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Abstract
A temporal graph is an undirected graph G = (V, E) along with a function λ : E → N+ that assigns
a time-label to each edge in E. A path in G such that the traversed time-labels are non-decreasing is
called a temporal path. Accordingly, the distance from u to v is the minimum length (i.e., the number
of edges) of a temporal path from u to v. A temporal α-spanner of G is a (temporal) subgraph H

that preserves the distances between any pair of vertices in V , up to a multiplicative stretch factor
of α. The size of H is measured as the number of its edges.

In this work, we study the size-stretch trade-offs of temporal spanners. In particular we show
that temporal cliques always admit a temporal (2k− 1)−spanner with Õ(kn1+ 1

k ) edges, where k > 1
is an integer parameter of choice. Choosing k = ⌊log n⌋, we obtain a temporal O(log n)-spanner
with Õ(n) edges that has almost the same size (up to logarithmic factors) as the temporal spanner
given in [Casteigts et al., JCSS 2021] which only preserves temporal connectivity.

We then turn our attention to general temporal graphs. Since Ω(n2) edges might be needed by
any connectivity-preserving temporal subgraph [Axiotis et al., ICALP’16], we focus on approximating
distances from a single source. We show that Õ(n/ log(1 + ε)) edges suffice to obtain a stretch of
(1 + ε), for any small ε > 0. This result is essentially tight in the following sense: there are temporal
graphs G for which any temporal subgraph preserving exact distances from a single-source must use
Ω(n2) edges. Interestingly enough, our analysis can be extended to the case of additive stretch for
which we prove an upper bound of Õ(n2/β) on the size of any temporal β-additive spanner, which
we show to be tight up to polylogarithmic factors.

Finally, we investigate how the lifetime of G, i.e., the number of its distinct time-labels, affects
the trade-off between the size and the stretch of a temporal spanner.
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19:2 Sparse Temporal Spanners with Low Stretch

1 Introduction

A temporal graph is a graph G = (V, E) in which each edge can be used only in certain time
instants. This recurrent idea of time-evolving graphs has been formalized in multiple ways,
and a simple widely-adopted model is the one of Kempe, Kleinberg, and Kumar [11], in
which each edge e ∈ E has an assigned time-label λ(e) representing the instant in which
e can be used. A path from a vertex to another in G is said to be a temporal path if the
time-labels of the traversed edges are non-decreasing. Accordingly, a graph is temporally
connected if there exists a temporal path from u to v, for every two vertices u, v ∈ V .

Notice that, unlike paths in static graphs, the existence of temporal paths is neither
symmetric nor transitive.1 For this reason, temporal graphs exhibit a different combinatorial
structure compared to static graphs, and even problems that admit easy solutions on static
graphs become more challenging in their temporal counterpart. Indeed, one of the main
problems introduced in the seminal paper of Kempe, Kleinberg, and Kumar [11] is that of
finding a sparse temporally connected subgraph H of an input temporal graph G. Such a
subgraph H is sometimes referred to as a temporal spanner of G. While any spanning-tree
is trivially a connectivity-preserving subgraph of a static graph, not all temporal graphs
G admit a temporal spanner having O(n) edges [11]. In particular, [11] exhibits a class of
temporal graphs that contain Θ(n log n) edges and cannot be further sparsified. Later, [4]
provided a stronger negative result showing that there are temporal graphs G such that any
temporal spanner of G must use Θ(n2) edges. These strong lower bounds on general graphs
motivated [7] to focus on temporal cliques instead. Here the situation improves significantly,
as only O(n log n) edges are sufficient to guarantee temporal connectivity. This gives rise to
the following natural question, which is exactly the focus of our paper: can one design a
temporal spanner that also guarantees short temporal paths between any pair of vertices?

To address this question, we measure the length of a temporal path as the number of
its edges,2 and we introduce the notion of temporal α-spanner of a temporal graph G, i.e.,
a subgraph H of G such that dH(u, v) ≤ α · dG(u, v) for every pair of vertices u, v ∈ V ,
where dH(u, v) (resp. dG(u, v)) denotes the length of a shortest temporal path from u to v

in H (resp. G). Our main question then becomes that of understanding which trade-offs
can be achieved between the size, i.e., the number of edges, of H and the value of its
stretch-factor α. This same question received considerable attention on static graphs and
gave rise to a significant amount of work (see, e.g., [1]), hence we deem investigating its
temporal counterpart as a very interesting research direction.

To the best of our knowledge, the only temporal α-spanner currently known is actually the
connectivity-preserving subgraph of [7] having size O(n log n). However, a closer inspection of
its construction shows that the resulting α-spanner can have stretch α = Θ(n). In particular,
even the problem of achieving stretch o(n) using o(n2) edges remains open.

In this paper we investigate which size-stretch trade-offs can be attained by selecting
subgraphs of temporal graphs, as detailed in the following.

1 Indeed, a temporal path from u to v is not necessarily a temporal path from v to u, even when G is
undirected. Moreover, the existence of a temporal path from u to v, and of a temporal path from v to
w, does not imply the existence of a temporal path from u to w.

2 Alternative definitions for the length of a temporal path are also natural, e.g., the arrival time, departure
time, duration, or travel time as we briefly discuss in the conclusions.
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1.1 Our results
Temporal cliques. Following [7], we start by considering temporal cliques (see Section 3).
Our main result is the following: given a temporal clique G and an integer k ≥ 2, we can con-
struct, in polynomial time, a temporal (2k−1)-spanner of G having size O(kn1+1/k log1−1/k n).
Interestingly, the special case k = ⌊log n⌋ shows that O(n log2 n) edges suffice to ensure that
a temporal path of length O(log n) exists between any pair of vertices. For this choice of k,
the size of our spanner is only a logarithmic factor away from the size the temporal spanner
of [7] that uses O(n log n) edges and only preserves connectivity. We obtain our results by
constructing hierarchical clustering of the vertices that guides the constructions of temporal
paths.

We also show that there are temporal cliques for which any temporal spanner with stretch
smaller than 3 must have Ω(n2) edges.

Single-source temporal spanners on general graphs. Next, in Section 4, we move our
attention from temporal cliques to general temporal graphs. As already pointed out, there
are temporal graphs that do not admit any connectivity-preserving subgraph with o(n2)
edges [4]. Hence, we consider the special case in which we have a single source s. One can
observe that any temporal graph G admits a temporal subgraph containing O(n) edges and
preserving the connectivity from s (see also [11]). However, to the best of our knowledge, no
non-trivial result is known on the size of subgraphs preserving approximate distances from s.

We formalize this problem by introducing the notion of single-source temporal α-spanner
of G = (V, E) w.r.t. a source s ∈ V , which we define as a subgraph H of G such that
dH(s, v) ≤ α · dG(s, v) for every v ∈ V . Our main contribution for the single-source case is
the following: given any temporal graph G, we can compute in polynomial time a single-source
temporal (1 + ε)-spanner having size O( n log4 n

log(1+ε) ), where ε > 0 is a parameter of choice.
Furthermore, we show that any single-source temporal 1-spanner (i.e., a subgraph pre-

serving exact distances from s) must have Ω(n2) edges in general. Our construction can
be generalized to provide a lower bound of Ω( n2

β ) on the size of any single-source temporal
β-additive spanner, namely a subgraph H that preserves single-source distances up to an
additive term of at most β ≥ 1 (i.e., we require dH(s, v) ≤ dG(s, v) + β for all v ∈ V ).

Interestingly, the same techniques used to obtain our single-source temporal (1 + ε)-
spanner can be also applied to build a single-source temporal β-additive spanner of size
O( n2 log4 n

β ), which essentially matches our aforementioned lower bound.

The role of lifetime. An important parameter that measures how time-dependent is a
temporal graph G = (V, E) is its lifetime, i.e., the number L of distinct time-labels associated
with the edges of G. Indeed, a temporal graph with lifetime L = 1 is just a static graph,
while any temporal graph trivially satisfies L = O(n2). It is not surprising that the lifetime
plays a crucial role in determining the number of edges required by temporal spanners. For
example, the lower bound of Ω(n2) on the size of any connectivity-preserving temporal
subgraph requires L = Ω(n) [4]. In this paper, we also present a collection of results with the
goal of shedding some light on the lifetime-size trade-off of temporal spanners. In particular,
our results provide the following lifetime-dependant upper bounds on the size of temporal
α-spanners

As far as temporal cliques are concerned, we show how to build, in polynomial time, a
temporal 3-spanner with O(2Ln log n) edges. This implies that, when L = O(1), we can
achieve stretch 3 with Õ(n) edges.3

3 The notation Õ(f(n)) is a synonym for O(f(n) · polylog f(n)).

ESA 2022



19:4 Sparse Temporal Spanners with Low Stretch

If L = 2, we can find (in polynomial time) a temporal 2-spanner of a temporal clique
having size O(n log n). We deem this result interesting since, as soon as L > 2, our lower
bound of Ω(n2) on the size of any temporal 2-spanner still applies.
We show that, when L is small, general temporal graphs can be sparsified by exploiting
known size-stretch trade-offs for spanners of static graphs. In particular, we show that if
it is possible to compute, in polynomial time, an α-spanner of a static graph having size
f(n), then one can also build a temporal α-spanner of size O(Lf(n)). This yields, e.g., a
temporal ⌊log n⌋-spanner of size o(n2) on general temporal graphs with L = o(n).

Due to space limitations, these results and some of the proofs are omitted and can be
found in the full version of the paper.

1.2 Related work
The definitions of temporal graphs and temporal paths given in the literature sometimes
differ from the ones we adopt here. We now discuss how our results relate to some of the
most common variants. A first difference concerns the notion of temporal paths: some
authors consider strict temporal paths [2, 7, 11], i.e., temporal paths in which edge labels
must be strictly increasing (rather than non-decreasing). As observed by [11], if we adopt
strict temporal paths then there are dense graphs that cannot be sparsified, indeed no edge
can be removed from a temporal clique in which all edges have the same time-label. As
observed in [7], one can get rid of these problematic instances by assuming that time-labels
are locally distinct, namely that all the time-labels of the edges incident to any single vertex
are distinct. In this case all temporal paths are also strict temporal paths and hence they
focus on temporal paths as defined in our paper. A second difference concerns whether edges
are allowed to have multiple time-labels, as in [2, 12]. In this case, each edge e is associated
to a non-empty set of time instants λ(e) ⊆ N+ in which e is available. We observe that any
algorithm that sparsifies a temporal clique with single time-labels can be directly used on
the case of multiple time-labels by selecting an arbitrary time-label for each edge (see also
the discussion in [7]). This is no longer true when we consider general temporal graphs, since
removing edge labels might affect distances. However, all our algorithms work also in the
case of multiple labels and, since our lower bounds are given for single labels, they also apply
to the case of multiple labels.

Another research line concerns random temporal graphs. In particular, temporal cliques
in which each edge has a single time-label chosen u.a.r. from the set {1, . . . , α}, where
α ≥ 4, admit temporal spanners with O(n log n) edges w.h.p. [2]. In [8], the authors study
connectivity properties of random temporal graphs defined as an Erdős-Rényi graph Gn,p in
which each edge e has time-label chosen as the rank of e in a random permutation of the
graph’s edges. They show that p = log n

n , p = 2 log n
n , p = 3 log n

n , and p = 4 log n
n are sharp

thresholds to guarantee that the resulting temporal graph G satisfies the following respective
conditions asymptotically almost surely: a fixed pair of vertices can reach each other via
temporal paths in G, there is some vertex s which can reach all other vertices in G via
temporal paths, G is temporally connected, G and admits a temporal spanner with 2n − 4
edges (which is tight when time-labels are locally distinct).

Besides temporal graphs, other models to represent graphs or paths that evolve over time
have been considered in the literature, we refer the interested reader to [9] for a survey.

Finally, as we already mentioned, there is a large body of literature concerning spanners
on static graphs (see [1] for a survey on the topic) and clustering techniques similar to the
ones we employ on temporal cliques have proven to be a useful tool to design sparse spanner
also in this setting (see, e.g., [5, 6]).
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A reader that is already familiar with the area might notice that our upper bound of
Õ(n1+ 1

k ) on the size of a temporal (2k − 1)-spanner of a temporal clique, happens to resemble
the classical upper bound of O(n1+ 1

k ) on the size of a (2k − 1)-spanner of a general static
graph [3]. Nevertheless, the first result only applies to complete (temporal) graphs and
requires different technical arguments to handle temporal paths.

2 Model and preliminaries

Let G = (V, E) be an undirected temporal graph with n vertices, and a labeling function
λ : E → N+ that assigns a time-label λ(e) to each edge e. If G is complete we will say that it
is a temporal clique. A temporal path π from vertex u to vertex v is a path in G from u to v

such that the sequence e1, e2, . . . , ek of edges traversed by π satisfies λ(ei) ≤ λ(ei+1) for all
i = 1, . . . , k − 1. We denote with |π| the length of π, i.e., the number of its edges. A shortest
temporal path from vertex u to vertex v is a temporal path from u to v with minimum
length. We denote with dG(u, v), the length of a shortest temporal path from u to v in G.
Given a generic graph H, we denote by V (H) its vertex-set and by E(H) its edge-set.

For α ≥ 1 and β ≥ 0, a temporal (α, β)-spanner of G is a (temporal) subgraph H of G

such that V (H) = V and dH(u, v) ≤ α · dG(u, v) + β, for each u, v ∈ V . We call a temporal
(α, β)-spanner: (i) temporal α-spanner if β = 0, (ii) temporal β-additive spanner if α = 1,
(iii) temporal preserver if α = 1 and β = 0. We say that H is a single-source temporal
(α, β)-spanner w.r.t. a vertex s ∈ V , if dH(s, v) ≤ α · dG(s, v) + β, for each v ∈ V . The size
of a temporal spanner is the number of its edges.

We define the lifetime L of G as the number of distinct time-labels of its edges. Further-
more, we assume w.l.o.g. that each time instant in {1, . . . , L} is used by at least one time-label
(since otherwise we can replace each time-label with its rank in the set {λ(e) | e ∈ E}), so
that L = maxe∈E λ(e).

We will make use of the following well-known result:

▶ Lemma 1. Given a collection S of subsets of {1, . . . , n}, where each subset has size
at least ℓ and |S| is polynomially bounded in n, we can find in polynomial time a subset
R ⊆ {1, . . . , n} of size O((n/ℓ) log n) that hits all subsets in the collection, i.e., R ∩ S ̸= ∅
for all S ∈ S.

3 Spanners for temporal cliques

In this section, we design an algorithm such that, given a temporal clique G, returns a
temporal (2k − 1)-spanner H of G with size Õ(n1+ 1

k ), for any integer k > 1. We also provide
a temporal clique G for which any temporal 2-spanner of G has size Ω(n2).

Before describing the algorithm for constructing temporal (2k − 1)-spanners, we show as
a warm up how to construct a temporal 3-spanner and a temporal 5-spanner of size Õ(n1+ 1

2 )
and Õ(n1+ 1

3 ), respectively.

3.1 Our temporal 3-spanner
Given a temporal clique G, we construct a temporal 3-spanner H of G via a clustering
technique. For each u ∈ V , we select a set Eu containing the Θ(

√
n log n) edges incident to u

having the smallest labels (ties are broken arbitrarily). We define Su = {v ∈ V | (u, v) ∈ Eu}.
Next, we find a hitting set R ⊆ V of the collection {Su}u∈V . Thanks to Lemma 1, we can
deterministically compute a hitting set of size |R| = O(

√
n log n).

ESA 2022
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Figure 1 (a) A vertex u and its neighbours in G, the edges are sorted top-down by increasing
time-label. The red edges are those belonging to Eu while the black edges belong to E(G) \ Eu. (b)
An example of a cluster Cx where x ∈ R. The edges incident to x are sorted from left to right by
increasing-time label. The black and red edges are added to E(H) during the initialization phase, in
particular the red edges are those belonging to Ez(x). The blue edges are added w.r.t. u to E(H)
during the first augmentation. The green edges belong to E(G) \ Ez(x) and are added to E(H)
during the second augmentation.

We partition the vertices of V into |R| clusters. More precisely, we create a cluster
Cx ⊆ V for each vertex x ∈ R. Each vertex u ∈ V belongs to exactly one arbitrarily chosen
cluster Cx that satisfies x ∈ Su, i.e., x hits Su. We call x the center of cluster Cx.4 Moreover,
we choose the special vertex of cluster Cx as a vertex z(x) in Cx that maximizes the label of
the edge (x, z(x)).

Notice that, for every x ∈ R and u ∈ Cx, u can reach z(x) via a temporal path of length
at most 2 in G by using the edges (u, x) and (x, z(x)) since, by definition of z(x) and Su, we
have λ(u, x) ≤ λ(x, z(x)).

We now build our temporal spanner H of G. The set of edges E(H) is constructed in
three phases (See Figure 1 for an example of the whole construction):
Initialization: For each u ∈ V , we add the edges in Eu to E(H);
First Augmentation: For every u ∈ V , we add the edges in Eu,z(x) = {u} × Sz(x) to E(H),

where x is the center of the cluster containing u;
Second Augmentation: For each x ∈ R, we add the edges in Ez(x),V = {z(x)} × V to E(H).
It is easy to see that H contains O(n

√
n log n) edges. We now show that for any u, v ∈ V

there is a temporal path from u to v of length at most 3 in H. Indeed, let x ∈ R be the
center of the cluster Cx containing u. If v = z(x) then, since u ∈ Cx, the initialization
phase ensures that (u, x) ∈ E(H) and (x, z(x)) ∈ E(H), which form a temporal path as
we already discussed above. We hence assume that v ̸= z(x). If (z(x), v) ∈ Ez(x) then
the first augmentation phase added (u, v) ∈ Eu,z(x) to E(H), which is a temporal path of
length one from u to v. Otherwise (z(x), v) ∈ E(G) \ Ez(x) and, the second augmentation
phase added edge (z(x), v) to E(H). Moreover, since (z(x), v) ̸∈ Ez(x), (z(x), v) is not
among the Θ(

√
n log n) edges incident to z(x) with lowest labels. As a consequence, since

(x, z(x)) ∈ Ez(x), we have λ(x, z(x)) ≤ λ(z(x), v). Hence, the edges (u, x), (x, z(x)), and
(z(x), v) form a temporal path of length 3 from u to v in H.

3.2 Our temporal 5-spanner
We show how to modify the construction of a temporal 3-spanner given in previous section
in order to obtain a temporal 5-spanner of size Õ(n4/3). The idea is to replace the single-
level clustering of Section 3.1 with a two-level clustering, where the second-level clustering

4 Here and throughout the paper, the center of a cluster is not required to belong to the cluster itself.
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Figure 2 (a) Two vertices u and z of G, where z ∈ Z1 and the red edges belong to E1,u and E1,z,
respectively. For vertex z the purple edges belong to E2,z. (b) A two level clustering. The level
one consists of three cluster C1,x1 , C1,x2 , C2,x3 . The level-two cluster C2,y, with y ∈ R2, contains
vertices z1(x1), z1(x2) and z1(x3), where z2(y) = z1(x3).

partitions the special vertices of the first level clustering and the number of selected clusters
decreases as we move from the first level to the second one.

The level-one clustering is built similarly to the one used in our temporal 3-spanner. For
each vertex u ∈ V we define sets E1,u and S1,u where E1,u consists of the Θ(n1/3 log2/3 n)
edges with the smallest label among those incident to u (ties are broken arbitrarily) and
S1,u = {v ∈ V | (u, v) ∈ E1,u}. We compute a hitting set R1 of the collection {S1,u}u∈V ,
where R1 has size O(n2/3 log1/3 n) thanks to Lemma 1. We partition the vertices of V into
|R1| clusters C1,x, for each x ∈ R1, as before, and let z1(x) the vertex in C1,x that maximizes
the label of the edge (x, z1(x)).

The level-two clustering is built on top of the vertices Z1 = {z1(x) | x ∈ R1}. For each
u ∈ Z1, we define E2,u as a set of Θ(n2/3 log1/3 n) edges with the smallest label among
those that are incident to u but do not belong to E1,u. We also define a corresponding set
S2,u = {v ∈ V | (u, v) ∈ E2,u}. We once again invoke Lemma 1 to compute a hitting set R2
of size O(n1/3 log2/3 n) of the collection {S2,u}u∈Z1 . Based on R2, we partition the special
vertices in Z1 by associating each u ∈ Z1 to an arbitrary cluster C2,y centered in y ∈ R2
such that y ∈ S2,u. Each cluster C2,y has an associated special vertex z2(y) ∈ C2,y chosen
among the ones that maximize the label of the edge (y, z2(y)), see Figure 2.

We are now ready to build our temporal 5-spanner H. As before, the set of edges E(H)
is constructed in three phases:
Initialization: For each u ∈ V , we add the edges in E1,u to E(H) and, for each u ∈ Z1, we

add the edges in E2,u to E(H);
First Augmentation: For every u ∈ V , we add the edges in Eu,z1(x) = {u} × S1,z1(x) to

E(H), where x is the center of the cluster containing u. Moreover, for each z ∈ Z1 we
add the edges in {z} × (S1,z2(y) ∪ S2,z2(y)) to E(H), where y is the center of the level-two
cluster C2,y containing z;

Second Augmentation: For each y ∈ R2, we add the set {z2(y)} × V to E(H).

See Figure 3 for an example of the whole construction. We now show that H is a 5-spanner
of size O(n4/3 log2/3 n).

▶ Lemma 2. Let u, v ∈ V . There is a temporal path from u to v of length at most 5 in H.

Proof. Let x ∈ R1 be the center of the level-one cluster C1,x containing u and y ∈ R2 be
the center of the level-two cluster C2,y containing z1(x).

We first show that in H there exists a temporal path π of length 4 from u to z2(y)
consisting of the sequence of edges (u, x), (x, z1(x)), (z1(x), y), (y, z2(y)). Notice that, the
edges (u, x), (x, z1(x)), (z1(x), y), (y, z2(y)) belong to E1,u, E1,z1(x), E2,z1(x), and E2,z2(y),

ESA 2022
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x y

z1(x) z2(y)u

Figure 3 An example of a two-level cluster and of the edges added to E(H) during the spanner
construction. The black, red and purple edges are added during initialization phase. In particular,
for every u ∈ V , the red edges are those in E1,u and, for every z ∈ Z1, the purple edges are those in
E2,z. The dark blue and light blue edges are those added to E(H) during the first augmentation
phase. The green edges are the edges added to E(H) during the second augmentation phase.

respectively. Moreover, the initialization phase ensures that they all belong to E(H). Then,
by definition of z1(x), we have λ(u, x) ≤ λ(x, z1(x)). Moreover, since (x, z1(x)) ∈ E1,z1(x)
and (z1(x), y) ∈ E2,z1(x), then λ(x, z1(x)) ≤ λ(z1(x), y). Finally, (y, z2(y)) ∈ E2,z2(y) and, by
definition of z2(y), we have λ(z1(x), y) ≤ λ(y, z2(y)).

If v = z2(y), then u can reach v via a temporal path of length 4 in H, by using π.
Moreover, if v = z1(x) then u can reach v via a temporal path of length 2 by using the
subpath π1 of π consisting of the edges (u, x) and (x, z1(x)). Otherwise, we can build a
temporal path to v by considering one of following three cases (to be checked in order):

If (z1(x), v) ∈ E1,z1(x), then v ∈ S1,z1(x) and, due to the first augmentation phase, we
have that (u, v) ∈ E(H).
If (z2(y), v) ∈ E1,z2(y) ∪ E2,z2(y), then vertex v ∈ S1,z2(y) ∪ S2,z2(y) and the first augmenta-
tion phase ensures that (z1(x), v) ∈ E(H). Moreover, since (z1(x), v) ̸∈ E1,z1(x), we have
that λ(x, z1(x)) ≤ λ(z1(x), v). Hence the concatenation of π1 with the edge (z1(x), v)
yields a temporal path of length 3 from u to v in H.
If (z2(y), v) ̸∈ (E1,z2(y)∪E2,z2(y)), the second augmentation phase ensures that (z2(y), v) ∈
E(H). Moreover, λ(y, z2(y)) ≤ λ(z2(y), v). Therefore the concatenation of π with the
edge (z2(y), v) yields a temporal path of length 5 from u to v in H. ◀

▶ Lemma 3. The size of H is O(n4/3 log2/3 n).

3.3 Our temporal (2k − 1)-spanner
In this section, we describe an algorithm that, given an integer k ≥ 2 and a temporal clique
G of n vertices, returns a temporal (2k − 1)-spanner of G with size O(k · n1+ 1

k log
k−1

k n).
The idea is to define a hierarchical clustering of G, where a generic level-i clustering

partitions the special vertices of the level-(i−1) clustering and determines the special vertices
of level i. As we move from one clustering level to the next, the number of clusters decreases
by a factor of roughly n

1
k , thus allowing us to add an increasing number of edges incident to

the special vertices into the spanner.
We ensure that each vertex u ∈ V can reach some special vertex by moving upwards

in the clustering hierarchy. These special vertices work as hubs, i.e., each of them allows
to directly reach a subset of vertices of V , and some special vertex of higher level (via a
temporal path of length at most 2). Then u can reach any vertex in v ∈ V by first reaching
a suitable special vertex z in the hierarchy, and then following the edge (z, v).
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Algorithm 1 Computes a temporal (2k − 1)-spanner.
Input : A temporal clique G;
Output : A temporal (2k − 1)-spanner of G;

1 Z0 ← V ;
2 foreach u ∈ V do E(u)← {(u, v) | v ∈ V };
3 for i = 1, . . . , k − 1 do
4 foreach u ∈ Zi−1 do
5 Ei,u ← set of the first min-time label n

i
k log n edges of E(u);

6 E(u)← E(u) \ Ei,u;
7 Si,u ← {v ∈ V : (u, v) ∈ Ei,u};

8 Ri ←hitting set of {Si,u}u∈Zi−1 computed as in Lemma 1;
9 C ← ∅ ; // Set of vertices in Zi−1 that are already clustered

10 foreach x ∈ Ri do
11 Ci,x = {u ∈ Zi \ C : x ∈ Si,u};
12 zi(x)← arg maxu∈Ci,x{λ(u, x)};
13 C ← C ∪ Ci,x;

14 Zi ← {zi(x) ∈ Zi−1 : x ∈ Ri};

15 H ← (V, ∅) for i = 1 to k − 1 do // Initialization
16 foreach u ∈ Zi−1 do E(H)← E(H) ∪ Ei,u;

17 for i = 1, . . . , k − 1 do // First augmentation
18 foreach u ∈ Zi−1 do
19 Let x ∈ Ri such that u ∈ Ci,x;
20 E(H)← E(H) ∪ {u} × {

⋃i

j=1 Szi(x),j};

21 foreach z ∈ Zk−1 do E(H)← E(H) ∪ {z} × V ; // Second Augmentation

22 return H;

We build our clustering in k − 1 rounds indexed from 1 to k − 1 (a detailed pseudocode is
given in Algorithm 1), where the generic i-th round defines a set Zi of level-i special vertices.
Initially, Z0 = V , i.e., all vertices are special vertices of level 0. During the i-th round, the
level-i clustering is computed from the set of vertices in Zi−1 defined at the previous round
as follows.

For each u ∈ Zi−1, we let Ei,u be a set of δi = Θ(n i
k log

k−i
k n) edges with the smallest

label among those that are incident to u but do not belong to
⋃i−1

j=1 Eu,j , and we denote by
Si,u = {v ∈ V : (u, v) ∈ Ei,u} the set containing the endvertices of the edges incident to u in
Ei,u. We now compute a hitting set Ri ⊆ V of the collection {Si,u | u ∈ Zi−1} having size at
most O( n

δi
log n). Lemma 1 guarantees that Ri always exists. Notice that, as i increases, the

time labels of the edges in Ei,u became larger, δi increases, and |Ri| decreases.
We now partition the vertices in Zi−1 into |Ri| clusters Ci,x, one for each x ∈ Ri. We do

so by adding each vertex u ∈ Zi−1 into an arbitrary cluster Ci,x such that x ∈ Si,u. We call
x the center of the cluster Ci,x. Moreover, for each cluster Ci,x, we choose a special vertex
zi(x) ∈ Ci,x as a vertex that maximizes the label of edge (x, zi(x)).

Once the hierarchical clustering is built, our algorithm proceeds to construct a temporal
(2k − 1)-spanner H of G. At the beginning H = (V, ∅), then edges are added to H in the
following three phases:
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Z0 = V

Z1

Z2

Zk−1

Zi

Figure 4 The set of edges selected for each vertex during the initialization phase.

Initialization: For each u ∈ V , we add to E(H) all the edges in the sets Ei,u for i = 1, . . . , j+1,
where j is the largest integer between 0 and k − 2 for which u ∈ Zj , see Figure 4.

First Augmentation: For each i = 1, . . . , k − 1 and each u ∈ Zi−1, we consider the center
x ∈ Ri of the level-i cluster Ci,x containing u, and we add to E(H) all the edges (u, v)
with v ∈

⋃i
j=1 Sj,zi(x).

Second Augmentation: We add to E(H) all edges incident to some vertex in Zk−1.

We now show that all vertices are at distance at most 2k − 1 in H, and that the size of
H is O(k · n1+ 1

k log
k−1

k n).

▶ Lemma 4. For every u, v ∈ V (G), dH(u, v) ≤ (2k − 1)dG(u, v).

Proof. Let z0 = u and, for i = 1, . . . , k − 1, let zi = zi(xi) where xi ∈ Ri is the center of the
cluster Ci,xi containing zi−1. The initialization phase ensures that, for any i, there exists a
temporal path from z0 to zi in H of length 2i entering zi with the edge (xi, zi) ∈ Ei,zi

.5 Indeed,
πi can be chosen as the path that traverses edge (zi−i, xi) ∈ Ei,zi−1 and edge (xi, zi) ∈ Ei,zi

,
in this order. Notice that, by definition of zi, λ(zi−1, xi) ≤ λ(xi, zi). Moreover, if i < k − 1,
λ(xi, zi) ≤ λ(zi, xi+1) since (xi, zi) ∈ Ei,zi

while (zi, xi+1) ∈ Ei+1,zi
. See Figure 5.

If v = zi for some i = 1, . . . , k − 1 then, from the discussion above, we know that πi is a
temporal path from u to v in H of length 2i < 2k − 1. Otherwise, we distinguish two cases
depending on whether there exists some i = 1, . . . , k − 1 such that (zi, v) ∈

⋃i
j=1 Ej,zi .

Suppose that the above condition is met, and let i > 0 be the minimum index for which
(zi, v) ∈

⋃i
j=1 Ej,zi . If λ(zi, v) ≥ λ(xi, zi), then πi followed by edge (zi, v), is a temporal path

from u to v of length 2i+1 ≤ 2k −1. If λ(zi, v) < λ(xi, zi) then, since (zi, v) ∈
⋃i

j=1 Ej,zi
, we

have v ∈
⋃i

j=1 Sj,zi
and the first augmentation phase adds (zi−1, v) to E(H). By hypothesis

we have (zi−1, v) ̸∈
⋃i−1

j=1 Ej,zi−1 and hence λ(zi−1, v) ≥ λ(xi−1, zi−1). This shows that πi−1
followed by (zi−1, v) is a temporal path from u to v in H of length 2i − 1 ≤ 2k − 1.

It only remains to handle the case in which, for every i, we have (zi, v) ̸∈
⋃i

j=1 Ej,zi
.

In this case, the algorithm adds (zk−1, v) to E(H) during the second augmentation phase.
Moreover, since λ(zk−1, v) ≥ λ(xk−1, zk−1), the path πk−1 followed by edge (zk−1, v) is a
temporal path from u to v in H of length 2k − 1. ◀

▶ Theorem 5. Given a temporal clique G, for any k ≥ 1, the above algorithm computes a
temporal (2k − 1)-spanner H of size O(k · n1+ 1

k log
k−1

k n).

5 This path is not necessarily a simple path (e.g., when zi = zi+1). The existence of a non-simple temporal
path of length ℓ implies the existence of simple temporal path of length at most ℓ.
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x1 ∈ R1

z1 z2 z3 zk−2 zk−1z0

x2 ∈ R2 x3 ∈ R3 xk−1 ∈ Rk−1

Figure 5 The hierarchy of clusters for vertex z0, where zi = zi(xi) where xi ∈ Ri is such that
zi−1 ∈ Ci,xi . The dashed line is the temporal path π3 that goes from z0 to z3.

We conclude this section with a simple lower bound on the size of any temporal 2-spanners
of a temporal clique.

▶ Theorem 6. There exists a temporal clique G of n vertices such that any temporal 2-spanner
of G has size Ω(n2).

4 Single-source spanners for general temporal graphs

In the first part of this section we design an algorithm that, for every 0 < ε < n, builds a
single-source temporal (1 + ε)-spanner of G w.r.t. s of size O

(
n log4 n
log(1+ε)

)
. We observe that,

for constant values of ε, the size of the computed spanner is almost linear, i.e., linear up to
polylogarithmic factors. The algorithm can be extended so as, for every 1 ≤ β < n, it builds
a single-source temporal β-additive spanner of G w.r.t. s of size O

(
n2 log4 n

β

)
.6

Our upper bounds leave open the problem of deciding whether a temporal graph G

admits a single-source temporal preserver w.r.t. s of size Õ(n). We answer to this question
negatively in the second part of this section. More precisely, we show a temporal graph G

of size Θ(n2) and a source vertex s for which no edge can be removed if we want to keep a
shortest temporal path from s to every other vertex u. The construction can be extended to
show a lower bound of Ω(n2/β) on the size of single-source temporal β-additive spanners,
for every β ≥ 1. This implies that our upper bound on the size of single-source temporal
additive spanners is asymptotically optimal, up to polylogarithmic factors.

4.1 Our upper bound
In this section we present an algorithm that, for every 0 < ε < n, computes a single-source
temporal (1 + ε)-spanner of G w.r.t. s of size O

(
n log4 n
log(1+ε)

)
in polynomial time.7

In the following we say that a temporal path is τ -restricted if it uses edges of time-label
of at most τ . Our algorithm computes a spanner that, for every τ = 1, . . . , L, contains
(1 + ε)-approximate τ -restricted temporal paths from s to any vertex v (recall that L is the
lifetime of G). More formally, for two vertices u and v of G, we denote by d⩽τ

G (u, v) the length
of a shortest τ -restricted temporal path from u to v in G. We assume d⩽τ

G (u, v) = +∞ when
G does not contain a τ -restricted temporal path from u to v. The single-source temporal
(1 + ε)-spanner H of G w.r.t. s computed by our algorithm is such that, for every v ∈ V ,
and for every τ = 1, . . . , L, d⩽τ

H (s, v) ≤ (1 + ε)d⩽τ
G (s, v).

6 We refer the interested reader to the full version of this paper for details.
7 Our algorithm also works in the case of directed temporal graphs and/or multiple time-labels. Both

the algorithm and the stretch analysis require no modification. Regarding the running time, we
only need to observe that τ -restricted shortest paths can be computed in polynomial time even in
directed/multiple-label temporal graphs.
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Algorithm 2 Computes a set Πv of temporal paths from s to v in G that provides a good
approximation of any shortest τ -restricted temporal path from s to v in G.

Input : A temporal graph G (with lifetime L), a source vertex s ∈ V , and a vertex v ∈ V .
Output : A set Πv of temporal paths from s to v in G such that, for every τ = 1, . . . , L,

there exists a τ -restricted temporal path π ∈ Πv such that |π| ≤ (1 + δ)d⩽τ
G (s, v).

1 Πv ← ∅; t← +∞;
2 for τ = 1 to L do
3 if d⩽τ

G (s, v) ̸= +∞ and d⩽τ
G (s, v) < t

1+δ
then

4 Let π be a shortest τ -restricted temporal path from s to v in G;
5 Πv ← Πv ∪ {π};
6 t← |π|;

7 return Πv;

For technical convenience, in the following we design an algorithm that, for any 0 < δ < n

and any positive integer k, builds a single-source temporal (1 + δ)k-spanner of G w.r.t. s of
size O

(
kn

1+ 1
k log2− 1

k n
log(1+δ)

)
. The desired bound of O

(
n log4 n
log(1+ε)

)
on the size of the single-source

temporal (1 + ε)-spanner is obtained by choosing k = ⌊log n⌋ and δ = (1 + ε)
1

log n − 1.
Our algorithm uses a subroutine that, for a given vertex v of G, computes a set Πv of

O
(

log n
log(1+δ)

)
temporal paths from s to v of G such that, for every τ = 1, . . . , L, Πv contains

a τ -restricted temporal path π satisfying |π| ≤ (1 + δ)d⩽τ
G (s, v).

The subroutine (see Algorithm 2 for the pseudocode) builds Πv iteratively by adding a
subset of shortest τ -restricted temporal paths from s to v in G, where τ = 1, . . . , L. We do
so by scanning shortest τ -restricted temporal paths from s to v in increasing order of values
of τ . The scanned path π is added to Πv if no other path already contained in Πv has a
length of at most (1 + δ)|π|. The next lemma shows the correctness of our subroutine and
bounds the number of paths contained in Πv.

▶ Lemma 7. For every τ = 1, . . . , L, there is a τ -restricted temporal path π in Πv such that
|π| ≤ (1 + δ)d⩽τ

G (s, v). Moreover, |Πv| = O
( log n

log(1+δ)
)
.

In the rest of this section, for any given temporal path π, we denote by π(ℓ) the subpath
of π containing the last min{ℓ, |π|} edges of π. We observe that π(ℓ) = π when |π| ≤ ℓ.
Moreover, for two vertices u and v of a temporal path π that visits u before v, we denote by
π[u, v] the temporal subpath of π from u to v.

Before diving into the technical details, we describe the main idea of our algorithm and
show how we can use it to build a single-source temporal (1 + δ)2-spanner of G w.r.t. s of
size O

(
n3/2 log3/2 n

log(1+δ)
)
.

For technical convenience, let R0 = V and P0 =
⋃

v∈R0
Πv. In principle, we could build

our single-source temporal (1 + δ)-spanner of G w.r.t. s by simply setting its edge set to⋃
π∈P0

E(π). Unfortunately, Lemma 7 alone is insufficient to provide a subquadratic upper
bound on the size of this spanner. Therefore, to obtain a spanner of truly subquadratic size,
we compute a single-source temporal (1 + δ)2-spanner H of G w.r.t. s instead.

We build H by adding all the short temporal paths in P0, i.e., all paths with at most ℓ0
edges for a suitable choice of ℓ0, and by replacing each long temporal path π ∈ P0 from s to
some vertex v with the shortest temporal path from s to x in Πx, for some vertex x that hits
π(ℓ0), combined with π[x, v].
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Algorithm 3 Single-source temporal spanner of a temporal graph G.
Input : A temporal graph G = (V, E) of n vertices and a source vertex s ∈ V .
Output : A single-source temporal spanner H of G w.r.t. s.

1 for i = 0 . . . , k − 1 do ℓi ← n
i+1

k log1− i+1
k n;

2 foreach v ∈ V do use Algorithm 2 to compute Πv;
3 R0 ← V ; P0 ← {π ∈ Πv | v ∈ R0};
4 for i = 1, . . . , k − 1 do
5 P long

i−1 = {π ∈ Pi−1 | |π| > ℓi};
6 Ri ← hitting set of {π(ℓi−1) | π ∈ P long

i−1 } computed as in Lemma 1;
7 Pi ←

⋃
v∈Ri

Πv;

8 return H =
(

V,
⋃k−1

i=0

⋃
π∈Pi

E(π(ℓi))
)

;

In more details, we define ℓ0 =
√

n log n and we introduce a new parameter ℓ1 =
n. We say that a temporal path π ∈ P0 is short if |π| ≤ ℓ0; it is long otherwise. Let
P long

0 = {π ∈ P0 | |π| > ℓ0} be the subset of long temporal paths in P0. We compute a
set R1 that hits {π(ℓ0) | π ∈ P long

0 } using Lemma 1, and we then use this set to define
a new collection of temporal paths P1 =

⋃
v∈R1

Πv.8 The edge set of H is defined as
E(H) =

⋃
i∈{0,1}

⋃
π∈Pi

E(π(ℓi)). The next lemma shows that this simple algorithm already
computes a single-source temporal (1 + δ)2-spanner of G w.r.t. s of truly subquadratic size.

▶ Lemma 8. For every τ = 1, . . . , L and every v ∈ V , d⩽τ
H (s, v) ≤ (1 + δ)2d⩽τ

G (s, v).
Moreover, the size of H is O

(
n3/2 log3/2 n

log(1+δ)

)
.

The technique we used to replace each of the temporal paths in P long
0 with a temporal

path that is longer by a factor of at most (1 + δ) can be applied recursively on the set P1,
for a suitable choice of ℓ1, to obtain an even sparser spanner. As we show now, k − 1 levels
of recursion allow us to compute a single-source temporal (1 + δ)k-spanner H of G w.r.t. s of
size O

(
kn

1+ 1
k log2− 1

k n
log(1+δ)

)
.

In the following we provide the technical details (see Algorithm 3 for the pseudocode). For
every i = 0, . . . , k − 1, let ℓi = n

i+1
k log1− i+1

k n. As before, let R0 = V and P0 =
⋃

v∈R0
Πv.

During the i-th iteration, the algorithm computes a set Ri that hits {π(ℓi−1) | π ∈ P long
i−1 },

where P long
i−1 = {π ∈ Pi−1 | |π| > ℓi−1} is the set of long temporal paths of Pi−1. The i-th

iteration ends by computing the set Pi =
⋃

v∈Ri
Πv that is used in the next iteration. The

edge set of the graph H that is returned by the algorithm is E(H) :=
⋃k−1

i=0
⋃

π∈Pi
E(π(ℓi)).

▶ Theorem 9. For every τ = 1, . . . , L, for every i = 1, . . . , k, and for every v ∈ Rk−i, we
have that d⩽τ

H (s, v) ≤ (1 + δ)id⩽τ
G (s, v). Moreover, the size of H is O

(
kn

1+ 1
k log2− 1

k n
log(1+δ)

)
.

Proof. We start proving the first part of the theorem statement. The proof is by induction
on i. Fix a vertex v ∈ Rk−i such that d⩽τ

G (s, v) is finite.
For the base case i = 1, we observe that Πv is entirely contained in H by construction.

Therefore, by Lemma 7, d⩽τ
H (s, v) ≤ (1 + δ)d⩽τ

G (s, v) and the claim follows.
We now prove the inductive case. We assume that the claim holds for i − 1 and we prove

it for i. Let π ∈ Πv be a shortest τ -restricted temporal path from s to v among those in Πv.
By Lemma 7, |π| ≤ (1 + δ)d⩽τ

G (s, v). Moreover, by definition, π ∈ Pk−i. If π is short, i.e.,

8 With a little abuse of notation, R1 hits a temporal path π if R1 hits V (π).
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Figure 6 Example of the lower bound with h = 2 and β = 0. Path π1 consists of the black edges.
Path π2 is built on top of π1, whose vertices have been numbered in order of a traversal from s, and
consists of: the fist hop from s to µ (in green), the forward hops (in blue), and the backward hops
(in red). The arrows on the edges of π2 are directed away from s along π2.

|π| ≤ ℓk−i, then π is entirely contained in H and therefore d⩽τ
H (s, v) ≤ (1 + δ)d⩽τ

G (s, v) ≤
(1 + δ)k−id⩽τ

G (s, v). So, in the following we assume that π is long. Let x ∈ Rk−i+1 be a
vertex that hits π(ℓk−i). By construction, the path π[x, v], being a subpath of π(ℓk−i), is
entirely contained in H. Let τ ′ be the label of the edge incident to x in π[x, v]. Clearly,
τ ′ ≤ τ . Moreover, by inductive hypothesis, d⩽τ ′

H (s, x) ≤ (1 + δ)i−1 · |π[s, x]|.
As a consequence, d⩽τ

H (s, v) ≤ d⩽τ ′

H (s, x) + |π[x, v]| ≤ (1 + δ)i−1 · |π[s, x]| + |π[x, v]| ≤
(1 + δ)i−1 · |π| ≤ (1 + δ)id⩽τ

G (s, v).
To bound the size of H, we first observe that, for each v ∈ V , |Πv| = O

( log n
log(1+δ)

)
by Lemma 7. Next, using Lemma 1, we observe that each Ri, with i ≥ 1, has size
|Ri| = O

(
n log n
ℓi−1

)
= O

(
n1− i

k log
i
k n
)
. Furthermore, also |R0| = n = n1− 0

k log
0
k n. Therefore,

for every i = 0, . . . , k − 1, we have |Ri|ℓi = O
(
n1+ 1

k log1− 1
k n
)
. As a consequence,

∑
π∈Pi

|π(ℓi)| =
∑

v∈Ri

∑
π∈Πv

|π(ℓi)| = O

(
|Ri|ℓi

log n

log(1 + δ)

)
= O

(
n1+ 1

k log2− 1
k

log(1 + δ)

)
.

Hence, |E(H)| =
∑k−1

i=0
∑

π∈Pi
|π(ℓi)| = O

(
kn

1+ 1
k log2+ 1

k

log(1+δ)

)
. ◀

The following corollary follows by choosing τ = L and i = k (so that Rk−i = R0 = V ):

▶ Corollary 10. Let G be a temporal graph with n vertices and let s be a vertex of G. The
graph H returned by Algorithm 3 is a single-source temporal (1 + δ)k-spanner of G w.r.t. s

of size O
(

kn
1+ 1

k log2+ 1
k

log(1+δ)

)
.

4.2 Our lower bound
In this section we show that, for every β ≥ 0, there is a temporal graph G of n vertices for
which the size of any single-source temporal β-additive spanner of G w.r.t. s is Ω

(
n2

1+β

)
. This

gives a lower bound of Ω(n2) for the size of a single-source temporal preserver.
The temporal graph G has n = (13 + β)h vertices, where h is an integer, and is formed

by the union of h pairwise edge-disjoint temporal paths π1, . . . , πh. Each path πi goes from s

to a vertex zi and has length Ω(n − i(1 + β)). The construction guarantees that the unique
temporal path of G from s to zi of length of at most dG(s, zi) + β is πi. This implies that
the size of G is Ω

(
n2

1+β

)
, as desired.

The temporal path π1 is a Hamiltonian path that spans all the n vertices of G and goes
from s to z1. All edges of π1 have time-label 1. The remaining temporal paths are defined
recursively. More precisely, for each i = 2, . . . , h, the temporal path πi is defined on top of
the temporal path πi−1 as follows. Let us number the vertices visited in a traversal of πi−1
from s to zi−1 in order from 0 to |πi−1| − 1. The temporal path πi is defined as a sequence
of hops over the vertices of πi−1. We call offset a value µ that is equal to β + 7 for even
values of β, and to β + 8 for odd values of β. The first hop is the one from s to vertex µ,
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if it exists. The rest of the path is given by a maximal alternating sequence of backward
and forward hops that do not visit zi−1. A generic backward hop goes from vertex j, with j

odd, to vertex j − 3, while a generic forward hop goes from vertex j, with j even, to vertex
j + 5. All the edges of πi have time-label i. A pictorial example of the definition of πi is
given in Figure 6. The choice of odd values for the offset is a necessary condition to have
pairwise edge-disjoint paths, while the dependency of the offset on β guarantees that πi

is the unique temporal path from s to zi in G such that |πi| ≤ dG(s, zi) + β. Finally, the
alternating sequence of backward and forward hops guarantees that |πi| = Ω(n − i(1 + β)).
The above discussion yields the following theorem, and a corollary for the case β = 0.

▶ Theorem 11. For every positive integer n and every β ≥ 0, there is a temporal graph G of
n vertices and a source vertex s of G such that any single-source temporal β-additive spanner
of G w.r.t. s has size Ω

(
n2

1+β

)
.

▶ Corollary 12. For every positive integer n, there is a temporal graph G of n vertices such
that any single-source temporal preserver of G w.r.t. s has size Θ(n2).

5 Conclusions

In this paper we addressed the size-stretch trade-offs for temporal spanners. We showed
that a temporal clique admits a temporal (2k − 1)-spanner of size Õ(n1+ 1

k ), which implies
a spanner having size Õ(n) and stretch O(log n). The previous best-known result was the
temporal-spanner of [7] which only preserves temporal connectivity between vertices. Our
construction guarantees O(log n)-approximate distances at the cost of only an additional
O(log n) multiplicative factor on the size. We also considered the single-source case for
general temporal graphs, where we provided almost-tight size-stretch trade-offs, along with
the special case of temporal graphs with bounded lifetime.

The main problem that remains open is understanding whether better trade-offs are
achievable for temporal cliques. In particular, no superlinear lower bounds are known even
for the case of 3-spanners.

Finally, as we already mentioned, temporal graphs admit other natural notions of distances
between vertices (which have have been used, e.g., in [10, 12, 13]). The most commonly used
distances are the earliest arrival time, the latest departure time, the fastest time (i.e., the
smallest difference between the arrival and departure time of a temporal path from u to
v), and – if each edge has an associated travel time – the shortest time distance (i.e., the
minimum sum of the travel times of the edges of a temporal path from u to v). One can
wonder whether sparse temporal spanners with low stretch are attainable also in the case of
the above distances. Unfortunately the answer is negative and strong lower bounds on the
size of temporal α-spanners for temporal cliques can be shown even for large values of α, as
we discuss in the full version of the paper.
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