b−1∑
j=0

(t + 3)d(vj , vj+1) + 3d(v′, v) + 4rF

= (t + 3)d(u, v′) + 3d(v′, v) + 4rF ≤ (t + 3)d(u, v) + 4rF .

To bound b, we notice that by lemma 11, for every j < b: d(vj , vj+1) ≥ 4
t rf−1(i−1) ≥ 4

t r0.
So, the number of these “jumps” couldn’t be greater than d(u,v)

4
t r0

= t·d(u,v)
4r0

, and we finally
got:

d
( t·d(u,v)

r0
+3)

G∪H (u, v) ≤ (t + 3)d(u, v) + 4rF .

This is true for every sequence {ri} that satisfies inequality (2) (even if it doesn’t satisfy
r0 = 1).

Given such sequence {ri}, we can define a new sequence as follows:

r′
i = t · d(u, v) · ri

4rF
.

This sequence clearly still satisfies (2), so if we use it instead of {ri}, we get that for our
specific u, v:

d
( t·d(u,v)

r′
0

+3)

G∪H (u, v) ≤ (t + 3)d(u, v) + 4r′
F ⇒

⇒ d
(4rF +3)
G∪H (u, v) ≤ (t + 3)d(u, v) + t · d(u, v) = (2t + 3)d(u, v) ,

i.e. the stretch of this new path is 2t + 3, and its hopbound is 4rF + 3.
Although we chose {r′

i} for a specific pair of vertices, this choice of {r′
i} doesn’t change

our construction at all, but only the analysis. So, we proved that for each u, v ∈ V , there
is a path between them in G ∪H, with stretch 2t + 3 and hopbound 4rF + 3, for our initial
choice of {ri}. ◀

4.1 Applications
Table 2 demonstrates the different results that can be achieved by substituting different
parameters in our construction. The technical computations can be found in the full version
of this paper. All of these applications achieve equivalent or even improved results as of [3].

Table 2 The results achieved by substituting different parameters in our construction.

Parameter
Choices

Resulting
Stretch

Resulting
Hopbound

Resulting
Hopset Size

f(i) = i,
t = ϵ

2
3 + ϵ O(klog2(3+ 16

ϵ
)) O(log k · n1+ 1

k )

f(i) = ⌊ i
c
⌋ · c + c − 1,

t = 4c
8c + 3 O(k1+ 2

ln c ) O(logc k · n1+ 1
k )

f(i) = ⌊ i
c
⌋ · c + c − 1,

t = 4c, c = ⌈kϵ⌉
O(e 2

ϵ kϵ) O(k1−ϵ) O(n1+ 1
k /ϵ)

Note that in all 3 resulting hopsets, the hopset size is improved by a log Λ factor in
comparison to [3]. Also, for a stretch of 3 + ϵ, we get a single hopset with the mentioned
properties simultaneously for all ϵ > 0. Finally, in comparison to [3], our (Oϵ(kϵ), O(k1−ϵ)-
hopset construction enjoys a simpler algorithm and doesn’t require a separation to cases
(ϵ < 1

2 and 1
2 ≤ ϵ, as in [3]).
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Data Structures for Node Connectivity Queries
Zeev Nutov # Ñ

The Open University of Israel, Ra’anana, Israel

Abstract
Let κ(s, t) denote the maximum number of internally disjoint st-paths in an undirected graph G.
We consider designing a data structure that includes a list of cuts, and answers the following query:
given s, t ∈ V , determine whether κ(s, t) ≤ k, and if so, return a pointer to an st-cut of size ≤ k (or
to a minimum st-cut) in the list. A trivial data structure that includes a list of n(n − 1)/2 cuts and
requires Θ(kn2) space can answer each query in O(1) time. We obtain the following results.

In the case when G is k-connected, we show that 2n cuts suffice, and that these cuts can be
partitioned into 2k + 1 laminar families. Thus using space O(kn) we can answers each min-cut
query in O(1) time, slightly improving and substantially simplifying the proof of a recent result
of Pettie and Yin [18]. We then extend this data structure to subset k-connectivity.
In the general case we show that (2k +1)n cuts suffice to return an st-cut of size ≤ k, and a list of
size k(k +2)n contains a minimum st-cut for every s, t ∈ V . Combining our subset k-connectivity
data structure with the data structure of Hsu and Lu [7] for checking k-connectivity, we give an
O(k2n) space data structure that returns an st-cut of size ≤ k in O(log k) time, while O(k3n)
space enables to return a minimum st-cut.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases node connectivity, minimum cuts, data structure, connectivity queries

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.82

Related Version Previous Version: https://arxiv.org/abs/2110.09102

1 Introduction

Let κ(s, t) = κG(s, t) denote the maximum number of internally disjoint st-paths in a graph
G = (V,E). W.l.o.g. we will assume that G is connected. An st-cut is a subset Q ⊆ V ∪ E

such that G \Q has no st-path. By Menger’s Theorem, κ(s, t) equals to the minimum size of
an st-cut, and there always exists a minimum st-cut that contains no edge except of st. We
consider designing a compact data structure that given s, t ∈ V and k < n = |V | answers
the following k-bounded connectivity/cut queries.

pconk(s, t) (partial connectivity query): Determine whether κ(s, t) ≤ k.
pcutk(s, t) (partial cut query): If κ(s, t) ≤ k then return an st-cut of size ≤ k.
conk(s, t) (connectivity query): Return min{κ(s, t), k + 1}.
cutk(s, t) (min-cut query): If κ(s, t) ≤ k then return a minimum st-cut.

The query pcutk(s, t) requires Θ(k) time just to write an st-cut. However, by slightly
relaxing the definition, we allow the data structure to include a list of cuts, and to return
just a pointer to an st-cut of size ≤ k in the list. How short can this list be? By choosing a
minimum st-cut for each pair {s, t}, one gets a list of n(n− 1)/2 cuts. This gives a trivial
data structure, that answers both queries in O(1) time, but requires Θ(kn2) space – just
store the pairwise connectivities in an n× n matrix, with pointers to the relevant O(n2) cuts.
For edge connectivity, the Gomory-Hu Cut-Tree [5] shows that there exists such a list of
n − 1 cuts that form a laminar family. However, no similar result is known for the node
connectivity case considered here.
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A graph is k-connected if κ(s, t) ≥ k for all s, t ∈ V . Recently, Pettie and Yin [18], and
earlier in the 90’s Cohen, Di Battista, Kanevsky, and Tamassia [3], considered the above
problem in k-connected graphs. Pettie and Yin [18] suggested for n ≥ 4k an O(kn) space data
structure, that answers conk(s, t) in O(1) time and cutk(s, t) in O(k) time; they showed
that it can be constructed in Õ(m+ poly(k)n) time. The arguments in [18] are complex, and
here by a simpler proof we obtain the following improvement on the cutk(s, t) query.

▶ Theorem 1. For any k-connected graph, there exists an O(kn) space data structure, that
includes a list of 2n cuts, that answers conk(s, t) and cutk(s, t) queries in O(1) time.

All our data structures can be constructed in polynomial time; we will not discuss
designing efficient construction algorithms here. We note that the Pettie-Yin [18] data
structure also includes a list of O(n) cuts, and maybe it can be modified to return a pointer
to a minimum st-cut in O(1) time. In any case, our data structure and arguments are simpler,
and we sketch the main ideas below.

We observe that there exists a forest F , such that for any st ∈ E with κ(s, t) = k, either
one of s, t has degree k (and a minimum st-cut is the set of k edges incident to s or to t),
or st ∈ F ; this follows from Mader’s Critical Cycle Theorem [12]. Thus for pairs st ∈ E

there are at most n relevant cuts, and it is not hard to see that matching between a pair
s, t and its cut can be done in O(1) time.
For A ⊆ B let ∂A denote the set of neighbors of A in G. Let C be a family of sets
obtained by picking for every node v an inclusion minimal set Cv with v ∈ Cv, |∂Cv| = k,
and |Cv| ≤ (n− k)/2, if such a set exists (we show that Cv is unique, if exists). For any
st /∈ E with κ(s, t) = k, a minimum st-cut Q ⊂ V has a connected component of G \Q of
size ≤ (n− k)/2 that contains s or t; thus Cs ∈ C or Ct ∈ C. To store C in O(kn) space,
we will show that C can be partitioned into O(k) laminar families (each laminar family
can be represented by a tree). To check whether κ(s, t) = k we just need to check that
t /∈ Cs ∪ ∂Cs or s /∈ Ct ∪ ∂Cs; this can be done in O(1) time, using a data structure that
answers in O(1) time ancestor/descendant queries in trees.

For a set S ⊆ V of terminals we say that a graph is k-S-connected if κ(s, t) ≥ k for all
s, t ∈ S. We will extend Theorem 1 to k-S-connected graphs as follows.

▶ Theorem 2. For any k-S-connected graph with |S| ≥ 3k, there exists an O(k|S|) space
data structure, that includes a list of 3|S| cuts, and answers conk(s, t) and cutk(s, t) queries
for node pairs in S in O(1) time.

For arbitrary graphs, a trivial data structure that answers conk(s, t) and cutk(s, t)
queries in O(1) time uses Θ(kn2) space. Hsu and Lu [7] showed that there exists an auxiliary
directed graph H = (V, F ) and an ordered partition S1, S2, . . . of V , such that:

Every part Si has at most 2k− 1 neighbors in H , and all of them are in Si+1 ∪Si+2 ∪ · · · .
κ(s, t) ≥ k + 1 iff s, t belong to the same part, or st ∈ F , or ts ∈ F .

They also gave a polynomial time algorithm for constructing such H. Augmenting H by
a perfect hashing data structure enables to answer ”st ∈ F?” queries in O(1) time. Since
|F | = O(kn), this gives an O(kn) space1 data structure that determines whether κ(s, t) ≥ k+1
in O(1) time. Furthermore, a collection of such data structures for each k′ = 1, . . . , k + 1
enables to find min{κ(s, t), k + 1} in O(log k) time, using binary search. However, this data

1 As in previous works, we ignore the unavoidable O(log n) factor invoked by storing the indexes of nodes,
and assume that any basic arithmetic or comparison operation with indexes can be done in O(1) time.
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structure alone cannot answer cut queries for pairs that belong to the same part Si of the
partition. Using our data structure for k-S-connectivity from Theorem 2, and a new bound
on the number of relevant cuts, we get the following, see also Table 1.

▶ Theorem 3. There exists an O(k2n) space data structure that includes a list of (2k + 1)n
cuts, that answers conk(s, t) and pcutk(s, t) queries in O(log k) time; a list of k(k + 2)n
cuts and O(k3n) space allows to answer also cutk(s, t) in O(log k) time. Furthermore, space
O(k2n+n2) allows to answer conk(s, t) and pcutk(s, t) in O(1) time, and space O(k3n+n2)
allows to answer conk(s, t) and cutk(s, t) in O(1) time.

Theorems 1, 2, and 3 are proves in section 2, 3, and 4, respectively.

Table 1 Summary of the results in Theorem 3. Note that when k is bounded by a constant, the
last row data structure has linear space and answers all queries in O(1) time, which is optimal.

list size space pconk(s, t) pcutk(s, t) conk(s, t) cutk(s, t) reference

n(n − 1)/2 O(kn2) O(1) O(1) O(1) O(1) folklore
- O(n2) O(1) - O(1) - folklore
- O(kn) O(1) - - - [7]
- O(k2n) O(1) - O(log k) - [7]

(2k + 1)n O(k2n + n2) O(1) O(1) O(1) - this paper
k(k + 2)n O(k3n + n2) O(1) O(1) O(1) O(1) this paper
(2k + 1)n O(k2n) O(log k) O(log k) O(log k) - this paper
k(k + 2)n O(k3n) O(log k) O(log k) O(log k) O(log k) this paper

In parallel to our work, Pettie, Saranurak, and Yin [17] gave a randomized O(kn log n)
space data structure that answer conk(s, t) queries in time O(log n). This data structure
extends the data structure of Iszak and Nutov [8], that in turn is based on an idea of Chuzhoy
and Khanna [2]. We briefly describe these results. Given a set S ⊆ V of terminals, the
edges and the nodes in V \ S are called elements. The element connectivity between
s, t ∈ S is the maximum number of pairwise element disjoint st-paths. The Gomory-Hu tree
extends to element connectivity (c.f. [19, 1]), and implies an O(|S|) space data structure that
answers element connectivity queries between terminals in O(1) time. The data structure
of [8] decomposes a node connectivity instance into O(k2 log n) element connectivity instances
with Θ(n/k) terminals each; we will give a generalization of this decomposition in Section 5.
For any element connectivity instance GS with terminal set S and s, t ∈ S, κ(s, t) is at
most the element st-connectivity in GS , and for at least one instance an equality holds
(an instance with s, t ∈ S and Q ∩ S = ∅ for some minimum st-cut Q). So, to find κ(s, t),
one has to find the minimum element st-connectivity, among all instances in which s, t are
terminals. There are O(k2 log n) element connectivity instances, with Θ(n/k) terminals
each, hence the overall number of terminals is O(k2 log n) · (n/k) = O(kn log n). Iszak
and Nutov [8] considered designing a labeling scheme2, where efficient query time is not
required, and used the connectivity classes data structure in each instance; this enables
answering conk(s, t) queries in O(k log n) time. Pettie, Saranurak, and Yin [17] used element
connectivity Gomory-Hu trees instead, and also designed a novel data structure that given
s, t finds an instance with the minimum element st-connectivity in O(log n) time. They also

2 For additional work on labeling schemes for node-connectivity, see for example, [10, 11, 7].
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showed that for large values of k, any data structure for answering node connectivity queries
needs at least Ω(kn/ log n) space, matching up to an O(log n) factor the O(kn) space of a
sparse certificate graph [14].

Let us compare between the [17] O(kn log n) space data structure that answers conk(s, t)
queries in O(log n) time, to our results. First thing to observe is that the [17] data structure
can be augmented by a list of O(kn log n) cuts to support cutk(s, t) queries. Our cut list
has size O(k2n), which is better when k < log n. Moreover, our query time is O(log k). For
example for k = log n both data structures have space O(n log2 n), but our query time is
O(log log n) while that of [17] is O(log n). Note that for k ≤ 4 are known linear space data
structures that can answer cut queries in O(1) time; see [6] and [9] for the cases k = 3
and k = 4, respectively. Our work, that was done independently from [17] and uses totally
different techniques, extend this to any constant k, bridging the gap between the result of
[17] and the results known for k ≤ 4.

2 k-connected graphs (Theorem 1)

In this section let G = (V,E) be a k-connected graph. We first explain how to answer the
queries for pairs s, t with st ∈ E. Let K denote the set of nodes of degree k in G. If s ∈ K

then the set of edges incident to s is a minimum st-cut for all t. There are |K| ≤ n such
minimum cuts. This situation can be recognized in O(1) time, hence we may omit such pairs
from our analysis and assume that each of s, t has degree ≥ k + 1.

We say that st ∈ E is a critical edge if κ(s, t) = k. Let F be the set of critical edges
st ∈ E such that s, t ∈ V \K. Mader’s Critical Cycle Theorem [12] states that any cycle of
critical edges contains a node of degree k, hence F is a forest. Thus just specifying the edges
in F and a list of |F | ≤ n− |K| − 1 minimum st-cuts for every st ∈ F , gives an O(kn) space
data structure that answers the relevant queries in O(1) time.

Henceforth assume that s, t ∈ V \K and st /∈ E. We will show that then there exists a
list of n− |K| cuts, such that whenever κ(s, t) = k, there exists a minimum st-cut in the list.
However, this is not enough to answer the relevant queries in O(1) time, since we still need
to choose the right minimum cut from the list.

For a node subset A ⊆ V let ∂A denote the set of neighbors of A inG. Let A∗ = V \(A∪∂A)
denote the “node complement” of A. We say that A is: a tight set if |∂A| = k and A∗ ̸= ∅,
an st-set if s ∈ A and t ∈ A∗, and a small set if |A| ≤ n−k

2 . Note that A is tight if and
only if ∂A is a minimum cut, and A is a union of some, but not all, connected components
of G \ ∂A. The following statement is a folklore, c.f. [15, 16].

▶ Lemma 4. Let A,B be tight sets. If the sets A ∩B∗, B ∩A∗ are both nonempty then they
are both tight. If A,B are small and A ∩B ̸= ∅ then A ∩B is tight.

Let R = {s ∈ V \K : there exist a small tight set containing s}. For s ∈ R let Cs be the
(unique, by Lemma 4) inclusion minimal small tight set that contains s. Let C = {Cs : s ∈ R}.
The following lemma shows that the family {∂C : C ∈ C} is a ”short” list of n−|K| minimum
cuts, that for every s, t ∈ V \K with st /∈ E includes a minimum st-cut.

▶ Lemma 5. Let s, t ∈ V \K with st /∈ E. Then κ(s, t) = k if an only if at least one of the
following holds: (i) s ∈ R and Cs is an st-set, or (ii) t ∈ R and Ct is a ts-set. Consequently,
κ(s, t) = k if and only if the family {∂C : C ∈ C} contains a minimum st-cut.

Proof. If (i) holds then ∂Cs is a minimum st-cut, while if (ii) holds then ∂Ct is a minimum
st-cut. Thus κ(s, t) = k if (i) or (ii) holds.
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Assume now that κ(s, t) = k and we will show that (i) or (ii) holds. Let Q ⊂ V \ {s, t}
be a minimum st-cut. Then one component A of G \Q contains s and the other B contains
t. Since |A| + |B| ≤ n− |Q| = n− k, one of A,B, say A is small. Thus s ∈ R. Since Cs ⊆ A

and since t ∈ A∗, we have t ∈ C∗
s . Consequently, ∂Cs is a minimum st-cut, as required. ◀

Two sets A,B are laminar if they are disjoint or one of them contains the other;
equivalently, A,B are not laminar if they intersect but none of them contains the other. A
set family is laminar if its members are pairwise laminar. A laminar family L on V can be
represented by a rooted tree T = (L ∪ {V }, J) and a mapping ψ : V → L ∪ {V }. Here B is a
child of A in T if B is a maximal set in L \ {A} contained A, and for every v ∈ V , ψ(v) is a
minimal set in L that contains v.

▶ Lemma 6. C can be partitioned into at most 2k + 1 laminar families.

Proof. Consider two sets A = Ca and B = Cb that are not laminar. Then a /∈ A ∩ B

since otherwise by Lemma 4 A ∩ B is a (small) tight set that contains a, contradicting
the minimality of A = Ca. By a similar argument, b /∈ A ∩ B. We also cannot have both
a ∈ A ∩ B∗ and b ∈ B ∩ A∗, as then by Lemma 4 A ∩ B∗ is a tight set that contains a,
contradicting the minimality of A = Ca. Consequently, a ∈ ∂B or b ∈ ∂A.

Construct an auxiliary directed graph H on node set R and edges set {ab : a ∈ ∂Cb}.
The indegree of every node in H is at most k. This implies that every subgraph of the
underlying graph of H has a node of degree 2k. A graph is d-degenerate if every subgraph
of it has a node of degree d. It is known that any d-degenerate graph can be colored with
d+ 1 colors, in linear time, see [4, 13]. Hence H is (2k + 1)-colorable. Consequently, we can
compute in polynomial time a partition of R into at most 2k + 1 independent sets. For each
independent set Ri, the family {Cs : s ∈ Ri} is laminar. ◀

Our data structure for pairs s, t ∈ V \K with st /∈ E consists of:
A family T of at most 2k+1 trees, where each tree T ∈ T with a mapping ψT : V → V (T )
represents one of the at most 2k + 1 laminar families of tight sets as in Lemma 6; the
total number of edges in all trees in T is at most n− |K|.
For each tree T ∈ T , a linear space data structure that answers ancestor/descendant
queries in O(1) time. This can be done by assigning to each node of T the in-time and
the out-time in a DFS search on T .
A list {∂Cs : s ∈ R} of |R| = n − |K| minimum cuts; this can be also encoded by an
auxiliary directed graph H = (V, F ) with edge set F = {ts : t ∈ ∂Cs}. Using perfect
hashing data structure we can check whether ts ∈ F in O(1) time.

For every s ∈ S let Ts be the (unique) tree in T where Cs is represented. The next
statement, that is a direct consequence of Lemma 5, specifies how we answer the queries.

▶ Lemma 7. Let s, t ∈ V \K with st /∈ E.
(i) If in Ts, ψTs(t) is not a descendant of ψTs(s) and t /∈ ∂Cs, then ∂Cs is a minimum st-

cut.
(ii) If in Tt, ψTt(s) is not a descendant of ψTt(t) and s /∈ ∂Ct, then ∂Ct is a minimum st-cut.

Furthermore, if none of (i),(ii) holds then κ(s, t) ≥ k + 1.

It is easy to see that with appropriate pointers, and using perfect hashing data structure
to check adjacency in the auxiliary directed graph H, we get an O(kn) space data structure
that checks the two conditions in Lemma 7 in O(1) time. If one of the conditions holds, the
data structure return a pointer to one of ∂Cs or ∂Ct. Else, it reports that κ(s, t) ≥ k + 1.

This concludes the proof of Theorem 1.
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3 Subset connectivity (Theorem 2)

In this section let G = (V,E) be a k-S-connected graph with |S| ≥ 3k. For the simpler
case S = V we related cuts to node subsets. Unfortunately, for the more general subset
k-connectivity case, we need slightly more complex objects than sets, as follows.

▶ Definition 8. An ordered pair A = (A,A+) of subsets of a groundset V is called a biset
if A ⊆ A+; A is the inner set and A+ is the outer set of A, and ∂A = A+ \ A is the
boundary of A. A∗ = V \A+ is the co-set of A and A∗ = (A∗, V \A) is the co-biset of A.
We say that A is an st-biset if s ∈ A and t ∈ A∗.

In the case S = V , the relevant bisets were (A,A+) = (A,A ∪ ∂A), where A was a tight
set. Here we will say that A is a tight biset if A∩S ̸= ∅, A∗ ∩S ≠ ∅, and |∂A| + |δ(A)| = k,
where δ(A) is the set of edges in G that go from A to A∗. Note that A is tight if and only
if ∂A ∪ δ(A) is a minimum st-cut for some s ∈ A ∩ S and t ∈ A∗ ∩ S. We will consider the
family F = {(A ∩ S,A+ ∩ S) : A is tight} obtained by projecting the tight bisets on S. Note
that for A ∈ F there might be many tight bisets in G whose projection on S is A, and that
there always exists at least one such biset.

▶ Definition 9. The intersection and the union of two bisets A,B are the bisets defined by
A ∩ B = (A ∩ B,A+ ∩ B+) and A ∪ B = (A ∪ B,A+ ∪ B+). The biset A \ B is defined by
A \ B = (A \ B+, A+ \ B). We say that A,B: intersect if A ∩ B ≠ ∅, cross if A ∩ B ̸= ∅
and A∗ ∩B∗ ̸= ∅, and co-cross if A ∩B∗ ̸= ∅ and B ∩A∗ ̸= ∅.

We say that A ∈ F is a small biset if |A| ≤ |S|−k
2 , and A is a large biset otherwise.

Clearly, |∂A| ≤ k for all A ∈ F . The family F has the following properties, c.f. [15, 16].

▶ Lemma 10. The family F = {(A ∩ S,A+ ∩ S) : A is tight} has the following properties:
1. F is symmetric: A∗ ∈ F whenever A ∈ F .
2. F is crossing: A ∩ B,A ∪ B ∈ F whenever A,B ∈ F cross.
3. F is co-crossing: A \ B,B \ A ∈ F whenever A,B ∈ F co-cross.
4. If A,B ∈ F are small intersecting bisets then A ∩ B,A ∪ B ∈ F .

▶ Definition 11. We say that a biset B contains a biset A and write A ⊆ B if A ⊆ B and
A+ ⊆ B+. A,B are laminar if one of them contains the other or if A ∩ B = ∅. A biset
family is laminar if its members are pairwise laminar.

For every s ∈ S let Cs be the family of all inclusion minimal bisets C ∈ F with s ∈ C and
|C| ≤ |C∗|. Let C = ∪s∈SCs. Note that |Cs| ≤ |S| − 1 and that Cs can be computed using
|S| − 1 min-cut computations. The following observation follows from the symmetry of F .

▶ Lemma 12. Let A ∈ F be an st-biset. If |A| ≤ |A∗| then there is an st-biset in Cs, and
if |A∗| ≤ |A| then there is a ts-biset in Ct. Consequently, for any s, t ∈ S, C contains an
st-biset or a ts-biset.

The next lemma shows that |Cs| ≤ 3 if |S| ≥ 3k.

▶ Lemma 13. For any s ∈ S, Cs contains at most one small biset and at most 2(|S|−1)
|S|−k large

bisets. In particular, if |S| ≥ 3k then in Cs there are at most two large bisets and |C| ≤ 3|S|.

Proof. In Cs there is at most one small biset, by property 4 in Lemma 10. No two large
bisets A,B ∈ Cs cross, as otherwise s ∈ A ∩ B and (by property 2 in Lemma 10) A ∩ B ∈ F ,
contradicting the minimality of A,B. Thus the sets in {C∗ : C ∈ Cs} are pairwise disjoint.
Furthermore, |C∗| ≥ |C| ≥ |S|−k

2 for every large biset C ∈ Cs. This implies that the number
of large bisets in Cs is at most |S|−1

(|S|−k)/2 ≤ 2(3k−1)
2k < 3 if |S| ≥ 3k. ◀
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By a proof identical to that of Lemma 6 we have the following.

▶ Lemma 14. The family of small bisets in C can be partitioned in polynomial time into at
most 2k + 1 laminar families.

Proof. Consider two small bisets A ∈ Ca and B ∈ Cb that are not laminar. Then a /∈ A ∩B

since otherwise A ∩ B ∈ F , contradicting the minimality of A. Similarly, b /∈ A ∩B. We also
cannot have both a ∈ A∩B∗ and b ∈ B∩A∗, as then A,B co-cross and thus A\B,B\A ∈ F ,
contradicting the minimality of A,B. Consequently, a ∈ ∂B or b ∈ ∂A. The rest of the proof
coincides with that of Lemma 6. ◀

Later, we will prove the following.

▶ Lemma 15. If |S| ≥ 3k then the family of large bisets in C can be partitioned in polynomial
time into at most 3(2k + 1) laminar families.

Lemmas 14 and 15 imply that C can be partitioned into at most 4(2k+1) laminar families.
For our purposes, we just need the family of the inner sets of each family to be laminar.
Together with Lemma 13 this implies Theorem 2 in the same way as Lemma 6 implies
Theorem 1, except the following minor differences.

Here we have 4(2k + 1) laminar families instead of 2k + 1 laminar families, and for each
s ∈ S we have by Lemma 13 |Cs| ≤ 3 instead of |Cs| = 1.
For each biset C ∈ C, our list of cuts will include a mixed cut ∂A ∪ δ(A) of some tight
biset of G whose projection on S is C.

These differences affect space and query time only by a small constant factor. Thus all
we need is to prove Lemma 15, which we will do in the rest of this section.

▶ Lemma 16. Let A ∈ Ca and B ∈ Cb be two non-laminar large bisets in C. If |S| ≥ 3k then
a ∈ ∂B or b ∈ ∂A, or (see Fig. 1(a)): a, b ∈ A ∩B, A∗ ∩B∗ = ∅, and both A ∩B∗, B ∩A∗

are non-empty.

Proof. Assume that a /∈ ∂B and b /∈ ∂A. We will show that then the case in Fig. 1(a) holds.
Suppose that a ∈ A∩B; the analysis of the case b ∈ A∩B is similar. Then A∗ ∩B∗ = ∅;

otherwise, A,B cross and (by property 2 in Lemma 10) we get A ∩ B ∈ F , contradicting the
minimality of A. Furthermore, if B ∩ A∗ = ∅ we get |S|−k

2 < |A| ≤ |A∗| = |∂B ∩ A∗| ≤ k,
contradicting that |S| ≥ 3k. By a similar argument, A∩B∗ ̸= ∅. If a ∈ A∩B and b ∈ B∩A∗

(Fig. 1(b)), then A,B co-cross (by property 3 in Lemma 10) and thus B \ A ∈ F ; this
contradicts the minimality of B.

If none of a, b is in A∩B, then (see Fig. 1(c)) a ∈ A∩B∗ and b ∈ B ∩A∗. Consequently,
A,B-co-cross, and thus (by property 3 in Lemma 10) A \ B,B \ A ∈ F , contradicting the
minimality of A,B.

Thus the only possible case is the one in Fig. 1(a), completing the proof of the lemma. ◀

From Lemma 16, by a proof identical to that of Lemma 6 we get the following.

▶ Corollary 17. The family of large bisets in C can be partitioned in polynomial time into at
most 2k + 1 parts such that any two bisets A ∈ Ca and B ∈ Cb that belong to the same part P
are either laminar, or have the following property: a, b ∈ A ∩B and A∗ ∩B∗ = ∅.

Thus the following lemma finishes the proof of Lemma 15, and also of Theorem 2.

▶ Lemma 18. Let P be one of the 2k+ 1 parts as in Corollary 17; in particular, if A,B ∈ P
are not laminar then A ∩B ̸= ∅ and A∗ ∩B∗ = ∅. Then P can be partitioned in polynomial
time into at most 3 laminar families.
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Figure 1 Illustration to the proof of Lemma 16; dark gray sets are non-empty.

Proof. Let M be the family of maximal members in P. We will show later that the set
family H = {A∗ : A ∈ M} has a hitting set U of size |U | ≤ 3. Now note that:

For every v ∈ S the family Pv = {A ∈ P : v ∈ A∗} is laminar, since v ∈ A∗ ∩B∗ for any
A,B ∈ Pv, while A∗ ∩B∗ = ∅ for any non-laminar A,B ∈ P .
Since U is a hitting set of H, for any A ∈ P there is v ∈ U ∩A∗, and then A ∈ Pv.

Summarizing, each one of the families Pv is laminar and ∪v∈U Pv = P. By removing bisets
that appear more than once, we get a partition of P into |U | ≤ 3 laminar families.

It remains to show that H has a hitting set of size ≤ 3. A fractional hitting set of H
is a function h : S → [0, 1] such that h(A) =

∑
v∈A h(v) ≥ 1 for all A ∈ H. For v ∈ S let Hv

be the family of sets in H that contain v, and let Mv = {A ∈ M : A∗ ∈ Hv}. Note that:
h(v) = 2

|S|−k+1 for all v ∈ S is a fractional hitting set of H and h(S) = 2|S|
|S|−k+1 < 3.

No two bisets in Mv intersect and |Hv| ≤ |Mv|. This implies |Hv| ≤ |Mv| ≤ 2|S|
|S|−k+1 < 3,

so |Hv| ≤ 2 for all v ∈ S.
Since |Hv| ≤ 2 for all v ∈ S, computing a minimum hitting set of H reduces to the minimum
Edge-Cover problem, and H has a hitting set U of size |U | ≤ 4

3 ·h(S) ( 4
3 is the integrality gap

of the Edge-Cover problem). Since 4
3 · h(S) < 4

3 · 3, H has a hitting set U of size |U | ≤ 3. ◀

4 Arbitrary graphs (Theorem 3)

For the proof of Theorem 3, we will later prove the following.

▶ Theorem 19. There exists a list of at most (2k + 1)n cuts that contains an st-cut of size
≤ k for any s, t ∈ V with κ(s, t) ≤ k.

A union of list as in Theorem 19 for every k′ = 1, . . . k is a list that includes a minimum
st-cut for any s, t ∈ V with κ(s, t) ≤ k. The size of this list is

∑k
k′=1(2k′ + 1)n = k(k + 2)n.

Thus we have the following.

▶ Corollary 20. There exists a list of at most k(k+ 2)n cuts that contains a minimum st-cut
for any s, t ∈ V with κ(s, t) ≤ k.

We can combine these bounds with the trivial data structure. The combined data
structure will include a a list of cuts, a V × V matrix, and for each matrix entry (s, t) the
number min{κ(s, t), k+ 1} and a pointer to an st-cut in the list. We can answer in O(1) time
pcutk(s, t) queries using list of size O(kn) and cutk(s, t) queries using list of size O(k2n).
This proves the second part of Theorem 3.

For the first part of Theorem 3 we combine our bounds with the Hsu-Lu [7] data structure.
Recall that this data structure has two ingredients:

An ordered partition P = (S1, S2, . . .) of V .
A directed graph H = (V, F ) such that every Si has at most 2k − 1 neighbors in H, and
all of them are in Si+1 ∪ Si+2 ∪ · · · ; this implies that |F | ≤ (2k − 1)n.
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Figure 2 Illustration to the proof of Lemma 21.

Then κ(s, t) ≥ k + 1 iff s, t belong to the same part, or st ∈ F , or ts ∈ F . Overall, this data
structure can be implemented using O(kn) space and answers pconk(s, t) queries in O(1)
time.

We augment this data structure by adding to each part S ∈ P a data structure for subset
k-S-connectivity, with a unified cut list as in Theorem 19; we add Theorem 2 data structure
if |S| ≥ 3k, and the trivial data structure (an S × S matrix) if |S| < 3k.

The dominating space of the combined data structure is O(k2n), due to storing the
Theorem 19 cut list; other parts need substantially lower space. Ignoring the space of the
cut list, subset k-connectivity data structures for S ∈ P with |S| ≥ 3k need total space∑

S∈P O(|S|) = O(n). For |S| < 3k the trivial data structure has space O(|S|2) = O(k|S|).
It is not hard to see that the worse case is when there are Θ(n/k) parts in P of size Θ(k)
each. Thus the total space invoked by parts with |S| < 3k is also O(n). Finally, the space
required to store F is O(|F |) = O(kn).

Now we observe that a collection of such data structures for each k′ = 1, . . . , k + 1
enables to find min{κ(s, t), k + 1} in O(log k) time, using binary search. Once k′ = κ(s, t) is
determined, we can also answer any cutk(s, t) query in O(1) time. The dominating space of
this data structure is O(k3n), due to storing the Corollary 20 cut list.

This concludes the proof of Theorem 2, except that we need to prove Theorem 19, which
we will do in the rest of this section.

For a biset A let ψ(A) = |∂A| + |δ(A)|. Here we will say that A is an st-tight biset if A
is an st-biset and ψ(A) = κ(s, t). Note that then ∂A ∪ δ(A) is a minimum st-cut, and that
for any minimum st-cut Q there exists an st-tight biset A with ∂A ∪ δ(A) = Q. It is known
that the function ψ satisfies the submodular inequality ψ(A) + ψ(B) ≥ ψ(A ∩ B) + ψ(A ∪ B),
and (by symmetry) also the co-submodular inequality ψ(A) + ψ(B) ≥ ψ(A \ B) + ψ(B \ A).

It is known that if A,B are both st-tight then so are A∩B,A∪B. Let Cst denote the (unique)
inclusion minimal st-tight biset. For s ∈ S let Ts = {t ∈ V : κ(s, t) ≤ k, |Cst| ≤ |Cts|}. Let
Cs be the family of all inclusion minimal bisets in the family {Cst : t ∈ Ts}. Let C = ∪s∈SCs.
One can verify that for any s, t ∈ V with κ(s, t) ≤ k, C contains and st-biset or a ts-biset
C with ψ(C) ≤ k. We will show that |Cs| ≤ 2k + 1 for all s ∈ V . For that, we need the
following lemma.

▶ Lemma 21. Let A = Csa and B = Csb be distinct bisets in Cs. Then a ∈ ∂B or b ∈ ∂A.

Proof. Suppose to the contrary that a /∈ ∂B and b /∈ ∂A. If one of a, b is in A∗ ∩ B∗, say
a ∈ A∗ ∩B∗ (see Fig. 2(a)), then A ∪ B is an sa-biset and A ∩ B is an sb-biset.Thus

κ(s, a) + κ(s, b) = ψ(A) + ψ(B) ≥ ψ(A ∩ B) + ψ(A ∪ B) ≥ κ(s, b) + κ(s, a) .

Hence equality holds everywhere, so A ∩ B is sb-tight. This contradicts the minimality of B.
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Else, a ∈ A∗ ∩B and b ∈ B∗ ∩A (see Fig. 2(b)). Then A \ B is a bs-biset and B \ A is an
as-biset.Thus

κ(s, a) + κ(s, b) = ψ(A) + ψ(B) ≥ ψ(A \ B) + ψ(B \ A) ≥ κ(b, s) + κ(a, s) .

Hence equality holds everywhere, so A \ B is as-tight and B \ A is bs-tight. This implies
|Csa| > |Cbs| and |Csb| > |Cas|, and we get the contradiction |Csa|+ |Csb| > |Cbs|+ |Cas|. ◀

▶ Lemma 22. |Cs| ≤ 2k + 1 for all s ∈ V .

Proof. The proof is similar to the one of Lemma 6. Construct an auxiliary directed graph
H on node set Ts and edge set {ab : a ∈ ∂Csb}. Note that if H has no edge between a and b
then Csa = Csb. The indegree of every node in H is at most k. Thus by the same argument
as in Lemma 6 we get that the underlying graph of H is (2k + 1)-colorable, and thus Ts can
be partitioned into at most 2k + 1 independent sets. For each independent set T ′, the family
{Cst : t ∈ T ′} consists of a single biset. ◀

This concludes the proof of Theorem 19, and thus also of Theorem 3.

5 Decomposition of node connectivity into element connectivity

Recall that given a set S ⊆ V of terminals, The element connectivity between s, t ∈ S is the
maximum number of pairwise element disjoint st-paths, where elements are the edges and the
nodes in V \ S. Let κS

G(s, t) denote the st-element-connectivity in G. By Menger’s Theorem,
κS

G(s, t) equals the minimum size |C| of a set C of elements with C ∩ S = ∅ such G \ C has
not st-path. It is easy to see that κS

G(s, t) ≥ κG(s, t), and that an equality holds iff there
exists a minimum st-cut C with C ∩ S = ∅. We thus will consider the following problem:
given a family C of subsets of V , find a “small” family S of subsets of V such that for every
s, t ∈ V and C ∈ C with s, t /∈ C, there is S ∈ S with s, t ∈ S and C ∩ S = ∅; following
[2], we will call such a family C-resilient. The objective can be also to minimize

∑
S∈S |S|.

Chuzhoy and Khanna [2] showed that if {C ⊂ V : |C| ≤ k} is the family of all subsets of
size ≤ k, then there exists a C-resilient family S of size |S| = O(k3 lnn). They also gave a
randomized polynomial time algorithm for finding such S. The number of subsets of size ≤ k

is
(

n
k

)
≈ nk, while the relevant family in our case – as in Corollary 20, has a much smaller

size |C| ≤ k(k+ 2)n. We will consider the case of an arbitrary family C ⊆ {C ⊆ V : |C| ≤ k},
and prove the following.

▶ Lemma 23. Let C be a family of sets of size at most k each on a groundset V of size n.
Then there exists a C-resilient family S of O(k2 ln(n|C|)) subsets of V of size r = n−k

k+1 each.
Furthermore, assigning to each set in A = {S ⊆ V : |S| = r} probability ∆ = 1/

(
n−k−2

r−2
)

and
applying randomized rounding 4 ln(n|C|) times gives such S w.h.p.

Proof. If n ≤ 3k + 1, then the subsets of V of size 2 is a family as required of size 3k(3k+1)
2 ,

so assume that n ≥ 3k + 2.
Let A = {S ⊆ V : |S| = r} and B = {({s, t}, C) : s, t ∈ V,C ∈ C}. Define a bipartite

graph with sides A,B by connecting S ∈ A to ({s, t}, C) ∈ B if s, t ∈ S and C ∩ S = ∅; in
this case we will say that S covers ({s, t}, C). This defines an instance of the Set Cover
problem, where A are the sets and B are the elements. The lemma says that there exists a
cover S ⊆ A of B that has size |S| = O(k2 log(n|C|)).

A fractional cover of B is a function h : A −→ [0, 1] such that∑
{h(S) : S ∈ A covers ({s, t}, C)} ≥ 1 ∀({s, t}, C) ∈ B .
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The value of a fractional cover h is
∑

S∈A h(S). It is known that if there is a fractional
cover of value τ , then there is a cover of size τ(1 + ln |B|). We have |B| = n(n−1)

2 |C|, hence
ln |B| ≤ 2 ln(n|C|) − ln 2 and ⌈2 ln |B|⌉ ≤ 4 ln(n|C|).

Our next goal is to show that there is a fractional cover of value O(k2). We have |A| =
(

n
r

)
.

The number of sets in A that cover a given member ({s, t}, C) ∈ B is ∆ =
(

n−k−2
r−2

)
, which

is the number of choices of a set S \ {s, t} of size r − 2 from the set V \ (C ∪ {s, t}) of size
n− k− 2. Defining h(S) = 1/∆ for all S ∈ A gives a fractional cover of value |A|/∆. Denote
m = n− k. Then:

|A|
∆ =

(
n
r

)(
m−2
r−2

) = m(m− 1)
r(r − 1) · n!

(n− r)! · (m− r)!
m! ≤ m2

(r − 1)2

r∏
i=1

n− i+ 1
m− i+ 1 .

Note that for 1 ≤ i ≤ r we have n−i+1
m−i+1 = 1 + n−m

m−i+1 ≤ 1 + k
n−k−r . Let us choose r such that

k
n−k−r = 1

r , so r = n−k
k+1 ; assume that r is an integer, as adjustment to floors and ceilings

only affects by a small amount the constant hidden in the O(·) term. Since (1 + 1/r)r ≤ e

we obtain
r∏

i=1

n− i+ 1
m− i+ 1 ≤

(
1 + 1

r

)r

≤ e .

Since we assume that n ≥ 3k + 2, we have n−k
k+1 ≥ 2 and thus m

r−1 ≤ 2(k + 1). Consequently,
we get that |A|

∆ · (1 + ln |B|) = O(k2 ln(n|C|)). This implies that a standard greedy algorithm
for Set Cover, produces the required family of size O

(
k2 lnn|C|

)
. There is a difficulty

to implement this algorithm in time polynomial in n (unless r = n−k
k+1 is a constant), since

|A| =
(

n
r

)
may not be polynomial in n. Thus we use a randomized algorithm for Set

Cover, by rounding each entry to 1 with probability determined by our fractional cover.
It is known that repeating this rounding 2⌈ln |B|⌉ ≤ 4 ln(n|C|) times gives a cover w.h.p.,
and clearly its expected size is 2⌈ln |B|⌉ times the value of the fractional hitting set. In our
case, h(S) = 1/∆ = 1/

(
n−k−2

r−2
)

for all S ∈ A. Thus we just need to assign to each set in A
probability 1/∆, and apply randomized rounding 4 ln(n|C|) times. ◀

Applying Lemma 23 on the family C as in as in Corollary 20, that has size |C| ≤ k(k+2)n,
we get that that there exists a C-resilient family S of O(k2 ln(n|C|)) = O(k2 lnn) subsets of
V of size r = n−k

k+1 each. On the other hand, if |C| is the family of all subsets of V of size k,
then |C| =

(
n
k

)
< (ne/k)k and we get the bound O(k2 ln(n|C|)) = O(k3 lnn) of Chuzhoy and

Khanna [2].
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Abstract
We study the online balanced graph re-partitioning problem (OBGR) which was introduced by Avin,
Bienkowski, Loukas, Pacut, and Schmid [2] and has recently received significant attention [16, 12,
13, 10, 4] owing to potential applications in large-scale, data-intensive distributed computing. In
OBGR, we have a set of ℓ clusters, each with k vertices (representing processes or virtual machines),
and an online sequence of communication requests, each represented by a pair of vertices. Any
request (u, v) incurs unit communication cost if u and v are located in different clusters (and zero
otherwise). Any vertex can be migrated from one cluster to another at a migration cost of α ≥ 1. We
consider the objective of minimizing the total communication and migration cost in the competitive
analysis framework. The only known algorithms (which run in exponential time) include an O(k2ℓ2)
competitive [2] and an O(kℓ2O(k)) competitive algorithm [4]. A lower bound of Ω(kℓ) is known [16].
In an effort to bridge the gap, recent results have considered beyond worst case analyses including
resource augmentation (with augmented cluster capacity [2, 13, 12]) and restricted request sequences
(the learning model [13, 12, 16]).

In this paper, we give deterministic, polynomial-time algorithms for OBGR, which mildly exploit
resource augmentation (i.e. augmented cluster capacity of (1 + ε)k for arbitrary ε > 0). We improve
beyond O(k2ℓ2)-competitiveness (for general ℓ, k) by first giving a simple algorithm with competitive
ratio O(kℓ2 log k). Our main result is an algorithm with a significantly improved competitive ratio
of O(kℓ log k). At a high level, we achieve this by employing i) an ILP framework to guide the
allocation of large components, ii) a simple “any fit” style assignment of small components and iii) a
charging argument which allows us to bound the cost of migrations. Like previous work on OBGR,
our algorithm and analysis are phase-based, where each phase solves an independent instance of
the learning model. Finally, we give an Ω(αkℓ log k) lower bound on the total cost incurred by any
algorithm for OBGR under the learning model, which quantifies the limitation of a phase-based
approach.
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1 Introduction

Modern data intensive applications which are distributed across data centers or clusters
generate a large amount of network traffic [21, 18, 3]. To enable efficient communication
among processes or virtual machines that may be dispersed in these clusters, many dis-
tributed systems are increasingly re-configurable and demand-aware [5]. Since inter-cluster
communication can incur significant cost due to physical distance and limited bandwidth,
clusters may strategically migrate processes to reduce the cost of communication, subject to
cluster capacity constraints. The online balanced graph re-partitioning (OBGR) problem,
introduced by Avin, Bienkowski, Loukas, Pacut, and Schmid [2], is an algorithmic investig-
ation of trade-offs between migration and inter-cluster communication in an environment
where the sequence of communication requests is unknown or hard to predict.
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In OGBR, we are given ℓ clusters (representing servers or data centers), each holding
at most k vertices (representing processes or virtual machines), and an online sequence of
edges (representing communication requests). The algorithm maintains a partition of the
vertices among the ℓ clusters so that each set of the partition contains at most k vertices.
The communication cost of serving a request (u, v) is 0 if u and v are in the same cluster
and 1, otherwise. Prior to serving any request, an algorithm has the option of migrating any
vertex from one cluster to another for a migration cost of α ∈ Z+. Given an online sequence
σ of requests, the cost incurred by an (online) algorithm A, denoted by c(A, σ) is the sum of
the communication costs and migration costs over σ. Let OPT (σ) denote the cost incurred
by an optimal offline algorithm, which knows σ in advance. We measure the performance of
the algorithm in terms of the (strict) competitive ratio which is the minimum value of ρ > 0
such that for any input sequence σ and a fixed constant τ > 0 (independent of the length of
σ) we have c(A, σ) ≤ ρ ·OPT (σ) + τ . We usually refer to OPT (σ) as OPT when σ is clear
from context.

The static version of balanced graph partitioning and its variants are well studied [14,
20, 15, 1]. In this problem, given a weighted graph on a set V of n vertices and an integer
ℓ, the goal is to partition V into vertex sets V1, ...., Vℓ such that the total weight of edges
of the form (u, v) where u ∈ Vi, v ∈ Vj , j ̸= i is minimized. The problem is NP-hard and
even hard to approximate within a finite factor. Note that for k = 2, this corresponds to
maximum matching and for ℓ = 2, this reduces to the minimum bisection problem which is
already NP-hard [11]. Several approximation and bi-criteria approximation algorithms are
known [9, 8, 6, 7] (for a discussion of results, see [2]). Since balanced graph partitioning is
NP-hard in the static setting, exponential time competitive algorithms have been considered
in the online setting [2, 16, 13]. Note that a balanced partition of the graph induced by the
entire request sequence may not necessarily correspond to the optimal offline algorithm’s
strategy since this strategy overlooks the initial assignment of vertices in clusters (and thus,
the migration cost required to mimic a balanced partition), the length of the sequence and
its evolution over time. On the other hand, there is an approximation-preserving polynomial
time reduction from the static version of OBGR to the offline version of OBGR that repeats
the edges of the hard static instance sufficiently many times to derive a hard offline instance.
Since the offline problem is unlikely to admit any known polynomial time optimal algorithms,
beyond worst-case analysis has been employed to study competitiveness and running times
of OBGR. We briefly discuss two such settings in which OBGR has been studied.

Resource Augmentation

In the resource augmented setting, an (1 + ε)-augmented online algorithm is granted (1 + ε)k
capacity on each cluster for some constant ε > 0, and its performance is compared with the
optimal offline algorithm with capacity exactly k per cluster. This is similar in vein to the
offline bi-criteria versions of the offline balanced graph partitioning problem [6, 7] where the
algorithm is required to partition V into ℓ clusters that minimizes the weighted sum of cut
edges, such that the number of excess vertices assigned to any cluster is at most δk for some
δ > 0. The cost of an algorithm’s obtained partition is compared to the cost of an optimal
partition of V in which clusters are assigned exactly k vertices. We note that resource
augmentation has been studied extensively in online algorithms (e.g., see [17, 24, 25]), and
goes back as far as the earliest work on caching [22].
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Constrained Input

A special case of OBGR that has been recently considered is the so-called learning model,
introduced by Henzinger, Neumann, Räcke, and Schmid [12] and studied later in [4, 16]. In
this model, the online sequence satisfies the condition that there exists a feasible assignment of
vertices to clusters without any inter-cluster requests in the sequence. Thus, upon executing
such an assignment of vertices, any algorithm incurs zero cost. In other words, an online
algorithm in this model is required to learn an optimal partitioning of V into k clusters
with no inter-cluster edges. In contrast to the general model (i.e. with an arbitrary request
sequence), the learning model focuses only on migration costs.

1.1 Related work
OBGR without resource augmentation

In [2], an O(k2ℓ2) upper bound and an Ω(k) lower bound are established on the competitive
ratio of any deterministic algorithm for OBGR without resource augmentation. The lower
bound has been improved to Ω(kℓ) in recent work by Pacut, Parham, and Schmid [16]. The
special cases of k = 2 (online re-matching problem) and k = 3 have also been studied [2, 16].
In very recent work, Bienkowski, Böhm, Koutecký, Rothvoß, Sgall, and Veselý [4] give an
O(kℓ2O(k))-competitive algorithm for OBGR, which is optimal for constant k.

OBGR with resource augmentation

The Ω(k) lower bound of [2] holds even when the algorithm is allowed an arbitrary amount
of resource augmentation as long as ℓ ≥ 2 and all vertices do not fit into a single cluster. The
main result of [2] is an O(k log k)-competitive deterministic algorithm for OBGR with (2+ε)k
augmented cluster capacity for ε ∈ (0, 1). Very recently, Forner, Räcke, and Schmid [10] give
a polynomial time deterministic O(k log k)-competitive algorithm in the same setting.

The learning model

In [16], the authors present a tight Θ(kℓ) bound for the best deterministic competitive ratio
in the learning model without resource augmentation. Moreover, they show that a lower
bound of Ω(ℓ) holds even in the (1 + ε)-augmented setting for ε < 1/3. Henzinger, Neumann
and Schmid [13] introduced the learning model of OBGR and give a O((ℓ log ℓ log n)/ε)-
competitive algorithm and a lower bound of Ω(1/ε + log n) assuming (1 + ε)k augmented
capacity for ε ∈ (0, 1/2). In more recent work, [12] establishes tight bounds of Θ(log ℓ + log k)
and Θ(ℓ log k) on the best competitive ratio of randomized and deterministic algorithms,
respectively, for the learning model with resource augmentation.

Summarizing, for deterministic competitive ratios, the best known upper bound for
OBGR is O(k2ℓ2) without resource augmentation and O(k log k) with (2 + ε)-augmentation,
while the best known lower bound is Ω(kℓ) without resource augmentation and Ω(k + ℓ log k)
with (1 + ε)-augmentation for ε < 1/3.

1.2 Our results
In this paper, we give online deterministic (1 + ε)-augmented algorithms for OBGR in
the general model, for an arbitrary constant ε > 0. We first observe that a ρ-competitive
algorithm for OBGR in the learning model can be used to get a ρkl-competitive algorithm
in the general model. The proof is deferred to Appendix A.

ESA 2022
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▶ Observation 1. Any ρ-competitive algorithm for OBGR in the learning model can be
transformed to a O(ρkℓ)-competitive algorithm for OBGR in the general model.

Using the (1 + ε)-augmented deterministic O(ℓ log k)-competitive algorithm of [12] for
the learning model, Observation 1 immediately yields (1 + ε)-augmented deterministic
O(kℓ2 log k)-competitive and randomized O(kℓ(log k + log ℓ))-competitive algorithms for the
general model. The algorithm of [12] for the learning model is quite sophisticated and relies
on an intricate analysis. In Section 3, we give an alternative simpler algorithm for the general
model referred to as AS , which admits a direct analysis and attains the same competitive
ratio.

▶ Theorem 2. There exists a deterministic, polynomial time, (1+ε)-augmented O(kℓ2 log k)-
competitive algorithm for OBGR in the general model, for arbitrary constant ε > 0.

Our main result, given in Section 4, is a polynomial time deterministic (1 + ε)-augmented
O(kℓ log k)-competitive algorithm AG, for constant ε > 0; the competitive ratio nearly
matches the lower bound of Ω(kℓ) without resource augmentation [16]. Under resource
augmentation, our algorithm is optimal for constant k while for constant ℓ it is within a
O(log k) factor of the optimal (following from the lower bound of Ω(k+ℓ log k) in the resource
augmented setting). For many applications in which k is usually large (such as distributed
communication between nodes placed in cloud servers), our algorithms have near-linear
instead of an exponential [4] or quadratic [2] dependence on k in previous work.

▶ Theorem 3. There exists a deterministic, polynomial time (1 + ε)-augmented O(kℓ log k)-
competitive algorithm for OBGR in the general mode, for arbitrary constant ε > 0.

The algorithm of Theorem 3 is a “phase-based” algorithm in which each phase solves OBGR
in the learning model. The key component of our proof is an upper bound of O(αkℓ log k)
on the total cost of the algorithm in the learning model, starting from an arbitrary initial
assignment of vertices. It is natural to ask whether this bound can be improved since any
improvement would also yield an improved competitive ratio for OBGR in the general model.
The following lower bound, which can be derived from a lower bound instance of [12], rules
this out, thus presenting a limitation of a phase-based analysis approach.

▶ Theorem 4. For any online deterministic (resp., randomized) algorithm with (1 + ε)-
augmentation for the learning model where ε > 0 is an arbitrary constant, there exists a
sequence of requests for which the cost (resp., expected cost) is Ω(αkℓ log k).

1.3 Overview of techniques
We highlight the main techniques we use to get a significantly improved competitive ratio
for OBGR in the general model. Our algorithms partition the online sequence of requests
into contiguous phases, and keep track of the graph induced by the communication requests
within a phase. In particular, the algorithms ensure that during any phase all vertices in a
connected component of the graph associated with the phase are assigned to the same cluster.
On any request (u, v) where u is in component P1 and v in P2, P1 and P2 are merged into
Pm and subsequently co-located. Components are classified as small or large based on a
threshold size Dk where D = Θ(ε2).

For the algorithm AS , if Pm is large, we solve an ILP to guide the assignment of large
components. Small components may also need to be reassigned. If Pm is small, P1 is migrated
to P2’s cluster as long as there is enough space. If that is not possible, small components are
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reassigned. We ensure that the maximum assigned volume on any cluster is (1 + ε
4 )k after

the ILP is solved or small components are reassigned. By definition, large component merges
happen only O(1) times while at least εk

4 total volume of small components is successfully
migrated between any two small component reassignments. Using a charging argument, we
show that every vertex can be charged at most O(ℓ log k) before an optimal offline algorithm
incurs a cost of 1 during that phase, yielding Theorem 2.

The approach for algorithm AG is as follows. Each small component assigned to a cluster
is allocated a volume which is within a (1 + ε

4 ) factor of the component size. Once a large
component is created during a phase, successive assignments of large components created by
any merge are handled by ILP used in AS . We note that our ILP is similar to that of [12]
and we follow their approach to invoke a result on sensitivity analysis of ILPs [19], which
limits the change in assignments when a large component is created. This is not sufficient to
establish Theorem 3, however, since small components can be completely displaced leading
to high migration cost after every merge. Interestingly, we show that a simple “any fit”
strategy for small components coupled with a charging argument is sufficient to bound the
total migration cost by O(kℓ log k).

Finally, to establish the lower bound of Theorem 4, we show that for any competitive
algorithm A there exists a request sequence composed of Ω(log k) batches of requests and an
initial assignment which is Ω(kℓ) far apart from A’s assignment such that A incurs cost at
least Ω(αkℓ) on every batch.

2 Preliminaries

In this section, we present some definitions and high-level structure of our algorithms, which
will be useful throughout the paper. Let [n] denote the set of integers {1, 2, .., n}. Let V

denote the set of n = kℓ vertices. Let C denote the set of ℓ clusters. Each cluster C ∈ C
is initially assigned exactly k vertices. A request is an unordered pair of vertices (u, v). A
connected component Pi induced by a sequence of requests is the maximal set of vertices such
that for any u ∈ Pi there exists v ∈ Pi s.t. (u, v) was a request in the sequence. The volume
of any component Pi is its size |Pi|. Our algorithms maintain a set of connected components
P = {P1, P2, ..P|P|} where Pi ⊆ V for all i and

⋃|P|
i=1 Pi = V . Initially, P = {{u}|u ∈ V } i.e.

the set of singleton vertices. We refer to a request (ut, vt) with ut ∈ P1 and vt ∈ P2 as an
inter-cluster request (between P1 and P2) if P1 and P2 are assigned to different clusters at
the start of time t.

Large and small components

Both our algorithms organize components into classes based on their volumes. A component
P is in class i if |P | ∈ [(1 + ε

4 )i−1, (1 + ε
4 )i). A component is small if it belongs to a

class i where i ≤ cs = ⌊ 4
ε ln( ε2k

32 ) − 2⌋ where cs denotes the number of small component
classes. Hence, a component is small if it has volume at most Dk where D < ε2

32 < ε
4 and

large otherwise. Note that the number of large component classes, denoted by cl satisfies
cl ≤ 4+ε

ε ln( 1
D ) + 2 = O(1). A large component P is understood to be in (large) component

class i if it is in class i + cs. We assume ε ≥ 4
k . For any cluster C, we use V (C), VS(C),

and VL(C) to denote the total volume of all, small, and large components, assigned to C,
respectively.

ESA 2022
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Phase-based algorithms

Both our algorithms are phase-based: they divide the sequence of requests into phases, and
treat each phase as an independent sequence of requests.

▶ Definition 5 (Phase). A phase p of a sequence σ of requests is a maximal contiguous
subsequence of σ such that there exists a feasible assignment of the set of large components
induced by p to clusters in C satisfying the constraint that the total volume of large components
assigned to any cluster is at most (1 + ε

4 )k.

A request sequence can be naturally partitioned into consecutive phases. Our algorithms
begin a phase by setting P to the set of singletons and an assignment of vertices to clusters
such that every cluster C ∈ C is assigned exactly k vertices. For all phases p and all Pi ∈ P
where P is the set of components induced by p, vertices in Pi are assigned to the same cluster.
Note that OPT increases by 1 per phase. For the sake of exposition, we give our algorithms
for the case when α = 1. In Appendix B, we show that a simple refinement of our algorithms
handles the case when α > 1, without asymptotically affecting the competitive ratios.

Merge cases

After any request, (u, v) between components P1 and P2 (where w.l.o.g., |P1| ≤ |P2|) which
are merged to form Pm, our algorithms consider two merge cases: small, when P1, P2 and
Pm are small, and large when Pm is large. A merge is viewed as a deletion of components
P1, P2 and an insertion of Pm.

3 An O(kℓ2 log k)-competitive algorithm

In this section, we present AS , an O(kl2 log k)-competitive algorithm. The algorithmic and
analytic techniques developed play a key role in the improved algorithm AG of Section 4.

We describe how AS executes during any phase. Recall that for any inter-cluster
request, our algorithm considers two merge cases. For both the cases, AS calls subroutine
Balance-Small to migrate and re-assign small components. For the large merge case, AS

calls subroutine Reassign-Large to solve an integer linear program (ILP) and guide the
placement of large components. The ILP has a constant number of variables and constraints
and hence can be solved in constant time. To present the ILP, we first introduce the notion
of a signature, which encodes the number of large components of each class assigned to a
cluster.

▶ Definition 6 (Signature). A signature τ = (τ1, τ2, ..., τcl
) for a cluster C ∈ C is a non-

negative vector of dimension cl where τi is the number of large components of class i that
can be assigned to C such that Dk

∑cl

i=1(1 + ε
4 )i−1τi ≤ k.

▶ Lemma 7 (Upper bound on number of signatures). The number of possible signatures for
any cluster C is O(( 1

ε2 )cl).

Proof. Let τ be a possible signature. Note that τi ≤ k
Dk = O( 1

ε2 ) for all i ∈ [cl]. Therefore,
the total number of different signatures is O(( 1

ε2 )cl). ◀

3.1 The ILP
We describe the ILP which is agnostic to the assignment of small components. Let T =
{T1, T2, . . . , } denote the set of all possible signatures where w.l.o.g., T1 is the all-zeroes
vector. Let Tij denote the jth entry of signature Ti. From Lemma 7, |T | = O(1). For each
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signature, Ti let variable xi ∈ [0, ℓ] denote the number of clusters assigned a signature Ti.
Furthermore, let κj ∈ [0, ⌈ ℓ

D ⌉] denote the total number of class j large components. The ILP
is as follows.

|T |∑
i=1

Tijxi = κj for all j

|T |∑
i=1

xi = ℓ xi ∈ [0, ℓ] for all i (1)

In matrix form, the ILP has nr = O(ln(1/ε2)) = O(1) rows and nc = O(|T |) = O(1) columns.
Thus, the ILP can be solved in polynomial time. The following lemma shows that the total
volume of large components assigned to any cluster never exceeds cluster capacities by more
than an ε

4 factor.

▶ Lemma 8 (Total volume of large components). Let τ denote the assigned signature to
cluster C according to which large components are assigned to C. Then, VL(C) < (1 + ε

4 )k.

Proof. We note that VL(C) < (1 + ε
4 )Dk

∑cl

i=1(1 + ε
4 )i−1τi ≤ (1 + ε

4 )k. ◀

Next, we give subroutines Balance-Small and Reassign-Large.

Algorithm Balance-Small.

1: for each cluster C ∈ C s.t. V (C) > (1 + ε
4 )k:

2: while V (C) > (1 + ε
4 )k:

3: Migrate a small component P from C to C1 where C1 ← arg min
C2∈C

V (C2).

Algorithm Reassign-Large.

1: Solve ILP (1) to obtain solution x.
2: if ILP is infeasible: return NULL.
3: Unmark all clusters C ∈ C and all large components in P.
4: for i ∈ [|T |]:
5: for r ∈ [xi]:
6: Assign signature Ti to an unmarked cluster C, and mark C.
7: for j ∈ [cl]:
8: Assign an unmarked large component P of class j to C and mark P .
9: Migrate P , if necessary.

If large components are assigned according to the subroutine Reassign-Large, then
VL(C) ≤ (1 + ε

4 )k for all C ∈ C which follows from Lemma 8. On the other hand, if
VL(c) ≤ (1 + ε

4 )k for all C ∈ C and Balance-Small is run, V (C) ≤ (1 + ε
4 )k thereafter. The

latter follows since D < ε
4 and there always exists a cluster C1 such that V (C1) ≤ k.

3.2 The algorithm
For a request (ut, vt) where ut ∈ P1, vt ∈ P2, the algorithm AS proceeds as follows.

Proof Theorem 2. We bound the total migration cost incurred by the algorithm AS during
a phase. For the large merge case, the migration cost is bounded by kℓ. To pay for this cost,
we charge each vertex in Pm a cost at most ℓ

D . Every vertex can be charged O(cℓ) times in
this manner within any phase, since a component size is bounded by k. For all kℓ vertices,
this gives a total charge of O( kℓ2

D ) = O(kℓ2).

ESA 2022
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Algorithm AS .
Input: Distinct components P1 and P2 in clusters C1 and C2, respectively; |P1| ≤ |P2|

1: Merge P1 and P2 into Pm and update P,PS and PL accordingly.
2: if C1 ̸= C2 :
3: if Pm is small: ▷ Small merge case
4: Assign Pm to C2.
5: if V (C2) ≤ (1 + ε

2 )k: Migrate all vertices of P1 from C1 to C2.
6: else: Run Balance-Small.
7: else: ▷ Large merge Case
8: Run Reassign-Large.
9: if Reassign-Large returns NULL: Start a new phase.

10: else: Run Balance-Small.

For the small merge case, there are two cases. If V (C2) ≤ (1 + ε
2 )k, then each vertex

in P1 is charged unit cost. Any vertex can be charged at most O(log k) in this way since
|Pm| ≥ 2|P1| yielding a total charge of O(kℓ log k). If V (C2) > (1 + ε

2 )k the migration cost
incurred due to Balance-Small is at most kℓ. Let X denote the set of vertices that migrated
to C2 since the last invocation of Balance-Small. Then, |X| > εk

4 . Each vertex in X is
charged 4ℓ

ε . Note that any vertex can be a vertex can be included in such a set X only
O(log k) times before it is part of a large component. For all kℓ vertices, this charge sums to
O( kℓ2 log k

ε ). Thus, the total amount charged to all vertices during a phase is O(kℓ2 log k),
completing the proof of the theorem. ◀

4 An O(kℓ log k)-competitive algorithm

In this section, we present algorithm AG. A major shortcoming of AS is that a cost of
Ω(kℓ2) can be incurred for both small and large merge cases. For a large merge case, AG

addresses this by ensuring that the total volume O(k) large components migrated is O(k)
by employing a sensitivity analysis. The O(kℓ log k)-competitiveness of AG crucially hinges
on bounding the migration cost of small components after a large merge case by O(k). To
this end, we give a simple “any-fit” assignment procedure for small components. Effectively,
the algorithm guarantees that the the total migration cost for both merge cases is O(|Pm|),
which can be charged to Pm. This yields the desired competitive ratio.

The pseudo code of Algorithm AG is given below. The algorithm executes as follows.
At any given time, the algorithm maintains the property that the volume assigned to every
class i component is given by (1 + ε

4 )i. Thus, the total assigned volume for a cluster C

overestimates the total volume of components assigned to C by a (1 + ε
4 ) factor. For the

large merge case, an ILP is solved to handle assignment of large components similarly to AS .
The assignment of large components is completely independent of small components. Thus,
the reassignment of large components can displace small components. A displacement of
small component P is viewed as a deletion and successive (re)insertion of P . In the next
section, we give a procedure to handle the large merge case and show that the total volume
of large components migrated is O(k) if Pm is large.

4.1 Handling large components
To handle the large merge case, we use ILP (1). Additionally, we employ a well known bound
on the sensitivity of optimal ILP solutions.
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Algorithm AG.
Input: Components P1 and P2 in clusters C1, C2 of class i, j respectively; i ≤ j.

1: Merge P1 and P2 into Pm and update P,PS and PL respectively.
2: if Pm is large ▷ Large merge case (see Section 4.1)
3: Solve ILP(1).
4: Run algorithm Assign Signatures and let C′ ⊆ C be the set of clusters whose

signatures changed.
5: for all C ∈ C′

6: for all P ∈ PS assigned to C

7: if U(C) < ⌈|P |⌉(1+ ε
4 )

8: Assign and migrate P to C3 ∈ C where U(C3) ≥ ⌈|P |⌉(1+ ε
4 ).

9: U(C3)← U(C3)− ⌈|P |⌉(1+ ε
4 ).

10: else
11: U(C)← U(C)− ⌈|P |⌉(1+ ε

4 ). ▷ The assignment of P remains unchanged
12: else ▷ Small merge case (see Section 4.2)
13: if (1 + ε

4 )j ≥ |P1|+ |P2|
14: Migrate vertices of P1 to C2.
15: else
16: if U(C2) ≥ (1 + ε

4 )m − (1 + ε
4 )j

17: Migrate vertices of P1 to C2.
18: U(C2)← U(C2)− (1 + ε

4 )m + (1 + ε
4 )j .

19: else
20: Migrate vertices of Pm to C3 where U(C3) ≥ (1 + ε

4 )m.
21: U(C3)← U(C3)− (1 + ε

4 )m.

▶ Theorem 9 (reproduced verbatim from [19]). Let A be an integral nr ×nc matrix, such that
each subdeterminant of A is at most ∆ in absolute value; let b′ and b” be column nr-vectors,
and let c be a row nc-vector. Suppose max{cx|Ax ≤ b′ : x integral} and max{cx|Ax ≤ b” :
x integral} are finite. Then for each optimum solution z′ of the first maximum there exists an
optimum solution z” of the second maximum such that ∥z′ − z”∥∞ ≤ nc∆(∥b′ − b”∥∞ + 2).

Following the merge, the RHS vector in our ILP changes by at most 1 in the infinity
norm. To bound the sub-determinant, we use the Hadamard inequality to derive that
∆ ≤ n

nc/2
c A

nc/2
max , where Amax denotes the maximum entry (in absolute value) of the constraint

matrix A. Each entry in the constraint matrix of our ILP has value either 1 or Tij so that
Amax ≤ k

Dk = O(1/ε2). As a result, ∆ = O((|T |/ε2)|T |). Thus, the optimal solution to the
ILP changes by O(|T |∆) in the infinity norm. Since x has dimension |T | the number of
signatures which change between any two optimal solutions is O(|T |2∆).

Assigning signatures to clusters

Let x = (x1, ..., x|T |) denote the optimal solution obtained after solving the ILP. The
procedure Assign Signatures greedily assigns signatures to clusters. Following greedy
assignment of signatures, large components are migrated between clusters whose assigned
signatures changed to reflect new component assignments. The pseudo code is given as
follows.

▶ Lemma 10. The number of clusters whose assigned signatures change whenever a large
component is created is O(|T |2∆) = O(1).
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Algorithm Assign Signatures.

1: Unmark all clusters C ∈ C.
2: C′ ← ∅
3: for i = 1 to |T |:
4: zi = xi.
5: while zi ̸= 0:
6: if there is an unmarked cluster C which has assigned signature Ti

7: Mark C.
8: else
9: Pick an arbitrary unmarked cluster C, assign it signature Ti.

10: Mark C and set C′ ← C′ ∪ {C}.
11: zi ← zi − 1.
12: PC′ ← {P | P ∈ PL and P is assigned to some C ∈ C′}.
13: for C ∈ C′ ▷ Migrate large components to reflect the change in signature.
14: τ ← assigned signature of C.
15: for i ∈ [cl]
16: for j ∈ [τi]
17: P ← class i component in PC′ .
18: Assign P to C and migrate if necessary.
19: PC′ ← PC′\{P}.

U(C)← (1 + ε)k −AL(C).

Proof. The greedy procedure ensures that at most O(|T |∆) clusters previously assigned
a signature Ti for i ∈ [|T |] are subsequently assigned a new signature. Thus, at most
O(|T |2∆) = O(1) clusters change their assigned signatures. ◀

4.2 Handling small components

In this section, we give a simple procedure to assign small components. This procedure is
used for both small and large merge cases. In the latter case, small components may need to
be re-assigned due to displacements following a re-assignment of large components. Each
small component P of class i is allocated volume exactly (1 + ϵ

4 )i on a cluster to which it
is assigned, i.e. the allocated volume of a component is equal to ⌈|P |⌉(1+ ϵ

4 ) where ⌈x⌉(1+ ϵ
4 )

denotes the value x rounded up to the nearest multiple of (1+ ϵ
4 ). We introduce some notation.

Let AL(C) and AS(C) denote volume allocated to large and small components respectively
on a cluster C ∈ C. Let PS(C),PL(C) ⊆ PS denote the set of small and large components
respectively assigned to a cluster C. Note that AL(C) = Dk

∑cl

i=1 τi(1 + ϵ
4 )i where τ is the

signature assigned to C. If P does not have any large components, then AL(C) = 0 for all
C ∈ C. Moreover, AS(C) =

∑
P ∈PS(C)⌈|P |⌉1+ ϵ

4
. We define the unallocated volume U(C) of

cluster C ∈ C as U(C) = (1 + ϵ)k −AL(C)−AS(C).

A small component P of class i which is currently unassigned, is assigned to an arbitrary
cluster C whose unallocated volume U(C) is greater than (1 + ϵ

4 )i. Note that such a cluster
C must always exist since otherwise this implies that the total volume of components exceeds
kl, a contradiction. Below, we outline the assignment of small components.
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Small merge case

Consider the small merge case in which components P1 and P2 of class i (resp. j) currently
assigned to C1 (resp. C2) are merged into Pm of class m. W.l.o.g., let i ≤ j. If (1 + ϵ

4 )j ≥
|P1| + |P2|, vertices of P1 are migrated to C2. In this case, m = j. On the other hand, if
m ̸= j there are two cases to consider. If U(C2) ≥ (1 + ϵ

4 )m− (1 + ϵ
4 )j then vertices of P1 are

migrated to C2. Else, vertices in P1 ∪P2 are migrated to cluster C3 where U(C3) ≥ (1 + ϵ
4 )m.

In all cases, Pm is allocated a volume of (1 + ϵ
4 )m.

Handling displacements

Consider the large merge case in which re-assignment of large components may displace small
components. Each small component P assigned to a cluster C whose signature changes after
a large merge is assigned to a cluster C ′ where U(C ′) ≥ (1 + ϵ

4 )i. Since only O(1) clusters
change signatures, the total volume of small components displaced is bounded by O(k).

Proof of Theorem 3. The migration cost of large and small merge cases is analyzed sep-
arately. For the large merge case, it follows by Lemma 10 that the total volume of large
components migrated is O(k), since the assigned signatures change for only O(1) clusters.
Let C′ ⊆ C denote the set of clusters whose signatures changed. The total volume of small
components assigned to C′ is bounded by O(k). As a result, the total migration cost to
reassign both small and large components is O(k) which is charged uniformly to all vertices
in Pm. Since Pm is large, each vertex in Pm is charged O(1). Noting that the number of
large component classes, cℓ = O(1), the total amount charged to all vertices during the time
they are part of large components is bounded by O(kℓ).

For the small merge case involving components P1 and P2 (assigned to C1 and C2
respectively), we consider two types of charges. If U(C2) is sufficient, vertices of the smaller
component P1 are migrated to C2, and the migration cost of |P1| is charged to vertices in P1.
Each vertex can be charged O(log k) many times in this manner before it is part of a large
component. For all vertices, this type of charge amounts to O(kℓ log k). On the other hand,
if U(C2) is insufficient and vertices in P1 ∪ P2 are migrated, the migration cost of O(|Pm|) is
charged to all vertices in Pm. However, in this case m > j. Since cs = O(log k), the total
charge of this type for all vertices across the phase is O(kℓ log k).

As a result, the total migration cost during a phase for both small and large cases during
any phase is bounded by O(kℓ log k). ◀

5 Lower bound for the learning model with arbitrary assignment

In this section, we give a lower bound for any deterministic or randomized algorithm for the
learning problem in which the initial assignment of vertices by an offline-optimal algorithm
AOP T and an online algorithm can be arbitrary. Our argument follows an approach implicit
in an Ω(log k) lower bound established in [12] for randomized OBGR in the learning model.

Let ΓA = (V1, V2, ..., Vℓ) , where Vi ⊆ V and |Vi| = k for all i ∈ [ℓ] denote an initial
assignment of vertices to clusters that an algorithm A begins with. The initial assignment
of vertices that the algorithm AOP T begins with is analogously defined and denoted by
Γ′

OPT = (V ′
1 , V ′

2 , ..., V ′
ℓ ). Let π : [ℓ] → [ℓ] denote a permutation of integers in [ℓ] and Π

denote the set of all such permutations. Define d(ΓA, ΓOP T ) = min
π∈Π

∑ℓ
i=1 |Vπ(i)\V ′

π(i)| as
the initial distance between vertex assignments that A and AOP T begin with respectively.
Note that d(ΓA, ΓOP T ) ≤ kl. In the learning problem with arbitrary assignments, the initial
distance can be arbitrary. We prove the following result.
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▶ Theorem 4. For any online deterministic (resp., randomized) algorithm with (1 + ε)-
augmentation for the learning model where ε > 0 is an arbitrary constant, there exists a
sequence of requests for which the cost (resp., expected cost) is Ω(αkℓ log k).

Proof. Let A denote an algorithm that begins with an initial assignment ΓA. We show that
there exists an assignment ΓOPT satisfying d(ΓA, ΓOP T ) = Θ(kl) such that A incurs at least
Ω(kl log k) while AOP T incurs no cost. The idea is to construct a sequence σ composed of
batches Bj of requests for j = Ω(log k) such that A incurs cost Ω(kl) on each batch. For the
sake of the proof, let k be a power of 2. We assume ϵ < ℓ− 1 is a constant and l ≥ 2.

We give some terminology which will be useful. Let Pi denote the set of components
induced by the set of requests ∪i

j=1Bj . Within any batch, we define a saturating sequence
of requests between components P1 and P2 as a sequence of requests of the form (u, v)
where u ∈ P1, v ∈ P2 for vertices u and v which are not currently co-located by A. By
definition a saturating sequence of requests terminates once P1 and P2 are co-located by A.
Let C0 = {{u}|u ∈ V denote the set of singletons before A services the first request.

For the first batch of requests B1, each singleton component {u} is paired with another
component {v} such that u and v are not co-located by A under the initial assignment ΓA.
For all such pairs {u}, {v}, B1 consists of the union of all saturating sequence of requests
between {u} and {v} until they are co-located. If at any point in time while the current batch
of requests is being served, A does not co-locate any pair of components P1, P2, a saturating
sequence of requests is issued between P1 and P2. Observe that for A to be competitive, A
must co-locate all request pairs. Moreover, P1 consists of kℓ

2 components of size 2.
For any batch Bj for j > 1, we proceed similarly. Each component P of size k

2j−1 is
paired with another component Q such that P and Q are not co-located by A before any
request in batch Bj is issued. Thereafter, for all pairs of components P and Q, a saturating
sequence of requests is issued. Once all pairs have been co-located, the next batch of requests
Bj+1 is served.

Note that since requests are issued between only two components of similar size with
size less than k at any given time, there exists an assignment ΓOPT = (V ′

1 , V ′
2 , ...., V ′

k) which
satisfies that for any u, v ∈ V ′

i for all i ∈ [ℓ], no request of the form (u, v) was included in σ.
Thus, AOP T incurs zero cost.

On the other hand, the migration cost incurred by A on any batch of requests Bj is
Ω(kℓ). To this end, note that for all j ∈ [log k], Pj−1 consists of exactly kℓ

2j−1 components,
each of size 2j−1. At any point where batch Bj is issued, A utilizes at least kℓ

(1+ϵ)k = Ω(ℓ)
clusters to assign components. Thus, there exist Ω( kℓ

2j−1 ) pairs of components that are not
co-located by A and communication requests during batch Bj necessitate migration of at
Ω( kℓ

2j−1 ) components each of size 2j−1. Thus, the total migration cost incurred by A to
service Bj is Ω(αkℓ). For all Ω(log k) batches, this amounts to Ω(αkℓ log k).

A similar approach can be employed to construct a probability distribution over re-
quest sequences for which every deterministic algorithm incurs an expected cost of at least
Ω(αkℓ log k). From Yao’s minimax principle [23], this yields a lower bound on the expected
cost of any randomized algorithm. The distribution of requests is as follows. As above, the
sequence proceeds in batches. The probability distribution for a batch is dependent on the
components constructed in the preceding batch. For every batch Bj , two components P

and Q of size 2j−1 are selected at random. Next, all possible requests are issued between
vertices in P (resp. Q) and repeated Ω(α) times. Then, requests of the form (u, v) where
u ∈ P, v ∈ Q are issued for all possible u, v and repeated Ω(α) times. This is repeated for
batch Bj until there are no components of size 2j−1. It can be shown that for any batch
the expected total cost for any deterministic algorithm is Ω(αkℓ). Since there are Ω(log k)
batches, this yields the desired Ω(αkℓ log k) lower bound, thus completing the proof. ◀
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A From learning to the general model

▶ Observation 1. Any ρ-competitive algorithm for OBGR in the learning model can be
transformed to a O(ρkℓ)-competitive algorithm for OBGR in the general model.

Proof. We give an a ρkl-competitive algorithm A for OBGR in the general model using the
ρ-competitive algorithm AL as a subroutine. We say an assignment Γ : V → C is perfect if
every cluster is assigned exactly k vertices. The algorithm partitions the request sequence into
phases, and treats each phase as an independent sequence of requests. Here, the definition of
a phase is slightly different: phase p of σ is a maximal sub-sequence of requests such that
there exists a perfect assignment of vertices which satisfies the property that for all (u, v) ∈ p,
Γ(u) = Γ(v), i.e. u and v are assigned to the same cluster. Before a new phase begins, A sets
P to the set of singletons and migrates vertices so that every cluster has exactly k vertices.
During a phase p, A simply simulates AL; AL starts with the same assignment of vertices as
A at the beginning of p. Let AOP T denote an offline-optimal algorithm.

It is easy to observe that the cost incurred by AOP T increases by at least 1 in every
phase. We claim that A incurs a cost no more than ρkℓ. To this end, suppose A incurred a
cost more than ρkℓ. Consider an algorithm which an identical assignment of vertices as A at
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the beginning of phase p and immediately moves to a perfect assignment Γ of vertices such
that for any (u, v) ∈ p, Γ(u) = Γ(v) and incurs no cost thereafter throughout p. The cost of
this algorithm is at most kℓ which contradicts that AL is ρ-competitive. ◀

B The case of general α

In this section, we show how to adapt our algorithms which were given for α = 1 to arbitrary
α without a degradation in the asymptotic competitive ratio.

▶ Theorem 11. Let A ∈ {AS ,AG} denote a O(ρ) competitive algorithm for OBGR for
α = 1, where ρ = Ω(kℓ log k). Then, A can be modified to an O(ρ) competitive algorithm
AM to handle the case of arbitrary α.

Proof. In the case of arbitrary α, merging of two components is beneficial only when sufficient
number of requests have been encountered between them. Let w(Pi, Pj) denote the number
of requests of the form (ut, vt) between components Pi and Pj where ut ∈ Pi, vt ∈ Pj during
a phase. AM initializes a phase by setting P to the set of singletons and w({u}, {v}) = 0
for all u, v ∈ V . For components Pi and Pj where w.l.o.g. |Pi| ≤ |Pj |, AM merges them
into Pm when w(Pi, Pj) ≥ α|Pi|. For every component Pr ̸= Pi, Pj , w(Pm, Pr) is set to
w(Pi, Pr) + w(Pj , Pr). Due to this reason, it is possible Pr may become eligible to be merged
with Pm. A request (ut, vt) is special if it leads to one or more component merges.

During any phase, AM works as follows: on any request (ut, vt) between components Pi

and Pj it first increments w(Pi, Pj). Next, it determines whether the request is special. If it
is special, AM simulates A on this request. Note that if Pi ad Pj are in the same cluster,
then nothing needs to be done besides updating data structures and merging Pi and Pj into
Pm. However, if this makes a component Pr eligible to be merged with Pm, AM creates an
artificial request (uA, vA) where uA ∈ Pm, vA ∈ r and simulates the action of A on (uA, vA).
Recursive component merges are handled similarly. A phase of AM ends whenever a phase
of A ends. Note that requests to A only consist of special and artificial requests.

We bound the total communication and migration cost incurred by AM during a phase.
Since A incurs a cost of O(ρ) per phase, the migration cost of AM is bounded by O(αρ). We
claim the communication cost per phase of AM is O(αkℓ log k). For this purpose, consider
charging any vertex in a small component Pi a cost of α whenever Pi is merged with Pj .
This is sufficient to bound the total communication cost, which is α|Pi| incurred due to
communication between vertices in Pi and Pj . Thus, every vertex is charged O(α log k) per
phase yielding a total communication cost of O(αkℓ log k).

To lower bound the cost of an optimal offline algorithm during the phase, note that either
it migrated a vertex or not. If a vertex was migrated during the phase, then OPT ≥ α. On
the other hand, if no vertex was migrated, a communication cost of at least α must have
been incurred. To see why, note that at the termination of the phase, the ILP 1 solved by A
determines that no feasible solution exists. Each edge in the graph that A maintains during
the phase corresponds to at least α paid communication requests handled by AM . Thus, for
both cases OPT ≥ α per phase.

This yields O(ρ+kℓ log k) competitiveness. Since ρ = Ω(kℓ log k), the theorem follows. ◀
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Abstract
Coresets are among the most popular paradigms for summarizing data. In particular, there exist
many high performance coresets for clustering problems such as k-means in both theory and practice.
Curiously, there exists no work on comparing the quality of available k-means coresets.

In this paper we perform such an evaluation. There currently is no algorithm known to
measure the distortion of a candidate coreset. We provide some evidence as to why this might be
computationally difficult. To complement this, we propose a benchmark for which we argue that
computing coresets is challenging and which also allows us an easy (heuristic) evaluation of coresets.
Using this benchmark and real-world data sets, we conduct an exhaustive evaluation of the most
commonly used coreset algorithms from theory and practice.
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1 Introduction

The design and analysis of scalable algorithms has become an important research area over
the past two decades. This is particularly important in data analysis, where even polynomial
running time might not be enough to handle proverbial big data sets. One of the main
approaches to deal with the scalability issue is to compress or sketch large data sets into
smaller, more manageable ones. The aim of such compression methods is to preserve the
properties of the original data, up to some small error, while significantly reducing the
number of data points.

Among the most popular and successful paradigms in this line of research are coresets [40].
Informally, given a data set A, a coreset Ω ⊂ A with respect to a given set of queries Q and
query function f : A × Q → R≥0 approximates the behaviour of A for all queries up to some
multiplicative distortion D via supq∈Q max

(
f(Ω,q)
f(A,q) , f(A,q)

f(Ω,q)

)
≤ D. Coresets have been applied

to a number of problems such as computational geometry [2, 9], linear algebra [30, 34],
and machine learning [36, 41]. But the by far most intensively studied and arguably most
successful applications of the coreset framework is the k-clustering problem.
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Here we are given n points A with (potential unit) weights w : A → R≥0 in some metric
space with distance function dist and aim to find a set of k centers C such that

costA(C) := 1
n

∑
p∈A

min
c∈C

w(p) · distz(p, c)

is minimized. The most popular variant of this problem is probably the k-means problem in
d-dimensional Euclidean space where z = 2 and dist(x, y) =

√∑d
i=1(xi − yi)2.

A (k, ε)-coreset is now a subset Ω ⊂ A with weights w : Ω → R≥0 such that for any set
of k centers C

sup
C

max
(

costA(C)
costΩ(C) ,

costΩ(C)
costA(C)

)
≤ 1 + ε. (1)

The coreset definition in Equation (1) provides an upper bound for the distortion of all
candidate solutions i.e., all possible sets of k centers. A weak coreset is a relaxed guarantee
that holds for optimal or nearly optimal clusterings of A instead of all clusterings.

In a long line of work spanning the last 20 years [4, 8, 10, 14, 15, 19, 20, 26, 25, 27,
29, 8, 33, 44], the size of coresets has been steadily improved with the current state of the
art yielding a coreset with Õ(kε−2 · min(d, k, ε−2)) points for a distortion D ≤ (1 + ε) due
to [13]1.

While we have a good grasp of the theoretical guarantees of these algorithms, our
understanding of the empirical performance is somewhat lacking. There exist a number of
coreset implementations, but it is usually difficult to assess which implementation summarizes
the data best. To accurately evaluate a given coreset, we would need to come up with a k

clustering C which results in a maximal distortion. Solving this problem is likely difficult:
related questions such as deciding whether a 3-dimensional point set A is an ε-net of a set B

with respect to convex ranges is co-NP hard [24].
Due to this difficulty, a common heuristic for evaluating coresets is as follows [1, 22].

First, compute a coreset Ω with the available algorithm(s) using some input data A. Then,
run an optimization algorithm on Ω to compute a k clustering. The best coreset algorithm is
considered to be the one which yields a clustering with the smallest cost.

This practice has substantial drawbacks. The first is that this evaluation method conflates
the two separate tasks of coreset construction and optimization. It is important to note
that the first step of virtually all coreset algorithms is a low-cost (bicriteria) constant factor
approximation, i.e. a solution with β · k clusters that costs at most α · OPT, where OPT is
the cost of an optimal k clustering. Given that this initial solution has an α approximation to
the cost, a routine calculation shows that the additive error of the coreset, i.e. the maximum
difference |costA(C) − costB(C)| over all solutions C is at most O(α)·costA(C). In particular,
in the case that the initial bicriteria approximation has α ≪ 2, which is not too difficult to
achieve with more than k centers, any γ approximation algorithm will find solutions with
approximation factor O(γ + α) · OPT. In particular, the distortion may be unbounded, for
example if B only consists of the k centers, while simply returning B itself yields a low cost
clustering. Thus, it is difficult to measure coreset quality in this way.

The second drawback is that this practice will mainly measure the performance of the
optimization algorithm, rather than the performance of the coreset algorithms. During its
execution it might simply not consider any solution with high distortion. For example, if the

1 We use Õ(x) to hide logc x terms for any constant c.
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approximation factor γ of the solution returned by the algorithm is large then this solution
(as well as any even higher cost solution considered during the algorithm’s execution) will
have a low distortion.

The third drawback of this evaluation method is that it does not consider the main use
cases of coresets, nor the full power of their guarantee. Indeed, if speeding up the computation
of an optimization algorithm, one would hardly need a strong coreset; approximating the cost
of every candidate solution, as weaker coreset definitions (or indeed a bicriteria approximation)
would be suitable as well. A coreset’s main and most powerful feature is composability, i.e.
given two disjoint point sets X and Y , the union of a coreset of X and a coreset of Y is a
coreset. Composability is what enables coresets to scale to massively parallel computation
models and enables simple streaming algorithms via the merge and reduce technique. To
which degree a coreset is composable is generally not a property of an optimal clustering of
the point set, as optimal solutions CX of X or CY of Y may have little in common with an
optimal solution of X ∪ Y .

The purpose of this study is to systematically evaluate the quality of various coreset
algorithms for k-means. As such, we develop a new evaluation procedure which estimates
the distortion of coreset algorithms. On real-world data sets, we observe that while the
evaluated coreset algorithms are generally able to find solutions with comparable costs, there
is a stark difference in their distortions. This shows that differences between optimization
and compression are readily observable in practice.

As a complement to our evaluation procedure on real-world data sets, we propose a
benchmark framework for generating synthetic data sets. We argue why this benchmark has
properties that results in hard instances for all known coreset constructions. We also show
how to efficiently estimate the distortion of a candidate coreset on the benchmark.

2 Coreset Algorithms

Though the algorithms vary in details, coreset constructions come in one of the following
two flavours:
1. Movement-based constructions: Such algorithms compute a coreset Ω with T points

given some input point set A such that costΩ(C) ≪ OPT, where OPT is the cost of an
optimal k-means clustering of A. The coreset guarantee then follows as a consequence
of the triangle inequality. These algorithms all have an exponential dependency on the
dimension d, and therefore have been overtaken by sampling-based methods. Nevertheless,
these constructions are more robust to various constrained clustering formulations [28, 43]
and continue to be popular. Examples from theory include [23, 26].

2. Importance sampling: Points are sampled proportionate to their impact on the cost
of any given candidate solution. The idealized distribution samples proportionate to the
sensitivity which for a point p is defined as sens(p) := supC

minc∈C dist2(p,c)
costA(C) and weighted

by their inverse sampling probability. The sensitivities are hard to compute exactly but
much work exists on how to find other distributions with very similar properties. In terms
of theoretical performance, sensitivity sampling has largely replaced movement-based
constructions, see for example [19, 33].

Of course, there exist algorithms that draw on techniques from both, see for example [15].
In what follows, we will survey implementations of various coreset constructions that we will
evaluate later.

StreamKM++ [1]. The popular k-means++ algorithm [3] computes a set of centers K

by iteratively sampling a point p in A proportionate to minq∈K dist2(p, q) and adding it to
K. The procedure terminates once the desired number of centers has been reached. The
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first center is typically picked uniformly at random. The StreamKM++ paper runs the
k-means++ algorithms for T iterations, where T is the desired coreset size. At the end, every
point q in K is weighted by the number of points in A closest to it. While the construction
has elements of importance sampling, the analysis is largely movement-based. The provable
bound required for the algorithm to compute a coreset is O

(
k log n
δd/2εd · logd/2 k log n

δd/2εd

)
. Despite

its simplicity, its running time compares unfavourably to all other constructions.

BICO [22]. BICO combines the very fast, but poor quality clustering algorithm BIRCH [47]
with the movement-based analysis from [23, 26]. The clustering is organized by way of a
hierarchical decomposition: When adding a point p to one of the coreset points Ω at level i,
it first finds the closest point q in Ω. If p is too far away from q, a new cluster is opened
with center at p. Otherwise p is either added to the same cluster as q, or, if adding p to q’s
cluster increases the clustering cost beyond a certain threshold, the algorithm attempts to
add p to the child-clusters of q. The procedure then continues recursively. The provable
bound required for the algorithm to compute a coreset is O

(
kε−d−2 log n

)
.

Ray Maker [25]. The algorithm computes an initial solution with k centers which is a
constant factor approximation of the optimal clustering. Around each center, O(1/ϵd−1)
random rays are created which span the hyperplane. Next, each point p ∈ A is snapped to its
closest ray resulting in a set of one-dimensional points associated with each ray. Afterwards, a
coreset is created for each ray by computing an optimal 1D clustering with k2/ϵ2 centers and
weighing each center by the number of points in each cluster. The final coreset is composed
of the coresets computed for all the rays. The provable bound required for the algorithm to
compute a coreset is O(k3 · ε−d−1). The algorithm has recently received some attention due
to its applicability to the fair clustering problem [28].

Sensitivity Sampling [19]. The simplest implementation of sensitivity sampling first com-
putes an (O(1), O(1)) bicriteria approximation2, for example by running k-means++ for 2k

iterations [46]. Let K be the 2k clustering thus computed and let Ki be an arbitrary cluster of
K with center qi. Subsequently, the algorithm picks points proportionate to dist2(p,q)

costKi
({qi}) + 1

|Ki|

and weighs any point by its inverse sampling probability. Let |K̂i| be the estimated number
of points in the sample. Finally, the algorithm weighs each qi by (1 + ε) · |Ki| − |K̂i|. The
provable bound required for the algorithm to compute a coreset is Õ

(
kdε−4)

([19]), Õ
(
kε−6)

([29]), or Õ
(
k2ε−4)

([8]).

Group Sampling [15]. First, the algorithm computes an O(1) approximation (or a bicriteria
approximation) K. Subsequently, the algorithm preprocesses the input into groups such that
(1) for any two points p, p′ ∈ Ki, their cost is identical up to constant factors and (2) for
any two clusters Ki, Kj , their cost is identical up to constant factors. In every group, Group
Sampling now samples points proportionate to their cost. The authors of [15] show that there
always exist a partitioning into log2 1/ε groups. Points not contained in a group are snapped
to their closest center q in K. q is weighted by the number of points snapped to it. The
provable bound required for the algorithm to compute a coreset is Õ

(
kε−2 min(d, k, ε−2)

)
([13]). While this improves over sensitivity sampling, it is generally slower and not as easy to
implement.

2 An (α, β) bicriteria approximation computes an α approximation using β · k many centers.
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Finally, we note that some of the more popular algorithms in theory have not been
mentioned here. For example, Chen’s [10] construction is particularly popular among
theoreticians. The Group Sampling algorithm by [15] is an extension and improvement
of Chen’s method. Thus, the performance of Group Sampling is also indicative of Chen’s
algorithm.

Dimension Reduction

Finally, we also combine coreset constructions with a variety of dimension reduction techniques.
Starting with [17], a series of results [4, 5, 6, 7, 12, 16, 20, 21, 32, 37, 44] explored the possibility
of using dimension reduction methods for k-clustering, with a particular focus on principal
component analysis (PCA) and random projections. The seminal paper by Feldman, Schmidt,
and Sohler [20] was the first to use dimension reduction to obtain smaller coresets for k-
means. Movement-based coresets in particular often have an exponential dependency on the
dimension, which can be alleviated with some form of dimension reduction, both in theory [43]
and in practice [31]. There are essentially two main dimension reduction techniques for
coresets.

Principal Component Analysis. Feldman, Schmidt, and Sohler [20] showed that projecting
an input A onto the first O(k/ε2) principal components is a coreset. This coreset still
consists of n points, but they now lie in low dimension. The analysis was subsequently
tightened by [12] and extended to other center-based cost functions by [44]. Although its
target dimension is generally worse than those based on random projections and terminal
embeddings, there is nevertheless reasons for using PCA regardless: It removes noise and
thus may make it easier to compute a high quality coreset. For more applications of PCA to
k-means clustering, we refer to

Terminal Embeddings. Given a set of points A in RD, a terminal embedding f : RD → Rd

preserves the pairwise distance between any point p ∈ A and any point q ∈ RD up to a
(1 ± ε) factor. The statement is related to the famous Johnson-Lindenstrauss lemma but
it is stronger as it does not apply to only the pairwise distances of A. Nevertheless, the
same target dimension is sufficient. Terminal embeddings were studied by [11, 18, 35, 42],
with Narayanan and Nelson [42] achieving an optimal target dimension of O(ε−2 log n),
where n is the number of points. We note that terminal embeddings, combined with an
iterative application of the coreset construction from [8], can reduce the target dimension
to a factor Õ(ε−2 log k). This is mainly of theoretical interest, as in practice the deciding
factor wrt the target dimension is the precision, rather than dependencies on log n and
log k. For applications to coresets, we refer to [4, 15, 29]. For an empirical evaluation of
random projections, which form the basis of all known terminal embeddings, we refer to
Venkatsubramanian and Wang [45].

3 Benchmark Construction

In this section, we describe our benchmark. We start by describing the aims of the benchmark,
followed by giving the construction. Our aim is to generate a data set containing many
clusterings with the following properties.
1. The benchmark has many clusterings that, in a well defined sense, are highly dissimilar.

Specifically, we want the overlap between any two clusters of different clusterings to be
small.
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2. The different clusterings have very similar and low cost. This ensures that despite the
solutions being different in terms of composition and center placement, a good coreset
has to consider them equally regarding distortion.

3. The clusterings are induced by a minimal cost assignment of input points to a set of
centers in Rd. This final property ensures that the coreset guarantee has to apply to
these clusterings.

To generate the benchmark, we now use the following construction. The benchmark has
a parameter α which controls the number of points and dimensions of the generated data
instance. For a given value of k, the benchmark instance consists of n = kα points and
d = α · k dimensions, i.e. we will construct and n × d matrix A where every row corresponds
to an input point and every column corresponds to one of the dimensions.

Let 1k be the k-dimensional all-one vector and v1
i be the k-dimensional vector with

entries (v1
i )j =

{
− 1

k if i ̸= j
k−1

k if i = j
. For ℓ ≤ α, recursively define the kℓ dimensional vector

vℓ
i = vℓ−1

i ⊗ 1k, where ⊗ denotes the Kronecker product, i.e. vℓ−1
i ⊗ 1k =


(vℓ−1

i )1 · 1k

(vℓ−1
i )2 · 1k

...
(vℓ−1

i )1 · 1k

.

Finally, set the t-th column of A, for t = a · k + b, a ∈ {0, . . . α − 1} and b ∈ {1, . . . k}, to be
1kα−a+1 ⊗ va+1

b .
To get a better feel for the construction, we have given two small example instances for

k = 2 and k = 3 in Figue Figure 1.
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Figure 1 Benchmark construction for k = 2 and α = 3 (left) and k = 3 and α = 2 (right).

Properties of the Benchmark

We now summarize the key properties of the benchmark. To this end, we require a few
notions. Let A be the input matrix. We slightly abuse notation and refer to Ai as both the
ith point as well as the ith row of the matrix A. For a clustering C = {C1, . . . , Ck}, we define

that the n × k indicator matrix X̃ induced by C via X̃i,j =
{

1 if Ai ∈ Cj

0 else.
Furthermore, we

will also use the n × k normalized clustering matrix X defined as Xi,j =


1√
|Ci|

if Ai ∈ Cj

0 else.
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We also recall the following lemma which will allow us to express the k-means cost of a
clustering C with optimally chosen centers in terms of the cost of X and A.

▶ Lemma 1 (Folklore). Let A be an arbitrary set of points and let µ(A) = 1
|A|

∑
p∈A p be the

mean. Then
∑

p∈A ∥p − c∥2 = |A| · ∥µ(A) − c∥2 +
∑

p∈A ∥p − µ(A)∥2 for any point c.

This lemma proves that for any given cluster Cj , the mean is the optimal choice of center.
We also note that any two distinct columns of X are orthogonal. Furthermore 1

n 11T A copies
the mean into every entry of A. Combining these two observations, we see that the matrix
XXT A maps the ith row of A onto the mean of the cluster it is assigned to. Finally, define
the Frobenius norm of an n × d A by ∥A∥F =

√∑n
i=1

∑d
j=1 A2

i,j . Then the k-means cost of
the clustering C is precisely ∥A − XXT A∥2

F .

We also require the following distance measure on clusterings as proposed by Meila [38, 39].
Given two clusterings C and C′, the k × k confusion matrix M is defined as Mi,j = |Ci ∩ C ′

j |.
Furthermore for the indicator matrices X̃ and X̃ ′ induced by C and C′ we have the identity
M = X̃T X̃ ′. Denote by Πk the set of all permutations over k elements. Then the distance
between C and C′ is defined as d(C, C′) = 1 − 1

n max
π∈Πk

∑k
i=1 Mi,π(i). Observe that for clusters

that are identical, their distance is 0. The maximum distance between any two k clusterings
is always k−1

k .
The solutions we consider are given as follows. For the columns a · k + 1, . . . (a + 1) · k,

we define the clustering Ca = {Ca
1 , . . . Ca

k } with Ai ∈ Ca
j if and only if Ai,j > 0. Let X̃a and

Xa denote the indicator matrix and clustering matrix, respectively, as induced by Ca. These
clusterings satisfy the properties we stated at the beginning of this section, that is:
1. The distance between these clustering is 1 − 1

k , i.e. it is maximized.
2. The clusterings have equal cost and the centers in each clustering have equal cost.
3. The clusterings are induced by a set of centers in Rd.

Benchmark Evaluation

We now describe how we use the benchmark to measure the distortion of a coreset. Assume
for now that the coresets are subsets of the original input points. The extension to coresets
that do not consist of input points is described at the end of this section.

Consider the clustering Ca = {Ca
1 , . . . Ca

k } for some a and let Ω with weights w : Ω → R≥0
be the coreset and let δ > 0 be a parameter. Note that there are α many such clusterings,
for each value of a. We use w(Ca

i ∩ Ω) :=
∑

p∈Ca
i

∩Ω w(p) to denote the mass of points of
Ca

i in Ω. For every cluster Ca
i with w(Ca

i ∩ Ω) ≥ |Ci|(1 − δ), we place a center at µ(Ca
i ).

Conversely, if w(Ca
i ∩ Ω) < |Ca

i |(1 − δ), we do not place a center at µ(Ca
i ). We call such

clusters deficient. Let S be the centers of these deficient clusters.
We now compare the cost as computed on the coreset and the true cost of S. Due to

Lemma 1 and the fact that all clusters have equal cost, we may write for any deficient cluster
Ca

i costCa
i
(S) = costCa

j
({µ(Ca

j )}) + kα−1∥µ(Ca
j ) − µ(Ca

h)∥2
2, where Ca

h is a non-deficient
cluster. Thus, the cost is costCa

i
(S) ≈

(
1 + 2

α

)
· costCa

j
({µ(Ca

j )}).
Conversely, the cost on the coreset is

costΩ∩Ca
i
(S) ≈ w(Ca

i ∩ Ω)
costCa

j
({µ(Ca

j )})

(
1 + 2

α

)
· costCa

j
({µ(Ca

j )}).

Thus for each deficient clustering individually, the distortion will be close to kα−1

w(Ca
i

∩Ω) ≥ 1
1−ε .

If there are many deficient clusters, then this will also be the overall distortion. For all
possible (suitably discretized) thresholds for deficiency, i.e. all values of δ, we can now identify
the clustering Ca with a maximum number of deficient clusters and use the aforementioned
construction to get a lower bound on the distortion.
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To extend this evaluation to coresets where the points are not part of the input, we
consider a point p ∈ Ω to be in Ca

i if it is closer to µ(Ca
i ) than to to µ(Ca

j ).

4 Experiments

In this section, we present how we evaluated different algorithms. First, we propose our
evaluation procedure which gauges the quality of coresets. Then, we describe the data sets
used for the empirical evaluation and our experimental setup. Finally, we detail the outcome
of the experiments and our interpretation of the results.

Evaluation Procedure
Accurately evaluating a k-means coreset of a real-world data set requires constructing a
solution (a set of k centers) which results in a maximal distortion. Finding such a solution,
however, is difficult. Instead, we can estimate the quality of a given coreset by finding
meaningful candidate solutions.

A first attempt can be to randomly generate candidate solutions. It is not readily apparent
how to define a distribution of meaningful solutions from which to sample. One could, for
instance, generate k random points inside the convex hull or the minimum enclosing ball
(MEB) of a coreset Ω. Convex hulls in high dimensions are infeasible to compute, so we
sample a center by choosing random convex combination of the centers of the initial bicriteria
approximation computed for every coreset. A better way to generate candidate solutions
turns out to be k-means++, where we sample k points with respect to the k-means++
distribution and use the resulting centers as a solution. The main advantage of this approach
is that k-means++ can uncover natural cluster structures in the data, which uniform sampling
generally does not. For all variants, we generated 5 candidate solutions, where the candidate
solution with the largest distortion being a lower bound for the true distortion of the coreset.

Given the usefulness of evaluating coresets on real-world data sets, it can be tricky to
gauge the general performance of coreset algorithms using only a small selection of data sets.
For this reason, we used our benchmark to complement the evaluation on real-world data
sets. The benchmark accomplishes two important tasks. First, the benchmark allows us to
quickly find a bad solution because both good and bad clusterings are known a priori. It is
unclear how to find bad clusterings for real-world data sets. Second, it is easier to make a fair
comparison of different coreset constructions because the benchmark is known to generate
hard instances for all known coreset algorithms. This cannot be said for real-world data sets.
For the benchmark, we computed the distortion following the evaluation procedure described
in Section 3.

Every randomized coreset construction was repeated 10 times. We aggregated the
reported maximum distortions for every run by taking the average over all 10 evaluations.
It is important to not aggregate the distortions here by taking the maximum over all runs:
If one run of the coreset algorithm fails but the others succeed, then such an aggregation
predicts far worse distortion than what we could typically expect.

Data sets
We conducted experiments on five real-world data sets Census, Covertype, Tower, Caltech,
NYTimes, and four instances of our benchmark. Benchmark instances were generated to
match approximately the sizes of the real-world data sets. The sizes of the considered data
sets are given in Table 1.
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Table 1 The sizes of the real-world datasets used for the experimental evaluation.

Data points Dimensions

Caltech 3,680,458 128
Census 2,458,285 68
Covertype 581,012 54
NYTimes 500,000 102,660
Tower 4,915,200 3

Table 2 The parameter values and the sizes of the benchmark instances used for the experimental
evaluation.

k α Data points Dimensions

10 6 1,000,000 60
20 5 3,200,000 100
30 4 810,000 120
40 4 2,560,000 160

The Census3 dataset is a small subset of the Public Use Microdata Samples from 1990
US census. It consists of demographic information encoded as 68 categorical attributes of
2,458,285 individuals.

Covertype4 is comprised of cartographic descriptions and forest cover type of four wilder-
ness areas in the Roosevelt National Forest of Northern Colorado in the US. It consists of
581,012 records, 54 cartographic variables and one class variable. Although Covertype was
originally made for classification tasks, it is often used for clustering tasks by removing the
class variable [1].

The data set with the fewest number of dimensions is Tower5. This data set consists of
4,915,200 rows and 3 features as it is a 2,560 by 1,920 picture of a tower on a hill where each
pixel is represented by a RGB color value.

Inspired by [22], Caltech was created by computing SIFT features from the images in the
Caltech1016 image database. This database contains pictures of objects partitioned into 101
categories. Disregarding the categories, we concatenated the 128-dimensional SIFT vectors
from each image into one large data matrix with 3,680,458 rows and 128 columns.

NYTimes7 is a dataset composed of the bag-of-words (BOW) representations of 300,000
news articles from The New York Times. The vocabulary size of the text collection is 102,660.
Due to the BOW encoding, NYTimes has a very large number of dimensions and is highly
sparse. To make processing feasible, we reduced the number of dimensions to 100 using
terminal embeddings.

3 https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
4 https://archive.ics.uci.edu/ml/datasets/covertype
5 http://homepages.uni-paderborn.de/frahling/coremeans.html
6 http://www.vision.caltech.edu/Image_Datasets/Caltech101/
7 https://archive.ics.uci.edu/ml/datasets/bag+of+words
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Preprocessing & Experimental Setup

To understand how denoising effects the quality of the outputted coresets, we applied Principal
Component Analysis (PCA) on Caltech, Census, Covertype, and NYTimes by using the
k singular vectors corresponding to the largest singular values. We did not perform any
preprocessing on Tower due to its low dimensionality.

We followed the same experimental procedure with respect to the choice of parameter
values for the algorithms as prior works [1, 22]. For the target coreset size T , we experimented
with T = mk for m = {50, 100, 200, 500}. On Caltech, Census, Covertype, and NYTimes,
we used values k in {10, 20, 30, 40, 50}, while for Tower we used larger cluster sizes k ∈
{20, 40, 60, 80, 100}. On the benchmark, we used k ∈ {10, 20, 30, 40}.

We implemented Sensitivity Sampling, Group Sampling, Ray Maker, and StreamKM++
in C++. The source code can be found on GitHub8. For BICO, we used the authors’
reference implementation9. The source code was compiled with gcc 9.3.0. The experiments
were performed on a machine with Intel Core i9 10940X 3.3GHz 14-Core and 2x DDR4
PC3200 128GB RAM.

Outcome of Experiments

We observed that in the majority of our experiments, varying the coreset sizes does not
significantly change the performance profiles of individual algorithms when comparing them
against each other. Therefore, in the following sections, we focus on a cross-section of the
experiments where m = 200 i.e., coreset sizes T = 200k. For numerical results including
variances of all the experiments and tables containing distortions, costs and running times,
we refer to the full version of this paper.

In Figure 2, we summarized the distortions of the experiments with coreset sizes T = 200k.
All five algorithms are matched on the Tower dataset. The worst distortions across the
algorithms are close to 1, and performance between the algorithms is negligible. The
performance difference between sampling-based and movement-based methods become more
pronounced as the number of dimensions increase. On Covertype with its 54 features, Ray
Maker performs the worst followed by BICO and Group Sampling while Sensitivity Sampling
and StreamKM++ perform the best. Differences in performance are more noticeable on
Census, Caltech, and NYTimes where methods based on importance sampling perform much
better. Sensitivity Sampling and Group Sampling perform the best, StreamKM++ come
in second while BICO and Ray Maker perform the worst across these data sets. On the
Benchmark, Ray Maker is the worst while Sensitivity Sampling and Group Sampling are the
best. StreamKM++ performs also very well compared to BICO.

Interpretation of Experimental Results

Optimization versus Compression. While all five algorithms are equally matched when
optimizing on the candidate coresets, coreset quality performance differ significantly (see Fig-
ure 2). For all data sets, the obtained costs differed insignificantly for all values of k,
irrespective of the coreset algorithm used, while distortions varied strongly, depending on
the coreset algorithm.

8 https://github.com/sheikhomar/eval-k-means-coresets
9 https://ls2-www.cs.tu-dortmund.de/grav/en/bico

https://github.com/sheikhomar/eval-k-means-coresets
https://ls2-www.cs.tu-dortmund.de/grav/en/bico
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Figure 2 The average distortions of the evaluated coreset algorithms with coreset size T = 200k

on five real-world data sets and on four benchmark instances. Black bars indicate standard deviations.
Notice that the axis is non-linear as otherwise the bars for Sensitivity Sampling and Group Sampling
would disappear on the plots as their distortions are close to 1.
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Figure 3 Depicts how clustering costs of five real-world data sets decrease as the number of
centers increase. Plotting the cost curve allows us to study whether we can observe a difference
between coreset construction and optimization in a data set when evaluating a coreset based on cost.

Nevertheless, the cost drop with increasing values of k is a predictor for the quality of
certain coresets. It is not uncommon for the k-means cost of real-world data sets to drop
significantly for larger values of k. Figure 3 illustrates this behavior for several real-world
data sets. The more the curve bends, the less of a difference there is between computing a
coreset and a clustering with low cost. For data sets with an L-shaped cost curve, a coreset
algorithm adding more centers to the coreset will seem to be performing well when evaluating
it based on the outcome of the optimization. Tower is a good example of a data set where
optimization is very close to compression. Its cost curve bends the most which indicates
that adding more centers help reduce the cost. One of the strengths of the benchmark is
that there is no way of reducing the cost without capturing the right subclusters within a
benchmark instance. This means that the cost does not decrease markedly beyond a certain
value of k even if more centers are added.

For BICO, Ray Maker, and StreamKM++, there is a correlation between the steepness
of the cost curve for a data set and the distortion of the generated coreset. On data sets
where the curve is less steep, we observed higher distortions. The effect is more pronounced
for BICO and Ray Maker than for StreamKM++. Importance sampling approaches (Group
Sampling and Sensitivity Sampling) seem to be free from this behavior as they consistently
generate high quality coresets irrespective of the shape of cost curve.

Movement-based versus Sampling-based Approaches. In general, movement-based con-
structions perform the worst in terms of coreset quality. We observed that BICO and
Ray Maker have the highest distortions across all data sets including on the benchmark
instances. Among the sampling-based algorithms, Sensitive Sampling performs well with
Group Sampling generally being competitive. This runs contrary to theory where Group
Sampling has the better (currently known) theoretical bounds. StreamKM++ is an inter-
esting case. Like the movement-based methods, its distortion increases with the dimension.
Nevertheless, it generally performs significantly better than BICO and Ray Maker. This can
be attributed to the fact that the coreset produced by StreamKM++ consists entirely of
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k-means++ centers weighted by the number of points of a minimal cost assignment. This is
similar to movement-based algorithms such as BICO. Nevertheless, it also retains some of
the performance from pure importance schemes.

In practice as well as in theory, the distortion of movement-based algorithms are affected
by the dimension. By comparison, sampling-based algorithms are affected very little. Theor-
etically, there should not exist a difference, as the sampling bounds are independent of the
dimension. What little effect can be observed is likely due to PCA making it easier to find
low cost solutions that form the backbone of all coreset constructions. StreamKM++ is an
interesting case, as it is still affected by the dimension, though less than the other movement
based methods.

A notable exception is the benchmark. Here, sensitivity sampling generally found the
lowest cost clustering, with BICO finding the second lowest cost clustering. This happens
despite BICO generally having a worse distortion than for example Group Sampling or
StreamKM++.

Impact of PCA. On almost all our data sets, the performance improves when input data
is preprocessed with PCA, especially for the movement-based algorithms. Empirically, the
more noise is removed (i.e., small k value), the lower the distortion. Notice that k is the
number of principal components that the input data is projected on to. The rest of the low
variance components are treated as noise and removed. Method utilizing sampling (Group
Sampling, Sensitivity Sampling and StreamKM++) are less effected by the preprocessing
step. On Covertype, PCA does not change the distortions by much because almost all the
variance in the data is explained by the first five principal components. On Caltech and
NYTimes, the quality of the coresets by BICO and Ray Maker improves greatly because the
noise removal is more aggressive. Even if the quality is much better for movement-based
coreset constructions due to PCA, importance sampling methods are still superior when it
comes to the quality of the compression. Summarizing, all methods benefit from PCA, and
in case of movement-based constructions, we consider PCA a necessary preprocessing step.
For the sampling-based methods, the computational expense of using PCA in preprocessing
does not seem justify the comparatively meager gains in coreset distortion.

5 Conclusion

In this work, we studied how to assess the quality of k-means coresets computed by state-of-
the-art algorithms. Previous work generally measured the quality of optimization algorithms
run on the coreset, which we empirically observed to be a poor indicator of coreset quality.
For real-world data sets, we sampled candidate clusterings and evaluated the worst case
distortion on them. Complementing this, we also proposed a benchmark framework which
generates hard instances for known k-means coreset algorithms. Our experiments indicate
a general advantage for algorithms based on importance sampling over movement-based
methods. Despite movement-based methods running on very efficient code, it is necessary
to complement them with rather expensive dimension reduction methods, rendering what
efficiency they might have over importance sampling somewhat moot.

Two results bear further investigation. First, the currently known provable coreset sizes
for Sensitivity Sampling are worse than those provable via Group Sampling. Empirically,
we observed the opposite: While Group Sampling is competitive, Sensitivity Sampling
always outperforms it. Since Group Sampling requires somewhat cumbersome computational
overhead, practical applications should prefer Sensitivity Sampling. In light of these results,
a theoretical analysis for Sensitivity Sampling matching the performance of Group Sampling
would be welcome.
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The second point of interest focuses on the performance of StreamKM++. The distortion
of this algorithm is significantly better than what one would expect from its theoretical
analysis. Empirically, StreamKM++ is notably better than the other movement-based
constructions across all data sets, and especially on high dimensional data. While it is
not competitive to the pure importance sampling algorithms, there are several reasons
for investigating it further. It essentially only requires running k-means++ for additional
iterations, which is already a nearly ubiquitous algorithm for the k-means problem. Although
the other sampling-based coreset algorithms can also be readily implemented, doing so might
be cumbersome. In particular, the theoretically (but not empirically) best algorithm Group
Sampling requires extensive preprocessing steps. This begs the question whether there exist
a better theoretical analysis for StreamKM++.

In addition, StreamKM++ currently weighs each point by the number of points assigned
to it. It may also be possible to improve the performance of the algorithm in both theory
and practice by using a different weighting scheme. We leave this as an open problem for
future research.
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Abstract
A synchronizing word of a deterministic finite complete automaton is a word whose action maps every
state to a single one. Finding a shortest or a short synchronizing word is a central computational
problem in the theory of synchronizing automata and is applied in other areas such as model-based
testing and the theory of codes. Because the problem of finding a shortest synchronizing word is
computationally hard, among exact algorithms only exponential ones are known. We redesign the
previously fastest known exact algorithm based on the bidirectional breadth-first search and improve
it with respect to time and space in a practical sense. We develop new algorithmic enhancements
and adapt the algorithm to multithreaded and GPU computing. Our experiments show that the new
algorithm is multiple times faster than the previously fastest one and its advantage quickly grows
with the hardness of the problem instance. Given a modest time limit, we compute the lengths of
the shortest synchronizing words for random binary automata up to 570 states, significantly beating
the previous record. We refine the experimental estimation of the average reset threshold of these
automata. Finally, we develop a general computational package devoted to the problem, where an
efficient and practical implementation of our algorithm is included, together with several well-known
heuristics.
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1 Introduction

A deterministic finite complete semi-automaton (called simply an automaton) is a 3-tuple
(Q, Σ, δ), where Q is a finite set of states, Σ is an input alphabet, and δ : Q × Σ → Q is a
completely defined transition function. The transition function is naturally extended to a
function Q × Σ∗ → Q. Throughout the paper, by n we denote the number of states in Q

and by k we denote the size of the input alphabet Σ. A word is reset (or synchronizing) if
|δ(Q, w)| = 1; in other words, for every two states p, q ∈ Q we have δ(q, w) = δ(p, w). An
automaton that admits a reset word is called synchronizing.
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The classical synchronization problem is, for a given synchronizing automaton, to find a
reset word. Preferably, this word should be as short as possible. Therefore, the main property
of a synchronizing automaton is its reset threshold, which is the length of the shortest reset
words. We denote the reset threshold by r. Synchronizing automata and the synchronization
problem are known for both their theoretical properties and practical applications.

1.1 Theoretical Developments

On the theoretical side, there is a famous long-standing open problem from 1969 called the
Černý conjecture; see an old [44] and a recent survey [18]. The conjecture claims that the
reset threshold is at most (n− 1)2. If true, the bound would be tight, as the Černý automata
meet the bound for each n [8].

Until 2017, the best known upper bound on the reset threshold was (n3 − n)/6 − 1 ∼
0.1666 . . . n3 +O(n2) (n ≥ 4) [26] by the well-known Frankl-Pin’s bound. The current best
known upper bound is ∼ 0.1654n3 + o(n3) by Shitov [37], which was obtained by refining
the previous improvement ∼ 0.1664n3 + O(n2) by Szykuła [39]. Apart from that, better
bounds were obtained for many special subclasses of automata. Synchronizing automata are
also applied in other theoretical areas, e.g., matrix theory [14], theory of codes [7], Markov
processes [43]. Several new results around the topic appear every year. Recently, a special
journal issue was dedicated to the problem [45] for the occasion of the 50th anniversary of
the problem.

Reset thresholds were also studied for the average case. Berlinkov showed that a random
binary automaton is synchronizing with high probability [5]. Moreover, Nicaud showed that
such an automaton with high probability has a reset threshold in O(n log3 n) [24]. Based
on that, the upper bound O(n3/2+o(1)) on the expected reset threshold of a random binary
automaton was obtained [4]. These studies were accompanied by experiments, and the best
estimation obtained so far was 2.5

√
n− 5 [19].

There were also performed massive experiments directly aimed at verifying the Černý
conjecture and other theoretical properties for automata with small numbers of states
[9, 21, 42]. For all such studies, finding (the length of) a shortest reset word is a crucial
problem.

1.2 Synchronization in Applications

Apart from the theory, the synchronization problem finds applications in practical areas, e.g.,
testing of reactive systems [29, 34], networks [17], robotics [1], and codes [15].

Automata are frequently used to model the behavior of systems, devices, circuits, etc.
The idea of synchronization is natural: we aim to restore control over a device whose current
state is not known or we do not want our actions to be dependent on it. For instance, for
digital circuits, where we need to test the conformance of the system according to its model,
each test is an input word and before we run the next one, we need to restart the device. In
another setting, we are an observer who knows the structure of the automaton but does not
see its current state and wants to eventually learn it by observing the input; once a reset
word appears, the state is revealed unambiguously. See a survey [34] explaining synchronizing
sequences and their generalization to automata with output: homing sequences, which allow
determining the (hidden) current state of the automaton by additionally observing the
generated automaton’s output.
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Another particular application comes from the theory of codes, where finite automata act
as decoders of a compressed input. Synchronizing words can make a code resistant to errors,
since if an error occurs, after reading such a word, decoding is restored to the correct path.
See a book for the role of synchronization in the theory of codes [7] and recent works [6]
explaining synchronization applied to prefix codes.

1.3 Algorithms Finding Reset Words
Determining the reset threshold is computationally hard. The decision problem, whether the
reset threshold is smaller than a given integer, is NP-complete [10], and it remains hard even
for very restrictive classes such as binary Eulerian automata [47]. The functional problems of
computing the reset threshold and a shortest reset word are respectively FPNP[log]-complete
and FPNP-complete [25]. Moreover, approximating the reset threshold is hard even for
approximation factors in O(n1−ε), for every ε > 0 [12]. This inapproximatibility also holds
for subclasses related to prefix codes [33]. On the other hand, there exists a simple general
O(n)-approximating polynomial algorithm [13]. It is open whether there exists a polynomial
algorithm approximating within some sublinear factor, e.g., in O(n/ log n).

From the perspective of fixed-parameter tractability, the main parameter determining the
hardness is the reset threshold itself (and the alphabet size, if not fixed). It plays a similar
role as the number of variables in the SAT problem, yet, in contrast, it is not given but is the
result to be computed. It is trivial to compute the reset threshold in time O(n · kr) simply
by checking all words of length 1, 2, . . . , r (we need O(n) time for computing the image of
a subset of Q under the action of one letter). This essentially cannot be much better, as
assuming the Strong Exponential Time Hypothesis (SETH), the problem cannot be solved
in time O∗((k − ε)r), for every ε > 0 [11, Theorem 8], where O∗ suppresses all polynomial
factors in the size of the input.

Therefore, exponential exact algorithms that hopefully find a shortest reset word faster
in typical or average cases are used. Alternatively, there are many polynomial heuristics
proposed that find a relatively short reset word in practice.

1.3.1 Exact Algorithms
In general, exact algorithms can be used for automata that are not too large. They also play
an important role in testing heuristics, providing the baseline for comparison (e.g., [30]).

The naive algorithm of checking all words is practically slow, as it does not involve any
optimization and works always in time O∗(kr). The standard algorithm, e.g., [23, 34, 42], for
computing a shortest reset word is finding a path of state subsets in the power automaton
(that is, the automaton whose set of states is 2Q) from Q to a singleton. This works in at
most O(kn · 2n) time but is practically faster as we usually traverse through fewer sets. Note
that n may be much smaller than r (we know examples where r can be quadratic in n, e.g.,
[2]), but in the average case it is the opposite. The main drawback of this algorithm is its
requirement of O(2n) space, which is acceptable only up to small n ∼ 30.

Alternative approaches include utilizing SAT solvers [38] by suitable reductions of the
problem and binary search over possible values of r. SAT solvers were also recently tried
for partial deterministic finite automata and careful synchronization [36]. In the reported
results, such solutions reach random binary automata with about 100 states.

The fastest algorithm so far is based on a bidirectional search of the power automaton,
equipped with several enhancements [19, 20]. This algorithm was able to deal with binary
random automata up to 350 states. Despite several later attempts, no faster solutions were
developed and the algorithm was not improved until now.

ESA 2022
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1.3.2 Heuristic Algorithms
The most classic polynomial algorithm is Eppstein’s one [10]. It works in O(n3 + kn2) time
and finds a reset word of length at most (n3 − n)/3 (due to the Frankl-Pin’s bound). Several
heuristic improvements were proposed, e.g., Cycle, SynchroP, and SynchroPL algorithms
[23, 42], which do not improve guarantees but behave better in experimental settings, even
at the cost of increased worst-case time complexity. Recent works also involve attempts to
speed-up heuristics by adapting to parallel and GPU computation [35, 41].

A remarkable heuristic is the beam algorithm based on inverse breadth-first search ([30,
CutOff-IBFS ]), i.e., starting from a singleton and ending with Q, which significantly beats
other algorithms based on the forward search. Yet, curiously, it does not provide any
worst-case guarantees, as it theoretically may not find any reset word at all.

Alternative approaches involve artificial intelligence methods, e.g., hierarchical classi-
fier [28], genetic algorithms [22], and machine learning approaches [27].

1.4 Contribution
We reinvestigate the so-far best exact algorithm [19, 20] and significantly improve it. We
develop a series of algorithmic enhancements involving better data structures, decision
mechanisms, and reduction procedures. Altogether, we obtain a significant speed-up and
decrease the memory requirements. Additionally, the remodeled algorithm is adapted for
effective usage of multithreading and GPU computing, which was not possible in the original.

On the implementation side, we develop an open computational package containing the
new exact algorithm as well as several known polynomial heuristics. We apply a series of
technical optimizations and fine-tune the algorithm to maximize efficiency. The package
supports configurable just-in-time compiled computation plans and can be extended with
new algorithms.

In the experimental section, we test the efficiency of the algorithm and compute the reset
thresholds of binary random automata up to 570 states. We refine the previous estimation
formula for the expected reset threshold of these automata.

The computational package is available at [40] (the version related to this paper is 1.1.0).

2 The New Exact Algorithm

Our algorithm is based on the former best exact algorithm [19, 20]. While the new version
differs in the choice of data structures and subprocedures, at a high level it is similar and
uses two main phases – bidirectional breadth-first search and then inverse depth-first search.

The input to the algorithm is an automaton A = (Q, Σ, δ) with n states and k input
letters. The goal is to find its reset threshold r. In the first step, we check if A is synchronizing
by the well-known procedure [44], which checks for every two states p, q ∈ Q whether they
can be mapped to one state; this is doable in O(kn2). Then we get upper bounds on the
reset threshold by using polynomial-time heuristics. For this, we use the Eppstein algorithm
[10] at first, and then the enhanced beam algorithm [30, CutOff-IBFS]. The found upper
bound helps the main procedure make better decisions.

Given a subset S ⊆ Q and a word w ∈ Σ∗, the image of S under the action of w is
δ(S, w) = {δ(q, w) | q ∈ S}. The preimage of S under the action of w is δ−1(S, w) = {q ∈
Q | δ(q, w) ∈ S}.

The key idea is to simultaneously run a breadth-first search (BFS) starting from the
set Q and computing images, together with an inverse breadth-first search (IBFS) starting
from all of the singletons and computing preimages. While both algorithms on their own
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require computation of at most kr or at most nkr sets respectively, combining them lets us
compute no more than nkr/2 sets, provided that we can somehow test if the searches have
met. To do this, we need to check if there exists a pair X, Y of sets, belonging respectively
to the BFS and IBFS lists, such that X ⊆ Y . Indeed, then we know that there are words
x, y ∈ Σ∗ such that X = δ(Q, x) and Y = δ−1({q}, y) for some q ∈ Q. Because X ⊆ Y , we
get δ(Q, xy) = {q}, which means that xy is a reset word. Due to the Orthogonal Vectors
Conjecture [16], there is probably no subquadratic solution to this subset problem1. Such a
solution would also contradict the mentioned fact that we cannot find the reset threshold
in O∗((k − ε)r) time assuming SETH. Nevertheless, we employ procedures that work well
in our practical case. They are also used to reduce the number of sets in the lists during
the searches, which effectively lowers the branching factor. Finally, we do not actually run
the two searches until they meet. Instead, we switch to the second phase with inverse DFS
(which takes the steps only on the IBFS side computing preimages), when either the memory
runs out or we calculate that it should be faster based on the upper bound from the heuristics
and the collected statistics.

These high-level ideas are derived from the previous algorithm. However, we design
different, more efficient procedures and optimizations for these steps so that it is possible
to solve the problem significantly faster and for larger automata. First, we modify data
structures and redesign how a single iteration of BFS / IBFS works. Apart from making
the bidirectional-search phase faster, it allows completing more iterations before switching
to the DFS phase due to the lower memory consumption, which is crucial in the case of
large automata. The decision-making part of the algorithm is also extended. We use five
types of steps, and the decision on which step to take is based on statistics from the current
algorithm’s run and forward prediction. In the DFS phase, we enhance the radix trie data
structure in terms of both efficiency and memory overhead. We also apply some forms of list
reductions, which decrease the branching factor. Finally, every part of the new algorithm can
be parallelized in one way or the other, which was not possible before; the general difficulty
of parallelization comes from large shared data structures and a lot of branching.

In the next sections, we describe the new algorithmic techniques. For the sake of brevity,
we consider a version that only calculates the reset threshold. The algorithm can be trivially
modified to also return the reset word by storing pointers to predecessors along with the
sets, although then either time or memory footprint is slightly increased.

2.1 Bidirectional Breadth-First Search
The first phase of the algorithm consists of running the two breadth-first searches. The BFS
starts with a list LBFS containing just the set Q. When the search starts a new iteration,
LBFS is replaced with {δ(S, a) | S ∈ LBFS, a ∈ Σ}. Conversely, LIBFS is initialized with all
the singletons and the list is replaced with {δ−1(S, w) | S ∈ LIBFS, w ∈ Σ}.

We say that the two searches meet if there exist X ∈ LBFS and Y ∈ LIBFS for which
X ⊆ Y holds. The meet condition implies that the lists can be reduced by removing the
elements which are not minimal (and respectively maximal for IBFS) with respect to inclusion.
We can reduce the lists further by ensuring that no new set is a superset (subset for IBFS) of
a set belonging to some list from any previous iteration. To make this possible, we keep track

1 The Orthogonal Vectors problem gives two sets A, B of Boolean vectors of the same length and asks if
there exists a pair (u ∈ A, v ∈ B) such that u and v are orthogonal, i.e., u · v = 0. We can reduce our
problem to OV by transforming the sets in Y to their complements and then representing all the sets
as their characteristic vectors.
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of all the visited sets in two additional history lists HBFS, HIBFS. This reduction, although
usually helpful during most of the iterations, at the end may turn out to be unprofitable, in
which case the algorithm will drop the history list(s).

The original idea for the subprocedure to check the meet condition was to keep the lists
as dynamic radix tries, supporting insertion and subset (or superset) checking operations.
Now, instead, we take a somewhat simpler approach and operate directly on the lists,
stored as random access containers (such as vectors in C++). We call this subprocedure
MarkSupersets(A, B) (and a similar one – MarkProperSupersets(A, B), which additionally
restricts the marked supersets to be non-equal to their subsets).

We split the reductions into three subprocedures: removing duplicates, self-reduction, and
then reduction by history. In contrast to performing only one and the most expensive reduction
by history (which could also include the first two reductions), after each subprocedure the
list size gets smaller, which makes the next one run faster.

Alg. 1 shows the pseudocode of the bidirectional-search phase.

2.1.1 Subset and Superset Checking

There exist several algorithms solving the extremal sets problem in practical settings, e.g., [3].
They take a list of sets and mark all those that are not a subset of any other set.

We use a similar method to those utilizing a lexicographic sort, but we operate on two lists
and are allowed to change the order of the second list during computation. MarkSupersets
(Alg. 2) takes lists A and B and swaps sets in B so that those sets that are supersets of
some sets from A appear at the end. The sets are treated like binary strings, i.e., their
characteristic vectors, of length n. The procedure recursively splits the sets in A into those
containing the d-th state and those not containing it, where d is the recursion depth. In
this sense, it works by implicitly building a radix trie on A. We require that A is sorted
lexicographically and its elements are unique, which can be guaranteed relatively cheaply
before calling the procedure, as sorting is much faster than subset checking. The order gives
us the property that the sets containing the d-th state and those not containing it are stored
in continuous segments, so we can effectively split A. This lets us simulate in-place trie
traversal with a recursive procedure that takes intervals of the lists as inputs. When the
intervals are small (determined by the constant parameter MIN , Alg. 2 line 2), we can use a
brute-force check instead of recursing further, which makes the procedure faster (especially
important with GPU).

MarkSupersets is used to reduce the BFS list and to check the meet condition. To
implement the MarkSubsets procedure needed on the IBFS side, we simply convert the sets to
their complements and call MarkSupersets. The procedure MarkProperSupersets is identical
except for checking the containment for a pair of sets, where we additionally check that the
two sets are different. When we use multithreading, we split the B list into equal parts
after shuffling and execute parallel calls of the procedure. On GPU, we increase the MIN
parameter and run the brute-force part there.

2.1.2 Decision Procedure

As the algorithm progresses, some steps may become unprofitable. The history lists, though
helpful at the beginning, increase memory usage and cause a slow down if used in late
iterations. Similarly, list reductions via MarkSupersets decrease the branching factor, but
they are not that crucial when the search is approaching the reset threshold upper bound.
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Algorithm 1 Bidirectional breadth-first search.

Input: A synchronizing automaton A = (Q, Σ, δ) with n = |Q| states and k = |Σ| input
letters. An upper bound R on the reset threshold.

Output: Reset threshold r.
1: LBFS, HBFS ← {Q}
2: LIBFS, HIBFS ← {{q} | q ∈ Q}
3: for r from 1 to R− 1 do
4: switch CalculateBestStep() do
5: case BFS
6: if HBFS has grown significantly since its last reduction then
7: Delete subsets from HBFS that are larger than the largest ones from LBFS
8: Delete non-minimal subsets from HBFS (MarkProperSupersets)
9: end if

10: LBFS ← CalculateImages(LBFS)
11: Delete duplicates from LBFS (lex. sort)
12: Delete non-minimal subsets from LBFS (MarkProperSupersets)
13: Delete supersets of HBFS from LBFS (MarkSupersets)
14: HBFS ← HBFS ∪ LBFS

15: case BFSNH (without history)
16: LBFS ← CalculateImages(LBFS)
17: Delete duplicates from LBFS (lex. sort)
18: Delete non-minimal subsets from LBFS (MarkProperSupersets)
19: case IBFS
20: ... ▷ Analogous to BFS
21: case IBFSNH (without history)
22: ... ▷ Analogous to BFS (without history)
23: case DFS
24: DFS(BuildStaticTrie(LBFS), LIBFS, r, R)
25: return R ▷ DFS sets R← the reset threshold
26: if MarkSupersets(LBFS, LIBFS) has found at least one superset then
27: return r

28: end if
29: end for
30: return R

We distinguish five types of steps from which the algorithm always chooses one for the
next iteration – DFS, BFS, IBFS, BFS without the history list (denoted by BFSNH) and
IBFS without the history list (denoted by IBFSNH). To assess which option to choose, we
roughly estimate the cost subset checking operations each of them will require.

We reuse some of the equations previously defined in [20]. In particular, under simplifying
assumptions about the uniform distribution of the states in sets we take their upper bound
from [20, Theorem 4] previously applied to tries. Since our procedure can be interpreted
as building a trie implicitly on the fly, this bound can also serve as a rough bound on the
expected number of subset checking operations in a call to MarkSupersets. Let As, Bs be
the size of the lists and Ad, Bd be their densities, i.e., for a list L let density(L) =

∑
S∈L

|S|
n|L| .
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Algorithm 2 Recursive procedure MarkSupersets.

Input: Lexicographically sorted list intervals A and B of sets with unique elements. Current
depth of recursion d (d = 0 for the initial call).

1: procedure MarkSupersets(A, B, d)
2: if |A| < MIN then ▷ Brute-force for small |A|
3: Check each pair in A×B and delete the supersets from B (move at the end and

shrink the interval).
4: else
5: A0, A1 ← A split by the d-th bit ▷ A is sorted, so a binary search suffices
6: MarkSupersets(A0, B, d + 1)
7: Sort B by the d-th bit. ▷ Linear time scan
8: B1 ← interval in which the d-th bit is set ▷ Suffix of B

9: MarkSupersets(A1, B1, d + 1)
10: end if
11: end procedure

Then, analogously to [20, ExpNvn in 4.2], we define:

ExpMark(As, Bs, Ad, Bd) = Bs

(1 + Bd

Bd
+ 1

Ad −AdBd

)
Alogw(1+Bd)

s ,

where w = (1 + Bd)/(1 + AdBd −Ad).
To estimate the sizes of the lists after (and in between) the reductions, we store the ratios

rdupl
BFS , rself

BFS, rhist
BFS of the reduced sets respectively by the removal of duplicates, the removal of

non-minimal subsets, and the reduction by history list. For instance, rdupl
BFS is the fraction

of the removed duplicates during the first reduction. Similarly, separate ones are stored for
the IBFS counterpart. In addition to the cost of subset checking, we also add the cost of
computing sets themselves and reduction of duplicates (the constant SetCost, set to 512 in
the implementation); however, in most cases, the cost of subset checking is dominant.

For instance, the cost of the next BFS step is calculated as follows:

BFScost = SetCost · k · |LBFS| (1)

+ ExpMark(k · (1− rdupl
BFS) · |LBFS|, k · (1− rdupl

BFS) · |LBFS|, (2)
density(LBFS), density(LBFS))

+ ExpMark(|HBFS|, k · (1− rdupl
BFS) · (1− rself

BFS) · |LBFS|, (3)
density(HBFS), density(LBFS))

+ ExpMark(k · (1− rdupl
BFS) · (1− rself

BFS) · (1− rhist
BFS) · |LBFS|, |LIBFS|, (4)

density(LBFS), density(LIBFS)).

The formula is the sum of the four costs: the set cost (1), which estimates the cost of
computing the successors’ list with images and reduction of duplicates, the self-reduction cost
(2), which assumes that the list size was already reduced by the factor rdupl

BFS , the reduction
by history cost (3), which assumes both preceding reductions, and the meet condition check
cost (4).

The formulas for BFSNH, IBFS, and IBFSNH are analogous. Additionally, if we cannot
perform a step because there is not enough memory, we set its expected cost to ∞. Once we
choose BFSNH, we free the history and no longer consider the BFS step with it, so in this
case, we also set its cost to ∞ (this is symmetrical for IBFSNH and IBFS).
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Next, we try to predict the full costs of choosing these steps by estimating the number of
operations under the assumption that the algorithm will transition into the DFS phase one
iteration later (or in the current iteration in the case of the DFS option). First, we calculate
the expected branching factor in the DFS phase

f = k · (1− rdupl
IBFS ·DFSReductionOfReduction),

where we take the average reduction of duplicates from the IBFS step and reduce it by
some factor for a more pessimistic estimation (DFSReductionOfReduction = 1/k in the
implementation). rdupl

IBFS is the ratio of duplicates removed in the IBFS list during the latest
reduction (since the DFS also removes duplicates). We assume conservatively that the reset
threshold is equal to the known upper bound R and from that, we get the estimated number
of iterations R− r that still need to be done, where r is the number of the current iteration,
which just begins. The predicted full cost of the BFS option is as follows (the number of sets
multiplied by the set computing costs together with the meet condition cost):

DFSpred = f · fR−r − 1
f − 1 · (SetCost ·DFSSetCostWeight · k/f

+ DFSCheckCostWeight · ExpMark(|LBFS|, |LIBFS|, density(LBFS), density(LIBFS)) ),

where DFSSetCostWeight and DFSCheckCostWeight are constants (both set to 0.25 in the
implementation) compensating for the fact that the operations are faster in the DFS phase,
as additional optimizations are possible.

Finally, the step with the lowest predicted full cost is chosen. As an exception to this
rule, if we do not expect to switch into the DFS phase soon (the steps without the history
have both larger costs than the regular steps), instead of comparing the prediction costs of
every choice, we consider only the BFS and IBFS costs and greedily choose the one with the
lower single-step cost. This makes the bidirectional search more balanced in the short term.
Otherwise, BFS is strongly preferred due to the assumption that the rest of the steps will be
(inverse) DFS, which computes preimages, but the early statistics are less relevant for its
estimation.

2.1.3 Heuristic Upper Bound
Having a good upper bound R on the reset threshold, preferably tight, is crucial for making
the right decisions, i.e., not giving away history or entering the DFS phase too late. On the
other hand, we do not want to spend too much time computing the bound.

The beam algorithm has its parameter beam size, which limits the size of the list and
thus directly controls the quality (i.e., how close R is to the reset threshold) and complexity
trade-off. Instead of setting the beam size to be a function of n ([20, 30]), we use an adaptive
approach. We run it first with a relatively small beam size to find some reasonable bound,
and then use this bound to calculate a rough estimation of the running time of the exact
algorithm. The beam size is selected so that the beam algorithm’s cost is a small fraction of
that of the exact algorithm. In practice, this means that the beam size is larger for automata
with larger (upper bounds on) reset thresholds than for those automata with smaller ones,
even when n is the same.

2.2 Depth-First Search
In the second phase, the algorithm switches to an inverse depth-first search, which allows
staying within the memory limit by adjusting the maximum list size. During this phase, the
steps are taken only on the IBFS side. The fact that the BFS list no longer changes allows
the meet condition check to be optimized.

ESA 2022
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2.2.1 Static Radix Trie
The LBFS list is stored in an optimized data structure that supports the ContainsSubset
operation. It is based on a radix trie, in which the characteristic vectors of the sets are
stored. The queries rely on traversing the trie and, in each step, descending to either both
children or just the left (zero) child, depending on the queried set.

In contrast with the usual radix trie, we apply a few specific optimizations:
Variable state ordering. In each node at a depth d, instead of splitting the subtrees by the

d-th state, we split by a state x chosen specifically for the node. The state x is chosen so
that the number of sets stored in the current subtree that also contain x is the largest
possible. In practice, this makes the queries faster, since, in vertices such that x does not
belong to the queried set, a large number of sets is immediately skipped.
This optimization also implies path compression, as we do not have nodes that do not
split the sets into two non-empty parts. To ensure this, we also exclude the case that x is
contained in all the sets and do not use it as a division state.

Leaf threshold. For a fixed constant parameter MIN (= 10 in the implementation), when
the number of sets in a subtree is less or equal to MIN , we store them all in one vertex
and do not recurse further. This does not increase running time and lowers the memory
overhead. Technically, we can already store the sets in a node whose left (zero) subtree
contains at most MIN sets, which avoids creating an additional node.

Joint queries. Instead of checking each subset separately, we group them by the same
cardinality and check one group in a call using the swapping technique as in Alg. 2.
Grouping saves operations responsible for traversing the trie, and additionally, grouping
by cardinality allows to make cheap size elimination checks as below.

Size elimination. Every node v stores the minimal size mv of the sets in its subtree. When
we query for subsets of size s, if mv ≤ s does not hold, we do not recurse into the subtree
of v. This enhancement is derived from the previous algorithm [20], yet due to joint
queries, we make these checks cheaper by executing at most one such check in a node for
one cardinality. A similar optimization from the previous algorithm is mask elimination –
checking if the intersection of all subsets in the subtree is contained in the queries set,
yet we do not use it as it does not improve performance in our case.
Our trie can be built in time O(|LBFS| · n2) (< n levels processed in time O(|LBFS| · n)).

2.2.2 DFS Procedure
During the search, at each depth, the current list is split into parts of size at most
available_memory/

(
(k + 1)(R − r)

)
, where R − r is the upper bound on the remaining

number of steps to be done. Then, it recurses with each of these parts one by one, to make
sure we do not run out of memory. The elements are sorted in order of descending cardinality
so that the most promising sets are recursed first, which in turn can quickly improve the
upper bound if it was not tight. The cardinality sort is also necessary for joint queries.
The lists are reduced by the removal of duplicates and calls to MarkSubsets only once every
few iterations, which still lowers the branching factor significantly. Parallel computation is
performed by a thread pool with tasks being these separate calls for each cardinality.

3 Experiments

The implementation used for experiments is available at [40]. The tests were using
exact_reduce configuration. The old algorithm [20] was run with the original code provided
to us by the authors. The experiments with time measurement were run on computers with
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Figure 1 The mean running time for random binary automata with different numbers of states
(left) and with different reset thresholds (right).

AMD Ryzen Threadripper 3960X 24-Core Processor, 64GB RAM, and two RTX3080 Nvidia
GPU cards. We compiled the code using gcc 9.3.0 and nvcc 10.1 (run with gcc 7.5.0).
We have tested the algorithm in both the single-threaded (only one thread without GPU)
and parallel modes (6 threads and GPU enabled).

A random automaton with n states and k letters is generated by choosing each transition
δ(q, a) ∈ Q uniformly at random, for q ∈ Q, a ∈ Σ. There is a negligible number of
non-synchronizing automata obtained in this way, which were excluded (cf. [5]).

3.1 The Efficiency
Fig. 1 shows the efficiency comparison of our algorithm in both single-threaded and parallel
modes, together with the old algorithm. This experiment was run for 1,000 random binary
automata for each n ∈ {250, 255, . . . , 395}. We managed to test automata with up to 395
with the old algorithm, which took 3,177h computation time of a single process in total (we
have used more memory, better hardware, and computed 10 times fewer automata per n than
in the original experiments [20], which were done up to n = 350). The (unfinished) attempt
to compute 1, 000 automata with n = 400 by the old algorithm took over 770h, whereas our
algorithm (single-threaded) finished in 48h. The total computation time of our algorithm up
to n = 395 was resp. 299h in the single-threaded mode and 135h in the parallel mode.

Fig. 2 shows the average increase in running time when the reset threshold grows. The
general observed tendency is a factor of about 1.5 for our algorithm.
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Figure 2 The mean running time growth factor in relation to reset threshold (left) and the mean
running time in a logarithmic scale (right).
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Figure 3 The mean reset threshold of binary automata with n states. For every n ∈
{5, 10, . . . , 300}, n ∈ {305, 310, . . . , 400, 410, 420, . . . , 500}, and n ∈ {510, 520, . . . , 570} we calculated
resp. 10,000, 1,000, and 100 automata.

Hard instances

Most automata have their reset thresholds sublinear, but there exist other examples (though
they are rare). As the reset threshold is the main indicator of difficulty, even instances with
a small number of states should be difficult for algorithms.

From the known constructions, the most extreme automata with respect to the reset
threshold are slowly synchronizing ones [2]. They have reset thresholds close to (n− 1)2, and
the Černý series meets this bound. Yet, they all have the property that the IBFS list reduces
to a constant number of sets in every iteration, thus our algorithm works in polynomial
time for them, just as the old algorithm. An example of extreme automata without this
property could be the unique series of automata with a sink state (i.e., a state q ∈ Q such
that δ(q, a) = q for all a ∈ Σ), that reaches the maximum reset threshold n(n− 1)/2 in this
class [31]. (A synchronizing automaton can have at most one sink state and a reset word
must map all the states to it.) A slowly sink automaton from this series with 26 states has
25 letters and its reset threshold 325 is computed by the old algorithm in 34m 14s, whereas
the new algorithm computes it in 7m 22s (parallel).

3.2 Mean reset threshold

In the second experiment, we computed reset thresholds of random binary automata with
n ∈ {410, 420, . . . , 570} states with our algorithm in parallel mode. The mean computation
time for n = 500 was 9m 42s. Fig. 3 shows the mean reset threshold. In addition, up to
n = 5,000 we computed a good upper bound using the beam algorithm with beam size
n log n (we made the beam algorithm much faster due to GPU computation; the previous
such experiments were done up to n = 1000 [30]).

It is now visible that the previous formula 2.5
√

n− 5 is underestimated. On the other
hand, a standard approach2 of deriving a function of the form a(n + b)c + d yields a wrong
formula, lately exceeding the upper bound obtained by the beam. We decrease the exponent
to fit with a more accurate estimation 2.284 n0.515.

2 We use the algorithm from scipy.optimize.curve_fit with the Levenberg-Marquardt algorithm.
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4 Conclusions

We have improved the best-known algorithm for computing the (length of the) shortest reset
words. While the overall idea of employing bidirectional breadth-first search is the same, we
replace each of its subprocedures with more efficient ones.

The algorithm can be easily adapted to alternative synchronization settings and other
related problems. For instance, it is trivial to use it for careful synchronization [36], where
some transitions can be forbidden. It can also be adapted to, e.g, non-careful settings [6],
mortal words [32], or subset synchronization [46].

For future work, we plan to use this new algorithmic tool to perform more extensive
experiments concerning reset thresholds, especially with larger automata and with a larger
alphabet. Finally, it can be used to experimentally verify or extend the current verification
range of certain conjectures.
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Abstract
The Robinson–Schensted-Knuth (RSK) correspondence is a fundamental concept in combinatorics
and representation theory. It is defined as a certain bijection between permutations and pairs of
Young tableaux of a given order. We consider the RSK correspondence as an algorithmic problem,
along with the closely related k-chain problem. We give a simple, direct description of the symmetric
RSK algorithm, which is implied by the k-chain algorithms of Viennot and of Felsner and Wernisch.
We also show how the doubling search of Bentley and Yao can be used as a subroutine by the
symmetric RSK algorithm, replacing the default binary search. Surprisingly, such a straightforward
replacement improves the asymptotic worst-case running time for the RSK correspondence that has
been best known since 1998. A similar improvement also holds for the average running time of RSK
on uniformly random permutations.
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1 Introduction

The Robinson–Schensted-Knuth (RSK) correspondence is a fundamental concept in com-
binatorics and representation theory; for the background on the combinatorial aspects of
RSK, see e.g. [20, 17]. It is defined as a certain bijection between pairs of standard Young
tableaux and permutations of a given order, and represents a far-reaching generalisation of
the longest increasing subsequence problem in a permutation. A common definition of RSK
correspondence is algorithmic, via Robinson–Schensted tableau insertions or, alternatively,
via the Viennot geometric construction.

The combinatorial properties of RSK are well-studied. In this paper, we consider the RSK
correspondence as an algorithmic problem, along with the closely related k-chain problem.
In particular, we are interested in both the worst-case and the average asymptotic running
time of algorithms for these problems. This aspect of the RSK correspondence seems to have
been studied relatively less thoroughly than its combinatorial aspects.

In the rest of this paper, we recall the definition of the RSK correspondence, using the
geometric construction of Viennot [23, 24]. We then describe the standard RSK algorithm
by Robinson [15] and Schensted [18]. Further, we give a simple, direct decription of the
symmetric RSK algorithm, which is implied by the k-chain algorithms of Viennot [24] and of
Felsner and Wernisch [9]. Next, we recall the doubling search algorithm of Bentley and Yao [1],
and show how it can be used as a subroutine by the symmetric RSK algorithm, replacing
the default binary search. Surprisingly, such a straightforward replacement improves the
asymptotic worst-case running time for the RSK correspondence from O(n3/2 log n), which
has been the best known since [9], to O(n3/2). A similar improvement also holds for the
average running time of RSK on uniformly random permutations.
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2 The RSK correspondence

Partial orders. We will use the standard terminology related to partial orders: downset,
principal downset, chain, antichain. We consider two mutually inverse (strict) total orders on
R: < and >. We also consider the corresponding (strict) partial dominance orders on R2: ≪,
≶, ≷, ≫, where (x, y)≪ (x′, y′) if x < x′ and y < y′, and similarly for the other three orders.
Dominance orders ≪, ≫ are mutually inverse, and so are ≶, ≷. When considering a point
set P as a partial order, we will indicate it by a superscript, e.g. P ≪. We will always assume
that P is finite, and that all x-coordinates in P are distinct, and so are all the y-coordinates.

Young tableaux. Let N+ denote the set of all positive integers. Given n ∈ N+, let
Nn = {1, . . . , n} ⊂ N+.

▶ Definition 1. A Young diagram of order n is a subset of N2
+ of cardinality n, that is

a downset in the dominance partial order ≪. A Young tableau1 of order n is an order-
preserving bijection from a Young diagram of order n (called the tableau’s shape) to a subset
of R with total order <.

We use the so-called French notation for visual representation of Young diagrams and tableaux.
The elements of a diagram are represented by cells of an integer grid, arranged in left-aligned
rows and bottom-aligned columns. Columns are ordered from left to right, and rows from
below upwards. The value of each cell of a tableau is written within that cell; these values
increase from left to right in rows, and from below upwards in columns.

▶ Example 2. Figure 1 (middle and right columns) gives several examples of Young tableaux
with cell values in N10.

Canonical antichain partitioning. The theory of Young tableaux is intimately connected
with the combinatorics of permutations. We take a symmetric view of this connection, due
to Viennot [23, 24]. A permutation, viewed as a mapping π : Nn → Nn, is identified with the
mapping’s graph, i.e. the point set Pπ = {(x, π(x)) | x ∈ Nn}.

▶ Definition 3. The height of an element in a finite partial order O is the maximum
cardinality of a chain in the principal downset generated by that element. A canonical
antichain is formed by all the elements of a given height. The partitioning of O into disjoint
canonical antichains is called the canonical antichain partition (CAP), denoted cap(O).

Canonical antichains in R2 are also sometimes called layers of minima (maxima) [4, 3],
Pareto fronts [5], or terraces [14]. The canonical antichain partition of a point set in R2 is
also sometimes called greedy cover [12], patience sorting [2], or non-dominated sorting [5].

▶ Example 4. Figure 1 (top-left) shows a point set P of cardinality 10, and its partitioning
cap(P ≪) into five antichains.

We recall the following standard result.

▶ Proposition 5. The partitioning cap(O) of a finite partial order has the minimum possible
number of antichains among all antichain partitionings of O. This number is also equal to
the maximum cardinality of a chain in O.

Proof. Straightforward; see e.g. [9]. ◀

1 Young tableaux as defined here are often called “standard”, to distinguish them from more general types
of tableaux; we omit this qualifier, since it is the only type of Young tableaux we are dealing with.
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Figure 1 The standard RSK algorithm for rsk(P ≪) = (H, T ); tableaux H, T obtained by rows.
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Figure 2 The symmetric RSK algorithm for rsk(P ≪) = (_, T ) and rsk(P≷) = (_, T †): tableau
T obtained by principal hooks.
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Given a permutation π, the problem of finding the cardinality of cap(P≪
π ) is equivalent to

the problem of finding the length of a longest increasing subsequence (LIS) in π. The LIS
problem has a long history, going back to Erdös and Szekeres [8] and Robinson [15]. Based
on their ideas, the classical LIS algorithm running in time O(n log n) was made explicit by
Knuth [13], Fredman [10] and Dijkstra [6].

▶ Definition 6. Let P be a point set with dominance order ≪. Let A = {(x1, y1) ≶
(x2, y2) ≶ . . . ≶ (xr, yr)} ⊆ P be an antichain of cardinality r ≥ 1. Values x1 and yr

will be called respectively the head and the tail of A. The skeleton of A is the antichain
sk(A) = {(x2, y1) ≶ (x3, y2) ≶ . . . ≶ (xr, yr−1)} of cardinality r − 1. The skeleton of P is
the point set sk(P ≪) =

⋃
A∈cap(P ≪) sk(A). The heads, tails and skeletons with respect to

dominance orders ≶, ≷, ≫ are defined analogously.

The RSK correspondence. The Robinson–Schensted–Knuth (RSK) correspondence, dis-
covered independently by Robinson [15] and Schensted [18] (see also Romik [17]), is a bijection
between permutations of a given order and pairs of Young tableaux of the same order and
identical shape. The two tableaux in the pair will be called the head and the tail tableaux
(such a terminology is chosen for its symmetry and consistency with the rest of our exposition,
whereas the traditional terminology calls them the recording and the insertion tableaux).

▶ Definition 7. Let P be a point set with dominance order ≪. The RSK image2 of P is
a pair of Young tableaux rsk(P ≪) = (H, T ), defined recursively as follows. The initial row
in H (respectively, T ) is formed by the heads (respectively, the tails) of the antichains in
cap(P ≪). The remaining rows of H, T are formed as rsk(sk(P ≪)). The RSK image with
respect to dominance orders ≶, ≷, ≫ is defined analogously.

▶ Example 8. Figure 1 (top row) shows the construction of the initial rows in tableaux
rsk(P ≪) = (H, T ) from a point set P ⊆ N2

10 (top left). Figure 1 (middle and bottom rows)
shows the recursive construction of the remaining rows in the tableaux H, T .

The RSK correspondence has some beautiful symmetries, exposed by Schützenberger [19].

▶ Definition 9. Let P be a point set. Its transpose is the point set P † = {(x, y) | (y, x) ∈ P}
obtained by exchanging the x- and y-coordinates of every point.

▶ Observation 10. Let π be a permutation. We have P †
π = Pπ−1 .

▶ Definition 11. Let Y be a Young diagram. Its transpose Y † is the Young diagram obtained
by exchanging the x- and y-coordinates of every cell.

We now state the theorem by Schützenberger [19] on the symmetries of the RSK correspond-
ence; for completeness, we also present its proof.

▶ Theorem 12 (Schützenberger). Let P be a point set, rsk(P ≪) = (H, T ). We have
(i) rsk(P †≪) = (T, H),
(ii) rsk(P≷) = (H∗†, T †),
(iii) rsk(P≶) = (H†, T ∗†),
(iv) rsk(P ≫) = (H∗, T ∗).

Here, H∗, T ∗ are Young diagrams of the same shape as H, T , called the Schützenberger
dual of H, T , respectively.

2 The terms “RSK correspondence”, “RSK image” as defined here are often called just “Robinson–
Schensted”, reserving the name “RSK” for a more general type of combinatorial bijection. Since this is
an algorithmic study, we use the term RSK throughout, in order to highlight the contribution of Donald
Knuth to the development of RSK algorithms.
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Proof. Part (i) is obvious by symmetry.
Let us establish part (ii). Let (x0, y0) be the point with the least y-coordinate in sk(P ≪),

so y0 is the tail of the least-height antichain in cap(sk(P ≪)). Let A be an antichain in
cap(P ≪) such that (x0, y0) ∈ sk(A). Then, there is a pair of points (x0, y) ≷ (x, y0) in
A. Let B be the subset of points in P with y-coordinate less than y0. Subset B must
consist of a single chain including point (x0, y): otherwise, there would be two points with
y-coordinate less than y0 in some antichain A′ of cap(P ≪), and then sk(A′) would contain
a point of sk(P ≪) with y-coordinate less than y0, which would contradict the minimality
of y0. Now consider the points of B with the partial order ≷; these points, including point
(x0, y), form a subset of the least height antichain in cap(P≷). Point (x, y0) must belong to
the second-least height antichain in cap(P≷), and must have the least y-coordinate in that
antichain. Therefore, y0 is the tail of the second-least height antichain in cap(P≷).

We have established that the tail of the least height antichain in cap(sk(P ≪)) is equal
to the tail of the second-least height antichain in cap(P≷). Now (ii) follows by (i) and the
recursive construction of Definition 7, and (iii), (iv) follow from (ii) by symmetry. ◀

Multichains. A notion closely related to the subject of this paper is that of a k-chain.

▶ Definition 13. Let O be a finite partial order. A k-chain is a subset of O that can be
represented as a union of k chains.

The connection between the RSK correspondence and k-chains is given by the classical
theorem of Greene [11].

▶ Theorem 14 (Greene). Let P be a point set with dominance order ≪. The maximum
cardinality of a k-chain in P is equal to the number of cells in the initial k rows of the shape
of rsk(P ≪).

In fact, the RSK algorithm by Felsner and Wernisch [9] is presented entirely in the language
of k-chains. While we use the language of Young tableaux in this paper, our results translate
immediately into the corresponding statements on maximum k-chains in a set of points, and
thus relate to the results of [9].

3 RSK algorithms

Standard RSK algorithm. Definition 7 leads directly to the following standard algorithm
for computing the RSK image of a given point set.

Given a point set P , the pair of tableaux rsk(P ≪) = (H, T ) are constructed by rows. To
obtain the initial rows of H , T , the points in P are scanned in order of increasing x-coordinate.
For the subset Q of points seen so far, we maintain the partitioning cap(Q≪); in particular,
the heads and the tails of antichains in that partitioning are kept in sorted order. We also
maintain the skeleton sk(Q≪) in order of increasing x-coordinate. When the scan of P is
complete (Q = P ), the heads (respectively, tails) of antichains in cap(P ≪) become the initial
row of tableau H (respectively, T ) in rsk(P ≪). To obtain the remaining rows of rsk(P ≪),
we repeat the above procedure on point set sk(P ≪). Algorithm 1 gives the algorithm’s
pseudocode.

▶ Example 15. Figure 1 shows the execution of the standard RSK algorithm in three
successive iterations: the point set at the beginning of each iteration and its CAP (left
column), and the state of the tableaux H and T at the end of the respective iteration (middle
and right columns).
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Algorithm 1 Standard RSK. The choice of a search method in line 7 is either linear or binary
(Section 3) or doubling (Section 4).

1: procedure RSK(P ) ▷ given point set P sorted by x-coordinate, returns rsk(P ≪)
2: if P = ∅ then return (∅, ∅)
3: Hinit ← ∅; Tinit ← ∅ ▷ initialise variables for initial rows of H, T

4: S ← ∅ ▷ initialise variable for sk(P ≪)
5: while P ̸= ∅ do
6: (x, y)← point in P with least x-coordinate
7: y′ ← least value in Tinit greater than y; +∞ if none exists ▷ search
8: if y′ = +∞ then
9: append x to Hinit ; append y to Tinit ▷ start new antichain

10: else
11: replace y′ by y in Tinit ; append (x, y′) to S ▷ extend antichain
12: remove (x, y) from P

13: (H+, T+)← RSK(S) ▷ recursive call
14: H ← tableau with initial row Hinit and remaining rows H+
15: T ← tableau with initial row Tinit and remaining rows T+
16: return (H, T ) ▷ rsk(P ≪) = (H, T )

The computation of the initial row in the standard RSK algorithm (before the recursive
call in line 13 of Algorithm 1) is essentially identical to the classical algorithm for the LIS
problem [13, 10, 6]. In line 7, the canonical antichain for each of the n points can be found by
binary search, therefore the whole initial row is obtained in time O(n log n). In total, there
are at most n rows in rsk(P ≪), therefore the overall time is n ·O(n log n) = O(n2 log n).

Apart from the worst-case running time, it is of interest to consider the average-case
running time of RSK algorithms on a uniformly random permutation; in this case, the shape
of tableaux H, T turns out to be sampled from the Plancherel probability distribution (see,
e.g. [17]). Romik [16] established this average-case running time to be O(n3/2 log n).

RSK with linear search. Paradoxically, a speedup can be obtained by replacing binary
search with (a carefully controlled) linear search. Indeed, for a given x-coordinate, the value
of the search target y′ in line 7 of Algorithm 1 can only increase. Therefore, as long these
different search invocations are performed as a linear search continuing from the search target
of the previous invocation, the combined search time for a given x-coordinate will be O(n),
so the overall running time across all x-coordinates is reduced to n · O(n) = O(n2). This
observation may be considered part of the folklore; it is made e.g. by Thomas and Yong [21],
who attribute it to an anonymous referee. A simple and elegant alternative description of
this algorithm can be obtained by using edge local rules of Viennot [25], giving the same
asymptotic running time O(n2).

Symmetric RSK algorithm. Felsner and Wernisch [9] proposed a more efficient, symmetric
approach to developing an RSK algorithm. Their algorithm was described in the language
of k-chains. In particular, they gave an algorithm for computing maximum k-chains (and,
by symmetry, also k-antichains) of a planar point set in time O(kn log n). In combination
with the algorithm for the same problem by Viennot [24], runnning in time O((n2/k) log n),
maximum k-chains can be obtained in time O(n3/2 log n) for all k.
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Here, we give a simpler, more direct description of this combined algorithm of [24, 9],
as an extension of the standard RSK algorithm. The main idea of the symmetric RSK
algorithm is to construct the pair of tableaux rsk(P ≪) = (H, T ) simultaneously by rows
and by columns. The successive rows of tableaux H, T are constructed as in the standard
RSK algorithm. At the same time, the successive columns in tableau H (respectively, T ) are
obtained by running the standard RSK algorithm for rsk(P≶) (respectively, rsk(P≷)), using
the symmetries exposed by Theorem 12.

There is clearly some redundancy in running the standard algorithm three times on
partial orders P ≪, P≶, P≷. However, this constant-factor redundancy allows one to reduce
the overall asymptotic running time. Notice that as a result of the first iteration of each of
the three runs, we obtain the union of the initial row and initial column in each of H and T ;
this union is called the initial principal hook of the respective tableau. Likewise, as a result
of the second iteration, we obtain the second principal hook of both H and T (i.e. the union
of the second row and column, minus the initial principal hook). Crucially, while the number
of both rows and columns in a Young tableau of order n can be as high as n, the number of
its principal hooks is always at most n1/2. Thus, the algorithm can be terminated after at
most ⌊n1/2⌋ iterations made by each of the three simulaneous runs on P ≪, P≶, P≷. The
worst-case running time of the symmetric RSK algorithm is n1/2 ·O(n log n) = O(n3/2 log n).

▶ Example 16. Figure 2 shows the execution of the symmetric RSK algorithm on the same
input point set as in Figure 1. For the sake of brevity, only the computation of tableau T

from partial orders P ≪, P≷ is shown explicitly, while the symmetric computation of tableau
H from partial orders P ≪, P≶ is omitted. Compared to the three iterations of the standard
algorithm in Figure 1, now only two iterations are required.

4 Speeding up RSK by doubling search

Doubling search. The doubling search technique (also called exponential search) was
introduced by Bentley and Yao [1], and represents a hybrid between linear and binary search.
Doubling search is particularly efficient for a non-uniform distribution of the target index,
skewed towards an end of the array being searched.

We describe doubling search with the starting point at the upper end of the array, in
order to be consistent with its intended application as a subroutine for RSK. Given an array
ai, 1 ≤ i ≤ s, sorted in increasing order, and a value q distinct from all ai, we consider
the problem of finding the greatest value in a less than q, that is index k ≥ 0 such that
as−k < q < as−k+1. We assume ai = −∞ for i ≤ 0, and as+1 = +∞.

The search begins at the upper end of the array, comparing q against as. If as < q, we
have found k = 0. Otherwise, the search continues in two phases. In the doubling phase, we
compare q against as−1, as−2, as−4, as−8, . . . , until we find a subtrahend t that is the least
power of 2 such that as−t < q. This phase takes ⌊log k⌋+ 1 comparisons.

We now know that 1 ≤ k ≤ t, and move on to the binary search phase. In this phase, we
find the exact value of k in this range by binary search, taking at most ⌊log t⌋ ≤ ⌊log k⌋+ 1
comparisons. Overall, the doubling search algorithm takes at most 2⌊log k⌋+ 3 comparisons.
Algorithm 2 shows the pseudocode for the doubling search algorithm.

Symmetric RSK with doubling search. Unfortunately, the asymptotic speedup by a factor
of n1/2 to the standard RSK algorithm, which is provided by the symmetric algorithm, is
not compatible with the speedup by a factor of log n provided by linear search. However, we
are still able to obtain both speedups simultaneously by employing doubling search.
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Algorithm 2 Doubling search.

1: procedure DSearch(a, q) ▷ given sorted array a and q, returns index for q in a

2: if as < q then return 0
3: t← 1
4: while as−t > q do t← 2t ▷ doubling phase
5: return index k in {1, . . . , t}, such that as−k < q < as−k+1 ▷ binary search

Consider a specific value x for a point’s x-coordinate, as the RSK algorithm iterates on
P , sk(P ≪), sk(sk(P ≪)), etc. These iterations form respectively row 1, 2, 3, . . . of diagrams
H, T . Let lr denote the length of row r before a point with coordinate x is processed for
that row. Let br denote the index of the search target y′ in row r of a point with coordinate
x (as per lines 9 or 11 of Algorithm 1); br is undefined if no point with coordinate x is left in
iteration r (that is, in the r − 1-th skeleton of P ). Let the displacement interval in row r

be {br, br + 1, . . . , min(lr, br−1 − 1)}, where b0 = +∞. We denote this interval’s length by
dr = min(lr + 1, br−1)− br; in particular, dr = 0 if br = br−1. We also define dr = 0 if br is
undefined due to no point with coordinate x being left in iteration r.

▶ Example 17. Consider the computation of rsk(P ≪) by the standard and the symmetric
RSK algorithms in Figures 1 and 2. Let us fix x = 6.

In the first iteration, the bottom row of tableaux H, T is formed. Just before the
processing of point (6, 3) ∈ P begins, the current state of the tableaux rows is Hinit = (1, 2, 4),
Tinit = (1, 5, 6), and their common length is l1 = 3. The least value in Tinit greater than
y = 3 is 5, and its index in Tinit is b1 = 2. The displacement interval is between b1 = 2 and
l1 = 3 inclusive, and its length is d1 = l1 + 1− b1 = 2.

In the second iteration, the middle row of tableaux H, T is formed. Just before the
processing of point (6, 5) ∈ sk(P ≪) begins, the current state of the tableaux rows is Hinit =
(3, 5), Tinit = (2, 8), and their common length is l2 = 2. The least value in Tinit greater than
y = 5 is 8, and its index in Tinit is b2 = 2. The displacement interval is empty (being defined
between b2 = 2 and b1 − 1 = 1 inclusive), and its length is d2 = b1 − b2 = 0.

In the third and final iteration (which is absent from the symmetric algorithm in Figure 2),
the top row of tableaux H , T is formed. Just before the processing of point (6, 8) ∈ sk(sk(P ≪))
begins, the tableaux rows Hinit , Tinit are both empty, and their common length is l3 = 0.
The least value in Tinit greater than y = 5 is by convention +∞, and its index in Tinit is by
convention b3 = 1. The displacement interval is between b3 = 1 and b2 = 2, and its length is
d3 = b3 − b2 = 1.

▶ Theorem 18. The symmetric RSK algorithm with doubling search solves the RSK corres-
pondence problem in worst-case time O(n3/2).

Proof. Without loss of generality, assume that n is a perfect square (otherwise, the input
can be extended by extra points with a suitably high y-value). Let m = n1/2.

For a fixed x-coordinate, consider the displacement interval in a given row r. The rectangle
of tableau cells below and including this interval consists of rdr cells. All these rectangles
for different values of r are pairwise disjoint. The symmetric RSK algorithm terminates
after processing at most m rows. The total number of cells in the rectangles defined by the
displacement intervals in these rows is obviously at most n:

m∑
r=1

rdr ≤ n
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We also have
∑m

r=1 r = m(m+1)
2 ≤ m2 = n. Let d′

r = dr + 1. By the above, we have
m∑

r=1
rd′

r ≤ n + n = 2n

While working on a point with coordinate x within row r, doubling search makes at
most ⌊2 log d′

r⌋+ 3 comparisons. For the total number of comparisons made for the given
x-coordinate, we have by the arithmetic-geometric mean inequality and the Stirling lower
bound on the factorial (cancelling the rounding down of the logarithms, and omitting the
constant factor 2 and the additive term

∑m
r=1 3 = O(m)):

m∑
r=1

log d′
r =

m∑
r=1

log rd′
r

r = log
m∏

r=1

rd′
r

r = log
(

1
m!

m∏
r=1

rd′
r

)
≤

log
(

1
m!

( 1
m

m∑
r=1

rd′
r

)m
)
≤ log (2n/m)m

m! = log (2m)m

m! ≤ log (2m)m

(m/e)m =

m log(2e) = O(m)

There are n different x-coordinates to consider, therefore the algorithm makes n ·O(m) =
O(n3/2) comparisons in total. ◀

5 Conclusion

We have given a simple, direct description of the symmetric RSK algorithm by Felsner and
Wernisch [9]. We have shown how this algorithm can be enhanced with doubling search,
improving the asymptotic running time from O(n3/2 log n) to O(n3/2). It it also worth
noticing that the (worst-case) running time of our algorithm is lower than the average-case
running time of the standard (or the symmetric) RSK algorithm on uniformly random
permutations, as analysed by Romik [16]. Our result implies a similar improvement for the
k-chain problem for arbitrary k.

A natural lower bound on the running time of RSK correspondence is provided by the
LIS problem, which is a subproblem for RSK, and requires Ω(n log n) comparisons in the
comparison model [10]. Thus, there remains a substantial gap between the known upper and
lower bounds for the asymptotic complexity of the RSK correspondence.

Apart from potential improvements in the algorithm or the lower bound, there is scope
for future work in extending the algorithm for more general versions of the RSK correspond-
ence, e.g. that between positive integer matrices and semistandard Young tableaux. An
experimental confirmation of the efficiency of our algorithm also remains an endeavor for
future work; this is a non-trivial task, since most existing experiments with RSK, e.g. those
by Vasilyev and Duzhin [7, 22], concentrate on either Plancherel-random Young diagrams, or
on Young diagrams with (near-)maximum dimensions; such a diagram shape seems to be far
away from the worst-case shape suggested by the proof of Theorem 18.
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Abstract
Most hash tables have an insertion time of O(1), often qualified as “expected” and/or “amortised”.
While insertions into cuckoo hash tables indeed seem to take O(1) expected time in practice, only
polylogarithmic guarantees are proven in all but the simplest of practically relevant cases. Given the
widespread use of cuckoo hashing to implement compact dictionaries and Bloom filter alternatives,
closing this gap is an important open problem for theoreticians.

In this paper, we show that random walk insertions into cuckoo hash tables take O(1) expected
amortised time when any number k ≥ 3 of hash functions is used and the load factor is below the
corresponding peeling threshold (e.g. ≈ 0.81 for k = 3). To our knowledge, this is the first meaningful
guarantee for constant time insertion for cuckoo hashing that works for k ∈ {3, . . . , 9}.

In addition to being useful in its own right, we hope that our key-centred analysis method can
be a stepping stone on the path to the true end goal: O(1) time insertions for all load factors below
the load threshold (e.g. ≈ 0.91 for k = 3).
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1 Introduction

Cuckoo Hashing Basics. Cuckoo hashing is an elegant approach for constructing compact
and efficient dictionaries that has spawned both a rich landscape of theoretical results and
popular practical applications. Briefly, each key x in a set of m keys is assigned k positions
h1(x), . . . , hk(x) in an array of n ≥ m buckets via hash functions h1, . . . , hk. Each bucket
can hold at most ℓ keys and the challenge is to choose for each key one of its assigned buckets
while respecting bucket capacities. We follow many previous works in assuming k ≥ 2 and
ℓ ≥ 1 to be constants and h1, . . . , hk to be uniformly random functions (but see e.g. [1, 2, 3]
for works pursuing cuckoo hashing with explicit hash families).

Since the term cuckoo hashing was coined for (k, ℓ) = (2, 1) [27] and then generalised
to k ≥ 3 [12] and ℓ ≥ 2 [7], a major focus of theory papers has been to determine the load
thresholds c∗

k,ℓ, which are constants such that for a load factor m
n < c∗

k,ℓ − ε a placement of
all keys exists with high probability (whp, defined in this paper as probability 1− n−Ω(1))
and for m

n > c∗
k,ℓ + ε a placement does not exist whp. This project has since been completed

[11, 4, 6, 14, 13, 24] and we reproduce some thresholds in Table 1 for reference. Further
research pursued cuckoo hashing variants with reduced failure probability [21], improved
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load thresholds [7, 23, 30] or weaker randomness requirements for h1, . . . , hk [1, 2, 3, 25, 22].
Moreover, cuckoo filters [9, 10, 8], which are Bloom filter alternatives based on cuckoo
hashing, are now widely popular in the data base community.

Table 1 For each 2 ≤ k ≤ 7 and 1 ≤ ℓ ≤ 6 a cell shows ck,ℓ/ℓ (left) and c∗
k,ℓ/ℓ (right), rounded to

three decimal places. The thresholds are divided by ℓ to reflect the corresponding memory efficiency
(populated space over allocated space).

ℓ\k 2 3 4 5 6 7

1 – /0.500 0.818/0.918 0.772/0.977 0.702/0.992 0.637/0.997 0.582/0.999
2 0.838/0.897 0.776/0.988 0.667/0.998 0.579/1 0.511/1 0.457/1
3 0.858/0.959 0.725/0.997 0.604/1 0.515/1 0.450/1 0.399/1
4 0.850/0.980 0.687/0.999 0.562/1 0.476/1 0.412/1 0.364/1
5 0.837/0.990 0.658/1 0.533/1 0.448/1 0.387/1 0.341/1
6 0.823/0.994 0.635/1 0.511/1 0.427/1 0.368/1 0.323/1

Cuckoo Insertions. An important concern in all variants of cuckoo hashing is how to insert
a new key x into an existing data structure. If all buckets h1(x), . . . , hk(x) are full, then
one key that is currently placed in those buckets has to be moved out of the way into one
of its alternative buckets, which might require additional relocations of keys. Two natural
strategies for organising insertions have been proposed [12]. Breadth-first search (BFS)
insertion systematically pursues all possibilities for relocating keys in parallel. Random walk
(RW) insertion starts by optimistically placing x into bucket hi(x) for a uniformly random
i ∈ [k] (where in this paper [a] := {1, . . . , a} for a ∈ N), without first considering any of the
k − 1 other buckets. If hi(x) was already full, then a random key is evicted from hi(x) and
is itself placed into one of its k − 1 alternative buckets. This chain of evictions continues
until a bucket with leftover space is reached (see Figure 1 for the case with ℓ = 1).

1 Algorithm RW(x):
2 iold ← ⊥
3 repeat
4 pick random i ∈ {h1(x), . . . , hk(x)} \ {iold}
5 swap(x, B[i])
6 iold ← i

7 until x = ⊥

Figure 1 The random walk insertion algorithm for ℓ = 1. The array B of buckets is initialised
with ⊥.

Experiments suggest that, regardless of k and ℓ, and for any load factor m
n < c∗

k,ℓ − ε

where insertions still succeed whp, the expected insertion time is independent of n, hence
“O(1)” (neglecting dependence on the constants k, ℓ, ε), for both RW and BFS. Despite some
partial success (see below), this claim has not been proven for any k and ℓ, neither for RW
nor for BFS, with the exception of (k, ℓ) = (2, 1), which behaves very differently compared
to other cases. A theoretical explanation for the good performance of cuckoo hashing in
practical applications is therefore seriously lacking in this aspect. While this paper does not
solve the problem, it puts a new kind of dent into it.
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Contribution. Like most previous papers on cuckoo hashing insertions (an exception [18]
is mentioned below) we focus on the case ℓ = 1. Our analysis shows that RW insertions
take O(1) expected amortised time for all k ≥ 3, but it only works for m

n < ck,1 − ε where
ck,ℓ < c∗

k,ℓ is known as the peeling threshold or threshold for the occurrence of an (ℓ + 1)-core
in a random k-uniform hypergraph [28, 26, 5, 19], see Table 1. Our analysis extends to a
setting where the m insertions are carried out by m threads in parallel, each executing RW.
We consider the worst case, where a (possibly adversarial) scheduler arbitrarily assigns the
available computation time to threads that have not yet terminated. We only assume that
the scheduler is oblivious of future random choices and that swaps are atomic, i.e. when
several threads perform swaps concurrently, the effect is the same as executing these swaps
in some sequential order (see e.g. [29, Sec. 2.4] for common parallel programming models).

▶ Theorem 1. Let k ∈ N with k ≥ 3 and ε > 0 be constants and n, m ∈ N with m
n < ck,1− ε.

(i) Conditioned on a high probability event, sequentially inserting m keys into a cuckoo
hash table with n buckets of size 1 using RW takes O(n) steps in expectation.

(ii) The same applies if the m insertions are started in parallel with arbitrary scheduling,
only assuming that swaps are atomic. In other words, the combined work is O(n).

Related Work and Comparison. Table 2 summarises related work that we now discuss
from left to right.
[20] is only included here to show that the case of static cuckoo hash tables is well understood

with optimal results in all considered categories.
[12] offers a strong analysis of BFS. The only downside is that it does not work for some

small k and does not reach all the way to c∗
k,1. These issues might be resolvable by

modernising the proof (the values c∗
k,1 were not known at the time of writing). Note,

however, that even full success on this front would not render an analysis of RW irrelevant
as several authors, including [12], see significant practical benefits of RW over BFS.

[17, 15] propose and improve, respectively, an analysis of RW via graph expansion. It
guarantees most desired properties, including a concentration bound on insertion times.
The major downside is an only polylogarithmic bound on expected insertion time.

[16] are first to prove an O(1) bound on expected random walk insertion time. The proof
extends to any load factor 1 − ε with ε > 0. There is a downside, however. Instead
of using k = O(log(1/ε)) hash functions as would be required for the existence of a
placement of all keys (and as are used by [12] in their BFS analysis), the authors use
k = O(log(1/ε)/ε) hash functions. To give an example, while k = 3 hash functions
suffice for ε = 0.2 (because 80% < c∗

3,1 ≈ 92%), the analysis of [16] requires k ≥ 50 hash

Table 2 Guarantees offered by analyses on cuckoo table insertions. The motivation for the third
line is that any load factor < 50% can be achieved with k = 2.

[20] [12] [17, 15] [16] new

algorithm offline
construction BFS RW RW′ RW

(expected amortised) insertion time O(1) O(1) logO(1)(n) O(1) O(1)
least k for load factor > 50% 3 ≥ 10 3 ≥ 12 3
supports load factor 1 − ε for large k ✓ ✓ ✓ ✓ ✗

supports load factor c∗
k,1 − ε ✓ ✗ ✓ ✗ ✗

supports deletions - ✓ ✓ ✗ ✗

ESA 2022
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functions for that ε. Even if the analysis can be tuned to some degree (which seems
probable), useful guarantees for practically relevant k would likely remain out of reach.
We remark that they use a variant RW′ of RW where a key x searches all its buckets
h1(x), . . . , hk(x) for a free space and only moves to a random bucket if all are full.

[18], not shown in the table, considers k = 2 hash functions, buckets of size ℓ ≥ 2 and
random walk insertion. The result resembles [16] in its merits and downsides: Expected
insertion time of O(1) is supported at any load factor 1 − ε, provided that ℓ is large
enough; the value ℓ = ℓ(ε) required in the analysis is exponentially larger than what is
needed for the existence of a placement; and meaningful guarantees for small values of ℓ

seem out of reach.
This paper is the first to guarantee constant time insertions into cuckoo hash tables using

k ∈ {3, . . . , 9} hash functions. Like [16] our proof does not consider deletions. The main
downside is that our analysis only works for m

n < ck,1 − ε. Paradoxically, this means that
the load factor supported by our analysis decreases when more hash functions are used
(indeed, ck,1 → 0 for k →∞) and the supremum of supported load factors is c3,1 ≈ 0.818
for k = 3 hash functions. We mention a potential avenue for overcoming this problem in
the conclusion.

Technical Overview. A central idea in our approach is to not count the number of evictions
caused by a single insertion operation but to take the perspective of a single key and count
how often it moves in the course of all m insertion operations combined.

Our proof is inspired by a simple observation: If a key x is assigned a bucket hi(x) that is
assigned to no other key, then x is safely out of the way of other keys as soon as it has been
placed in hi(x). In expectation, this happens after x has moved k times. A constant fraction
of keys is “harmless” in this way. Moreover, there are keys y that are assigned a bucket hi(y)
that is assigned to no other key, except for some harmless keys. It seems plausible that y,
too, can quickly find a home in hi(y) and is only expected to be evicted from it a few times
until the harmless keys live up to their name.

A formalisation attempt goes like this: Let F be an injective placement function assigning
to each key x a bucket F (x) ∈ {h1(x), . . . , hk(x)} (such an F exists whp for c < c∗

k,ℓ− ε). We
say a key x depends on a key y if F (x) ∈ {h1(y), . . . , hk(y)}, i.e. if the position designated for
x is admissible for y. Let D(x) be the set of all keys that x depends on. Finally, let moves(x)
be the total number of times that x moves during the insertion of all keys. We then have

E[moves(x)] ≤ k +
∑

y∈D(x)

E[moves(y)]. (1)

The “k” is due to x being first placed in F (x) after k moves in expectation. It can then only
be evicted from F (x) by a key from D(x). Each movement of a key in D(x) has a chance of
1
k to evict x from F (x), causing k more moves of x in expectation until x is back in F (x).
Hence each move of a key from D(x) can cause at most one move of x in expectation, as
(1) suggests. The claim is even true in a more general context we call the random eviction
process where in each round an adversary choses the key y to be moved among all keys not
currently placed in their designated location F (y).

As a way of bounding E[moves(x)], Equation (1) is hopelessly circular at first, but it is
useful for specific F . Indeed, assume that the configuration of keys and buckets is peelable,
i.e. for every subset X ′ of keys there is a bucket b∗ assigned to only one key x∗ ∈ X ′. In
that case, we can iteratively construct F , always picking such a pair (x∗, b∗) uniformly at
random, setting F (x∗) = b∗ and removing x∗ from further consideration. This yields an
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acyclic dependence relation and an acyclic dependence graph (the directed graph with one
vertex for each key that has the dependence relation as its edge relation). We can then
upper bound E[moves(x)] by a multiple of peelF (x), which is the number of paths in the
dependence graph that start at x. Bounding the expected number of moves of all insertion
operations combined by O(n) then amounts to bounding the total number of paths in the
dependence graph by O(n).

The second part of our argument – contained in the full version of this paper – is intimately
related to the analysis of 2-cores in random hypergraphs. We extend Janson and Luczak’s
“simple solution to the (ℓ + 1)-core problem” [19], which uses a random process embedded in
continuous time where peeling is applied to the configuration model of a random hypergraph.
We establish two guarantees concerning the peeling process.

Firstly, the guarantee that during “early” rounds of peeling (when Ω(n) keys still remain)
there are always Ω(n) candidate pairs (x∗, b∗) to choose from. Intuitively, this large
number of choices for the peeling process makes it likely that the dependence graph
becomes very “wide” with few long paths. For illustration (the formal argument works
differently) assume the maximum path length is w with w = O(1). Since the indegree of
the dependence graph is bounded by k − 1 this gives a bound of m · (k − 1)w = Θ(m) on
the total number of paths as desired.
Secondly, the technically demanding guarantee that in the “late” phase of peeling (when
only o(n) keys remain) almost all buckets have at most one remaining key assigned
to them. Most steps of the peeling process will then not create further edges in the
dependence graph. This implies that for each of the paths that already exist in the
dependence graph less than one additional path is created in future rounds.

Outline. The rest of this paper is devoted to proving Theorem 1. We introduce two notable
auxiliary concepts we call the random eviction process (REP) and peeling numbers. We
reduce Theorem 1 to a claim about REP (Section 2) and reduce this claim to an upper
bound on peeling numbers (Section 3). The remaining technical content is found in the full
version of this paper. A deep dive into hypergraph peeling is required (full version Section 4).
We then establish the upper bound on peeling numbers by counting paths in the dependence
graph (full version Section 5).

2 Orientations, Peeling and the Random Eviction Process

In this section, we introduce the random eviction process (REP), which generalises sequential
RW insertions, and formulate a claim on REP’ that implies Theorem 1.

From Hashing to Hypergraphs. A well-subscribed model for cuckoo hashing involves
hypergraph terminology. The set of buckets corresponds to the set V of vertices and each
key x corresponds to the hyperedge {h1(x), . . . , hk(x)} in the set E of hyperedges. The task
of placing all keys then becomes the task of orienting H = (V, E) as explained below.

Under the simple uniform hashing assumption, the distribution of H = Hn,m,k is simple:
Each of the km incidences of the m hyperedges are chosen independently and uniformly
at random from V . Formally this means that hyperedges are multisets of size k, possibly
containing multiple copies of the same vertex (though in expectation only O(1) do) and E is
a multiset possibly containing identical hyperedges (though whp E does not). This issue
complicates a few definitions but does not cause any real trouble.

ESA 2022
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1 Algorithm REP(V, E):
2 f ← {(e,⊥) | e ∈ E}// i.e. f ≡ ⊥
3 while ∃e ∈ E : f(e) = ⊥ do
4 pick such an e arbitrarily
5 pick a random v ∈ e

6 if ∃e′ ̸= e : f(e′) = v then
7 f(e′)← ⊥
8 f(e)← v

1 Algorithm REP’(V, E, F ):
2 f ← {(e,⊥) | e ∈ E}
3 while ∃e ∈ E : f(e) ̸= F (e) do
4 pick such an e arbitrarily
5 pick a random v ∈ e

6 if ∃e′ ̸= e : f(e′) = v then
7 f(e′)← ⊥
8 f(e)← v

Figure 2 The random eviction process (REP) is a generalisation of sequential random walk
insertion. A variant REP’ only terminates when a specific target orientation F : E → V is reached.
Changes are highlighted in bold.

Orientations and Peelings. A partial orientation of a hypergraph H = (V, E) is a function
f : E → V ∪ {⊥} with f(e) ∈ e∪ {⊥} for each e ∈ E that is injective except for collisions on
⊥. If f(e) = ⊥ then we say that e is unoriented, otherwise e is oriented (to f(e)). We call f

an orientation if all e ∈ E are oriented.
We can try to construct an orientation F of H greedily by repeatedly selecting a vertex

v of degree 1 arbitrarily as long as one such vertex exists, setting F (e) = v for the unique
hyperedge e incident to v, and removing e from H. We call the resulting partial orientation
F a peeling of H. If H does not contain a subhypergraph of minimum degree at least 2 (i.e.
when the 2-core of H is empty [26]) then F is an orientation and we say H is peelable. We
call F a random peeling if the choice of v is made uniformly at random whenever there are
several vertices of degree 1.

The Random Eviction Process. The random eviction process (REP), see Figure 2 (left),
is run on a hypergraph H = (V, E) and maintains a partial orientation f of H. The
process continues in a sequence of rounds as long as unoriented hyperedges remain, possibly
indefinitely. In each round, an unoriented hyperedge e is chosen and oriented to a random
incident vertex. If a different hyperedge e′ was oriented to that vertex, then this e′ is evicted,
i.e. becomes unoriented.

A variant of REP is the random eviction process with target orientation (REP’), see
Figure 2 (right). It is run on a hypergraph H and an orientation F of H. REP’ works just
like REP, except that it terminates only when f = F is reached, and in every round any
hyperedge e with f(e) ̸= F (e) may be chosen. We claim:

▶ Proposition 2. Let k ∈ N with k ≥ 3 and ε > 0 be constants and n, m ∈ N with m
n < ck,1−ε.

Conditioned on a high probability event, H = Hn,m,k is peelable and the random peeling F

of H satisfies the following. REP’ with target orientation F and an arbitrary1 policy for
choosing e in line 4 terminates after O(n) rounds in expectation.

Proposition 2 is proved in the following section. We now show that it implies Theorem 1.

1 This allows these choices to be made adversarially. The adversary may know all about H and the state
of the algorithm but cannot predict future random choices made in line 5.
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Proof of Theorem 1. The case of m sequential insertions is equivalent to the case of m

parallel insertions where the scheduler only assigns computation time to the thread of least
index that has not yet terminated. It therefore suffices to prove (ii), where the parallel case
with arbitrary scheduling is considered.

We deal with m threads, each running RW, executed in an arbitrarily interleaved way.
However, the only point where RW interacts with data visible to other threads is the swap,
which is assumed to be atomic. A sufficiently general case is therefore one where the scheduler
always picks an arbitrary thread that has not yet terminated and that thread is then allowed
to run for one iteration of the loop. The correspondence between this process and REP
should be clear: The scheduler’s arbitrary choice of a thread implicitly chooses an unplaced
key in that thread’s local variable x, which is then placed into a random bucket, possibly
evicting a different key. Likewise, REP arbitrarily chooses an unoriented hyperedge, which is
then randomly oriented, possibly evicting another hyperedge.

For Proposition 2’s claim on REP’ to apply to RW, there are two differences to consider.
REP vs. REP’. Assume an adversary wants to maximise the expected running times of REP

and REP’ by making bad choices for e in line 4. Her job is harder for REP for two reasons:
Firstly, the termination condition is strictly weaker, such that REP may terminate when
REP’ does not. Secondly, her choices for e are restricted to unoriented hyperedges, where
REP’ additionally permits oriented hyperedges with f(e) ̸= F (e).
Intuitively speaking, the relatively weaker adversary in REP means that the upper bound
on expected running time in Proposition 2 carries over from REP’ to REP. More formally,
every policy P for line 4 of REP is also valid for REP’ and under the natural coupling
random coupling REP’ with P takes always at least as long as REP with P .

REP vs. RW: iold. In RW an evicted key is not allowed to immediately move back into
the bucket iold it was just evicted from. The intuition is that this avoids a needless
back-and-forth that otherwise occurs in 1 out of every k evictions. However, the author
is not aware of a simple proof that the use of iold is an improvement. Instead, we will
check that the relevant part of the argument (Lemma 3) works for both cases. ◀

3 Bounding the Number of Evictions using Peeling Numbers

We now introduce the concept of peeling numbers and bound the number of evictions
occurring in REP’ in terms of them. This proves Proposition 2 but leaves the task of
bounding peeling numbers for the full version of this paper.

Direct Dependence and Numbers of Moves. Consider a peelable hypergraph H = (V, E)
and a peeling F : E → V of H. For e ̸= e′ ∈ E we say that e directly depends on e′ if
F (e) ∈ e′. This implies that e is peeled after e′, making the transitive closure of direct
dependence an acyclic relation. We define D(e) = DF (e) as the set of all e′ that e directly
depends on, or more precisely: D(e) is a multiset containing e′ with the same multiplicity
with which e′ contains F (e).

Now consider a run of REP’ with target orientation F (and an arbitrary policy for line 4).
For e ∈ E let moves(e) be the number of times that e is selected in line 4 of REP’ (this is
one more than the number of times that e is evicted).

▶ Lemma 3. For any e ∈ E we have E[moves(e)] ≤ k +
∑

e′∈D(e) E[moves(e′)].

Proof. For clarity, we ignore complications that are due to multisets at first. Let m1 be
the number of times that e moves until f(e) = F (e) holds for the first time. Whenever e is
selected to be moved, the chance to select f(e) = F (e) is 1

k , so clearly E[m1] = k. Afterwards,
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e may not be selected anymore until evicted. Only hyperedges in D(e) can evict e from F (e)
and when selected they do so with probability 1

k , causing another k moves of e in expectation.
It follows that E[m+] = E[mD] where m+ := moves(e)−m1 and where mD is the number of
times that a hyperedge from D(e) moves while f(e) = F (e). The claim now follows from
mD ≤

∑
e′∈D(e) moves(e′) and linearity of expectation.

When D(e) is a multiset the argument can be adapted: Whenever a hyperedge e′ moves
that is contained in D(e) with multiplicity a > 1 it has an increased chance of a

k to move to
F (e). But this is reflected in our bound since E[moves(e′)] is counted a times.

Let us now consider a variant of the claim that incorporates the “iold” feature of RW as
promised in the proof of Theorem 1. In particular, a hyperedge never moves into the position
it was last evicted from. We now have E[m1] < k because all moves after the first move have
an improved chance of 1

k−1 to select F (e). To compare E[m+] and E[mD], we can distinguish
two kinds of moves. Concerning moves away from F (e), mD counts the same or one more
compared to m+. All other moves have a chance of 1

k−1 to end in F (e) and contribute the
same amount to E[m+] and E[mD] as before. The same adaptation to multisets applies. ◀

The Peeling Number. We define the peeling number of e ∈ E recursively as

peel(e) = peelF (e) :=
∑

e′∈DF (e)

(1 + peel(e′)). (2)

Peeling numbers are well-defined by acyclicity of direct dependence, the base case being
peel(e) = 0 for any e with D(e) = ∅. The idea is that peel(e) counts the number of
hyperedges that e directly or indirectly depends on, in other words, those hyperedges e′ that
must be peeled before e can be peeled. However, some e′ may be counted multiple times.
The relevance of peeling numbers lies in the following lemma.

▶ Lemma 4. Let H be a peelable hypergraph with a peeling F . Let R be the number of rounds
until REP’ with target orientation F terminates. We have E[R] ≤ k · (m +

∑
e∈E peelF (e)).

Proof. For a single e ∈ E we have E[moves(e)] ≤ k · (1 + peel(e)) because

E[moves(e)]
Lem.3
≤ k +

∑
e′∈D(e)

E[moves(e′)]
Induction
≤ k +

∑
e′∈D(e)

k · (1 + peel(e′))

Eq.(2)= k + k · peel(e) = k · (1 + peel(e)).

Since the total number R of rounds of REP’ is the sum of all moves we conclude

E[R] = E
[ ∑

e∈E

moves(e)
]
≤

∑
e∈E

k · (1 + peel(e)) = k · (m +
∑
e∈E

peel(e)). ◀

The remaining technical challenge is to bound the sum of all peeling numbers:

▶ Proposition 5. Let H be as in Proposition 2. There is a high probability event E such that,
conditioned on E , H is peelable and the peeling numbers with respect to the random peeling F

of H satisfy

E
[ ∑

e∈E

peelF (e) | E
]

= O(n).

A prove is found in the full version of this paper (Section 5) and requires a detailed analysis
of the peeling process (Section 4). We conclude this extended abstract with showing how
Proposition 5 implies Proposition 2.
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Proof of Proposition 2. We take the opportunity to clarify the structure of our probability
space. There are three random experiments, performed in sequence: First, we pick a random
hypergraph H. Second, if H is peelable, we pick a random peeling F of H and observe the
peeling numbers. Last, we execute REP’(H, F ) and observe which moves are made. Note
that the high probability event E from Proposition 5 only relates to the first two steps (it
does not relate to any moves). Lemma 4 only relates to the last step and does not require H

and F to be random. For the number R of rounds of REP ′ we obtain:

E[R | E ] = E
[
E[R | H, F, E ] | E

]
= E

[
E[R | H, F ] | E

] Lem. 4
≤ E

[
k · (m +

∑
e∈E

peel(e)) | E
]

= km + k · E
[ ∑

e∈E

peel(e) | E
] Prop. 5= km + k · O(n) = O(n). ◀

4 Conclusion and Future Work

This paper proves O(1) expected amortised running times for random walk insertions into
cuckoo hash tables and is the first to yield meaningful results for small values of k such as
k = 3. Our proof strategy is to link the number of times that a key x moves to the number
of times that certain other keys move, where these other keys all preceed x in the peeling
process. The main technical challenge (addressed in the full version of this paper) was to
extend an existing analysis of this peeling process in order to obtain stronger guarantees on
its late stages when a sublinear number of keys remain. There are several ways in which our
result might be strengthened.

While amortisation is central to our argument, it seems unlikely to be required for the
result itself. Indeed, the plausible claim that the expected time for inserting the i-th key
is monotonically increasing in i already implies a non-amortised result.
To make the result more relevant to practitioners, it is natural to pursue a generalisation
to long sequences of insertions and deletions and to buckets of size ℓ ≥ 2. The author
suspects that the given argument can be correspondingly extended with moderate technical
complications.
If deletions are allowed then it seems natural to partition the data structure’s lifetime into
time slices of εn operations such that the set St of all keys present at some point during
time slice t yields a peelable configuration whp. One would hope to conclude that O(n)
evictions occur during the time slice in expectation whp. However, the peeling number of
a key is no longer sufficient for bounding its expected number of moves for the simple
reason that the key itself might be inserted and deleted frequently within the time slice.
The most important goal, however, is to obtain a result that works up to the load threshold
(for all c < c∗

k,1 − ε), not just up to the peeling threshold (for c < ck,1 − ε). There is at
least one reason for optimism, namely the recent discovery of a variant of cuckoo hashing
that raises the peeling threshold to the load threshold [31]. Briefly, a key’s k hashes
are randomly distributed in a random window of γn consecutive buckets. The peeling
threshold of this variant is equal to c∗

k,ℓ − ε where ε(γ) can be made arbitrarily small.
However, when using this variant, an analysis can no longer rely on the configuration
model due to a lack of symmetry between the vertices, meaning that even if the general
idea is still sound, the proof would have to use different methods.

Regardless of whether such improvements are achievable, we believe this paper to be a
promising step forward in the ongoing project of retrofitting the widespread use of cuckoo
hash tables and cuckoo filters with strong theoretical guarantees.
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Abstract
This paper presents ParGeo, a multicore library for computational geometry. ParGeo contains
modules for fundamental tasks including kd-tree based spatial search, spatial graph generation, and
algorithms in computational geometry.

We focus on three new algorithmic contributions provided in the library. First, we present a new
parallel convex hull algorithm based on a reservation technique to enable parallel modifications to
the hull. We also provide the first parallel implementations of the randomized incremental convex
hull algorithm as well as a divide-and-conquer convex hull algorithm in R3. Second, for the smallest
enclosing ball problem, we propose a new sampling-based algorithm to quickly reduce the size of the
data set. We also provide the first parallel implementation of Welzl’s classic algorithm for smallest
enclosing ball. Third, we present the BDL-tree, a parallel batch-dynamic kd-tree that allows for
efficient parallel updates and k-NN queries over dynamically changing point sets. BDL-trees consist
of a log-structured set of kd-trees which can be used to efficiently insert, delete, and query batches
of points in parallel.

On 36 cores with two-way hyper-threading, our fastest convex hull algorithm achieves up to
44.7x self-relative parallel speedup and up to 559x speedup against the best existing sequential
implementation. Our smallest enclosing ball algorithm using our sampling-based algorithm achieves
up to 27.1x self-relative parallel speedup and up to 178x speedup against the best existing sequential
implementation. Our implementation of the BDL-tree achieves self-relative parallel speedup of up to
46.1x. Across all of the algorithms in ParGeo, we achieve self-relative parallel speedup of 8.1–46.61x.
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1 Introduction

Computational geometry algorithms have important applications in various domains, includ-
ing computer graphics, robotics, computer vision, and geographic information systems [29, 43].
It is important to provide users with libraries of efficient computational geometry algorithms
that they can easily use in their own higher-level applications. Furthermore, due to the
growing sizes of data sets that need to be processed today, and the ubiquity of parallel
(multicore) machines, it is beneficial to use parallel algorithms to speed up computations.
In this paper, we present the ParGeo library for parallel computational geometry, which
includes a rich set of parallel algorithms for geometric problems and data structures, includ-
ing kd-trees, k-nearest neighbor search, range search, well-separated pair decomposition,
Euclidean minimum spanning tree, spatial sorting, and geometric clustering. ParGeo also
contains a collection of geometric graph generators, including k-nearest neighbor graphs and
various spatial networks. Algorithms from ParGeo can either run sequentially, or run using
parallel schedulers such as OpenMP, Cilk, or ParlayLib.

While there exist numerous libraries for computational geometry, most of them are not
designed for parallel processing. For example, Libigl [35] is a library that specializes in the
construction of discrete differential geometry operators and finite-element matrices. However,
only some aspects of Libigl take advantage of parallelism. In comparison, the algorithms
and implementations of ParGeo are designed for parallelism, and target a different set of
problems. CGAL (Computational Geometry Algorithms Library) [2] is a well-known library
of computational geometry algorithms that includes a wide range of algorithms, but most
implementations are not parallel. Batista et al. [15] targeted a few important algorithms,
including spatial sorting, box intersection, and Delaunay triangulation for shared-memory
parallel processing, with code in CGAL. In comparison, ParGeo targets similar classes of
problems as CGAL, but all of our implementations are highly parallel. PMP [47], Cinolib [39],
and Tetwild [34] are libraries for polygonal and polyhedron meshes, tackling different problems
from ParGeo. MatGeom [5] is a library for sequential geometric computing with MATLAB.
The Problem Based Benchmark Suite [46, 12] is a multicore benchmark suite that has some
overlap in algorithms with ParGeo. LEDA [40] is a library of data structures and algorithms
for sequential combinatorial and geometric processing. ArborX [38] is a parallel library for
spatial search.

In this paper, in addition to providing an overview of work on ParGeo, we describe
new parallel algorithms implemented in ParGeo for convex hull, smallest enclosing ball,
and batch-dynamic kd-tree that we developed. For convex hull, we develop new parallel
algorithms for both R2 and R3, where our key algorithmic novelty is a reservation technique
to enable parallel modifications to the hull. For smallest enclosing ball, we propose a new
sampling-based algorithm based on Larsson et al.’s [37] approach to quickly reduce the size
of the data set. We also provide the first parallel implementation of the classic randomized
incremental algorithm [27]. For kd-trees, we develop the BDL-tree, a new parallel data
structure that supports batch-dynamic operations (construction, insertions, and deletions)
as well as exact k-NN queries. BDL-trees consist of a set of exponentially growing kd-trees
and perform batched updates in parallel.

To demonstrate the efficiency of our proposed algorithms and library, we perform a
comprehensive set of experiments on synthetic and real-world geometric data sets, and
compare the performance across our parallel implementations as well as optimized sequential
baselines. On 36 cores with two-way hyper-threading, our best convex hull implementations
achieve up to 44.7x (42.8x on average) self-relative speedup and up to 559x (325x on average)
speedup against the best existing sequential implementation for R2, and up to 24.9x (11.81x
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Static and Dynamic kd-Tree (1)

● K-NN Search
● Range Search
● Parallel Batch-Dynamic kd-Tree

Spatial Graph Generator (3)

● K-NN Graph
● Beta-Skeleton
● Euclidean Minimum Spanning Tree (EMST)
● T-Spanner
● Delaunay Graph

Computational Geometry (2)

● Well-Separated Pair Decomposition (WSPD)
● Bichromatic Closest Pair
● Closest Pair
● Convex Hull
● Smallest Enclosing Ball (SEB)
● Morton Sort

Data Generator (4)

● Uniform Data Generator
● Synthetic Seed Spreader

Figure 1 The figure shows an overview of modules in ParGeo. An arrow indicates that a
component is used inside another component. In this paper, we present new algorithms and
techniques for the modules highlighted in green.

on average) self-relative speedup and up to 124x (61.4x on average) speedup against the
best existing sequential implementation for R3. Our sampling-based smallest enclosing ball
algorithm achieves up to 27.1x (20.08x on average) self-relative speedup and up to 178x
(109x on average) speedup against the best existing sequential implementation for R2 and
R3. Our BDL-tree achieves self-relative speedup of up to 35.4× (30.0× on average) for
construction, up to 35.0× (28.3× on average) for batch insertion, up to 33.1× (28.5× on
average) for batch deletion, and up to 46.1× (40.0× on average) for full k-NN. Finally, across
all implementations in ParGeo, we achieve self-relative parallel speedup of 8.1–46.6x (on
average 23.2x).

2 The ParGeo Library

Our main goal in designing ParGeo was to enable reusable and efficient parallel implementa-
tions of geometric algorithms and data structures. We present an overview of the modules of
ParGeo in Figure 1, highlighting how the modules interact with each other. ParGeo contains
efficient multicore implementations of static and batch-dynamic kd-trees (Module (1)). The
code supports kd-tree based spatial search, including k-nearest neighbor and range search.
Our code is optimized for fast kd-tree construction by performing the split in parallel (either
by spatial median or by object median), and performing the queries in a data-parallel fashion.
which we will introduce in Section 5.

ParGeo contains a module for parallel computational geometry algorithms (Module (2)).
Our kd-tree can be used to generate a well-separated pair decomposition [26] (WSPD), which
can in turn be used to compute the hierarchical DBSCAN [52], ParGeo contains parallel
implementations for the bichromatic closest pair, closest pair, convex hull, smallest enclosing
ball, and Morton sorting.

In addition, ParGeo contains a collection of geometric graph generators (Module (3)) for
point data sets. Our kd-tree’s k-NN search is used to generate the k-NN graph, and the
range search is used to generate the β-skeleton graph [36]. Our WSPD generated from the
kd-tree can also be used to compute the Euclidean minimum spanning tree [25, 52], and
spanners [26]. ParGeo also generates the Delaunay graph.
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Table 1 Runtimes (seconds) and parallel speedups (T1/T36h) for ParGeo implementations on
uniform hypercube data sets of varying dimensions and 10 million points. T1 and T36h denote the
single-threaded and the 36-core hyper-threaded times, respectively. For batch-dynamic kd-tree
updates, each batch contains 10% of the data set.

Implementation T1 T36h Speedup
kd-tree Build (2d) 5.51 0.43 12.70x
kd-tree Build (5d) 8.39 0.89 9.40x
kd-tree k-NN (2d) 31.45 0.68 46.34x
kd-tree Range Search (2d) 17.14 0.37 46.61x
Batch-dynamic kd-tree Construction (5d) 6.70 0.60 10.70x
Batch-dynamic kd-tree Insert (5d) 8.80 1.10 8.10x
Batch-dynamic kd-tree Delete (5d) 29.20 1.20 23.90x
WSPD (2d) 6.72 0.24 27.63x
EMST (2d) 33.02 1.58 20.86x
Convex Hull (2d) 0.38 0.0088 43.13x
Convex Hull (3d) 2.36 0.097 24.36x
Smallest Enclosing Ball (2d) 0.053 0.0033 16.30x
Smallest Enclosing Ball (5d) 0.13 0.014 9.54x
Closest Pair (2d) 10.35 0.52 19.90x
Closest Pair (3d) 28.00 2.32 12.07x
k-NN Graph (2d) 37.89 1.46 25.99x
Delaunay Graph (2d) 55.91 2.03 27.53x
Gabriel Graph (2d) 59.61 1.99 29.99x
β-skeleton Graph (2d) 113.27 3.20 35.37x
Spanner (2d) 27.19 2.15 12.67x

ParGeo contains a point data generator module (Module (4)) for which can generate
uniformly distributed data sets, and clustered data sets of varying densities [31]. These data
sets are used for benchmarking the other modules.

As shown in Table 1, on a machine with 36 cores with two-way hyper-threading, ParGeo
achieves self-relative parallel speedups of 8.1–46.61x (23.15x on average) on a uniformly
distributed data set, across all of the benchmarks. In the subsequent sections, we present
three new algorithmic contributions provided in the library.

3 Convex Hull

The convex hull of a set of points P in Rd is the smallest convex polyhedron containing P .
It is common to represent the convex hull using a set of facets. The boundary of two facets
is a ridge. For example, in R3, assuming the points are in general position (no four points
are on the same plane), each facet is a triangle, and each ridge is a line that borders two
facets (see Figure 2(a)).

support set
ridgefacet

(a) (b)

Figure 2 (a) A facet and a ridge of a convex hull in R3. (b) The support of the smallest enclosing
ball in R2.
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The randomized incremental algorithm and the quickhull algorithm are the most widely
used algorithms for solving convex hull in practice. The randomized incremental algorithm for
Rd was proposed by Clarkson and Shor [27]. Given a point data set P in Rd, the randomized
incremental algorithm first constructs a d-simplex, a generalization of a tetrahedron in
d-dimensions as the initial hull. Then, the algorithm adds the points to the polyhedron in a
random order, updating the hull if necessary. In practice, the quickhull algorithm [33, 14],
another incremental algorithm, is often used. Unlike the randomized algorithm, the quickhull
algorithm processes a point that is furthest from a facet, which enables the hull to be expanded
more quickly. The quickhull algorithm is by far one of the most common implementations for
convex hull due to its simplicity and efficiency [4, 6, 7, 1, 3, 2]. There have also been works that
study parallel implementations of quickhull, but they are either limited to R2 [41, 48], or do
not return the exact convex hull for R3 [49, 51]. Recently, Blelloch et al. [24] proposed a new
randomized incremental algorithm that is highly parallel in theory. However, the algorithm
does not seem to be practical due to numerous data structures required for bookkeeping.

In this section, we describe our new parallel reservation-based algorithm. Our algorithm
is able to express both the randomized incremental convex hull algorithm and the quickhull
algorithm. Specifically, unlike a sequential incremental algorithm that adds one point per
round, we add multiple points in parallel per round. We resolve conflicts caused by the
parallel insertion using a reservation technique. We also apply a general parallelization
technique based on divide-and-conquer, which in combination with our parallel incremental
algorithm, leads to faster implementations in practice.

Parallel Reservation-Based Algorithm. Our parallel reservation-based algorithm can be
implemented as either a randomized incremental algorithm or a quickhull algorithm. We will
first introduce the overall structure of the algorithm. Then, we will describe the details about
the implementations, and compare with existing approaches. We will base our description in
the context of R3 for the sake of clarity, but the algorithm can be extended to Rd for any
constant integer d ≥ 2.

We first give a high-level overview of the algorithm. Given an ordered set of points
P = {p1, p2, . . . , pn}, we let Pr = {p1, p2, . . . , pr} be the prefix of P of size r, and CH(Pr)
be the convex hull on Pr. We start the construction by first arbitrarily selecting four points
from P that do not lie on the same plane and putting them at the beginning of P , forming a
tetrahedron CH(P4). Then, the algorithm proceeds iteratively, but on each round, rather
than inserting just pr to form CH(Pr), we process a batch of points in parallel. On each
round, let each point outside of CH(Pr−1) be called a visible point. We first select a batch
of visible points, and try to add them to CH(Pr−1) in parallel in the same round.

The key challenge of this approach is that some of these points cannot be processed in
parallel due to concurrent modifications on the shared structures of the convex polyhedron.
We use a reservation algorithm to resolve these conflicts, such that we only process the points
that modify disjoint facets of the polyhedron. Specifically, each point will perform a priority
write [45] with its ID to reserve all of its visible facets. Points that have their ID written to
all of its visible facets are successful. We then process the successful points in parallel by
enabling them to make modifications to CH(Pr−1). At the end of the round, in parallel, we
filter out points that are no longer visible. The algorithm will terminate when there are no
more visible points.

We now describe the algorithm in more detail. Figure 3 illustrates the processing of a
visible point pr. We denote a facet as a visible facet of pr if point pr is in the half space
away from the center of the convex hull. We first retrieve the set of visible facets of pr via
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pr

horizon(pr )

pr

(a) (b)

Figure 3 Illustration of adding a visible point pr to the convex hull. (a) shows the convex hull
prior to the addition of pr. The visible facets are in white, while the non-visible facets are in gray.
The thicker line segments correspond to the horizon. (b) shows the convex hull after adding pr with
newly created facets.

pr

pr+1

horizon(pr )

horizon(pr+1)

Figure 4 This figure illustrates the attempt to add pr and pr+1 in parallel. The visible points
and horizons of pr and pr+1 are in red and blue, respectively. The visible facets to either visible
points are in white/yellow, while the other facets are in gray. The overlap of the three visible facets
between the pr and pr+1 is in yellow.

facets stored in it. The visible facets of pr form a closed region, whose boundary is a set
of ridges, known as the horizon. We delete the visible facets from CH(Pr−1), and replace
them with new facets, where each new facet is formed by adding two ridges from a horizon
ridge to pr.

Because of the structural changes to the convex hull that occur when adding a visible
point, concurrent structural changes can cause data races, which need to be avoided. We
show an example of the conflict in Figure 4, where we are attempting to add two visible
points pr and pr+1 in parallel. As shown in the figure, the closed regions formed by the visible
facets of each visible point overlap with each other in three facets, which are highlighted
in yellow. Should the two visible points be processed in parallel, the resulting polyhedron
may not be well-defined due to data races. When processed sequentially, pr+1’s visible facets
would have been different, involving newly created facets by pr.

Our reservation algorithm allows only a subset of the visible points that update disjoint
facets of the convex hull to be processed in parallel on each round. At a high level, we use
the lexicographical order of the visible points to determine the priority in processing a facet
(a smaller ID has higher priority). In the example shown in Figure 4, since pr has a smaller
ID than pr+1, the three conflicting facets can only be processed by pr in that round. The
pseudocode for the algorithm is shown in Figure 5. P is processed iteratively until it is
empty (Line 4). We allocate an extra data field in each facet for performing reservations
(Lines 6–8). For each visible point in parallel, we iterate through its visible facets and use a
parallel priority write (WriteMin) to write its ID to the facets’ “reservation” fields. Then on
Lines 9–11, we determine which visible points successfully reserved all of its facets. Again, in
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1 Input: 3-dimensional points P, batch size r
2 Output: 3-dimensional convex hull
3 CH := initialize with 4 points
4 while (P is not empty):
5 Q := a batch of size r of visible points in P
6 par_for (q in Q): /* reservation */
7 for (f in q.visibleFacets):
8 WriteMin(&f.reservation, q.id)
9 par_for (q in Q): /* check reservation */

10 for (f in q.visibleFacets):
11 q.success &&= (f.reservation == q.id)
12 par_for (q in Q): /* process successful points */
13 if (q.success):
14 delete q’s visible facets
15 create new facets of q
16 update CH
17 P := ParallelPack(P, visible)

Figure 5 Pseudocode for the parallel reservation-based convex hull algorithm (which includes the
randomized incremental algorithm and the quickhull algorithm).

parallel for each visible point, we check each of its visible facets for a successful reservation by
comparing the value of the reservation field with its token. The reservation of a visible point
is only successful if its ID is stored in all of its visible facets. Then, on Lines 12–16, we process
the visible points whose reservations are successful, adding them to the hull and updating
the appropriate data structures. Finally, on Line 17, we process the points in P such that
those remaining as visible points are packed to replace the original P , and the non-visible
points are discarded. Note that the visible points that succeeded in the reservation are no
longer visible points because they are now part of the convex hull. Some of the remaining
points will also no longer be visible points due to the growth of the convex hull.

We use a simple and fast data structure to keep track of the visibility relationship between
the visible points and the facets. At each step of the algorithm, when a visible point is
processed, it needs to identify the set of visible facets. On the other hand, for the facets
undergoing structural changes, they need to identify and redistribute their visible points to
new facets. To find the set of visible facets of pr, it is inefficient to iterate through all of
the facets of CH(Pr−1). While existing approaches [29] keep track of the visibility between
visible points and all of their visible facets, we found such an approach to be slow becaseu
each vertex is associated with multiple facets, making the cost of storing and updating the
data structure high. We only store the reference of an arbitrary visible facet to each visible
point, from which we use a local breadth-first search to retrieve all of the visible facets only
when needed. For storing the visible points in the facets, we assign each point to one of
its visible facets. During point redistribution, we gather the points stored in each visible
facet into an array, and in parallel distribute each point to a new visible facet replacing the
original visible facet. Each such point also stores a reference to this visible facet.

Our reservation-based algorithm can be used to implement the parallel randomized
incremental algorithm or the quickhull algorithm for convex hull. For the randomized
incremental algorithm, we randomly permute the input points at the beginning, and on each
round attempt to add a prefix of the permuted points to the convex hull. For the quickhull
algorithm, on each round, we instead select a set of points furthest from a subset of facets.

ESA 2022



88:8 ParGeo: A Library for Parallel Computational Geometry

We describe the implementation of the two algorithms in greater detail in the full version
of our paper. Our reservation-based algorithm is inspired by the idea of “deterministic
reservations” from Blelloch et al. [22], who introduce this approach to implement parallel
algorithms for other problems. In the full version of our paper, we show the work overhead
of doing reservations compared to the sequential algorithm is small.

Parallel Divide-and-Conquer. We adopt a common parallelization strategy using divide-
and-conquer, which calls our reservation-based algorithm as a subroutine. Some early convex
hull algorithms are based on divide-and-conquer, notably, the algorithm by Preparata and
Hong [42]. The algorithm splits the input into two spatially disjoint subsets by a mid-point
along one of the axis, recursively computes the convex hull on each subset, and then merges
the results together. Later work [10, 28, 11] extended this approach to the parallel setting.
However, most of these approaches rely on complicated subroutines to merge convex hulls,
which are not practical and have not been implemented, to the best of our knowledge.

We implement a practical divide-and-conquer algorithm by partitioning the input into
c · numProc equal subsets, where c is a small constant and numProc is the number of
processors. For each subset, the convex hull of the subset is computed by a single processor
using the sequential quickhull algorithm, but run in parallel across the different subsets.
Then, the vertices of the outputs of the subproblems are collected to form a new input,
from which the final convex hull is computed using our reservation-based parallel algorithm
described earlier.

Point Culling via Pseudohull Computation. We also implement a multicore variant of
Tang et al.’s pseudohull heuristic [50], originally proposed for the GPU. Starting from an
initial tetrahedra, we recursively grow each facet into three new facets, using the furthest
point from the facet, similar to the quickhull algorithm. The visible points associated with
the facet are redistributed to the new facets. This results in a polyhedron, and the points in
the interior of the polyhedron will not be part of the convex hull. Therefore, we can prune
away the points inside the polyhedron and compute the convex hull on the rest of the points.

There are several differences in our implementation from Tang et al.’s algorithm. Our
implementation executes the recursive calls on different facets asynchronously in parallel,
whereas Tang et al.’s implementation maps the algorithm to the GPU architecture by pre-
allocating space for the facets and visible points, and runs the algorithm in an iterative
manner in lock-step. Specifically, successively generated facets and points points associated
them are updated by multiple threads in parallel in each iteration. We use a parallel
maximum-finding routine to find the furthest point of each facet in each call. Rather than
growing the pseudohull until there are no more visible points as done by Tang et al., we set
a threshold on the number of points associated with a facet, below which we stop growing
the pseudohull. This prevents stack overflow on large and skewed data sets due to too many
recursive calls, and the extra unpruned points do not contribute significantly to the work
of the final computation of the convex hull. At the end of pruning, we use our parallel
reservation-based quickhull algorithm to compute the final hull on the remaining points,
whereas Tang et al. uses a sequential implementation.

4 Smallest Enclosing Ball

The smallest enclosing ball of P in Rd is the smallest d-sphere containing P . It is well known
that the smallest enclosing ball is unique and defined by a support set of d + 1 points on
the surface of the ball (see Figure 2(b)).
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Welzl [53] showed that by using a randomized incremental algorithm, the smallest enclosing
ball can be computed in O(n) time in expectation for constant d. The algorithm iteratively
expands the support set of the ball by adding points in a random order until the ball
contains all of the points. The algorithm was later improved by Gartner [32] with practical
optimizations for speed and robustness. Larsson et al. [37] proposed practical parallel
algorithms that use a new method for expanding the support set, and their implementations
work on both CPUs and GPUs. Later, Blelloch et al. [23] proposed a parallel algorithm
based on Welzl’s algorithm, but without any implementations.

In this section, we describe our new algorithms for the smallest enclosing ball problem
based on Larsson et al.’s approach [37]. We propose a sampling-based algorithm to quickly
reduce the size of the data set. We also provide the first parallel implementation of Welzl’s
classic algorithm.

Given a ball B, we define visible points to be points that lie outside of B. Existing
approaches for computing the smallest enclosing ball focus on expanding the support set in
an iterative manner, and output the enclosing ball when there are no more visible points.
Welzl’s algorithm expands the support set by adding points in a random order [53]. In
comparison, Larsson et al.’s approach scans the input to search for good support sets in
a round-based manner. In R3, Larsson’s algorithm divides the space into eight orthants
centered at the center of B. On each round, the input is scanned to find the furthest visible
points in each orthant. B is then updated to the next intermediate solution using the existing
support set of B and the new visible points found during the scan. The algorithm iterates
until there are no more visible points. It is parallelized within each round by performing the
scan on the input in parallel.

Sampling-Based Algorithm. We find each iteration in Larsson et al.’s algorithm to be
unnecessarily expensive due to having to scan the entire data set on every round. Our
approach is to use a sampling heuristic to first obtain a good initial ball, inspired by Welzl’s
randomized algorithm. Specifically, we use small random samples to obtain good estimates
of the support set at a negligible cost.

We show the pseudocode of our algorithm in Figure 6. Our sampling-based algorithm
consists of two phases: the sampling phase (Line 5–13) and the final compute phase (Line 15–
20). First, we initialize the ball using a few arbitrary points (Line 3). Then, we iterate
through a random permutation of the input to take multiple samples (Line 5–13). On each
iteration, we scan through a constant-sized segment of the unseen part of the input, which is
equivalent to a random sample. We perform an orthant scan similar to Larsson’s approach.
Our implementation of orthant scan will return a new estimate of the support set based
on the sample, and a boolean hasOutlier indicating whether the sample contains visible
points with respect to the current smallest enclosing ball B (Line 7). We recompute B using
the new support set. If there are visible points in the current sample, we will continue the
sampling process with our new B. If there are no visible points in the sample, the support
set likely contains most of the points, and so we terminate sampling and move on to the next
phase. Now, with a good estimate of the optimal smallest enclosing ball, we run Larsson’s
orthant scan to compute the final smallest enclosing ball (Line 15–20). The sampling phase
allows us to generate good support sets without having to scan the entire input.

We parallelize the orthant scan, which is the most expensive operation of the algorithm.
Specifically, we divide the input array to orthant scan into blocks, and process each block
sequentially, but in parallel across different blocks. Afterward, the extrema for the orthants
obtained from the blocks are merged, and a new support set is computed on these points
and the existing support set of B.
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1 Input: d-dimensional points P, batch size c
2 Output: d-dimensional smallest enclosing ball
3 B = ball()
4 /* Sampling phase */
5 scanned = 0
6 while (scanned < n):
7 hasOutlier, support =
8 orthantScan(P[scanned:min(scanned+c,n)-1],B)
9 scanned += c

10 if (!hasOutlier):
11 break /* current sample does not violate B */
12 else
13 B = constructBall(support)
14 /* Final computation phase */
15 while (hasOutlier):
16 hasOutlier, support = orthantScan(P, B)
17 if (!hasOutlier):
18 return B
19 else
20 B = constructBall(support)

Figure 6 Pseudocode for the parallel sampling-based algorithm for smallest enclosing ball.

We parallelize the orthant scan, which is the most expensive operation of the algorithm.
Specifically, we divide the input array to orthant scan into blocks, and process each block
sequentially, but in parallel across different blocks. Afterward, the extrema for the orthants
obtained from the blocks are merged, and a new support set is computed on these points
and the existing support set of B.

Parallel Welzl’s Algorithm and Optimizations. We also implemented and optimized the
parallel version of Welzl’s algorithm described by Blelloch et al. [23]. Welzl’s sequential
algorithm uses a random permutation of the input P and processes the points one by one. If
the algorithm encounters a visible point pi with respect to the current bounding ball B, B

is recomputed on Pi, the prefix of points up until pi, using recursive calls to the algorithm.
Blelloch et al.’s parallel algorithm also uses a random permutation of P . Across iterations,
the algorithm processes prefixes of P of exponentially increasing size. If the prefix contains
at least one visible point, the earliest visible point pi is identified, and B is recomputed on
prefix Pi by recursively calling the parallel algorithm. Each prefix is processed in parallel.

We implement the algorithm with some practical optimizations. When there are numerous
visible points in the prefix, the work of the parallel algorithm will increase significantly,
because each time a visible point is discovered, the points after the visible point in the same
prefix will have to be reprocessed in the next round. Therefore, given that there will be more
visible points in the initial rounds when the prefix size is small (< 500000), we process these
prefixes sequentially by calling Welzl’s sequential algorithm. This also reduces the amount of
overhead from parallel primitives, since there is limited parallelism for small prefixes.

In addition, we extend existing optimizations of Welzl’s sequential algorithm to the
parallel setting. We implement the move-to-front heuristic [53], which upon encountering a
visible point, moves the visible point to the front of P , so that it will be processed earlier
in recursive calls, reducing the number of subsequent visible points. We also parallelize the
pivoting heuristic proposed by Gartner [32]. In this heuristic, upon encountering a visible
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point, rather than processing the visible point directly, we search P for a pivot point furthest
away from the center of the current B, and use the pivot point to compute the new B instead
of the visible point. We use a parallel maximum-finding algorithm to identify the pivot point.

5 Parallel Batch-Dynamic kd-tree

The kd-tree, first proposed by Bentley [16], is a binary tree data structure that arranges and
holds spatial data to speed up spatial queries. At each node, the data set is split into two
using an axis-aligned hyperplane along a dimension, until the node holds a small constant
number of points. kd-trees are used in a wide range of applications, such as in databases,
machine learning, data compression, and cluster analysis.

In this section, we introduce the BDL-tree, a parallel batch-dynamic kd-tree implemented
using the logarithmic method [17, 18]. Our BDL-trees build on ideas from the Bkd-Tree by
Procopiuc et al. [44] and the cache-oblivious kd-tree by Agarwal et al. [9]. The logarithmic
method [17, 18] for converting static data structures into dynamic ones is a very general idea.
At a high level, the idea is to partition the static data structure into multiple structures with
exponentially growing sizes (powers of 2). Then, inserts are performed by only rebuilding
the smallest structure necessary to account for the new points. In the specific case of the
kd-tree, a set of Ns static kd-trees is allocated, with capacities [20, 21, . . . , 2Ns−1], as well as
an extra buffer tree with size 20. Then, when an insert is performed, the insert cascades up
from the buffer tree, rebuilding into the first empty tree with all the points from the lower
trees. If desired, the sizes of all of the trees can be multiplied by a buffer size X, which is a
constant that is tuned for performance.

We implement the underlying static kd-trees in an BDL-tree using the van Emde Boas
(vEB) [13, 30, 9] recursive layout. Agarwal et al. [9] show that this memory layout can be
used with kd-trees to make traversal cache-oblivious. We provide more details of the static
tree structure, and parallel algorithms for the construction, deletion, and k-NN search in the
full version of our paper.

Parallel Batch Insertion. Batch insertions are performed in the style of the logarithmic
method [17, 18], with the goal of maintaining the minimum number of full trees within
BDL-tree. Thus, upon inserting a batch P of points, we rebuild larger trees if it is possible
using the existing points and the newly inserted batch. We use a bitmask to determine which
static trees in the structure to destroy and reconstruct after each insertion. Specifically, we
build a bitmask F of the current set of full static trees. Given the buffer kd-tree size X, we
add the value ⌊|P |/X⌋ to F when a point set P is inserted, after which the bitwise difference
with the previous F indicates which trees need to be changed. We gather the points in the
trees to be destroyed, and with P , we construct a subset of new trees in parallel. As an
implementation detail, note that we first add |P | mod X points to the buffer kd-tree – if
we fill up the buffer kd-tree, then we gather the X points from it and treat them as part
of P , effectively increasing the size of P by X. Refer to Figure 7 for an example of this
insertion method (X > 2 in this example). In Figure 7a, the BDL-tree contains X points,
giving a bitmask of F = 1 (because only the smallest tree is in use). If we insert X + 1
points, then we put one point in the buffer tree and compute Fnew = 1 + ⌊ X

X ⌋ = 2, and so
we have to deconstruct static tree 0 and build static tree 1, as shown in Figure 7b. Then, if
we insert X + 1 points again, then we again put one point in the buffer tree and compute
Fnew = 2 + ⌊ X

X ⌋ = 3, and so we simply construct tree 0 on the X new points (leaving tree 1
intact), as seen in Figure 7c. Finally, if we then insert X − 1 points, this would fill the buffer
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Figure 7 A BDL-tree in various configurations with X > 2; starting from (a), inserting X + 1
points gives (b), then inserting X + 1 points gives (c), and then inserting X − 1 points gives (d).

up, and so we take 1 point from the buffer and insert X points; then, Fnew = 3 + ⌊ X
X ⌋ = 4,

and so we deconstruct trees 0 and 1, and construct tree 2, as seen in Figure 7d. We include
a more detailed explanation of the algorithm, and explain the batch deletion algorithm in
the full version of our paper.

Data-Parallel k-NN. In the data-parallel k-NN implementation, we parallelize over S, the
set of points to search for nearest neighbors for. First, we allocate a k-NN buffer for each of
the points in S. Then, iterating over each of the non-empty trees in the BDL-tree sequentially,
we call the data-parallel k-NN subroutine on the tree, passing in the set S of points and the
k-NN buffers. Because we reuse the same set of k-NN buffers for each k-NN call (note that
each k-NN call is internally parallel), we end up with the k-nearest neighbors of the entire
pointset for each point in S. We include a more detailed explanation in the full version of
our paper.

6 Experimental Evaluation

Data Sets. We use several types of synthetic data sets. The first is Uniform (U), consisting
of points distributed uniformly at random inside a hypercube with side length

√
n, where n is

the number of points. The second type InSphere (IS) is similar to the first, but the points are
distributed in a hypersphere instead. We also use OnSphere (OS) and OnCube (OC) data
sets, where points are uniformly distributed on the surface of a hypersphere and a hypercube,
respectively. The surfaces have a thickness equal to 0.1 times the diameter or side length of
the sphere or cube. We name the data sets in the format of Dimension-Name-Size.

We also use the following real-world data sets from the Stanford 3D Scanning Repos-
itory [8]: 3D-Thai-5M is a 3-dimensional point data set of size 4999996 from a scanned
thai-statue; and 3D-Dragon-3.6M is a 3-dimensional point data set of size 3609600 from a
scanned statue of a dragon.

Testing Environment. The experiments are run on an AWS c5.18xlarge instance with 2
Intel Xeon Platinum 8124M CPUs (3.00 GHz), for a total of 36 two-way hyper-threaded
cores and 144 GB RAM. We compile our benchmarks with the g++ compiler (version 9.3.0)
with the -O3 flag, and use ParlayLib [20] for parallelism.

6.1 Convex Hull
We test the following implementations for convex hull (our new implementations are under-
lined). All implementations are for both R2 and R3.

CGAL: sequential C++ implementation of quickhull in CGAL [2].
Qhull: sequential C++ implementation of quickhull [6] by Barber et al. [14].
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Figure 8 Running times of implementations across different data sets for 2-dimensional convex
hull on 36 cores with 2-way hyper-threading.
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Figure 9 Running times of implementations across different data sets for 3-dimensional convex
hull on 36 cores with 2-way hyper-threading.

RandInc: our implementation of the parallel randomized incremental algorithm described
in Section 3.
QuickHull: for R2, it is a simple recursive parallel algorithm [19], and we use the
implementation in PBBS [46]; for R3, we use our parallel quickhull algorithm described
in Section 3.
Pseudo: our implementation of the pseudoHull heuristic proposed by Tang et al. [50]
for 3-dimensional convex hull described in Section 3. The final stage of the computation
uses our quickHull algorithm for R3.
DivideConquer: our divide-and-conquer algorithm described in Section 3.

In Figures 8 and 9, We show a comparison of running times across different methods using
36 cores with two-way hyper-threading. Our implementations achieve significant speedup
compared to existing sequential implementations. Our fastest parallel implementations
achieve speedups of 190–559x (325x on average) over CGAL for 2-dimensional convex hull,
and speedups of 10.5–124x (61.4x on average) over CGAL for 3-dimensional convex hull.
Our fastest parallel implementations have speedups of 147–1673x (605x on average) over
2-dimensional Qhull, and speedups of 5.68–43.8x (19.9x on average) over 3-dimensional
Qhull. When run using a single thread, our parallel implementations achieve speedups of
3.26–12.4x and 1.31–5.05x over CGAL for 2 and 3 dimensions, respectively; and 3.39–47.6x
and 0.99–2.06x speedups over Qhull for 2 and 3 dimensions, respectively.

For R2, DivideConquer is always the fastest method due to having high scalability from
processing many independent subproblems in parallel. For R3, the fastest two methods
are DivideConquer and Pseudo. We observe that on data sets with a larger output size,
Pseudo is slower than DivideConquer (Figures 9(a), (b), and (g)). This is because the final
computation after pruning takes longer given that there are a higher number of remaining
points after pruning. For instance, the number of remaining points for 3D-IS-10M and
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Figure 10 Running times of implementations across different data sets for smallest enclosing ball
on 36 cores with 2-way hyper-threading.

3D-U-10M after pruning are 83669 and 2316, respectively, and Pseudo is relatively slower on
the former. We observe that RandInc and QuickHull take relative longer compared with the
fastest methods for data sets with a smaller output size (Figures 9(c)–(e) and (h)). This
is caused by higher contention during the reservation of facets, since there are fewer facets
on the intermediate hull. For example, for 3D-IS-10M and 3D-U-10M, the output sizes are
14163 and 423, respectively. During the computation, 3D-U-10M exposes fewer facets for
reservation, leading to a lower success rate during the reservations.

DivideConquer achieves the best parallel speedup (42.78x and 16.55x on average for
R2 and R3, respectively). This is because the bulk of the time is spent in computing
independent convex hulls across different threads. On the other hand, the incremental
algorithms, RandInc and QuickHull, demonstrate lower scalability because of load imbalance
caused by the different amounts of work for each conflict point being processed in parallel.

6.2 Smallest Enclosing Ball
We test the following implementations for smallest enclosing ball (our new implementations
are underlined). All implementations work for both R2 and R3.

CGAL: sequential C++ implementation of Welzl’s algorithm in CGAL [2].
Orthant-scan: our implementation of Larsson et al.’s orthant-scan algorithm [37].
Sampling: our parallel sampling algorithm described in Section 4.
Welzl: our parallel implementation of Welzl’s algorithm described in Section 4.
WelzlMtf : the same as Welzl, but with the move-to-front heuristic [10].
WelzlMtfPivot: the same as Welzl, but with both the move-to-front and the pivoting
heuristic [32].

For smallest enclosing ball, we show the comparison across implementations using 36 cores
with two-way hyper-threading in Figure 10. Our fastest parallel implementations have spee-
dups of 70–178x (109x on average) over CGAL. On one thread, our fastest implementations
achieve speedup of 2.81–7.05x (4.96x on average) over CGAL.

Our sampling-based method is the fastest for eight out of the twelve data sets, whereas
Orthant-scan without sampling is the fastest for the other four. We observe that the sampling
phase on average scans only about 5% of the data set, and results in up to 2.55x (1.47x
on average) speedup compared to just running Orthant-scan. Comparing across different
implementations of Welzl’s algorithms, we see that the move-to-front, and the pivoting
heuristic implemented in parallel consistently improve the running times. Specifically,
WelzlMtf is 2.09–13.9x faster than Welzl, and WelzlMtfPivot is 3.4–58.6x faster than Welzl.
We also see that Sampling and Orthant-scan are 4.63–34.8x and 2.96–40.3x faster than
WelzlMtfPivot, respectively.
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6.3 BDL-tree
We designed a set of experiments to investigate the performance and scalability of BDL-tree
and compare it to two baselines that we also implemented. B1 is a baseline where the kd-tree
is rebuilt on each batch insertion and deletion in order to maintain balance. This allows
for improved query performance (as the tree is always perfectly balanced) at the cost of
slowing down updates. B2 is another baseline that inserts points directly into the existing
tree structure without recalculating the splits. This results in very fast updates at the cost
of potentially skewed trees (which slows down query performance). BDL is our BDL-tree
described in Section 5. We consider splitting the points based on either using the object
median (median among the points along a dimension) or the spatial median (splitting the
space along a dimension in half).

Construction. Figure 11a shows the scalability of the throughput on the 7D-U-10M data
set. As we can see from the results, BDL achieves similar or better performance both serially
and in parallel than both B1 and B2, and has similar or better scalability than both. With
the object median splitting, it achieves up to 34.8× self-relative speedup, with an average
self-relative speedup of 28.4×. We also note that the single-threaded runtimes are faster with
spatial median splitting than with object median splitting. This is because spatial median
only involves splitting points at each level compared with finding the median for object
median, hence it is less expensive to compute; however, we also note that the scalability for
spatial median is lower because there is less work to distribute among parallel threads. The
construction of B2 is significantly slower than that of B1, because a separate memory buffer
is allocated at each leaf node in B2 to allow for future insertions. The construction of the
BDL-tree is faster than both B1 and B2 because splitting the construction across multiple
trees while keeping the number of elements the same reduces the total work, and provides
ample parallelism when running on multiple threads.

Batch Insertion. In this benchmark, we measure the performance of our batch insertion
implementation as compared to the baselines. We measure the time required to insert 10
batches each containing 10% of the points in the data set into an initially empty tree for
each of our two baselines as well as our BDL-tree.

From Figure 11b, we see that B2 achieves the best performance on batched insertions –
this is due to the fact that it does not perform any extra work to maintain balance and simply
directly inserts points into the existing spatial structure. BDL achieves the second-best
performance – this is due to the fact that it does not have to rebuild the entire tree on every
insert, but amortizes the rebuilding work across the batches. Finally, B1 has the worst
performance, as it must fully rebuild on every insertion. Similar to construction, we note that
spatial median splitting performs better in the serial case but has lower scalability. With
object median splitting, BDL achieves parallel self-relative speedup of up to 35.5×, with an
average self-relative speedup of 27.2×.

Batch Deletion. We measure the time required to delete 10 batches each containing 10%
of the points in the data set from an initially full tree for each of our two baselines as well as
the BDL-tree. From Figure 11c, we observe that B2 has vastly superior performance – it
does almost no work other than tombstoning the deleted points so it is extremely efficient.
Next, we see that BDL has the second-best performance, as it amortizes the rebuilding
across the batches, rather than having to rebuild across the entire point set for every delete.
Finally, B1 has the worst performance as it rebuilds on every delete. With object median
splitting, BDL achieves parallel speedup of up to 33.1×, with an average speedup of 28.5×.
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Figure 11 Plot of throughput (operations per second) of batch operations over thread count
for both object and spatial median implementations for the 7D-U-10M data set. The prefix of the
implementation name refers to the median splitting heuristic. “36h” corresponds to 36 cores with
two-way hyper-threading.

Data-Parallel k-NN. We measure the performance and scalability of our k-NN implement-
ation as compared to the baselines. As shown in in Figure 11d, the results show that B1
and B2 have similar performance. Furthermore, they are both faster than BDL-tree. This is
to be expected, because the k-NN operation is performed directly over the tree after it is
constructed over the entire data set in a single batch. Thus, both baselines will consist of
fully balanced trees and will be able to perform very efficient k-NN queries. On the other
hand, BDL consists of a set of multiple trees, which adds overhead to the k-NN operation,
as it must be performed separately on each of these individual trees. In the full version of our
paper, we show that when the trees are constructed via a set of batch insertions rather than
all at once, the performance of B2 suffers significantly due to the tree being unbalanced.

Comparison with Zd-tree. We compared with the Zd-tree recently proposed by Blelloch
and Dobson [21]. The Zd-tree data structure combines the approach of a kd-tree and Morton
ordering of the data set, and supports parallel batch-dynamic insertions and deletions, and
k-NN. The implementation currently only supports 2 and 3 dimensional data sets, whereas
our implementation is not restricted to 2 and 3 dimensions. We tested their implementation
on 3D-U-10M. Using all threads, their implementation takes 0.12 seconds to construct, and
an average of 0.026 and 0.024 seconds for insertion and deletion of 10% of the data points,
and takes 1.65 seconds for k-NN. Our BDL-tree implementation is 3.3×, 23.1×, and 45.83×
slower, for construction, insertion, and deletion, respectively, but achieves roughly the same
speed for k-NN search. The reason is that the Morton sort used in their implementation is
fast and highly optimized for 2 and 3 dimensions; however, extending this technique to higher
dimensions would result in overheads due to more bits needed for the Morton ordering.
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7 Conclusion

In this paper, we presented ParGeo, a multicore library for computational geometry containing
modules for fundamental tasks including kd-tree based spatial search, spatial graph generation,
and algorithms in computational geometry. We also presented new parallel algorithms,
implementations, and optimizations for convex hull, smallest enclosing ball, and parallel
batch-dynamic kd-tree. We performed a comprehensive experimental study showing that our
new implementations achieve significant speedups over prior work and obtain high parallel
scalability.
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Abstract
We study efficient and exact shortest path algorithms for routing on road networks with realistic
traffic data. For navigation applications, both current (i.e., live) traffic events and predictions of
future traffic flows play an important role in routing. While preprocessing-based speedup techniques
have been employed successfully to both settings individually, a combined model poses significant
challenges. Supporting predicted traffic typically requires expensive preprocessing while live traffic
requires fast updates for regular adjustments. We propose an A*-based solution to this problem. By
generalizing A* potentials to time dependency, i.e. the estimate of the distance from a vertex to the
target also depends on the time of day when the vertex is visited, we achieve significantly faster
query times than previously possible. Our evaluation shows that our approach enables interactive
query times on continental-sized road networks while allowing live traffic updates within a fraction
of a minute. We achieve a speedup of at least two orders of magnitude over Dijkstra’s algorithm
and up to one order of magnitude over state-of-the-art time-independent A* potentials.
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1 Introduction

An important feature of modern routing applications and navigation devices is the integration
of traffic information into routing decisions. The more comprehensive the considered traffic
information, the better the suggested routes, the more accurate the predicted arrival times
and ultimately, the more satisfied the users. For routing, we can distinguish between two
aspects of traffic: On the one hand, there are predictable traffic flows. For example, certain
highways will consistently have traffic jams on weekday afternoons due to commuters driving
home. On the other hand, unexpected events such as accidents may also have significant
influence on the current (i.e., live) traffic situation. While it may be sufficient to focus on
the current traffic situation to answer short-range routing requests, mid- and long-range
queries require taking both types of traffic into account. We therefore aim to provide routing
algorithms which incorporate combined predicted and live traffic information.
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A common approach for routing in road networks is to model the network as a directed
graph where intersections are represented by vertices and road segments by edges. With
edge weights representing travel times, routing requests can be answered by solving the
classical shortest path problem. When considering predicted traffic, edge weights can be
modeled as functions of the time of day, which is commonly referred to as time-dependent
routing. Dijkstra’s algorithm can be used to solve these problems exactly and, at least from a
theoretical perspective, efficiently [8]. However, on the continental-sized road networks used
in modern routing applications, it may take seconds to answer mid- or long-range queries,
which is too slow for most practical applications. We therefore study algorithms to compute
shortest paths significantly faster than Dijkstra’s algorithm while retaining exactness.

One approach to accelerate Dijkstra’s algorithm is goal-directed search, i.e. the A*
algorithm [13]. Dijkstra’s algorithm uses a priority queue to explore vertices by ascending
distance from the source until it reaches the target. A* changes this slightly and employs
a potential function which estimates the remaining distance from vertices to the target to
change the queue order and explore vertices closer to the target earlier. The performance of
A* crucially depends on the tightness of these estimates. The core algorithmic idea of this
work is to use A* with time-dependent potential functions, i.e. we obtain tighter estimates
and therefore faster queries by taking the time of day when a vertex is visited into account.

1.1 Related Work
Efficient and exact route planning in road networks has received a significant amount of
research effort in the past decade. Since a comprehensive discussion is beyond the scope
of this paper, we refer to [1] for an overview. An approach that has proven effective is to
exploit the fact that usually many queries have to be answered on the same network, which
rarely changes. Thus, these queries can be accelerated by computing auxiliary data in an
off-line preprocessing phase.

A popular technique which follows this approach is Contraction Hierarchies (CH) [9].
During the preprocessing vertices are ranked heuristically by “importance” where more
important vertices are part of more shortest paths. Shortcut edges are inserted to skip over
unimportant vertices. This allows for a very fast query where only a few vertices are explored.
On typical continental-sized networks, queries take well below a millisecond. Multi-Level
Dijkstra (MLD) [17] is a similar approach that also utilizes shortcut edges but inserts them
based on a multi-level partitioning. It achieves slightly slower query times of around a
millisecond. MLD is the first algorithm to operate under the Customizable Route Planning
(CRP) framework [5], i.e. it has a second, faster preprocessing phase called customization
which allows integrating arbitrary weight functions (or live traffic updates for the current
weights) into the auxiliary data without rerunning the entire first preprocessing phase, which
is much slower. The MLD customization takes a few seconds, which allows for running it
every minute. This three-phase setup has proven to be instrumental to support live traffic
scenarios in practical applications [14]. Therefore, CH was generalized to Customizable
Contraction Hierarchies (CCH) [7] to support customizability as well.

Both CH and MLD have been extended to time-dependent routing. However, dealing
with weight functions instead of scalar weights makes the preprocessing much harder and
leads to difficult trade-offs. TCH [2] has fast queries but a very expensive preprocessing phase
(up to several hours) and may produce prohibitive amounts of auxiliary data (> 100 GB).
TD-CRP [3], an extension of MLD, even follows a three-phase approach and has a relatively
fast customization phase. However, this is only possible by giving up exactness. Also, TD-
CRP does not support path unpacking. CATCHUp [19] adapts CCH to the time-dependent
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setting and has fast and exact queries with significantly reduced memory consumption. While
it has a customization phase, running it takes significantly longer than a traditional CCH or
CRP customization. On the networks used in this paper, a CATCHUp customization may
even take hours, which is too slow for a setting with live traffic updates. Time-dependent
Sampling (TDS) [18] is another CH-based approach. While TDS does support both predicted
and dynamic traffic information, it cannot guarantee exactness.

ALT [10, 11] is an early A*-based speedup technique for routing in road networks. It
combines precomputed distances to a few landmark vertices with the triangle inequality
to obtain distance estimates to the target vertex. However, query times are significantly
slower than with shortcut-based approaches such as CH or MLD. ALT also has been
extended to dynamic and time-dependent settings [6]. While this approach allows incremental
modifications of the input travel times, it is not as flexible as customization based approaches
allowing arbitrary updates.

CH-Potentials [20] is another more recent A*-based approach. CH-Potentials use Lazy
RPHAST [20], an incremental many-to-one CH query variant, to compute exact distances
toward the target. This allows for tighter estimates and faster queries than what is possible
with ALT. CH-Potentials can be applied to a variety of routing problem variants. The
original publication even mentions a combination of live and predicted traffic. However, the
reported query times are above 100 ms. We consider this too slow for practical applications.

1.2 Contribution
In this work, we introduce a time-dependent generalization of A* potentials. We present two
Lazy RPHAST extensions that realize a time-dependent potential function and discuss how
to apply them to queries in a setting that combines live and predicted traffic. An extensive
evaluation confirms the effectiveness of our potentials. Queries incorporating both predicted
and current traffic can be answered within few tens of milliseconds. Live traffic updates
can be integrated within a fraction of a minute. Our time-dependent potentials are up to
an order of magnitude faster than CH-Potentials and about two orders of magnitude faster
than Dijkstra’s algorithm. To the best of our knowledge, this makes our approach the first
to achieve interactive query performance while allowing fast updates in this setting.

2 Preliminaries

We consider simple directed graphs G = (V, E) with n = |V | vertices and m = |E| edges. We
use uv as a short notation for an edge from a tail vertex u to a head vertex v. Weight functions
w : E → (Z→ N0) map edges to time-dependent functions, which in turn map a departure
time τ at the tail u to a travel time w(uv)(τ). To simplify notation, we will often write
w(uv, τ ). When it is clear from the context that we are writing about constant functions, we
omit the time argument and write w(uv). The reversed graph←−G = (V,

←−
E ) contains a reversed

edge vu for every edge uv ∈ E. In this paper, we only need time-independent corresponding
reversed weight functions. Therefore, we define ←−w (vu) = w(uv). The travel time of a path
P = (v1, . . . , vk) is defined recursively w(P, τ) = w(v1v2, τ) + w((v2, . . . , vk), τ + w(v1v2, τ))
with the base case of an empty path having a travel time of zero. A path’s travel time can
be obtained by successively evaluating travel times of the edges of the path. We denote
the travel time of a shortest path between vertices s and t for the departure time τdep as
Dw(s, t, τdep). We assume that all travel time functions adhere to the First-In First-Out
(FIFO) property, i.e. departing later may never lead to an earlier arrival. Formally stated,
this means τ + w(τ) ≤ τ + ϵ + w(τ + ϵ) for any ϵ ≥ 0. With non-FIFO travel time functions,
the shortest path problem becomes NP-hard [15, 22].
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τnow
τ end(e)

τ

c(e, τ)

p(e)

ℓ(e)

p(e, τ end(e))
+τ end(e)− τ

Figure 1 Combined travel time function c(e, τ) = max(p(e, τ), min(ℓ(e), p(e, τ end(e))+τ end(e)−τ))
with both predicted and live traffic information. The predicted traffic p(e) is indicated in black. The
live travel time ℓ(e) with expected end τ end(e) is depicted in red. The switch back to the predicted
function is colored in blue. The solid line indicates the combined function c(e) for the current day.
For later days, only p will be used. Dotted lines only serve the purpose of visualization.

2.1 Problem Model

We consider an application model with three phases. During the preprocessing phase, the
graph G = (V, E) and a weight function p of time-dependent traffic predictions are given.
Predicted travel time functions are periodic piecewise linear functions represented by a
sequence of breakpoints covering one day. A preprocessing algorithm may now precompute
auxiliary data, which may take several hours. In the update phase, a weight function ℓ of
currently observed live travel times are given for the current moment τnow. These live travel
times are time-independent and can be represented by a single scalar value. Further, each
edge e has a point in time τ end(e) when we switch back to the predicted travel time. For
edges without live traffic data, we set τ end(e) = τnow. We assume that traffic predictions
are conservative estimates and that live traffic will only be slower than the predicted traffic
due to accidents and other traffic incidents, i.e. p(e, τnow) < ℓ(e). Therefore, we define the
combined travel time function c(e, τ) = max(p(e, τ), min(ℓ(e), p(e, τ end(e)) + τ end(e)− τ)).
It follows that p(e, τ) ≤ c(e, τ). The update phase will be repeated frequently and should
therefore be as fast as possible. During the final query phase, many shortest path queries
(s, t, τdep) where τdep ≥ τnow should be answered as quickly as possible by obtaining a path
P = (s, . . . , t) that minimizes c(P, τdep). Figure 1 depicts an example of such a combined
travel time function.

Our model has two important restrictions. First, the dynamic real-time traffic information
ℓ is handled separately from the traffic predictions p. Fast updates to the predicted traffic
functions p are not the goal of our work. While this might seem less flexible than dynamic
traffic predictions p, we believe that our model is actually more practical. This is because
the traffic predictions are periodic functions. But live traffic incidents are inherently tied to
the current moment and are not expected to repeat in 24 hours. Second, our model assumes
predicted traffic to be a lower bound of the real-time traffic. If the observed live travel time
were faster than the predicted travel time, the live travel time would be ignored. While this a
severe restriction from a theoretical perspective, it is only a minor limitation for our practical
problem. Live traffic should account for unexpected traffic events which will almost always
only make traffic worse. If the live traffic is frequently better than the predicted traffic,
the predictions should be adjusted at some point. We discuss these restrictions further and
compare our problem to similar models in related work in the full version of this paper [21].
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2.2 Fundamental Algorithms

Dijkstra’s algorithm [8] computes Dw(s, t, τdep) by exploring vertices in increasing order of
distance from s until t is reached. The distances from s to each vertex u are tracked in an
array D[u], initially set to ∞ for all vertices. A priority queue of vertices ordered by their
distance from s is maintained. The priority queue is initialized with s and D[s] set to τdep.
In each iteration, the next closest vertex u is extracted from the queue and settled. Outgoing
edges uv are relaxed, i.e. the algorithm checks if D[u] + w(uv, D[u]) improves D[v]. If so, the
queue position of v is adjusted accordingly. Once t has been settled, the final distance is
known, and the search terminates. We denote visited vertices as the search space of a query.

A* [13] is a goal-directed extension of Dijkstra’s algorithm. It applies a potential function
πt which maps vertices to an estimate of the remaining distance to t. This estimate is added
to the queue key. Thus, vertices closer to the target are visited earlier, and the search space
becomes smaller. It can be guaranteed that A* has computed the shortest distance once t

is settled when the estimates of the potential function are lower bounds of the remaining
distances. However, with only lower bound potentials, the theoretical worst case running time
of A* is exponential. Therefore, a stronger correctness property is often used. A potential
function is called feasible if w(uv) − πt(u) + πt(v) ≥ 0 for any edge uv ∈ E. Feasibility
guarantees correctness and polynomial running time. When the potential of the target is
zero, i.e. πt(t) = 0, it also implies the lower bound property.

Contraction Hierarchies (CH) [9] is a speedup technique to accelerate shortest path
searches on time-independent road networks through precomputation. During the prepro-
cessing, a total order v1 ≺ · · · ≺ vn of all vertices vi ∈ V by “importance” is determined
heuristically, where more important vertices should lie on more shortest paths. Then, an
augmented graph G+ = (V, E+) with additional shortcut edges and weights w+ is constructed.
Shortcut edges uv allow to “skip over” paths (u, . . . , xi, . . . , v) where xi ≺ u and xi ≺ v.
Therefore, w+(uv) is assigned the length of the shortest such path. We sometimes split
G+ into an upward graph G↑ = (V, E↑) which contains only edges uv where v ≻ u and a
downward graph G↓ = (V, E↓) defined analogously. The augmented graph has the property
that between any two vertices s and t, there exists an up-down-path P with w+(P ) = Dw(s, t)
which uses first only edges from E↑ and then only edges from E↓. Such a path can be found
by running the bidirectional variant of Dijkstra’s algorithm from s on G↑ and from t on

←−
G↓.

Because only a few vertices are reachable in this CH search space, queries are very fast, i.e.
about a tenth of a millisecond on continental-sized networks.

In this work we build on Customizable Contraction Hierarchies (CCH) [7]. For CCH,
the construction of the augmented graph is split into two phases. In the first phase, the
topology of the augmented graph is constructed without considering any weight functions. It
is therefore valid for all weight functions. In the second customization phase, the weights w+

of the augmented graph are computed for a given weight function w. The customization can
be parallelized efficiently [4] and takes a couple of seconds on typical networks.

Lazy RPHAST [20] is a CH query variant to incrementally compute distances from many
sources toward a common target. The first step is to run Dijkstra’s algorithm on

←−
G↓ from

t, similarly to a regular CH query. The second Dijkstra search is replaced with a recursive
depth-first search (DFS) which memoizes distances. Algorithm 1 depicts this routine which
will be called for all sources. If the distance of a vertex u was previously computed, the
routine terminates immediately and returns the memoized value D[u]. Otherwise, the distance
for all upward neighbors v is obtained recursively. The final distance is the minimum over
the path distances w+(uv) + D[v] via the upward neighbors v and the distance possibly found
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Algorithm 1 Computing the distance from a single vertex u to t with Lazy RPHAST.

Data: D↓[u]: tentative distance from u to t computed by Dijkstra’s algorithm on
←−
G↓

Data: D[u]: memoized final distance from u to t, initially ⊥
Function ComputeAndMemoizeDist(u):

if D[u] = ⊥ then
D[u]← D↓[u];
for all edges uv ∈ E↑ do

D[u]← min(D[u], ComputeAndMemoizeDist(v) + w+(uv));

return D[u];

in the backward search D↓[u]. Using a DFS to compute shortest distances works because
G↑ is a directed acyclic graph. Using the distance to t obtained by Lazy RPHAST as an
A* potential is called CH-Potentials. Just like a regular CH query, Lazy RPHAST can be
used on CCH without modifications. In [20] additional optimizations for A* are discussed
which we also utilize. The goal is to reduce the impact of the potential evaluation overhead
by avoiding unnecessary potential evaluations, for example for chains of degree-two vertices.

3 Time-Dependent A* Potentials

We now propose a time-dependent generalization πt : V → (T → Z≥0) of A* potentials,
i.e. estimates are a function of the time. This allows us to obtain tighter estimates and
enables faster queries. Analogue to classical potentials, there are properties of time-dependent
potentials to consider for the correctness of A*:

Strong First-In First-Out (FIFO): πt(v, τ ) < πt(v, τ + ϵ) + ϵ for v ∈ V , τ > Dw(s, u, τdep)
and ϵ > 0. This ensures that queue keys increase monotonically with the distance from s.
This property has no time-independent equivalent because it holds trivially in this case.
Feasibility: w(uv, τ) + πt(v, τ + w(uv, τ))− πt(u, τ) ≥ 0 for all edges uv ∈ E and times
τ > Dw(s, u, τdep). A* can be analyzed as an equivalent run of Dijkstra’s algorithm
with a modified weight function derived from the input weights and the potentials.
With feasibility, these modified weights are non-negative, which implies correctness and
polynomial running time. When πt(t, τ) = 0, feasibility also implies the lower bound
property. However, feasibility is not strictly necessary to guarantee correctness.
Lower bound: πt(v, τ) ≤ Dw(v, t, τ) for every vertex v ∈ V and time τ = Dw(s, v, τdep).
This ensures that the search has found the correct distance once the target vertex is
settled. This is also sufficient for correctness. However, without feasibility, A* may settle
vertices multiple times. In theory, this can lead to an exponential running time.

We discuss these properties in detail and prove the correctness in the full version of this
paper [21]. Note that these properties only need to hold for specific times τ , not all possible
times of the day. Our practical potentials heavily rely on this and only compute data for the
specific times necessary to answer a query correctly.

In the following, we present two practical realizations of time-dependent A* potentials.
Both are extensions of Lazy RPHAST. Lazy RPHAST/CH-Potentials is already a very
efficient potential and obtains exact distances for scalar lower bound weights, i.e. the tightest
possible estimates with a time-independent potential definition. To outperform CH-Potentials,
on the one hand, we have to obtain significantly tighter estimates. On the other hand, we
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also must avoid the potential evaluation becoming too expensive. Therefore, we avoid costly
operations on functions and work with scalar values as much as possible. As a result, even
though our potentials are time-dependent, computed estimates during a single query usually
will not change depending on the visit time of a vertex.

3.1 Multi-Metric Potentials
Let (s, t, τdep) be a query and τmax an upper bound on the optimal arrival time at the target.
Consider any τ ′ ≤ τdep, τmax ≤ τ ′′ and the weight function l[τ ′, τ ′′](e) := minτ ′≤τ≤τ ′′ p(e, τ ).
Clearly, Dl[τ ′,τ ′′](v, t) provides lower bound estimates of distances to the target vertex during
the time relevant for this query. If τ ′ and τ ′′ are close to τdep and τmax and, if the difference
between τ ′ and τ ′′ is not too big, the estimates will be significantly tighter than global lower
bound distances. The Multi-Metric Potentials (MMP) approach is based on this observation.
Instead of using a single potential based on a global lower bound valid for the entire time,
we process multiple lower bound weight functions for different time intervals. At query time,
we then select an appropriate weight function. The upper bound τmax is computed with a
time-independent CCH query on a scalar upper bound function c+

max computed during the
update phase. Efficiently computing distances with respect to the selected weight function is
done with Lazy RPHAST. Therefore, no time-dependent computations need to be performed
to evaluate this potential function. MMP only depend on the departure time of the query
but not of the potential evaluation time. Still, MMP will be significantly tighter than any
time-independent potential can be.

Phase Details. The first step of the preprocessing for this potential is to perform the regular
CCH preprocessing, i.e. compute an importance ordering and construct the unweighted
augmented graph. Now let I be a set of time intervals. In our implementation, we cover the
time between 6:00 and 22:00 with intervals of a length of one, two, four, and eight hours,
starting every 30 minutes, and one interval covering the entire day. We do not maintain
any additional intervals between 22:00 and 6:00 as most edge weights correspond to their
respective free-flow travel time during this period. Thus, the lower bound weights would be
equal to the full-day lower bounds. During preprocessing, for each interval [τ ′

i , τ ′′
i ] ∈ I, we

extract lower bound functions l[τ ′
i , τ ′′

i ] and run the CCH customization algorithm to obtain
l[τ ′

i , τ ′′
i ]+. This can be parallelized trivially. Also, the customization can be parallelized

internally. For further engineering details, we refer to [7, 4, 12].
During the update phase, we compute an additional lower bound weight function starting

at τnow with duration δ derived from the combined weights c and run the basic customization
for it. We use δ = 59 minutes to reasonably cover the live traffic but keep the live interval
shorter than any other interval. Further, we extract an upper bound weight function cmax
which is valid for the entire day for both the predicted and the live traffic, and perform the
CCH basic customization to obtain c+

max.
The query starts with a classical CCH query on the customized upper bound c+

max to
obtain a pessimistic estimate of τmax. We then select the smallest interval [τ ′

i , τ ′′
i ] such that

[τdep, τmax] ⊆ [τ ′
i , τ ′′

i ]. Running Lazy RPHAST on G+
l with the customized weight function

l[τ ′
i , τ ′′

i ]+ yields the desired potential function. See the full version of this paper [21] for
additional optimizations.

Correctness. For any given single query, the estimates obtained by MMP are actually time-
independent. They return the exact shortest distances with respect to a lower bound weight
function valid for the query. Constant potentials trivially adhere to the strong FIFO property.
Also, shortest distances for a lower bound weight function are feasible potentials [20].
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3.2 Interval-Minimum Potentials

Interval-Minimum Potentials (IMP) is a time-dependent adaptation of the Lazy RPHAST
algorithm. While Lazy RPHAST has a single scalar weight for each edge, the Interval-
Minimum Potential uses a time-dependent function. This allows for tighter estimates but
introduces new challenges. First, we need an augmented graph with sufficiently accurate
time-dependent lower bounds. We utilize the existing CATCHUp customization [19] because
it is based on CCH. Second, storing the shortcut travel time functions w+ may consume a lot
of memory. Further, the representation as a list of breakpoints makes the evaluation more
expensive than looking up a scalar weight. Therefore, we resort to a different representation
and store functions as piecewise constant values in buckets of equal duration. Third, evaluating
these functions requires a time argument. While πt(v, τ) includes the time argument τ for
the time at v, Lazy RPHAST also needs a time for every recursive invocation. Therefore,
we apply Lazy RPHAST a second time on global upper and lower bound weight functions
c+

max and p+
min to quickly obtain arrival intervals for arbitrary vertices. We then use these

intervals to evaluate the edge weights and obtain tight time-dependent lower bounds.

Phase Details. The first preprocessing step is the CCH preprocessing. For the second step,
we need to obtain time-dependent travel times for the augmented graph G+ based on the
predicted traffic weights p. For this, we utilize CATCHUp [19], a time-dependent adaptation
of CCH. The CATCHUp customization yields for each edge in uv ∈ E+ approximated
time-dependent lower bound functions b+(uv). We transform the time-dependent piecewise
linear lower bound functions b+ into piecewise constant lower bound functions b′+(uv, τ) :=
min

{
b+(uv, τ ′) | β⌊ τ

β ⌋ ≤ τ ′ < β(⌊ τ
β ⌋+ 1)

}
where β is the length of each constant segment.

This enables a compact representation. Functions can be represented with a fixed number
of values per edge. We use 96 buckets of length β = 15 minutes. Additionally, we derive
a scalar lower bound b+

min. Note that b+
min is typically tighter than bounds obtained by a

time-independent customization on lower bounds of the input functions, i.e. w+
min.

In the update phase, we extract a combined traffic upper bound weight function cmax for
the entire day and run the CCH customization to obtain c+

max.
The query consists of two instantiations of the Lazy RPHAST algorithm. The first one

uses the scalar bounds b+
min and c+

max and computes an interval of possible arrival times at
arbitrary vertices when departing from s at τdep. Since arrival intervals are distances from
the source vertex, we have to apply Lazy RPHAST in reverse direction. This means we first
run Dijkstra’s algorithm from s on G↑, and then, we apply the recursive distance-memoizing
DFS on

←−
G↓ for any vertex for which we want to obtain an arrival interval. We denote this

instance as AILR for Arrival Interval Lazy RPAHST. With these arrival intervals, we can
now compute lower bounds to the target with the second Lazy RPHAST instantiation, which
uses the time-dependent lower bounds b′+. The first step is to run Dijkstra’s algorithm from
t on

←−
G↓. To relax an edge uv ∈

←−
E↓, we first need to obtain an arrival interval [τmin, τmax] at

v using AILR. This allows us to determine for vu at the relevant time a tight lower bound
d := minτ∈[τmin,τmax] b′+(vu, τ ). Then, we check if we can improve the lower bound from v to
t, i.e. D↓[v]← min(D↓[v], D↓[u] + d). Having established preliminary backward distances for
all vertices in the CH search space of t, we can now compute estimates with the recursive
distance-memoizing DFS. To obtain a distance estimate for vertex u, we first recursively
compute distance estimates D↓[v] for all upward neighbors v where uv ∈ E↑. Then, we use
AILR to obtain an arrival interval [τmin, τmax] at u. Finally, we relax the upward edges uv set
D↓[u]← min(D↓[u], D↓[v] + minτ∈[τmin,τmax] b′+(uv, τ )). This yields the final estimate for u.
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Choosing a good memory layout for the bucket weights is crucial for the performance.
We store all edge weights of each bucket consecutively. Typically, only a few buckets per
edge are relevant because the arrival intervals are relatively small. Also, all outgoing edges
of each vertex are evaluated consecutively. Thus, having their weights for the same bucket
close to each other increases cache hits. See [21] for additional optimizations.

Correctness. Estimates obtained by IMP are lower bounds of the actual time-dependent
shortest distances. This directly follows from the correctness of the CATCHUp preprocessing
and the Lazy RPHAST algorithm. Also, they do satisfy the strong FIFO property because,
for any given single query, the estimates are constant. However, they are not feasible due to
the piecewise constant approximation schema. We could not observe any practical negative
consequences of this, though.

3.3 Compression
Both of our time-dependent potentials use many weight functions. This can lead to problem-
atic memory consumption. However, since we only need lower bounds, we can merge weight
functions. Consider two MMP intervals with weight functions l1 and l2. A combined function
l1∪2(uv) = min(l1(uv), l2(uv)) is valid for both intervals, albeit less tight. We can merge IMP
buckets analogously. Thus, we can reduce memory consumption by trading tightness. Both
potentials can handle merged lower bound functions with a layer of indirection: Buckets and
intervals are mapped to a weight function ID. The weight of an edge in a merged weight
function is the minimum weight of this edge in all included functions.

We now discuss an efficient and well-parallelizable algorithm to iteratively merge weight
functions until only k functions remain. In each step, we merge the pair of weight functions
with the minimal sum of squared differences of all edge weights. Since comparing all pairs of
weight functions is expensive, we track the minimum difference sum ∆min we have found so
far and stop any comparison where the sum exceeds ∆min. However, even when stopping a
comparison, we store the preliminary sum and the edge ID up to which we have summed up
the differences. Then, we do not need to start from scratch should we continue to compare
this particular pair of weight functions. Finally, we maintain all pairs of weights along with
the (possibly preliminary) difference sums in a priority queue ordered by the difference sums.
When merging two weight functions, all other associated queue entries are removed from
the queue and new entries for comparisons between the new weight function and all other
functions are inserted. To determine the next weight function pair to merge, unfinished
weight function pairs are popped from the queue and processed in parallel. The minimum
difference is tracked in an atomic variable.

4 Evaluation

Environment. Our benchmark machine runs openSUSE Leap 15.3 (kernel 5.3.18), and
has 192 GiB of DDR4-2666 RAM and two Intel Xeon Gold 6144 CPUs, each of which
has 8 cores clocked at 3.5 GHz and 8 × 64 KiB of L1, 8 × 1 MiB of L2, and 24.75 MiB of
shared L3 cache. Hyperthreading was disabled and parallel experiments use 16 threads.
We implemented our algorithms in Rust1 and compiled them with rustc 1.61.0-nightly
(c84f39e6c 2022-03-20) in the release profile with the target-cpu=native option.

1 Our code and experiment scripts are available at https://github.com/kit-algo/tdpot.
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Datasets. We evaluate our algorithms on two networks for which we have proprietary
traffic data available. Sadly, we cannot provide access to these datasets due to non-disclosure
agreements. We are not aware of any publicly available real-world traffic feeds or predictions.
However, as these datasets are the same ones used in [19, 20], at least some comparability is
given. Our first network, PTV Europe, has been provided by PTV2 in 2020 and is based
on TomTom3 routing data covering Western Europe. It has 28.5 M vertices and 61 M edges.
76% of the edges have a non-constant travel time. The data includes a traffic incident
snapshot from 2020/10/28 07:47 with live speeds and estimated incident durations for 215 k
vertex pairs. Our second network, OSM Germany, is derived from an early 2020 snapshot of
OpenStreetMap and was converted into a routing graph using RoutingKit4. It has 16.2 M
vertices and 35.2 M edges. For this instance, we have proprietary traffic data provided by
Mapbox5. This includes traffic predictions for 38% of the edges in the form of predicted
speeds for all five-minute periods over the course of a week. We only use the predictions for
one day. Also, we exclude speed values which are faster than the free-flow speed computed
by RoutingKit. The data also includes two live traffic snapshots in the form of OSM node ID
pairs and live speeds for the edge between the vertices. One is from Friday 2019/08/02 15:41
and contains 320 k vertex pairs and the other from Tuesday 2019/07/16 10:21 and contains
185 k vertex pairs. The datasets do not contain any estimate for how long the observed
live speeds will be valid. We set τ end to one hour after the snapshot time. Note that even
though it is smaller and has fewer time-dependent edges, OSM Germany is actually the
harder instance. This is because it has more breakpoints per time-dependent edge (124.8
compared to 22.5 on PTV Europe) and the predicted travel times fluctuate more strongly.

Methodology. We evaluate our algorithms by sequentially solving batches of 100 k shortest
path queries with three different query sets: First, there are random queries where source
and target are drawn from all vertices uniformly at random. These are mostly long-range
queries. Second are 1h queries where we draw a source vertex uniformly at random, run
Dijkstra’s algorithm from it and pick the first node with a distance greater than one hour
as the target. Third, we generate queries following the Dijkstra rank methodology [16] to
investigate the performance with respect to query distance. For these rank queries, we pick a
source uniformly at random and run Dijkstra’s algorithm from it. We use every 2i-th settled
vertex as the target for a query of Dijkstra rank 2i. For queries with only predicted traffic,
we pick τdep uniformly at random. When using live traffic, we set τdep = τnow. To evaluate
the performance of the preprocessing and update phases, we run them 10 and 100 times,
respectively. Preprocessing and update phases utilize all cores using 16 threads.

We compare our time-dependent potentials MMP and IMP against time-independent CH-
Potentials algorithm realized on CCH. Therefore, we denote this approach as CCH-Potentials.
All three potentials use the same CCH vertex order and augmented graph. CCH-Potentials
provide heuristic estimates based on a lower bound without any real-time or predicted traffic.
Thus, no update phase is necessary to integrate real-time traffic updates. It is the only
other speedup technique we are aware of that supports exact queries for our problem model.
Dijkstra’s algorithm without any acceleration is our baseline.

2 https://ptvgroup.com
3 https://www.tomtom.com
4 https://github.com/RoutingKit/RoutingKit
5 https://mapbox.com

https://ptvgroup.com
https://www.tomtom.com
https://github.com/RoutingKit/RoutingKit
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Table 1 Query and preprocessing performance results of different potential functions on different
graphs and live traffic scenarios. We report average running times, number of queue pops, relative
increases of the result distance over the initial distance estimate and speedups over Dijkstra’s
algorithm for 100 k random queries. Additionally, we report preprocessing and update times and the
memory consumption of precomputed auxiliary data.

Live Running Queue Length Speedup Prepro. Update Space
Graph traffic time [ms] [·103] incr. [%] [s] [s] [GB]

C
C

H
Po

t. Ger
– 137.5 92.3 12.2 24.8 – 0.8

10:21 236.5 158.3 18.9 14.7 165.2 – 0.8
15:41 128.0 89.6 19.1 27.0 – 0.8

Eur – 102.6 65.2 4.2 58.0 249.7 – 1.0
07:47 152.2 102.2 8.4 39.3 – 1.0

M
M

P Ger
– 117.7 74.6 9.9 29.0 – 33.7

10:21 170.0 110.0 13.0 20.4 382.6 15.2 34.0
15:41 119.0 79.5 15.8 29.0 15.3 34.0

Eur – 95.3 58.6 3.5 62.5 581.5 – 56.2
07:47 131.2 84.5 5.8 45.6 22.7 57.2

IM
P

Ger
– 22.2 5.1 1.8 154.1 – 30.7

10:21 29.1 7.6 2.6 119.2 13 687.0 13.5 31.2
15:41 37.7 11.3 4.2 91.5 13.6 31.2

Eur – 11.5 1.8 0.4 518.0 1 799.9 – 52.1
07:47 25.4 7.4 1.7 235.5 20.1 53.1

Experiments. In Table 1, we report key performance results for our time-dependent poten-
tials on random queries. We observe that IMP is the fastest approach by a significant margin,
up to an order of magnitude faster than time-independent CCH-Potentials and roughly two
orders of magnitude faster than Dijkstra’s algorithm. The search space reduction is even
greater, but this does not fully translate to running times due to the higher evaluation
overhead of IMP. With only predicted traffic, IMP is only two to three times slower than
CATCHUp [19]. This shows that using A* to gain algorithmic flexibility comes at a price,
but the overhead compared to purely hierarchical techniques is manageable. In contrast,
MMP is only slightly faster than CCH-Potentials. This is expected since random queries are
mostly long-range for which MMP is not particularly well suited.

Preprocessing times are within a couple of minutes for CCH-Potentials and MMP. IMP
preprocessing is significantly more expensive because of the time-dependent CATCHUp pre-
processing. This is especially pronounced on OSM Germany where the time-dependent travel
time functions fluctuate strongly. Still, running preprocessing algorithms on a daily basis
is quite possible. This also underlines that frequently running a CATCHUp customization
to include live traffic is not feasible. For both our approaches, real-time traffic updates are
possible within a fraction of a minute. MMP is slightly slower because it uses a few more
weight functions. Both our approaches are quite expensive in terms of memory consumption,
but this can be mitigated through the use of compression (see Figure 4).

Introducing live traffic decreases the quality of the estimates and thus increases search
space sizes and running times. For IMP, this increases running times by roughly a factor of
two. Even with heavy rush hour traffic, IMP is still more than 90 times faster than Dijkstra’s
algorithm. Surprisingly, for CCH-Potentials and MMP, this scenario seems easier to handle
than light midday traffic. This actually is an effect of the predicted traffic. It also has a strong
influence on the performance of CCH-Potentials and MMP depending on the departure time.
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Figure 2 Average running time of 100 k uniform and 1h queries on OSM Germany with only
predicted traffic. Each query has a departure time drawn uniformly at random. The resulting
running times are grouped by the departure time hour.

We investigate this behavior with Figure 2 which depicts query performance by departure
time over the course of the day. Clearly, the departure time has a significant influence both
for short-range and long-range queries. For long-range queries, the peaks are shifted and
smeared because of the travel time (4–5 hours on average on OSM Germany) covered by the
query. This is the reason why the heavy afternoon traffic appears to be easier than the light
midday traffic for MMP and CCH-Potentials. For IMP, the influence of the departure time
is much smaller, which makes it consistently the fastest approach on long-range queries. For
short-range queries, the overhead of IMP make it the slowest during the night. Moreover,
MMP is roughly as fast as IMP for 1h queries during the daytime. Therefore, MMP may
actually be a simple and effective approach for practical applications where short-range
queries are more prominent.
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Figure 3 Box plot of running times for 1 000 queries per Dijkstra-rank on PTV Europe with live
traffic and fixed departure at 07:47. The boxes cover the range between the first and third quartile.
The band in the box indicates the median; the whiskers cover 1.5 times the interquartile range. All
other running times are indicated as outliers.
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Figure 4 Left: Mean running times of 100 k queries on OSM Germany with only predicted traffic
by number of remaining weight functions. Right: Boxplot of the per-query relative slowdown over
the running time of the respective query with all weight functions.

Figure 3 depicts the performance by query distance. For short-range queries, IMP is
slower than the other approaches because the potential is expensive to evaluate, but it scales
much better to long-range queries because of its estimates are tighter. Also, the variance in
running times is significantly smaller. Even for rank 224, most queries can be answered within
a few tens of milliseconds. Nevertheless, MMP is actually faster on most ranks. Only at rank
224, MMP running times become as slow as the CCH-Potentials baseline. A jump in MMP
running times can be observed from rank 223 to 224. This is because the mean query distance
jumps from five to six hours on rank 223 to over eight hours on rank 224, which is longer than
the longest covered interval. Thus, on rank 224, MMP fall back to classical CCH-Potentials
on many queries. We also observe a few strong outliers. This happens because of blocked
streets in the live traffic data. When the target vertex of a query is only reachable through a
blocked road segment, A* will traverse large parts of the networks until the blocked road
opens up. This affects all three potentials in the same way and demonstrates an inherent
weakness of A*-based approaches: the performance always depends on the quality of the
estimates. However, on realistic instances, the time-dependent preprocessing algorithms of
purely hierarchical approaches are too expensive for frequent rerunning. This makes our
approach the first to enable interactive query times across all distances in a setting with
combined live and predicted traffic.

Finally, Figure 4 showcases the effects of reducing the number of weight functions. MMP
appears to be very robust against compression. We can reduce the number of weight
functions to 16 (a memory usage reduction of about a factor of 6) before the slowdowns
become noticeable in the mean running time. However, MMP only achieves relatively small
speedups compared to CCH-Potentials, i.e. rarely more than a factor of three. Therefore,
its robustness is not particularly surprising. IMP, which achieves stronger speedups, is less
robust against compression. Nevertheless, we can reduce the memory consumption by a
factor of about three to 32 functions and still achieve very decent query times. With 32
functions, the absolute memory consumption decreases to less than 20 GB, which is at least
manageable. Surprisingly, even with only four weight functions, IMP is still faster than MMP
on long-range queries. This clearly shows the superiority of IMP for long-range queries. The
compression algorithm itself takes less than a minute, depending on the final number of
weight functions. Thus, its running time is dominated by the regular preprocessing. See the
full paper version [21] for further details on the effectiveness of the parallelization.
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5 Conclusion

In this paper, we proposed time-dependent A* potentials for efficient and exact routing
in time-dependent road networks with both predicted and live traffic. We presented two
realizations of time-dependent potentials with different trade-offs. Both allow fast live traffic
updates within a fraction of a minute. IMP achieves query times two orders of magnitude
faster than Dijkstra’s algorithm and up to an order of magnitude faster than state-of-the-art
time-independent potentials. To the best of our knowledge, this makes our approach the
first to achieve interactive query performance while allowing fast updates in this setting.
For future work, we would like to apply our time-dependent potentials to other extended
scenarios in time-dependent routing, for example to incorporate turn costs.

References
1 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas

Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Trans-
portation Networks. In Lasse Kliemann and Peter Sanders, editors, Algorithm Engineering -
Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80.
Springer, 2016.

2 Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum Time-
Dependent Travel Times with Contraction Hierarchies. ACM Journal of Experimental Al-
gorithmics, 18(1.4):1–43, April 2013.

3 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dynamic Time-Dependent
Route Planning in Road Networks with User Preferences. In Proceedings of the 15th Interna-
tional Symposium on Experimental Algorithms (SEA’16), volume 9685 of Lecture Notes in
Computer Science, pages 33–49. Springer, 2016.

4 Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Real-time Traffic Assignment Using
Engineered Customizable Contraction Hierarchies. ACM Journal of Experimental Algorithmics,
24(2):2.4:1–2.4:28, 2019. URL: https://dl.acm.org/citation.cfm?id=3362693.

5 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
Route Planning in Road Networks. Transportation Science, 51(2):566–591, 2017. doi:
10.1287/trsc.2014.0579.

6 Daniel Delling and Giacomo Nannicini. Core Routing on Dynamic Time-Dependent Road
Networks. Informs Journal on Computing, 24(2):187–201, 2012.

7 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierarchies.
ACM Journal of Experimental Algorithmics, 21(1):1.5:1–1.5:49, April 2016. doi:10.1145/
2886843.

8 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

9 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing in
Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–404,
August 2012.

10 Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’05), pages 156–165. SIAM, 2005.

11 Andrew V. Goldberg and Renato F. Werneck. Computing Point-to-Point Shortest Paths
from External Memory. In Proceedings of the 7th Workshop on Algorithm Engineering and
Experiments (ALENEX’05), pages 26–40. SIAM, 2005.

12 Lars Gottesbüren, Michael Hamann, Tim Niklas Uhl, and Dorothea Wagner. Faster and Better
Nested Dissection Orders for Customizable Contraction Hierarchies. Algorithms, 12(9):196,
2019. doi:10.3390/a12090196.

https://dl.acm.org/citation.cfm?id=3362693
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1145/2886843
https://doi.org/10.1145/2886843
https://doi.org/10.3390/a12090196


N. Werner and T. Zeitz 89:15

13 Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determ-
ination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

14 Bing maps new routing engine. Accessed: 2020-01-25. URL: https://blogs.bing.com/maps/
2012/01/05/bing-maps-new-routing-engine/.

15 Ariel Orda and Raphael Rom. Traveling without waiting in time-dependent networks is NP-
hard. Technical report, Dept. Electrical Engineering, Technion-Israel Institute of Technology,
1989.

16 Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries.
In Proceedings of the 13th Annual European Symposium on Algorithms (ESA’05), volume 3669
of Lecture Notes in Computer Science, pages 568–579. Springer, 2005.

17 Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using Multi-Level Graphs for
Timetable Information in Railway Systems. In Proceedings of the 4th Workshop on Algorithm
Engineering and Experiments (ALENEX’02), volume 2409 of Lecture Notes in Computer
Science, pages 43–59. Springer, 2002.

18 Ben Strasser. Dynamic Time-Dependent Routing in Road Networks Through Sampling. In
Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2017), volume 59 of
OpenAccess Series in Informatics (OASIcs), pages 3:1–3:17, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.ATMOS.2017.3.

19 Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-efficient, Fast and Exact Routing in
Time-Dependent Road Networks. Algorithms, 14(3), January 2021. URL: https://www.mdpi.
com/1999-4893/14/3/90.

20 Ben Strasser and Tim Zeitz. A Fast and Tight Heuristic for A* in Road Networks. In
David Coudert and Emanuele Natale, editors, 19th International Symposium on Experimental
Algorithms (SEA 2021), volume 190 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 6:1–6:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.SEA.2021.6.

21 Nils Werner and Tim Zeitz. Combining Predicted and Live Traffic with Time-Dependent A*
Potentials. Technical report, Institute of Theoretical Informatics, Algorithmics, Karlsruhe
Institute of Technology, 2022. arXiv:2207.00381.

22 Tim Zeitz. NP-Hardness of Shortest Path Problems in Networks with Non-FIFO Time-
Dependent Travel Times . Information Processing Letters, May 2022. doi:10.1016/j.ipl.
2022.106287.

ESA 2022

https://blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/
https://blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/
https://doi.org/10.4230/OASIcs.ATMOS.2017.3
https://www.mdpi.com/1999-4893/14/3/90
https://www.mdpi.com/1999-4893/14/3/90
https://doi.org/10.4230/LIPIcs.SEA.2021.6
http://arxiv.org/abs/2207.00381
https://doi.org/10.1016/j.ipl.2022.106287
https://doi.org/10.1016/j.ipl.2022.106287




Approximating Dynamic Time Warping Distance
Between Run-Length Encoded Strings
Zoe Xi !

Massachusetts Institute of Technology, Cambridge, MA, USA

William Kuszmaul !

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
Dynamic Time Warping (DTW) is a widely used similarity measure for comparing strings that
encode time series data, with applications to areas including bioinformatics, signature verification,
and speech recognition. The standard dynamic-programming algorithm for DTW takes O(n2) time,
and there are conditional lower bounds showing that no algorithm can do substantially better.

In many applications, however, the strings x and y may contain long runs of repeated letters,
meaning that they can be compressed using run-length encoding. A natural question is whether
the DTW-distance between these compressed strings can be computed efficiently in terms of the
lengths k and ℓ of the compressed strings. Recent work has shown how to achieve O(kℓ2 + ℓk2) time,
leaving open the question of whether a near-quadratic Õ(kℓ)-time algorithm might exist.

We show that, if a small approximation loss is permitted, then a near-quadratic time algorithm
is indeed possible: our algorithm computes a (1 + ϵ)-approximation for DTW(x, y) in Õ(kℓ/ϵ3) time,
where k and ℓ are the number of runs in x and y. Our algorithm allows for DTW to be computed
over any metric space (Σ, δ) in which distances are O(log n)-bit integers. Surprisingly, the algorithm
also works even if δ does not induce a metric space on Σ (e.g., δ need not satisfy the triangle
inequality).
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1 Introduction

Dynamic Time Warping (DTW) distance is a well-known similarity measure for comparing
strings that represent time-series data. DTW distance was first introduced by Vintsyuk
in 1968 [40], who applied it to the problem of speech discrimination. In the decades
since, DTW has become one of the most widely used similarity heuristics for comparing
time series [28] in applications such as bioinformatics, signature verification, and speech
recognition [20, 34, 33, 1, 14, 43].
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Consider any two strings x and y, with characters taken from some metric space (Σ, δ).
For example, in many applications, we have that Σ = Rc for some parameter c and that
δ(a, b) = ∥a − b∥2 computes ℓ2 distance. Define a time warp of x (and similarly of y) to
be any string x′ that can be obtained by warping the letters in x, where warping a letter
means replacing it with ≥ 1 consecutive copies of itself. The DTW-distance DTW(x, y) is
defined to be

min
|x′|=|y′|

|x′|∑
i=1

δ(x′
i, y′

i),

where x′ and y′ range over all time warps of x and y.
The most fundamental question concerning DTW is how to compute it efficiently. Vintsyuk

showed that, given strings x and y of length n, it is possible to compute DTW(x, y) in O(n2)
time [40]. His algorithm, which was one of the earliest uses of dynamic programming,
continues to be taught in textbooks and algorithms courses today.

For many decades, it was an open question whether any algorithm could achieve a running
time of O(n2−Ω(1)). (Interestingly, it is known that one can shave small sub-polynomial
factors off of the running time [22].) A major breakthrough occurred in 2015, when Abboud,
Backurs, and Williams [2] and Bringmann and Künnemann [12] established conditional lower
bounds prohibiting any strongly subquadratic-time algorithm for DTW, unless the Strong
Exponential Time Hypothesis (SETH) fails.

This lower bound puts us in an interesting situation. On one hand, the classic O(n2)-time
algorithm is often too slow for practical applications. On the other hand, we have good
reason to believe that it is nearly optimal. This has led researchers to focus on forms of
beyond-worst-case analysis when studying the DTW problem.

An especially appealing question [39, 21] is what happens if x and y both contain long
runs of repeated letters. In this case, the strings can be compressed using run-length encoding
(RLE). For example, the string “aaaaabbc” has RLE encoding “(a, 5), (b, 2), (c, 1)”. If a
string x has k runs, then it is said to have an RLE representation of length k.

It is known that, if x and y each contain k runs, then DTW(x, y) can be computed in
O(k3) time [21].1 It is still an open question whether it is possible to significantly reduce
this cubic running time, and in particular, whether a near-quadratic time algorithm might
be possible.

This paper: A Near-Quadratic Approximation Algorithm

We show that, if a small approximation loss is permitted, then a near-quadratic time algorithm
is indeed possible. Consider any two run-length encoded strings x ∈ Σn and y ∈ Σn, where
x has k runs and y has ℓ runs. Let δ be an arbitrary distance function δ : Σ × Σ → [poly(n)]
mapping pairs of characters to O(log n)-bit nonnegative integers. (Perhaps surprisingly, our
algorithms will not require δ to satisfy the triangle inequality, or even to be symmetric.)

Our main result is an algorithm that computes a (1 + ϵ)-approximation for DTW(x, y) in
Õ(kℓ/ϵ3) time2. In the special case where Σ is over Hamming space (i.e., δ(a, b) is either 0
or 1 for all a, b ∈ Σ), the running time of our algorithm further improves to Õ(kℓ/ϵ2).

1 More generally, if x contains k runs and y contains ℓ runs, then the time becomes O(kℓ2 + ℓk2).
2 Here we are using soft-O notation to mean that Õ(kℓ/ϵ3) is equivalent to O((kℓ/ϵ3) polylog(n)).
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Our algorithm takes a classical geometric interpretation of DTW in terms of paths
through a grid, and shows how to decompose each path in such a way that its components
can be efficiently approximated. This allows for us to reduce the problem of approximating
DTW-distance between RLE strings to the problem of computing pairwise distance in a
small directed acyclic graph.

Other related work

In addition to work on run-length-encoded strings [39, 21], there has been a recent push to
study other theoretical facets of the DTW problem. This includes work on approximation
algorithms [25, 3, 42], low-distance-regime algorithms [25], communication complexity [11],
slightly-subquadratic algorithms [22], reductions to other similarity measures [25, 37, 36],
binary DTW [26, 38], etc.

All of these results (along with the results in this paper) can be viewed as part of a larger
effort to close the gap between what is known about DTW and what is known about its
closely related cousin edit distance, which measures the number of insertions, deletions, and
substitutions of characters needed to turn one string x into another string y. Like DTW, edit
distance can be computed in O(n2) time using dynamic programming [40, 35] (and can be
computed in slightly subquadratic time using lookup-table techniques [31]). Also like DTW,
edit distance has conditional lower bounds [12, 2, 25] prohibiting strongly subquadratic time
algorithms.

When it comes to beyond-worst-case analysis, however, edit distance has yielded much
stronger results than DTW: it is known how to compute a constant-approximation for edit
distance in strongly subquadratic time [5, 24, 10, 15, 4, 9, 6, 17]; it is known how to compute
the edit distance between RLE strings in Õ(kℓ) time [19, 8, 18, 29, 13, 7, 32, 23, 30]; and if
two strings x and y have small edit distance k, it is known how to compute the edit distance
in O(|x| + |y| + k2) time [16, 27].

Whether or not any of these results can be replicated for DTW remains the central open
question in modern theoretical work on DTW. There are several reasons to believe that
DTW computation should be more challenging than edit distance. Whereas edit distance
satisfies the triangle inequality, DTW does not (for example, if we take Σ = {0, 1}, then
DTW(111110, 100000) = 0, DTW(100000, 000000) = 1, and DTW(111110, 000000) = 5).
This erratic behavior of DTW seems to make it especially difficult to approximate. Addi-
tionally, whereas almost all work on edit distance focuses on insertion/deletion/substitution
costs of 1, work on DTW must consider arbitrary cost functions δ for comparing characters.
Finally, it is known that the problem of computing edit distance actually reduces to that
of computing DTW [25], indicating that the latter problem is at least as hard (although,
interestingly, this reduction does not apply in the run-length encoded setting).

Our paper represents the first evidence that an Õ(kℓ)-time algorithm for DTW may
be within reach. Such an algorithm would finally unify edit distance and DTW in the
run-length-encoded setting.

2 Technical Overview

This section gives a technical overview of how we approximate DTW-distance between
run-length encoded strings. To simplify exposition, we focus here only on the big ideas in
the algorithm design and we defer the detailed analysis to later sections.
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Throughout the section, we consider two strings x and y of length n whose characters
are taken from a set Σ with a symmetric distance function δ : Σ × Σ → N ∪ {0}. Our only
assumption on δ is that δ(a, b) ∈ {0, 1, 2, . . . , poly(n)} for all a, b ∈ Σ. (We do not need the
triangle inequality on δ.) Let k and ℓ be the number of runs in x and y, respectively. We
will describe a (1 + O(ϵ))-approximate algorithm that takes Õ(kℓ/ poly(ϵ)) time.

How to think about DTW

There are several mathematically equivalent ways (see, e.g., [25, 22, 21]) to define the
dynamic time warping distance between x and y. In this paper, we work with the geometric
interpretation: consider an n × n grid where cell (i, j) has cost δ(xi, yj); consider the paths
through the grid that travel from (1, 1) to (n, n) via steps of the form ⟨1, 0⟩ (a horizontal step
(h-step) to the right), ⟨0, 1⟩ (a vertical step (v-step) up), and ⟨1, 1⟩ (a diagonal step (d-step) to
the upper right); the cost of such a path is the sum of the costs of the cells that it encounters,
and DTW(x, y) is defined to be the smallest cost of any such path. For an example, see
Figure 1, which shows an optimal full path for computing DTW(aaabbbbddd, aabcdd) = 1,
where the δ-function measures the distance between characters in the alphabet.

Note that the i-th column of the grid corresponds to xi and the j-th row of the grid
corresponds to yj . Thus, each run xi0 , . . . , xi1 in x corresponds to a sequence of adjacent
columns i0, . . . , i1 in the grid, and each run yj0 , . . . , yj1 in y corresponds to a sequence of
adjacent rows j0, . . . , j1 in the grid.

If we want to design an algorithm that approximates DTW(x, y) in Õ(kℓ/ poly(ϵ)) time,
then it is natural to think about the grid as follows. We break the grid into blocks by drawing
a vertical line between every pair of runs in x and a horizontal line between every pair of
runs in y; and label the blocks {Bi,j}i∈[k],j∈[ℓ], where block Bi,j corresponds horizontally to
the i-th run in x and vertically to the j-th run in y. All of the cells within a given block B

have the same cost, which we refer to as δ(B). We may also use δi,j for δ(Bi,j). We refer to
the first/last row of each block as a lower/upper horizontal boundary and to the first/last
column of each block as a left/right vertical boundary.

Finally, it will be helpful to talk about sequences of blocks that are adjacent horizontally
or vertically. An h-block segment consists of a sequence of consecutive blocks lined up
horizontally. Formally, given i1 ≤ i2 in [k] and j in [ℓ], we use B[i1,i2],j for the h-block segment
Bi1,j , Bi1+1,j , . . . , Bi2,j . Similarly, a v-block segment consists of a sequence of consecutive
blocks lined up vertically – we use Bi,[j1,j2] for the v-block segment Bi,j1 , Bi,j1+1, . . . , Bi,j2 .
In the same way that we can talk about the four boundaries of a block, we can talk about
the four boundaries of a given h-block or v-block segment.

Intuitively, since there are O(kℓ) blocks, our goal is to design an algorithm that runs in
time roughly proportional to the number of blocks.

How to think about the optimal path

Let P be a minimum-cost path through the grid. We can decompose the path into a sequence
of disjoint components P1, P2, P3, . . ., where each component takes one of two forms:
1. A horizontal-to-vertical (h-to-v) component connects a cell on the lower boundary of

some v-block segment to another cell on the right boundary of the same v-block segment.
2. A vertical-to-horizontal (v-to-h) component connects a cell on the left boundary of

some h-block segment to another cell on the upper boundary of the same h-block segment.
The components P1, P2, P3, . . . are defined such that the end cell of each Pr connects to the
the start cell of each Pr+1 via a single step (either horizontal, vertical, or diagonal).
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We will now describe a series of simplifications that we can make to P while increasing
its total cost by at most a (1 + O(ϵ))-factor. The simplifications are central to the design of
our algorithm.

Simplification 1: Rounding each component to start and end on “snap points”

Let us call a grid cell (i, j) an intersection point if it lies in the intersection of a horizontal
boundary and a vertical boundary. (Each block contains at most four intersection points.)
We call a grid cell a snap point if either it is an intersection point, or it is of the form
(i + (1 + ϵ)t, j) on the upper boundary of a block B, or it is of the form (i + 1 + (1 + ϵ)t, j) on
the lower boundary of a block B, or it is of the form (i, j + (1 + ϵ)t) on the right boundary
of a block B, or it is of the form (i, j + 1 + (1 + ϵ)t) on the left boundary of a block B,
where (i, j) is an intersection point of the block B and t is nonnegative integer (since this is
a technical overview, we ignore floor and ceiling issues). For each boundary cell p in the grid,
define snap(p) to be the nearest snap point to the right of p, if p is on a horizontal boundary,
and to be the nearest snap point above p, if p is on a vertical boundary. If p is on both a
horizontal boundary and a vertical boundary, then p is an intersection point, so snap(p) = p.

How much would the cost of P increase if we required each of its components to start
and end on snap points? Suppose, in particular, that we replace each component Pr with a
component P ′

r whose start point pr has been replaced with snap(pr) and whose end point qr

has been replaced with snap(qr). It may be that snap(qr) does not connect to snap(pr+1),
meaning that P ′

r and P ′
r+1 do not connect properly. If this happens, however, then one can

simply modify the starting-point of P ′
r+1 in order to connect it to P ′

r (and it turns out this
only makes P ′

r+1 cheaper).
Let P ′ be the concatenation of P ′

1, P ′
2, P ′

3, . . .. To bound the cost of P ′, we can argue
that the cost of each P ′

r is at most (1 + ϵ) times that of Pr. To transform Pr into P ′
r, the

first step is to round the start point pr of Pr to snap(pr) – one can readily see that this only
decreases (or leaves unchanged) the cost of Pr. The second step is to round the end point qr

of Pr to snap(qr). For simplicity, assume that Pr is an h-to-v component that starts on the
lower boundary of some block Bi,j1 and finishes on the right boundary of some block Bi,j2 .
Let (u, v) be the lower-right intersection point of Bi,j2 and suppose that Pr finishes in cell
(u, v + s). Then Pr incurs cost at least (s + 1) · δi,j2 in block Bi,j2 . Moreover, the snap point
snap(qr) = snap(u, v + s) is guaranteed to be in the set {(u, v + s + t)}t∈{0,1,...,ϵ·s}. Thus the
cost of traveling from qr to snap(qr) is at most ϵ · s · δi,j2 . So the cost of P ′

r is at most (1 + ϵ)
times that of Pr.

By analyzing each component in this way, we can argue that cost(P ′) ≤ (1 + ϵ) cost(P ).
Throughout the rest of the section, we will assume that P has been replaced with P ′, meaning
that each component starts and ends with a snap point.

Simplification 2: Understanding the structure of each component

Next we observe that each individual component can be assumed to have a relatively simple
structure. For simplicity, let us focus on an h-to-v component Pr in a v-block segment
Bi,[j1,j2]. We may assume without loss of generality that all of Pr’s h-steps occur together
on the lower boundary of some block; and that all of Pr’s v-steps occur at the end of Pr.
In other words, Pr is of the form D1 ⊕ H ⊕ D2 ⊕ U where ⊕ is for path concatenation, D1
consists of d-steps, H consists of h-steps (along a lower boundary), D2 again consists of
d-steps, and U consists of v-steps (along a right boundary).3 (See Figure 2 where the path
p1q1q2p2p3 in solid lines is such an example.)

3 Note that the components D1, H, D2, and U are each individually allowed to be length 0.
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Combined, these assumptions make it so that Pr is fully determined by four quantities:
(1) Pr’s start point pr, (2) the block Bi,j in which H occurs, (3) the length of H, and (4)
the length of U .

Define Pr to be the prefix of Pr that terminates as soon as U hits its first snap point.
(See Figure 2 where the path p1q1q2p2p′

2 is such a prefix of the path p1q1q2p2p3.) We will
see later that Pr is, in some sense, the “important” part of Pr to our algorithm. Observe
that Pr is fully determined by just three quantities: (1) Pr’s start point pr, (2) the block
Bi,j in which H occurs, and (3) the length of H.

Simplification 3: Reducing the number of options for each component

We will now argue that, if we fix the start point pr, and we are willing to tolerate a
(1 + O(ϵ))-factor approximation loss, then we only need to consider poly(ϵ−1 log n) options
for Pr.

We begin by considering block Bi,j in which H occurs. Let us define the sequence of
blocks B0, B1, B2, . . . so that Bs = Bi,j+s and define the sequence of costs δ0, δ1, δ2, . . . so
that δs = δi,j+s. We say that a block Bs is extremal if (1 + ϵ)δs ≤ δt for all t < s. If we are
willing to tolerate a (1+O(ϵ))-factor increase in Pr’s cost, then we can assume without loss of
generality that H occurs in an extremal block. On the other hand, there are only O(log1+ϵ(n))
extremal blocks, so this means that we only need to consider O(log1+ϵ(n)) ≤ poly(ϵ−1 log n)
options for the starting point of H.

Next we consider the length of the horizontal sub-component H. If we are willing to
tolerate a (1 + O(ϵ))-factor increase in Pr’s cost, then we can round |H|, the length of H , up
to be a power of (1 + ϵ) (or to be whatever length brings us to the next vertical boundary).
Thus we only need to consider O(log1+ϵ(n)) ≤ poly(ϵ−1 log n) options for |H|.

Together, the block Bi,j in which H occurs and the length of H fully determine Pr. Thus,
we have reached the following conclusion: if the start point pr of the component Pr is known,
then there are only poly(ϵ−1 log n) options that we must consider for what Pr could look like.
Moreover, although we have considered only h-to-v components here, one can make a similar
argument for v-to-h components.

Approximating DTW in Õ(kℓ/ poly(ϵ)) time

We will now construct a weighted directed acyclic graph G = ⟨V, E⟩ that has two special
vertices v0 and v∗ and that satisfies the following properties:

G has a total of Õ(kℓ/ poly(ϵ)) vertices/edges, and
the distance from v0 to v∗ in G is a (1 + O(ϵ))-approximation for DTW(x, y).

This reduces the problem of approximating DTW(x, y) to the problem of computing a
distance in a weighted directed acyclic graph. The latter problem, of course, can be solved
in linear time with dynamic programming; thus the graph G give us a Õ(kℓ/ poly(ϵ))-time
(1 + O(ϵ))-approximation algorithm for DTW.

We construct G to capture the different ways in which path components Pr can connect
together (assuming that the path components take the simplified forms described above). As
the vertices v ∈ V correspond to the snap points p in the grid, we can use a vertex to refer
to its corresponding snap point and vice versa. We define v0 to be the cell (1, 1) in the grid
and v∗ to be the cell (n, n). We add edges E as follows:
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We connect each snap point p on a horizontal (resp. vertical) boundary to the next snap
point q to its right (resp. above it).
We connect each snap point p on a right (resp. upper) boundary to any snap points q on
the adjacent left (resp. lower) boundary that can be reached from p in a single step.
Each snap point p ∈ V has poly(ϵ−1 log n) out-edges corresponding to the poly(ϵ−1 log n)
options for what a (truncated) component Pr starting at p could look like.4

Note that, although we only add edges for truncated path components Pr (rather than
full components Pr), these edges can be combined with edges of the first type in order to
obtain the full component. This is why we said earlier that the truncated component is the
“important” part of the component.

The paths from v0 to v∗ in G correspond to the ways in which we can concatenate path
components together to get a full path through the grid; if we assign the appropriate weights
to the edges, then the cost of a path through G corresponds to the cost of the same path
through the grid. The distance from v0 to v∗ is therefore a (1 + O(ϵ))-approximation for
DTW(x, y).

Finally, we must bound the size of G. Each block contains at most four intersection
points; so there are O(kℓ) total intersection points. Each intersection point creates at most
O(log1+ϵ(n)) snap points; so there are O(kℓϵ−1 log n) snap points (which are the vertices in
V ). Each snap point has an out-degree of at most poly(ϵ−1 log n). Hence we have:

|E| ≤ O(kℓϵ−1 log n) poly(ϵ−1 log n) = Õ(kℓ/ poly(ϵ)).

We can therefore compute the distance from v0 to v∗ in Õ(kℓ/ poly(ϵ)) time, as desired.

Paper outline

For the sake of simplicity, there are a number of details that we chose to ignore in this section
(such as a time-efficient construction of G and a careful proof that the modifications to P

incur only a (1 + O(ϵ))-factor change in its cost). In the remainder of the paper, we give a
formal presentation and analysis of the algorithm outlined above.

3 Preliminaries

We use [n1, n2] for the set {n1, n1 + 1, . . . , n2} consisting of all the integers between n1 and
n2, inclusive, and use [n] as a shorthand for [1, n]. We use Tm,n for a table consisting of
m columns and n rows and Tm,n[i, j] for the entry on the i-th column and j-th row, where
(i, j) ∈ [m] × [n] is assumed. We may use T for Tm,n if m and n can be readily inferred from
the context. Please note that an entry Tm,n[i, j] in a table should be distinguished from the
value stored in the entry – when discussing the value, we shall refer to it as the content of
the entry Tm,n[i, j].

Letters

Let us assume an alphabet Σ, which is possibly infinite. We use δ for a distance function on
letters such that δ(a, a) = 0 for any a ∈ Σ. We do not require that δ be symmetric or the
triangular inequality δ(a, c) ≤ δ(a, b) + δ(b, c) hold for δ.

4 Note that G is not necessarily simple. If there are multiple ways that a component Pr could connect
two vertices p1 and p2, then there will be multiple edges from p1 to p2.
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Figure 1 An optimal full path of the order (10, 6) whose cost equals 1.

Strings

We use x and y for strings. We write x = (a1, . . . , am) for a string consisting of m letters
such that x[i] (often written as xi), the i-th letter in x, is ai for each i ∈ [m]. We use
aˆn for a string of n occurrences of a, which is also referred to as a run of a, and x̂ for a
run-length encoded (RLE) string, which consists of a sequence of runs. We use |x̂| and ∥x̂∥
for the length and r-length of x̂, which are m1 + · · · + mk and k, respectively, in the case
x̂ = (a′

1ˆm1, . . . , a′
kˆmk).

A run in a string x is maximal if it is not contained in a longer run in x. There is a
unique run-length encoding x̂ of x that consists of only maximal runs in x, and this encoding
x̂ is referred to as the RLE representation of x. We also use ∥x∥ for the number of maximal
runs in x (and thus ∥x∥ = ∥x̂∥).

We use p for points, which are just integer pairs.

▶ Definition 1. Given a point p1 = (i1, j1), another point p2 = (i2, j2) is a successor of p1 if
(1) i2 = i1 + 1 and j2 = j1, or (2) i2 = i1 and j2 = j1 + 1, or (3) i2 = i1 + 1 and j2 = j1 + 1.

▶ Definition 2. Let P = ⟨p1, . . . , pR⟩ be a sequence of points such that pr ∈ [m] × [n] holds
for each 1 ≤ r ≤ R. We call P a path of order (m, n) if pr+1 is a successor of pr for each
1 ≤ r < R (and this P is sometimes also called a “warping path” [21]). Also, we refer to a
path of length 2 as a step that connects a point to one of its successors.

We use P(m, n) for the set of paths of order (m, n). A path P1 ∈ P(m, n) is a subpath of
another path P2 ∈ P(m, n) if P1 is contained in P2 (as a consecutive segment).

▶ Definition 3. Let P1 and P2 be two non-empty paths. We use P1 ≃ P2 to mean that P1
and P2 begin at the same point and end at the same point.

▶ Definition 4. Let P1 and P2 be two paths such that the first point of P2, if it exists, is the
successor of the last point of P1, if it exists. We write P1 +P2 to mean the concatenation of P1
and P2 (as sequences of points) that forms a path containing both P1 and P2 as its subpaths.
In the case where both P1 and P2 are non-empty, there is a step in P1 + P2 connecting P1
and P2 that consists of the last point in P1 and the first point in P2.

Also, we write P1 ⊕ P2 to mean P1 + P ′
2 where the last point of P1 is assumed to be the first

point of P2 and P ′
2 is the tail of P2, that is, P ′

2 is obtained from removing the first point in
P2. In other words, P1 + P2 implies that P1 and P2 share no point while P1 ⊕ P2 implies
that P1 and P2 share one point, which is the last point of P1 and the first point of P2.
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▶ Definition 5. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two strings. For each path P ∈
P(m, n), there is a value costx,y(P ) = ΣR

r=1δ(air
, bjr

), where P equals ((i1, j1), . . . , (iR, jR)).
This value is often referred to as the cost of P . We may write cost(P ) for costx,y(P ) if it is
clear from the context what x and y should be.

We call each P ∈ P(m, n) a full path if (i1, j1) = (1, 1) and (iR, jR) = (m, n). The DTW
distance between x and y, denoted by DTW(x, y), is formally defined as the minimum of
costx,y(P ), where P ranges over the set of full paths of order (m, n). Also, a full path P is
referred to as an optimal full path if costx,y(P ) = DTW(x, y). Given there are only finitely
many paths of order (m, n), there must exist one full path that is optimal. As an example,
the shaded squares in Figure 1 illustrate the following full path of the order (10, 6):

⟨(1, 1), (2, 2), (3, 2), (4, 3), (5, 3), (6, 3), (7, 4), (8, 5), (9, 6), (10, 6)⟩

where the number in each square is the assumed distance between the two corresponding
letters (computed here as the difference between their positions in the alphabet).

▶ Definition 6. Let P = ⟨(i1, j1), . . . , (iR, jR)⟩.
1. P is a v-path if all the ir are the same for 1 ≤ r ≤ R.
2. P is a h-path if all the jr are the same for 1 ≤ r ≤ R.
3. P is a d-path if ir+1 = ir + 1 and jr+1 = jr + 1 for 1 ≤ r < R.
Please recall that a step is a path of length 2. If a step is a h-path/v-path/d-path, respectively,
then it is a h-step/v-step/d-step, respectively.

▶ Definition 7. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two strings. We use TDTW (x, y)
for the table Tm,n such that the content of Tm,n[i, j] is δ(ai, bj) for each i ∈ [m] and j ∈ [n].

We may use TDTW for TDTW (x, y) if x and y can be readily inferred from the context. If
a table TDTW can be readily inferred from the context, we often associate a point (i, j)
with the entry TDTW [i, j] and think of a path P = ⟨(i1, j1), . . . , (iR, jR)⟩ as the sequence of
entries TDTW [ir, jr] for 1 ≤ r ≤ R. As an example, a full path of the order (10, 6) is given in
Figure 1, where the path is indicated with the 10 shaded entries.

Suppose that the ith run (jth) in x (y) consists of the letters in x (y) from position i1
(j1) to position i2 (j2), inclusive. Then there is a corresponding block Bi,j consisting of all
the entries TDTW [u, v] for i1 ≤ u ≤ i2 and j1 ≤ v ≤ j2. Finally, we introduce notation for
discussing specific blocks:

▶ Definition 8. If there exists a block B to the right of Bi,j such that δ(B) < δ(Bi,j), we
use βh(Bi,j) for such a B that is the closest to Bi,j. In other words, βh(Bi,j) is Bi′,j for
the least i′ satisfying i < i′ and δ(Bi′,j) < δ(Bi,j). Similarly, if there exists a block B above
Bi,j such that δ(B) < δ(Bi,j), then βv(Bi,j) is Bi,j′ for the least j′ satisfying j < j′ and
δ(Bi,j′) < δ(Bi,j).

3.1 Computing DTW Distance with Graphs
It is well known [40] that one can turn the problem of computing DTW(x, y) for two given
strings x and y into a problem of finding the shortest distance between two given vertices in
some graph, as follows.

Let x = (a1, . . . , am) and y = (b1, . . . , bn). We can construct a directed graph G0 =
⟨V0, E0⟩ such that
1. there is a vertex vi,j ∈ V0 for each pair (i, j) ∈ [m] × [n], and
2. there is a directed edge e(vi1,j1 , vi2,j2) of length δ(ai1 , bj1) connecting vi1,j1 to vi2,j2

whenever (i2, j2) is a successor of (i1, j1).
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We use GDTW (x, y) for this graph G0 and use v and e to range over V0 and E0, respectively.
We may also refer to each vertex vi,j ∈ V0 simply as point (i, j) if there is no risk of confusion.
Clearly, |V0|, the size of V0, is mn, and |E0|, the size of E0, is bounded by 3mn (since each
point can have at most 3 successors).

As every warping path is naturally mapped to a path in the graph GDTW (x, y) and vice
versa, we can use P to range over both warping paths in TDTW (x, y) and paths in GDTW (x, y)
without risking confusion. Given a (non-empty) warping path P in TDTW (x, y), we use
len(P ) for the length of the corresponding path of P in GDTW (x, y), which equals the cost
of P minus the cost associated with the last point in P . Therefore, finding the value of
DTW(x, y) is equivalent to finding the shortest distance from v1,1 to vm,n, which can be
done by running some version of Dijkstra’s shortest distance algorithm. Alternatively, since
GDTW (x, y) is acyclic, one can use dynamic programming to find the shortest distance, in
which case the running time becomes O(mn). This yields the classic dynamic-programming
solution for computing DTW(x, y) [40].

The basic strategy that we use in this paper to design a DTW approximation algorithm
can be outlined as follows. Let G0 = ⟨V0, E0⟩ be the graph GDTW (x, y) given above. We try
to construct a graph G = ⟨V, E⟩ such that V ⊆ V0 holds and the length of each edge e in E

that connects a vertex v1 to another vertex v2 equals the shortest distance from v1 to v2 as
is defined in G0. Let dist0 and dist be the shortest distance functions on the graphs G0 and
G, respectively. We attempt to prove that

dist0(v1,1, vm,n) ≤ dist(v1,1, vm,n) ≤ α · dist0(v1,1, vm,n)

for some approximation ratio α > 1 (e.g., α = 1 + ϵ for ϵ > 0). By running a shortest-path
algorithm on G, we are able to compute dist(v1,1, vm,n) and thus obtain an α-approximation
algorithm for DTW(x, y). As the time complexity of such an algorithm can be bounded by
O(|E|) plus the time needed for constructing G, the key to finding a fast algorithm is try to
minimize |E|, the size of E (while ensuring that the construction of G can be done in O(|E|)
time).

4 A (1+ϵ)-Approximation Algorithm for DTW

In this section, we present and analyze a (1 + ϵ)-approximation algorithm for approximating
the DTW distance between two run-length encoded strings in near-quadratic time.

Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two non-empty strings. Following Section 3.1,
our approach will be to construct a graph G = ⟨V, E⟩ based on GDTW (x, y), reducing the
problem of computing a (1 + ϵ)-approximation of DTW(x, y) to finding the shortest distance
between the vertex v1,1 and the vertex vm,n in G.

We begin by describing the notions of h-to-v paths and v-to-h paths. The role that these
will play in our algorithm is that we will show how to decompose any full path P into a
concatenation P1 + P2 + · · · of h-to-v and v-to-h paths.

▶ Definition 9. Let x and y be two non-empty strings. A horizontal-to-vertical (h-to-v)
path in TDTW (x, y) is a path that connects a point on the lower boundary of a block Bi,j1

to another point on the right boundary of Bi,j2 . An h-to-v component in a full path is a
maximal h-to-v path that is not contained in any longer h-to-v path in the same full path. A
vertical-to-horizontal (v-to-h) path can be defined similarly.
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Figure 2 For illustrating h-to-v path approximation.

Note that an h-to-v path matches characters from a single run in x to characters from
(possibly multiple) runs in y. We now make the (standard) observation that, when we are
comparing a single run to characters to a multi-run string, DTW behaves in a very natural
way:

▶ Observation 10. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two non-empty strings.
Assume that x is a run of some letter a0, that is, a0 = ai for 1 ≤ i ≤ m.
1. If m ≤ n, then we have: DTW(x, y) = Σn

j=1δ(a0, bj). This case corresponds to a path of
the form D ⊕ U , where D consists of only d-steps and U only v-steps.

2. If m ≥ n, then we have: DTW(x, y) = Σn
j=1δ(a0, bj) + (m − n) · δ(a0, b0), where b0 is

some bj closest to a0, that is, δ(a0, b0) equals the minimum of δ(a0, bj) for 1 ≤ j ≤ n.
This case corresponds to a path of the form D1 ⊕ H ⊕ D2, where D1 and D2 consist of
only d-steps and H only h-steps. It should be further noted that, in this case, H can be
assumed to travel along the lower boundary of some block, without loss of generality.

We say that a path connecting p and q is optimal if its cost is the least among all the paths
connecting p and q. By merging the two cases in Observation 10, we can assume that each
optimal h-to-v path is of the form D1 ⊕ H ⊕ D2 ⊕ U , where any of the four sub-components
can vanish. From now on, we can use a 5-tuple (p1, q1, q2, p2, p3) (which may also be written
as p1q1q2p2p3) to refer to an h-to-v path, where p1q1 is D1, q1q2 is H, q2p2 is D2, and p2p3
is U . Similarly, each optimal v-to-h path is of the form D1 ⊕ U ⊕ D2 ⊕ H, and we use a
corresponding 5-tuple representation to refer to a v-to-h path as well.

Next we argue that any full path P0 can be decomposed into h-to-v and v-to-h paths.

▶ Lemma 11. Let x and y be two non-empty strings. Given a full path P0 in TDTW (x, y),
we have P0 = P1 + · · · + PR where Pr is an h-to-v path for each odd 1 ≤ r ≤ R and Pr is a
v-to-h path for each even 1 ≤ r ≤ R.

Proof. The proof follows directly from the defintions of h-to-v paths and v-to-h paths. For
brevity, we defer the full proof to the extended version of the paper [41]. ◀

Given two non-empty strings x = (a1, . . . , am) and y = (b1, . . . , bn), we outline as follows
a strategy for approximating DTW(x, y). Let P0 be an optimal full path on TDTW (x, y) such
that cost(P0) = DTW(x, y). By Lemma 11, we have P0 = P1 + · · · + PR, where P1 is an
h-to-v path and P1, . . . , PR are a sequence of alternating h-to-v paths and v-to-h paths. Let
us choose an h-to-v path Pr for some 1 ≤ r ≤ R. By Observation 10, we can assume that Pr

is of the form of solid lines depicted in Figure 2.5

5 The meaning of the dashed lines in the figure is to be explained later.
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In more detail, the path Pr moves diagonally from a point p1 on the lower boundary of a
block B1 until it meets the lower boundary of another block; it moves horizontally along that
lower boundary for some distance; it then moves diagonally to reach a point p2 on the right
boundary of another block B2 (which is either B1 or sits above B1); and finally it moves
vertically to reach a point p3 on the right boundary of another block B3 (which is either B2
or sits above B2). Note that the horizontal moves contained in Pr must be inside a block
where those moves cost the least.6

Let G0 = ⟨V0, E0⟩ be the graph GDTW (x, y) described in Section 3.1 for computing
DTW(x, y). We may use a point (that is, an integer pair) to refer to the corresponding vertex
in V0. We may also use a path P in TDTW (x, y) to denote its counterpart in G0.

Given ϵ > 0, we will construct a graph G = ⟨V, E⟩ such that:
The point (1, 1) is in V and V ⊆ V0 holds.
Every point in V is on a boundary. Each point in V that is on either a right or upper
boundary is connected by an edge to the next snap point on the same boundary (if there
is one).
If there is a step (either an h-step, v-step, or d-step) connecting two boundary points
p1 and p2 in E0, then there is also a step connecting snap(p1) and snap(p2) in E, where
snap(p1) (resp. snap(p2)) is the nearest point in V above or to the right of p1 (resp. p2)
on the same boundary as p1.
For each h-to-v (resp. v-to-h) path P from p1 to p2 (depicted by some solid lines in
Figure 2) in G0 and any point p′

1 in G to the right of p1 (resp. above p1) such that
p1 and p′

1 are on the same block boundary, there exists a path P ′ (depicted by some
dashed lines in Figure 2) in G connecting p′

1 and the point p′
2 = snap(p2) in G such that

dist(P ′) ≤ (1 + ϵ)dist0(P ), where dist and dist0 are the shortest distance functions on the
graphs G and G0, respectively.

We remark that our construction of G will repeatedly make use of the following basic fact.

▶ Observation 12. Let ∆(t) = ⌊(1 + ϵ)t⌋ for integers t ≥ 0. For each integer d ≥ 1, we have
a (1 + ϵ)-approximation of d that is of the form ∆(t). In other words, d ≤ ∆(t) ≤ (1 + ϵ) · d

holds for some t.

We now describe how to construct the graph G. We construct the set V of vertices as
follows:
1. Each vertex in G0 corresponding to a corner point in TDTW (x, y) should be added into

V . There are at most 4kℓ such vertices, where k = ∥x∥ and ℓ = ∥y∥.
2. Assume (i, j) is the lower-left corner of block B.

If a point (i + 1 + ∆(t), j) is on the lower boundary of B for some t ≥ 0, then this point
should be added into V . There are at most log1+ϵ(m) such points for the block B.
If a point (i, j + 1 + ∆(t)) is on the left boundary of B for some t ≥ 0, then this point
should be added into V . There are at most log1+ϵ(n) such points for the block B.

3. Assume (i, j) is the upper-left corner of block B. If a point (i + ∆(t), j) is on the upper
boundary of B for some t ≥ 0, then this point should be added into V . There are at most
log1+ϵ(m) such points for the block B.

4. Assume (i, j) is the lower-right corner of block B. If a point (i, j + ∆(t)) is on the right
boundary of B for some t ≥ 0, then this point should be added into V . There are at most
log1+ϵ(n) such points for the block B.

6 If there are several blocks in which such horizontal moves can take place, we simply assume that the
moves are inside the lowest of these blocks.
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The points in V are referred to as snap points. Given a snap point p′ on the upper or
right boundary of some block, if p′q′ is a d-step for some point q′, then q′ is also a snap
point. This can be readily verified by inspecting the construction of V . Also, for each block
B, there are at most O(log(m + n)/ϵ) points added to V . Therefore, |V |, the size of V , is
O(kℓ · log(m + n)/ϵ) or simply Õ(kℓ/ϵ).

▶ Definition 13. Given a point p ∈ V0 on a horizontal boundary of a block B, we use
snaph(p) for the point p′ ∈ V such that p′ is p if p ∈ V or p′ is the closest point to the right
of p that is on the same boundary of B. The existence of such a point is guaranteed as all of
the corner points are included in V . Similarly, snapv(p) can be defined for each point p on a
vertical boundary of a block.

We can use snap(p) for either snaph(p) or snapv(p) without confusion: If both snaph(p) and
snapv(p) are defined for p, then p must be a corner of some block B, implying p = snaph(p) =
snapv(p) since p ∈ V holds. We argue as follows that finding snap(p) for each given p can be
done in Õ(1) time.7

▶ Definition 14. Let x = (a1, . . . , am) be a string and x̂ = (a′
1ˆm1, . . . , a′

kˆmk) be its RLE
representation. Let Mr be m1 + · · · + mr for each 0 ≤ r < k. For each 1 ≤ i ≤ m, we use îx

for the pair (i0, i1) such that i = Mi0 + i1 for 1 ≤ i1 ≤ mi0+1.

We may use î for îx if x can be readily inferred from the context.
It is worth taking a moment to verify that we can compute îx efficiently. Assume that

an array storing Mr for 0 ≤ r < k is already built (in O(k) time). Given i ∈ [m], we can
perform binary search on the array to find i0 in O(log(k)) time such that Mi0 < i ≤ Mi0+1;
we can then compute îx as (i0, i − Mi0).

It is also worth verifying that we can compute snap(p) in Õ(1) time. Given a point
p = (i, j) on a boundary of some block B in TDTW (x, y), we can compute îx = (i0, i1) in
O(log(k)) time. Similarly, we can compute ĵy = (j0, j1) in O(log(ℓ)) time. We can locate
the block B as Bi0+1,j0+1, and then find snap(p) in O(1) time (assuming log1+ϵ(i1) and
log1+ϵ(j1) can be computed in O(1) time). Therefore, given p, we can compute snap(p) in
Õ(1) time.

Having established that we can compute î and snap(p) efficiently, we are nearly ready to
describe the construction of the edges E. Our final task before doing so is to establish a bit
more notation for how to talk about blocks.

Please recall that βh(Bi,j) (resp. βv(Bi,j) refers to the closest block Bi′,j (resp. Bi,j′)
such that δ(Bi′,j) < δ(Bi,j) (resp. δ(Bi,j′) < δ(Bi,j)) holds. If there is no such a block,
βh(Bi,j) (resp. βh(Bi,j)) is undefined.

▶ Definition 15. We refer to Bi1,j , · · · , BiS ,j as a βh-sequence if Bis+1,j = βh(Bis,j) for 1 ≤
s < S. Let β∗

h(x, y) be the length of a longest βh-sequence. Clearly, we have β∗
h(x, y) ≤ ∥x∥.

Similarly, we refer to Bi,j1 , · · · , Bi,jS
as a βv-sequence if Bi,js+1 = βv(Bi,js

) for 1 ≤ s < S.
Let β∗

v(x, y) be the length of a longest βv-sequence. Clearly, we have β∗
v(x, y) ≤ ∥y∥. Let

β∗(x, y) = max(β∗
h(x, y), β∗

v(x, y)).

Observe that if the underlying distance function δ on letters is from Hamming space,
then β∗(x, y) ≤ 2 for any x and y. Slightly more generally, if δ is bounded by a constant,
then β∗(x, y) is bounded by the same constant plus one. Later in the section, in the proof of
Theorem 21, we will also see an important (and much more general) case where β∗(x, y) is
guaranteed to be Õ(1).

7 We slightly abuse the Õ notation here as the parameters m and n for the implicit log-terms are not
explicitly mentioned.
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We are now ready to explain the construction of the set E of edges for connecting vertices
in V . The basic idea is to construct E in such a way that, for any constructed path p′

1q′
1q′

2q′
3p′

2
(as is depicted in Figure 2), there should be a path in G going from p′

1 to p′
2 whose cost

is at most the cost of the path in G0 – this allows for the graph G to capture all such
paths, and ultimately allows for G to be used in our approximation algorithm. Formally, the
construction of E can be performed with the following steps:
1. Note that the corner points in V0 are all in V . The edges connecting these corner points

in E0 should be added into E.
2. Given a point p′

1 ∈ V on the upper boundary of a block B, if there is a d-step from p′
1 to

p′
2 (on the lower boundary of the block above B), then p′

2 is in V and an edge from p′
1 to

p′
2 should be added into E whose length equals δ(B).

3. Given a point p′
1 ∈ V on the right boundary of a block B, if there is a d-step from p′

1
to p′

2 (on the left boundary of the block to the right of B), then p′
2 is in V and an edge

from p′
1 to p′

2 should be added into E whose length equals δ(B).
4. If two points p′

1 = (i1, j1) and p′
2 = (i2, j2) in V are on the same horizontal or vertical

boundary of a block B such that p′
2 is the closest point above or to the right of p′

1, then an
edge from p′

1 to p′
2 should be added into E whose length equals (i2 − i1) · δ(B) (horizontal)

or (j2 − j1) · δ(B) (vertical).
5. Let p′

1 be a point in V on the lower boundary of a block B1. This step adds into E edges
between p′

1 and certain chosen snap points q′
4 such that there are h-to-v paths connecting

p′
1 and q′

4.
Let us use B1

1 , . . . , BS
1 for the sequence where B1 = B1

1 and Bs+1
1 = βv(Bs

1) for 1 ≤ s < S

and βv(BS
1 ) is undefined. Clearly, S is bounded by β∗

v(x, y) (according to the definition
of β∗

v(x, y)). Let B′
1 range over B1

1 , . . . , BS
1 .

Let q′
1 = (i′

1, j′
1) be the point on the lower boundary of B′

1 such that the path connecting
p′

1 and q′
1 consists of only d-steps. Let snapsh(q′

1) be the set consisting of the point q′
1,

the points on the lower boundary of B′
1 of the form (i′

1 + ∆(t), j′
1) for some t ≥ 0, and the

lower-right corner point of B′
1. For each q′

2 ranging over the set snapsh(q′
1), there exists

at most one point q′
3 on the right boundary of some B2 (which is either B′

1 or sits above
B′

1) such that the path connecting q′
2 and q′

3 consists of only d-steps. As this q′
3 may not

be in V , we choose q′
4 to be snapv(q′

3), which is in V by definition. Note that the path
p′

1q′
1q′

2q′
3q′

4 is an h-to-v path in TDTW (x, y). We add into E an edge between p′
1 and q′

4
for each q′

4. The length of each added edge connecting p′
1 and q′

4 is the shortest distance
between p′

1 and q′
4, which, by Lemma 17, can be computed in Õ(1) time.

There is one q′
1 for each B′

1, and there are at most log1+ϵ(m) many of q′
2 for each q′

1, and
there is at most one q′

3 for each q′
2 and one q′

4 for each q′
3. Therefore, for each p′

1, there
are at most β∗

v(x, y) · log1+ϵ(m) edges added into E.
6. Let p′

1 be a point in V on the left boundary of a block B1. This step adds into E edges
between p′

1 and certain chosen snap points q′
4 such that there are v-to-h paths connecting

p′
1 and q′

4. We omit the details that are parallel to those in the previous step. There are
at most β∗

h(x, y) · log1+ϵ(n) edges added into E for each p′
1.

Let us take a moment to discuss how to efficiently compute the lengths of the edges added
to E during the construction of G = ⟨V, E⟩. That is, how to construct and determine the
cost of each dotted path p′

1q′
1q′

2q′
3q′

4 depicted in Figure 2. (Note that q′
4 = snapv(q′

3) is not
shown in the figure.)

▶ Lemma 16. Let x and y be two non-empty strings. For k = ∥x∥ and ℓ = ∥y∥,
1. we can compute βh(B) for all the blocks B in TDTW (x, y) in O(kℓ · log(k)) time, and
2. we can compute βv(B) for all the blocks B in TDTW (x, y) in O(kℓ · log(ℓ)) time.
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Proof. We defer the full proof to the extended version of the paper [41]. ◀

▶ Lemma 17. For each h-to-v path (p′
1, q′

1, q′
2, q′

3, q′
4), its length can be computed in Õ(1)

time if the five snap points p′
1, q′

1, q′
2, q′

3, and q′
4 are given.

Proof. We defer the full proof to the extended version of the paper [41]. ◀

For brevity, we omit the obvious lemma parallel to Lemma 17 that is instead on computing
the lengths of v-to-h paths in Õ(1) time.

We are now in a position to state and prove the main theorems of the paper. As noted
earlier, the basic idea behind our (1 + ϵ)-approximation algorithms is to compute a path-
distance through the graph G = (V, E), and show that this distance closely approximates
DTW(x, y).

We begin by stating a theorem that parameterizes its running time by β∗(x, y) – we will
then apply this result to obtain fast running times in the cases where the distance function δ

outputs either O(log n)-bit integer values (Theorem 21) or {0, 1}-values (Theorem 22).

▶ Theorem 18. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two non-empty strings, and let
x̂ and ŷ denote the run-length encoded versions of the two strings. There exists a (1 + ϵ)-
approximation algorithm (ApproxDTW) for each ϵ > 0 that takes x̂ and ŷ as its input
and returns a value ˜DTW(x, y) satisfying DTW(x, y) ≤ ˜DTW(x, y) ≤ (1 + ϵ) · DTW(x, y).
Moreover, the worst-case time complexity of this algorithm is Õ(kℓ · β∗(x, y)/ϵ2) for k = ∥x∥
and ℓ = ∥y∥, where β∗(x, y) is defined in Definition 15.

Proof. The analysis of the approximation ratio follows as in Section 2. ◀

4.1 Time-Bound for Polynomially-Bounded Letter Distances
In this section, we present a variant of the algorithm ApproxDTW for approximating
DTW(x, y) under the general condition that the distances between letters are integer values
bounded by some polynomial of the lengths of x and y. The time complexity of this variant,
which takes x̂ and ŷ as its input to compute DTW(x, y), is Õ(kℓ/ϵ3) for k = ∥x∥ and ℓ = ∥y∥.

▶ Definition 19. Let δ be a distance function on letters such that δ(a, b) ≥ 1 if δ(a, b) ̸= 0.
Given ϵ1 > 0, we use δϵ1 for the distance function such that δϵ1(a, b) = 0 if δ(a, b) = 0, or
δϵ1(a, b) = cpow(1 + ϵ1, δ(a, b)) if δ(a, b) ≥ 1, where cpow(1 + ϵ1, α) equals (1 + ϵ1)t for the
least integer t such that α ≤ (1 + ϵ1)t holds.

Please note that δ(a, b) ≤ δϵ1(a, b) ≤ (1 + ϵ1) · δ(a, b) holds for any letters a and b.

▶ Lemma 20. Let DTW(δ) be the DTW distance function where the underlying distance
function for letters is δ. Given ϵ1 > 0, we have the following inequality for each pair of
strings x and y:

DTW(δϵ1)(x, y) ≤ (1 + ϵ1) · DTW(δ)(x, y)

Proof. Let P be an optimal full path such that its length based on δ equals DTW(δ)(x, y).
We know that the length of P based on δϵ1 is bounded by (1 + ϵ1) · DTW(δ)(x, y) since
δϵ1(a, b) ≤ (1 + ϵ1) · δ(a, b) holds for any letters a and b. As DTW(δϵ1)(x, y) is bounded by
the length of P based on δϵ1 , we have the claimed inequality. ◀
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Let ϵ1 > 0 and ϵ2 > 0. By Lemma 20, every (1+ϵ2)-approximation algorithm for DTW based
on δϵ1 is a (1 + ϵ1) · (1 + ϵ2)-approximation algorithm for DTW based on δ. For each ϵ > 0, if
we choose, for example, ϵ1 = ϵ/2 − ϵ2/2 and ϵ2 = ϵ/2, then we have (1 + ϵ1) · (1 + ϵ2) < 1 + ϵ,
implying that every (1 + ϵ2)-approximation algorithm for DTW based on δϵ1 is a (1 + ϵ)-
approximation algorithm for DTW based on δ.

▶ Theorem 21. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two non-empty strings.
Assume that the underlying distance function δ satisfies (1) δ(a, b) ≥ 1 if δ(a, b) ̸= 0 and

(2) δ(a, b) is poly(m+n) for any letters a in x and b in y. There exists a (1+ϵ)-approximation
algorithm for each ϵ > 0 that takes x̂ and ŷ as its input and returns a value w satisfying
DTW(x, y) ≤ w ≤ (1 + ϵ) · DTW(x, y). And the worst-case time complexity of this algorithm
is Õ(kℓ/ϵ3) for k = ∥x∥ and ℓ = ∥y∥.

Proof. Let ϵ1 = ϵ/2 − ϵ2/2 and ϵ2 = ϵ/2. By Theorem 18, ApproxDTW (as is presented in
the proof of Theorem 18) takes x̂ and ŷ as input and returns a (1 + ϵ2)-approximation of
DTW(δϵ1)(x, y). And the time complexity of the algorithm is Õ(kℓ · β∗(x, y)/ϵ2

2).
Note that there are only O(log1+ϵ1(m + n))-many distinct values of δϵ1(a, b) for a and b

ranging over letters in x and y, respectively. Hence, for the underlying distance function δϵ1

on letters, β∗
h(x, y) is O(log1+ϵ1

(m+n)) and β∗
v(x, y) is also O(log1+ϵ1

(m+n)), which implies
that β∗(x, y) is O(log1+ϵ1(m + n)) or simply Õ(1/ϵ1). Therefore, we can use ApproxDTW
to compute a (1 + ϵ2)-approximation of DTW(δϵ1)(x, y) in Õ(kℓ/ϵ1ϵ2

2) time. Since any
(1 + ϵ2)-approximation of DTW(δϵ1)(x, y) is a (1 + ϵ)-approximation of DTW(δ)(x, y), we
are done. ◀

4.2 Time-Bound for Constant-Bounded Letter Distances

Assume that there exists a constant N such that δ(a, b) is an integer less than N for each
pair a and b in Σ. For instance, (Σ, δ) satisfies this condition if it is Hamming space (for
which N can be set to 2).

▶ Theorem 22. Assume that δ(a, b) are O(1) for a, b ∈ Σ. Then ApproxDTW, the (1 + ϵ)-
approximation algorithm for DTW given in the proof of Theorem 18, runs in Õ(kℓ/ϵ2) time
for k = ∥x∥ and ℓ = ∥y∥, where x̂ and ŷ are the input of the algorithm.

Proof. This theorem follows from Theorem 18 immediately since β∗(x, y) is O(1). ◀

5 Conclusion

We have presented in this paper an algorithm for approximating the DTW distance between
two RLE strings. Trading accuracy for efficiency, this algorithm is of (near) quadratic-time
complexity and thus, as can be expected, asymptotically faster than the exact DTW algorithm
of cubic-time complexity [21], which is currently considered the state-of-art of its kind.

It will be interesting to further investigate whether there exist asymptotically faster
approximation algorithms for DTW than the one presented in this paper. In particular, it
seems both interesting and challenging to answer the open question as to whether there
exists a (near) quadratic-time algorithm for computing the (exact) DTW distance between
two RLE strings.
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Abstract
We study the correlated stochastic knapsack problem of a submodular target function, with

optional additional constraints. We utilize the multilinear extension of submodular function, and
bundle it with an adaptation of the relaxed linear constraints from Ma [Mathematics of Operations
Research, Volume 43(3), 2018] on correlated stochastic knapsack problem. The relaxation is then
solved by the stochastic continuous greedy algorithm, and rounded by a novel method to fit the
contention resolution scheme (Feldman et al. [FOCS 2011]). We obtain a pseudo-polynomial
time (1 − 1/

√
e)/2 ≃ 0.1967 approximation algorithm with or without those additional constraints,

eliminating the need of a key assumption and improving on the (1−1/ 4√e)/2 ≃ 0.1106 approximation
by Fukunaga et al. [AAAI 2019].
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randomness into consideration. Such randomness may appear on item sizes only, on item
profits only, or on both in a correlated fashion. A significant body of work [4, 10, 22, 25, 26]
connects knapsack problem with the field of stochastic optimization, greatly broadening the
spectrum of knapsack problems while introducing various challenges for theoretical analysis.
Another line of variants model diminishing returns in the profit, leading to the field of
submodular optimization [27, 14, 6, 7, 12, 13], which enjoys tremendous popularity both
in theory and in practice. The two lines of work are connected together into stochastic
submodular optimization, another fruitful field [3, 20, 9, 15, 17, 18, 21, 31]. In this work, we
follow this line, and consider a correlated stochastic knapsack problem with a submodular
target function. We arrived at this problem when modeling the spot scheduling problem in
Yang et al. [29] (see details in the full version [30]). A slight variant of the final problem
was first proposed in Fukunaga et al. [16], trying to model “performance-dependent costs
of items” in stochastic submodular optimization. This problem turns out to be a very
powerful framework that applies to several other real world applications, like recommendation
systems [32, 1], and batch-mode active learning [23].

1.1 Formal Problem Statement
There are n items, each takes a random sizei ∈ N with probability pi(sizei), and gets a
reward that corresponds to its size. In other words, for each item i, there is a reward
function Ri : N → [M ], such that ri = Ri(sizei). (For simplicity, we define [n] to be the
set {0, 1, 2, . . . , n}, and M a positive integer that upper bounds the maximum reward.) We
assume each Ri to be non-decreasing, i.e., the larger an item, the more reward it deserves.
We are given a budget B ∈ N for the total size of items, and wish to extract as much profit
as possible. The total profit is a lattice-submodular function1 f : [M ]n → R+ on the rewards
of included items, and we wish to maximize its expectation2.

Items are put in the knapsack one by one. As soon as an item is put in the knapsack, its
reward and size are revealed. We halt when the knapsack overflows (not collecting the last
item’s reward), and proceed to add another item otherwise. We consider adaptive policies,
i.e., we can choose an item to include, observe its realized size, and make further decisions
based on the realized size. At first, only the reward function and the size distribution of
items are known. When the policy includes an item i, its sizei is realized, and so is its reward
ri = Ri(sizei). In this work, we only consider adaptive policies without cancellation, i.e., the
policy can make its decision based on all the realizations it has seen so far, and the inclusion
of an item is irrevocable.

For a vector q ∈ [M ]n, let Prγ [q] denote the probability that we get outcome q when
running policy γ. Note this probability is with respect to the randomness both in the state of
items and in the policy γ. Let favg(γ) denote

∑
q∈[M ]n Prγ [q]f(q), i.e., the average objective

value obtained by γ. Our aim is to find a policy γ that maximizes favg(γ). We say γ is an
α-approximation policy if favg(γ) ≥ αfavg(γ∗) for any policy γ∗.

In addition to all the above, we further require that the chosen set of items S be an
independent set of a partition matroid3 I = {Ik}k∈[K]. This is without loss of generality
as we can put each item in a separate partition, and every subset of items is valid. The

1 See definition of partition matroid, submodular and lattice-submodular in Section 3.
2 Let S ⊆ [n], we sample a vector q ∈ [M ]n as follows. Each component q(i) is sampled independently.

For i ∈ S, Pr[ri = Ri(s)] = pi(s); for i /∈ S, ri = 0 with probability 1. Denote this distribution as qS .
Then the objective is to select a (random) set S ⊆ I of items that maximizes Eθ∼qS

[f(θ)] subject to∑
i∈S

sizei ≤ B.
3 See definition of partition matroid, submodular and lattice-submodular in Section 3.



S. Yang, S. Khuller, S. Choudhary, S. Mitra, and K. Mahadik 91:3

additional constraint allows us to impose conflicts between items, which is needed for the
modeling in Yang et al. [29]. More importantly, it is also crucial if we are to allow the attempt
to include an item that could possibly overflow the knapsack, a case unsolved and left as
open problem in Fukunaga et al. [16] (see details in Section 1.3). This partition matroid is
also used to ensure the correctness of our approach based on a time-indexed LP.

1.2 Our Contributions
We present a pseudo-polynomial time algorithm for the correlated stochastic knapsack
problem with a submodular target function. It computes an adaptive policy for this problem
which is guaranteed to achieve (1− 1/

√
e)/2 ≃ 0.1967 of the optimal solution on expectation.

It improves on the (1−1/ 4
√
e)/2 ≃ 0.1106 approximation algorithm from Fukunaga et al. [16].

Furthermore, we eliminate one key assumption in Fukunaga et al. [16] which does not allow
the inclusion of any item which could possible overflow the budget.

1.3 Eliminating An Assumption in Previous Work
In Fukunaga et al. [16], the authors considered a slightly different problem. They made two
assumptions, and we managed to eliminate one of them. The first assumption states that
larger size means larger reward for every particular job. This assumption is reasonable for
general problems and remains crucial in our analysis. The second assumption states that we
will never select an item which could overflow the budget, given the realization of selected
items4. However, for many cases, selecting such an item is a desirable choice since additional
value is obtained with high probability. If we are unlucky and the size goes beyond the
remaining budget, we either receive a partial value, or do not get any value at all.

1.4 Our Techniques
If the target function is linearly additive, this problem becomes the correlated stochastic
knapsack problem. For this problem, Gupta et al. [22] gave an 1/8 approximation algorithm
for adaptive policies based on LP relaxation. The approximation ratio was improved to
1/(2 + ϵ) by Ma [26], via a different time indexed LP formulation and a more sophisticated
rounding scheme. Fukunaga et al. [16] extends the 1/8 approximation algorithm, and achieve
a (1− 1/ 4

√
e)/2 approximation for a case with submodular target function. This is achieved

via a combination of the stochastic continuous greedy algorithm [2] (for getting a fractional
solution), and the contention resolution scheme [13] (for rounding). A natural idea for
improvement is to take ingredients from the 1/(2 + ϵ) algorithm by Ma [26]. While the LP
can be easily adapted, its rounding exhibits complicated dependencies that can be hard
to analyze. We also have no luck with a direct application of the contention resolution
scheme[8, 12, 13], a powerful technique in submodular optimization. The difficulties come
in two folds. First, the original scheme is based on FKG inequality, which requires an
independently rounded solution (possibly invalid) to start with. Any attempt to enforce our
partition matroid at this step will break the whole scheme. This invalid solution is later
fixed by ignoring some items from the rounded solution, and we need a way to impose the
additional partition matroid constraint. Second, the ignoring step needs a critical “monotone”

4 For example, suppose we are left with a remaining budget of 20 at some time, and all items have a
0.001 probability of size 21. What this assumption suggests is that none of the items are allowed to be
selected.
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property. At a high level, the property says that the more items you choose, the lower the
probability every other items will be selected (See Section 5.1 for a rigours definition). While
this may seem trivially true for any reasonable algorithm, it is not. In particular, it does not
hold for Ma’s algorithm [26], due to its complicated dependencies. The first difficulty is not
hard: if we happen to pick two items from the same partition, we just throw the later one out.
Unfortunately, this makes the second obstacle even harder. The second obstacle is overcome
by designing a brand-new rounding scheme which allows the direct analysis on the correlated
probability of events. In order to achieve the aforementioned monotone property, we insert
phantom items to block some “time slots” even when no item is there to conflict with.
Such phantom items may be of independent interest for other applications of the contention
resolution scheme. This alternate way of achieving monotonicity simultaneously free our
analysis from one assumption mentioned in Section 1.3, which was needed in Fukunaga
et al. [16] in their proof of the monotone property. A factor of (1 − 1/

√
e) is lost for the

continuous optimization part, and another factor of 2 is lost for rounding, leading to our
(1− 1/

√
e)/2 ≃ 0.1967 approximation algorithm.

2 Other Related Works

Stochastic Knapsack Problem. The stochastic version of the knapsack problem has long
been studied. Kleinberg et al. [24], and Goel and Indyk [19] consider the stochastic version
to maximize profit that will overflow the budget with probability at most p. However, they
assume deterministic profits and special size distributions. Dean et al. [11] relax the limit
on size and allow arbitrary distributions for item sizes. They investigate the gap between
non-adaptive policies (the order of items to insert is fixed) and adaptive policies (allowed
to make dynamic decision based on the realized size of items) and give a polynomial-time
non-adaptive algorithm that approximates the optimal adaptive policy within a factor of
1/4 in expectation. They also give an adaptive policy that approximates within a factor of
1/(3 + ϵ) for any constant ϵ > 0. Bhalgat et al. [4] improves on this and give a bi-criteria
(1− ϵ) algorithm by relaxing the budget by (1 + ϵ). Dean et al. [10] show that if correlation
between size and reward is allowed, the problem would be PSPACE-hard. Gupta et al. [22]
considered the case where the size and reward of an item can be arbitrarily correlated,
and give an 1/8 approximation. Li and Yuan [25] improved on this and get a 1/(2 + ϵ)
approximation with correlations and cancellation when ϵ fraction of extra space is allowed.
This was further improved by Ma [26], who gets the same approximation ratio but without
the budget augmentation requirement.

Submodular Maximization. Nemhauser et al. [27] studied the problem of maximizing a
monotone submodular function subject to a cardinality constraint and gave the standard
greedy (1− 1/e)-approximation algorithm. For the case with a matroid constraint, Fisher
et al. [14] showed that the standard greedy algorithm gives a 1/2-approximation. This was
improved to (1 − 1/e) by Calinescu et al. [6], via the continuous greedy algorithm, which
was originally developed by Calinescu et al. [5] for the submodular welfare problem. In this
algorithm, the target function is relaxed via an exponential multilinear-extension. Though
exponential, this version can be approximately solved to arbitrary precision in polynomial
time. The fractional solution is then rounded via pipage rounding [5, 6, 28] or other rounding
schemes [7]. In order to generalize the problem for other constraints and non-monotone
submodular functions, a general rounding framework contention resolution scheme was
proposed [6, 12, 13]. In this framework, the rounding step happens in two phases, an
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independent rounding phase followed by a pruning phase, where the second phase ensures an
upper bound on the probability that an element is pruned. One line of stochastic submodular
optimization [3] assumes items have stochastic states, and would like to maximize a monotone
submodular function on the stochastic states, under constraints on the set of chosen items. In
other words, the constraints only depend on the selection of items, but not on the stochastic
states of them. This is a generalization of the stochastic knapsack problem where the size
of items are deterministic. Various settings of this problem are investigated by a series
of follow-up works [20, 9, 15, 17, 18, 21, 31]. Asadpour and Nazerzadeh [2] considers the
maximization of a monotone lattice-submodular function. In this problem, each selected item
has a stochastic state (a non-negative real number). The target function accepts a vector of
such numbers, and satisfies lattice-submodularity (defined in Section 3). In their problem,
only the states are stochastic, while the matroid constraint is on the set of selected items.
Fukunaga et al. [16] pushed one step further and allowed the constraints to be dependent on
the state of items, but limited the set of states to be non-negative integers.

3 Preliminary

We start with some notations. The description of the spot scheduling problem [29] can be
found in the full version [30], together with its modeling and reduction to the problem we
consider. In Section 3.1, we explain how we reduce and manage to eliminate one critical
assumption in the previous work by Fukunaga et al. [16].

Given two d dimensional vectors u, v ∈ [n]d, we write u ≤ v if the inequality holds
coordinate wise, i.e. ∀i ∈ [d], u(i) ≤ v(i). Similarly, u ∨ v and u ∧ v are defined coordinate
wise: (u ∨ v)(i) = max{u(i), v(i)}, (u ∧ v)(i) = min{u(i), v(i)}. Consider a base set [n], a
matroid is defined to be an independent set I ⊆ 2n. This independent set needs to contain ∅,
and if A ∈ I, so is every A′ ⊆ A. Furthermore, if A,B ∈ I and |A| > |B|, then there exists
an element x ∈ A \B such that B ∪ x is in I. Particularly, for a partition matroid {Ik}k∈[K]
where Ii ∩ Ij = ∅, ∀i ̸= j, its independent set I is {S|∀k, S ∩ Ik ≤ 1}.

A function f : 2d → R is submodular if for every A,B ⊆ [d], f(A) + f(B) ≥ f(A ∪
B) + f(A ∩ B). An equivalent definition is that for every A ⊆ B ⊆ [d] and e ∈ [d],
f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B). This definition is generalized to a domain of [n]d,
where function f : [n]d → R+ is called lattice-submodular if f(u) + f(v) ≥ f(u∧ v) + f(u∨ v)
holds for all u, v ∈ [n]d. Note that the lattice-submodularity does not imply the property
called DR-submodularity, which is the diminishing marginal returns along the direction
of χi for each i ∈ I, where χi ∈ {0, 1}n, and only the i-th coordinate is 1. That is,
f(u+ χi)− f(u) ≥ f(v + χi)− f(v) does not necessarily hold for all u, v ∈ [n]d such that
u ≤ v and i ∈ [d] even if f is lattice-submodular. Function f : [n]d → R+ is called monotone
if f(u) ≤ f(v) for all u ≤ v.

3.1 Reduction and Eliminating an Assumption
In order to eliminate the second assumption mentioned in Section 1.3, we introduce the
notion of a “size cap”. For each item i and a size cap b, we define an item (i, b), where
p(i,b)(s) = πi(s) when s < b; p(i,b)(s) =

∑
s′≥s πi(s′) when s = b; and 0 otherwise. The new

reward function is exactly R(i,b)(·).
We will be using a time-indexed LP formulation following Ma [26]. Instead of making a

decision at each time step, we do it at each remaining size level. When there is enough room,
we take item i itself into consideration. If the remaining size b is small, we are not able to get
more reward for an item than when it has a size of b. Therefore, instead of trying to include
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the original item i, we include item (i, b), which is item i with size cap b. Obviously, we can
include each item at most once. To achieve this, we impose a partition matroid {Ii}i∈[K] on
the items, where Ii = {(i, b)|∀b}. For the remainder of this paper, we view each (i, b) as an
item, and the conflict between them is captured by the partition matroid.

4 Continuous Optimization Phase

Like most submodular maximization problems, our algorithms consists of two phases, a
continuous optimization phase and a rounding phase. In this section, we describe the former.

4.1 Target Function
Given a lattice-submodular function f : [M ]n → R+ and a distribution qS of elements in set
S ⊆ [n], we define a set-submodular function f̄ : 2n → R+, where f̄(S) := Er∼qS

[f(r)]. This
f̄ is guaranteed to be a monotone set-submodular function (See proof in [2]). Suppose the final
selected (random) set is S, the value we are interested in would be E[f̄(S)]. Let x̄ be a vector,
where x̄(i) denotes the probability that item i is in S. Using the well-established multi-linear
extension, we define F̄ : 2n → R+, where F̄ (x̄) =

∑
S⊆[n]

∏
i∈S x̄i

∏
i′ /∈S(1− x̄i′)f̄(S). This is

the target function we are maximizing. Evaluating the function F̄ can take exponential time,
but it can be approximated within a multiplicative factor of (1 + ϵ) for any constant ϵ > 0.
For simplicity, we assume F̄ (x̄) can be evaluated exactly in this paper, which is standard in
the literature (e.g. see [6]).

4.2 Stochastic Knapsack Exponential Constraints
The exponential and polynomial constraints on x̄ are adapted from Ma [26]. A group of
exponential sized constraints describes the problem exactly. They are then relaxed to have a
polynomial size, losing a factor of 2. For ease of notation, we follow Ma [26] and view an
stochastic item i as an equivalent Markovian bandit, a special one that can force us to keep
pulling it for a certain period of time. We use state ui(k, s) to indicate that arm i has been
pulled k times, and the corresponding item has size s. From its initial state ρi, a single pull
would decide the size s of this job, and move to state ui(1, s) respectively. We are then forced
to keep pulling this arm (we will be using arm and item interchangeably) for the next s− 1
steps, and the last of such pulls moves us to its termination state ∅i, and we can pull a new
arm. Denote the probability of moving from state u to state v with pu,v. After the first pull of
item i, it moves to state ui(1, s) (having size s) with probability pρi,ui(1,s) = pi(s). Therefore,
if k < s, a pull will transit it to state ui(k + 1, s) with probability pui(k,s),ui(k+1,s) = 1.
Otherwise, when k = s, transit to state ∅i with probability pui(k,s),∅i

= 1, and we are allowed
to pull a new arm.

Let π be a vector representing a joint state/node, where πi denotes the state on item i. Let
Si = {ui(∗, ∗)} ∪ {ρi, ∅i} for all i ∈ [n], the set of all states for arm i, and S̃ = S1 × · · · × Sn,
the set of all possible (maybe invalid) joint states. Let S ′ = {π ∈ S̃|∃i ≠ j, πi /∈ {ρi, ∅i}, πj /∈
{ρj , ∅j}}, the set of states where at least two arms are in the middle of processing at the
same time, and S ′′ = {π ∈ S̃|πi ̸= ρi and πj ̸= ρj , i, j ∈ Ik for some k}, the set of states
where some conflicting arms (due to the partition matroid) have been started. Define
S := S̃ \ (S ′ ∪ S ′′), which is the set of all valid states. Let I(π) = {i|πi ̸= ∅i}, the set of
arms that could be played from state π. Let πu denote the joint node where the component
corresponding to u is replaced by u (note u can correspond to only one component). Let yπ,t
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be the probability that we are at state π at time t, and zπ,i,t the probability that we pulled
arm i at time t, when the current state was π. Recall B is the total budget, we have the
following basic constraints.∑

i∈I(π) zπ,i,t ≤ yπ,t π ∈ S, t ∈ [B] (1)

zπ,i,t = yπ,t π ∈ S, i : πi ∈ Si \ {ρi, ∅i}, t ∈ [B] (2)
zπ,i,t ≥ 0 π ∈ S, i ∈ [n], t ∈ [B] (3)

Let Ai = {π ∈ S : πi /∈ {ρi, ∅i}}, the joint node when arm i is in the middle of processing.
Note Ai and Aj are disjoint for i ≠ j. We call arm i the active arm. Let A =

⋃
i∈[n] Ai, the

set of all states where some arm is active. For a state π ∈ S, let P(π) denote the subset of S
that would transit to π with no play, which could happen when some arms turned inactive
automatically: if π /∈ A, then P(π) = {π} ∪ (

⋃
i/∈I(π){πu|u ∈ Si \ {ρi}}; if π ∈ A, then

P(π) = ∅. Suppose u corresponds to coordinate i, define Par(u) = {v ∈ Si : pv,u > 0}, the
nodes that have a positive probability of transitioning to u. Then y-variables are updated as
follows:

y(ρ1,...,ρn),0 = 1 (4)
yπ,0 = 0, π ∈ S \ {(ρ1, · · · , ρn)} (5)

yπ,t =
∑

π′∈P(π)

(
yπ′,t−1 −

n∑
i∈I(π′)

zπ′,i,t−1

)
t > 0, π ∈ S \ A (6)

yπ,t =
∑

ρi∈Par(πi)

( n∑
π′∈P(πρi )

zπ′,i,t−1

)
· pρi,πi , t > 0, i ∈ [n], π ∈ Ai, πi ∈ {ui(1, ∗)} (7)

yπ,t =
∑

u∈Par(πi)

zπu,i,t−1 · pu,πi , t > 0, i ∈ [n], π ∈ Ai, πi /∈ {ui(1, ∗)} (8)

Equation (6) updates yπ,t for π /∈ A, i.e. joint nodes with no active arms. Such a
joint node π can only come from a no-play from a joint node in P(π). Equations (7)
and (8) update yπ,t for π ∈ A. To get to the joint node π, we must have played arm i in
previous step(s). In Equation (7), we consider the case if πi is one of ui(1, ∗). We were
at ρi right before, so it is possible that in the last step, we switched to πρi from some
joint node in P(πρi) without playing an arm. In Equation (8), we consider other cases,
in which arm i was played at time t − 1. These equations guarantee that at each time
step, y∗,t form a distribution, i.e.

∑
π∈S yπ,t = 1. Combining this with Equation (1), we

get
∑

π∈S

∑
i∈I(π) zπ,i,t ≤ 1, ∀t ∈ [B]. Equations (1)–(8) form the exponential constraints.

We also need to relate these constraints with x̄ (recall x̄(i) is the probability that item
i is included): x̄(i) =

∑
t

∑
u∈Si

∑
π∈S:πi=u zπ,i,t, which is the last missing piece for our

exponential program, denoted as ExpP.

4.3 Stochastic Knapsack Polynomial Constraints
Obviously, we cannot solve this exponential program directly in polynomial time. In order
to solve it, we relax the exponential program by disassemble the joint distribution of items.
Let su,t be the probability that arm i is on node u at the beginning of time t. Let xu,t be
the probability that we pull an arm on node u at time t. Suppose S =

⋃
i Si, we have the

following constraints between xu,t and su,t.

xu,t ≤ su,t u ∈ S, t ∈ [B] (9)
xu,t = su,t u ∈

⋃
i∈[n] Si \ {ρi, ∅i}, t ∈ [B] (10)

xu,t ≥ 0 u ∈ S, t ∈ [B] (11)∑
u∈S xu,t ≤ 1 t ∈ [B] (12)
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We also need constraints (13) for the partition matroid of arms (recall Ik is a partition),
and the state transition constraints (14)–(16).∑

i∈Ik
sρi,0 ≤ 1, ∀Ik sρi,0 ≥ 0, i ∈ [n] (13)

su,0 = 0 u ∈ S \ {ρ1, · · · , ρn} (14)
sρi,t = sρi,t−1 − xρi,t−1 t > 0, i ∈ [n] (15)
su,t =

∑
v∈Par(u) xv,t−1 · pv,u t > 0, u ∈ S \ {ρ1,...,ρn } (16)

Relating these constraints with x̄: x̄(i) =
∑

t

∑
u∈Si

xu,t, we get the polynomial program
PolyP. For any program P ∈ {PolyP,ExpP}, let OPTP denote its optimal value.

4.4 Relating between the Exponential and the Polynomial Constraints
This was given in Ma [26], and we re-state for completes without proof. The direction from
ExpP to PolyP is trivial.

▶ Theorem 1 (reformation of Lemma 2.3 from Ma [26]). Given a feasible solution
{zπ,i,t}, {yπ,t} to ExpP, we can construct a solution to PolyP with the same objective value
by setting xu,t =

∑
π∈S:πi=u zπ,i,t, su,t =

∑
π∈S:πi=u

yπ,t for all i ∈ [n], u ∈ [0, 1], t ∈ B.
Thus, the feasible region of PolyP is a projection of that of ExpP onto a subspace and
OPTExpP ≤ OPTPolyP.

For the other direction, we construct a solution {zπ,i,t, yπ,t} of ExpP from a solution
{xu,t, su,t} of PolyP, which obtains half its objective value. It will satisfy∑

π∈S:πi=u zπ,i,t = xu,t

2 i ∈ [n], u ∈ Si, t ∈ [B].

We define specific {zπ,i,t, yπ,t} over B iterations. On iteration t:
Compute yπ,t for all π ∈ S.
Define ỹπ,t = yπ,t if π /∈ A, and ỹπ,t = yπ,t −

∑
a∈A zπ,i,t if π ∈ Ai for some i ∈ [n] (if

π ∈ Ai, then {zπ,i,t : a ∈ A} is already set in a previous iteration).
For all i ∈ [n], define fi,t =

∑
π∈S:πi=ρi

ỹπ,t.
For all i ∈ [n], π ∈ S such that πi = ρi, and a ∈ A, set za

π,i,t = ỹπ,t · 1
2 ·

xρi,t

fi,t
.

For all i ∈ [n], π ∈ S such that πi = ρi and πj ∈ {ρj , ϕj} for j ̸= i, define gπ,i,t =∑
π′∈P(π) zπ′,i,t.

For all i ∈ [n], u ∈ Si \ {ρi}, π ∈ S such that πi = u, and a ∈ A, set za
π,i,t+depth(u) =

gπρi ,i,t · (xa
u,t+depth(u)))/xρi,t.

4.5 Solve the Continuous Optimization Problem
In order to solve PolyP, we follow Fukunaga et al. [16] and use the Stochastic Continuous
Greedy algorithm. This algorithm maximizes the multi-linear extension G of a monotone
set-submodular function g over a solvable downward-closed polytope. A polytope P ⊆ [0, 1]N
is considered solvable if we can find an algorithm to optimize linear functions over it, and
downward-closed if x ∈ P and 0 ≤ y ≤ x imply y ∈ P. In our case, P is solvable due
to its linearity, and that solving a linear program falls in polynomial time. Note P is
down-monotone. The algorithm involves a controlling parameter called stopping time. For
a stopping time 0 < b ≤ 1, the algorithm outputs a solution x such that x/b ∈ P, while
G(x) ≥ (1−e−b−O(n3δ)) maxy∈Q G(y), where n is the size of the set over which g is defined
and δ is the step size used in the algorithm. Here P is assumed to include the characteristic
vector of every singleton set.
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▶ Theorem 2 (reformation of Theorem 3 from Fukunaga et al. [16]). If the stochastic continuous
greedy algorithm with stopping time b = 1/2 ∈ (0, 1] and step size δ = o(|I|−3) is applied to
program PolyP, then the algorithm outputs a solution x ∈ bP such that F̄ (x̄) ≥ (1− e−b −
o(1))favg(π∗) ≃ 0.3935favg(π∗) for any adaptive policy π∗.

5 Rounding Phase

Now that we have a fractional solution x, we proceed to round it to an integral policy (notice
the fractional solution has already been scaled by a factor of 2). We need a variant of
the contention resolution scheme that was introduced as a general framework for designing
rounding algorithms that maximizes expected submodular functions ([8, 12, 13]). The
variant is an extension from a set submodular function to a lattice-submodular function, first
introduced in Fukunaga et al. [16]. We include its definition here for self-containment.

5.1 Contention Resolution Scheme
A contention resolution scheme (CRS) accepts a pairwise independently rounded solution
which may violate some constraints, and fixes it without losing too much on expectation. Let
f : [B]n → R+ be a monotone lattice-submodular function and the probability distribution
qi : [B] → [0, 1] on [B] be given for each i ∈ {1, . . . , n}}. We write v ∼ q if v ∈ [B]n
is a random vector such that, for each i ∈ {1, . . . , n}, the corresponding component v(i)
is determined independently as j ∈ [B] with probability qi(j). This is the independently
rounded solution we feed into a CRS. Let F ⊆ [B]n be a downward-closed subset of [B]n,
and let α ∈ [0, 1]. We have the following definition for a α-CRS, its monotonicity, and one
key property.

▶ Definition 3 (α-Contention Resolution Scheme (α-CRS)). A mapping ψ : [B]n → F is an
α-CRS with respect to q if it satisfies:
1. ψ(v)(i) ∈ {v(i), 0} for each i ∈ [n];
2. if v ∼ q, then Pr[ψ(v)(i) = j|v(i) = j] ≥ α holds for all i ∈ I and j ∈ B. The probability

is based on randomness both in v and in ψ when ψ is randomized.

▶ Definition 4 (monotone α-CRS). An α-CRS ψ is considered monotone, if, for each
u, v ∈ [B]n such that u(i) = v(i) and u ≤ v, Pr[ψ(u)(i) = u(i)] ≥ Pr[ψ(v)(i) = v(i)] holds.
The probability is based only on the randomness of ψ.

▶ Lemma 5 (Theorem 4 from Fukunaga et al. [16]). If ψ is a monotone α-CRS with respect
to q, then Ev∼q[f(ψ(v))] ≥ αEv∈q[f(v)].

5.2 Rounding Algorithm
To fit in the contention resolution scheme, we need to first round everything independently.
This means for each pair (i, t), item i is scheduled at time t with probability xρi,t. Now we
have a set R′ = {(i, t)} of proposed item time pairs. We sort the set according to t, and
include the items one by one. Intuitively, for a pair (i, t), we will only include item i if time t
is available and does not invalidate the solution, i.e. each item is scheduled at most once, and
at most one item from each partition. After including it in our solution, we get its realized
size, and mark the corresponding time slots unavailable.

The main problem of this naive approach is that it does not exhibit monotonicity, which is
a subtle but critical requirement for a CRS. To fix it, we schedule phantom item i even when
we cannot fit it. We simulate its inclusion, and sample its size sizei should it be included. We

ESA 2022



91:10 Correlated Stochastic Knapsack with a Submodular Objective

also mark those time slots corresponding to this phantom item unavailable, even when they
are actually unoccupied. This seemingly wasteful step ensures that the rounding scheme is
monotone. The final rounding algorithm is described in Algorithm 1.

Algorithm 1 Rounding Algorithm.

1 foreach pair (i, t) do
2 Sample (i, t) with probability xρi,t, and gets ∅ otherwise;
3 if not get ∅ then I ← I ∪ {(i, t)} ;
4 Sort I according to a non-decreasing ordering of t, break ties uniformly at random;
5 C = 0, S = ∅, mark all times slots available;
6 for (i, t) ∈ I do
7 if time slot t is available and item i does not violate constraints then
8 Include item i and observe si;
9 else

10 Simulate including item i, and observe si;
11 Mark time slots from t to t+ si unavailable;

The remaining of this section is devoted to proving the following theorem, which combined
with Theorem 2 leads to our main result.

▶ Theorem 6. Let π denote Algorithm 1, and x denote the solution we get from PolyP. Then
favg(π) ≥ F̄ (x̄)/2.

To prove Theorem 6, we define two mappings σ(·) and ω(·), where the first corresponds
(roughly) to the step that maps x to I in Algorithm 1, and ω(·) corresponds to the mapping
(CRS) from set I to the final output. The mapping σ(x̄) receives a real vector x̄ ∈ [0, 1]n
and returns a random vector v ∈ [B]n. From each partition Ik, we pick at most one
i, each i ∈ Ik is picked with probability x̄(i). If it is picked, the i-th component v(i)
independently takes value j with probability pi(j), and 0 otherwise, which happens with
probability 1−

∑
j pi(j). This captures the construction of set I (only the item part, note

Pr[σ(x)(i) > 0] = Pr[∃t, s.t.(i, t) ∈ I]), together with the random outcome of the item. The
mapping ω(·) maps v ∈ [B]n to w ∈ [B]n. To mimic Algorithm 1, we first assign time
value t(i) to each component v(i), according to xρi,t. Based on t(i), we form a precedence
ordering ≺ between i after random tie breaking (a random tie breaking is crucial). Then,
we set ω(v)(i) = 0 if there exists a component j ≺ i such that t(j) ≤ t(i) < t(j) + v(i), and
w(v)(i) = v(i) otherwise. We can observe that given input x, Algorithm 1 outputs exactly
ω(σ(x)) if the random realized sizes of items are the same. In order to prove Theorem 6, we
need the following two lemmas. The first, whose proof in Fukunaga [16], corresponding to
the independent rounding step, and the second corresponding to the CRS step.

▶ Lemma 7. E[f(σ(x))] ≥ F̄ (x̄) holds for any x ∈ P .

▶ Lemma 8. ω is a 1/2-CRS with respect to x̄.

▶ Lemma 9. The 1/2-CRS ω is monotone.

Lemma 7 is trivially true by the definition of F̄ (x̄), which is the common starting point
of contention resolution scheme. We first prove ω is a 1/2-CRS.
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Proof of Lemma 8. Recall there are two properties needed for an α-CRS. The first property
is obviously correct due to the definition of ω(·). The second property needs to prove
Pr[ω(v)(i) = j|v(i) = j] ≥ 1/2. In the language of the rounding algorithm, let Dropi,t denotes
the event (respect to the randomness in ω and v) that we drop the pair (i, t). It is the same
as proving

Pr[Dropi,t|item i is selected at time t] ≤ 1
2 .

Due to the way we round the solution, item i may be included more than once (at different
times), and more than one item from the same partition may be included. Consider an item
j at time t′ (maybe the same as i) that could affect the pruning of item i at time t. Define
(j, t′) ≺ (i, t) if t′ < t, or t′ = t and j ≺ i. It is clear that (j, t′) will affect (i, t) if and only if
(j, t′) ≺ (i, t) We slightly abuse notation, and let Dropi,t(j) denote the probability that the
item j can causes the drop out of item i if a copy of it is scheduled at time t. Note this does
not depend on whether item i is scheduled on t or not. We have:

▶ Lemma 10.

Dropi,t(j) ≤
1
2

∑
u∈{∅j}∪{uj(∗,∗)}

xu,t + 1
2xρj ,t.

Proof of Lemma 10. There are two cases and we bound the probability of dropping in each
case.
Case 1. j belongs to the same partition as i,
Case 2. j belongs to a different partition.

For the first case, the probability that it makes (i, t) invalid is

Dropi,t(j) ≤
1
2(sρj ,0 − sρj ,t) + Pr[item j is considered before i] · 1

2xρj ,t

≤1
2

∑
u∈{∅j}∪{uj(∗,∗)}

xu,t + 1
2xρj ,t.

The first term is the probability that at least one item j is scheduled before time t. Note
this is actually an union bound due to our independent rounding. The second term is the
probability that it is scheduled at time t, but will invalidate i since j ≺ i. The second equality
comes from the fact that if item j is scheduled some time before t, then it must be at some
state at time t that is not the starting state ρj . In other words, either the end state ∅j or
some transient state uj(∗, ∗).

For the second case, fix j, it can only drop i if it marked time slot t unavailable. The
probability is

Dropi,t(j) ≤
1
2

t−1∑
t′=1

xρj ,t′ · Pr[sizej ≥ t− t′] + Pr[item j is considered before i] · 1
2xρj ,t

≤1
2

t−1∑
t′=1

xρj ,t′ · Pr[sizej ≥ t− t′] + 1
2xρj ,t.

The first term is a summation of all the possible starting point of job j, times the probability
that it will mark time slot t unavailable. Note this is also a union bound since there can
be more than one copy of item j due to independent rounding. The second term is the
probability that item j is also scheduled at time t, but is considered before i, i.e. j ≺ i,
which marks time slot t unavailable for i. We focus on the first term,
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t−1∑
t′=1

xρj ,t′ · Pr[sizej ≥ t− t′] =
t−1∑
t′=1

B−t∑
τ=t−t′

xρj ,t′ Pr[sizej = τ ] =
t−1∑
t′=1

B−t∑
τ=t−t′

xuj(1,τ),t′+1

=
t−1∑
t′=1

B−t∑
τ=t−t′

xuj(t−t′,τ),t ≤
∑

u∈{∅j}∪{uj(∗,∗)}

xu,t.

The last inequality holds because the index set of the summation on the left is a subset of
that on the right. ◀

Therefore, the total probability that item i is blocked by any item is upper bounded by
the union bound:

Dropi,t =
∑
j)

Dropi,t(j) ≤
1
2

∑
j

∑
u∈{∅j}∪{ui(∗,∗)}

xu,t + 1
2

∑
j∈[n]

xρj ,t

≤1
2

∑
j∈[n]

∑
u∈{∅j}∪{ui(∗,∗)}

xu,t + 1
2

∑
j∈[n]

xρj ,t ≤
1
2(1−

∑
j∈n

xρj ,t) + 1
2

∑
j∈[n]

xρj ,t = 1
2 . ◀

Lastly, we show ω is monotone in the full version [30]. With everything ready, we can now
prove Theorem 6, which combined with Theorem 2 leads to the main claim.

Proof of Theorem 6. The output r of Algorithm 1 satisfies E[f(r)] = E[f(ω(σ(x)))], and
its feasibility is guaranteed by the algorithm. By Lemma 8 and Lemma 9, ω is a monotone
1/2-CRS with respect to q, where q is the probability defined in Lemma 8. Moreover,
σ(x) ∼ q holds. By Lemma 5, E[f(ω(σ(x)))] ≥ E[f(σ(x))]/2. Using Lemma 7, we get
favg(π) = E[f(r)] = E[f(ω(σ(x)))] ≥ E[f(σ(x))]/2 ≥ F̄ ((̄x))/2. ◀

6 Conclusion

We consider the well studied correlated stochastic knapsack problem, generalizing its target
function with submodularity to capture diminishing returns. An extra partition matroid
constraint is added to generalize it and resolve an open question raised in a previous work to
eliminate an assumption. We also make improvement on the approximation ratio. There is
still a gap of 2 comparing to the variant with linear target function and we leave it as an
open problem to close the gap.
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Faster Algorithm for Unique (k, 2)-CSP
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Abstract
In a (k, 2)-Constraint Satisfaction Problem we are given a set of arbitrary constraints on pairs of k-ary
variables, and are asked to find an assignment of values to these variables such that all constraints
are satisfied. The (k, 2)-CSP problem generalizes problems like k-coloring and k-list-coloring. In the
Unique (k, 2)-CSP problem, we add the assumption that the input set of constraints has at most
one satisfying assignment.

Beigel and Eppstein gave an algorithm for (k, 2)-CSP running in time O ((0.4518k)n) for k > 3
and O (1.356n) for k = 3, where n is the number of variables. Feder and Motwani improved upon
the Beigel-Eppstein algorithm for k ≥ 11. Hertli, Hurbain, Millius, Moser, Scheder and Szedlák
improved these bounds for Unique (k, 2)-CSP for every k ≥ 5.

We improve the result of Hertli et al. and obtain better bounds for Unique (k, 2)-CSP for k ≥ 5.
In particular, we improve the running time of Unique (5, 2)-CSP from O (2.254n) to O (2.232n) and
Unique (6, 2)-CSP from O (2.652n) to O (2.641n).

Recently, Li and Scheder also published an improvement over the algorithm of Hertli et al. in
the same regime as ours. Their improvement does not include quantitative bounds, we compare the
works in the paper.
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1 Introduction

The general Constraint Satisfaction Problem, in which we are asked to find an assignment to
a set of variables that satisfies a list of arbitrary constraints, is NP-Complete. Furthermore, it
is widely believed that a substantial improvement over the naive exhaustive search is unlikely
for the general CSP problem and even for special cases of it like The Boolean Satisfiability
Problem (SAT). Nevertheless, when the structure of the input is restricted in a certain
manner, there are known improvements in the form of moderately exponential algorithms.
These are algorithms that still have an exponential running time, yet achieve an exponential
improvement over the exhaustive search bounds.

The study of moderately exponential algorithms for NP-Complete problems is extensive. In
fact, exponential yet better-than-naive algorithms for NP-Complete problems were known for
some problems, for example The Travelling Salesman Problem, long before the definition of NP.
A survey of Woeginger [19] covers and refers to dozens of papers exploring such algorithms for
many problems including satisfiability, graph coloring, knapsack, TSP, maximum independent
sets and more. Subsequent review article of Fomin and Kaski [5] and book of Fomin and
Kratsch [6] further cover the topic of exact exponential-time algorithms.

Two of the most notable problems for which the study of moderately exponential al-
gorithms was fruitful are k-satisfiability (usually abbreviated as k-SAT) and graph coloring.

For satisfiability, the running time of the trivial algorithm enumerating over all possible
assignments is O∗(2n). No algorithms solving SAT in time O∗ ((2 − ε)n) for any ε > 0 are
known, and a popular conjecture called The Strong Exponential Time Hypothesis [3] states
that no such algorithm exists. On the other hand, for every fixed k there exists a constant
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εk > 0 such that k-SAT (i.e., SAT on formulas in CNF form with at most k literals in every
clause) can be solved in O∗ ((2 − εk)n) time. A result of this type was first published by
Monien and Speckenmeyer in 1985 [13]. A long list of improvements for the values of εk

were published since, including the celebrated 1998 PPSZ algorithm of Paturi, Pudlák, Saks
and Zane [15] and the recent improvement over it by Hansen, Kaplan, Zamir and Zwick [7].
The PPSZ bound was originally obtained only for the case of input formulas with a unique
satisfying assignment, its analysis was extended to the general case more than a decade later
by Hertli [8].

For graph coloring, i.e, the problem of deciding whether a graph is k-colorable, the naive
exhaustive search algorithm takes O(kn) time. Nevertheless, it is known that computing
the chromatic (or coloring) number of a graph (i.e., the smallest k for which the graph is
k-colorable) can be done in exponential time that does not depend on k. The first such
result was an O∗(3n) algorithm of Lawler [10]. A long line of works followed until finally
an algorithm computing the chromatic number in O∗(2n) time was devised by Björklund,
Husfeldt and Koivisto in 2009 [2]. This is conjectured to be optimal. For k ≤ 6 there are
algorithms solving k-colorability exponentially faster than O(2n) [1][20]. It is currently not
known even if 7-coloring can be solved exponentially faster than the general O(2n) bound of
computing the coloring number. One of the biggest open problems in this field is whether
k-coloring can be solved in O∗ ((2 − εk)n) time for every fixed k.

Both examples are special cases of the more general Constraint Satisfaction Problem. In an
(a, b)-formula, we have n variables such that each of them can take a value in [a] := {1, . . . , a}
and a list of constraints such that each constraint may depend on at most b variables. Every
such constraint can be equivalently replaced by a disjunction of at most ab constraints of the
form (x1 ̸= c1 ∨ x2 ̸= c2 ∨ . . . ∨ xb ̸= cb) where x1, . . . , xb are (not necessarily distinct)
variables and c1, . . . , cb ∈ [a] are possible values. Thus, we can think of every (a, b)-formula
as a list of constraints of that form. In the (a, b)-CSP problem we are given a (a, b)-formula
and need to decide whether or not there is an assignment to the variables that satisfies all
constraints. In the Unique (a, b)-CSP problem we add the assumption that if there is such an
assignment it is unique. Note that k-SAT is the same as (2, k)-CSP, and that k-coloring is a
special case of (k, 2)-CSP. We later elaborate on the close relation between the (k, 2)-CSP
and k-coloring problems.

In this paper we focus on obtaining better algorithms for Unique (k, 2)-CSP.

1.1 Possible running time
Denote by ca,b the infimum of constants c such that (a, b)-CSP on formulas with n variables
can be solved in O ((c + o(1))n) time. Naively, ca,b ≤ a as we can simply try all an possible
assignments to the variables. A simple improvement comes from the use of down-sampling.
Given a (a, b)-formula we may randomly restrict each variable to a′ < a uniformly chosen
values. Each satisfying assignment is not ruled out by the restriction with probability

(
a′

a

)n

.
After this down-sampling step, we are left with a (a′, b)-formula. Thus, for every a′ < a

we have ca,b ≤ a
a′ · ca′,b. In particular, ca,b ≤ a

2 c2,b. As we know that k-SAT can be solved
exponentially faster than O(2n) for every fixed k, we have that c2,b < 2 and in particular the
strict inequality ca,b < a holds for every a, b.

On the other hand, (a, b)-CSP is clearly NP-Complete for every a > 1 except of the special
case of (a, b) = (2, 2) (which is the polynomial 2-SAT). The Exponential Time Hypothesis
[3] states that there exists some constant c > 0 such that 3-SAT takes Ω(2cn) time to solve.
Traxler [18] showed that assuming the Exponential Time Hypothesis, there exists some c′ > 0
such that ck,2 > kc′ . Namely, even for b = 2 the (k, 2)-CSP problem becomes strictly more
complex as k increases.
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Table 1 Comparisons of the exponent base in Unique (k, 2)-CSP algorithms.

k Downsampling+2SAT PPZ FM [4] BE [1] PPSZ [9] Our algorithm
3 1.5 1.818 1.365 1.434 -
4 2 2.214 1.808 1.849 -
5 2.5 2.606 2.259 2.254 2.232
6 3 2.994 2.711 2.652 2.641
7 3.5 3.381 3.163 3.045 3.042

1.2 (k, 2)-CSP and k-Coloring
Consider the following hierarchy of three problems:

k-Coloring: given a graph with n vertices, determine whether it is k-colorable.
k-List-Coloring: given a graph with n vertices and a list of at most k allowed colors
(from a possibly larger universe of colors) for each vertex, determine if there is a proper
coloring of the graph such that each vertex is colored with one of the allowed colors in its
list.
(k, 2)-CSP: given n variables that can admit values from [k] and a list of arbitrary
constraints involving one or two variables each, determine if there is an assignment of
values to the variables that satisfies all constraints.

Each problem is a special case of the next one. Every instance of k-coloring is also an
instance of k-list-coloring where all lists are simply [k]. Every instance of k-list-coloring is
also an instance of (k, 2)-CSP. Nevertheless, while k-coloring and k-list-coloring can both
be solved in O∗(2n) time regardless of k [2], Traxler’s reduction [18] shows that there is
some constant k0 such that for every k > k0 we have ck,2 ≥ 2. Let k0 be the minimal such
constant. It is currently known that c4,2 < 2 and thus k0 ≥ 4.

In [20] it was recently shown that if k-list-coloring can be solved in O∗ ((2 − ε)n) time
for some ε > 0 then (k + 2)-coloring can also be solved in O∗ ((2 − ε′)n) for some ε′ > 0. In
particular, (k0 + 2)-coloring can be solved exponentially faster than O(2n). As k0 ≥ 4, this
resulted in the first O∗ ((2 − ε)n) time algorithms for 5-coloring and 6-coloring. This gives a
strong motivation for improving upper bounds for (k, 2)-CSP, with the goal of improving
the bound on k0. In particular, showing that (5, 2)-CSP can be solved in O∗ ((2 − ε)n) time
would result in the first O∗ ((2 − ε)n) time algorithm for 7-coloring.

1.3 Previous results
By the down-sampling argument we can reduce (k, 2)-CSP to the polynomial (2, 2)-CSP (i.e.,
2-SAT) and get an expected running time of O

((
k
2
)n
)

. Beigel and Eppstein [1] gave an
algorithm for (k, 2)-CSP running in time O ((0.4518k)n) for k > 3 and O (1.356n) for k = 3.
Feder and Motwani [4] give a (k, 2)-CSP algorithm based on the k-SAT PPZ algorithm, which
is the predecessor of the PPSZ one. They improve on the bound of Beigel and Eppstein only
for k ≥ 11. Hertli, Hurbain, Millius, Moser, Scheder and Szedlák [9] improved the bounds
for Unique (k, 2)-CSP for every k ≥ 5. Several other works [17] [11] [16] focus on the case
where b > 2.

1.4 Our contribution
We present an algorithm that improves on the result of Hertli et al. and obtain better
bounds for Unique (k, 2)-CSP for k ≥ 5. In particular, we improve the running time of
Unique (5, 2)-CSP from O (2.254n) to O (2.232n) and Unique (6, 2)-CSP from O (2.652n)
to O (2.641n). Our result is compared to the previous ones in Table 1.

ESA 2022
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We obtain our result by combining the strengths of both PPSZ and the Beigel-Eppstein
algorithms. Intuitively, we make the following insight regarding PPSZ-type algorithms.
Throughout the run of the PPSZ algorithm, it slowly manipulates the CSP formula. For
every k′ < k there is some time-point such that if we stop the algorithm at that point then
the formula roughly looks like a (k′, 2)-CSP formula. Furthermore, the rest of the algorithm
run would have looked similar to running PPSZ on a (k′, 2)-formula. Thus, for k ≥ 5 we
may stop the run of the PPSZ algorithm when the formula looks similar to a (4, 2)-CSP or
(3, 2)-CSP formula, and then switch to using the Beigel-Eppstein algorithm which is faster
than PPSZ for k ≤ 4.

In Section 2 we give an extensive overview of the previous results we need to use. Then in
Section 3 we introduce our algorithm and obtain the improved bounds. In Section 4 we sketch
possible improvements to the analysis of Section 3 and show that even with a completely
ideal analysis of our algorithm we would improve the bound for k = 5 from O(2.232n)
only to O(2.223n). Thus, to prove that k0 ≥ 5, if true, additional algorithmic tools are
necessary. In Section 5 we conclude our work, discuss more possible uses for the PPSZ-related
observations, and present open problems.

1.5 Comparison with a recent work of Li and Scheder
Recently, Li and Scheder [12] also published an improvement for the PPSZ-type algorithm of
Hertli et al. for Unique CSP. Their algorithm does not use the Beigel-Eppstein algorithm
and just modifies the PPSZ-type algorithm itself in a different manner to ours. They prove
that this modification gives an exponential improvement over the bounds of Hertli et al., but
do not give a quantitative bound of this improvement. We could not find a way to compute
such a bound from their paper, but suspect this improvement is very small.

Li and Scheder also observe that during the run of the PPSZ-type algorithm when the
number of color choices of a variable is very low (in their algorithm, when it reaches 2),
then there are better ways to settle the value of the variable than continuing the run of the
PPSZ algorithm. In their case, they do so by randomly picking one of the two colors for the
variable.

Our work can be seen as a refinement of this idea in two different ways. First, we cut off
the PPSZ run with small color sets yet larger than two. Second, we resolve the remaining
instance with a variant of the Beigel-Eppstein algorithm, which is much better than a random
choice.

2 Relevant overview of previous work

In this section we give an overview of all previous results that are used in our algorithm. We
repeat and refine some of the theorems used in these papers for their later use in Section 3.

2.1 The algorithm of Beigel and Eppstein
The algorithm of Beigel and Eppstein [1] solves a CSP by performing a series of local
reductions that either reduce the number of variables in the CSP or the number of allowed
values in some of the variables.

An example for such a local reduction that is of particular interest to us follows.

▶ Lemma 1 (Lemma 2 of [1]). Let (V, F ) be a CSP in which each variable x ∈ V has k(x)
allowed values. Let x be a variable with k(x) = 2, then there exists a set F ′ of additional
constraints, each of size two, such that (V, F ) is satisfiable if and only if (V \ {x}, F ∪ F ′) is
satisfiable, with the same number of allowed values for each variable y ̸= x.
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The result claimed in [1] is that their algorithm solves (3, 2)-CSPs in time O (1.3645n)
and (k, 2)-CSPs for k > 3 in time O ((0.4518k)n). Note that 1.3645 > 1.3554 = 0.4518 · 3. In
fact, the result proved in their paper is slightly stronger than that. The following Theorem
follows from [1].

▶ Theorem 2 (Section 5 of [1]). Let (V, F ) be a CSP with |V | = n3 + n4 variables such
that n3 variables have three allowed values and n4 variables have four allowed values, then
we can solve it in time O (1.3645n3 · 1.8072n4).

The claimed results follow from Theorem 2 immediately. For (3, 2)-CSPs we simply
have n3 = n, n4 = 0 and for (k, 2)-CSPs with k > 3 we down-sample each variable to 4 out
of its k possible values and then use the theorem with n3 = 0, n4 = n, with a total expected
run-time of O

((
k
4
)n · 1.8072n

)
= O ((0.4518k)n). Nevertheless, for our use we need to fully

use the power of Theorem 2 and we even slightly refine it with the following statement, from
now on referred to as the extended BE algorithm.

▶ Theorem 3. Denote by

BE(i) :=


1 if i ≤ 2
1.3645 if i = 3
0.4518 · i if i ≥ 4

.

Let (V, F ) be a CSP in which each variable x ∈ V has k(x) allowed values. Let ni be the
number of variables x in V such that k(x) = i. Then, we can solve (V, F ) in O (

∏
i BE(i)ni)

expected time.

Proof. The n1 variables with a single possible value can be ignored. The n2 variables with
two possible values can be eliminated using Lemma 1. For every i > 4 we use down-sampling
to reduce the number of allowed values to four. We finally apply Theorem 2. ◀

2.2 The PPZ and PPSZ-type algorithms
In this section we present an overview of [4] and [9]. We state theorems of both papers and
their variants that are useful for our analysis, and adapt some of their notation. Throughout
the section we discuss only instances with a unique satisfying assignment.

▶ Definition 4 (D-implication). Let F be a (k, 2)-CSP formula over a set V of variables,
x ∈ V be a variable, c ∈ [k] be a possible value, α0 a partial assignment, and D ∈ N. We say
that α0 D-implies x ≠ c and write α0 |=D (x ̸= c) if there is a subset of constraints G ⊆ F

of size |G| ≤ D such that G ∧ α0 implies (x ̸= c).

By enumeration, we can check whether α0 |=D (x ̸= c) in O
(
|F |D · poly(n)

)
time, which

is polynomial in n, k if D is a constant and sub-exponential in n even if D is a slow-enough
growing function of n. For the rest of the section we fix D.

▶ Definition 5 (Eligible values). Let F be a (k, 2)-CSP formula over a set V of variables, α0
a partial assignment, and x ∈ V \ V (α0) a variable which value is not assigned in α0. We
denote by

A (x, α0) := {c ∈ [k] | α0 ̸|=D (x ̸= c)}

the set of all possible values for x that are not ruled out by D-implication from α0.

ESA 2022
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We can now describe the PPSZ algorithm (adapted from SAT [14] to CSP in [9]). Given
a (k, 2)-CSP F , we begin with α0 = ∅ the empty assignment and incrementally add variables
to it, hoping to finish with a satisfying assignment. In particular, we choose a permutation π

of the variables V uniformly at random, and then choose an assignment for the variables of V

one-by-one according to the order of π. When we reach a variable x, we compute A (x, α0) in
sub-exponential time, pick a uniformly random c ∼ U (A (x, α0)), and extend α0 by setting
α0(x) = c.

Algorithm 1 The PPSZ algorithm.

Pick a uniform random permutation π of the set V of variables;
Set α0 = ∅;
for x ∈ V in the order dictated by π do

Draw c ∼ U (A (x, α0)) uniformly;
Set α0(x) := c;

Return α0;

Algorithm 1 runs in sub-exponential time and returns some assignment α0 to all variables
of V . It is clear that the probability of α0 to satisfy F , assuming that F is satisfiable, is
at least k−n. We next prove that for formulas F with exactly one satisfying assignment
α, the probability that Algorithm 1 produces the satisfying assignment α0 = α is in fact
exponentially larger. For the rest of the section we assume that F has a unique satisfying
assignment and denote it by α.

▶ Definition 6 (Ultimately eligible values). Let F be a (k, 2)-CSP formula uniquely satisfied
by α, π be a permutation of its variables V and x ∈ V some variable.
We let Vπ,x := {y ∈ V | π(y) < π(x)} be the set of all variables appearing before x in
π, απ,x := α

∣∣
Vπ,x

be the partial assignment resulting by restricting α to Vπ,x and then we
denote by A (x, π) := A (x, απ,x) the set of all possible values for x that are not ruled out
by D-implication when we reach x in a PPSZ iteration with permutation π, given that all
previous variables were set correctly.

We observe that Algorithm 1 returns α if and only if it draws the correct value for every
variable. In particular, for a specific permutation π the probability of success is exactly∏

x∈V
1

|A(x,π)| . For a random permutation then, the probability of success is

Eπ

[∏
x∈V

1
|A (x, π) |

]
≥ k

−
∑

x∈V
Eπ [logk |A(x,π)|]

where we use Jensen’s inequality. In particular, it is enough to give an upper bound on
Eπ [logk |A (x, π) |] that holds for every variable x.

2.3 The PPZ-type algorithm of Feder and Motwani
In the PPZ-type variant of Feder and Motwani [4], a simpler variant where D = 1 is presented
and analysed. Namely, a possible value c for a variable x is ruled out if and only if a
variable y appeared before x in the permutation and was assigned a value c′ such that the
constraint (x ̸= c ∨ y ̸= c′) appears in the list of constraints. When we reach the variable x,
we uniformly guess a value for it out of all values that are not ruled out in that manner.
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▶ Lemma 7. Let (V, F ) be the sets of variables and constraints in a Unique (k, 2)-CSP.
Denote by φ the unique satisfying assignment of (V, F ). For every variable x ∈ V and every
value φ(x) ̸= c′ ∈ [k] other than the value x is assigned in φ, there exists a variable y =
yx,c′ ∈ V \ {x} such that (x ̸= c′ ∨ y ̸= φ(y)) ∈ F .

Proof. Assume by contradiction that there exists a variable x and a value c′ ≠ φ(x) for
which (x ̸= c′ ∨ y ̸= φ(y)) /∈ F for every variable y. Consider the assignment φ′ such
that φ′(x) = c′ and φ′(y) = φ(y) for every y ̸= x. It is a satisfying assignment as well,
and φ′ ̸= φ which contradicts the uniqueness assumption. ◀

Instead of uniformly drawing a permutation π ∼ S|V | of the variables, we (equivalently)
independently draw a time value π(x) ∼ U ([0, 1]) uniformly for every variable x, and let π

be the permutation induced by the order of the time values π(x) for x ∈ V .
We observe that if π(yx,c′) < π(x) then c′ /∈ A (x, π). In particular, if π(x) = p ∈ [0, 1]

then for every c′ ̸= φ(x) with probability at least p we have that c′ /∈ A (x, π).

▶ Lemma 8. For every variable x, we have

Eπ [logk |A (x, π) | | π(x) = p] ≤
k−1∑
i=0

(
k − 1

i

)
(1 − p)i

pk−1−i logk (1 + i) .

Proof. For the analysis, we may assume that we rule out values only by the constraints
involving x and one of the variables yx,c′ for c′ ≠ φ(x). This holds since ruling out more
variables can only decrease the size of A (x, π).

If the variables yx,c′ are distinct for all c′ ̸= φ(x), then the right hand side of the lemma’s
statement is exactly the expected size of A (x, π), conditioned on π(x) = p. This is simply the
expectation of logk (1 + i) where i ∼ Binomial (k − 1, 1 − p) is a binomial random variable.

Generally, let Ac′ be the indicator for the event that π(yx,c′) > p. We need to upper
bound E[logk

(
1 +

∑
c′ ̸=φ(x) Ac′

)
]. Let A′

c′ be independent Bernoulli random variables with
probability (1−p) to be 1 and probability p to be 0. By concavity of the function logk(1+z) and
Jensen’s inequality it follows that E[logk

(
1 +

∑
c′ ̸=φ(x) Ac′

)
] ≤ E[logk

(
1 +

∑
c′ ̸=φ(x) A′

c′

)
],

which concludes our proof. The complete proof of the last statement appears in [9] as
Lemma A.1. ◀

Denote by S′
k,2 :=

∫ 1
0
∑k−1

i=0
(

k−1
i

)
(1 − p)i

pk−1−i logk (1 + i) dp. By Lemma 8,
E [logk |A (x, π) |] =

∫ 1
0 Eπ [logk |A (x, π) | | π(x) = p] dp ≤ S′

k,2, this concludes the analysis
of the Feder-Motwani PPZ-type algorithm.

▶ Theorem 9 ([4]). The success probability of a PPZ iteration is at least k−S′
k,2 .

2.4 The PPSZ-type algorithm of Hertli et al.
In the PPSZ algorithm analysed in [9] more involved D-implications are considered. In the
analysis for D = 1, we noticed that for every variable x and every value c′ ̸= φ(x) there
exists some variable yx,c′ such that if π(yx,c′) < π(x) then c′ /∈ A (x, π).

We say that a variable y is decided with respect to some partial assignment α0
if |A (y, α0) | = 1, i.e., if α0 already D-implies the correct value of y in φ. The main
observation is that if in time p := π(x) the variable yx,c′ is decided then c′ /∈ A (x, π). The
variable yx,c′ is necessarily decided if π(yx,c′) < p but can also be decided if it is yet to
appear in the permutation. Thus, the probability of yx,c′ being decided at time p is strictly
larger than p.
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We give an intuitive reasoning for the probability of a variable being decided. Denote
by qk(p) the probability that a variable x is decided by time p. The variable x is decided by
time p if π(x) < p or alternatively if for every c′ ≠ φ(x) the variable yx,c′ is by itself decided
at time p. In particular, qk(p) is a solution to the recurrence qk(p) = p + (1 − p)qk(p)k−1.
We thus denote by qk(p) the smallest non-negative real solution to that recurrence, it can be
analytically computed for every k as it is simply a root of a polynomial.

This intuitive argument is of course not complete and lacks many technical details.
Nevertheless, this statement does hold, and the following strengthening of Lemma 8 and
Theorem 9 are proven in [9].

▶ Lemma 10 (A.1 in [9]). For every variable x, we have

Eπ [logk |A (x, π) | | π(x) = p] ≤
k−1∑
i=0

(
k − 1

i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) .

Denote by Sk,2 :=
∫ 1

0
∑k−1

i=0
(

k−1
i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) dp.

▶ Theorem 11 (Correctness of [9]). Let F be a Unique (k, 2)-CSP formula, then for every
variable x it holds that Eπ [logk |A (x, π) |] ≤ Sk,2 + εD, where εD is some error parameter
that depends only on D and goes to 0 as D goes to infinity.

3 Faster Unique (k, 2)-CSP algorithm

On a very high-level, our algorithm combines Hertli et al.’s PPSZ (Section 2.2) with the
BE algorithm (Section 2.1). We begin by illustrating our idea intuitively (initially ignoring
some crucial technical details to be discussed later). Consider a run of the PPSZ algorithm,
as described in Section 2.2. For the early variables in the permutation π, it is very likely
that |A (x, π) | = k, since α0 assigns values to very few variables. On the other hand, for the
last variables in the permutation, it is very likely that |A (x, π) | = 1. It turns out that in
any point throughout the run of a PPSZ iteration, the sizes |A (x, α0) | for the remaining
variables x ∈ V \ V (α0) are quite concentrated. Furthermore, after most of the variables
have |A (x, α0) | ≈ k′ < k the remaining portion of the PPSZ iteration strongly resembles a
PPSZ algorithm for (k′, 2)-CSP formulas. As we see in Table 1, for k < 5 PPSZ behaves
worse on (k, 2)-CSP formulas than the BE algorithm.

Thus, in our algorithm, we begin with an iteration of PPSZ but halt it somewhere in the
middle of the permutation when the sizes |A (x, α0) | are concentrated in 1, 2, 3, 4. At that
point, we use the extended BE algorithm shown in Section 2.1.

We set some parameter t ∈ [0, 1] to be chosen later and consider the following algorithm.

Algorithm 2 Our algorithm.

Pick a uniform random permutation π of the set V of variables;
Denote by π<t the prefix of π of size t|V | and by V<t the variables appearing in it;
Set φ = ∅;
for x ∈ V<t in the order dictated by π<t do

Draw c ∼ U (A (x, φ)) uniformly;
Set φ(x) := c;

Run the extended BE algorithm on the remaining CSP F ;
Return the solution φ;
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Consider an iteration of Algorithm 2. Denote by Ri the number of variables that appeared
in V<t and had |A (x, π) | = i. Denote by φ′ the partial assignment constructed by time t.
Let Bi be the number of variables that did not appear in V<t and had |A (x, φ′) | = i.

▶ Lemma 12. The success probability of Algorithm 2 is
∏k

i=1 i−Ri ·
∏k

i=5
( 4

i

)Bi .

Proof. The probability of all PPSZ assignments to be correct is
∏k

i=1 i−Ri , as follows from
Section 2.2. The probability of the random down-sampling to not rule out the correct
assignments is

∏k
i=5
( 4

i

)Bi . ◀

▶ Lemma 13. The running time of Algorithm 2 is O
(
1.3645B3 · 1.8072B4+...+Bk

)
.

Proof. The running time of the (partial) PPSZ iteration is polynomial. The running time of
the BE algorithm is O(1.3645n3 · 1.8072n4). ◀

Note that all Ri and Bi are fully determined by the choice of π. Thus, for a spe-
cific choice of π, if we repeatedly run Algorithm 2 with π we expect finding a solution
after

(∏k
i=1 i−Ri ·

∏k
i=5
( 4

i

)Bi
)−1

iterations. In particular, after

(
k∏

i=1
i−Ri ·

k∏
i=5

(
4
i

)Bi
)−1

· O
(
1.3645B3 · 1.8072B4+...+Bk

)
=

k∏
i=1

iRi ·
∏

i

BE (i)Bi

computational steps. At this point, we would like to bound the expected running time
when picking a random π with

∏k
i=1 iE[Ri] ·

∏
i BE (i)E[Bi]. Unfortunately, as we consider the

running time and not a success probability (as in the PPSZ algorithm), we need an inequality
of the opposite direction to Jensen’s inequality. Fortunately, this inequality essentially still
holds in this case.

▶ Lemma 14 (Wrong direction Jensen’s inequality is still kind-of right). Let A be an algorithm
with expected running time 2X conditioned on the value of a random variable X. There exists
an algorithm A′ that successfully executes A with probability at least 0.99 and has an expected
running time of O

(
2E[X] · E [X]

)
.

Proof. We apply Markov’s inequality twice. First, to observe that

Pr (X > E[X] + 1) ≤ 1
1 + 1

E[X]
= 1 − 1

E[X] + 1 .

Hence, if we run A independently for 6 (E [X] + 1) times, then with probability at least 1 −
e−6 > 1 − 1

200 at least one of these runs has X ≤ E [X] + 1. Second, conditioned on any
value of X, with probability at least 1 − 1

200 algorithm A finishes in less than 200 · 2X

computational steps. Thus, by union bound, if we run algorithm A for 6 (E [X] + 1) times,
and terminate each run after 400 · 2E[X] computational steps, then at least one run of A
finishes with probability at least 0.99. ◀

▶ Corollary 15. We find a satisfying assignment with probability greater than 0.99 in time

O⋆

(
k∏

i=1
iE[Ri] ·

∏
i

BE (i)E[Bi]

)
. (⋆)
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We give a simpler analysis leading to slightly sub-optimal bounds. In Section 4 we sketch
the possible improvements to the analysis presented here, and also present a clear limit to
the improvements that can be achieved by this algorithm.

We slightly abuse notation by equating the numbers Ri, Bi with the sets of variables they
are counting. Let x be a variable. For the analysis we can assume that the algorithm rules
out values for x only due to the constraints involving x and some yx,c′ . This holds as ruling
out more values can only improve the success probability of each iteration.

We first consider the case in which the variables yx,c′ for every c′ ̸= φ(x) are all distinct.

▶ Lemma 16. For each variable x, we have

E

[
k∑

i=1
Pr (x ∈ Ri) · logk i

]
≤
∫ t

0

k−1∑
i=0

(
k − 1

i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) dp.

Proof. This follows immediately from Lemma 10. ◀

▶ Lemma 17. Let x be a variable for which yx,c′ are distinct for all c′ ̸= φ(x). Then,

E

[
k∑

i=3
Pr (x ∈ Bi) · logk EB (i)

]
≤ (1 − t) ·

k∑
i=3

(
k − 1

i

)
(1 − t)i

tk−1−i · logk EB (i) .

Proof. For simplicity, we analyse this part with a PPZ-type analysis (rather than PPSZ-type
one), this is further discussed in Section 4. The probability that x /∈ V<t is (1 − t), and
the probability that exactly i out of the (k − 1) variables yx,c′ do not appear in V<t is(

k−1
i

)
(1 − t)i

tk−1−i. ◀

Denote by

cost(k, t) :=
∫ t

0

k−1∑
i=0

(
k − 1

i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) dp

+ (1 − t) ·
k∑

i=3

(
k − 1

i

)
(1 − t)i

tk−1−i · logk EB (i) .

If all variables had completely distinct yx,c′ ’s, then by Lemma 16 and Lemma 17 we would
have that (⋆) and in particular the running time of our algorithm is bounded by O

(
kcost(k,t)n

)
for any choice of t. This would give us O(2.22936n) for k = 5, t = 0.23 and O(2.64001n)
for k = 6, t = 0.35. We now deal with the case in which these are not distinct.

In the proof of Lemma 8 we faced the same problem and solved it by a simple application
of Jensen’s inequality to the concave function logk(1 + i). Unfortunately, the function
logk EB (i) is not concave (for i = 1, . . . , k) due to its values on i = 1, 2. Indeed, the
left-hand side of the inequality in Lemma 17 is higher than the right-hand side if these
variables are not distinct. On the other hand, when these variables are not distinct then the
term of Lemma 16 is much smaller.

Consider the expression

E

[
k∑

i=1
Pr (x ∈ Ri) · logk i +

k∑
i=3

Pr (x ∈ Bi) · logk EB (i)
]

(⋆⋆)

again. This time, we will assume that the variables yx,c′ are not all distinct. Denote
by k′ := |{yx,c′ | c′ ̸= φ(x)}| < k −1 the number of such distinct variables, and by j1, . . . , jk′

their cardinalities (note that
∑k′

i=1 ji = k − 1). Consider the following expression.
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E
[ ∫ t

0

∑
b1,...,bk′ ∈{0,1}

qk (p)k′−
∑k′

i=1
bi · (1 − qk (p))

∑k′

i=1
bi · logk

1 +
k′∑

i=1
jibi

 dp (⋆ ⋆ ⋆)

+ (1 − t) ·
∑

b1,...,bk′ ∈{0,1}

tk′−
∑k′

i=1
bi · (1 − t)

∑k′

i=1
bi · logk EB

1 +
k′∑

i=1
jibi

].
Expression (⋆ ⋆ ⋆) is a generalized form of cost(k, t) and thus upper bounds (⋆⋆) by the same
arguments. Completely analysing the behaviour of Expression (⋆ ⋆ ⋆) for different partitions
is rather technically involved and thus we simply enumerate over the few possible cases (for
small values of k). In Section 4 we further discuss the possible improvements to the analysis
of this section.

▶ Theorem 18. We solve Unique (6, 2)-CSP in O (2.641n) time.

Proof. For the choice t = 0.37 we have that cost(6, 0.35) = log6(2.64001), this choice
of t minimizes cost(6, t). We verify that for t = 0.35 Expression (⋆ ⋆ ⋆) is always lower
than cost(6, 0.35) and thus finish, as this implies that for every variable Expression (⋆⋆) is
bounded by cost(6, 0.35).

For the partition (j1, j2, j3, j4) = (2, 1, 1, 1) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.62023).
For the partition (j1, j2, j3) = (2, 2, 1) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.61171).
For the partition (j1, j2, j3) = (3, 1, 1) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.58391).
For the partition (j1, j2) = (3, 2) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.60366).
For the partition (j1, j2) = (4, 1) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.54819).
For the partition (j1) = (5) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.55566). ◀

▶ Theorem 19. We solve Unique (5, 2)-CSP in O (2.232n) time.

Proof. For the choice t = 0.23 we have that cost(5, 0.23) = log5(2.22936), this choice of t

minimizes cost(5, t). This time, unfortunately, for t = 0.23 Expression (⋆ ⋆ ⋆) is not always
lower than cost(5, 0.23). In particular, it is for every partition except of (j1) = 4.

For the partition (j1, j2, j3) = (2, 1, 1) the value of (⋆ ⋆ ⋆) in t = 0.23 is log5(2.21658).
For the partition (j1, j2) = (2, 2) the value of (⋆ ⋆ ⋆) in t = 0.23 is log5(2.21983).
For the partition (j1, j2) = (3, 1) the value of (⋆ ⋆ ⋆) in t = 0.23 is log5(2.20499).
For the partition (j1) = (4) the value of (⋆ ⋆ ⋆) in t = 0.23 is log5(2.24925).

Denote by α the fraction of variables for which the yx,c′ variables are all the same
(i.e., variables with the only problematic partition). With the choice t = 0.23 the running
time of our algorithm on a formula is O

((
2.22936(1−α) · 2.24925α

)n
)

. On the other hand,
if α is large we can simply run the regular PPSZ algorithm and gain much. We see that
by setting t = 1 and computing Expression (⋆ ⋆ ⋆) for the same partition (j1) = (4),
gives a value of log5(2.01077). Thus, running regular PPSZ would give us a running time
of O

((
2.25303(1−α) · 2.01077α

)n
)

. We can therefore try both options (t = 0.23 or t = 1)
simultaneously and thus get the running time of the faster one. Both expressions balance
at α = 0.08612, giving us a running time of O (2.23107n). ◀

Computation identical to this of Theorem 18 gives running time of O (3.042n) for k = 7
with t = 0.44.
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4 Improvements and Limitations

In this section we sketch a possible improvement to the analysis of Section 3. The purpose
of this section is not to tighten the upper bound but to explain the limitations of our
algorithm and to convince that even with a tight analysis of Algorithm 2 it will achieve
running times that are only slightly better than these we get in Section 3. In particular, if
getting O ((2 − ε)n) time for (5, 2)-CSP is possible, new algorithmic tools are likely required.

Consider the expression
∏k

i=1 iE[Ri] ·
∏

i EB(i)E[Bi] (⋆) proven in Section 3 to upper bound
the running time of our algorithm. In Lemma 16 we give a likely tight bound for the term
involving E[Ri], yet in Lemma 17 we settle for a PPZ-type bound for E[Bi] in which we
consider only the events in which the variables yx,c′ themselves appear before time t and not
the events in which they are decided by that time. The reason for this discrepancy becomes
clear in the rest of the analysis. Due to the non-concave objective function in i, we can no
longer assume independence between the events of each yx,c′ being decided. Nevertheless,
later in Theorem 18 and Theorem 19 we observe that while the term involving E[Bi] indeed
gets worse with dependencies, the other term involving E[Bi] gets significantly better with
them and thus can cover for those dependencies. Ideally, then, the simple PPZ-type bound
of t in Lemma 17 can be replaced with the PPSZ-type bound of qk(t) in the total bound.
This would result in the following tighter cost function.

˜cost(k, t) :=
∫ t

0

k−1∑
i=0

(
k − 1

i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) dp

+ (1 − t) ·
k∑

i=3

(
k − 1

i

)
(1 − qk (t))i

qk (t)k−1−i · logk EB (i) .

With this ideal cost function, we would get running times of O (2.223n) for Unique
(5, 2)-CSP (for t = 0.32) and O (2.628n) for Unique (6, 2)-CSP (for t = 0.46).

5 Conclusions and Open Problems

In Section 3 we presented an algorithm for Unique (k, 2)-CSP with a running time of O(2.232n)
for k = 5. In Section 4 we argued that even with an ideal analysis, the bound we get for k = 5
is only the slightly better O(2.223n). Thus, it remains open and would likely require new
algorithmic tools to show that (5, 2)-CSP can be solved in O ((2 − ε)n) time, or alternatively
to rule out the existence of such algorithm by reductions to popular conjectures. More
generally, we raise the following open problem.

▶ Open Problem. What is the maximal k such that (k, 2)-CSP can be solved in O ((2 − ε)n)
time?

The main algorithmic observation in this paper is in fact a general insight regarding
the behaviour of PPSZ-type algorithms. The Beigel-Eppstein algorithm [1] only works for
(k, 2)-CSP. On the other hand, the PPSZ-type algorithm [9] generalizes to b > 2 and is in fact
currently the fastest algorithm for Unique (a, b)-CSP with b > 2 and any a. Using the tools
we introduced in this paper, it should be possible to turn any faster algorithm for (a, b)-CSP
for a specific (a, b) into a faster (a′, b)-CSP algorithm for all a′ > a.

Another follow-up question is whether our algorithm can be generalized to the non-unique
(k, 2)-CSP case.
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