
Spanner Approximations in Practice
Markus Chimani !

Theoretical Computer Science, Universität Osnabrück, Germany

Finn Stutzenstein !

Theoretical Computer Science, Universität Osnabrück, Germany

Abstract
A multiplicative α-spanner H is a subgraph of G = (V, E) with the same vertices and fewer edges
that preserves distances up to the factor α, i.e., dH(u, v) ≤ α · dG(u, v) for all vertices u, v. While
many algorithms have been developed to find good spanners in terms of approximation guarantees,
no experimental studies comparing different approaches exist. We implemented a rich selection of
those algorithms and evaluate them on a variety of instances regarding, e.g., their running time,
sparseness, lightness, and effective stretch.
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1 Introduction

Consider a directed or undirected graph G = (V, E) with n vertices and m edges. The
distance dG(u, v) is the length of a shortest path between two vertices u and v, possibly
subject to edge weights w : E → R+. A spanner is a sparse subgraph of G that preserves
these distances to some quality degree. Spanners were introduced by Peleg and Schäffer [38]
after the first mention by Awerbuch [5]. There are many spanner variants, see Ahmed et.
al [1] for a survey. In this paper we are going to focus on the probably most popular variant:

▶ Definition 1 (Multiplicative α-Spanner [38]). Given a directed or undirected graph G = (V, E)
and a stretch α ≥ 1, a multiplicative α-spanner H = (V, E′) is a subgraph of G with E′ ⊆ E

such that dH(u, v) ≤ α · dG(u, v) holds for all pairs (u, v) ∈ V × V .

For simplicity we use the term spanner for the multiplicative α-spanner in the following.
Given a graph G, finding any spanner is trivial since G is a spanner of itself. The problem

we are interested in is to find a good spanner. Next to the stretch α itself, there are three
basic measures of a spanner’s quality: the size is the number of edges |E′|; the sparseness
s(H) = |E′|

|E| is the relative size w.r.t. the original graph, with a lower value indicating a
sparser spanner; the lightness ℓ(H) = W (E′)

W (MST(G)) with W (F ) =
∑

e∈F w(e) compares the
weight of the spanner to the weight a minimum spanning tree in G.

▶ Definition 2 (Sparsest (Lightest) α-Spanner). Given a graph G = (V, E) and a stretch
α ≥ 1, find a sparsest (lightest) multiplicative α-spanner H = (V, E′) such that s(H) ≤ s(H ′)
(ℓ(H) ≤ ℓ(H ′), respectively) for all other spanners H ′ of G.

Finding good spanners is motivated by several applications, e.g., ranging from routing
problems [5, 40, 17, 43] to distributed computing [39, 18]. Also many theoretical applications
require spanners, e.g., approximate distance oracles [37, 45], almost shortest paths [25, 22],
or access control hierarchies [31, 9]. Thus, while finding a sparsest or lightest spanner is
NP-hard [38, 11], a multitude of algorithms was developed to find sparse or light spanners.
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37:2 Spanner Approximations in Practice

We are interested in the computation of spanners in practice. Farshi and Gudmundsson [27]
compared specialized algorithms based on WSPD-graphs [12] and Θ-graphs [16, 32] for the
geometric case; Bouts et al. [10] presented experiments, e.g., on multilevel subset additive
spanners. Regarding exact algorithms, Sigurd and Zachariasen [44] developed in 2004 an
exact spanner algorithm based on an ILP with an exponential number of variables, each
representing a shortest path. Graphs with up to 64 vertices were tested but not all instances
could be solved within the time limit of 30 minutes. Ahmed et al. [2] published a compact
ILP based on multicommodity flow in 2019, which can be solved by standard B&B-techniques.
They tested graphs with up to 100 vertices, but the solver needed up to 40 hours to solve
the largest instances on a high-performance 400-node cluster. They did not compare the
results to [44] or other popular heuristics. Apart from these studies, there seem to be no
further experimental studies, in particular none for the arguably most prominent base case
of multiplicative α-spanners in non-geometric settings.

Contribution. Despite the multitude of applications, there is an obvious total lack of
practical experience with polynomial algorithms for non-geometric spanners. While there are
various intrinsically different algorithmic ideas known in literature, there is no understanding
which of these concepts lend themselves to fruitful practical applications. The main focus of
this paper is thus to gain some insight in the practical consequences of these algorithmically
diverse ideas. – In Sect. 2, we provide an overview of the known algorithms. We argue our
selection of algorithms and give implementation details in Sect. 3. In Sect. 4, we present the
results of our experimental study.

2 Known Algorithms

Much work and effort has been put into developing different approaches to find spanners.
We will categorize the existing literature into three main categories: greedy algorithms,
approximation algorithms, and other methods. For a rich theoretical survey of graph
spanners, their theoretical background and algorithms, see Ahmed et al. [1].

Greedy algorithms. One of the earliest algorithms is by Althöfer et al. [4] and is reminiscent
of Kruskal’s algorithm. The algorithm ADDJS, often named Basic Greedy Spanner Algorithm,
starts with a spanner without edges and adds edges {u, v} with increasing weight to the
spanner, if the shortest path between u and v is currently too long, i.e., dH(u, v) > α·w({u, v}).
For a stretch α = 2k − 1 (k ∈ N≥1), this algorithm creates a spanner of size O(n1+1/k) and
lightness O(n/k). The running time is mostly dominated by a Dijkstra run for each edge:
O(m(n1+1/k + n log n)). – Roditty and Zwick [42] sped up to the distance calculation in the
spanner by incrementally maintaining a shortest-path tree, but lose any lightness guarantee
in the process. Thorup and Zwick [45] explored approximate distance oracles, yielding a
spanner algorithm as a byproduct, but as before, no lightness guarantee can be given.

To further improve the quality measures, more refined analyses using ε-parameterized
algorithms were introduced. Thereby, one allows the spanner to violate the stretch requirement
by a factor of up to 1 + ε, while the approximation ratio of the sparsity and lightness is
measured against the best spanner not violating this requirement. Chandra et al. [13], Elkin
and Solomon [26] and Elkin et al. [24] use various techniques (e.g., dynamic shortest-path
trees, further auxillary graphs, and distance oracles) and refined analyses to create a spanner
with guarantees for size and lightness as well as maintaining a low running time. Alstrup et
al. [3] provide the currently best guarantees; their algorithm creates a ((2k−1)(1+ε))-spanner
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with size Oε(n1+1/k) and lightness Oε(n1/k) within a running time of O(n2+1/k+ε′). Thereby,
Oε ignores polynomial factors depending on 1/ε. However, ADDJS still has the best lightness
guarantee while strictly providing an α = 2k − 1 stretch and is existentially optimal, see
Ahmed et al. [1, Chapter 4] for a more thorough theoretical insight. Additionally, most above
modifications lead to very complex algorithms that are often not practically implementable
due to the intricate additionally required data structures mentioned above.

Clustering algorithms. Baswana and Sen [6] (BS) gave a method based on growing clusters
around sampled vertices. It is special compared to all other algorithms as it does not do
any local or global distance calculation. It computes an α = 2k − 1 spanner for a weighted,
undirected graph in two phases. First, there are k − 1 rounds of growing clusters by sampling
vertices and successively adding nearest neighbors to each cluster. Then, clusters are joined
by adding all non-clustered vertices to the nearest adjacent cluster and interconnecting all
clusters. This yields a spanner of size O(kn1+1/k) in an expected running time of O(km),
but no lightness guarantee. For an unweighted graph, the size is bounded by O(n1+1/k + kn).

Approximation algorithms. An early O(log(m/n))-approximation in terms of size by Kort-
sarz and Peleg [34] was published in 1994 for the special case of a 2-spanner for unweighted
and undirected graphs (algorithm KP). An edge e is covered, if it is not part of the spanner,
but part of a triangle in the original graph and both other edges are in the spanner, so the
spanner property holds for e. The idea is to cover a large number of edges while not adding
too many edges to the spanner by finding dense subsets of vertices and adding connecting
edges to the spanner. KP calculates dense subsets Uv of neighboring vertices N(v) for each
vertex v and continues with the densest subset, say Uw. The star {{u, w}|u ∈ Uw} is added
to the spanner. The edges within the dense subset are now covered and finding the densest
subgraph allows for covering the most edges. This is repeated while there exists a dense subset
with a density larger than 1. The running time is bounded by O(nm · MDS(n, m)) where
MDS(n, m) is the running time of the algorithm to solve the maximum density subgraph
problem. Using Goldberg’s algorithm [30], the resulting time complexity is O(m2n3 log n).
There exist more advanced algorithms for the maximum density problems so the theoretical
running time can be lowered to O(m2n2 log(n2/m)) [28].

For undirected graphs we know of no explicit further approximation results. One reason
may be that ADDJS already has an O(n1+1/k) guarantee for the spanner size. For a connected
original graph, a spanner must have at least n−1 edges, as it has to be connected as well. This
lower bound for an optimal solution thus results in a straight-forward O(n1/k)-approximation
in terms of size for every undirected graph.

For directed graphs, Elkin and Peleg [25] gave the first Õ(n2/3)-approximation in the
special case α = 3. For general α ≥ 3, Bhattacharyya et al. [9] published an Õ(n1−1/α)-
approximation combining two techniques: The spanner is the union of the arc sets of two
graphs. The first graph is obtained by solving an LP relaxation and rounding the solution.
The second one is created by sampling vertices and growing BFS arborescences from them.
Dinitz and Krauthgamer [20] improved the techniques and Berman et al. [8] gave the currently
best solution for general stretch α ≥ 1 (algorithm BBMRY): They introduced an O(n1/2 log n)-
approximation for weighted, directed graphs. For the special case α = 3 (later extended to
α = 4 by Dinitz and Zhang [21]) a slightly modified approach can be taken to achieve an
Õ(n1/3)-approximation for directed and unweighted graphs. The techniques used are similar
to the approach of Bhattacharyya et al. [9]: The arcs of the original graphs are categorized
as either thin or thick by the number of shortest paths connecting the endpoints of the
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37:4 Spanner Approximations in Practice

Table 1 Considered algorithms. The letters G, A, C and P in the second column stand for greedy,
approximation, clustering, and probabilistic, respectively. *Assume α = 2k − 1, k ∈ N≥1.

Algorithm w(e) Stretch Spanner Properties* Running time

ADDJS [4] G ✓ α ∈ R≥1
s(H) ∈ O(n1+1/k)

ℓ(H) ∈ O(n/k) [see text] O(m(n1+1/k + n log n))

KP [34] A × α = 2 O(log(m/n))-approx. in size O(m2n3 log n)

BBMRY [8] A ✓ α ∈ R≥1 O(n1/2 log n)-approx. in size poly

BS [6] C × α ∈ N≥3, odd s(H) ∈ O(n1+1/k + kn) expected O(km)

BS [6] C ✓ α ∈ N≥3, odd s(H) ∈ O(kn1+1/k) expected O(km)

EN [23] P × α ∈ N≥1, odd s(H) ∈ O(n1+1/k/ε)
0 < ε < 1

expected O(m),
success prob. ≥ 1 − ε

arc. An LP rounding covers all thin arcs, and growing arborescences from sampled vertices
cover all thick arcs. For the (I)LP, antispanners were introduced. Given an arc (u, v), an
antispanner is an arc set A, such that no shortest path with a distance less then α · dG(u, v)
exists between u and v in G \ A. A is a minimal antispanner for (u, v) if no A′ ⊂ A is an
antispanner for (u, v). The ILP tries to cover arcs so that at least one arc of each minimal
antispanner is used. If this is achieved, the selected arcs resemble a feasible solution. Due to
the exponential number of minimal antispanners, we require a separation oracle to solve the
LP relaxation of this ILP with cutting planes. The separation oracle has an exponentially
small probability in n of failing.

Randomized Algorithms. A probabilistic method was presented by Elkin and Neiman [23]
to calculate a spanner with stretch 2k − 1 for undirected, unweighted graphs (algorithm EN).
They built upon Miller et al. [36, 35] and improved the size to O(n1+1/k/ε). For each vertex
u, a random value ru is drawn from an exponential distribution. Each vertex broadcasts
a message with ru as the content to all vertices within distance k. A vertex x, receiving
messages from some vertices U ⊂ V , stores mu(x) = ru − dG(u, x) for each vertex u ∈ U

together with an edge adjacent to x that lies on a shortest path between u and x. The edges
belonging to the messages with mu(x) ≥ maxu∈V {mu(x)} − 1 are added to the spanner.
Since the algorithm has a success probability of at least 1 − ε, we can obtain an expected
running time of O(m) by iterating.

3 Considered Algorithms and Implementation Details

As motivated in Sect. 1, we aim at covering very diverse algorithmic approaches and
investigating their relative merits, rather than several algorithmic variants finetuning a
common idea. Only once an understanding on the most worthwhile algorithmic concepts has
been achieved, deeper comparisons of algorithmic variants would seem worthwhile.

Thus, we select five, intrinsically different, algorithmic approaches to analyze; Table 1
provides an overview of the characteristics of each algorithm. With the goal of small running
times and larger instances, we decided against reestablishing the performance of the exact
algorithms [44, 2]; as summarized in Sect. 1, their running times are nowhere competitive
on the instances we aim to consider. As the representative for the fundamental greedy
algorithms, we selected ADDJS. While the algorithms of Thorup and Zwick [45] and Roditty
and Zwick [42] improve the running time, ADDJS promises better results w.r.t. size and
lightness. As such, there was no good argument to consider these or the algorithmically



M. Chimani and F. Stutzenstein 37:5

and implementationwise much more involved ε-parameterized variants at this stage of the
scientific knowledge discovery (but see Sect. 5). This argument is further amplified by the
fact that many of these variants require very sophisticated subalgorithms (see above) which
are by themselves unknown territory from the algorithm engineering viewpoint.

From the approximation algorithms we selected KP and BBMRY as they are the state-of-the-
art. For BBMRY, we implemented the variant for arbitrary α, not the special improvements
for α = 3 and α = 4. In the following, we list some implementation specific details; all our
implementations guarantee the running time of the algorithmic descriptions.

Althöfer et al. (ADDJS). We include a straightforward observation to speed-up the compu-
tation: We bound the shortest-path search for each pair of vertices by α · w({u, v}) since
finding a longer path (or no path at all) results in adding the edge {u, v} to the spanner. Note
that one is not limited to a stretch α ∈ Nodd; the algorithm works for arbitrary α ≥ 1 ∈ R,
but may only provide the size and lightness guarantees for the next odd integer.

Baswana and Sen (BS). We broadly follow the detailed algorithmic description of [6]. We
changed only one small aspect: The second and third step of the first phase can be combined
in a single pass. After sampling clusters, it is not necessary to first calculate the nearest
neighboring sampled cluster for each vertex and store it in some data structure because the
third step can directly follow and does not depend on other vertices.

Kortsarz and Peleg (KP). The algorithm mainly depends on an implementation for the
maximum density subgraph problem. We use Goldberg’s algorithm [30] due to its simplicity of
implementation. It resembles a binary search with O(log n) steps: A source and target vertex
(s, t) are added to the graph and connected to all original vertices. In each step the weights
of the new edges are chosen depending on the current search value. A minimum s-t-cut is
calculated and based on the resulting cut it is decided, whether the lower or upper half of
the search interval is used. To solve the minimum s-t-cut problem we use Goldberg-Tarjan’s
max-flow algorithm [29] with global relabeling and gap relabeling heuristic requiring O(n2m)
time. This results in a running time for Goldberg’s maximum density subgraph algorithm of
O(n2m log n) and, as described above, in a complete running time of O(m2n3 log n) for KP.

The algorithm has to maintain three sets Hs, Hc, and Hu for the spanner edges, covered
edges, and uncovered edges. In the implementation it is sufficient to only use the original
graph’s edge set E = Hu (by shrinking G on the fly) and the spanner’s edge set E′ = Hs.
There is no need to explicitly store covered edges Hc in some data structure. For each
maximum dense subset Uw, the star edges are added to E′. The star edges and the edges
of the implied dense subset graph E(Uw) = {{u, v} ∈ E|u, v ∈ Uw}, which are the covered
edges, are removed from E, so that the covered edges are simply entirely removed. Since
we have to calculate the density of the maximum density subset, we have E(Uw) already
available, so no extra work is required to calculate the edges induced by the subset of vertices.

Berman et al. (BBMRY). The original algorithmic description leaves some implementation
details open. First, the property of an arc (s, t) being thin or thick has to be efficiently
evaluated [8, Definition 2.2]. The definition uses a local graph Gs,t = (V s,t, Es,t) induced
by all vertices belonging to paths from s to t with a length of at most α · dG(s, t). An
arc (s, t) is thick, if |V s,t| ≥ n1/2. Calculating all possible paths is not an option, so in- and
out-arborescenses can be used. First, we precalculate these arborescences since we need them
for evaluating the local graphs and during sampling afterwards. For each vertex r, an in-
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and out-arborescense rooted at r is calculated. The distances to other vertices x are saved
in din(r, x) (dout(r, x), respectively) together with the respective predecessor to be able to
access the actual trees during sampling. To check if |V s,t| ≥ n1/2 holds, we can use the
equivalence: x ∈ V s,t ⇐⇒ dout(s, x) + din(t, x) ≤ α · dG(s, t). Checking each vertex x, we
count |V s,t| and decide the property for each arc. This could be done by using either an
in- or out-arborescence, but both types are needed for the sampling, so we can precalculate
both anyhow. Consequently, the subsequent sampling does not involve any shortest-path
calculations and can be done by looking up predecessor relations.

Next, given an arc (s, t) it must be checked, if a set R ⊆ E settles the arc [8, Definition 2.3],
i.e., R satisfies the α-spanner property for (s, t). This is done by running a bounded Dijkstra
on R with a running time of O(|R| + n log n). The check whether an arc is settled is done
quite often, e.g., during the separation method and in the minimization of an antispanner.

Finally, let us focus on the separation method and the creation of antispanners. The
former is straightforward: After rounding the fractional solution, obtaining R, we check every
thin arc, whether it is settled by R. For an unsettled thin arc (s, t), we create an antispanner
w.r.t. R (see [8, Claim 2.4]). Similar to the thin arc property where the vertices V s,t are
required, we need the arc set Es,t, as A = Es,t \ R is an antispanner. An arc (u, v) is an
element of Es,t if and only if dout(s, u) + w(u, v) + din(t, v) ≤ α · dG(s, t); this check can reuse
the precalculated arborescences. After finding the antispanner it has to be minimized. We
greedily remove arcs from A, while the unsettled thin arc remains unsettled. If no further
arc can be removed, A is a minimal antispanner.

Elkin and Neiman (EN). Provided the very compact description of the algorithm and no
explicit pseudocode, one has to be very careful not to gloss over intricate important details.
We implemented the algorithm in the standard centralized model. The authors also highlight
the distributed and PRAM models (as the algorithm can be parallelized well), but we aim to
keep it comparable to all other algorithms.

To start, remember that the edges saved together with the received messages must belong
to some shortest u-x-path. Naturally, we store the edge where x received the message from.
To ensure that the messages travel along shortest paths, we use a breadth-first-search (BFS)
starting at u with a depth limit of k, without the need of a Dijkstra computation.

The algorithm includes two feasibility checks. If one fails, the algorithm does not provide
a feasible solution. The first check, that ru < k holds for all u ∈ V , can be done directly
while generating values ru to let the algorithm fail quickly if the property does not hold.
The second check at the end of the algorithm asserts that there are sufficiently many edges.
Elkin and Neiman state that the spanner must have at least n − 1 edges and the algorithm
fails, if |E′| < n − 1. This is only correct if the original graph is connected. If it has c ≥ 2
components, we can use the condition |E′| < n − c instead.

A major improvement in terms of memory consumption can be made when reversing the
way the algorithm is formulated. The original formulation can chiefly be described as:
1. For each u ∈ V , broadcast messages mu(x) to every vertex x within distance k.
2. For each receiving x ∈ V : Calculate maxu∈V {mu(x)} and add edges to the spanner.
Following this order, one has to save two n × n matrices containing the message values mu(x)
and the edge where the messages are received. In a pilot study, this resulted in out-of-memory
errors for very sparse graphs (m ≈ 2n) with n ≈ 40, 000, which other algorithms can handle.
To lower the memory consumption, we reversed the logic to focus on each receiving vertex x:
A BFS starting at x identifies all vertices u that can broadcast a message to x. Then, the
aggregation and edge addition can directly be done afterwards, before proceeding with the
next x. To summarize all improvements, the code is provided in [15, Appendix A].
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We note that it is possible to provide values for ε that are not in the interval (0, 1).
Especially ε ≥ 1 can produce good spanners in practice with the downside of an increasing
possibility to fail. For results of a pilot study to choose ε, see [15, Appendix B].

4 Experimental Results

We are now ready to present the main content of this paper. The considered algorithms are
tested with a variety of instances and parameter settings, as described in the following. In
Sect. 4.1 we take a look at the running time of each algorithm. We compare the quality of
the resulting spanners in Sect. 4.2. Finally, in Sect. 4.3, we propose and briefly investigate
two further graph measures we deem interesting in their own right: We ask about the mean
degrees and the mean lengths of the shortest paths in weighted spanners (compared to the
input graphs). Investigating these measures can help us to better understand the different
behaviors and results of the various algorithms.

Setup. Since BBMRY is the only algorithm that would work (with known quality guarantees)
on directed graphs, we consider only undirected graphs. Edge weights are often a requirement
in applications, but not all algorithms can take weighted graphs as inputs; thus we use each
graph twice, once with and once without weights. In the following we will use the absolute
density ϱa(G) = m/n and the relative density ϱr(G) = m/

(
n
2
)

to categorize graphs. In the
experiments we consider integer stretches 2, 3, 4, 5, and 7. To test a variety of graph types,
three instance libraries are used:
1. Steinlib [33]: This well-known library was originally created for the Steiner tree problem,

but has also been used in many studies for related problems. Since several application
areas of Steiner trees and spanners overlap, it seems judicious to consider this set. It
contains 1207 graphs in 44 subsets. Over 62% of the graphs have ϱr = m/

(
n
2
)

< 2.5%
(mostly sparse). On average, the graphs have 1189 vertices and 8549 edges; the largest
graph has 38418 vertices.

2. Tsplib [41]: The well-established Tsplib contains complete weighted graphs. We omitted
27 of the 122 graphs as they have edge weights 0 or are directed. About half of the
graphs have <200 vertices; the largest graph has 7397 vertices. The graphs have 771
(250) vertices on average (median).

3. Random: We generated random Erdős-Rényi graphs with |V | ∈ {10, 20, 50, 100, 200,

500, 1000, 2000}, a relative density of i/10 for i ∈ {1, 2, . . . , 9} and 10 graphs of each
combination. Apart from the unweighted instances, we also consider two different random
weight function: weights in the range 1 ± 1/3 (W1), and integer weights between 1 and n

(W2). The former ensures that each edge is a shortest path between its end vertices, as
is the case for unweighted instances, whereas the latter includes “obviously superfluous”
edges. All graphs are available at [7].

All implementations are freely available and will be part of the next release of the open
source C++ Open Graph algorithms and Datastructures Framework [14] (www.ogdf.net).
All experiments were performed on an Intel Xeon Gold 6134 with 256 GB RAM under Debian
10.2 using gcc 8.3.0-6 (-O3). For BBMRY, we use CPLEX 20.1 [19] as the LP solver. When
conducting an experimental study, and i.p. due to the page restriction, one has to decide
between in-depth analyses of a smaller set of certain aspects or a broader approach of reporting
the overall algorithmic behaviors over a larger field of questions and parameterizations. As our
goal herein is to broadly assess competing algorithmic ideas, the second option makes more
sense. However, all detailed data of our experiments is available at [7] for other researchers
(or a subsequent longer journal version) to investigate further.

ESA 2022
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Table 2 Solved instances per algorithm and average time for successful cases.

Library ADDJS BS KP BBMRY EN

Random 98.62% (2.96 s) 100.00% (0.03 s) 66.67% (2.46 s) 70.16% (3.07 s) 100.00% (3.10 s)
Steinlib 99.88% (0.48 s) 100.00% (0.11 s) 91.55% (1.91 s) 83.79% (5.32 s) 100.00% (0.37 s)
Tsplib 81.75% (4.98 s) 98.71% (1.47 s) 33.01% (14.75 s) 60.74% (5.70 s) 76.05% (3.11 s)

All 98.46% (0.92 s) 99.91% (0.21 s) 86.02% (2.30 s) 80.91% (5.21 s) 98.20% (0.66 s)
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Parameterizing the Randomized Algorithms. To fairly evaluate the randomized algorithms
BS and EN, we first need to investigate their parameterizations. We report on these additional
experiments in [15, Appendix B]. In the following, we use the most competitive settings of
1000 iterations for BS and 200 iterations for EN with ε = 0.8.

4.1 Running Time
We start with investigating the running times of our algorithms. We set a time limit of 60
seconds for each calculation: ADDJS, BS, and EN can solve the majority of all instances within
this limit (cf. Table 2), and an additional pilot study shows that higher limits of 90 or 120
seconds do not significantly increase the number of solved instances. Before comparing the
algorithms, we discuss their runtime behavior individually. In the following, when speaking
about averages we consider the standard arithmetic mean, unless specified otherwise.

ADDJS. The running time is linear in m for fixed n. Almost all Steinlib instances can be
solved within 6 seconds and all Tsplib instances with n ≤ 1200 within the time limit. The
densest instances over all libraries with ϱr ≥ 90% and n ≈ 1000 can barely be solved within
the time limit. The running time shows a dependency on the graph weights: unweighted
graphs can be solved 33.45% faster than weighted ones. Furthermore, higher stretches are
faster to compute. There is one peculiar outlier: while all other combinations of weights and
stretches allow all Random instances to be solved within the time limit, α = 2 for weighted
(and W1-weighted, see also Sect. 4.2) instances is drastically slower and only achieves a
success rate of 89%. This is also the only case where W1 yields higher running times than
W2 and the unweighted case. Over the solved unweighted instances, α = 2 is 42.61% slower
than α = 3 (while, e.g., α = 3 is only 6.19% slower than α = 4).
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BS. The clustering approach is very fast. Every instance from Random is solved in under
0.6 seconds. The running time behaves linearly in m, as expected. Analogous to ADDJS,
unweighted instances are faster, but in contrast, a lower stretch is faster as well. For Random,
the running times for W1 are in-between those of W2 and unit weights. Almost all instances
of the Tsplib can be solved; only the two largest instances (n = 5915, 7397) exceed the
time limit for α ≥ 5. The majority of the Steinlib instances can be solved within a second.
Generally, BS seems to have difficulties with large, very sparse graphs; for these graphs with
ϱr ≤ 0.01%, the running time is up to 17.5 seconds (cf. [15, Appendix, Figure 8]). These are
Steinlib instances from the subsets LIN, ALUT, and ALUE (grid graphs with holes, n ≥ 20000).

KP. Surprisingly, there is no clear relationship between the running time and n, m, or ϱr;
however the absolute density is limiting: For instances with 40 ≲ ϱa ≲ 60, the running time
drastically starts to increase in comparison to ϱa ≲ 40 and no instances with ϱa ≳ 60 can be
solved in time (cf. Fig. 1). This behavior is consistent over all three libraries except for a
handful of outliers from Tsplib. Regarding Steinlib, the sets 2R, I320, C, PUC and the largest
instances of LIN require higher running times due to the very large n. The complete graphs
of Tsplib can be solved with up to 120 vertices, which corresponds to ϱa = 59.5.

BBMRY. Its running time depends on α and the weights: Similar to ADDJS, unweighted
graphs are slightly faster (by 10.28%), but a higher stretch results in a lower running time.
It also shares the performance degradation for α = 2 on unweighted graphs. Overall, both
the timeout rates and the running times are very high. Regarding the instance sizes, the
number of edges has a disproportionate impact on the running time, i.e., only Steinlib
instances with m ≤ 5000 edges can be solved, regardless of the number of vertices. This
is not surprising since the antispanner creation and minimization depends on the original
graph’s edges. Graphs from Random and Tsplib can only be solved if they have less than
250 nodes. Even though BBMRY has a probability of failing, we never observed any failure
during the experiments.

EN. We observe a linear running time in m. We measured the time until the first success,
so previous failures are included in the running times. EN can solve graphs with up to 1000
vertices for Random and Tsplib, with a smaller stretch being slightly faster, as the BFS
depth depends on α. The maximum time for Steinlib is 14 seconds.

Comparison. Table 3 shows the percentage of instances an algorithm can solve strictly
faster than another algorithm, as well as the average relative speed-up factor in these cases.
An example is provided in Fig. 2 for unweighted instances and α = 5. Clearly, BBMRY is
the slowest of the considered algorithms. Only KP was sometimes slower (in 8.2% of the
cases, roughly 14-fold); but when KP was faster, it was so by a factor of over 116. BS shows a
significant number of instances where it is fastest, as it benefits from traversing adjacency lists
instead of calculating distances. Also, its speed-up factor in these cases is rather strong. EN
and ADDJS both share a similar number of instances each can solve faster. This is no surprise
since EN’s BFS for each node is similar to the Dijkstra runs for ADDJS in the unweighted
setting. Only for large or dense instances, ADDJS gets noticeably faster than EN (cf. Fig. 2).
If these values were to be restricted to larger or denser graphs (e.g. n ≥ 100 or ϱr ≥ 5%), the
results would be even clearer due to the fact that all small/sparse instances can be solved
within fractions of seconds by most algorithms.
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Table 3 Percentage of instances where A was strictly faster than B. “–” denotes that the
algorithms cannot be directly compared due to their incompatible stretch restrictions (2 vs. odd),
see Table 1. The speed-up factor is given in parentheses. Only instances both algorithms can solve
are included.

A
B ADDJS BS KP BBMRY EN

ADDJS 14.83% (1.45) 51.23% (123.61) 93.24% (210.88) 19.38% (1.07)
BS 36.07% (24.71) – 92.99% (188.60) 28.70% (30.23)
KP 1.19% (1.27) – 86.65% (116.61) –

BBMRY 0.00% (–) 0.00% (–) 8.20% (14.17) 0.00% (–)
EN 27.10% (2.68) 11.52% (0.45) – 93.37% (170.12)

4.2 Quality
We may now consider the standard measures for spanners: their lightness and sparseness.

Weight functions for the Random instances. A key observation from the running times
above also holds true for the solutions’ quality: The unweighted instances and the weighting
W1 behave very similarly. In any measure, W1 lies between W2 and the unweighted case,
but is always very close to the latter; with increasing graph size, the sparseness of W1
converges to that of the latter. Thus, in the following discussions regarding Random, we focus
on unweighted instances and W2; all statements about the former are also true for W1.

Lightness. As a concept different from size, the lightness is only relevant for weighted
instances. BBMRY and BS do not provide any guarantees, and indeed, both yield arbitrarily
high lightness values in practice across all instance libraries (cf. Fig. 3). BBMRY’s lightness is
on average 33.5 times higher than ADDJS’s; and BS’s lightness is 11.8 times higher. BS and
BBMRY never yield a lower lightness than ADDJS on any instance. In summary, there is no
alternative to ADDJS for applications requiring a lightness guarantee.

Sparseness. First, consider α = 2 and unweighted graphs. Surprisingly, KP yields a lower
sparseness than ADDJS for ϱr ≳ 50% (cf. Fig. 4). BBMRY yields only high sparseness in
comparison to those algorithms. On Tsplib (i.e., complete graphs), KP always finds the trivial
optimal solution of a star due to the way the algorithm works. In contrast, KP can only
sparsify 22% of the Steinlib instances in comparison to 78% by ADDJS and 62% by BBMRY.
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Figure 3 Lightness for ADDJS, BBMRY and BS.
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Figure 6 Sparseness for weighted graphs.
BBMRY and BS have significantly higher sparse-
ness than ADDJS.

For unweighted instances with odd stretch, ADDJS, BS, and EN behave similarly, see Fig. 5.
For dense graphs, the sparseness converges and higher stretches unsurprisingly result in lower
sparseness. ADDJS generally yields the lowest sparseness, followed by BS and then EN. E.g.,
over all libraries for α = 5, BS yields 37% higher sparseness than ADDJS, and EN 47% higher
than BS. Although BBMRY’s sparseness seems stretch-independent, it is very high compared to
all other algorithms. EN shows a higher variance of the sparseness; e.g. for α = 3 its standard
deviation is about 4 times that of ADDJS. With higher stretches, the variance decreases.

On weighted graphs, BBMRY and BS yield comparable sparseness; both are, however,
significantly worse than ADDJS, see Fig. 6. All algorithms except for ADDJS cannot significantly
sparsify the already sparse graphs (ϱr ≤ 10%) from Steinlib too much: ADDJS’s average
sparseness is 71.7%, while the sparsenesses of all other algorithms are between 92% and 97%.

Effective stretch. For instances with n ≤ 1000 (n ≤ 11000 for Steinlib), we computed an
APSP on the input graphs and the resulting spanners to calculate the effective stretches.
More precisely, for each vertex pair (u, v), we can compare the length of the shortest path in
the input graph to that in the spanner, and obtain an effective stretch specific to (u, v). We
can aggregate over the effective stretches for all vertex pairs. Table 4 provides an overview
of the effective mean, mean maximum, and maximum stretches over all instances. ADDJS
gives the overall highest mean stretch and thus always utilizes the limit provided by α.
Interestingly, BBMRY, BS, and EN never use the available stretch of 7 for unweighted graphs.
For unweighted complete graphs, EN does not yield a mean stretch over 2 (cf. [15, Appendix,
Figure 11]), regardless of α. KP behaves similar to ADDJS and even yields a higher mean
stretch on those instances both ADDJS and KP could solve. BBMRY and BS yield lower mean
stretches in comparison to ADDJS for weighted graphs. In summary, these results directly
correlate to the previous observations. By having a low mean stretch and not utilizing the
allowed stretch, it is clear that some potential for sparsification is not fully exploited, so the
lightness and sparseness are also worse.

4.3 Further Properties for Weighted Spanners
Finally, we want to touch on the graph structure of spanners particularly on weighted graphs.
We are interested in their mean degrees, and the number of edges in the shortest paths.
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Table 4 Effective mean (mean max, max) stretch for multiple configurations.

α ADDJS BS BBMRY KP/EN

un
w

ei
gh

te
d 2 1.36 (1.98, 2.00) – 1.10 (1.86, 2.00) KP: 1.36 (1.87, 2.00)

3 1.77 (2.94, 3.00) 1.53 (2.77, 3.00) 1.12 (2.06, 3.00) EN: 1.43 (2.61, 3.00)
4 2.16 (3.89, 4.00) – 1.13 (2.13, 4.00) –
5 2.47 (4.77, 5.00) 1.77 (3.68, 5.00) 1.13 (2.11, 4.00) EN: 1.59 (3.13, 5.00)
7 2.86 (6.43, 7.00) 1.83 (4.16, 6.00) 1.13 (2.12, 5.00) EN: 1.73 (3.52, 6.00)

w
ei

gh
te

d

2 1.03 (1.85, 2.00) – 1.00 (1.19, 2.00) –
3 1.07 (2.70, 3.00) 1.01 (1.16, 2.61) 1.00 (1.65, 3.00) –
4 1.11 (3.49, 4.00) – 1.01 (1.99, 4.00) –
5 1.16 (4.20, 5.00) 1.01 (1.37, 3.26) 1.01 (2.30, 5.00) –
7 1.25 (5.44, 7.00) 1.01 (1.60, 3.49) 1.01 (2.69, 7.00) –

Degree. For α = 3, BS yields a higher mean degree by 30% than BBMRY, but is slightly lower
for α ≥ 5; BS is the only algorithm where a higher stretch results in lower mean degrees.
Overall, BBMRY and BS yield very high mean degrees (similar to the lightness and sparseness)
while ADDJS has mean degrees around 3–5. For the Steinlib instances, ADDJS’s spanners yields
a mean degree of (on average) 57% of the mean degree of the input graph. In contrast to
this, all other algorithms’ spanners have more than 96% of the original mean degree, see [15,
Appendix, Figure 10]. All algorithms show a constant or moderately (linearly) increasing
dependency between mean degrees of the original graph and the spanner, except for KP.
There, the spanners’ mean degrees first increase together with the original mean degree, but
for instances with ϱr ≳ 50% the former decrease again. Analogous to the sparseness, the
mean degrees become lower than ADDJS’s for large relative densities.

Hops. Lastly, we take a look at the number of edges (hops) of all shortest paths (again
considering the instances described for the effective stretch). Overall, the mean hop difference
is always positive, i.e., shortest paths in the spanner on average use more edges than in the
original graph. Only 2.27% of all vertex pairs have shortest paths with fewer hops in the
spanner than in the original graph; 58.90% retain their hop count, and 38.82% gain at least
one hop. ADDJS has a higher average mean hop difference of 3.98 than BS (0.26) and BBMRY
(0.15). The tendency for all algorithms is to yield a higher hop difference with higher stretch.

5 Conclusions and Questions

We conducted the first experimental evaluation of polynomial spanner approximations. We
can provide a rough guideline on which algorithm to use. If one has the special case of α = 2
and no edge weights, KP may be used for graphs with ϱr ≳ 50 as long as it can solve the
instances in feasible time. In all other cases ADDJS (the oldest and most simplistic approach!)
should be the algorithm of choice, as long as the graphs have reasonable sizes. It provides
the sparsest and lightest spanners within a reasonable running time. Especially for weighted
graphs, no other algorithm can calculate spanners of comparable quality. Only for very large
unweighted graphs, BS is a good alternative to ADDJS due to its low running time. BBMRY’s
subpar performance makes its only sensible for directed graphs, as it is the only algorithm
capable of handling such instances. Lastly, while EN can produce good spanners, it is never
strictly better in running time nor quality than ADDJS or BS.

Overall, the practical strength of the algorithmic idea of ADDJS seems to be established.
Based thereon, it now seems worthwhile to investigate the practical performance of proposed
improvements. In particular, this includes the mentioned implementation-wise more intricate
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but theoretically faster variants [42, 45] which lose the lightness guarantees. Furthermore,
we may ask whether ADDJS can be improved for unweighted graphs by using a specific edge
order. Formally, an arbitrary order suffices, but using a BFS or DFS order, or sequentially
considering sets of independent edges, may further decrease the spanner size in practice. It
may also be interesting to investigate the algorithmic reasons for the significant running time
degradation of ADDJS (and BBMRY) for α = 2 on unweighted graphs, and to find theoretical
results complementing the practical findings on the measures considered in Sect. 4.3.
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