
Hedonic Games and Treewidth Revisited
Tesshu Hanaka #

Department of Informatics, Faculty of Information Science and Electrical Engineering,
Kyushu University, Japan

Michael Lampis #

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France

Abstract
We revisit the complexity of the well-studied notion of Additively Separable Hedonic Games (ASHGs).
Such games model a basic clustering or coalition formation scenario in which selfish agents are
represented by the vertices of an edge-weighted digraph G = (V, E), and the weight of an arc uv

denotes the utility u gains by being in the same coalition as v. We focus on (arguably) the most
basic stability question about such a game: given a graph, does a Nash stable solution exist and can
we find it efficiently?

We study the (parameterized) complexity of ASHG stability when the underlying graph has
treewidth t and maximum degree ∆. The current best FPT algorithm for this case was claimed
by Peters [AAAI 2016], with time complexity roughly 2O(∆5t). We present an algorithm with
parameter dependence (∆t)O(∆t), significantly improving upon the parameter dependence on ∆
given by Peters, albeit with a slightly worse dependence on t. Our main result is that this slight
performance deterioration with respect to t is actually completely justified: we observe that the
previously claimed algorithm is incorrect, and that in fact no algorithm can achieve dependence
to(t) for bounded-degree graphs, unless the ETH fails. This, together with corresponding bounds we
provide on the dependence on ∆ and the joint parameter establishes that our algorithm is essentially
optimal for both parameters, under the ETH.

We then revisit the parameterization by treewidth alone and resolve a question also posed by
Peters by showing that Nash Stability remains strongly NP-hard on stars under additive preferences.
Nevertheless, we also discover an island of mild tractability: we show that Connected Nash Stability
is solvable in pseudo-polynomial time for constant t, though with an XP dependence on t which, as
we establish, cannot be avoided.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Hedonic Games, Nash Equilibrium, Treewidth

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.64

Related Version Full Version: https://arxiv.org/abs/2202.06925

Funding This work is partially supported by PRC CNRS JSPS project PARAGA (Parameterized
Approximation Graph Algorithms) JPJSBP 120192912 and by JSPS KAKENHI Grant Number
JP21K17707, JP21H05852, JP22H00513.

Acknowledgements We want to thank Dr. Rémy Belmonte for helpful discussions.

1 Introduction

Coalition formation is a topic of central importance in computational social choice and in
the mathematical social sciences in general. The goal of its study is to understand how
groups of selfish agents are likely to partition themselves into teams or clusters, depending
on their preferences. The most well-studied case of coalition formation are hedonic games,
which have the distinguishing characteristic that each agent’s utility only depends on the
coalition on which she is placed (and not on the coalitions of other players). Hedonic games

© Tesshu Hanaka and Michael Lampis;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 64; pp. 64:1–64:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hanaka@inf.kyushu-u.ac.jp
https://orcid.org/0000-0001-6943-856X
mailto:michail.lampis@lamsade.dauphine.fr
https://orcid.org/0000-0002-5791-0887
https://doi.org/10.4230/LIPIcs.ESA.2022.64
https://arxiv.org/abs/2202.06925
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Hedonic Games and Treewidth Revisited

Table 1 Summary of results. t, p, ∆, W denote the treewidth, pathwidth, maximum degree, and
maximum absolute weight. Results denoted by (G) apply to general (possibly disconnected) Nash
Stability, and by (C) to Connected Nash Stability.

Parameter Algorithms Lower Bounds
t, p Strongly NP-hard for Stars (G) (Theorem 9)

(nW)O(t2) (C) (Theorem 11) No f(p) · no(p/ log p) (C) (Theorem 12)
t, p + ∆ (∆t)O(∆t) (n + log W)O(1) No (p∆)o(p∆)(nW)O(1) (G) (Theorem 5)

(G) (Theorem 4)
No ∆o(∆)(nW)O(1) if p = O(1) (G) (Corollary 6)
No po(p)nO(1) if ∆, W = O(1) (Theorem 7) (G,C)

have recently been an object of intense study also from the computer science perspective
[1, 2, 6, 7, 9, 10, 12, 19, 27, 33, 40], due in part to their numerous applications in, among
others, social network analysis [34], scheduling group activities [15], and allocating tasks
to wireless agents [39]. For more information we refer the reader to [13] and the relevant
chapters of standard computational social choice textbooks [4].

Hedonic games are extremely general and capture many interesting scenarios in algorithmic
game theory and computational social choice. Unfortunately, this generality implies that
most interesting questions about such games are computationally hard; indeed, even encoding
the preferences of agents generally takes exponential space. This has motivated the study of
natural succinctly representable versions of hedonic games. In this paper, we focus on one of
the most widely-studied such models called Additively-Separable Hedonic Games (ASHG).
In this setting the interactions between agents are given by an edge-weighted directed graph
G = (V, E), where the weight of an arc uv ∈ E denotes the utility that u gains by being
placed in the same coalition as v. Thus, vertices which are not connected by an arc are
considered to be indifferent to each other. Given a partition into coalitions, the utility of a
player v is defined as the sum of the weights of out-going arcs from v to its own coalition.

A rich literature exists studying various questions about ASHGs, including a large
spectrum of stability concepts and social welfare maximization [3, 5, 17, 20, 23, 34, 35, 41].
In this paper we focus on perhaps the most basic notion of stability one may consider. We
say that a configuration π is Nash Stable if no agent v can unilaterally strictly increase
her utility by selecting a different coalition of π or by forming a singleton coalition. The
algorithmic question that we are interested in studying is the following: given an ASHG,
does a Nash Stable partition exist? Even though other notions of stability exist (notably
when deviating players are allowed to collaborate [11, 16, 37, 42]), fully understanding the
complexity of Nash Stability is of particular importance, because of the fundamental
nature of this notion.

Nash Stability of ASHGs has been thoroughly studied and is, unfortunately, NP-
complete. We therefore adopt a parameterized point of view and investigate whether some
desirable structure of the input can render the problem tractable. We consider two of the
most well-studied graph parameters: the treewidth t and the maximum degree ∆ of the
underlying graph. The study of ASHGs in this light was previously taken up by Peters [36]
and the goal of our paper is to improve and clarify the state of the art given by this previous
work.

Summary of Results. Our results can be divided into two parts (see Table 1 for a summary).
In the first part of the paper we parameterize the problem by t + ∆, that is, we study its
complexity for graphs that have simultaneously low treewidth and low maximum degree.

T. Hanaka and M. Lampis 64:3

The study of hedonic games on such graphs was initiated by Peters [36], who already
considered a wide variety of algorithmic questions on ASHGs for these parameters and
provided FPT algorithms using Courcelle’s theorem. Due to the importance of Nash
Stability, more refined algorithmic arguments were given in the same work, and it was
claimed that Connected Nash Stability (the variant of the problem where coalitions must
be connected in the underlying graph) and Nash Stability can be decided with parameter
dependence roughly 2∆2t and 2∆5t, respectively (though as we explain below, these claims
were not completely justified). We thus revisit the problem with the goal of determining
the optimal parameter dependence for Nash Stability in terms of t and ∆. Our positive
contribution is an algorithm deciding Nash Stability in time (∆t)O(∆t) (n + log W)O(1),
where W is the maximum absolute weight, significantly improving the parameter dependence
for ∆ (Theorem 4). This is achieved by reformulating the problem as a coloring problem with
t∆ colors in a way that encodes the property that two vertices belong in the same coalition
and then using dynamic programming to solve this problem. Our main technical contribution
is then to establish that our algorithm is essentially optimal. To that end we first show that
if there exists an algorithm solving Nash Stability in time (p∆)o(p∆)(nW)O(1), where p is
the pathwidth of the underlying graph, then the ETH is false (Theorem 5). Hence, it is not
possible to obtain a better parameter dependence, even if we accept a pseudo-polynomial
running time and a more restricted parameter.

If we were considering a parameterization with a single parameter, at this point we would
be essentially done, since we have an algorithm and a lower bound that match. However, the
fact that ∆ and t are two a priori independent variables significantly complicates the analysis
because, informally, the space of running time functions that depend on two variables is
not totally ordered. To see what we mean by that, recall that [36] claimed an algorithm
with complexity roughly 2∆5t, while our algorithm’s complexity has the form (∆t)∆t. The
two algorithms are not directly comparable in performance: for some values of ∆, t one
is better and for some the other (though the range of parameters where 2∆5t < (∆t)∆t is
quite limited). As a result, even though Theorem 5 shows that no algorithm can beat the
algorithm of Theorem 4 in all cases, it does not rule out the possibility that some algorithm
beats it in some cases, for example when ∆ is much smaller than t, or vice-versa. We
therefore need to work harder to argue that our algorithm is indeed optimal in essentially
all cases. In particular, we show that even if pathwidth is constant the problem cannot be
solved in ∆o(∆)(nW)O(1) (Corollary 6); and even if ∆ and W are constant, the problem
cannot be solved in po(p)nO(1) (Theorem 7) unless the ETH is false. Hence, we succeed in
covering essentially all corner cases, showing that our algorithm’s slightly super-exponential
dependence on the product of ∆ and t is truly optimal, and we cannot avoid the slightly
super-exponential on either parameter, even if we were to accept a much worse dependence
on the other.

An astute reader will have noticed a contradiction between our lower bounds and the
algorithms of [36]. It is also worth noting that Theorem 7 applies to both the connected
and disconnected cases of the problem, using an argument due to [36]. Hence, Theorem 7
implies that, either the ETH is false, or neither of the aforementioned algorithms of [36]
can have the claimed performance, as executing them on the instances produced by our
reduction (which have ∆ = O(1)) would give parameter dependence 2O(t), which is ruled
out by Theorem 7. Indeed, in Section 3 we explain in more detail that the argumentation of
[36] lacks an ingredient (the partition of vertices in each neighborhood into coalitions) which
turns out to be necessary to obtain a correct algorithm and also key in showing the lower
bound. Hence, the slightly super-exponential dependence on t cannot be avoided (under the
ETH), and the dependence on t promised in [36] is impossible to achieve: the best one can
hope for is the slightly super-exponential dependence on both t and ∆ given in Theorem 4.

ESA 2022

64:4 Hedonic Games and Treewidth Revisited

In the second part of the paper, we consider Nash Stability on graphs of low treewidth,
without making any further assumptions (in particular, we consider graphs of arbitrarily large
degree). This parameterization was considered by Peters [36] who showed that the problem
is strongly NP-hard on stars and thus motivated the use of the double parameter t + ∆. This
would initially appear to settle the problem. However, we revisit this question and make two
key observations: first, the reduction of [36] does not show hardness for additive games, but
for a more general version of the problem where preferences of players are not necessarily
additive but are described by a collection of boolean formulas (HC-nets [18, 25]). It was
therefore explicitly posed as an open question whether additive games are also hard [36].
Second, in the reduction of [36] coalitions are disconnected. As noted in [26, 36], there
are situations where Nash Stable coalitions make more sense if they are connected in the
underlying graph. We therefore ask whether Connected Nash Stability, where we impose
a connectivity condition on coalitions, is an easier problem.

Our first contribution is to resolve the open question of [36] by showing that imposing
either one of these two modifications does not render the problem tractable: Nash Stability
of additive hedonic games is still strongly NP-hard on stars (Theorem 9); and Connected
Nash Stability of hedonic games encoded by HC-nets is still NP-hard on stars (Theorem 10).
However, our reductions stubbornly refuse to work for the natural combination of these
conditions, namely, Connected Nash Stability for additive hedonic games on stars.
Surprisingly, we discover that this is with good reason: Connected Nash Stability turns
out to be solvable in pseudopolynomial time on graphs of bounded treewidth (Theorem 11).
More precisely, our algorithm, which uses standard dynamic programming techniques but
crucially relies on the connectedness of coalitions, runs in “pseudo-XP” time, that is, in
polynomial time when t = O(1) and weights are polynomially bounded. Completing our
investigation we show that this is essentially the best possible: obtaining a pseudo-polynomial
time algorithm with FPT dependence on treewidth (or pathwidth) would contradict standard
assumptions (Theorem 12). Hence, in this part we establish that there is an overlooked case
of ASHGs that does become somewhat tractable when we only parameterize by treewidth,
but this tractability is limited.

Related work. Deciding if an ASHG admits a partition that is Nash Stable or has other
desirable properties is NP-hard [3, 5, 34, 38, 41]. Hardness remains even in cases where a
Nash Stable solution is guaranteed, such as symmetric preferences, where the problem is
PLS-complete [21], and non-negative preferences, where it is NP-hard to find a non-trivial
stable partition [35]. The problem generally remains hard when we impose the requirement
that coalitions must be connected [8, 26].

A related Min Stable Cut problem is studied in [29], where we partition the vertices
into two coalitions in a Nash Stable way. Interestingly, the complexity of that problem turns
out to be 2O(∆t), since each vertex has 2 choices; this nicely contrasts with Nash Stability,
where vertices have more choices, and which is slightly super-exponential parameterized by
treewidth. Similar slightly super-exponential complexities have been observed with other
problems involving treewidth and partitioning vertices into sets [24, 32].

2 Preliminaries

We use standard graph-theoretic notation and assume that the reader is familiar with
standard notions in parameterized complexity, including treewidth t and pathwidth p [14].
We mostly deal with directed graphs and denote an arc from vertex u to vertex v as uv.

T. Hanaka and M. Lampis 64:5

When we talk about the degree or the neighborhood of a vertex v, we refer to its degree
and its neighborhood in the underlying graph, that is, the graph obtained by forgetting
the directions of all arcs. Throughout the paper ∆(G) (or simply ∆, when G is clear from
the context) denotes the maximum degree of the underlying graph of G. The Exponential
Time Hypothesis (ETH) is the assumption that there exists c > 1 such that 3-SAT on
formulas with n variables does not admit a cn algorithm [28]. We will mostly use a somewhat
simpler to state (and weaker) form of this assumption stating that 3-SAT cannot be solved
in time 2o(n).

In this paper we will be mostly interested in Additively Separable Hedonic Games (ASHG).
In an ASHG we are given a directed graph G = (V, E) and a weight function w : V × V → Z
that encodes agents’ preferences. The function w has the property that for all u, v ∈ V such
that uv ̸∈ E we have w(u, v) = 0, that is, non-zero weights are only given to arcs. A solution
to an ASHG is a partition π of V , where we refer to the sets of V as classes or, more simply,
as coalitions. For each v ∈ V and S ⊆ V the utility that v derives from being placed in
the coalition S is defined as pv(S) =

∑
u∈S\{v} w(v, u). A partition π is Nash Stable if we

have the following: for each v ∈ V , if v belongs in the class S of π, we have pv(S) ≥ 0 and
for each S′ ∈ π we have pv(S) ≥ pv(S′). In other words, no vertex can strictly increase its
utility by joining another coalition of π or forming a singleton coalition. We also consider
the notion of Connected Nash Stable partitions, which are Nash Stable partitions π with the
added property that all classes of π are connected in the underlying undirected graph of G.

3 Parameterization by Treewidth and Degree

In this section we revisit Nash Stability parameterized by t + ∆, which was previously
studied in [36]. Our main positive result is an algorithm given in Section 3.1 solving the
problem with dependence (t∆)O(t∆).

Our main technical contribution is then to show in Section 3.2 that this algorithm is
essentially optimal, under the ETH. As explained, we need several different reductions to
settle this problem in a satisfactory way. The main reduction is given in Theorem 5 and uses
the fact that a partition restricted to the neighborhood of a vertex with degree ∆ encodes
roughly ∆ log ∆ bits of information, because there are around ∆∆ partitions of ∆ elements
into equivalence classes. This key idea allows the first reduction to compress the treewidth
more and more as ∆ increases. Hence, we can produce instances where both t and ∆ are
super-constant, but appropriately chosen to match our bound. In this way, Theorem 5
rules out running times of the form, say (t∆)t+∆, as when t, ∆ are both super-constant,
t + ∆ = o(t∆). By modifying the parameters of Theorem 5 we then obtain Corollary 6
from the same construction, which states that no algorithm can have dependence ∆o(∆),
even on graphs of bounded pathwidth. On the other hand, this type of construction cannot
show hardness for instances of bounded degree, as when ∆ = O(1), then ∆∆ = O(1), so we
cannot really compress the treewidth of the produced instance. Hence, we use a different
reduction in Theorem 7, showing that the problem cannot be solved with dependence po(p)

on instances of bounded degree. This reduction uses a super-constant number of coalitions
that “run through” the graph, and hence produces instances with super-constant t. The
three complementary reductions together cover the whole range of possibilities and indicate
that there is not much room for improvement in our algorithm.

It is worth discussing here that, assuming the ETH, Theorem 7 contradicts the claimed
algorithms of [36], which for ∆ = O(1) would solve (Connected) Nash Stability with
dependence 2O(t), while Theorem 7 claims that the problem cannot be solved in time 2o(t log t).

ESA 2022

64:6 Hedonic Games and Treewidth Revisited

Let us then briefly explain why the proof sketch for these algorithms in [36] is incomplete:
the idea of the algorithms is to solve Connected Nash Stability, and use the arcs of the
instance to verify connectivity. Hence, the DP algorithm will remember, in a ball of distance
2 around each vertex, which arcs have both of their endpoints in the same coalition. The
claim is that this information allows us to infer the coalitions. Though this is true if one is
given this information for the whole graph, it is not true locally around a vertex where we
only have information about other vertices which are close by. In particular, it could be the
case that u has neighbors v1, v2, which happen to be in the same coalition, but such that
the path proving that this coalition is connected goes through vertices far from u. Because
this cannot be verified locally, any DP algorithm would need to store some connectivity
information about the vertices in a bag which, as implied by Theorem 7 inevitably leads to a
dependence of the form tt.

3.1 Improved FPT Algorithm
In order to obtain our algorithm for Nash Stability we will need two ingredients. The first
ingredient will be a reformulation of the problem as a vertex coloring problem. We use the
following definition where, informally, a vertex is stable if its outgoing weight to vertices of
the same color cannot be increased by changing its color.

▶ Definition 1. A Stable k-Coloring of an edge-weighted digraph G is a function c :
V → [k] satisfying the following property: for each v ∈ V we have

∑
u∈c−1(c(v)) w(v, u) ≥

maxj∈[k+1]
∑

u∈c−1(j) w(v, u).

Note that in the definition above we take the maximum over j ∈ [k +1] of the total weight
of v towards color class j. Since c is a function that uses k colors, we have c−1(k + 1) = ∅
and hence this ensures that the total weight of v towards its own color must always be
non-negative in a stable coloring. Also note that to calculate the total weight from v to
a certain color class j, it suffices to consider the vertices of color j that belong in the
out-neighborhood of v.

Our strategy will be to show that, for appropriately chosen k, deciding whether a graph
admits a stable k-Coloring is equivalent to deciding whether a Nash Stable partition exists.
Then, the second ingredient of our approach is to use standard dynamic programming
techniques to solve Stable k-Coloring on graphs of bounded treewidth and maximum degree.

The key lemma for the first part is the following:

▶ Lemma 2. Let G = (V, E) be an edge-weighted digraph whose underlying graph has
maximum degree ∆ and admits a tree decomposition with maximum bag size t. Then, G has
a Nash Stable partition if and only if it admits a Stable k-Coloring for k = t · ∆.

Proof. First, suppose that we have a Stable k-Coloring c : V → [k] of the graph for some
value k. We obtain a Nash Stable partition of V (G) by turning each color class into a
coalition. By the definition of Stable k-Coloring, each vertex has at least as high utility in
its own color class (and hence its own coalition) as in any other, so this partition is stable.

For the converse direction, suppose that there exists a Nash Stable partition π of G.
We will first attempt to color the coalitions of π in a way that any two coalitions which
are at distance at most two receive distinct colors, while using at most t · ∆ colors. In
the remainder, when we refer to the distance between two sets of vertices S1, S2, we mean
minu∈S1,v∈S2 d(u, v), where distances are calculated in the underlying graph.

Consider the graph G2 obtained from the underlying graph of G by connecting any two
vertices which are at distance at most 2 in the underlying graph of G. We can construct a
tree decomposition of G2 where all bags contain at most t · ∆ vertices by taking the assumed
tree decomposition of G and adding to each bag the neighbors of all vertices contained in

T. Hanaka and M. Lampis 64:7

that bag. Furthermore, we can assume without loss of generality that any equivalence class
C of the Nash Stable partition π is connected in G2. If not, that would mean that there
exists a class C that contains a connected component C ′ ⊆ C such that C ′ is at distance at
least 3 from C \ C ′ in the underlying graph of G. In that case we could partition C into two
classes C ′, C \ C ′, without affecting the stability of the partition.

Formally now the claim we wish to make is the following:

▷ Claim 3. There is a coloring c of the equivalence classes of π with k = t · ∆ colors such
that any two classes C1, C2 of π which are at distance at most two in the underlying graph
of G receive distinct colors.

Proof. We prove the claim by induction on the number of equivalence classes of π. If there
is only one class the claim is trivial.

Consider a rooted tree decomposition of G2. For an equivalence class C of π we say that
the bag B is the top bag for C if B contains a vertex of C and no bag that is closer to
the root contains a vertex of C. Select an equivalence class C of π whose top bag is as far
from the root as possible. We claim that there are at most t · ∆ − 1 classes C ′ which are at
distance at most 2 from C in G.

In order to prove that there are at most t · ∆ − 1 other classes at distance at most two
from C, consider such a class C ′, which is therefore at distance one from C in G2. Let B

be the top bag of C. If C ′ does not contain any vertex that appears in B then we get a
contradiction as follows: first, C ′ has a neighbor of a vertex of C, so these two vertices must
appear together in a bag; since all vertices of C appear in the sub-tree rooted at B, some
vertices of C ′ must appear strictly below B in the decomposition; since B is a separator of
G2 and C ′ is connected, if no vertex of C ′ is in B then all vertices of C ′ appear below B in
the decomposition; but then, this contradicts the choice of C as the class whose top bag is
as far from the root as possible. As a result, for each C ′ that is a neighbor of C in G2, there
exists a distinct vertex of C ′ in B. Since |B| ≤ t · ∆ and B contains a vertex of C, we get
that the coalitions C ′ which are neighbors of C in G2 are at most t · ∆ − 1.

We now remove all vertices of C from the graph and claim that π restricted to the new
graph is still a Nash Stable partition. By induction, there is a coloring of the remaining
coalitions of π that satisfies the claim. We keep this coloring and assign to C a color that is
not used by any of the at most k − 1 coalitions which are at distance two from C. Hence, we
obtain the claimed coloring of the classes of π. ◁

From Claim 3 we obtain a coloring of the equivalence classes of π with k = t · ∆ colors,
such that any two equivalence classes which are at distance at most 2 in the underlying
graph of G receive distinct colors. We now obtain a coloring of V by assigning to each vertex
the color of its class. In the out-neighborhood of each vertex v the partition induced by the
coloring is the same as that induced by π, since all the vertices in the out-neighborhood of
v are at distance at most 2 from each other in G. Hence, the k-Coloring must be stable,
because otherwise a vertex would have incentive to deviate in π by joining another coalition
or by becoming a singleton. ◀

▶ Theorem 4. There exists an algorithm which, given an ASHG defined on a digraph
G = (V, E) whose underlying graph has maximum degree ∆ and a tree decomposition of
the underlying graph of G of width t, decides if a Nash Stable partition exists in time
(∆t)O(∆t) (n + log W)O(1), where n = |V | and W is the largest absolute weight.

Proof. Using Lemma 2 we will formulate an algorithm that decides if the given instance
admits a Stable k-Coloring for k = (t + 1)∆, since this is equivalent to deciding if a Nash
Stable partition exists. We first obtain a tree decomposition of G2 by placing into each bag
of the given decomposition all the neighbors of all the vertices of the bag.

ESA 2022

64:8 Hedonic Games and Treewidth Revisited

We now execute a standard dynamic programming algorithm for k-coloring on this new
decomposition, so we sketch the details. The DP table has size k(t+1)∆ = (∆t)O(∆t) since
we need to store as a signature of a partial solution the colors of all vertices contained in a
bag. The only difference with the standard DP algorithm for coloring is that our algorithm,
whenever a new vertex v is introduced in a bag B, considers all possible colors for v, and then
for each u ∈ B, if all neighbors of u are contained in B, verifies for each signature whether u

is stable. Signatures where a vertex is not stable are discarded. The key property is now that
for any vertex u, there exists a bag B such that B contains u and all its neighbors (since in
G2 the neighborhood of u is a clique), hence only signatures for which all vertices are stable
may survive until the root of the decomposition. ◀

3.2 Tight ETH-based Lower Bounds
▶ Theorem 5. If the ETH is true, there is no algorithm which decides if an ASHG on a
graph with n vertices, maximum degree ∆, and pathwidth p admits a Nash Stable partition in
time (p∆)o(p∆)(nW)O(1), where W is the maximum absolute weight.

Proof. We will give a parametric reduction which, starting from a 3-SAT instance ϕ with n

variables and m clauses, and for any desired parameter d < n/ log n, constructs an ASHG
instance G with the following properties:
1. G can be constructed in time polynomial in n

2. G has maximum degree O(d)
3. G has pathwidth O(n

d log d)
4. the maximum absolute value W is 2O(d)

5. ϕ is satisfiable if and only if there exists a Nash Stable partition.

Before we go on, let us argue why a reduction that satisfies these properties does indeed
establish the theorem: given a 3-SAT instance on n variables, we set d = ⌊

√
n⌋. We

construct G in polynomial time, therefore the size of G is polynomially bounded by n.
Deciding if G has a Nash Stable partition is equivalent to solving ϕ by the last property. By
the third property, the pathwidth of the constructed graph is O(

√
n

log n), so p∆ = O(n
log n).

Furthermore, W = 2O(
√

n). If deciding if a Nash Stable partition exists can be done in time
(p∆)o(p∆)(|G| ·W)O(1), the total running time for deciding ϕ is (p∆)o(p∆)(|G| ·W)O(1) = 2o(n)

contradicting the ETH.
We now describe our construction. We are given a 3-SAT instance ϕ with variables

x0, . . . , xn−1, and a parameter d, which we assume to be a power of 2 (otherwise we increase
its value by at most a factor of 2). We also assume without loss of generality that all clauses
of ϕ have size exactly 3 (otherwise we repeat literals). We construct the following graph:
1. Selection vertices: for each i1 ∈ {0, . . . , ⌈ n

d log d ⌉}, i2 ∈ {0, . . . , d − 1}, j ∈ {0, . . . , m},
we construct a vertex u(i1,i2,j).

2. Consistency vertices: for each i1 ∈ {0, . . . , ⌈ n
d log d ⌉}, j ∈ {1, . . . , m − 1}, we construct

a vertex c(i1,j). For i2 ∈ {0, . . . , d − 1} we give weights: w(c(i1,j), u(i1,i2,j)) = 4i2 ;
w(c(i1,j), u(i1,i2,j+1)) = −4i2 ; w(u(i1,i2,j), c(i1,j)) = w(u(i1,i2,j+1), c(i1,j)) = −4d.

3. Clause gadget: for each j ∈ {1, . . . , m} we construct two vertices sj , s′
j and set

w(sj , s′
j) = 2. We also construct three vertices ℓ(j,1), ℓ(j,2), ℓ(j,3) and set w(ℓ(j,1), sj) =

w(ℓ(j,2), sj) = w(ℓ(j,3), sj) = 2 and w(sj , ℓ(j,1)) = w(sj , ℓ(j,2)) = w(sj , ℓ(j,3)) = −1.
4. Palette gadget: we construct a vertex p and a helper p′. We set w(p, p′) = w(p′, p) = 1.

Furthermore, for i1 = ⌈ n
d log d ⌉ and for all i2 ∈ {0, . . . , d − 1}, we set w(p, u(i1,i2,0)) = 1

and w(u(i1,i2,0), p) = −1. We call selection vertex u(i1,i2,0) a palette vertex.

T. Hanaka and M. Lampis 64:9

So far, we have described the main part of our construction, without yet specifying how
we encode which literals appear in each clause. Before we move on to describe this part, let
us give some intuition about the construction up to this point. The intended meaning of
the palette gadget is that vertices u(i1,i2,0) for i1 = ⌈ n

d log d ⌉ and i2 ∈ {0, . . . , d − 1} should
be placed in distinct coalitions (p can be thought of as a stalker). These vertices form a
“palette”, in the sense that every other selection vertex encodes an assignment to some of
the variables of ϕ by deciding which of the palette vertices it will join. Hence, we intend to
extract an assignment of ϕ from a stable partition by considering each vertex u(i1,i2,0), for
i1 ∈ {0, . . . , ⌈ n

d log d ⌉ − 1}, i2 ∈ {0, . . . , d − 1}. For each such vertex we test in which of the
d palette partitions the vertex was placed, and this gives us enough information to encode
log d variables of ϕ. Since we have ⌈ n

d log d ⌉ · d ≥ n
log d non-palette selection vertices, and

each such selection vertex encodes log d variables, we will be able to encode an assignment
to n variables. The role of the consistency vertices is to make sure that the partition of
the selection vertices (and hence, the encoded assignment) stays consistent throughout our
construction.

In order to complete the construction, let us make the above intuition more formal.
For i1 ∈ {0, . . . , ⌈ n

d log d ⌉ − 1}, i2 ∈ {0, . . . , d − 1} and for any j ∈ {1, . . . , m}, we will say
that u(i1,i2,j) encodes the assignment to variables xk, with k ∈ {i1 · d log d + i2 log d, · · · , i1 ·
d log d+ i2 log d+log d−1}. Equivalently, given an integer k, we can compute which selection
vertices encode the assignment to xk by setting i1 = ⌊ k

d log d ⌋ and i2 = ⌊ k−i1d log d
log d ⌋. In that

case, xk is represented by u(i1,i2,j) (for any j).
Let us now explain precisely how an assignment to the variables of ϕ is encoded by the

placement of selection vertices in coalitions. Let k be such that xk is encoded by u(i1,i2,j)
and let i3 = k − i1d log d − i2 log d. We have i3 ∈ {0, . . . , log d − 1}. If xk is set to True
in the assignment, then u(i1,i2,j) must be placed in the same coalition as a palette vertex
u⌈ n

d log d ⌉,i′
2,0 where i′

2 has the following property: if we write i′
2 in binary, then the bit in

position i3 must be set to 1. Similarly, if xk is set to False, then we must place u(i1,i2,j) in
the same coalition as a palette vertex u⌈ n

d log d ⌉,i′
2,0 where writing i′

2 in binary gives a 0 in
position i3. Observe that, given an assignment and a vertex u(i1,i2,j) which represents log d

variables, this process fully specifies the palette vertex with which we must place u(i1,i2,j)
to represent the assignment. In the converse direction, we can extract from the placement
of u(i1,i2,j) an assignment to the vertices it represents if we know that all palette vertices
are placed in distinct components, simply by finding the palette vertex u(⌈ n

d log d ⌉,i′
2,0) in the

coalition of u(i1,i2,j), writing down i′
2 in binary, and using its log d bits in order to give an

assignment to the log d variables represented by u(i1,i2,j).
We are now ready to complete the construction by considering each clause. Each vertex

ℓ(j,α), α ∈ {1, 2, 3}, corresponds to a literal of the j-th clause of ϕ. If this literal involves the
variable xk, we calculate integers i1, i2, i3 from k as explained in the previous paragraph. Say,
xk is the i3-th variable represented by u(i1,i2,j). We set w(ℓ(j,α), u(i1,i2,j)) = 1. Furthermore,
for each i′

2 ∈ {0, . . . , d − 1} we look at the i3-th bit of the binary representation of i′
2. If

setting xk to the value of that bit would make the literal represented by ℓ(j,α) True, we set
w(ℓ(j,α), u(⌈ n

d log d ⌉,i′
2,j)) = 1; otherwise we set w(ℓ(j,α), u(⌈ n

d log d ⌉,i′
2,j)) = 0. We perform the

above process for all j ∈ {1, . . . , m}, α ∈ {1, 2, 3}.
Our construction is now complete, so we need to show that we satisfy all the claimed

properties. It is not hard to see that the graph can be built in polynomial time, and the
maximum absolute weight used is 2O(d) (on arcs incident on some consistency vertices). The
vertices with maximum degree are the consistency vertices and the vertices representing
literals, both of which have degree O(d).

ESA 2022

64:10 Hedonic Games and Treewidth Revisited

To establish the bound on the pathwidth we first delete p, p′ from the graph, as this can
decrease pathwidth by at most 2. Now observe that, for each j, the set Cj = {c(i1,j) | i1 ∈
{0, . . . , ⌈ n

d log d ⌉} } is a separator of the graph. We claim that if we fix a j, then the set
Cj ∪ Cj+1 separates the set C ′

j = {u(i1,i2,j) |i1 ∈ {0, . . . , ⌈ n
d log d ⌉}, i2 ∈ {0, . . . , d − 1} } ∪

{sj , s′
j , ℓ(j,1), ℓ(j,2), ℓ(j,3)} from the rest of the graph. We claim that we can calculate a path

decomposition of the graph induced by Cj ∪C ′
j ∪Cj+1 with width O(n

d log d) such that the first
bag contains Cj and the last bag contains Cj+1. If we achieve this we can construct a path
decomposition of the whole graph by gluing these decompositions together in the obvious
way (in order of increasing j). However, a path decomposition of this induced subgraph can
be constructed by placing Cj ∪ Cj+1 ∪ {sj , s′

j , ℓ(j,1), ℓ(j,2), ℓ(j,3)} and a distinct vertex of the
remainder of C ′

j in each bag. This decomposition has width 2|Cj | + O(1) = O(n
d log d).

Finally, let us establish the main property of the construction, namely that ϕ is satisfiable
if and only if the ASHG instance admits a Nash Stable partition. If there exists a satisfying
assignment to ϕ we construct a partition as follows: (i) p, p′ are in their own coalition (ii) each
consistency vertex is a singleton (iii) for i2 ∈ {0, . . . , d − 1}, the vertices of {u⌈ n

d log d ⌉,i2,j | j ∈
{1, . . . , m}} are placed in a distinct coalition (iv) we place the remaining selection vertices
in one of the previous d coalitions in a way that represents the assignment as previously
explained (v) for each j ∈ {1, . . . , m} the j-th clause contains a True literal; we place the
corresponding vertex ℓ(j,α) together with its out-neighbor in the selection vertices, and the
remaining literal vertices together with s, s′ in a new coalition. We claim that this partition
is Nash Stable. We have the following argument: (i) p′ is with p, while p cannot increase
her utility by leaving p′, since all its other out-neighbors are in distinct coalitions (ii) for
each i1, i2, j, the vertices u(i1,i2,j), u(i1,i2,j+1) are in the same coalition. Hence, the utility of
each consistency vertex is 0 in any coalition, and such vertices are stable as singletons (iii)
each selection vertex u(i1,i2,j) has utility 0, and such vertices only have out-going arcs of
negative weight (iv) in each clause gadget we have a coalition with sj , s′

j together with two
literal vertices, say ℓ(j,1), ℓ(j,2); no vertex has incentive to leave this coalition (v) finally, for
literal vertices ℓ(j,α) which we placed together with a selection vertex, we observe that if the
assignment sets the corresponding literal to True, the selection vertex that is an out-neighbor
of ℓ(j,α) must have been placed in a coalition that contains a palette vertex towards which
ℓ(j,α) has positive utility, hence the utility of ℓ(j,α) is 2 and this vertex is stable.

For the converse direction, suppose that we have a Nash Stable partition π. We first
prove that all vertices u⌈ n

d log d ⌉,i2,0, for i2 ∈ {0, . . . , d − 1}, must be in distinct coalitions.
Indeed, if two of them are in the same coalition, p will have incentive to join the coalition
that has the maximum number of such vertices. However, once p joins such a coalition, these
vertices will have negative utility, contradicting stability. Second, we prove that for each
i1, i2, j, the vertices u(i1,i2,j), u(i1,i2,j+1) must be in the same coalition. If not, consider two
such vertices which are in distinct coalitions and maximize i2. We claim that in this case
c(i1,j) will always join u(i1,i2,j). Indeed, from the selection of i2, we have that for i′

2 > i2,
the contribution of arcs with absolute weight 4i′

2 to the utility of c(i1,j) cancels out; while
for i′

2 < i2 the sum of all absolute utilities of arcs with weights 4i′
2 is too low to affect the

placement of c(i1,j) (in particular, 4i2 −
∑

j<i2
4j >

∑
j<i2

4j). But, if c(i1,j) joins such a
coalition, a selection vertex has negative utility, contradicting stability.

From the two properties above we can now extract an assignment to ϕ. For each selection
vertex u(i1,i2,j), if this vertex is in the same coalition as u(⌈ n

d log d ⌉,i′
2,0), we give an assignment

to the variables represented by u(i1,i2,j) as described, that is, we write i′
2 in binary and use

one bit for each variable. Note that the choice of j here is irrelevant, as we have shown that
thanks to the consistency vertices, for each i1, i2, all vertices u(i1,i2,j) are in the same coalition.

T. Hanaka and M. Lampis 64:11

If u(i1,i2,j) is not in the same coalition as any u(⌈ n
d log d ⌉,i′

2,0), we set its corresponding variables
in an arbitrary way. To see that this assignment satisfies clause j, consider sj , which, without
loss of generality is placed with s′

j . If three of the vertices ℓ(j,1), ℓ(j,2), ℓ(j,3) are in the same
coalition as sj , then sj has negative utility, contradiction. Hence, one of these vertices, say
ℓ(j,1), is in another coalition. But then, since the neighbors of this vertex among vertices
u(⌈ n

d log d ⌉,i2,j) are all in distinct coalitions, ℓ(j,1) is in the same coalition with one such vertex
and its out-neighbor selection vertex. But this means that we have extracted an assignment
from the corresponding vertex and that this assignment sets the corresponding literal to
True, satisfying the clause. ◀

▶ Corollary 6. If the ETH is true, there is no algorithm which decides if an ASHG on a
graph with n vertices, maximum degree ∆, and constant pathwidth admits a Nash Stable
partition in time ∆o(∆)(nW)O(1), where W is the maximum absolute weight.

Proof. We use the same reduction as in Theorem 5, from a 3-SAT formula on n variables,
but set d = ⌊ n

2 log n ⌋. According to the properties of the construction, the pathwidth of the
resulting graph is O(n

d log d) = O(1), the maximum degree is O(n/ log n), the maximum weight
is 2O(n/ log n) and the size of the constructed graph is polynomial in n. If there exists an
algorithm for finding a Nash Stable partition in the stated time, this gives a 2o(n) algorithm
for 3-SAT. ◀

▶ Theorem 7. If the ETH is true, there is no algorithm which decides if an ASHG on a
graph with n vertices, constant maximum degree ∆, and pathwidth p admits a Nash Stable
partition in time po(p)nO(1), even if all weights have absolute value O(1).

▶ Corollary 8. Theorem 7 also applies to Connected Nash Stability.

4 Parameterization by Treewidth Only

In this section we consider Nash Stability on graphs of bounded treewidth. Peters [36]
showed that this problem is strongly NP-hard on stars, but for a more general version where
preferences are described by boolean formulas (HC-nets). In Section 4.1 we strengthen this
hardness result by showing that Nash Stability remains strongly NP-hard on stars for
additive preferences. We also show that Connected Nash Stability is strongly NP-hard
on stars, albeit also using HC-nets.

The only case that remains is Connected Nash Stability with additive preferences.
Somewhat surprisingly, we show that this case evades our hardness results because it is in
fact more tractable. We establish this via an algorithm running in pseudo-polynomial time
when the treewidth is constant in Section 4.2. As a result, this is the only case of the problem
which is not strongly NP-hard on bounded treewidth graphs (unless P=NP).

We then observe that our algorithm only establishes that the problem is in XP param-
eterized by treewidth (for weights written in unary). We show in Section 4.3 that this is
inevitable, as the problem is W[1]-hard parameterized by treewidth even when weights are
constant. Hence, our “pseudo-XP” algorithm is qualitatively optimal.

4.1 Refined paraNP-hardnesss
▶ Theorem 9. Nash Stability of ASHGs is strongly NP-hard for stars.

Proof. We present a reduction from 3-Partition. In this problem we are given a set of
3n positive integers A, a target value T , and are asked to partition A into n triples, such
that each triple has sum exactly T . This problem has long been known to be strongly

ESA 2022

64:12 Hedonic Games and Treewidth Revisited

NP-hard [22]. Furthermore, we can assume that the sum of all elements of A is nT (otherwise
the answer is clearly No); and that all elements have values strictly between T/4 and T/2,
so sets of sizes other than three cannot have sum T (this can be achieved by adding T to all
elements and setting 4T as the new target).

We construct an ASHG as follows: for each element of A we construct a vertex; we
construct a set B of n additional vertices; we add a “stalker” vertex s and a helper s′. The
preferences are defined as follows: for all x ∈ A ∪ B we set w(x, s) = −1; for each x ∈ B we
set w(s, x) = 2T ; for each x ∈ A we set w(s, x) = −w(x), where w(x) is the value of the
corresponding element in the original instance. Finally, we set w(s, s′) = T and w(s′, s) = 1.
The graph is a star as all arcs are incident on s.

If there exists a valid 3-partition of A, we construct a stable partition of the new instance
by placing s with s′ and, for each triple placing its elements in a coalition with a distinct
vertex of B. Vertices of A ∪ B have utility 0 in this configuration and no incentive to deviate;
while s would have utility T in any existing coalition, so it has no incentive to leave s′; s′ is
satisfied as she is together with s.

For the converse direction, if we have a stable configuration π, s′ must be with s (otherwise
s′ has incentive to deviate). Furthermore, s cannot be with any vertex of A ∪ B, as placing s

with any such vertex would give that vertex incentive to leave. Hence, s, s′ are one coalition
of the stable partition, and s has utility T in this coalition. This implies that every coalition
formed by vertices of A ∪ B must have utility at most T for s.

We now want to prove that every coalition of vertices of A ∪ B contains exactly one vertex
of B. If we show this, then the weight of elements of A placed in each such coalition must be
at least T , hence it must be exactly T (as the sum of all elements of A is nT). Therefore, we
obtain a solution to the original instance.

To prove that every coalition that contains vertices of A ∪ B must contain exactly one
vertex of B, suppose first that there exists a coalition that only contains vertices of A. Call
the union of all such coalitions A′ ⊆ A. Let C1, . . . , Ck be the coalitions that contain some
vertex of B, for some k ≤ |B| = n. We now reach a contradiction as follows: first, since
s does not have incentive to join Ci, for i ∈ [k], we have

∑
v∈Ci

w(s, v) ≤ T , therefore∑k
i=1

∑
v∈Ci

w(s, v) ≤ kT ≤ nT . On the other hand,
∑k

i=1
∑

v∈Ci
w(s, v) ≥

∑
v∈B w(s, v) +∑

v∈A\A′ w(s, v) > 2nT − nT = nT , because if A′ is non-empty
∑

v∈A\A′ w(s, v) > −nT .
Hence we have a contradiction and from now on we suppose that every coalition that contains
a vertex of A ∪ B has non-empty intersection with B.

Finally, consider a coalition that contains k ≥ 1 vertices of B. These vertices give s

utility 2kT , meaning that the sum of weights of vertices of A placed in this coalition must
be at least (2k − 1)T . Let ti be the number of coalitions which contain exactly i ≥ 1 vertices
of B. We obtain the inequality

∑
i ti(2i − 1)T ≤ nT , because the weight of all elements

of A is nT . On the other hand
∑

i iti = n, as we have that |B| = n. We therefore have∑
i ti(2i − 1) ≤ n ⇔

∑
i ti ≥ n =

∑
i iti ⇔

∑
i>1(1 − i)ti ≥ 0, which can only hold if ti = 0

for i > 1. ◀

▶ Theorem 10. Deciding if a graphical hedonic game represented by an HC-net admits a
connected Nash Stable partition is NP-hard even if the input graph is a star and all weights
are in {1, −1}.

4.2 Pseudo-XP algorithm for Connected Partitions
▶ Theorem 11. There exists an algorithm which, given an ASHG instance on n vertices
with maximum absolute weight W , along with a tree decomposition of the underlying graph
of width t, decides if a connected Nash Stable partition exists in time (nW)O(t2).

T. Hanaka and M. Lampis 64:13

Proof. Due to space constraints, we only sketch the proof. The algorithm uses standard DP
techniques. In addition to connectivity information about which vertices of the bag are in
the same connected component of the same coalition (which takes tO(t) to store in the DP
table), we store for each vertex the utility it would have if it joined the coalition of each
other vertex in the bag, and also the best coalition it has seen in the part of the graph that
has already been processed. This gives (nW)t combinations per vertex in the bag, hence a
DP table of the claimed size, and allows us to verify that all vertices are stable. The key
property is that, since coalitions are connected, a coalition that has already been seen and
does not contain any members in the bag is complete, in the sense that no further vertex
can later be added to the coalition (as it would become disconnected). ◀

4.3 ETH-based lower bound for Connected Partitions
▶ Theorem 12. If the ETH is true, deciding if an ASHG of pathwidth p admits a connected
Nash Stable configuration cannot be done in time f(p) ·no(p/ log p) for any computable function
f , even if all weights are in {−1, 1}.

By a slight modification of the previous proof we also obtain weak NP-hardness for the
case where the input graph has vertex cover 2.

▶ Corollary 13. It is weakly NP-hard to decide if an ASHG on a graph with vertex cover 2
admits a connected Nash Stable partition.

5 Conclusions and Open Problems

Our results give strong evidence that the precise complexity of Nash Stability parameterized
by t + ∆ is in the order of (t∆)O(t∆). It would be interesting to verify if the same is true
for Connected Nash Stability, as this problem turned out to be slightly easier when
parameterized only by treewidth, and is only covered by Corollary 8 for the case of bounded-
degree graphs. Of course, it would also be worthwhile to investigate the fine-grained
complexity of other notions of stability. In particular, versions which are complete for higher
levels of the polynomial hierarchy [37] may well turn out to have double-exponential (or worse)
complexity parameterized by treewidth [30, 31]. Finally, it would be worth to investigate
precise complexity of other stability notions of hedonic games (e.g., individual stability and
core stability), or other variants of hedonic games (e.g., fractional hedonic games and social
distance games).

References
1 Alessandro Aloisio, Michele Flammini, and Cosimo Vinci. The impact of selfishness in

hypergraph hedonic games. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 1766–1773. AAAI Press, 2020.
URL: https://aaai.org/ojs/index.php/AAAI/article/view/5542.

2 Haris Aziz, Florian Brandl, Felix Brandt, Paul Harrenstein, Martin Olsen, and Dominik
Peters. Fractional hedonic games. ACM Trans. Economics and Comput., 7(2):6:1–6:29, 2019.
doi:10.1145/3327970.

3 Haris Aziz, Felix Brandt, and Hans Georg Seedig. Computing desirable partitions in additively
separable hedonic games. Artif. Intell., 195:316–334, 2013.

ESA 2022

https://aaai.org/ojs/index.php/AAAI/article/view/5542
https://doi.org/10.1145/3327970

64:14 Hedonic Games and Treewidth Revisited

4 Haris Aziz and Rahul Savani. Hedonic games. In Handbook of Computational Social Choice,
pages 356–376. Cambridge University Press, 2016.

5 Coralio Ballester. NP-completeness in hedonic games. Games Econ. Behav., 49(1):1–30, 2004.
6 Nathanaël Barrot, Kazunori Ota, Yuko Sakurai, and Makoto Yokoo. Unknown agents in friends

oriented hedonic games: Stability and complexity. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 1756–1763. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33011756.

7 Nathanaël Barrot and Makoto Yokoo. Stable and envy-free partitions in hedonic games.
In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 67–73. ijcai.org,
2019. doi:10.24963/ijcai.2019/10.

8 Vittorio Bilò, Laurent Gourvès, and Jérôme Monnot. On a simple hedonic game with graph-
restricted communication. In SAGT, volume 11801 of Lecture Notes in Computer Science,
pages 252–265. Springer, 2019.

9 Niclas Boehmer and Edith Elkind. Individual-based stability in hedonic diversity games. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 1822–1829. AAAI Press, 2020. URL: https://aaai.org/
ojs/index.php/AAAI/article/view/5549.

10 Felix Brandt, Martin Bullinger, and Anaëlle Wilczynski. Reaching individually stable coalition
structures in hedonic games. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pages 5211–5218. AAAI Press, 2021. URL:
https://ojs.aaai.org/index.php/AAAI/article/view/16658.

11 Simina Brânzei and Kate Larson. Coalitional affinity games and the stability gap. In IJCAI,
pages 79–84, 2009.

12 Martin Bullinger and Stefan Kober. Loyalty in cardinal hedonic games. In Zhi-Hua Zhou,
editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages 66–72. ijcai.org,
2021. doi:10.24963/ijcai.2021/10.

13 Katarína Cechlárová. Stable partition problem. In Encyclopedia of Algorithms, pages 2075–2078.
Springer, 2016.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

15 Andreas Darmann, Edith Elkind, Sascha Kurz, Jérôme Lang, Joachim Schauer, and Gerhard J.
Woeginger. Group activity selection problem with approval preferences. Int. J. Game Theory,
47(3):767–796, 2018. doi:10.1007/s00182-017-0596-4.

16 Vladimir G. Deineko and Gerhard J. Woeginger. Two hardness results for core stability in
hedonic coalition formation games. Discret. Appl. Math., 161(13-14):1837–1842, 2013.

17 Edith Elkind, Angelo Fanelli, and Michele Flammini. Price of pareto optimality in hedonic
games. Artif. Intell., 288:103357, 2020.

18 Edith Elkind and Michael J. Wooldridge. Hedonic coalition nets. In AAMAS (1), pages
417–424. IFAAMAS, 2009.

19 Angelo Fanelli, Gianpiero Monaco, and Luca Moscardelli. Relaxed core stability in fractional
hedonic games. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 182–188. ijcai.org, 2021. doi:10.24963/ijcai.2021/26.

https://doi.org/10.1609/aaai.v33i01.33011756
https://doi.org/10.24963/ijcai.2019/10
https://aaai.org/ojs/index.php/AAAI/article/view/5549
https://aaai.org/ojs/index.php/AAAI/article/view/5549
https://ojs.aaai.org/index.php/AAAI/article/view/16658
https://doi.org/10.24963/ijcai.2021/10
https://doi.org/10.1007/s00182-017-0596-4
https://doi.org/10.24963/ijcai.2021/26

T. Hanaka and M. Lampis 64:15

20 Michele Flammini, Bojana Kodric, Gianpiero Monaco, and Qiang Zhang. Strategyproof
mechanisms for additively separable and fractional hedonic games. J. Artif. Intell. Res.,
70:1253–1279, 2021.

21 Martin Gairing and Rahul Savani. Computing stable outcomes in symmetric additively
separable hedonic games. Math. Oper. Res., 44(3):1101–1121, 2019.

22 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

23 Tesshu Hanaka, Hironori Kiya, Yasuhide Maei, and Hirotaka Ono. Computational complexity
of hedonic games on sparse graphs. In PRIMA, volume 11873 of Lecture Notes in Computer
Science, pages 576–584. Springer, 2019.

24 Ararat Harutyunyan, Michael Lampis, and Nikolaos Melissinos. Digraph coloring and distance
to acyclicity. In STACS, volume 187 of LIPIcs, pages 41:1–41:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

25 Samuel Ieong and Yoav Shoham. Marginal contribution nets: a compact representation scheme
for coalitional games. In EC, pages 193–202. ACM, 2005.

26 Ayumi Igarashi and Edith Elkind. Hedonic games with graph-restricted communication. In
AAMAS, pages 242–250. ACM, 2016.

27 Ayumi Igarashi, Kazunori Ota, Yuko Sakurai, and Makoto Yokoo. Robustness against agent
failure in hedonic games. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
pages 364–370. ijcai.org, 2019. doi:10.24963/ijcai.2019/52.

28 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

29 Michael Lampis. Minimum stable cut and treewidth. In ICALP, volume 198 of LIPIcs, pages
92:1–92:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

30 Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an alternative to Courcelle’s
theorem. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings,
volume 10929 of Lecture Notes in Computer Science, pages 235–252. Springer, 2018. doi:
10.1007/978-3-319-94144-8_15.

31 Michael Lampis and Valia Mitsou. Treewidth with a quantifier alternation revisited. In IPEC,
volume 89 of LIPIcs, pages 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

32 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM J. Comput., 47(3):675–702, 2018.

33 Kazunori Ohta, Nathanaël Barrot, Anisse Ismaili, Yuko Sakurai, and Makoto Yokoo. Core
stability in hedonic games among friends and enemies: Impact of neutrals. In Carles Sierra,
editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 359–365. ijcai.org, 2017. doi:
10.24963/ijcai.2017/51.

34 Martin Olsen. Nash stability in additively separable hedonic games and community structures.
Theory Comput. Syst., 45(4):917–925, 2009.

35 Martin Olsen, Lars Bækgaard, and Torben Tambo. On non-trivial nash stable partitions in
additive hedonic games with symmetric 0/1-utilities. Inf. Process. Lett., 112(23):903–907,
2012.

36 Dominik Peters. Graphical hedonic games of bounded treewidth. In AAAI, pages 586–593.
AAAI Press, 2016.

37 Dominik Peters. Precise complexity of the core in dichotomous and additive hedonic games.
In ADT, volume 10576 of Lecture Notes in Computer Science, pages 214–227. Springer, 2017.

ESA 2022

https://doi.org/10.24963/ijcai.2019/52
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.24963/ijcai.2017/51
https://doi.org/10.24963/ijcai.2017/51

64:16 Hedonic Games and Treewidth Revisited

38 Dominik Peters and Edith Elkind. Simple causes of complexity in hedonic games. In IJCAI,
pages 617–623. AAAI Press, 2015.

39 Walid Saad, Zhu Han, Tamer Basar, Mérouane Debbah, and Are Hjørungnes. Hedonic coalition
formation for distributed task allocation among wireless agents. IEEE Trans. Mob. Comput.,
10(9):1327–1344, 2011. doi:10.1109/TMC.2010.242.

40 Jakub Sliwinski and Yair Zick. Learning hedonic games. In Carles Sierra, editor, Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pages 2730–2736. ijcai.org, 2017. doi:10.24963/
ijcai.2017/380.

41 Shao Chin Sung and Dinko Dimitrov. Computational complexity in additive hedonic games.
Eur. J. Oper. Res., 203(3):635–639, 2010.

42 Gerhard J. Woeginger. A hardness result for core stability in additive hedonic games. Math.
Soc. Sci., 65(2):101–104, 2013.

https://doi.org/10.1109/TMC.2010.242
https://doi.org/10.24963/ijcai.2017/380
https://doi.org/10.24963/ijcai.2017/380

	1 Introduction
	2 Preliminaries
	3 Parameterization by Treewidth and Degree
	3.1 Improved FPT Algorithm
	3.2 Tight ETH-based Lower Bounds

	4 Parameterization by Treewidth Only
	4.1 Refined paraNP-hardnesss
	4.2 Pseudo-XP algorithm for Connected Partitions
	4.3 ETH-based lower bound for Connected Partitions

	5 Conclusions and Open Problems

