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Abstract
Fair clustering enjoyed a surge of interest recently. One appealing way of integrating fairness aspects
into classical clustering problems is by introducing multiple covering constraints. This is a natural
generalization of the robust (or outlier) setting, which has been studied extensively and is amenable
to a variety of classic algorithmic techniques. In contrast, for the case of multiple covering constraints
(the so-called colorful setting), specialized techniques have only been developed recently for k-Center
clustering variants, which is also the focus of this paper.

While prior techniques assume covering constraints on the clients, they do not address additional
constraints on the facilities, which has been extensively studied in non-colorful settings. In this
paper, we present a quite versatile framework to deal with various constraints on the facilities in the
colorful setting, by combining ideas from the iterative greedy procedure for Colorful k-Center by
Inamdar and Varadarajan with new ingredients. To exemplify our framework, we show how it leads,
for a constant number γ of colors, to the first constant-factor approximations for both Colorful
Matroid Supplier with respect to a linear matroid and Colorful Knapsack Supplier. In both cases,
we readily get an O(2γ)-approximation.

Moreover, for Colorful Knapsack Supplier, we show that it is possible to obtain constant
approximation guarantees that are independent of the number of colors γ, as long as γ = O(1),
which is needed to obtain a polynomial running time. More precisely, we obtain a 7-approximation
by extending a technique recently introduced by Jia, Sheth, and Svensson for Colorful k-Center.
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1 Introduction

As more and more decisions are automated, there has been an increasing interest in incorporat-
ing fairness aspects in algorithms by design. This applies in particular to clustering problems,
where considerable attention has recently been dedicated to developing and studying various
models of fair clustering, see, e.g., [8], [3], and [2].
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7:2 Techniques for Generalized Colorful k-Center Problems

In this paper, we focus on the so-called colorful setting, which was introduced in [3].
In colorful clustering, each client is a member of certain subgroups and every clustering is
required to cover at least a given number of clients of each subgroup. This may be considered
under various clustering objectives (like k-median and k-mean), though only the k-center
case has been studied so far.

Colorful clustering is an appealing notion as it is a natural generalization of the robust
(or outlier) setting, where there is only a single group which every client belongs to. Various
clustering problems have been studied in depth in the robust setting, see, e.g., [5], [9], and [2].

While the robust setting is amenable to a variety of well-known and basic algorithmic
techniques, the only constant-factor approximations for the colorful setting, which imposes
multiple covering constraints leading to more balanced clusterings, are based on significantly
more sophisticated techniques, tailored specifically to those settings. More precisely, three
distinct techniques have been successful at achieving constant-factor approximations in
the context of colorful k-center clustering, namely the combinatorial approach of [11], the
round-or-cut-based approach of [1], and the iterative greedy reductions of [10].

However, these approaches do not immediately generalize to variants with constraints on
the facilities, even for the common Matroid Center or Knapsack Center clustering variants.
On the other hand, techniques for the Knapsack and Matroid k-Center problems in the
robust setting (see [5] and [9]) do not easily extend to multiple covering constraints.

Thus, prior to this work, no approaches have been known that lead to constant-factor
approximations for colorful variants of otherwise well-studied k-center problems like Matroid
Center or Knapsack Center. Filling this gap is the goal of this paper.

1.1 Our contributions
Our main contribution is a partitioning procedure which leads to a general reduction of
colorful k-center clustering problems with constraints on the facilities to a significantly
simpler multi-dimensional covering problem (see Theorem 3). This reduction comes at the
cost of a constant factor depending on the number of colors.

It is inspired by recent insights of [10] on decoupling multiple covering constraints and
iteratively applying a greedy partitioning procedure of [6]. By taking into account multiple
colors at the same time, our framework gives an improved way of dealing with multiple
covering constraints while also becoming more versatile. Our framework also extends and
simplifies ideas of the approximation algorithm for Robust Matroid Center of [7].

We start by introducing the γ-Colorful F-Supplier problem, which formalizes colorful
k-center problems with (down-closed) constraints on the facilities.

▶ Definition 1 (γ-Colorful F-Supplier problem). Let (C ∪̇ F, d) be a finite metric space on a
set of clients C and facilities F , let F ⊆ 2F be a down-closed family of subsets of F , and let
γ ∈ Z≥0. Moreover, we are given for each ℓ ∈ [γ]:

a unary encoded weight/color function wℓ : C → Z≥0, and
a covering requirement mℓ ∈ Z≥0.

The γ-Colorful F-Supplier problem asks to find the smallest radius r together with a set
S ⊆ F such that wℓ(BC(S, r)) ≥ mℓ for all ℓ ∈ [γ].1

1 We use the common notation w(T ) :=
∑

t∈T
w(t) for functions w : U → R≥0 and T ⊆ U , as well as

B(q, r) := {v ∈ C ∪ F | d(q, v) ≤ r} for the ball of radius r around point q. Moreover, we use the
shorthand BU (V, r) :=

{
U ∩

⋃
v∈V

B(v, r)
}

for sets U, V ⊆ C ∪ F .
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We note that it is also common to define colorful k-center versions in an unweighted way
(thus not using weight functions wℓ) by assigning to each client a subset of the γ many colors
and requiring that, for each color, mℓ many clients of that color are covered. The definition
we use clearly captures this case (and can easily be seen to be equivalent). This connection
also explains why the weights wℓ are assumed to be given in unary encoding.

Following common terminology in the literature, when F is the family of independent
sets of a matroid or feasible sets with respect to a knapsack constraint, we call the problem
γ-Colorful Matroid Supplier and γ-Colorful Knapsack Supplier, respectively.

Our main contribution is a general reduction of γ-Colorful F-Supplier to an auxiliary
problem, which we call F-Cover-Promise (F-CP). F-CP, which is formally defined below,
is a multi-dimensional cover problem with the added promise that highly structured solutions
exist. The promise is key, as the problem without the promise can be thought of as a
multi-dimensional max-cover problem.

▶ Definition 2 (F-Cover-Promise (F-CP)). In the F-Cover-Promise problem (F-CP),
we are given a set family H ⊆ 2U over a finite universe U , a family F ⊆ 2H of feasible
subsets of H, and γ many unary encoded weight functions w1, . . . , wγ : U → R≥0 each with a
requirement mℓ (for ℓ ∈ [γ]). The task is to find a feasible family of sets S ∈ F such that

wℓ

( ⋃
H∈S

H

)
≥ mℓ ∀ ℓ ∈ [γ] .

The promise is that there exists a family S ⊆ F and a way to pick for each H ∈ S a single
representative uH ∈ H such that

wℓ ({uH : H ∈ S}) ≥ mℓ ∀ ℓ ∈ [γ] .

In words, the promise is that there is a solution that picks a family of sets and the requirements
can be fulfilled by only using a single representative uH in each set. However, the solution we
are allowed to build is such that the weight of all elements covered by our sets are counted
instead of just a single representative per set.

We are now ready to state our main reduction theorem, which, as we discuss later, readily
leads, for a constant number of colors γ, to the first constant-factor approximations for
γ-Colorful Matroid Supplier for linear matroids and γ-Colorful Knapsack Supplier. Our
reduction to F-CP comes at the cost of an O(2γ)-factor in the approximation guarantee.

▶ Theorem 3. For any family of down-closed set systems, we have that if F-CP can be
solved efficiently for any F in that family, then there is an O(2γ)-approximation algorithm
for γ-Colorful F-Supplier for any F in the family.2

While the dependence of the approximation factor on γ may be undesirable, the algorithmic
barriers for prior approaches remain even when γ = 2 and, for hardness reasons, we do not
expect approximation algorithms to exist at all when γ grows too quickly. In particular, [1]
showed that even a simple version of colorful clustering, where any k centers can be chosen,
does not admit an O(1)-approximation algorithm when γ = ω(log |C ∪̇ F |) under the
Exponential Time Hypothesis. Thus, in what follows, we restrict ourselves to γ = O(1).

2 When talking about the same set system F both in the context of F-CP and γ-Colorful F-Supplier, we
consider F to be the same set system in both settings even if the ground sets are different, as long as
there is a one-to-one relation between the ground sets mapping sets of one system to sets of the other
one and vice versa.

ESA 2022



7:4 Techniques for Generalized Colorful k-Center Problems

We now discuss implications of Theorem 3 to γ-Colorful Matroid Supplier for linear
matroids and γ-Colorful Knapsack Supplier. When F is the family of independent sets of
a linear matroid, we show how F-CP can be solved with techniques relying on an efficient
randomized procedure for the Exact Weight Basis (XWB) problem for linear matroids.3
Linear matroids include as special cases many other well-known matroid classes, including
uniform matroids, and more generally partition and laminar matroids, graphic matroids,
transversal matroids, gammoids, and regular matroids.

▶ Theorem 4. For γ = O(1) and F being the independent sets of a linear matroid, F-CP can
be solved efficiently by a randomized algorithm. Hence (by Theorem 3), there is a randomized
O(2γ)-approximation algorithm for γ-Colorful Matroid Supplier for linear matroids.

The restriction to linear matroids and the fact that the algorithm is randomized are not
artifacts of our framework. Indeed, by an observation in [11], rephrased for matroids below,
we do not only have that XWB implies results for γ-Colorful Matroid Supplier (which will
follow from our reduction), but also a reverse implication. More precisely, even for 2-Colorful
Matroid Supplier, deciding whether there is a solution of radius zero requires being able to
solve XWB on that matroid. However, it is unknown whether XWB can be solved efficiently
on general matroids, and the only technique known for XWB on linear matroids is inherently
randomized [4]. (Derandomization is a long-standing open question in this context.)

▶ Lemma 5 (based on [11]). If there is an efficient algorithm for deciding whether 2-Colorful
Matroid Supplier with respect to a given class of matroids admits a solution of radius zero,
then XWB can be solved efficiently on the same class of matroids.

Note that if we cannot decide the existence of a radius zero solution, then no approximation
algorithm with any finite approximation guarantee can exist.

For the case where F are the feasible sets for a knapsack problem, one can use standard
dynamic programming techniques to see that F-CP can be solved efficiently, which readily
leads to a O(2γ)-approximation for γ-Colorful Knapsack Supplier.

Whereas our reduction given by Theorem 3 is broadly applicable and readily leads to
first constant-factor approximations for γ-Colorful F-Supplier problems, it remains open
whether and in which settings a dependence of the approximation factor on the number of
colors is necessary. We make first progress toward this question for γ-Colorful Knapsack
Supplier, where we show how techniques from [11] can be modified and extended to give a
7-approximation (independent of the number of colors).

▶ Theorem 6. For γ = O(1), there is a 7-approximation algorithm for γ-Colorful Knapsack
Supplier.

Our technical contribution here lies in handling the knapsack constraint in this approach
– modifying the algorithm of [11] to the supplier setting and to weighted instances is straight-
forward. In fact, their algorithm can be seen to give a 3-approximation even for γ-Colorful
k-Supplier, which is tight in light of a hardness result in [6], namely that it is NP-hard
to approximate Robust k-center with forbidden centers to within 3− ϵ. This remains the
strongest hardness result even for γ-Colorful F-Supplier problems.

3 In XWB, one is given a matroid on a ground set with unary encoded weights and a target weight; the
goal is to find a basis of the matroid of weight equal to the target weight. The technique in [4] to solve
XWB for linear matroids needs an explicit linear representation of the linear matroid. We make the
common assumption that this is the case whenever we make a statement about linear matroids.
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1.2 Organization of this paper
Our main reduction, Theorem 3, is based on what we call (L, r)-partitions, which is a way
to judiciously partition the clients into parts that we want to cover together. We introduce
(L, r)-partitions in Section 2 and show how the existence of certain strong (L, r)-partitions
implies Theorem 3. In Section 3, we show how our reduction framework can be used to obtain
first constant-factor approximations for γ-Colorful Matroid Supplier for linear matroids
(thus showing Theorem 4) and γ-Colorful Knapsack Supplier. Finally, in Section 4 we prove
existence of strong (L, r)-partitions. The proof of Lemma 5 as well as our 7-approximation
for γ-Colorful Knapsack Supplier, i.e., the proof of Theorem 6, can be found in the extended
version of this paper.

2 Reducing to F-CP through (L, r)-partitions

Consider a γ-Colorful F -Supplier problem on a metric space (X = (C ∪̇ F ), d) with weights
wℓ : C → Z≥0 for ℓ ∈ [γ] and covering requirements mℓ ∈ Z≥0 for ℓ ∈ [γ]. An (L, r)-partition
is a partition of the clients into parts of small diameter each of which we consider in our
analysis to be either fully covered or not covered at all. The key property of an (L, r)-partition
is that, if our instance admits a radius-r solution, then there is a radius-(L + 1)r solution
where we allow each center to cover only a single part of the partition. It is the existence of
such highly structured solutions that we exploit to design O(1)-approximation algorithms.

A crucial property of (L, r)-partitions is that they neither depend on F nor the covering
requirements mℓ, but only on the metric space and the weight functions, which we call a
γ-colorful space for convenience.

▶ Definition 7 (γ-colorful space (X, d, w)). A γ-colorful space (X = C ∪̇ F, d, w) consists of
1. a metric space (X, d), and
2. color functions wℓ : C → R≥0 for ℓ ∈ [γ].

We assume for convenience that the supports of the color functions, i.e., supp(wℓ) for
ℓ ∈ [γ], are pairwise disjoint. One can reduce to this case without loss of generality by
co-locating copies of clients. We are now ready to formally define the notion of (L, r)-partition.

▶ Definition 8 ((L, r)-partition). Let (X = C ∪̇ F, d, w) be a γ-colorful space and r, L ∈ R≥0.
A partition P ⊆ 2C is an (L, r)-partition if
1. diam(A) := maxu,v∈A d(u, v) ≤ L · r ∀A ∈ P, and
2. for any Z ⊆ F , there exists a subfamily A ⊆ P and injection h : A → Z such that

a. d(A, h(A)) ≤ r,4 and
b. wℓ

(⋃
A∈A A

)
≥ wℓ (BC(Z, r)) ∀ℓ ∈ [γ].

To connect (L, r)-partitions to colorful clustering problems, think of Z ∈ F as centers of
a γ-Colorful F-Supplier problem that satisfy the covering requirements with radius r. The
definition of an (L, r)-partition P then implies that there is a subset A ⊆ P of the parts
such that (i) for each A ∈ A there exists an element h(A) ∈ Z such that any client in A

has distance at most (L + 1) · r from h(A), which follows from property 1 and 2a of the
definition, and (ii) the clients in A cover as much as BC(Z, r) in each color. Thus, the set of
facilities h(A) satisfies the covering requirements with respect to the radius (L + 1) · r, and,

4 For any set V ⊆ F ∪̇ C and x ∈ F ∪̇ C, we use the shorthand d(V, x) := min{d(v, x) : v ∈ V }.
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Figure 1 Illustration of an (L, r)-partition of a 1-colorful space (where all points have unit weight).
For Z = {zi | i ∈ [4]}, the mapping h maps Ai to zi for i ∈ [4]. Note that ∪i∈[4]Ai contains at
least as many points than ∪i∈[4]B(r, zi) and that d(zi, Ai) ≤ r for i ∈ [4]. Furthermore, the largest
distance between any two points in a set Ai is bounded by Lr.

furthermore, h(A) is feasible because h(A) ⊆ Z and F is down-closed. In short, h(A) is an
(L + 1)-approximate solution to the γ-Colorful F-Supplier problem. Hence, to obtain an
(L + 1)-approximation, the problem reduces to deciding which of the parts of P to cover. A
key simplification we gain from this connection is that the client sets in P are non-overlapping
because P is a partition, which we will heavily exploit later to design our algorithms.

The key structural result of our work is to show that (L, r)-partitions with constant L

(for a fixed γ) exist and can also be constructed efficiently, which is summarized below.

▶ Lemma 9. For every γ-colorful space (X, d, w) and r ∈ R≥0, one can construct in
polynomial time a (10(2γ − 1), r)-partition.5

We defer the proof of Lemma 9 to Section 4, and first show how it implies our main
reduction theorem, Theorem 3, and how this reduction readily leads to O(1)-approximations
for γ-Colorful Matroid Supplier for linear matroids and γ-Colorful Knapsack Supplier.

Proof of Theorem 3. Consider an instance of the γ-Colorful F-Supplier Problem on a γ-
colorful space (X, d, w). We can guess the radius r of an optimal solution to the problem.
This can be achieved by considering all pairwise distances between facilities F and clients C,
repeating the steps below for each guess and only considering the best output (and discarding
outputs where the procedure fails). Hence, assume that r is the optimal radius from now on.

By Lemma 9, we can efficiently construct an (L, r)-partition P of (X, d, w) for L =
10(2γ − 1) = O(2γ). Consider the F-CP instance with universe U := P, family of sets

H := {Hf : f ∈ F} , where
Hf := {A ∈ P with d(A, f) ≤ r} ∀ f ∈ F .

5 As we highlight later, a more careful analysis of our approach allows for a slight improvement in the
constant factor, leading to the construction of (8 · 2γ − 10, r)-partitions. However, in the interest of
simplicity, we present a simpler analysis that shows the bound claimed in the lemma.
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The family of feasible subsets of H is the same as F when identifying Hf with the element f .
To make this relation explicit, if we denote by FH the family of feasible subsets, then some
subset of H, say {Hf : f ∈ I} where I ⊆ F , is in FH if and only if I ∈ F . Moreover, the
weights and coverage thresholds are inherited from those of the given γ-Colorful F -Supplier
problem; formally, for ℓ ∈ [γ], the ℓ-th weight of A ∈ U is given by wℓ(A).

To make sure that this indeed leads to an F-CP problem, we have to verify that the
promise holds. Thus, let Z ⊆ F be a solution to the given γ-Colorful F-Supplier problem
for radius r, which exists because we assume that r was guessed correctly. As P is an
(L, r)-partition of (X, d, w), there is a subfamily A ⊆ P and injection h : A → Z satisfying
property 2 of Definition 8. We claim that a solution fulfilling the promise is given by choosing

S = {Hf : f ∈ h(A)} ∈ FH ,

and setting as representative element uHf
∈ Hf the element uHf

= Af , where Af = h−1(f).
Note that because h(A) ⊆ Z ∈ F and F is down-closed, we indeed have S ∈ FH. Furthermore,
because the injection h satisfies d(Af , h(Af )) ≤ r, we have uHf

∈ Hf , as desired. Moreover,∑
f∈h(A)

wℓ

(
uHf

)
=

∑
f∈h(A)

wℓ (Af ) =
∑
A∈A

wℓ(A) ≥ wℓ(BC(Z, r)) ≥ mℓ ∀ℓ ∈ [γ] ,

where the first inequality follows because A fulfills the second property of Definition 8, and
the last inequality is a consequence of Z being centers that are a radius-r solution to the
given γ-Colorful F-Supplier problem. Hence, the promised solution exists.

Thus, we can compute an F-CP solution SH ⊆ FH, which can be written as SH :=
{Hf : f ∈ S} for some S ∈ F . We claim that S is a solution to the given γ-Colorful
F-Supplier problem with radius (L + 1) · r, which finishes the proof. This follows from the
fact that SH is an F-CP solution, and that, for any f ∈ F , each client in

⋃
A∈Hf

A has
distance at most (L + 1) · r from f because P is an (L, r)-partition. Hence, the clustering
solution with centers S and radius (L + 1) · r covers all clients in⋃

f∈S

⋃
A∈Hf

A ,

and the wℓ-weight (for any ℓ ∈ [γ]) that it covers is at least

wℓ

⋃
f∈S

⋃
A∈Hf

A

 =
∑

A∈
⋃

f∈S
Hf

wℓ(A) ≥ mℓ ,

where the equality uses that the ground set U = P consists of sets A that are disjoint, and
the inequality holds because SH = {Hf : f ∈ S} is a solution to F-CP. Thus, all coverage
requirements are fulfilled by the clustering with centers S and radius (L+1) ·r, as desired. ◀

3 Applications of our reduction framework

We now discuss implications of our reduction framework, Theorem 3, to γ-Colorful Matroid
Supplier for linear matroids and γ-Colorful Knapsack Supplier.

3.1 γ-Colorful Matroid Supplier
To apply our reduction framework to γ-Colorful Matroid Supplier for linear matroids, we
have to solve F-CP when F are the independent sets of a linear matroid. We show how this
problem can be reduced to XWB in a suitably defined matroid. More precisely, we use a

ESA 2022



7:8 Techniques for Generalized Colorful k-Center Problems

reduction to the Exact Weight Independent Set (XWI) problem for matroids. This problem
is identical to XWB except that an independent set with the desired target weight needs to
be returned, instead of a basis. However, XWI easily reduces to XWB on linear matroids, by
adding zero weight copies of the elements.

This reduction relies on Rado matroids, which is a way to construct a matroid from another
one (see, e.g., [13, Section 8.2]).6 It relies on the notation of a system of representatives,
where, for a finite universe U and a set system S ⊆ 2U , a system of representatives of S is any
set {uH}H∈S with uH ∈ H for H ∈ S. In words, a system of representatives is obtained by
replacing each set in S by an element in that set (its representative). (Note that an element
can be chosen more than once as a representative, but, as defined above, only appears once
in the system of representatives.)

▶ Definition 10 (Rado matroid). Let U be a finite universe, H ⊆ 2U be some set system, and
let M = (H, I) be a matroid. The Rado matroid (U , I) induced by (U ,H, M) is a matroid on
the ground set U with independent sets

{U ⊆ U : U is a system of representatives for some I ∈ I} .

A proof that a Rado matroid is indeed a matroid can be found, e.g., in [13, Section 8.2]. We
will reduce F-CP to XWI on a Rado matroid obtained from a linear matroid. For this, we
need that also the Rado matroid we obtain is linear and, moreover, that an explicit linear
representation of it can be found efficiently, which is the case due to a result from [12].

▶ Lemma 11 (see Theorem 3 of [12]). For a set family H ⊆ 2U and a linear matroid
M = (H, I), the Rado matroid M = (U , I) induced by (U ,H, M) is a linear matroid.
Moreover, given a linear representation of M , one can find a linear representation of M in
time polynomial in |H|, |U|, and the size of the linear representation of M .

We are now ready to show that F-CP can be solved efficiently for linear matroids, which
implies Theorem 4.

▶ Lemma 12. F-CP can be solved efficiently when F is the family of independent sets of a
linear matroid.

Proof. We recall that we are given an F-CP instance, which defines a set system H ⊆ 2U

over a finite universe U , and a family F ⊆ 2H such that M = (H,F) is a linear matroid. Let
M = (U , I) be the Rado matroid induced by (U ,H, M). M is a linear matroid by Lemma 11
and we can obtain a linear representation of M in polynomial time. The promise of F-CP
implies the existence of an independent set T of M satisfying the covering requirements, i.e.,

wℓ(T ) ≥ mℓ ∀ℓ ∈ [γ] . (1)

To solve F-CP, we guess, for each color ℓ ∈ [γ], the weight λℓ := wℓ(T ) that T covers.
Note that λℓ is at most Wℓ := wℓ(U), which, due to the unary encoding of wℓ, is polynomially
bounded in the input. Hence, the guessing of the λℓ, for ℓ ∈ [γ], can be performed in time∏

ℓ∈[γ] Wℓ, which is polynomially bounded because γ = O(1).
We now determine an independent set T̃ in M with wℓ(T̃ ) = wℓ(T ) for each ℓ ∈ [γ]. This

can be achieved by encoding all ℓ many (unary encoded) weight functions wℓ for ℓ ∈ [γ] into a
single one w and then solving an appropriate XWI problem with respect to w. More precisely,

6 This construction of Rado matroids is also called the induction of a matroid by a bipartite graph.
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for an element u ∈ U , we obtain a new single weight w(u) whose first ⌈log2(|W1|+ 1)⌉ bits
represent the weight w1(u), the next ⌈log2(|W2| + 1)⌉ bits the weight w2(u), and so on.
Because γ = O(1) and all wℓ have unary encoding, this leads to combined weights w whose
unary encoding is polynomially bounded. Analogously, we encode the guessed weights λℓ

for ℓ ∈ [γ] into a single one λ. We now solve XWI on M with weights w and target weight
λ. As M is linear, this is possible by a randomized algorithm in time pseudo-polynomial in
the total weight [4]. Moreover, because the weights are unary encoded in our setting, this
implies a polynomial running time as desired.

Let T̃ be a solution of this XWI problem, which must exist for the correct guess of the λℓ

because of the promised solution T . T̃ being independent in M implies that it is a system of
representatives for some independent set S ∈ F of M . Such a set S can be found through
matroid intersection. More precisely, it is known that the minimal (inclusion-wise) sets
I ⊆ H such that T̃ is a system of representatives for I form the basis of a matroid M̃ , for
which an efficient independence oracle can be obtained. (See [13, Section 7.3].) Hence, the
desired set S can be obtained by finding a basis of M̃ that is independent in M , which can be
computed through matroid intersection algorithms. The set S is the solution of F-CP that
we return. Because T̃ ⊆

⋃
H∈S H, the set S fulfills the covering requirements due to (1). ◀

3.2 γ-Colorful Knapsack Supplier
To showcase the versatility of our reduction, we now show how it implies an O(2γ)-
approximation for γ-Colorful Knapsack Supplier, by discussing an efficient way to solve F-CP
when F are the feasible solutions to a knapsack constraint. Even though there is a stronger
(and more sophisticated) approximation result for this problem (as stated in Theorem 6), this
application is a nice example of how one can readily obtain constant-factor approximations
through our reduction technique combined with known methods; in this case, by solving
F-CP through a standard dynamic programming approach.

▶ Lemma 13. Let F be the feasible sets of a knapsack constraint, i.e., F = {S ⊆ H : κ(S) ≤
K} for some κ : H → R≥0 and budget K ∈ R≥0. Then F-CP can be solved efficiently.

Proof. Recall that the F-CP problem to be solved defines a family H ⊆ 2U over a finite
universe U , and a family F ⊆ 2H, which is defined by a knapsack constraint, i.e., F = {S ⊆
H : κ(S) ≤ K}. We define the following weight function on U :

η(u) := min{κ(H) : H ∈ H with u ∈ H} .

In words, η(u) corresponds to the cost of the cheapest set in H that covers u. Consider the
following binary program, which can be solved efficiently by standard dynamic programming
techniques due to the unary encoding of the weights wℓ for ℓ ∈ [γ] (see, e.g., [1] for details):

min
∑
u∈U

η(u) · z(u)∑
u∈U

wℓ(u) · z(u) ≥ mℓ ∀ℓ ∈ [γ]

z ∈ {0, 1}U .

We compute an optimal solution z∗ to the above binary program. Let Q := {u ∈
U : z∗(u) = 1}. For each u ∈ Q, let Hu ∈ H be a set of minimum cost that contains
u; hence, κ(Hu) = η(u). We claim that {Hu : u ∈ Q} is a solution to F-CP. Because
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z∗ fulfills the constraints of the binary program, we have that {Hu : u ∈ Q} fulfills the
covering requirements. It remains to show that it fulfills the knapsack constraint, i.e., its
cost is at most K. This reduces to show that the optimal value of the binary program is
at most K. We claim that this holds because of the promise of F-CP. Indeed, the promise
guarantees that there is S ⊆ F and a system of representatives uH for H ∈ S such that
wℓ({uH : H ∈ S}) ≥ mℓ for ℓ ∈ [γ]. Hence, setting zuH

= 1 for all H ∈ S, and setting
all other coordinates of z ∈ {0, 1}U to zero, is a solution to the binary program which has
objective value at most κ(S) ≤ K. ◀

4 Existence and construction of strong (L, r)-partitions

We now prove our key structural result, Lemma 9, which guarantees the existence and
efficient constructability of (O(2γ), r)-partitions for γ-colorful spaces. Our proof proceeds
by induction on γ. The base case, i.e., γ = 0, holds because the family {{c} : c ∈ C}
is a (0, r)-grouping on every 0-colorful space (C ∪̇ F, d, w). The key step is extending an
(L, r)-partition of a (γ − 1)-colorful space to a suitable partition of a γ-colorful space.

To this end, we extend ideas on the greedy algorithm of [6], which was originally introduced
to deal with a single color k-center problem. More precisely, to augment a partition of a
(γ − 1)-colorful space, we apply a greedy subroutine on the points of color γ. A careful
construction and analysis (which takes into account the earlier colors) then shows that this
yields a (2L + 10, r)-partition of the γ-colorful space. Our refined charging scheme improves
on a decoupled analysis of [10] (which gives an O(5γ) approximation algorithm for γ-Colorful
k-Center).

The lemma below formalizes the induction step.

▶ Lemma 14. Given a (L, r)-partition for a (γ − 1)-colorful space, then one can efficiently
construct a (2L + 10, r)-partition for any γ-colorful space obtained by adding one color to the
(γ − 1)-colorful space.

Proof. Let (C ∪̇ F, d, w) be a γ-colorful space, and let ŵ = (w1, . . . , wγ−1) be the first γ − 1
colors. (Hence, we omitted the last color.) Let Cγ := supp(wγ) and C<γ := C \ Cγ , and let
P be a (L, r)-partition of the (γ − 1)-colorful space (C<γ ∪̇ F, d, ŵ). Note that we assumed
that the supports of the weights wℓ are disjoint. Hence, wℓ(Cγ) = 0 for ℓ ∈ [γ− 1]. Moreover,
without loss of generality, we assume that for every client c ∈ C, there is a facility f ∈ F with
d(f, c) ≤ r. All clients not fulfilling this condition can be deleted from the instance without
changing the statement as they can never be covered by any radius-r solution. Indeed, a
partition of the clients of this purged instance can simply be extended to a partition of all
clients by adding the deleted clients as singleton sets to the partition.

We now prove that Algorithm 1 returns an (L, r)-partition P of (C ∪̇ F, d, w), where
L := 2L + 10. Algorithm 1 goes through all facilities in a well-chosen order and iteratively
builds new parts consisting of parts in P together with a subset of Cγ . (See Figure 2 for an
illustration of this procedure.)

First, observe that P is a partition. It clearly covers all clients as no client is farther than
distance r away from its nearest facility, and we consider all facilities. Moreover, the sets in
P are disjoint by construction. Now, observe that any Ai ∈ P has small diameter, because

diam
(
Ai

)
≤ 2 ·max

c∈Ai

d (gi, c) ≤ 10r + 2Lr ,

where the second inequality holds because d(gi, c) ≤ 5r + Lr for any c ∈ Ai due to the
following. Consider c ∈ Ai. If c ∈ Cγ , then we even have d(gi, c) ≤ 3r. Otherwise, let
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Algorithm 1 GreedyPartitioning(C, F, d, P, wγ).

for i = 1 to |F | do
gi = argmax

f∈F \{g1,...,gi−1}
wγ

(
BC(f, r) \

⋃i−1
t=1 At

)
;

Ai ←

BCγ
(gi, 3r) ∪

⋃
A∈P with

d(gi,A)≤5r

A

 \ i−1⋃
t=1

At;

end
return P :=

{
Ai : i ∈ [|F |]

}
;

g1

g2

g4

z2

A2

A3

A4

z4

A1

A1

A2

A4

A4

z1

g3

z3

A3

Figure 2 Visualization of an (L, r)-partition and of Algorithm 2. The black polygons depict an
(L, r)-partition P of the clients C<γ . The blue polygons shows how the clients C<γ are partitioned
by P. Moreover, the blue 3r-balls around gi illustrate which clients of Cγ get assigned to the part
Ai ∈ P. The dashed circles have radius r and 3r respectively, while the dotted circles have radius
5r. We assume Z = {zi | i ∈ [4]} is given and we construct the respective A and h, given A and
h. We have A = {Ai | i ∈ [4]} (the orange areas) and A = {Ai | i ∈ [3]}. Moreover h(Ai) = zi for
i ∈ [4] (depicted by an orange arrow), while h(Ai) = zi for i ∈ [3].

A ∈ P be the set in the partition P containing c. Note that c ∈ Ai implies A ⊆ Ai. Hence,
d(gi, c) ≤ d(gi, A) + max{d(b, c) : b ∈ A} ≤ 5r + Lr, where we use d(gi, A) ≤ 5r, because
A ⊆ Ai, and diam(A) ≤ Lr, which holds because P is an (L, r)-partition. Thus, property 1
of the definition of an (2L + 10, r)-partition (Definition 8) is fulfilled for P.

It remains to show that property 2 holds for a given selection Z. To this end, we
use that P is an (L, r)-partition, which implies that there is a subfamily A ⊆ P and a
corresponding injection h : A → Z fulfilling property 2 of Definition 8 for the (γ − 1)-colorful
space (C<γ ∪̇ F, d, ŵ). In the following we construct A ⊆ P and h : A → Z such that
property 2 of Definition 8 is satisfied for A and h. At the same time when constructing A,
we employ a careful charging argument that makes sure that wγ

(⋃
A∈A A

)
≥ wγ(BC(Z, r)),

i.e., that the constructed A covers at least as much as Z of color γ. For the remaining colors,
we show that the new selection A includes all of A; formally, we show that for each A ∈ A,
there is an A ∈ A such that A ⊆ A. This, as well as d(A, h(A)) ≤ r for all A ∈ P and
injectivity of h, are proved later.
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7:12 Techniques for Generalized Colorful k-Center Problems

For i ∈ [|F |], we define

Ui := C \
i−1⋃
t=1

At

to be the clients that are “uncovered” at step i. By the way Algorithm 1 selects gi in each
iteration i ∈ [|F |], we have

wγ (BC (gi, r) ∩ Ui) ≥ wγ (BC(f, r) ∩ Ui) ∀i ∈ [|F |] and f ∈ F ,

which we call the greediness property.
We now describe the construction of A and the charging scheme in detail. We successively

add sets Ai ∈ P to A, where the sets Ai are considered in increasing order of their index.
When adding a set Ai to A, we also perform two further steps: (i) we identify an element
f ∈ Z and set h(Ai) = f , and (ii) we mark f as assigned to make sure that we never assign it
again in the future (as h needs to be an injection). For convenience, for i ∈ [|F |] and f ∈ Z,
we write Assign(i, f) for performing these steps, i.e., adding Ai to A, setting h(Ai) to f ,
and marking f as assigned.

The charging argument charges the coverage of color γ of BC(Z, r) against the γ-coverage
in
⋃

A∈A A. Whenever we charge a set Q ⊆ BC(Z, r) against some subset W ⊆
⋃

A∈A A, we
make sure that wγ(Q) ≤ wγ(W ). Algorithm 2 shows our procedure to construct both A and
the desired injection h : A → Z together with the charging argument. (See also Figure 2.)

Algorithm 2 Construction of A and injection h : A → Z together with charging argument.

Mark all facilities in Z as unassigned.
for i = 1 to |F | do

Rule 1 If there is an unassigned f ∈ Z with BC(f, r) ∩BC(gi, r) ∩ Ui ̸= ∅:
Assign(i, f).

Rule 2 Else if there is an unassigned f ∈ Z with BC(f, r)∩BC(gi, 3r)∩Ui ≠ ∅:
Assign(i, f) and charge BC(f, r) ∩ Ui against BC(gi, r) ∩ Ui.

Rule 3 Else if there is an A ∈ A such that A ⊆ Ai:
Assign(i, h(A)) and charge BC(h(A), r) ∩ Ui against BC(gi, r) ∩ Ui.

If Assign was called, charge against themselves all points in Ai that have not
been charged yet.

end

We start by showing that h is an injection. Suppose f is assigned using Rule 1 or 2. Then
f was not assigned so far as we only assign unassigned facilities. Now suppose h(A) = h(Ai)
is assigned using Rule 3. We claim that h(A) is not assigned so far. Assume by the sake of
deriving a contradiction that it was assigned in a previous iteration j < i. It cannot have
been assigned by Rule 3, since h is injective. So assume it is was assigned by Rule 1 or 2.
Hence, gj satisfies BC(gj , 3r)∩BC(h(A), r)∩Ui ̸= ∅. This implies that d(gj , h(A)) ≤ 4r and
thus A ⊆ Aj , which contradicts A ⊆ Ai.

Moreover, Ai fulfills property 2a of a (2L + 10, r)-partition because of the following. Let
f ∈ Z and Ai := h

−1(f), and we have to show that d(Ai, f) ≤ r. Because h(Ai) = f , we
called at some point during Algorithm 2 the procedure Assign(i, f). In both Rule 1 and
Rule 2 we have BC(f, r) ∩ BC(gi, 3r) ∩ Ui ≠ ∅, which implies that Ai contains a client in
BC(f, r), as desired. If Assign(i, f) was called in Rule 3, then we have h−1(f) ⊆ Ai, which
implies d(Ai, f) ≤ d(h−1(f), f) ≤ r by the fact hat P is an (L, r)-partition.
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It remains to show that A fulfills property 2b of an (2L+10, r)-partition. We first consider
the last color (color γ) and show wγ(

⋃
A∈A A) ≥ wγ(BC(Z, r)). To this end, observe that the

charging indeed charges clients in BC(Z, r) against clients in
⋃

A∈A A. We allow for charging
a client in BC(Z, r) against more than one client in

⋃
A∈A A. However, no client in

⋃
A∈A A

gets charged against more than once because in iteration i we only charge against clients in
Ai, and the sets A = {A1, . . . , A|F |} form a partition of C. Also note that we always charge
clients of BC(Z, r) against clients of

⋃
A∈A A of at least the same wγ-weight. This is true

whenever charging happens in Rule 2 or Rule 3, because of the greediness property, and
holds trivially for all other charging operations, which only charge clients against themselves.
To conclude that wγ(

⋃
A∈A A) ≥ wγ(BC(Z, r)), it remains to observe that all of BC(Z, r)

gets charged against something.
To this end, fix a facility f ∈ Z. Consider an iteration j of Algorithm 2 such that

BC(gj , 3r)∩Uj intersects BC(f, r). We claim that for each such iteration, either Assign(j, f)
is called, or BC(f, r) ∩ BC(gj , 3r) ∩ Uj is charged. To prove the claim, suppose f is not
assigned in iteration j. By Algorithm 2, either Rule 1 or Rule 2 must have applied in this
iteration j, as f satisfies the condition of Rule 2. Thus Assign was called on j and all points
in Aj have been charged. Now suppose the first case applies, i.e., Assign(j, f) is called for
some j. Then all of BC(f, r) ∩ Uj is charged (and BC(f, r) \ Uj is already charged by the
second case). If the first case never applies, then all of BC(f, r) is charged by the second
case since U|F | is empty. Hence, all of BC(f, r) is charged, as desired.

To see that property 2b of Definition 8 is fulfilled also for all colors ℓ ∈ [γ − 1], observe
that Rule 3 makes sure that any component that was in A will still be selected in A. Thus,
wℓ(A) ≥ wℓ(BC(Z, r)) for all colors ℓ ∈ [γ].

It remains to show that d(Ai, h(Ai)) ≤ r. If Rule 1 or Rule 2 is applied, this is satisfied
as there is a client c ∈ BC(gi, 3r) ∩ BC(h(Ai), r) ∩ Ui; because c ∈ Ai by construction,
we have d(h(Ai), Ai) ≤ d(h(Ai), c) ≤ r. If Rule 3 is applied for A ⊆ Ai, we also have
d(h(Ai), Ai) ≤ d(h(Ai), A) = d(h(A), A) ≤ r, where the last inequality follows from P being
an (L, r)-partition. ◀

Lemma 9 now follows readily from Lemma 14.

Proof of Lemma 9. The proof follows by induction on γ. For the induction start, consider
γ = 0. The set {{c} : c ∈ C} is a (0, r)-partition on every 0-colorful space (C ∪̇ F, d, w).
The induction step is given by Lemma 14. Note that 2

(
10(2γ−1 − 1)

)
+ 10 = 10(2γ −

1). The running time is clearly O(poly(|X|, γ)) as every step in the induction takes time
O(poly(|X|, γ)).7 ◀
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