
Computing NP-Hard Repetitiveness Measures via
MAX-SAT
Hideo Bannai !

Tokyo Medical and Dental University, Japan

Keisuke Goto !

Independent Researcher, Tokyo, Japan

Masakazu Ishihata !

NTT Communication Science Laboratories, Kyoto, Japan

Shunsuke Kanda !

Independent Researcher, Tokyo, Japan

Dominik Köppl !

Tokyo Medical and Dental University, Japan

Takaaki Nishimoto !

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Abstract
Repetitiveness measures reveal profound characteristics of datasets, and give rise to compressed data
structures and algorithms working in compressed space. Alas, the computation of some of these
measures is NP-hard, and straight-forward computation is infeasible for datasets of even small sizes.
Three such measures are the smallest size of a string attractor, the smallest size of a bidirectional
macro scheme, and the smallest size of a straight-line program. While a vast variety of imple-
mentations for heuristically computing approximations exist, exact computation of these measures
has received little to no attention. In this paper, we present MAX-SAT formulations that provide
the first non-trivial implementations for exact computation of smallest string attractors, smallest
bidirectional macro schemes, and smallest straight-line programs. Computational experiments show
that our implementations work for texts of length up to a few hundred for straight-line programs
and bidirectional macro schemes, and texts even over a million for string attractors.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases repetitiveness measures, string attractor, bidirectional macro scheme

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.12

Supplementary Material Software (Source Code): https://github.com/kg86/satcomp
archived at swh:1:dir:9f4f16f948f46118492771d403a0ca880a7742ab

Funding Hideo Bannai: Supported by JSPS KAKENHI Grant Number JP20H04141.
Dominik Köppl: Supported by JSPS KAKENHI Grant Numbers JP21H05847 and JP21K17701.

1 Introduction

Text compression is a fundamental topic in computer science with countless practical ap-
plications. Dictionary compression is a type of text compression where the original input
is transformed into a sequence of elements taken from a dictionary, where the dictionary
is usually constructed in some way from the input. Due to the advent of highly repetitive
datasets such as multiple genome sequences from the same species or versioned document col-
lections (e.g., Wikipedia, GitHub), dictionary compression methods have recently (re)gained
massive attention since they can better capture more widespread repetitions in such data
compared to statistical compression methods [30], and further allow space-efficient full-text

© Hideo Bannai, Keisuke Goto, Masakazu Ishihata, Shunsuke Kanda, Dominik Köppl, and
Takaaki Nishimoto;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hdbn.dsc@tmd.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:keisukegotou@gmail.com
https://orcid.org/0000-0001-6964-6182
mailto:masakazu.ishihata.ze@hco.ntt.co.jp
mailto:shnsk.knd@gmail.com
https://orcid.org/0000-0002-5462-122X
mailto:koeppl.dsc@tmd.ac.jp
https://orcid.org/0000-0002-8721-4444
mailto:takaaki.nishimoto@riken.jp
https://doi.org/10.4230/LIPIcs.ESA.2022.12
https://github.com/kg86/satcomp
https://archive.softwareheritage.org/swh:1:dir:9f4f16f948f46118492771d403a0ca880a7742ab;origin=https://github.com/kg86/satcomp;visit=swh:1:snp:f3445f6942d5f61eae4399ddc4f6e9a0f8b0dc2d;anchor=swh:1:rev:53b240c84f847cec9f13c158803a2b4ed368d2b9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Computing NP-Hard Repetitiveness Measures via MAX-SAT

indices to be built [31]. Some well known methods that fall in this category are Lempel–Ziv
76/77 factorization based methods [20,23,43], grammar-based compression such as LZ78 [44],
Re-Pair [22], SEQUITUR [34], LCA [38], LZD [11], and methods involving bidirectional
referencing, such as the run-length encoded Burrows–Wheeler transform (RLBWT) [25], and
more recently, lcpcomp [10], plcpcomp [9], lexcomp [32], a method by Russo et al. [36], and
LZRR [35].

A vital issue in evaluating and comparing these various methods is to understand how well
they can compress a given input compared to the “optimum”. While the theoretically smallest
representation (aka Kolmogorov complexity) is incomputable [24], Kempa and Prezza [16]
regarded the output sizes of these methods as repetitiveness measures and characterized
them with respect to the new notion of string attractors. Namely, they showed that for any
input text, the size of the smallest string attractor is a lower bound for the output sizes of
all known dictionary compressors. Since then, relations between these various repetitiveness
measures have been heavily investigated [2, 4, 14,17,19,30,32].

In this paper, we consider three such repetitiveness measures: the size γ of the smallest
string attractor, the size g of the smallest straight-line program (SLP) [13], and the size b of
the smallest bidirectional macro scheme (BMS) [42], all of which are known to be NP-hard
to compute [16, 39, 42]. Thus, any efficient dictionary compression algorithm can (most
likely) merely compute approximations of γ, b, or g. Although for any text, the relation
δ ≤ γ ≤ b ≤ z ≤ g is known, where δ [19] and z [23] are repetitiveness measures known to
be computable in linear time (cf. [7, Lemma 5.7] for δ and [8] for z), the gap between the
measures can be quite large; string families giving a logarithmic factor gap are known for
each pair of measures [2, 30]. Since the sizes of some recent data structures such as [7,33],
depend on these repetitiveness measures, their exact sizes are crucial knowledge.

While there exist a vast variety of approximation algorithms for computing smallest BMSs
and grammars as mentioned above, development of exact algorithms have received very
little to almost no attention. For string attractors, the results of Kempa et al. [15] imply a
straightforward O(n2n) time algorithm. For the smallest grammar, Casel et al. [6, Theorem 13]
show an O∗(3n)1 time algorithm. However, we are unaware of any non-trivial implementations
or empirical evaluations for computing these measures. In fact, the only publicly available
implementation we could find was a straight-forward Python script to compute γ by Michael
S. Branicky [12].

The main contribution of this paper is to present MAX-SAT formulations [3] for com-
puting the smallest string attractor, BMS, and SLP, thereby providing the first non-trivial
implementation for exact computation of the measures γ, b, and g. The rationale for this
approach is that although MAX-SAT is NP-hard, there are highly optimized solvers whose
performance has made incredible progress in recent years. These solvers can cope with very
large instances and can be leveraged, provided that suitable encodings can be designed [18].
While straight-forward (non-MAX-SAT) implementations become infeasible even for very
small text lengths (e.g. 40), computational experiments show that our implementations work
for texts of length up to a few hundred for b, g, and even more than 1 million for γ. Since our
addressed problems are all NP-hard, there is perhaps little hope for our implementations to
obtain exact solutions for larger but practically interesting datasets. Nevertheless, we believe
they can make significant impact as a tool for analyzing these repetitiveness measures. We
stress that our solutions not only report the sizes γ, b and g, but also give valid instances
having exactly these sizes (e.g., an SLP that has size g). It may therefore be possible to

1 The abstract of [6] mentions O(3n) while the statement of the theorem is O∗(3n).

H. Bannai, K. Goto, M. Ishihata, S. Kanda, D. Köppl, and T. Nishimoto 12:3

improve compression heuristics by studying some of these optimal instances on smaller
input strings. As an example application, we analyzed the recently introduced notion of
sensitivity [1] of γ by conducting an exhaustive computation of γ for strings up to certain
lengths. From these computations, we were able to discover a family of strings that exhibit a
multiplicative sensitivity of 2.5, improving the previously known lower bound of 2.0 [1].

Related Work
The exact values for γ, b, and g have been characterized only for a few families of strings. For
standard Sturmian words, γ = 2 [26] and b = O(1) since the RLBWT has constant size [27]
and can be regarded as a BMS. For the nth Thue–Morse word, γ = 4 for n ≥ 4 [21], and
b = n + 2 for n ≥ 2 [2]. For the nth Fibonacci word, g = n [28]. The smallest attractor sizes
of automatic sequences have also been studied [40].

2 Preliminaries

Let Σ be a set of σ symbols called the alphabet, and let Σ∗ denote the set of strings over Σ.
Given a string T , if T = xyz for strings x, y, z, then x, y, z are respectively called a prefix,
substring, and suffix of T . They are called proper if they are not equal to T . The length of T is
denoted by |T |. For any i ∈ [1, |T |], let T [i] denote the ith symbol of T , i.e., T = T [1] · · · T [|T |].
For any 1 ≤ i ≤ j ≤ |T |, let T [i..j] = T [i] · · · T [j] and T [i..j) = T [i] · · · T [j − 1].

For the rest of this paper, we fix a string T , and let n := |T | denote its length. Further,
we assume that each symbol of Σ appears in T . Let occ(P) = {i | T [i..i + |P | − 1] = P, 1 ≤
i ≤ n − |P | + 1} be the set of starting positions of all occurrences of a substring P in T , and
let cover(P) = {i + k − 1 | i ∈ occ(P), 1 ≤ k ≤ |P |} be the set of all text positions covered
by all occurrences of P in T .

A set of positions Γ ⊆ [1, n] is a string attractor [16] of T if every substring P of T has
an occurrence in T that contains an element of Γ, that is, Γ ∩ cover(P) ̸= ∅. We denote the
size of the smallest string attractor of T by γ. For example, [1, n] is a trivial string attractor.
{1, 2, 3} is a (smallest) string attractor of T = banana. (See also Figure 2)

A straight-line program (SLP) [13] is a grammar in Chomsky normal form whose language
consists solely of T . In other words, (1) each production rule is of the form X → XℓXr or
X → c, where Xℓ, Xr are non-terminals and c ∈ Σ, (2) there is exactly one such production
rule for any given non-terminal symbol X, and (3) there is a start symbol whose iterative
expansion finally leads to T . The size of an SLP is the number of its production rules, or
equivalently (assuming that each non-terminal is used at least once), the number of distinct
non-terminals. We denote the size of the smallest SLP that produces T by g. For example, the
set of production rules {X9 → X6X8, X8 → X7X7, X7 → X1X3, X6 → X4X5, X5 → X3X3,
X4 → X3X1, X3 → X1X2, X2 → b, X1 → a} is an SLP of size 9 for T = abaababaabaab.
See also Figure 3.

A bidirectional macro scheme (BMS) [42] of size m representing T , is a factorization
T = F1, · · · , Fm, where each factor (or phrase) is a single symbol (which we call a ground
phrase), or, is encoded as a pair of integers (i, j) indicating that it references (i.e., is a copy of)
substring T [i..j]. A BMS is said to be valid, if T can be reconstructed from the representation
of such a factorization, i.e., the implied references of each symbol in a non-ground phrase is
acyclic, and eventually leads to a ground phrase. We denote the size of the smallest valid
BMS that represents T by b. Figure 1 shows a valid BMS (7, 8), (4, 5), a, b, (5, 7) representing
the string abaaababa. For example, the a at position 9 references position 7, which in turn
references position 5, a ground phrase.

ESA 2022

12:4 Computing NP-Hard Repetitiveness Measures via MAX-SAT

Figure 1 A bidirectional macro scheme (BMS) of T = abaaababa. The figure depicts the BMS
(7, 8), (4, 5), a, b, (5, 7). The reference of each non-ground phrase is visualized by an arrow. The
phrase references imply a reference for each symbol in non-ground phrases.

The satisfiability (SAT) problem asks for an assignment of variables that satisfies a given
Boolean formula [3, 18]. The input formula is usually given in conjunctive normal form
(CNF), which consists of a conjunction of clauses, and each clause is a disjunction of literals.
A literal is a Boolean variable or its negation. In this form, the given formula is satisfied if
and only if all the clauses (which we will sometimes call constraints) are satisfied. The size
of a CNF is the sum of the literals in all clauses.

A maximum satisfiability (MAX-SAT) problem is an extension of SAT, where two types
of clauses, hard and soft, are considered [3]. A solution to a MAX-SAT instance is a truth
assignment of the variables such that the number of satisfied soft clauses is maximized under
the restriction that all hard clauses must be satisfied.

We will use 1 to denote true, and 0 to denote false. Furthermore, for a set {vi}k
i=1 of

Boolean variables, cardinality constraints of the form
∑k

i=1 vi ≤ 1 are known as atmost-one
constraints. Although a straightforward encoding has size Θ(k2), O(k) size encodings are
known [41]. Constraints of the form

∑k
i=1 vi = 1 can be encoded using a combination of an

atmost-one constraint and a simple disjunction of all the variables (i.e., atleast-one) and thus
can also be encoded in O(k) size.

3 Reductions to MAX-SAT

In what follows, we present our encodings for the aforementioned problems. Common to
all encodings is the idea that we have a Boolean variable pi for each text position i ∈ [1, n],
which counts, when set to true, an element of a string attractor, a non-terminal (actually,
to be precise, a factor in a grammar parsing) of an SLP, or a phrase of a BMS. Since our
goal is to have as few pi’s set to true as possible, our soft clauses have the form Di = ¬pi for
i ∈ [1, n]. Consequently, all our encodings have the same number of soft clauses, and only
differ in how the hard clauses are defined.

3.1 Smallest String Attractor as MAX-SAT
We start with a simple encoding based on the definition of string attractors. Subsequently,
we utilize an observation similar to but slightly more generalized than that made in [15], in
order to reduce the size of hard clauses.

3.1.1 Simple Encoding
Our idea is to design a CNF so that a MAX-SAT solution will encode a string attractor Γ,
where pi = 1 if and only if position i is an element of Γ (i.e., Γ = {i | 1 ≤ i ≤ n, pi = 1}).
Let ST denote the set of all non-empty substrings of T , i.e., ST = {T [i..j] | 1 ≤ i ≤ j ≤ n}.

H. Bannai, K. Goto, M. Ishihata, S. Kanda, D. Köppl, and T. Nishimoto 12:5

For each substring S of ST , we define a hard clause CS =
∨

i∈cover(S) pi. (See Figure 2 for
an example.) By the definition of cover(S), the set Γ corresponding to any truth assignment
for pi will be a string attractor if and only if all hard clauses CS are satisfied. Since our soft
clauses have the form Di = ¬pi for i ∈ [1, n], the soft clauses ensure that the MAX-SAT
solution minimizes the number of pi’s being true. Thus, we can obtain the smallest string
attractor by solving the MAX-SAT on CS and Di.

Each hard clause CS has size |cover(S)| = O(n). Since there are O(n2) substrings, the
number of hard clauses is O(n2). Hence, the total size of the CNF is O(n3). In the next
subsection, we reduce the size to O(n2).

1 2 3 4 5 6

b a n a n a

● ● ●
●・● ・
● ・● ・ ・
● ・ ・ ・
● ・ ・ ・ ・

●
● ・
● ・ ・
● ・ ・ ・
● ・ ・ ・ ・
● ・ ・ ・ ・ ・

● ●
● ・● ・
● ・ ・
● ・ ・ ・

T =
cover(a) =

cover(an) =
cover(ana) =

cover(anan) =
cover(anana) =

cover(b) =
cover(ba) =

cover(ban) =
cover(bana) =

cover(banan) =
cover(banana) =

cover(n) =
cover(na) =

cover(nan) =
cover(nana) =

Figure 2 String T = banana and the positions that each distinct substring of T covers. We list
all distinct substrings of T on the left hand side, and show on the right hand side their covers. A
dot at position k in the row for substring S indicates that k is included in cover(S) (i.e. is covered
by S), and a large dot indicates k ∈ occ(S). Underlined substrings are minimal substrings of T . For
example, cover(an) = {2, 3, 4, 5}. The clause defined for an in our encoding is Can = p2 ∨ p3 ∨ p4 ∨ p5.

3.1.2 Reducing CNF Clauses via Minimal Substrings

We can reduce the number of hard clauses in our CNF by considering only members of ST

that are minimal substrings2. A substring S of string T is called a minimal substring of T

if all proper substrings of S occur more often than S in T (i.e., |occ(S[i..j])| > |occ(S)| for
every proper substring S[i..j] of S). By the definition of minimal substrings, the following
lemma holds.

▶ Lemma 1. For every non-minimal substring S of T , there is a minimal substring Smin of
S with cover(Smin) ⊆ cover(S).

2 Kempa et al. [15] use a similar idea when reducing the problem to set cover. Their formulation can
be regarded as considering only right-minimal substrings (i.e., |occ(S[1..|S| − 1])| > |occ(S)|), while we
consider a potentially smaller subset requiring both right-minimality and left-minimality. For texts in
the Calgary corpus, we observed that the difference between minimal and right-minimal substrings can
result in a difference as large as 50 times in their total lengths (progp and trans), i.e., the total size of
hard clauses.

ESA 2022

12:6 Computing NP-Hard Repetitiveness Measures via MAX-SAT

Proof. Because S is not minimal, it has substrings that have the same number of occurrences
as S. Let Smin = S[e..e+|Smin|−1] be one of these substrings that is minimal, for some e. Then
by definition, for each occurrence imin ∈ occ(Smin) of Smin, there exists an occurrence i ∈ occ(S)
of S such that i = imin − e + 1. {imin, imin + 1, . . . , imin + |Smin| − 1} ⊆ {i, i + 1, . . . , i + |S| − 1},
and hence, cover(Smin) ⊆ cover(S). ◀

In the example T = banana, |occ(nan)| < |occ(na)|, |occ(an)|, |occ(a)|, |occ(n)|, and thus,
substring nan is a minimal substring of T . Furthermore, nan is a substring of nana, and
|occ(nana)| = |occ(nan)|. Thus, cover(nan) ⊆ cover(nana) by Lemma 1. (See also Figure 2)

Lemma 1 ensures that if an assignment of variables satisfies the hard clauses CS for
all minimal substrings S of T , then the assignment satisfies the hard clauses CS for all
substrings S of T . With this observation we can conclude that we can omit the hard clauses
for all substrings S of T that are not minimal.

The number m of minimal substrings is O(n) because minimal substrings correspond to
minimal strings, defined by Blumer et al. [5] based on an equivalence relation over substrings
of T , and their number is known to be O(n) (Lemma 3 in [29]). Hence, the total size of the
CNF is reduced to O(mn) ⊆ O(n2).

In particular, the size of the CNF is o(n2) if m = o(n). We can show that there exists
a family of strings {Td}d∈I for a non-finite set of natural numbers I with |Td| = d2 having
o(d2) minimal substrings (hence, for n = d2, m = o(n)). To this end, let Td be the string
S1S2 · · · Sd of length n = d2 over the alphabet Σ = {a, $1, $2, . . . , $d}, where Si = ad−1$i,
and ad−1 is the repetition of character a with length d − 1. Then m = 2

√
n − 1 because the

minimal substrings of Td are a1, a2, . . ., a
√

n−1, $1, $2, . . ., $√n.

3.2 Smallest Straight-Line Program as MAX-SAT
To encode a grammar in SAT, we utilize a notion called grammar parsing introduced by
Rytter [37]. Given an SLP G that produces T , the parse tree of T with respect to G is a
derivation tree of T , where internal nodes are non-terminal symbols that derive two non-
terminal symbols, and leaves are non-terminal symbols that derive a single terminal symbol.
The partial parse tree of T with respect to G is the tree obtained by pruning the parse tree
of T with respect to G so that any internal node is always a first occurrence in a left to right
pre-order traversal of the parse tree, i.e., the non-terminal symbol of an internal node is not
used in the partial parse tree for any corresponding substring to its left. In other words,
if a non-terminal symbol X that derives two non-terminal symbols is a leaf of the partial
parse tree, the existence of a unique internal node having the same non-terminal symbol
X corresponding to a substring to its left is implied. We will say that the leaf references
the internal node. The grammar parsing of T with respect to G, is the factorization of T

consisting of substrings corresponding to the leaves of the partial parse tree of T with respect
to G. See Figure 3 for an example.

The size of the grammar parsing is equal to the number of leaves in the partial parse
tree. It is easy to see that by definition, the internal nodes in the partial parse tree are
distinct, consisting of (all) non-terminal symbols that derive two non-terminal symbols.
There are σ more non-terminal symbols that derive a single terminal symbol. Therefore,
(# of internal nodes) + σ is the size of the SLP. Since the partial parse tree is a full binary
tree, (# of internal nodes) = (# of leaves) − 1, and thus the size of the SLP is equal to
(size of the grammar parsing) + σ − 1. As σ is independent of the choice of the SLP for T ,
minimizing the size of the grammar parsing is equivalent to minimizing the SLP.

Our formulation is based on the following lemma.

H. Bannai, K. Goto, M. Ishihata, S. Kanda, D. Köppl, and T. Nishimoto 12:7

X
1

X
2

X
3

X
5

X
1

X
4

X
6

X
3

X
3

X
1

X
3

X
7

X
7

X
8

X
9

Figure 3 The partial parse tree and the grammar parsing of an SLP for the string T =
abaababaabaab. Each internal node is a unique non-terminal symbol. The grammar parsing
represented by the rectangles partitioning T is a, b, a, ab, ab, a, ab, aab of size 8. The size of the SLP
is 8 + |{a, b}| − 1 = 9.

▶ Lemma 2. A factorization T = F1 · · · Fm for T is the grammar parsing of an SLP for
T if and only if (i) for each factor Fk longer than 1, there exist ik < jk < k such that:
Fk = Fik

· · · Fjk
and (ii) for any pair of factors Fx = Fix · · · Fjx and Fy = Fiy · · · Fjy longer

than 1, (i.e., (x, y) ∈ {(x′, y′) | 1 ≤ x′, y′ ≤ m, |Fx′ | > 1, |Fy′ | > 1}), the intervals [ix..jx]
and [iy..jy] are either disjoint or one is a sub-interval of the other.

Proof. (⇒) Suppose F1 · · · Fm is the grammar parsing of some SLP for T . Then, any Fk

longer than 1 has an implied corresponding internal node to the left in the partial parse tree.
Since an internal node derives at least two leaves, it derives Fik

· · · Fjk
corresponding to the

interval [ik..jk] of the factorization for some ik < jk < k. Furthermore, since all of these
intervals are derived from internal nodes of a tree, they must respect the tree structure, i.e.,
any two of them must be disjoint or contained in one another.
(⇐) Suppose we are given a factorization T = F1 · · · Fm of T , as well as for each Fk, a
corresponding interval [ik..jk] of the factorization satisfying the conditions of the lemma.
Since, for any pair of factors Fx = Fix

· · · Fjx
and Fy = Fiy

· · · Fjy
, the intervals [ix..jx] and

[iy..jy] are disjoint or contained in one another, we can construct a tree with the internal
nodes corresponding to the intervals and the leaves corresponding to the factors of the
factorization, where a node is a descendant of another if and only if it is a sub-interval.
Although such a tree can be multi-ary in general, we can add internal nodes and transform it
into a full binary tree while preserving ancestor/descendant relations of nodes/leaves in the
original tree (note that the resulting tree may not be determined uniquely, but its size will
always be the same). We assign to each internal node a distinct non-terminal symbol. To
each leaf corresponding to a factor Fk longer than 1, we assign the same non-terminal symbol
that we assigned to the internal node corresponding to Fik

· · · Fjk
. Finally, we assign each leaf

corresponding to a factor of length 1 a non-terminal symbol that derives the corresponding
terminal symbol. The resulting tree is a partial parse tree for an SLP of size m + σ − 1 for T

with F1 · · · Fm as its grammar parsing. ◀

ESA 2022

12:8 Computing NP-Hard Repetitiveness Measures via MAX-SAT

We define Boolean variables as follows to encode Lemma 2.
fi,ℓ for i ∈ [1, n], ℓ ∈ [1, n + 1 − i]: fi,ℓ = 1 if and only if T [i..i + ℓ) is a factor of the
grammar parsing.
pi for i ∈ [1, n + 1]: For i ̸= n + 1, pi = 1 if and only if i is a starting position of a factor
of the grammar parsing. pn+1 is for technical reasons. We set p1 = pn+1 = 1.
ref i′←i,ℓ for i, ℓ, i′ ∈ [1, n], s.t. ℓ ≥ 2, i′ ≤ i − ℓ and T [i′..i′+ ℓ) = T [i..i + ℓ): ref i′←i,ℓ = 1
if and only if T [i..i + ℓ) is a factor of the grammar parsing, and the implied internal node
of the partial parse tree corresponds to T [i′..i′ + ℓ).
qi′,ℓ for i′ ∈ [1, n − 1], ℓ ∈ [2, n + 1 − i′] s.t. T [i′..i′ + ℓ) has an occurrence in T [i′ + ℓ..n]:
qi′,ℓ = 1 if and only if T [i′..i′ + ℓ) corresponds to an internal node of the partial parse
tree that is referenced by at least one factor of the grammar parsing.

We next define constraints that the above variables must satisfy.
First, since each factor of the grammar parsing is disjoint and the concatenation of all

factors must be equal to T , the truth values of fi,ℓ must uniquely define the truth values for
pi and vice versa. This can be encoded as

∀i ∈ [1, n], ℓ ∈ [1, n + 1 − i] : fi,ℓ ⇐⇒ pi ∧ (¬pi+1) · · · (¬pi+ℓ−1) ∧ pi+ℓ (1)

For all i and ℓ ≥ 2 such that T [i..i + ℓ) is the first occurrence of a substring S = T [i..i + ℓ)
of T , T [i..i + ℓ) cannot be a factor of a grammar parsing. Thus, we require:

∀i ∈ [1, n − 1], ℓ ∈ [2, n − i + 1] s.t. T [i..i + ℓ) does not occur in T [1..i) : ¬fi,ℓ (2)

If T [i..i + ℓ) is not the first occurrence of S, T [i..i + ℓ) can be a factor. If T [i..i + ℓ) is a factor
of the grammar parsing of length at least 2, then, there must exist at least one i′ ≤ i − ℓ

such that T [i′..i′ + ℓ) = S and T [i′..i′ + ℓ) corresponds to an internal node of the partial
parse tree. This can be encoded as

∀i ∈ [1, n], ℓ ∈ [2, n + 1 − i] s.t. T [i..i + ℓ) occurs in T [1..i) :

fi,ℓ =⇒
∨

i′∈{k|T [k..k+ℓ)=T [i..i+ℓ),k∈[1,i−ℓ)}

ref i′←i,ℓ. (3)

Furthermore, for any i, ℓ, a factor T [i..i + ℓ) references at most one position, i.e.,

∀i ∈ [1, n], ℓ ∈ [2, n + 1 − i] :
∑

i′∈{k|T [k..k+ℓ)=T [i..i+ℓ),k∈[1,i−ℓ)}

ref i′←i,ℓ ≤ 1. (4)

On the other hand, ref i′←i,ℓ = 1 implies that T [i..i + ℓ) is a factor of the grammar parsing.
Therefore,

∀i ∈ [1, n], ℓ ∈ [2, n + 1 − i], i′ ∈ {k | T [k..k + ℓ) = T [i..i + ℓ), k ∈ [1, i − ℓ)} :
ref i′←i,ℓ =⇒ fi,ℓ (5)

By definition, it holds that

∀i′ ∈ [1, n − 1], ℓ ∈ [2, n + 1 − i′] s.t. T [i′..i′ + ℓ) has an occurrence in T [i′ + ℓ..n] :

qi′,ℓ ⇐⇒
∨

1≤i′+ℓ≤i≤n

ref i′←i,ℓ (6)

H. Bannai, K. Goto, M. Ishihata, S. Kanda, D. Köppl, and T. Nishimoto 12:9

Next, as shown in Lemma 2, we require that the implied internal node that is referenced by
some factor must be an interval of size at least 2 of the factorization. We encode this as:

∀i′ ∈ [1, n − 1], ℓ ∈ [2, n + 1 − i′] s.t. T [i′..i′ + ℓ) has an occurrence in T [i′ + ℓ..n] :
qi′,ℓ =⇒ ¬fi′,ℓ ∧ pi′ ∧ pi′+ℓ (7)

Also, for any two such implied internal nodes T [i1..i1 + ℓ1) and T [i2..i2 + ℓ2), they must
either be disjoint, or one is a sub-interval of the other. In other words, it cannot be that a
proper prefix interval of one is a proper suffix interval of the other, i.e.,

∀i1, i2, ℓ1, ℓ2 s.t. i1 < i2 < i1 + ℓ1 < i2 + ℓ2 s.t.
T [ik..ik + ℓ) has an occurrence in T [ik + ℓ..n] for k ∈ {1, 2} :
¬qi1,ℓ1 ∨ ¬qi2,ℓ2 (8)

In total, we have O(n3) Boolean variables dominated by ref i′←i,ℓ. The size of each clause
is at most O(n). The total size of the resulting CNF is O(n4), dominated by Constraint (8)
where there are O(n4) clauses of O(1) size each.

Correctness of the Encoding

We now prove the correctness of our formulation. From Lemma 2, if we are given some SLP
producing T , it is clear that the above Boolean variables corresponding to its partial parse
tree, referencing structure, and grammar parsing will satisfy all of the constraints.

Next, suppose we are given T and a truth assignment satisfying the above constraints.
Starting from the truth assignments of pi and Constraint (1), we can obtain a factorization
of T where we regard T [i..i + ℓ) as a factor if and only if fi,ℓ = 1. For any i ∈ [1, n] and
ℓ ∈ [2, n − i + 1], Constraint (2) ensures that T [i..i + ℓ) having an occurrence in T [1..i) is
a necessary condition for fi,ℓ = 1. If fi,ℓ = 1, Constraint (3) implies that there is some
i′ ∈ [1..i − ℓ) such that T [i′..i′ + ℓ) = T [i..i + ℓ) and ref i′←i,ℓ = 1. From Constraint (4),
we know that there is exactly one such i′. On the other hand, Constraint (5) ensures that
ref i′←i,ℓ = 0 for all i′ when fi,ℓ = 0. Thus, for each fi,ℓ = 1 with ℓ > 1 there exists exactly
one i′ such that ref i′←i,ℓ = 1, and all other ref ·←·,· are 0. From Constraint (6), it holds
that qi′,ℓ = 1 if and only if there is at least one i, ℓ with ref i′←i,ℓ = 1 and thus fi,ℓ = 1. If
qi′,ℓ = 1, from Constraint (7), we have fi′,ℓ = 0, pi′ = pi′+ℓ = 1, implying that T [i′..i′ + ℓ) is
not a factor, but is a concatenation of two or more factors. Constraint (8) requires that all
such T [i′..i′ + ℓ) are either disjoint or that one is a sub-interval of the other.

Thus, from the above arguments, we can see that for the factorization defined by the pi’s,
we can associate for each factor, a subinterval of the factorization that satisfies the conditions
of Lemma 2, thus implying that the factorization is a grammar parsing of some SLP.

3.3 Smallest Bidirectional Macro Scheme to MAX-SAT
For our SLP encoding, we used the fact that only the leftmost occurrences of the non-terminals
are internal nodes – we modeled every later occurrence as a leaf referring to this leftmost
occurrence. We could therefore evade the problem of constructing reference cycles since all
references point in the same direction. However, in a bidirectional scheme, the references can
point in either direction, and the difficulty in defining the encoding is how to ensure that no
cycles are introduced in the referencing.

Here, we present a solution that again works with a tree structure, but this time we
have multiple trees – a forest that represents the references. In detail, we follow Dinklage
et al. [9, Definition 6], who represented a bidirectional macro scheme by a reference forest,

ESA 2022

12:10 Computing NP-Hard Repetitiveness Measures via MAX-SAT

1 2 3 4 5 6 7 8 9

depth

Figure 4 Reference forest of the BMS of Figure 1. The forest consists of two trees. The root of
each tree corresponds to one of the two ground phrases of the BMS. For instance, to decode T [1],
we first need to decode T [7] (the parent of T [7]), which has the tree root T [5] as its parent. Hence,
the number of ancestors of a node T [i] is the number of references we need to traverse to obtain a
ground phrase storing the character of T [i].

where a text position i has text position j as its parent if the phrase covering T [i] has a
reference stating that T [i] is copied from T [j]. Figure 4 visualizes such a forest. The roots of
this reference forest are the positions of the ground phrases.

In order to find a BMS, we go in the inverse direction, and first encode a reference forest
from which we subsequently derive a BMS. Since a forest has no cycles, we can use the
edges of the forest to define a valid BMS, where each factor has length one (each factor is
represented by a node in the reference forest). The final step is to glue together adjacent
positions that have adjacent references into larger factors to obtain BMSs with fewer factors.

We start with the encoding for our reference forest. The nodes of the forest coincide with
the text positions, and are therefore enumerated from 1 to n. Since a text position i can
reference text position j only when T [i] = T [j], it makes sense to restrict j to belong to the
set Mi := {j ∈ [1, n] | T [i] = T [j], i ̸= j}. In that case, we say that j is the parent of i. We
make use of the following variables.

rooti for i ∈ [1, n] : rooti = 1 if and only if node i is the root of a tree. All roots are at
depth 0.
dref d,i→j for d ∈ [1, n − 1], i ∈ [1, n], j ∈ Mi : dref d,i→j = 1 if and only if node i at depth
d has a parent node j at depth d − 1.

To obtain a valid reference forest, we define the following constraints. First, each node is
a root node or has a parent.

∀i ∈ [1, n] : rooti +
∑

d∈[1,n],j∈Mi

dref d,i→j = 1 (9)

According to Constraint (9), a node i at depth d ≥ 2 must have exactly one parent j,
and j must also have a parent node k (since d ≥ 2). To enforce acyclicity, we additionally
want that k is exactly two levels above of i.

H. Bannai, K. Goto, M. Ishihata, S. Kanda, D. Köppl, and T. Nishimoto 12:11

∀d ∈ [2, n], ∀i ∈ [1, n], ∀j ∈ Mi : dref d,i→j =⇒
∑

k∈Mj

dref d−1,j→k = 1 (10)

Next, to translate our reference forest to a BMS, we additionally introduce the following
Boolean variables.

ref i→j for i ∈ [1, n], j ∈ Mi: ref i→j = 1 if and only if position i references position j.
pi for i ∈ [1, n] : pi = 1 if and only if position i is a beginning of a phrase. Note that
p1 = 1.

The connection between the variables of the reference forest and our BMS is as follows.
For each position i ∈ [1, n], i can reference at most one position j ∈ Mi, i.e.,

∀i ∈ [1, n] :
∑

j∈Mi

ref i→j ≤ 1 (11)

A position i references j if, on any depth d of the reference forest, there is an edge from i to
its parent j modeled by dref d,i→j .

∀d ∈ [1, n], ∀i ∈ [1, n], ∀j ∈ Mi : dref d,i→j =⇒ ref i→j (12)

Finally, the roots in our reference forest model the ground phrases of the BMS. The roots
therefore cannot have a reference, but instead introduce a factor (of length one).

∀i ∈ [1, n] : rooti =⇒ pi. Additionally, ∀j ∈ Mi : rooti =⇒ ¬ref i→j (13)

Remembering that the phrases are determined by the variables pi’s witnessing their
starting positions, it is left to model the constraints for the truth assignment of the pi’s. For
that, let us conceptually fix a text position i for which we assume that it references text
position j. We consider two cases where T [i − 1] and T [i] cannot be in the same phrase. The
first case is when i or j are at the start of the text or j − 1 ̸∈ Mi−1:

∀i ∈ [1, n], j ∈ Mi s.t. i = 1 or j = 1 or T [i − 1] ̸= T [j − 1] : ref i→j =⇒ pi (14)

The second case is when j − 1 ∈ Mi−1 but the position i − 1 does not reference position j − 1
(it may reference a different position, or it could be a ground phrase):

∀i ∈ [2, n], ∀j ∈ Mi s.t. j > 1 and T [i − 1] = T [j − 1],
¬ref i−1→j−1 ∧ ref i→j =⇒ pi (15)

In total, we have O(n3) Boolean variables, dominated by dref d,i→j . The size of the
largest clause is O(n2) due to Constraint (9). The total size of the resulting CNF is O(n4),
dominated by Constraint (10) where there are O(n3) clauses of O(n) size each.

Correctness of the Encoding

It is easy to see that any valid BMS satisfies the above constraints. We now show that any
solution that satisfies the hard clauses yields a valid BMS. The truth assignments for all
pi define a factorization of T . We claim that each position is either a ground phrase, or is
assigned exactly one reference consistent with the factorization forming a valid BMS, i.e.,
the references are acyclic, and, adjacent positions in the same non-ground phrase will refer
to adjacent positions thus allowing the phrase to be encoded with the pair of references at
both ends of the phrase.

ESA 2022

12:12 Computing NP-Hard Repetitiveness Measures via MAX-SAT

Suppose pi = 1. If rooti = 1, then Constraint (9) ensures that all dref ·,i→· = 0 and
Constraint (13) ensures that all ref i→· = 0, i.e., i does not have a reference. Note that,
pi+1 = 0 implies ref i→j for some j (shown in the next paragraph), so pi+1 = 1 must hold.
Thus, position i is properly factorized as a ground phrase. If rooti = 0, then Constraint (9)
ensures that there exist unique d, j such that dref d,i→j = 1. Furthermore, Constraint (12)
ensures that ref i→j = 1.

Next, consider the case for pi = 0 (which implies i > 2). From Constraint (13) we
have rooti = 0, and from Constraint (15) we have ∀j > 1 ∈ Mi s.t. T [i − 1] = T [j − 1],
ref i→j =⇒ ref i−1→j−1. Since rooti = 0, Constraint (9) ensures that there exists unique d, j

such that dref d,i→j = 1. Furthermore, Constraint (12) ensures that ref i→j = 1. Note that
due to Constraint (14), neither j = 1 nor T [i − 1] ̸= T [j − 1] is possible, since this would
imply pi = 1, contradicting the assumption that pi = 0. Thus j > 1 and T [i − 1] = T [j − 1],
and thus we have ref i−1→j−1 = 1.

The uniqueness of the reference j for each position i of a non-ground phrase is ensured by
Constraint (11). Thus, we have that references in adjacent positions in the same non-ground
phrase point to adjacent positions. Since the acyclicity of the references are ensured by
Constraint (10), we have a valid BMS.

4 Computational Experiments

We have implemented our encodings in PySAT (https://pysathq.github.io/) written in
the Python language3. As datasets we used the files trans, news, E.coli, and progc from
the Canterbury and Calgary corpus (https://corpus.canterbury.ac.nz/).

Here, we evaluated the sum of the literals in all hard clauses, i.e., the size of the encoded
CNF, and the execution time of the SAT solver for computing a solution. In Figure 5, we
evaluated our approach on different prefix lengths of the chosen datasets, starting from a
prefix of 10 characters up to a prefix with 3000 characters. We aborted an execution after
reaching one hour of computation or after exceeding 16 GB of RAM, and hence the lines for
computing b and g prematurely end due to these limits on all datasets. Our experiments ran
on an Ubuntu 20.04 machine with an AMD Ryzen Threadripper 3990X CPU.

As expected, the size of the encoded CNF correlates with the execution time in all
instances. We can see that the encoding for γ needs the least number of literals, and is
consequently not only the fastest, but also uses the least amount of memory, allowing us to
compute γ for moderately large texts. This is followed by g, and lastly by b. Although the
size of the CNF for b is smaller than for g in most cases, clauses formed by Constraint (9)
for computing b can become quite large, making the computation cumbersome.

5 Application: Sensitivity of γ

Akagi et al. [1] introduced and studied the notion of sensitivity of a repetitiveness measure.
Given a repetitiveness measure C (such as γ) for a string T , the sensitivity of C measures
how much C can increase when a single character edit operation is performed on T . The
authors studied an additive and a multiplicative sensitivity measure. The latter, denoted
MSop, is defined as:

MSop(C, n) := max
T∈Σn,T ′∈Σ∗

{
C(T ′)
C(T)

∣∣∣∣ edop(T, T ′) = 1
}

,

3 As far as we are aware of, this implementation is single threaded.

https://pysathq.github.io/
https://corpus.canterbury.ac.nz/

H. Bannai, K. Goto, M. Ishihata, S. Kanda, D. Köppl, and T. Nishimoto 12:13

10−4

10−1

102

10−3

101
so
lv
er

ti
m
e
[s
]

trans news E.coli progc

101 102 103

105

101

103

108

prefix length

C
N
F
si
ze

101 102 103

prefix length

101 102 103

prefix length

101 102 103

prefix length

Figure 5 Evaluation of our encoded CNFs. The first row shows the
running time of PySAT on our CNF instance in seconds. We omit the time
needed to specify the CNFs, which is negligible for larger instances. The
second row plots the size of the respective CNF. All axes are in logscale.

γ b g

i.e., the maximum multiplicative increase over all strings with the same length n, where
edop(T, T ′) = 1 means that T ′ can be built from T by inserting a character into T , or
deleting/replacing a character of T . Parameterizing γ with the input string T , for C(T) =
γ(T), Akagi et al. showed 2 ≤ MSop(γ, n) ∈ O(log n).

To improve the lower bound, we conducted exhaustive search for short binary strings
when inserting a unique character. This search led us to the string family {Tk}k≥2 with
Tk := abbbaaabk, with which we can improve the lower bound of 2 to 5/2. For that, let
us consider γ(Tk) and its size after an insertion of a new character c. First, we observe
that γ(Tk) = γ(abbbaaabk) = 2. This is because a smallest string attractor is given by
Γ(T2) = {4, 7} and Γ(Tk) = {5, 8} for k ≥ 3 (the characters at the positions in Γ(Tk) are
underlined). Now let T ′k denote Tk after inserting the character c at text position 9. For
k ≥ 5, it holds that T ′k has a string attractor of size 5, i.e., γ(T ′k′) = γ(abbbaaabcbk′) = 5 for
k′ ≥ 4. A minimal string attractor is given by Γ(T ′k′) = {1, 4, 6, 9, 10}. We cannot remove a
position from Γ(T ′k′) since abb, ba, aab, c, and bk′ are five substrings of T ′k′ having exactly
one occurrence in T ′k′ , and all of them are non-overlapping. Since a string attractor has to be
in the cover set of all substrings, we need a string attractor with at least five text positions.
Consequently, MSop(γ, n) ≥ 2.5 for any n ≥ 13 with the insertion or replacement operation.

The availability of computer-aided search facilitated the discovery of strings having certain
string attractors.

References
1 Tooru Akagi, Mitsuru Funakoshi, and Shunsuke Inenaga. Sensitivity of string compressors

and repetitiveness measures. CoRR, abs/2107.08615, 2021. arXiv:2107.08615.
2 Hideo Bannai, Mitsuru Funakoshi, Tomohiro I, Dominik Köppl, Takuya Mieno, and Takaaki

Nishimoto. A separation of γ and b via Thue-Morse words. In Proc. SPIRE, volume 12944,
pages 167–178, 2021. doi:10.1007/978-3-030-86692-1_14.

ESA 2022

http://arxiv.org/abs/2107.08615
https://doi.org/10.1007/978-3-030-86692-1_14

12:14 Computing NP-Hard Repetitiveness Measures via MAX-SAT

3 Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.
IOS press, 2009.

4 Philip Bille, Travis Gagie, Inge Li Gørtz, and Nicola Prezza. A separation between RLSLPs
and LZ77. J. Discrete Algorithms, 50:36–39, 2018. doi:10.1016/j.jda.2018.09.002.

5 Anselm Blumer, J. Blumer, David Haussler, Ross M. McConnell, and Andrzej Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578–595, 1987.
doi:10.1145/28869.28873.

6 Katrin Casel, Henning Fernau, Serge Gaspers, Benjamin Gras, and Markus L. Schmid. On
the complexity of the smallest grammar problem over fixed alphabets. Theory Comput. Syst.,
65(2):344–409, 2021. doi:10.1007/s00224-020-10013-w.

7 Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro,
and Nicola Prezza. Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms,
17(1):8:1–8:39, 2021. doi:10.1145/3426473.

8 Maxime Crochemore and Lucian Ilie. Computing longest previous factor in linear time and
applications. Inf. Process. Lett., 106(2):75–80, 2008. doi:10.1016/j.ipl.2007.10.006.

9 Patrick Dinklage, Jonas Ellert, Johannes Fischer, Dominik Köppl, and Manuel Penschuck.
Bidirectional text compression in external memory. In Proc. ESA, pages 41:1–41:16, 2019.
doi:10.4230/LIPIcs.ESA.2019.41.

10 Patrick Dinklage, Johannes Fischer, Dominik Köppl, Marvin Löbel, and Kunihiko Sadakane.
Compression with the tudocomp framework. In Proc. SEA, volume 75 of LIPIcs, pages
13:1–13:22, 2017.

11 Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. LZD factorization:
Simple and practical online grammar compression with variable-to-fixed encoding. In Proc.
CPM, volume 9133, pages 219–230, 2015. doi:10.1007/978-3-319-19929-0_19.

12 OEIS Foundation Inc. Maximum, over all binary strings w of length n, of the size of the
smallest string attractor for w, entry A339391 in the on-line encyclopedia of integer sequences.
Accessed: 2022-04-13. URL: https://oeis.org/A339391.

13 Marek Karpinski, Wojciech Rytter, and Ayumi Shinohara. An efficient pattern-matching
algorithm for strings with short descriptions. Nord. J. Comput., 4(2):172–186, 1997.

14 Dominik Kempa and Tomasz Kociumaka. Resolution of the Burrows-Wheeler transform
conjecture. In Sandy Irani, editor, Proc. FOCS, pages 1002–1013. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00097.

15 Dominik Kempa, Alberto Policriti, Nicola Prezza, and Eva Rotenberg. String attractors:
Verification and optimization. In Proc. ESA, pages 52:1–52:13, 2018. doi:10.4230/LIPIcs.
ESA.2018.52.

16 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In Proc. STOC, pages 827–840. ACM, 2018. doi:10.1145/3188745.3188814.

17 Dominik Kempa and Barna Saha. An upper bound and linear-space queries on the lz-end
parsing. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 2847–2866.
SIAM, 2022. doi:10.1137/1.9781611977073.111.

18 Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability.
Addison-Wesley Professional, 1st edition, 2015.

19 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Towards a definitive measure of
repetitiveness. In Proc. LATIN, pages 207–219, 2020.

20 Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theor. Comput. Sci., 483:115–133, 2013. doi:10.1016/j.tcs.2012.02.006.

21 Kanaru Kutsukake, Takuya Matsumoto, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai,
and Masayuki Takeda. On repetitiveness measures of Thue-Morse words. In Proc. SPIRE,
pages 213–220, 2020. doi:10.1007/978-3-030-59212-7_15.

22 N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compression. In Proc. DCC,
pages 296–305, 1999. doi:10.1109/DCC.1999.755679.

https://doi.org/10.1016/j.jda.2018.09.002
https://doi.org/10.1145/28869.28873
https://doi.org/10.1007/s00224-020-10013-w
https://doi.org/10.1145/3426473
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.4230/LIPIcs.ESA.2019.41
https://doi.org/10.1007/978-3-319-19929-0_19
https://oeis.org/A339391
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.4230/LIPIcs.ESA.2018.52
https://doi.org/10.4230/LIPIcs.ESA.2018.52
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1137/1.9781611977073.111
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1007/978-3-030-59212-7_15
https://doi.org/10.1109/DCC.1999.755679

H. Bannai, K. Goto, M. Ishihata, S. Kanda, D. Köppl, and T. Nishimoto 12:15

23 Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE Transactions
on information theory, 22(1):75–81, 1976.

24 Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019. doi:10.1007/
978-3-030-11298-1.

25 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. Nord.
J. Comput., 12(1):40–66, 2005.

26 Sabrina Mantaci, Antonio Restivo, Giuseppe Romana, Giovanna Rosone, and Marinella
Sciortino. A combinatorial view on string attractors. Theor. Comput. Sci., 850:236–248, 2021.
doi:10.1016/j.tcs.2020.11.006.

27 Sabrina Mantaci, Antonio Restivo, and Marinella Sciortino. Burrows-Wheeler transform
and sturmian words. Inf. Process. Lett., 86(5):241–246, 2003. doi:10.1016/S0020-0190(02)
00512-4.

28 Takuya Mieno, Shunsuke Inenaga, and Takashi Horiyama. Repair grammars are the smallest
grammars for fibonacci words. CoRR, abs/2202.08447, 2022. arXiv:2202.08447.

29 Kazuyuki Narisawa, Hideharu Hiratsuka, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda. Efficient computation of substring equivalence classes with suffix arrays. Algorithmica,
79(2):291–318, 2017. doi:10.1007/s00453-016-0178-z.

30 Gonzalo Navarro. Indexing highly repetitive string collections, part I: repetitiveness measures.
ACM Comput. Surv., 54(2):29:1–29:31, 2021. doi:10.1145/3434399.

31 Gonzalo Navarro. Indexing highly repetitive string collections, part II: compressed indexes.
ACM Comput. Surv., 54(2):26:1–26:32, 2021. doi:10.1145/3432999.

32 Gonzalo Navarro, Carlos Ochoa, and Nicola Prezza. On the approximation ratio of ordered
parsings. IEEE Transactions on Information Theory, 67(2):1008–1026, 2020.

33 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theor. Comput.
Sci., 762:41–50, 2019. doi:10.1016/j.tcs.2018.09.007.

34 Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical structure in sequences:
A linear-time algorithm. J. Artif. Intell. Res., 7:67–82, 1997. doi:10.1613/jair.374.

35 Takaaki Nishimoto and Yasuo Tabei. LZRR: LZ77 parsing with right reference. Information
and Computation, page 104859, 2021.

36 Luís M. S. Russo, Ana Sofia D. Correia, Gonzalo Navarro, and Alexandre P. Francisco.
Approximating optimal bidirectional macro schemes. In Ali Bilgin, Michael W. Marcellin,
Joan Serra-Sagristà, and James A. Storer, editors, Data Compression Conference, DCC 2020,
Snowbird, UT, USA, March 24-27, 2020, pages 153–162. IEEE, 2020. doi:10.1109/DCC47342.
2020.00023.

37 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003. doi:10.1016/
S0304-3975(02)00777-6.

38 Hiroshi Sakamoto, Takuya Kida, and Shinichi Shimozono. A space-saving linear-time algorithm
for grammar-based compression. In Proc. SPIRE, volume 3246, pages 218–229, 2004. doi:
10.1007/978-3-540-30213-1_33.

39 Hiroshi Sakamoto, Shinichi Shimozono, Ayumi Shinohara, and Masayuki Takeda. On the
minimization problem of text compression scheme by a reduced grammar transform. Technical
Report 195, Department of Informatics, 2001. URL: https://catalog.lib.kyushu-u.ac.jp/
opac_download_md/3045/trcs195.pdf.

40 Luke Schaeffer and Jeffrey Shallit. String attractors for automatic sequences. CoRR,
abs/2012.06840, 2020. arXiv:2012.06840.

41 Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality constraints. In Peter van
Beek, editor, Principles and Practice of Constraint Programming - CP 2005, 11th International
Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture
Notes in Computer Science, pages 827–831. Springer, 2005. doi:10.1007/11564751_73.

ESA 2022

https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1016/j.tcs.2020.11.006
https://doi.org/10.1016/S0020-0190(02)00512-4
https://doi.org/10.1016/S0020-0190(02)00512-4
http://arxiv.org/abs/2202.08447
https://doi.org/10.1007/s00453-016-0178-z
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3432999
https://doi.org/10.1016/j.tcs.2018.09.007
https://doi.org/10.1613/jair.374
https://doi.org/10.1109/DCC47342.2020.00023
https://doi.org/10.1109/DCC47342.2020.00023
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1007/978-3-540-30213-1_33
https://doi.org/10.1007/978-3-540-30213-1_33
https://catalog.lib.kyushu-u.ac.jp/opac_download_md/3045/trcs195.pdf
https://catalog.lib.kyushu-u.ac.jp/opac_download_md/3045/trcs195.pdf
http://arxiv.org/abs/2012.06840
https://doi.org/10.1007/11564751_73

12:16 Computing NP-Hard Repetitiveness Measures via MAX-SAT

42 James A Storer and Thomas G Szymanski. Data compression via textual substitution. Journal
of the ACM (JACM), 29(4):928–951, 1982.

43 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Trans. Information Theory, 23(3):337–343, 1977.

44 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.1055934.

https://doi.org/10.1109/TIT.1978.1055934

	1 Introduction
	2 Preliminaries
	3 Reductions to MAX-SAT
	3.1 Smallest String Attractor as MAX-SAT
	3.1.1 Simple Encoding
	3.1.2 Reducing CNF Clauses via Minimal Substrings

	3.2 Smallest Straight-Line Program as MAX-SAT
	3.3 Smallest Bidirectional Macro Scheme to MAX-SAT

	4 Computational Experiments
	5 Application: Sensitivity of Gamma

