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Abstract
We investigate preprocessing for vertex-subset problems on graphs. While the notion of kernelization,
originating in parameterized complexity theory, is a formalization of provably effective preprocessing
aimed at reducing the total instance size, our focus is on finding a non-empty vertex set that belongs
to an optimal solution. This decreases the size of the remaining part of the solution which still
has to be found, and therefore shrinks the search space of fixed-parameter tractable algorithms
for parameterizations based on the solution size. We introduce the notion of a c-essential vertex
as one that is contained in all c-approximate solutions. For several classic combinatorial problems
such as Odd Cycle Transversal and Directed Feedback Vertex Set, we show that under
mild conditions a polynomial-time preprocessing algorithm can find a subset of an optimal solution
that contains all 2-essential vertices, by exploiting packing/covering duality. This leads to FPT
algorithms to solve these problems where the exponential term in the running time depends only on
the number of non-essential vertices in the solution.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Packing and covering problems; Theory of computation → Linear programming;
Theory of computation → Fixed parameter tractability

Keywords and phrases fixed-parameter tractability, essential vertices, covering versus packing

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.30

Related Version Full Version: https://arxiv.org/abs/2207.00386 [7]

Funding Funded by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 803421, ReduceSearch).

1 Introduction

Background and motivation. Due to the enormous potential of preprocessing to speed up
the algorithmic solution to combinatorial problems [1, 2, 3, 43, 44], a large body of work in
theoretical computer science is devoted to understanding its power and limitations. Using
the notion of kernelization [4, 20, 21, 25, 29, 33] from parameterized complexity [12, 15] it is
possible to formulate a guarantee on the size of the instance after preprocessing based on
the parameter of the original instance. Under this model, a good preprocessing algorithm is
a kernelization algorithm: given a parameterized instance (x, k), it outputs an equivalent
instance (x′, k′) of the same decision problem such that |x′| + k′ ≤ f(k) for some function f

that bounds the size of the kernel. Research into kernelization led to deep algorithmic
insights, including connections to protrusions and finite-state properties [5], well-quasi
ordering [22], and matroids [30]; these positive results were complemented by impossibility
results [13, 16, 30] delineating the boundaries of tractability.

Results on kernelization led to profound insights into the limitations of polynomial-time
data compression for NP-hard problems. However, as recently advocated [14], the definition
of kernelization only gives guarantees on the size of the instance after preprocessing, which
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30:2 Search-Space Reduction via Essential Vertices

does not directly correspond to the running time of subsequently applied algorithms. If
the preprocessed instance is not solved by brute force, but via a fixed-parameter tractable
algorithm whose running time is of the form f(k) · nO(1), then the exponential dependence
in the running time is on the value of the parameter k, which is not guaranteed to decrease
via kernelization. In fact, if P ̸= NP then no polynomial-time preprocessing algorithm can
guarantee to always decrease the parameter of an NP-hard fixed-parameter tractable problem,
as iterating the preprocessing algorithm would lead to its solution in polynomial time. In this
work, we develop a new analysis of preprocessing aimed at reducing the search space of the
follow-up algorithm. We apply this framework to combinatorial optimization problems on
graphs, whose goal is to find a minimum vertex-subset satisfying certain properties. The main
idea behind the framework is to define formally what it means for a vertex to be essential
for making reasonable solutions to the problem, and to prove that an efficient preprocessing
algorithm can detect a subset of an optimal solution that contains all such essential vertices.

Before stating our results, we introduce and motivate the model. We consider vertex-
subset minimization problems on (possibly directed) graphs, in which the goal is to find
a minimum vertex subset having a certain property. Examples of the problems we study
include Vertex Cover, Odd Cycle Transversal, and Dominating Set. The analysis
of such minimization problems, parameterized by the size of the solution, has played an
important role in the literature (cf. [9, 17, 27, 38, 40]). Our starting point is the thesis that
a good preprocessing algorithm should reduce the search space. Since many graph problems
are known to be fixed-parameter tractable when parameterized by the size of the solution,
we can reduce the search space of these FPT algorithms by finding one or more vertices
which are part of an optimal solution, thereby decreasing the size of the solution still to be
found in the reduced instance (i.e. the parameter value).

Since in general no polynomial-time algorithm can guarantee to identify at least one vertex
that belongs to an optimal solution, the guarantee of the effectiveness of the preprocessing
algorithm should be stated in a more subtle way. When solving problems by hand, one
sometimes finds that certain vertices v are easily identified to belong to an optimal solution, as
avoiding them would force the solution to contain a prohibitively large number of alternative
vertices and therefore be suboptimal. Can an efficient preprocessing algorithm identify those
vertices that cannot be avoided when making an optimal solution?

Since many NP-hard problems remain hard even when there is a unique solution [42],
this turns out to be too much to ask as it would allow instances with unique solutions
to be solved in polynomial time, which leads to NP = RP . We therefore have to relax
the requirements on the preprocessing guarantee slightly, as follows. For an instance of
a vertex-subset minimization problem Π on a graph G, we denote the minimum size of a
solution on G by OPTΠ(G). For a fixed c ∈ R≥1, we say a vertex v ∈ V (G) is c-essential
for Π on G if all feasible solutions S ⊆ V (G) for Π whose total size is at most c · OPTΠ(G)
contain v. Based on this notion, we can ask ourselves: can an efficient preprocessing algorithm
identify part of an optimal solution if there is at least one c-essential vertex?

Phrased in this way, the algorithmic task becomes more tractable. For example, for
the Vertex Cover problem, selecting all vertices that receive the value 1 in an optimal
half-integral solution to the LP-relaxation results in a set S which is contained in some
optimal solution (by the Nemhauser-Trotter theorem [37], cf [12, §2.5]), and at the same time
includes all 2-essential vertices: any vertex v /∈ S only has neighbors of value 1

2 and 1, which
implies that the set X of vertices other than v whose value in the LP relaxation is at least 1

2 ,
forms a feasible solution which avoids v. Its cardinality is at most twice the cost of the LP
relaxation and therefore X is a 2-approximation. Hence S contains all 2-essential vertices.



B. M. Bumpus, B. M. P. Jansen, and J. J. H. de Kroon 30:3

This example shows that a preprocessing step that detects c-essential vertices without any
additional information is sometimes possible. However, to be able to extend the scope of our
results also to problems which do not have polynomial-time constant-factor approximations,
we slightly relax the requirements on the preprocessing algorithm as follows. Let Π be a
minimization problem on graphs whose solutions are vertex subsets and let c ∈ R≥1.

c-Essential detection for Π
Input: A graph G and integer k.
Task: Find a vertex set S ⊆ V (G) such that:
G1 if OPTΠ(G) ≤ k, then there is an optimal solution in G containing all of S, and
G2 if OPTΠ(G) = k, then S contains all c-essential vertices.

In this model, the preprocessing task is facilitated by supplying an additional integer k

in the input. The correctness properties of the output S are formulated in terms of k.
If OPTΠ(G) ≤ k, then the set S is required to be part of an optimal solution. The upper
bound on OPTΠ(G) is useful to the algorithm: whenever the algorithm establishes that
avoiding v would incur a cost of more than k, it is safe to add v to S. If OPTΠ(G) = k,
then the algorithm should guarantee that S contains all c-essential vertices. Knowing a lower
bound on OPTΠ(G) is useful to the algorithm in case it can establish that any optimal
solution containing v can be transformed into one avoiding v whose cost is (c − 1) · k larger,
which yields a c-approximation if (c − 1) · k ≤ (c − 1) OPTΠ(G). Hence vertices for which
such a replacement exists are not c-essential and may safely be left out of S.

Results. We present polynomial-time algorithms for c-Essential detection for Π for
a range of vertex-deletion problems Π and small values of c; typically c ∈ {2, 3}. Example
applications include Vertex Cover and Feedback Vertex Set, and also Chordal
Vertex Deletion (for which no O(1)-approximation is known), Odd Cycle Transversal
(for which no O(1)-approximation exists, assuming the Unique Games Conjecture [28, 45]),
and even Directed Odd Cycle Transversal (which is W [1]-hard parameterized by
solution size [35]).

The model of c-Essential detection for Π is chosen such that the detection algorithms
whose correctness is formulated with respect to the value of k, can be used as a preprocessing
step to optimally solve vertex-subset problems without any knowledge of the optimum.
Let EΠ

c (G) denote the set of c-essential vertices in G, which is well-defined since all optimal
solutions contain all c-essential vertices. By using a preprocessing step that detects a superset
of the c-essential vertices in the solution, we can effectively improve the running-time
guarantee for FPT algorithms parameterized by solution size from f(OPTΠ(G)) · |V (G)|O(1),
to f(OPTΠ(G) − |EΠ

c (G)|) · |V (G)|O(1). This leads to the following results.

▶ Theorem 1.1. For each problem Π with coefficient c and parameter dependence f listed
in Table 1 that is not W [1]-hard, there is an algorithm that, given a graph G, outputs an
optimal solution in time f(ℓ) · |V (G)|O(1), where ℓ := OPTΠ(G) − |EΠ

c (G)| is the number of
vertices in an optimal solution which are not c-essential.

Hence the running time for solving these problems does not depend on the total size
of an optimal solution, only on the part of the solution that does not consist of c-essential
vertices. The theorem effectively shows that by employing c-Essential detection for Π
as a preprocessing step, the size of the search space no longer depends on the total solution
size but only on its non-essential vertices.
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Table 1 For each problem Π, there is a polynomial-time algorithm for c-Essential detection for
the stated value of c. Combined with the state of the art algorithm for the natural parameterization,
this leads to an algorithm solving the problem in time f(ℓ)·|V (G)|O(1) where ℓ = OPTΠ(G)−|EΠ

c (G)|.

Problem c f(ℓ) Reference

Vertex Cover 2 1.2738ℓ [9]
Feedback Vertex Set 2 2.7ℓ [31]
Directed Feedback Vertex Set 2 4ℓ · ℓ! [10]
Odd Cycle Transversal 2 2.3146ℓ [34]
Directed Odd Cycle Transversal 3 W[1]-hard [35]
Chordal Vertex Deletion 13 2O(ℓ log ℓ) [8]

We also prove limitations to this approach. Assuming FPT ̸= W [1], for Dominating Set,
Perfect Deletion (in which the goal is to obtain a perfect graph by vertex deletions) and
Wheel-Free Deletion, there is no polynomial-time algorithm for c-Essential detection
for any c ∈ R≥1. In fact, we can even rule out such algorithms running in time f(k)·|V (G)|O(1).
These results are based on FPT-inapproximability results for Dominating Set [40] and
existing reductions [26, 32] to the mentioned vertex-deletion problems.

Techniques. The main work lies in the algorithms for c-Essential detection, which
are all based on covering/packing duality for forbidden induced subgraphs to certain graph
classes, or variations thereof in terms of (integer) solutions to certain linear programs and
their (integer) duals. To understand the relation between detecting essential vertices and
covering/packing duality, consider the Odd Cycle Transversal problem (OCT). Following
the argumentation for the classic Erdős-Pósa theorem [18], in general there is no constant c

such that any graph either has an odd cycle transversal of size c · k, or a packing of k

vertex-disjoint odd cycles. However, we show that a linear packing/covering relation holds
in the following slightly different setting. If G − v is bipartite (so all odd cycles of G

intersect v), then the minimum size of an OCT avoiding v equals the maximum cardinality
of a packing of odd cycles which pairwise intersect only at v. We can leverage this statement
to prove that any vertex v which is not at the center of a flower (see Definition 3.1) of more
than OPToct(G) odd cycles, is not 2-essential: for any optimal solution X containing v, the
graph G′ := G − (X \ {v}) becomes bipartite after removal of v and by assumption does
not contain a packing of more than OPToct(G) odd cycles pairwise intersecting at v. So by
covering/packing duality on G′, it has an OCT X ′ of size at most OPToct(G) avoiding v,
so that (X \ {v}) ∪ X ′ is a 2-approximation in G which avoids v, showing that v is not
2-essential. Since v is clearly contained in an optimal solution whenever there is a flower
of more than OPToct(G) odd cycles centered at v, this yields a method for c-Essential
detection when using a known reduction [23] to Maximum Matching to test for a flower
of odd cycles.

Organization. After presenting preliminaries in Section 2, we give algorithms to detect
essential vertices based on covering/packing duality in Section 3 and based on integrality
gaps in Section 4. In Section 5 we show how these detection subroutines can be used to
improve the parameter dependence of FPT algorithms parameterized by solution size. The
lower bounds are presented in Section 6. The investigation of c-essential vertices has close
connections to the area of perturbation stability, which we briefly explore in Section 7. We
conclude in Section 8. Due to space limitations, proofs of statements marked (⋆) are deferred
to the full version [7].
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2 Preliminaries

We consider finite simple graphs, some of which are directed. We use standard notation for
graph algorithms; any terms not defined here can be found in the textbook by Cygan et
al. [12]. We consider vertex-deletion problems on graphs. For a graph class C, a C-modulator
in a graph G is a vertex set S ⊆ V (G) such that G − S ∈ C. The minimum size of a
C-modulator in G is denoted OPTC(G). The corresponding minimization problem is defined
as follows.

C-Deletion
Input: A graph G.
Task: Find a minimum-size vertex-subset S ⊆ V (G) such that G − S ∈ C.

Throughout this paper we consider hereditary graph classes C. These can be characterized
by a (possibly infinite) set of forbidden induced subgraphs denoted forb(C). The C-Deletion
problem is equivalent to finding a minimum set S ⊆ V (G) such that no induced subgraph of
G − S is isomorphic to a graph in forb(C). We say that such a set S hits all graphs from
forb(C) in G. For these classes the vertex set V (G) is a trivial C-modulator (since the empty
graph is in all hereditary classes), which ensures that the task of finding a smallest modulator
is always well-defined.

A graph is perfect if for every induced subgraph the size of a largest clique is equivalent
to its chromatic number. Equivalently, a graph is perfect if it has no induced cycle of odd
length at least five or its edge complement (cf. [24]). A graph is chordal if it has no induced
cycle of length at least four. A graph is bipartite if its vertex set can be partitioned into two
independent sets, or equivalently, it does not contain an odd-length cycle. Given a graph G

and a set T ⊆ V (G), a T -path is a path with at least one edge with both endpoints contained
in T . A T -path is odd if it has an odd number of edges. For u, v ∈ V (G), a (u, v)-separator
is a set S ⊆ V (G) \ {u, v} that disconnects u from v. If G is a directed graph, then in G − S

there is no directed path from u to v instead.

3 Positive results via Packing Covering

In this section we provide polynomial-time algorithms for c-Essential detection for Π
for various problems Π. The case for the Vertex Cover problem was given in Section 1.
The results in this section are all based on packing/covering duality (cf. [11], [41, §73]).
Towards this end, we generalize the notion of flowers, which played a key role in kernelization
for Feedback Vertex Set [6]. While flowers were originally formulated as systems of
cycles (forbidden structures for Feedback Vertex Set) pairwise intersecting in a single
common vertex, we generalize the notion to near-packings of arbitrary structures here.

▶ Definition 3.1. Let F be a set of graphs. For a graph G and v ∈ V (G), a (v,F)-flower
with p petals in G is a set {C1, C2, . . . , Cp} of induced subgraphs of G such that each Ci

(with i ∈ [p]) is isomorphic to some member of Fand such that V (Ci) ∩ V (Cj) = {v} for
all distinct i, j ∈ [p]. The F-flower number of a vertex v ∈ V (G), denoted ΓF (G, v), is the
largest integer p for which there is a (v,F)-flower in G with p petals.

We show a general theorem for finding 2-essential vertices for C-deletion if a maximum
(v,forb(C))-flower can be computed in polynomial-time. It applies to those classes C where
graphs with G − v ∈ C obey a min-max relation between C-modulators avoiding v and
packings of forbidden induced subgraphs intersecting only at v.

ESA 2022
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▶ Theorem 3.2. Let C be a hereditary graph class such that, for any graph G and ver-
tex v ∈ V (G) with G − v ∈ C, the minimum size of a C-modulator avoiding v in G

equals Γforb(C)(G, v). Suppose there exists a polynomial-time algorithm A that, given a
graph G and vertex v ∈ V (G), computes Γforb(C)(G, v). Then there is a polynomial-time
algorithm that solves 2-Essential detection for C-Deletion.

Proof. Apply algorithm A to each vertex v ∈ V (G) and let S be the set of vertices for
which it finds that Γforb(C)(G, v) > k. We argue that Properties G1 and G2 are satisfied. If
OPTC(G) ≤ k, then every vertex in S is contained in every optimal solution for G since a
size-k solution cannot hit a flower of k + 1 petals from forb(C) without using v. Therefore
Property G1 is satisfied. Next suppose that OPTC(G) = k and let X be an optimal solution.
We argue that each vertex v /∈ S is not 2-essential. Clearly this holds for any vertex v /∈ X,
so suppose that v ∈ X. Note that for every vertex v /∈ S we have Γforb(C)(G, v) ≤ k, which
implies that Γforb(C)(G′, v) ≤ k where G′ := G − (X \ {v}). Note that since G′ − v ∈ C, by
assumption there exists a C-modulator X ′ ⊆ V (G′) \ {v} in G′ of size Γforb(C)(G′, v) ≤ k.
Observe that (X \ {v}) ∪ X ′ is a C-modulator in G of size at most 2k that avoids v and
therefore v is not 2-essential. ◀

Theorem 3.2 allows us to conclude the following result for Feedback Vertex Set (FVS)
and its directed variant (DFVS) using Gallai’s theorem and Menger’s theorem, respectively.

▶ Lemma 3.3 (⋆). There are polynomial-time algorithms for 2-Essential detection for
Π for Π ∈ {FVS, DFVS}.

Next, we consider Odd Cycle Transversal (OCT), which corresponds to C-Deletion
where C is the class of bipartite graphs and forb(C) consists of all odd cycles. In order to
apply Theorem 3.2 to OCT, we first argue that the class of bipartite graphs satisfies the
preconditions. The proof is similar to that of Geelen et al. [23, Lemma 11] who reduce
the problem of packing odd cycles containing v to a matching problem. We note that,
although their result can be used to obtain a 3-essential detection algorithm, we will show
(Lemma 3.7) how to efficiently detect 2-essential vertices as well. If the graph resulting from
their construction has a large matching, then there is a large (v,forb(C))-flower. If on the
other hand there is no large matching, then the Tutte-Berge formula is used to obtain a set
of size 2k that hits all the odd cycles passing through v. We show that if the graph G − v

is bipartite instead, then this second argument can be improved to obtain a hitting set of
size k by noting that the lack of a large matching implies that there is a small vertex cover
due to Kőnig’s theorem. This is below, using the viewpoint that odd cycles in G correspond
to odd T -paths in G − v for T = NG(v).

▶ Lemma 3.4. For any undirected graph G and set T ⊆ V (G), a maximum packing of odd
T -paths can be computed in polynomial time. Moreover, if G is bipartite then the cardinality
of a maximum packing of odd T -paths is equal to the minimum size of a vertex set which
intersects all odd T -paths.

Proof. We reduce to matching as in [23, Lemma 11]. Construct a graph H as follows. For
each v ∈ V (G) \ T , let v′ /∈ V (G) be a copy of v. Let V (H) = V (G) ∪ {v′ | v ∈ V (G) \ T}
and E(H) = E(G) ∪ {u′v′ | uv ∈ E(G − T )} ∪ {vv′ | v ∈ V (G) \ T}. Note that the graph
H consists of the disjoint union of G and a copy of G − T , with an added edge between
v ∈ V (G) \ T and its copy v′. Geelen et al. [23] mention that there is a 1-1 correspondence
between odd T -paths in G and certain augmenting paths in H. For completeness we give a
self-contained argument.
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▷ Claim 3.5. Graph G contains k vertex-disjoint odd T -paths if and only if H has a matching
M of size |V (G) \ T | + k. Furthermore, given a matching M in H of size |V (G) \ T | + k we
can compute a set of k vertex-disjoint odd T -paths in polynomial time.

Proof. (⇒) Let P = (P1, . . . , Pk) be a set of k vertex-disjoint odd T -paths in G. Consider a
path P = (v1, . . . , v2ℓ) ∈ P, where ℓ ≥ 1. First note that we can assume that V (P ) ∩ T =
{v1, v2ℓ}, since if vi ∈ T for some 1 < i < 2ℓ, then either (v1, . . . , vi) or (vi, . . . , v2ℓ) is an
odd T -path and we can update P accordingly. Construct a matching M in H as follows. For
any path P = (v1, . . . , v2ℓ) ∈ P, add the edges v1v2, v′

2v′
3, . . . , v2ℓ−1v2ℓ, alternating between

original vertices and copy vertices. This is possible as P is of odd length. For any vertex in
u ∈ V (G) \ T that is not contained in an odd T -path, we add uu′ to M . Observe that at
least 2|V (G) \ T | + 2k vertices are matched, therefore |M | ≥ |V (G) \ T | + k as desired.

(⇐) Let M be a matching of size |V (G) \ T | + k. If M contains both uv and u′v′ for
u, v ∈ V (G) \ T , then update M by removing them and inserting uu′ and vv′ instead. If for
v ∈ V (G) \ T only one of v and v′ is matched, and it is not matched to its copy, then match
it to its copy instead. Afterwards let E′ := {uv ∈ E(G) | uv ∈ M ∨ u′v′ ∈ M}. Observe that
in G[E′], each vertex in V (G) \ T has degree 0 or 2. For each v ∈ V (G) \ T such that v has
degree 0 in G[E′], add vv′ to M if it is not in already. Note that all vertices of H − T are
matched. It follows that at least 2k vertices in T are matched by M and they have degree 1
in G[E′]. Observe that G[E′] is a collection of paths and cycles with all degree-1 vertices in
T . We get that there are k T -paths in G that are of odd length by construction (every even
numbered edge in G[E′] originated from the copy part of H). Note that we can find them in
polynomial time. ◁

Since a maximum matching can be computed in polynomial time, by the claim above we
get that a maximum packing of vertex-disjoint odd T -paths can be computed in polynomial
time. Next we prove the second part of the statement.

▷ Claim 3.6. If G is bipartite and a maximum matching M in H has size |V (G) \ T | + k,
then there is a set S ⊆ V (G) of size at most k such that G − S has no odd-length T -path.

Proof. Observe that since G is bipartite, the graph H is bipartite as well. By Kőnig’s
theorem [41, Theorem 16.2], H has a vertex cover X of size |V (G) \ T | + k. Let S =
(X ∩ T ) ∪ {u | {u, u′} ⊆ X}. Note that for each u ∈ V (G) \ T , at least one of u ∈ X or
u′ ∈ X must hold to cover the edge uu′, thereby already accounting for |V (G) \ T | vertices
of the cover. It follows that |S| ≤ k. We argue that S hits all odd-length T -paths in G.

For the sake of contradiction suppose there is some odd-length T -path from t1 ∈ T to
t2 ∈ T \ {t1} in G − S. Let P = (t1, v1, . . . , v2ℓ, t2) be a (not necessarily induced) shortest
odd T -path. Note that neither of t1 and t2 belong to X by construction of S. Furthermore
P \ {t1, t2} ⊆ V (G) \ T , as otherwise we could construct a shorter odd-length T -path.
Consider the vertices V (P ) ∪ {v′

1, . . . , v′
2ℓ} ⊆ V (H). By construction of S, the vertex cover

X has exactly one of vi and v′
i for each i ∈ [2ℓ]. Observe that for it to be a vertex cover, X

must contain vertices of P \ {t1, t2} and their copies in an alternating fashion since for each
edge vi, vi+1 of P , the graph H contains edges viv

′
i, vi+1v′

i+1, vivi+1, v′
iv

′
i+1. Without loss of

generality, let v1 ∈ X. It follows that v2ℓ /∈ X. But this contradicts that X is a vertex cover
as v2ℓt2 is not covered. We conclude that S hits all odd-length T -paths in G. ◁

By Claim 3.5, a maximum packing of k of vertex-disjoint odd T -paths in G implies a
matching in H of size |V (G) \ T | + k. By Claim 3.6, we can create a set of size at most k

that intersects all odd T -paths in the bipartite graph G. Clearly such a set has size at
least k. It follows that if G is bipartite, then the cardinality of a maximum packing of odd
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T -paths is equal to the minimum size of a vertex set which intersects all odd T -paths. (For
completeness, we remark that this last property can also be derived from Menger’s theorem:
in a bipartite graph with bipartition into A ∪ B, a T -path is odd if and only if its endpoints
belong to different partite sets, so a maximum packing of odd T -paths is equivalent to a
maximum set of vertex-disjoint paths between A ∩ T and B ∩ T .) ◀

By observing that odd T -paths in G − v directly correspond to flowers with odd cycles
pairwise intersecting at v in G, Lemma 3.4 and Theorem 3.2 imply the following.

▶ Lemma 3.7. There is a polynomial-time algorithm for 2-Essential detection for
OCT.

The DOCT problem corresponds to C-deletion where forb(C) consists of all directed
cycles of odd length. Using Menger’s theorem on an auxiliary graph, we can detect 3-essential
vertices for this problem.

▶ Lemma 3.8 (⋆). There is a polynomial-time algorithm for 3-Essential detection for
DOCT.

We cannot use the approach based on computing a maximum (v, F)-flower for the
Chordal Deletion problem; a simple reduction1 from Disjoint Paths [39] shows that it
is NP-hard to compute a maximum (v, F)-flower when F is the set of chordless cycles of
length at least four. In the next section, we will therefore use an approach based on the
linear-programming relaxation to deal with Chordal Deletion.

4 Positive results via Linear Programming

Consider the following natural linear program for C-Deletion for hereditary graph classes C.
The LP corresponding to an input graph G is defined on the variables (xu)u∈V (G), as follows.

C-Deletion LP
Objective: minimize

∑
u∈V (G) xu.

Subject to:∑
u∈V (H) xu ≥ 1 for each induced subgraph H of G isomorphic to a graph in forb(C),

0 ≤ xu ≤ 1 for each u ∈ V (G).

In the corresponding integer program, the constraint 0 ≤ xu ≤ 1 is replaced by xu ∈ {0, 1}.
We say that a minimization LP has integrality gap at most c for some c ∈ R if the cost of an
integer optimum is at most c times the cost of a fractional optimum. In general, the number
of constraints in the C-Deletion LP can be exponential in the size of the graph. Using the
ellipsoid method (cf. [41]), this can be handled using a separation oracle: a polynomial-time
algorithm that, given an assignment to the variables, outputs a violated constraint if one
exists. It is well-known (cf. [41, Thm. 5.10]) that linear programs with an exponential number
of constraints can be solved in polynomial time using a polynomial-time separation oracle.
To detect essential vertices, the integrality gap of a slightly extended LP will be crucial. We
define the v-Avoiding C-Deletion LP for a graph G and distinguished vertex v ∈ V (G) as
the C-Deletion LP with the additional constraint that xv = 0. Hence its integral solutions
correspond to C-modulators avoiding v.

1 Starting from an instance (G, (s1, t1), . . . , (sℓ, tℓ)) of Disjoint Paths satisfying siti /∈ E(G) for all i ∈ [ℓ]
(which is without loss of generality), insert a vertex v adjacent to A =

⋃ℓ

i=1{si, ti} and insert all edges
between vertices in A except siti for each i ∈ [ℓ].
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▶ Theorem 4.1 (⋆). Let C be a hereditary graph class such that for each graph G and v ∈
V (G) satisfying G − v ∈ C, the integrality gap of v-Avoiding C-Deletion on G is at
most c ∈ R≥1. If there is a polynomial-time separation oracle for the C-Deletion LP, then
there is a polynomial-time algorithm for (c + 1)-Essential detection for C-Deletion.

Using known results on covering versus packing for chordless cycles in near-chordal graphs,
the approach above can be used to detect essential vertices for Chordal Deletion. For
the class of chordal graphs, the corresponding set of forbidden induced subgraphs is the class
hole of all holes, i.e., induced chordless cycles of length at least four.

▶ Lemma 4.2 (⋆). There is a polynomial-time algorithm for 13-Essential detection
for Chordal Deletion.

5 Consequences for Parameterized Algorithms

In this section we show how the algorithms for c-Essential detection from the previous
section can be used to solve C-Deletion for various classes C, despite the fact that the
detection algorithms only work when certain guarantees on k are met. The main theorem
connecting the detection problem to solving C-Deletion is the following.

▶ Theorem 5.1. Let A be an algorithm that, given a graph G and an integer k, runs in
time f(k) · |V (G)|O(1) for some non-decreasing function f and returns a minimum-size
C-modulator if there is one of size at most k. Let B be a polynomial-time algorithm for c-
Essential detection for C-Deletion. Then there is an algorithm that, given a graph G,
outputs a minimum-size C-modulator in time f(ℓ) · |V (G)|O(1), where ℓ = OPTC(G)−|Ec(G)|
is the c-non-essentiality.

Proof. First we describe the algorithm as follows. For each 0 ≤ k ≤ |V (G)|, let Sk be the
result of running B on (G, k), let Gk := G − Sk, and let bk := k − |Sk|.

Letting L be the list of all triples (Gk, Sk, bk) sorted in increasing order by their third
component bk, proceed as follows. For each (Gk, Sk, bk) ∈ L, run A on (Gk, bk) to find a
minimum C-modulator SA of size at most bk, if one exists. If |SA| = bk, then output SA ∪ Sk

as a minimum C-modulator in G.
To analyze the algorithm, we first argue it always outputs a solution. For the call

with k∗ = OPTC(G), both conditions of the detection problem are met. Hence by Property
G1 the set Sk∗ is contained in a minimum modulator in G, so that OPTC(G − Sk∗) =
OPTC(G) − |Sk∗ | = k∗ − |Sk∗ |. Therefore graph Gk∗ = G − Sk∗ has a modulator of size
at most bk∗ = OPTC(G − Sk∗) and none which are smaller, so that A correctly outputs a
modulator of size bk∗ . In turn, this causes the overall algorithm to terminate with a solution.

Having established that the algorithm outputs a solution, we proceed to show that it
outputs a minimum-size modulator whenever it outputs a solution (which may be in an
earlier iteration than for k∗ = OPTC(G)). Let k′ be the value of k that is reached when the
algorithm outputs a solution SA ∪ Sk′ . Then we know:
1. algorithm A found a minimum-size modulator SA in Gk′ of size at most bk′ , and
2. the set SA ∪ Sk′ is a modulator in G, since SA is a modulator in Gk′ = G − Sk′ , and

therefore OPTC(G) ≤ bk′ + |Sk′ | = k′.

To see that the algorithm is correct, notice that, since OPTC(G) ≤ k′, the set Sk′ is
contained in some minimum-size modulator for G (since B satisfies Property G1). Hence
OPTC(Gk′) = OPTC(G) − |Sk′ |. Since A outputs a minimum-size modulator if there is
one of size at most bk, we have |SA| = OPTC(G) − |Sk′ |, so that A(Gk′) ∪ Sk′ is a feasible
modulator of size OPTC(G) and therefore optimal.
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Now we prove the desired running-time bound. First of all, notice that we can determine
the list L in polynomial time by running B once for each value of k (which is at most |V (G)|).
By how we sorted L, we compute A(Gk, bk) only when bk ≤ bk∗ , as we argued above that if
the algorithm has not already terminated, it does so after reaching k∗ = OPTC(G). Hence
the calls to algorithm A are for values of the budget bk which satisfy bk ≤ bk∗ . We bound
the latter, as follows.

Since k∗ = OPTC(G), the set Sk∗ found by B is a superset of the set Ec(G) of all of the
c-essential vertices in G (Property G2). This means that we have

bk∗ = OPTC(G) − |Sk∗ | ≤ OPTC(G) − |Ec(G)| = ℓ,

so the parameter of each call to A is at most ℓ, giving the total time bound f(ℓ)·|V (G)|O(1). ◀

Theorem 1.1 now follows from Theorem 5.1 via the algorithms for c-Essential de-
tection given in the previous sections and the state-of-the-art algorithms for the natural
parameterizations listed in Table 1. Although the latter may be originally stated for the
decision version, using self-reduction they can easily be adapted to output a minimum
solution if there is one of size at most k.

6 Hardness results

Given the positive results we saw in Sections 3 and 4, it is natural to seek problems Π for which
c-Essential detection for Π is intractable. Here we show that c-Essential detection
for Dominating Set is intractable for any c ∈ O(1) and then use this as a starting point to
prove similar results for Hitting Set, Perfect Deletion, and Wheel-free Deletion.

A dominating set is a vertex set whose closed neighborhood is the entire graph. The
domination number of a graph is the size of a minimum dominating set. The starting point for
our reductions is the following result which states that it is W [1]-hard to solve Dominating
set parameterized by solution size even on instances which have “solution-size gaps”.

▶ Lemma 6.1 ([40], cf. [19, Thm. 4]). Let F, f : N → N be any computable functions.
Assuming FPT ̸= W[1], there does not exist an algorithm that, given a graph G and integer k,
runs in time f(k) · |V (G)|O(1) and distinguishes between the following two cases:

Completeness: G has a dominating set of size k.
Soundness: Every dominating set of G is of size at least k · F (k).

All of our reductions in this section share a leitmotif. We start with a gap instance (G, k)
of Dominating Set and map it to an instance G′ of c-Essential detection for Π (for
appropriate Π) equipped with a distinguished vertex v∗ with the following property: (1) if
G has domination number at most k, then no optimal solution in G′ contains v∗; (2) if G

has domination number strictly greater than c · F (k) (for some appropriate F ), then v∗ is
contained in every solution of size at most c · F (k) in G′. Thus our hardness results will
follow by combining reductions of this kind with Lemma 6.1.

▶ Lemma 6.2 (⋆). There is a polynomial-time algorithm R that, given a graph G and
integer k, outputs a graph R(G, k) containing a distinguished vertex v∗ such that:

if G has dominating number at most k, then the domination number of R(G, k) is exactly k

and every optimal dominating set avoids v∗;
if G has domination number strictly greater than c · (k + 1) for some c ∈ R≥1, then
R(G, k) has domination number k + 1 and the distinguished vertex v∗ is contained in all
R(G, k)-dominating sets of size at most c · (k + 1).
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Proof sketch. The graph R(G, k) is defined formally as follows:
1. initialize R(G, k) as the graph on vertex set {vi | v ∈ V (G), 0 ≤ i ≤ k} with edges {viuj |

uv ∈ E(G), 0 ≤ i, j ≤ k},
2. for each i ∈ [k] insert an apex ai which is adjacent to {vi | v ∈ V (G)},
3. insert a vertex v∗ which is adjacent to {vi | v ∈ V (G), 0 ≤ i ≤ k}.
The proof that R(G, k) has the desired properties is given in the full version [7], together
with a figure of the construction. ◀

Lemma 6.1 combined with the reduction provided by Lemma 6.2 yields the following.

▶ Theorem 6.3. Unless FPT = W [1], there is no FPT-time algorithm for c-Essential
detection for Dominating Set parameterized by k for any c ∈ R≥1.

Proof. Suppose such an algorithm A exists for c; we will use it with Lemma 6.1 to
show FPT = W [1] for the function F (k) = c(k + 1).

Given an input (G, k) in which the goal is to distinguish between the completeness and
soundness cases, the algorithm proceeds as follows. Using the reduction R of Lemma 6.2,
consider the graph R(G, k) and let S be the output of an algorithm for c-Essential
detection for Dominating Set on the pair (R(G, k), k + 1); note that the solution size
for which we ask is k + 1 rather than k. Without loss of generality we may assume k ≥ 2, as
the distinction can trivially be made otherwise. We will show that in the completeness case
we have v∗ /∈ S, while in the soundness case we have v∗ ∈ S, which allows us to distinguish
between these cases by checking whether v∗ belongs to the output of A(R(G, k), k + 1).

For the completeness case, suppose G has domination number at most k. Then, by
Lemma 6.2, so does R(G, k). This means that Property G1 holds for the call to A(R(G, k), k+
1), so that there is some optimal solution S′ of size k which contains S and hence we have
v∗ ̸∈ S by Lemma 6.2.

For the soundness case, suppose G has domination number at least k · F (k) = c(k + 1)k >

c(k + 1) (we use k ≥ 2 here). Then by Lemma 6.2, graph R(G, k) has domination number
k + 1 and v∗ is contained in all its dominating sets of size at most c(k + 1). In other words:
v∗ is c-essential in R(G, k). Consequently, v∗ ∈ S by Property G2 since the argument k + 1
we supplied to A coincides with the optimum in R(G, k) in this case.

If A runs in FPT-time, then the overall procedure runs in FPT-time which implies FPT =
W [1] by Lemma 6.1. ◀

Combining Lemma 6.2 with the standard reduction S from Dominating Set to Hitting
Set (where hyperedges are given by closed neighborhoods) yields a composite mapping S ◦ R

which relates c-essentiality to gaps in solution quality in much the same way as R did. We
leverage this together with known reductions from Hitting Set to Perfect Deletion [26]
and Wheel-free Deletion [32] to show the following.

▶ Theorem 6.4 (⋆). Unless FPT = W [1], both c-Essential detection for PerfDel and
c-Essential detection for WheelDel do not admit FPT-time algorithms parameterized
by k for any c ∈ R≥1.

7 Connections to Perturbation Resilience

In the area of perturbation resilience [36] there is a notion of so-called c-perturbation resilient
instances to optimization problems. Roughly, these are instances G in which there is a unique
optimal solution S which far outperforms (by a factor of c) every other solution S′ in G.
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More formally, for a vertex-weighted graph minimization problem Π whose solution is a
vertex-subset, we say that an instance (G, w : V (G) → N) with a unique optimal solution S is c-
perturbation resilient if for any perturbed weight function w′ satisfying w(v) ≤ w′(v) ≤ c·w(v)
for all v ∈ V (G), the instance (G, w′(x)) has a unique optimal solution and furthermore this
solution is S. (Of course, one can define an analogous notion for maximization problems as
well and what follows in this section applies to both.)

Classes of c-perturbation resilient instances have been shown to be “islands of tractability”
where many intractable problems become polynomial-time-solvable [36] and the suggestive
intuition behind this fact is that perturbation resilient instances have unique optima which
“stand out” and are “obvious” in some sense. Viewing stability through the lens of parame-
terized complexity, it is natural to ask whether one can quantify in an algorithmically useful
way how distant an input is from being stable. The following proposition supports our claim
that the non-essentiality (recall Theorem 5.1) is a good such measure since on (> c)-stable
inputs, the c-non-essentiality is smallest possible (namely it is 0).

▶ Proposition 7.1. Given constants c′ > c ≥ 1, if G is a c′-stable input to a graph optimization
problem Π whose solutions are vertex-subsets, then EΠ

c (G) is the unique optimum of G.

Proof. Consider the unique optimum S for Π on G. If S′ is a c-approximation for Π on G,
then we must have S′ = S (since otherwise G would not be c′-stable). As a consequence we
know that every vertex of S must be c-essential and hence we have S ⊆ Ec(G) ⊆ S. ◀

Proposition 7.1 and Theorem 5.1 allow us to immediately deduce that any algorithm for
c-Essential detection solves all (> c)-perturbation resilient instances exactly.

▶ Corollary 7.2. Given a minimization problem Π, any algorithm for c-Essential detec-
tion for Π solves (> c)-stable instances exactly.

8 Conclusion

We introduced the notion of c-essential vertices for vertex-subset minimization problems on
graphs, to formalize the idea that a vertex belongs to all reasonable solutions. Using a variety
of approaches centered around the theme of covering/packing duality, we gave polynomial-
time algorithms that detect a subset of an optimal solution containing all c-essential vertices,
which decreased the search space of parameterized algorithms from exponential in the size of
the solution, to exponential in the number of non-essential vertices in the solution.

Throughout the paper we have restricted ourselves to working with unweighted problems.
However, many of the same ideas can be applied in the setting where each vertex has a
positive integer weight of magnitude O(|V (G)|O(1)) and we search for a minimum-weight
solution. Since integral vertex weights can be simulated for many problems by making
twin-copies of a vertex, our approach can be extended to Weighted Vertex Cover,
Weighted Odd Cycle Transversal, and Weighted Chordal Deletion.

Our results shed a new light on which instances of NP-hard problems can be solved
efficiently. FPT algorithms for parameterizations by solution size show that instances are
easy when their optimal solutions are small. Theorem 1.1 refines this view: it shows that
instances with large optimal solutions can still be easy, as long as only a small number of
vertices in the optimum is not c-essential.

We remark that there is an alternative route to algorithms for c-Essential detection,
which is applicable to C-Deletion problems which admit a constant-factor approximation.
If there is a polynomial-time algorithm that, given a graph G and vertex v, outputs a
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c-approximation for the problem of finding a minimum-size C-modulator avoiding v, it
can be used for c-Essential detection. A valid output S for the detection problem
with input (G, k) is obtained by letting S contain all vertices for which the approximation
algorithm outputs a v-avoiding modulator of size more than c · k. Using this approach
(cf. [22]) one can solve maxF ∈F |V (F )|O(1)-Essential detection for F-Minor-Free
Deletion for any finite family F containing a planar graph. As the results for problems for
which no constant-factor approximation exists are more interesting, we focused on those.

Our work opens up several questions for future work. Is the integrality gap for v-
Avoiding Planar Vertex Deletion constant, when G−v is planar? Can O(1)-Essential
detection for Planar Vertex Deletion be solved in polynomial time? Can 2-
Essential detection for Chordal Deletion be solved in polynomial time? Can the
constant c for which we can detect c-essential vertices be lowered below 2?

Considering a broader horizon, it would be interesting to investigate whether there are
less restrictive notions than c-essentiality which can be used as the basis for guaranteed
search-space reduction.
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