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Abstract
Bounded expansion and nowhere-dense classes of graphs capture the theoretical tractability for
several important algorithmic problems. These classes of graphs can be characterized by the so-called
weak coloring numbers of graphs, which generalize the well-known graph invariant degeneracy
(also called k-core number). Being NP-hard, weak-coloring numbers were previously computed on
real-world graphs mainly via incremental heuristics. We study whether it is feasible to augment such
heuristics with exponential-time subprocedures that kick in when a desired upper bound on the weak
coloring number is breached. We provide hardness and tractability results on the corresponding
computational subproblems. We implemented several of the resulting algorithms and show them
to be competitive with previous approaches on a previously studied set of benchmark instances
containing 86 graphs with up to 183831 edges. We obtain improved weak coloring numbers for over
half of the instances.
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1 Introduction

A degeneracy ordering of a graph G can be obtained by iteratively removing an arbitrary
vertex of minimum degree from G and putting it in front of the current ordering [30]. The
degeneracy of a graph is the largest degree of a vertex encountered at removal. Degeneracy
orderings are immensely useful when solving various tasks on graphs both in theory and
practice [8, 18, 27, 37, 22, 6]. A key observation is that many graphs in practice have small
degeneracy (e.g., in the order of hundreds for millions of edges) [18]. Thus, when looking for,
e.g., maximum-size cliques, it is sufficient to look within the small number of neighbors in
front of each vertex in the degeneracy ordering.
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However, degeneracy is not robust under local changes: e.g., contracting edges in a
graph may arbitrarily increase its degeneracy. This property makes problems intractable on
graphs that have small degeneracy if these problems are less local than finding maximum-
size cliques. For example, detecting mild clique relaxations is hard on graphs of bounded
degeneracy [27, 23]. Hence, we are searching for robust sparsity measures within the
framework of structural sparsity [33].

We can obtain a robust variant of the class of graphs with bounded degeneracy by using
the family of measures called weak r-coloring numbers [26]. For an integer r, the weak
r-coloring number (wcolr) of a graph G is the least integer k such that there is a vertex
ordering with the property that, for each vertex v, there are at most k vertices u that are
reachable from v by a path P of length at most r such that P does not use vertices that
come before u in the ordering. The integer r, also called radius, interpolates between the
degeneracy plus one (r = 1) and the so-called treedepth of G (r = |V (G)| [20]), a measure of
tree-likeness [3, 4, 25] and target of a recent implementation challenge [28].

It is important to compute the wcolr of real-world graphs for two reasons. First, the
wcolr plays an important role in algorithmic and combinatorial techniques in structural
sparsity (e.g., [2, 7, 15, 16, 17, 24, 29, 34, 36, 40]). For instance, a central concept therein is
nowhere denseness and a subgraph-closed class of graphs is nowhere dense if and only if for
each fixed integer r and ϵ > 0 each graph G in the class has wcolr at most O(|V (G)|ϵ) [42].
Thus, obtaining the wcolrs of real-world graphs will help us gauge how well this theory fits
practice. Second, there is a prospect that wcolrs will help us solve other computational
problems on real-world graphs more efficiently: On nowhere-dense graph classes each problem
expressible in first-order logic can be solved in near-linear time [21]. There is indeed
indication that relevant classes of real-world networks, including certain scale-free networks,
are nowhere dense [10]. Thus, wcolrs may help us transfer the above theoretical near-linear-
time algorithms into something practically useful. For example, this work is underway for
counting subgraphs [35, 39], which is the underlying computational problem of computing
graph motifs or graphlets in biological and social networks [31, 38].

Computing the wcolr of a graph is an algorithmically challenging task: for each r ≥ 2 it
is NP-complete [20, 5]. So far, there is but one work that studies computing upper bounds
for wcolrs in real-world graphs: Nadara et al. [32] used greedy heuristics that build the
associated vertex ordering by iteratively choosing a yet unordered vertex that seems favorable
and putting it at the front (or the back) of the current subordering (an ordering of a subset
of all vertices). Afterwards, they apply local-search techniques that make local shifts in the
ordering that decrease the associated weak r-coloring number. This yields upper bounds;
to date the true weak r-coloring numbers of the studied graphs are unknown, even for the
smallest part of Nadara et al.’s dataset that contains graphs with 62 to 930 edges.

In this work, we study a paradigm that has previously been successfully applied to improve
the quality of the results computed by greedy heuristics: turbocharging [41, 14, 1, 19]. The
basic idea is that we pre-specify an upper bound k ∈ N on the wcolr of the ordering that we
want to compute. We carry out the greedy heuristic that computes the ordering iteratively.
If at some point it can be detected that the ordering will yield wcolr larger than k – the
point of regret – we start a turbocharging algorithm. This algorithm tries to modify the
current ordering, by reordering or replacing certain vertices, so as to make it possible to
achieve wcolr at most k again. Then we continue with the greedy heuristic.

Our contribution is to develop the turbocharging algorithms applied at the point of
regret, obtaining running-time guarantees and lower bounds, and to implement, engineer,
and evaluate these algorithms on Nadara et al.’s dataset. The two main approaches that we
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study are as follows. We fix a reconstruction parameter c ∈ N. At the point of regret, in
order to obtain a subordering of wcolr at most k we either (a) replace the last c vertices of
the current subordering with new, yet unordered vertices or (b) take c vertices out of the
ordering and merge them into the subordering at possibly different positions. The formal
definitions are given in Section 2. We show that both approaches are NP-hard in general (see
Section 3) and hence we also consider the influence of small parameters on the achievable
running-time guarantees. That is, we aim to show fixed-parameter tractability by giving
algorithms with f(p) · nO(1) running time for a small parameter p and input size n. On the
negative side, approach (a) is W[1]-hard with respect to even both c and k (Theorem 2).
That is, an algorithm with running time f(c, k) · poly(n) is unlikely, where n is the number
of vertices. This stands in contrast to Gaspers et al. [19] who obtained such an algorithm
when the goal is to compute the treewidth of the input graph instead of its wcolr. On
the positive side, approach (a) is trivially tractable in polynomial time for constant c. For
approach (b), we obtain a fixed-parameter algorithm with respect to c + k (Theorem 4). We
implemented a set of algorithms including the two previously mentioned ones and report on
implementation considerations and results in Section 4. The results indicate that on average
the weak r-coloring numbers achieved by Nadara et al. [32] can be improved by 5 % by using
our turbocharging algorithms. Using turbocharging we obtain smaller weak coloring numbers
than all previous approaches on 181 of the in total 334 instances used by Nadara et al. [32].

Due to space constraints, we defer some details of proofs, implementations, and evaluations
to a full version [13].

2 Preliminaries and turbocharging problems

General preliminaries. We only consider undirected, unweighted graphs G without loops.
By V (G) and E(G) we denote the vertex set and edge set of G, respectively. For S ⊆
V (G), G[S] is the induced subgraph on vertices in S. A path P = (v1, . . . , vn) in G is a
non-empty sequence of vertices, such that consecutive vertices are connected by an edge. The
length of a path is |V (P )| − 1. In particular, a path of length 0 consists of a single vertex.
We use distG(u, v) to denote the length of the shortest path between vertices u and v in G.

A vertex ordering L of a graph G is a linear ordering of V (G). We write u ≺L v if
vertex u precedes vertex v in L. In this case we say that u is left of v w.r.t. L. Equivalently,
we write u ⪯ v if u ≺ v or u = v. We also denote vertex orderings L as sequences of its
elements, that means L = (v1, . . . , vn) represents the vertex ordering where vi ≺L vj iff.
i < j. We denote by Π(G) the set of all vertex orderings of G. A subordering is a linear
ordering of a subset S ⊆ V (G). The notation LS shall always denote a subordering where S

is the set of vertices ordered in the subordering. We call the vertices in V (G) \ S free with
respect to LS . Usually we will denote the set of free vertices with respect to a subordering
by T . For a subordering LS and S′ ⊆ S we denote by LS [S′] the subordering that agrees
with LS on S′, that is, for all u, v ∈ S′ we have that u ≺LS [S′] v iff. u ≺LS

v, and all vertices
in V (G) \ S′ are free w.r.t. LS [S′]. For a subordering LS and S′ ⊇ S, a subordering LS′ is a
right extension of LS if LS′ [S] = LS and u ≺LS′ v for all u ∈ S and v ∈ S′ \ S. If S′ = V ,
then LS′ is called full right extension.

Weak coloring numbers. For a vertex ordering L of G and r ∈ N, a vertex u is weakly
r-reachable from a vertex v w.r.t. L if there exists a path P of length ℓ with 0 ≤ ℓ ≤ r

between u and v such that u ⪯L w for all w ∈ V (P ). Let Wreachr(G, L, v) be the set of
vertices that are weakly r-reachable from v in G w.r.t. L. The weak r-coloring number
wcolr(G, L) of a vertex ordering L is wcolr(G, L) = maxv∈V (G) |Wreachr(G, L, v)|, and the
weak r-coloring number wcolr(G) of G is wcolr(G) = minL∈Π wcolr(G, L).

ESA 2022
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Turbocharging. Our goal is to find a vertex ordering L of a given graph G with small
wcolr(G, L) by applying turbocharging. We start with two well-known iterative greedy
heuristics (descriptions will follow) of Nadara et al. [32] that build vertex orderings with
small weak r-coloring number from left to right. That is, these heuristics start with the
empty subordering LS = ∅ and in each step compute a right extension of LS that contains
one more vertex. This process is continued until the constructed subordering contains all
vertices. A key observation about this process that we can use for turbocharging is that the
size of the weakly reachable set of each vertex cannot decrease:

▶ Observation 1. Let LS be a subordering, u, v ∈ V (G), and L be a full right extension
of LS. If u = v, or u ∈ S and there exists a path P of length ℓ with 0 ≤ ℓ ≤ r between u

and v such that u ⪯LS
w for all w ∈ V (P ) ∩ S, then u ∈Wreachr(G, L, v).

For u and v as in Observation 1 we extend the definition of weak r-reachability
to suborderings LS by defining u ∈ Wreachr(G, LS , v) and wcolr(G, LS) =
maxv∈V (G) |Wreachr(G, LS , v)|. We immediately obtain that wcolr(G, LS) is a lower bound;
that is, if L is a full right extension of LS (such as obtained by one of the heuristics), then
wcolr(G, L) ≥ wcolr(G, LS).

The two heuristics of Nadara et al. that we apply are:
The Degree-Heuristic: This heuristic orders vertices by descending degree, ties are broken
arbitrarily.
The Wreach-Heuristic: For a subordering LS , this heuristic picks the free vertex v with
the largest Wreachr(G, LS , v). Ties are broken by descending degree.

Nadara et al. proposed several other heuristics, but those heuristics do not build vertex
orderings from left to right, but in different orders. Additionally, the above heuristics
are among the best-performing ones with regard to computed weak coloring numbers and
runtime.

In what follows, let us assume that we want to compute a vertex ordering L of a graph G

with wcolr(G, L) ≤ k where k ∈ N. We might apply one of the heuristics until we obtain
a subordering LS such that wcolr(G, LS) > k. We call such a subordering non-extendable
(and otherwise the subordering is extendable); we also say that this point in the execution of
the heuristic is the point of regret. We then consider two exact turbocharging problems that
try to locally augment LS , such that it is extendable again. If the turbocharging algorithms
for these problems that we later propose are successful in making LS extendable, then we
continue applying the heuristic until we have to repeat this process (trying to find a vertex
order L with wcolr(G, L) ≤ k).

Motivated by a turbocharging algorithm for computing tree-decompositions by Gaspers
et al. [19] we consider replacing a bounded-length suffix of the current subordering. That
is, we specify a reconstruction parameter c ∈ N in advance and, at the point of regret, we
remove the last c vertices from LS and then try to add c (possibly) different vertices. This
leads to the following turbocharging problem.

Incremental Conservative Weak r-coloring (IC-WCOL(r))
Instance: A graph G, a subordering LS , and positive integers k and c.
Question: Is there an extendable right extension LS′ of LS such that |S′ \ S| = c?

Our second turbocharging approach is based on a vertex v with |Wreachr(G, LS , v)| > k.
Therein, instead of the suffix of the current order, we choose a set S2 of vertices related to
the weakly r-reachable set of v (details follow in Section 4). We remove the vertices in S2
from LS , leaving us with the subordering LS1 , and then we try to reinsert the vertices in S2
while decreasing the weak coloring number.
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WCOL-Merge(r)
Instance: A graph G, an integer k, two disjoint sets S1 and S2 such that S1, S2 ⊆ V (G),

and a subordering LS1 .
Question: Is there an extendable subordering LS1∪S2 such that LS1∪S2 [S1] = LS1?

Herein, we put the reconstruction parameter c equal to |S2| and denote by T the set of free
vertices V (G) \ (S1 ∪ S2).

3 Algorithms and running-time bounds

We continue by providing algorithmic upper and lower bounds for Incremental Con-
servative Weak r-coloring (IC-WCOL(r)) and WCOL-Merge(r), starting with
IC-WCOL(r).

3.1 IC-WCOL(r)
The first theoretical result that we want to present is the NP-hardness of Incremental
Conservative Weak r-coloring for each r ≥ 1 by giving a reduction from Independent
Set. Independent Set takes as input a graph G and a positive integer p and asks if there
is a set of vertices I of size at least p such that {u, v} ̸⊆ I for all {u, v} ∈ E(G).

▶ Theorem 2. For each fixed r ≥ 1, Incremental Conservative Weak r-coloring is
NP-hard and W [1]-hard when parameterized by k + c.

The proof can be found in the full version of this paper [13] and gives a polynomial reduction
from of Independent Set which is NP-complete to an instance of IC-WCOL(r). The
idea is that the parameter p – the desired independent set size of a given Independent Set
instance – is transformed to the parameters c = p and k = 2 of IC-WCOL(r), giving us a
parameterized reduction from Independent Set to IC-WCOL(r). Independent Set is
W[1]-hard when parameterized by p, and thus we obtain the stated W [1]-hardness.

On the other hand, it is not hard to see that Incremental Conservative Weak
r-coloring is in XP: We can simply try placing any of the vertices from V (G) \ S into the
next free position right of LS . As there are c free positions the overall algorithm runs in
O(|V (G) \ S|c · |V (G)|O(1)) ⊆ O(|V (G)|c · |V (G)|O(1)) time.

▶ Proposition 3. Incremental Conservative Weak r-coloring parameterized by the
reconstruction parameter c is in XP.

Our algorithm for Incremental Conservative Weak r-coloring is based on Proposi-
tion 3, we will go into more detail in Section 4.

3.2 WCOL-Merge(r)
It is easy to see that WCOL-Merge(r) is NP-hard for r ≥ 2: Given a graph G, we
can decide wcolr(G) ≤ k by creating an instance (H, S1, S2, LS1) of WCOL-Merge(r),
setting S1 = LS1 = ∅, H = G, and S2 = V (G). As deciding wcolr(G) ≤ k is NP-hard for
r ≥ 2 [20, 5], so is WCOL-Merge(r). On the positive side, we can show fixed-parameter
tractability of WCOL-Merge(r) parameterized by k and |S2|.

▶ Theorem 4. WCOL-Merge(r) is solvable in time O(|S2|!·k|S2|·|V (G)|O(1)). In particular,
WCOL-Merge(r) is fixed-parameter tractable when parameterized by k + |S2|.

ESA 2022



44:6 Turbocharging Heuristics for Weak Coloring Numbers

Intuitively, the algorithm behind Theorem 4 tries to place each vertex v in S2 one by one
by trying all relevant positions. The key insight is that only few positions are relevant
(called breakpoints below). Namely those positions that correspond to vertices that are
weakly r-reachable from v when placed at the end of the ordering. As only few vertices can
be reachable from v when placed in the correct position, we only need to try the first k

corresponding positions.
To describe the algorithm we need definitions for two operations that we use throughout.

▶ Definition 5. Let G be a graph, LS = (s1, . . . , sn) a subordering, and v ∈ V (G) \ S.
We denote by placeafter(LS , si, v) the subordering of vertices S ∪ {v} that is obtained by
placing v directly after si. To be precise, placeafter(LS , si, v) := (s1, . . . , si, v, si+1, . . . , sn).
Equivalently, placebefore(LS , si, v) := (s1, . . . , si−1, v, si, . . . , sn).

This leads to the definitions of breakpoints, which are crucial for the proof of Theorem 4.

▶ Definition 6. Let G be a graph, LS = (s1, . . . , sn) a subordering, and v ∈ V (G) \
S. A vertex s ∈ S is called breakpoint of v if Wreachr(G, placebefore(LS , s, v), v) ̸=
Wreachr(G, placeafter(LS , s, v), v). Let bp(G, LS , v) ⊆ S be the set of breakpoints of v.

We also notice another useful property of breakpoints, which is proved in the full version of
this paper [13].

▶ Lemma 7. Let v ∈ V (G) \ S. We have s ̸∈ bp(G, LS , v) if and only if for all u ∈ V (G)

Wreachr(G, placebefore(LS , s, v), u) = Wreachr(G, placeafter(LS , s, v), u).

If we add a vertex v to a subordering LS to obtain a new subordering LS∪{v}, then the
weakly reachable vertices Wreachr(G, LS∪{v}, v) consist of v and a subset of bp(G, LS , v).
We formalize this as follows.

▶ Lemma 8. Let G be a graph, LS = (s1, . . . , sn) be a subordering, and v ∈ V (G) \ S.
Furthermore, let LS∪{v} be a subordering such that LS∪{v}[S] = L. Then

Wreachr(G, LS∪{v}, v) \ {v} = {s ∈ bp(G, LS , v) | s ⪯LS∪{v} v}.

Proof. Let X be the set {s ∈ bp(G, LS , v) | s ⪯LS∪{v} v}, we prove both inclusions of the
equation Wreachr(G, LS∪{v}, v) \ {v} = X.

Assume that s ∈ (Wreachr(G, LS∪{v}, v) \ {v}). As s is weakly r-reachable from v,
there is a path P = (v, u1, . . . , uℓ, s) of length of at most r that does not go left of s w.r.t.
to LS∪{v}. Consider the same path P in placeafter(LS , s, v). Clearly, s is also weakly
r-reachable in this subordering because of the same path. Contrary to that, s cannot be
weakly r-reachable from v in placebefore(LS , s, v) because v is left of s in that subordering.
Hence, s ∈ bp(G, LS , v) and Wreachr(G, LS∪{v}, v) \ {v} ⊆ X.

Assume that s ∈ X. Then s must be weakly r-reachable from v w.r.t. placeafter(LS , s, v)
through a path P of length at most r. But s is also weakly r-reachable from v w.r.t. LS∪{v}
through the same path P . Hence, X ⊆Wreachr(G, LS∪{v}, v) \ {v} also holds. ◀

Using the above tools, we can now formally describe Algorithm 1, which obtains the
stated runtime of Theorem 4 and is given as a recursive function Recursive-merge. As
alluded to before, the intuition is that for each vertex v ∈ S2 we only have to consider
placing it before its breakpoints w.r.t. LS1 . As the breakpoints of a vertex will be in its
weakly r-reachable set, only the leftmost k breakpoints are relevant. A detailed proof of the
correctness and the runtime can be found in the full version of this paper [13].
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Algorithm 1 Recursive FPT-algorithm for WCOL-Merge(r).

1 Recursive-merge(S1, S2, T , LS1):
2 if |S2| = 0 ∧ ∀v ∈ V (G) : |Wreachr(G, LS1 , v)| ≤ k then return LS1 ;
3 for v ∈ S2 do
4 for s ∈ bp(G[S1 ∪ T ∪ {v}], LS1 , v) do
5 LS1∪{v} ← placebefore(LS1 , s, v);
6 if |Wreachr(G[S1 ∪ T ∪ {v}], LS1∪{v}, v)| ≤ k then
7 answer← Recursive-merge(S1 ∪ {v}, S2 \ {v}, T, LS1∪{v});
8 if answer ̸= false then return answer;
9 end

10 end
11 s←rightmost vertex of S1 w.r.t. LS1 ;
12 LS1∪{v} ← placeafter(LS1 , s, v);
13 if |Wreachr(G[S1 ∪ T ∪ {v}], LS1∪{v}, v)| ≤ k then
14 answer← Recursive-merge(S1 ∪ {v}, S2 \ {v}, T, LS1∪{v});
15 if answer ̸= false then return answer;
16 end
17 end
18 return false

4 Implementation and experiments

This section contains implementation details for the heuristics and both turbocharging
algorithms. Furthermore, we give the experimental setup and experimental results.

4.1 Algorithm implementations and heuristic improvements
Interesting details are omitted from the algorithmic results of Section 3. We want to give some
implementation details for IC-WCOL(r) and WCOL-Merge(r), and how the algorithms for
these problems are combined with the heuristics. Additionally, we give a third turbocharging
approach called IC-WCOL-RL(r) in this section.

In our implementations of heuristics and turbocharging algorithms we store and update the
current subordering LS in a simple array. We also store and update the sets Wreachr(G, LS , v)
and Wreach−1

r (G, LS , v) = {w ∈ V (G) : v ∈Wreachr(G, LS , w)} (see below for their usage).
Updating weakly r-reachable sets during placements and removals of vertices v is done by
computing the set Wreach−1

r (G, LS , v) via a breadth-first search that respects the order LS ,
and updating the corresponding weakly r-reachable sets.

Additionally, we slightly adapt the Degree-Heuristic: We aim for vertex orderings L with
wcolr(G, L) ≤ k. Consider a subordering LS that was created by the heuristic and needs
to be extended. To obtain weak coloring number k it would intuitively make sense to place
a free vertex v with wcolr(G, LS) = k immediately to the right of that subordering s.t. its
weakly r-reachable set cannot increase anymore. This is indeed always correct – if there is
a full right extension L of LS with wcolr(G, L) ≤ k, then there is another one that starts
by placing v immediately to the right of LS (for a formal statement and a proof we refer to
the full version of this paper [13]). In our implementation of the Degree-Heuristic we apply
this observation and place such a vertex v immediately. The Wreach-Heuristic does this
implicitly.

ESA 2022
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We continue by explaining individual details for IC-WCOL(r) and WCOL-Merge(r),
and how they are applied to a non-extendable subordering LS with free vertices T .

IC-WCOL(r). We have implemented the XP-algorithm for Incremental Conservative
Weak r-coloring as outlined in Proposition 3. Given a subordering LS , we have to
extend LS to the right by c vertices, that means that we have c positions to fill. We
implement a search tree algorithm that fills these positions from left to right recursively.
That is, in a search tree node we try all possibilities of placing a free vertex into the leftmost
free position i and recurse into search tree nodes that try placing the remaining free vertices
into position i + 1, and so on, until all c positions are filled.

If after a placement of a vertex we obtain a non-extendable subordering, we can cut off
this branch of the search tree, as weakly r-reachable sets of vertices can only increase in
this branch. We also store edges of G[T ] separately as an array of hash sets. This enables,
in a search tree node, to update the sets Wreach−1

r (G, LS , v) on placement/removal by a
simple depth-r breadth-first-search in G[T ]. This decreases the number of enumerated edges
compared to the trivial approach.

Free vertices T are placed into a position i in a specific order inside a search tree
node: let LS be the non-extendable subordering that triggered turbocharging and let v be
the rightmost vertex of LS . We try placing u1 ∈ T before u2 ∈ T into the free slot i if
distG(u1, v) < distG(u2, v). Preliminary experiments suggested that this order is preferable
to a random one. We compute distG(u, v) for all u, v with Johnson’s Algorithm [9] for sparse
graphs once in the beginning.

WCOL-Merge(r). We apply WCOL-Merge(r) to a non-extendable subordering LS in the
following way. Let U = {v ∈ V (G) : |Wreachr(G, LS , v)| > k} be the set of overfull vertices.
Let c be a positive integer and let X be a random subset of

⋃
v∈U Wreachr(G, LS , v) of size

min(c, |
⋃

v∈U Wreachr(G, LS , v)|). If the size of X is less than c, we randomly add additional
vertices from V (G) to X, until the size of X is c. We try to fix LS by defining an instance
of WCOL-Merge(r). Namely, we set S1 = S \X, S2 = X, and LS1 = LS [S1]. We then
solve this instance using Algorithm 1. By Theorem 4 we obtain a turbocharging algorithm
that has fixed-parameter tractable running time when parameterized by the desired coloring
number k and reconstruction parameter c.

In our implementation we apply WCOL-Merge(r) multiple times with different randomly
selected sets X as defined above, until we obtain an extendable subordering. Preliminary
experiments showed that choosing the whole set

⋃
v∈U Wreachr(G, LS , v) as X leads to

timeouts often whereas random subsets still allowed us to fix LS . If we do not find an
extendable subordering after the 10th application of WCOL-Merge(r), we report that
turbocharging was not successful.

We now discuss the implementation of Algorithm 1. Consider the vertex v in Algorithm 1.
We only have to iterate over the k leftmost breakpoints of v due to Lemma 8, which can
be easily done by storing and maintaining Wreach−1

r (G[S1 ∪ T ∪ {v}], LS1∪T , v). Let s be a
breakpoint of v and let LS1∪{v} = placeafter(LS1 , s, v). The leftmost s′ ∈Wreach−1

r (G[S1 ∪
T ∪ {v}], LS1∪{v}, v) that is not v is the next possible breakpoint of v. Additionally, we do
not need to recurse if the size of some set Wreachr(G[S1 ∪ T ], LS1 , v) exceeds k for some
v ∈ S1 ∪ T , as these sets can only increase in subsequent recursion calls.

We also know that subsets of some weakly r-reachable sets of vertices T are already fixed.
Namely, for all vertices v in the r-neighborhood of u in G[T ∪ {u}] with u ∈ S2, vertex u will
always be in the weakly r-reachable set of v if u is placed somewhere into the subordering LS1 .
We take this into account when calculating lower bounds for the sizes of weakly r-reachable
sets of vertices in T (and break the search if they exceed size k).
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IC-WCOL-RL(r). We also implemented a turbocharging algorithm that is not discussed
above. It is based on the Sreach-Heuristic, which builds a vertex ordering of low weak coloring
number from right to left (instead of from left to right as above) [32]. It starts with an empty
subordering LS and, during each step, the heuristic adds to the left front of LS a free vertex v

that minimizes the number of so-called potentially strongly r-reachable vertices after being
placed. Herein, a vertex u is potentially strongly r-reachable w.r.t. LS from a vertex v ∈ S if
u ∈Wreachr(G[S], LS , v) or there is a path P of length at most r from v to u in G such that
V (P )∩ T = {u}. It can be shown (refer to a formal statement and a proof in the full version
of this paper [13]) that the set of potentially strongly r-reachable vertices of v only grows
when extending LS to the left and that, when S = V (G), this set equals Wreachr(G, LS , v).
Thus, we define a point of regret for this heuristic as a point in the execution where there is
a vertex v such that the size of its potentially strongly r-reachable set exceeds the desired
weak coloring number k. Accordingly, we say that LS is non-extendable, and otherwise it
is extendable. We then solve the turbocharging problem in which we aim to replace the c

leftmost vertices of LS with arbitrary free vertices in order to make LS extendable again.
We do this using a search-tree algorithm analogous to IC-WCOL(r). We also use the above
turbocharging approach with a heuristic that chooses the next vertex among the free vertices
based on the smallest degree. We call this heuristic Degree-Heuristic1.

We tried further heuristic optimizations, mainly for the left-to-right approaches, based on
lower bounds (for early search termination), guided branching (towards faster decomposition
into trivial instances), and ordered adjacency lists (to speed up computation of weakly
reachable sets) but they did not improve the resulting coloring numbers.

4.2 Experiments setup
Computation environment. All experiments were performed on a cluster of 20 nodes. Each
node is equipped with two Intel Xeon E5-2640 v4, 2.40GHz 10-core processors and 160 GB
RAM. The optimization for each instance and an algorithm was pinned to a specific core of
a cluster node (simultaneous multithreading was disabled). All implementations of heuristics
and turbocharging algorithms were done in C++17, and made use of the Boost library2,
version 1.77.0. The code was compiled on Linux with g++ version 7.5.0 and with the flags
-std=c++17 -O2. The optimization process (see application of turbocharging below) that
calls the heuristics combined with the turbocharging algorithms (implemented in C++) was
implemented in Python3 and executed with Python 3.7.13. A memory limit of 16 GB was set
(a process only starts if the required memory is free). The source code is available online [12].

Instances. Each instance in our data set is a tuple consisting of a graph G and a radius r ∈ N.
The radii r are between 2 and 5, as also used by Nadara et al. [32]. The graphs G form a
subset of the graphs used by Nadara et al. This enables us to use weak coloring numbers
of orderings computed by Nadara et al. as a baseline. Furthermore, we can compare for a
heuristic, the improvement achieved by the local search of Nadara et al. to the improvement
achieved by our turbocharging algorithms.

The graphs consist of real-world data, the PACE 2016 Feedback Vertex Set problems,
random planar graphs, and random graphs with bounded expansion. Nadara et al. classified
the graphs into four classes based on the number of edges – small (up to 1k edges), medium
(up to 10k edges), big (up to 48k edges), and huge. For a detailed explanation and references

1 The name is the same as in the left-to-right setting; there will be no confusion between the two because
the direction will be clear from the context.

2 https://www.boost.org/
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Algorithm 2 Algorithm for iteratively decreasing the weak coloring number by tur-
bocharging.

Input: A graph G, an integer r, a heuristic H, and a turbocharged heuristic TC-H
Output: An ordering L of vertices V

1 L← ordering of vertices V computed by the heuristic H;
2 k ← wcolr(G, L);
3 Start a timer; after t seconds abort the program, and return the current value of L

4 while true do
5 c← 1;
6 while true do
7 Try to compute an ordering of vertices V with weak r-coloring number k − 1

using TC-H with reconstruction parameter c;
8 If successful, assign this ordering to L, set k ← wcolr(G, L), and break;
9 Otherwise, set c← c + 1;

10 end
11 end

for all input graphs we refer to Nadara et al. [32]; the instances are available online3. We
considered all instances except those where one of the three heuristics of Nadara et al.
that we also consider did not yield a result (the Degree-Heuristic, Wreach-Heuristic, and
Sreach-Heuristic). That is, they timed out after 300 seconds or ran into a memory limit (16
GB). In total, our dataset contains 334 instances.

Application of turbocharging. Our application of turbocharging with a heuristic H works
as follows. Given a graph G and a radius r, we start with a run of H without turbocharging
to produce a vertex ordering for G with a baseline weak r-coloring number k. We then start
a timer that runs for t seconds, aborting the rest of the algorithm when it terminates. We
then iteratively decrease k and apply H together with the turbocharging approach to try
and find a vertex ordering for G with weak r-coloring number at most k. In each such try,
we start with the reconstruction parameter c = 1. If no ordering with the desired weak
r-coloring number was produced by the turbocharged heuristic, we increase c by one and try
again. If an ordering with weak r-coloring number k′ ≤ k was produced, we set k = k′ − 1
and repeat the process. The precise algorithm is given in Algorithm 2.

For our experiments we applied all compatible combinations of heuristics and the tur-
bocharged versions to each instance. Furthermore, we computed orderings for radii ranging
from 2 to 5, motivated by Nadara et al. who used the same values. We run all experiments
twice, once with timeout t = 300s and once with t = 3600s. Results with t = 300s are
directly compared with the results of Nadara et al. who used 300 seconds as timeout. Results
with t = 3600s give us the ability to investigate the potential of turbocharging over longer
periods of time.

3 https://kernelization-experiments.mimuw.edu.pl/

https://kernelization-experiments.mimuw.edu.pl/
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Figure 1 Line plot of the cumulative absolute improvements over time achieved by the turbocharg-
ing approaches broken down by the underlying heuristics. The x-axis (time) is scaled logarithmically.

4.3 Results

We now show to which extent our turbocharging approaches improve the results of heuristics,
compare the achieved weak coloring numbers to the ones of Nadara et al., and provide
observations about the performance of turbocharging.

Impact of turbocharging. Turbocharging has the advantage that investing gradually more
time will yield gradually better results – setting the reconstruction parameter to c = |V (G)|,
we (in theory) even can provably obtain the optimum. Figure 1 shows the cumulative sum
of absolute improvements over time when comparing each turbocharged heuristic with the
underlying plain heuristic. That is, for a specific time t, the cumulative sum of absolute
improvements for a turbocharging algorithm A and a heuristic H is

∑
I∈instances(kI,H −

kI,A,H,t), where kI,H is the coloring number achieved by the heuristic and kI,A,H,t is the
coloring number achieved by the turbocharged heuristic after time t. Note that the y-axes
do not have the same ranges as the underlying heuristics have different performance levels.
All plots exhibit logarithmic or similar to logarithmic growth, which means that the gained
absolute improvement is approximately logarithmic in the invested time in the most cases.
WCOL-Merge(r) clearly yields faster and larger improvements than IC-WCOL(r), and
it also supersedes IC-WCOL-RL(r) for the Degree-Heuristic. One reason may be that
WCOL-Merge(r) is fixed-parameter tractable and the associated parameters are small.

Further evaluations of the executions of turbocharging algorithms are analysed in detail
in the full version of this paper [13]. Some observations therein are that the number of
applications of turbocharging per run of a heuristic ranges in the order of at most hundreds
for IC-WCOL(r) and WCOL-Merge(r) and on average in the single digits; for IC-WCOL-
RL(r) these numbers are one to two orders of magnitude larger. Successful applications of a
turbocharged heuristic (those where the weak coloring number could be improved) mostly
only use very little time and search tree nodes, and have small reconstruction parameters –
mostly c = 1. That is, it is mostly the case that a heuristic wants to place a vertex that is
“suboptimal”, while placing nearly any other vertex will achieve lower weak coloring number.
The fraction of time spent on turbocharging is also low, which means that most of the time
when we can improve the weak coloring number achieved by a heuristic, this can be done
easily and in little time.
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Table 1 IC-WCOL(r): White columns give relative improvements, light gray columns give
quality ratios, dark gray columns give average/maximum absolute improvements. For improvements,
we compare to the underlying heuristic without turbocharging and without local search. Time limit:
300 s.

tests r Wreach IC-WCOL(r) Degree IC-WCOL(r)

small

2 -6.2% 0.8/5

7.2%

-7.3% 3.2/14

18.4%3 -7.3% 1.0/6 -9.3% 4.3/20
4 -11.3% 1.7/7 -11.2% 4.2/15
5 -15.8% 1.9/8 -16.8% 3.9/12

medium

2 -5.6% 0.6/2

3.7%

-7.1% 5.0/14

17.4%3 -9.2% 1.0/11 -9.7% 9.0/35
4 -11.6% 0.3/2 -15.8% 9.9/31
5 -16.8% 1.3/15 -20.6% 9.9/41

big

2 -9.6% 0.1/1

0.7%

-21.6% 7.2/31

12.0%3 -9.5% 0.4/3 -20.8% 15.3/47
4 -12.7% 0.3/2 -32.5% 14.5/42
5 -38.3% 0.2/1 -30.4% 13.7/38

huge

2 -2.0% 0.1/1

0.2%

-39.1% 2.8/16

0.9%3 -21.4% 0.1/1 -35.0% 1.9/6
4 -6.9% 0.0/0 -29.9% 1.8/5
5 -8.9% 0.3/1 -16.5% 1.7/4

By dataset group and radius. Next, we fix a time threshold of 300s (same as Nadara et al.)
that we might reasonably invest in practice for computing weak coloring numbers. We present
the improvements in weak coloring numbers gained by turbocharging over the plain heuristics
broken down according to the instance group (small, medium, big, huge) and the radius r.
We again provide absolute improvements when comparing with the underlying heuristic,
and we also consider the average relative improvement of the weak r-coloring number when
comparing the turbocharged heuristic to the plain heuristic; that is, the relative improvement
is 1− kI,A,H,t/kI,H for t = 300s. For each turbocharging algorithm we show results for both
turbocharged heuristics. For IC-WCOL(r) and WCOL-Merge(r) these are the Wreach-
and Degree-Heuristic, and for IC-WCOL-RL(r) these are the Sreach- and Degree-Heuristic.
The results are given in three tables corresponding to the three turbocharging approaches.

We furthermore compare the achieved coloring numbers of each approach to the best
coloring numbers computed by Nadara et al.: For each instance I, let bestNadara(I) be
the smallest weak r-coloring number of an ordering of vertices of instance I achieved by
an approach of Nadara et al. Note that they implemented seven different heuristics and
for each computed ordering they applied a local search to iteratively reduce the weak
r-coloring number. To evaluate one of our approaches, we take the weak r-coloring number
kI,A,H,t for instance I obtained by our approach for t = 300s and compute the average
1− kI,A,H,t/bestNadara(I) (in percent) taken over all instances I in the corresponding data
set. We call this value quality ratio. Note that positive values mean that the approach
achieves lower weak coloring numbers on average when compared to the best weak coloring
numbers achieved by Nadara et al.
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Table 2 WCOL-Merge(r): White columns give relative improvements, light gray columns give
quality ratios, dark gray columns give average/maximum absolute improvements. For improvements,
we compare to the underlying heuristic without turbocharging and without local search. Time limit:
300 s.

tests r Wreach WCOL-Merge(r) Degree WCOL-Merge(r)

small

2 -1.0% 1.4/5

19.1%

0.3% 4.1/11

33.7%3 3.3% 2.8/8 2.9% 6.3/25
4 0.7% 4.2/11 2.3% 7.2/23
5 -1.2% 5.4/14 -0.2% 8.0/19

medium

2 2.4% 1.6/7

15.0%

1.1% 6.4/16

32.7%3 0.4% 2.7/15 0.6% 11.6/46
4 -0.2% 2.9/13 -1.9% 13.3/36
5 -5.3% 4.2/16 -5.5% 15.5/50

big

2 -0.3% 1.7/7

9.4%

-7.5% 11.0/32

24.2%3 -1.8% 2.1/9 -8.1% 23.4/65
4 -4.2% 2.8/11 -19.3% 26.6/63
5 -27.2% 4.9/26 -20.5% 26.6/67

huge

2 -0.6% 1.7/5

1.0%

-14.9% 28.4/84

12.2%3 -20.5% 1.8/5 -21.9% 27.4/49
4 -6.7% 0.5/2 -27.6% 11.2/20
5 -8.7% 1.0/2 -15.5% 6.0/14

In Table 1 we present the performance of the IC-WCOL(r) approach. It is evident that
the relative and absolute improvements achieved for the Degree-Heuristic is significantly
higher than for the Wreach-Heuristic, although this is partly due to the fact that the Degree-
Heuristic achieves worse results than the Wreach-Heuristic before turbocharging. Relative
and absolute improvements decrease for larger instances.

Table 2 contains the results for WCOL-Merge(r). Here, turbocharging achieves positive
quality ratios for some instance classes and radii. The relative and absolute improvements
are much larger than for IC-WCOL(r), especially for the huge instances and the Degree-
Heuristic. It is also interesting that while the Degree-Heuristic generally computes orderings
of higher weak coloring number than the Wreach-Heuristic, the turbocharged version of the
Degree-Heuristic computes orderings of similar or even lower weak coloring numbers than the
turbocharged version of the Wreach-Heuristic for the small and medium instances. We do not
see an obvious reason for that, but it could again indicate the power of the fixed-parameter
algorithm.

Table 3 contains the results for IC-WCOL-RL(r). Although the relative and absolute
improvements of turbocharging the Degree-Heuristic are slightly higher, the quality ratios
for the turbocharged version of the Sreach-Heuristic are significantly better. This could
imply that IC-WCOL-RL(r) struggles to turbocharge slightly worse heuristics such as the
Degree-Heuristic. Furthermore, we see that for the Sreach-Heuristic the quality ratios are
better for larger radii. The reason for this could be that the Sreach-Heuristic performs well
for larger radii even before turbocharging. We also notice that for the medium graph class
the quality ratios get worse. The reason is that the implementation of IC-WCOL-RL(r) is
slightly more computationally expensive than for the other approaches.
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Table 3 IC-WCOL-RL(r): White columns give relative improvements, light gray columns give
quality ratios, dark gray columns give average/maximum absolute improvements. For improvements,
we compare to the underlying heuristic without turbocharging and without local search. Time limit:
300 s.

tests r Sreach IC-WCOL-RL(r) Degree IC-WCOL-RL(r)

small

2 -2.1% 3.2/28

15.9%

-7.5% 3.1/11

22.0%3 1.6% 2.7/10 -7.4% 4.4/19
4 3.6% 2.5/7 -7.9% 5.2/21
5 3.3% 3.2/8 -8.9% 6.3/26

medium

2 -8.8% 3.1/12

10.7%

-14.8% 3.0/8

15.5%3 -3.8% 3.8/16 -12.6% 5.7/25
4 -0.6% 3.8/14 -16.4% 5.8/17
5 1.4% 4.3/11 -18.5% 7.6/22

big

2 -14.8% 3.0/10

6.4%

-29.8% 4.2/12

10.1%3 -13.4% 7.1/26 -25.8% 8.8/23
4 -7.7% 7.4/19 -28.2% 13.1/60
5 -3.1% 6.5/19 -28.2% 12.2/31

huge

2 -22.8% 14.4/47

5.4%

-26.3% 22.1/76

7.1%3 -16.2% 11.5/21 -29.6% 12.4/20
4 -17.2% 5.5/13 -27.4% 8.2/16
5 2.0% 4.3/12 -14.4% 4.0/10

Achieved coloring numbers in comparison to Nadara et al. Figure 2 illustrates the
distribution of results for all turbocharging algorithms in a scatter plot. Data points below
y-value zero mean that the turbocharging algorithm improves a bound on the weak r-coloring
number of an instance. Among our approaches, we see that while WCOL-Merge(r) performs
well for small radii, IC-WCOL-RL(r) performs well for larger radii. Together with the
analysis from above we can conclude that Nadara et al.’s approaches yield lower weak coloring
numbers on average but there is fraction of roughly one half instances where our approaches
supersede Nadara et al.’s, in particular if the computed weak coloring numbers are small.
Overall, we improved bounds for 172 of the 334 considered instances after t = 300s. The
resulting new bounds are lower by 5% on average over all instances. Follow-up investigations
also showed that the relative improvement of turbocharging negatively correlates with the
average degree of the graph, suggesting that our turbocharging algorithms work better for
particularly sparse graphs.

As mentioned, our approach has the advantage that investing more time yields gradually
better results. Figure 3 shows the number of instances for which a turbocharging approach
improve weak coloring numbers compared to Nadara et al. after a specific time. That
is, for a time t, the y-value of a line corresponds to the number of instances I such that
kI,A,H,t < bestNadara(I). The values for the line best are determined by taking the number
of instances I where any of the turbocharging approaches is better than bestNadara(I).
Interestingly, IC-WCOL-RL(r) starts off with more improved instances, however, after 3600
seconds, WCOL-Merge(r) achieved more instances with smaller coloring numbers than
Nadara et al. After 3600 seconds, IC-WCOL(r) was able to improve 24 instances compared
to Nadara et al., WCOL-Merge(r) 144 instances, and IC-WCOL-RL(r) 115 instances.
Overall, we could improve upper bounds for 181 of the 334 instances with t = 3600s. These
are nine more than for t = 300s.
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Figure 2 Scatter plot of the results for turbocharging algorithms broken down by radius. Each
data point corresponds to an instance and a turbocharging algorithm. The x-value is the best
weak coloring number achieved by Nadara et al. for this instance, the y-value is the difference of
coloring numbers between the best weak coloring number achieved by Nadara et al. and the weak
coloring number kI,A achieved by the turbocharging algorithm A (minimum over both turbocharged
heuristics). The x-axis is scaled logarithmically and the y-axis is scaled pseudo-logarithmically.
Time limit: 300 s.
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Figure 3 Line plot of the number of instances where a turbocharging approach achieves better
coloring numbers than Nadara et al. over time. The time is scaled logarithmically.

5 Conclusion

On the theoretical side, we determined obstructions (running-time lower bounds) and
promising avenues (a fixed-parameter algorithm) for applying the turbocharging framework
to computing vertex orderings of small weak coloring numbers. On the experimental side,
on a diverse set of instances each of the turbocharging approaches we use yields large
improvements over the plain heuristics. This is most pronounced for the fixed-parameter
turbocharging WCOL-Merge(r). Then we compared turbocharging to the best results
gained by the seven heuristics that Nadara et al. [32] employed together with local search
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procedures. Turbocharging so far yields on average larger weak coloring numbers than the
best of the previous approaches. However, for 173 of the in total 334 instances, turbocharging
outperforms all of the previous approaches combined. It works particularly well for small
computed coloring numbers and sparse input instances.
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