
Chromatic k-Nearest Neighbor Queries
Thijs van der Horst #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Maarten Löffler #Ñ

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Frank Staals #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Abstract
Let P be a set of n colored points. We develop efficient data structures that store P and can
answer chromatic k-nearest neighbor (k-NN) queries. Such a query consists of a query point q and a
number k, and asks for the color that appears most frequently among the k points in P closest to
q. Answering such queries efficiently is the key to obtain fast k-NN classifiers. Our main aim is to
obtain query times that are independent of k while using near-linear space.

We show that this is possible using a combination of two data structures. The first data structure
allow us to compute a region containing exactly the k-nearest neighbors of a query point q, and
the second data structure can then report the most frequent color in such a region. This leads
to linear space data structures with query times of O(n1/2 log n) for points in R1, and with query
times varying between O(n2/3 log2/3 n) and O(n5/6 polylog n), depending on the distance measure
used, for points in R2. These results can be extended to work in higher dimensions as well. Since
the query times are still fairly large we also consider approximations. If we are allowed to report a
color that appears at least (1 − ε)f∗ times, where f∗ is the frequency of the most frequent color,
we obtain a query time of O(log n + log log 1

1−ε
n) in R1 and expected query times ranging between

Õ(n1/2ε−3/2) and Õ(n1/2ε−5/2) in R2 using near-linear space (ignoring polylogarithmic factors).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases data structure, nearest neighbor, classification

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.67

Related Version Full Version: https://doi.org/10.48550/arXiv.2205.00277

Funding Maarten Löffler : Partially supported by the Dutch Research Council (NWO) under the
project numbers 614.001.504 and 628.011.005.

Acknowledgements We would like to thank an anonymous reviewer for the randomized solution
presented in Section 3.2.1, which led to our current solution for finding Dk

2 (q) in Section 3.2.2.

1 Introduction

One of the most popular approaches for classification problems is to use a k-Nearest Neighbor
(k-NN) classifier [3, 10, 12, 14]. In a k-NN classifier the predicted class of a query item q

is taken to be the most frequently appearing class among the k items most similar to q.
One can model this as a geometric problem in which the input items are represented by
a set P of n colored points in Rd: the color of the points represents their class, and the
distance between points measures their similarity. The goal is then to store P so that one can
efficiently find the color (class) c∗ most frequently occurring among the k points in P closest
to a query point q. See Figure 1(left). We refer to such queries as chromatic k-NN queries.
To answer such queries, k-NN classifiers often store P in, e.g., a kd-tree and answer queries
by explicitly reporting the k points closest to q, scanning through this set to compute the
most frequently occurring color [3]. Unfortunately, for many distance measures (including

© Thijs van der Horst, Maarten Löffler, and Frank Staals;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 67; pp. 67:1–67:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.w.j.vanderhorst@uu.nl
mailto:m.loffler@uu.nl
https://www.uu.nl/staff/MLoffler/Profile
mailto:f.staals@uu.nl
https://doi.org/10.4230/LIPIcs.ESA.2022.67
https://doi.org/10.48550/arXiv.2205.00277
https://www.nwo.nl/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Chromatic k-Nearest Neighbor Queries

q

Figure 1 (left) A set of input points from three different classes (colors). The class of a query
point q is determined by the labels of its k nearest neighbors (with k = 7 as shown here q is classified
as red). (middle) The color partition for k = 1. (right) The color partition for k = 3.

the Euclidean distance) such an approach has no guarantees on the query time other than
the trivial O(n) time bound. Even assuming that the dependency on n during the query time
is small (e.g. when the points are nicely distributed [11]), the approach requires Θ(k) time to
explicitly process all k points closest to q, whereas the desired output is only a single value:
the most frequently appearing color. Hence, our main goal is to design a data structure to
store P that has sublinear query time in terms of both n and k, while still using only small
space. We focus our attention on the L2 (Euclidean) distance, and the L∞ distance metrics.
Most of our ideas extend to more general distance measures and higher dimensions as well.
However, already in the restricted settings presented here, designing data structures that
provide guarantees on the space and query time turns out to be a challenging task.

If the value k is fixed in advance, one possible solution is to build the kth-order Voronoi
diagram Vork(P) of P , and preprocess it for point location queries. The kth-order Voronoi
diagram is a partition of Rd into maximal cells for which all points in a cell (a Voronoi region)
Vk,P (S) have the same set S of k closest points from P . Hence, in each Voronoi region there
is a fixed color that occurs most frequently among S. See Figure 1(right) for an illustration.
By storing Vork(P) in a data structure for efficient (i.e. O(log n) time) point location queries
we can also answer chromatic k-NN queries efficiently. However, unfortunately Vork(P) may
have size Θ(k(n − k)) [15] (for points in R2 and the L2 distance). For other Lm distances
the diagram is similarly large [17, 6]. Hence, we are interested in solutions that use less,
preferably near-linear, space.

The only result on the theory of chromatic k-NN queries that we are aware of is that
of Mount et al. [20]. They study the problem in the case that we measure distance using
the Euclidean metric and that the number of colors c, as well as the parameter k, are small
constants. Mount et al. state that it is unclear how to obtain a query time independent
of k, and instead analyze the query times in terms of the chromatic density ρ of a query q.
The chromatic density is a term depending on the distance from the query point q to the
kth nearest neighbor of q, and the distance from q to the first point at which the answer
of the query would change (e.g. the (k + t)th nearest neighbor of q for some t > 0). The
intuition is that if many points near q have the same color, queries should be easier to answer
than when there are multiple colors with roughly the same number of points. The chromatic
density term models this. Their main result is a linear space data structure for points in Rd

that supports O(log2 n + (1/ρ)d log(1/ρ)) time queries. We aim for bounds only in terms
of combinatorial properties (i.e. n, c, and k) and allow the number of colors, as well as the
parameter k, to be comparable to n. Our results are particularly relevant when k and c are
large compared to n.

T. van der Horst, M. Löffler, and F. Staals 67:3

Table 1 Our results for exact chromatic k-nearest neighbors problems. Bounds marked with ∗

are expected bounds. The general Lm metric bounds hold for m = O(1).

Dimension Metric Preprocessing time Space Query time

d = 1 Lm O(n3/2 log n) O(n) O(n1/2 log n)

d = 2 Lm Õ(n2/(4+δ)) O(n) Õ(n1−1/(12+3δ))

d ≥ 3 Lm Õ(n2−1/d + n1+d/(2d−2+δ)) O(n) Õ(n1−1/((d+1)(2d−2+δ)))

d ≥ 2
L∞

O(n1+d/(d+1)) O(n) O(n1−1/(d+1)+δ)
Õ(n1+d/(d+1)) O(n logd−1 n) O((n logd−1 n)1−1/(d+1))

L2 Õ(n2−1/d + n1+d/(d+1))∗ O(n) Õ(n1−(d−1)/d(d+1))

Table 2 Our results for the approximate chromatic k-nearest neighbors problems.

Dimension Metric Preprocessing time Space Query time

d = 1 Lm O(n log 1
1−ε

n) O(nε−1) O(log n + log log 1
1−ε

n)

d = 2 L∞ Õ(nε−6)∗ Õ(nε−6) Õ(n1/2ε−5/2)∗

L2 Õ(n1+δ + nε−7)∗ Õ(nε−4) Õ(n1/2ε−3/2)∗

Our approach. Our main idea is to answer a query in two steps. (1) We identify a region
Dk

m(q) that contains exactly the set k-NNm(q) of the k sites closest to q according to distance
metric Lm. (2) We then find the mode color c∗; that is, the most frequently occurring color
among the points in the region Dk

m(q). This way, we never have to explicitly enumerate
the set k-NNm(q). We will design separate data structures for these two steps. Our data
structure for step (1) will find the smallest metric disk Dk

m(q) containing k-NNm(q) centered
at q. We refer to such a query as an range finding query. If the distance used is clear from
the context we may write k-NN(q) and Dk(q) instead.

Range mode queries. The data structure in step (2) answers so-called range mode queries.
For these data structures we exploit and extend the result of Chan et al. [8]. They show an
array A with n entries can be stored in a linear space data structure that allows reporting the
mode of a query range (interval) A[i..j] in O(n1/2) time. Furthermore, points in Rd can be
stored in O(n polylog n + r2d) space so that range mode queries with axis-aligned orthogonal
ranges can be answered in O((n/r) polylog n) time. Here, r ∈ [1, n] is a user-choosable
parameter. In particular, setting r = ⌈n1/2d⌉ yields an O(n polylog n) space solution with
O(n1−1/2d polylog n) query time. Range mode queries with halfspaces can be answered in
O((n/r)1−1/d2 + polylog n) time using O(nrd−1) space [8]. Range mode queries in arrays
have also been considered in an approximate setting [7]. The goal is then to report an element
that appears sufficiently often in the range.

Results and organization. Refer to Table 1 for an overview of our exact solutions. We first
consider the problem for n points in R1. In this setting, we develop an optimal linear space
data structure that can find Dk

m(q) in O(log n) time, for any m ≥ 1 (Section 2). We then use
Chan et al. [8]’s data structure to report the mode color in Dk

m(q). Since we present all of our
data structures in the pointer machine model augmented with real-valued arithmetic, this

ESA 2022

67:4 Chromatic k-Nearest Neighbor Queries

yields an O(n1/2 log n) time query algorithm. There is a conditional Ω(n1/2−δ) lowerbound
for chromatic k-NN queries using linear space and O(n3/2) preprocessing time (refer to
Section 5) so this result is likely near-optimal. In Section 3 we present our data structure for
finding Dk

m(q) in R2. For the L∞ metric we show that we can essentially find Dk
m(q) using

a binary search on the radius of the disk, and thus there is a simple O(n log n) size data
structure that allows us to find the range Dk(q) in O(log2 n) time (or O(nδ) time, for an
arbitrarily small δ > 0, in case of a linear space structure). For the L2 metric, we can no
longer easily access a discrete set of candidate radii. It is tempting to therefore replace the
binary search by a parametric search [18, 19]. However, the basic such approach squares
the Õ(n1/2) time required to solve the decision problem and is thus not applicable. The
full strategy requires a way to generate independent comparisons; typically by designing
a parallel decision algorithm [18]. Neither task is straightforward to achieve. Instead, we
show that we can directly adapt the query algorithm for answering semi-algebraic range
queries [2] (essentially the decision algorithm in the approach sketched above) to find Dk

2 (q)
in O(n1/2 polylog n) time. Unfortunately, the final query time for chromatic k-NN queries
is dominated by the O(n5/6 polylog n) time range mode queries, for which we use a slight
variation of the data structure of Chan et al. [8]. We briefly discuss these results in Section 4,
We do show that the data structure can be constructed in O(n5/3) expected time, rather than
the straightforward O(n2) time implementation that directly follows from the description
of Chan et al.. For the L∞ metric we can answer range mode queries in O(n3/4 polylog n)
time using Chan et al.’s data structure for orthogonal ranges. However, we show that we
can exploit that the ranges are squares and use a cutting-based approach (similar to the one
used for the L2 distance) to answer queries in O(n2/3 log2/3 n) time instead. If we wish to
reduce the space from O(n log n) to linear the query time becomes O(n2/3+δ).

Since the query times are still rather large, we then turn our attention to approximations;
refer to Table 2 for an overview. If f∗ is the frequency of the mode color among k-NN(q) then
our data structures may return a color that appears at least (1−ε)f∗ times. In case of the L2
distance our data structure presented in Section 6 now achieves roughly Õ(n1/2ε−3/2) query
time, where the Õ notation hides polylogarithmic factors of n and ε. The main idea is that
approximate levels in the arrangement of distance functions have relatively low complexity,
and thus we can store them to efficiently answer approximate range mode queries.

2 The one-dimensional problem

In this section we consider the case where P is a set of n points in R1. In this case all
Lm-distance metrics with m ≥ 1 are the same, i.e. Lm(a, b) = |a − b|. We develop a linear
space data structure supporting queries in O(n1/2 log n) time. Building the data structure
will take O(n3/2) time. We follow the general two-step approach sketched in Section 1. We
first show that there is an optimal, linear-space data structure with which we can find Dk(q)
in O(log n) time, even if k is part of the query. As we then briefly describe how we can
directly use the data structure by Chan et al. [8] to find the mode color of the points in
Dk(q) in O(n1/2 log n) time.

Range finding queries. Given a set P of n points in R1, we wish to store P so that given a
query, consisting of a point q ∈ R1 and a natural number k, we can efficiently find the kth

furthest point from q, and thus Dk
m(q). We show that by storing P in sorted order in an

appropriate binary search tree, we can answer such queries in O(log n) time. To this end,
we first consider answering so called rank queries on a ordered set, represented by a pair of
binary search trees. This turns out to be the crucial ingredient in the data structure.

T. van der Horst, M. Löffler, and F. Staals 67:5

Let R ∪ B be an ordered set of elements, and let TR be a be a binary search tree whose
internal nodes store the elements from R, and in which each node is annotated with the
number of elements in that subtree. Similarly, let TB be a binary search tree storing B. We
can efficiently compute the element among R ∪ B with rank k (i.e. the kth smallest element):

▶ Lemma 2.1. Let TB and TR be two binary search trees with size annotations, and let k be
a natural number. We can compute the element of rank k among B ∪ R in O(height(TB) +
height(TR)) time.

To support efficiently querying Dk(q) we now store P in a balanced binary search tree
TP with subtree-size annotations, so that we can: (i) search for the element of rank k, and
(ii) given a query value q ∈ R1 we can split the tree at q in O(log n) time. We can implement
TP using e.g. a red black tree [22] (although with some care even a simple static balanced
binary search tree will suffice). We will use the split operations only to answer queries; so we
use path copying in this operation, so that we can still access the original tree once a query
finishes [21]. The data structure uses O(n) space, and can be built in O(n log n) time.

Given a query (q, k) the main idea is now to split TP into two trees TP < and TP ≥ , where
P < ⊆ P is the set of points left of q and P ≥ = P \ P < is the remaining set of points right of
q (or coinciding with q). Observe that in these two trees, the points are actually ordered by
distance to q (albeit for TP < the points are stored in decreasing order while the points in
TP ≥ are stored in increasing order). So, we can essentially use the procedure from Lemma 2.1
on the trees TP < and TP ≥ to find the point in P ≤ ∪ P > with rank k (according to the “by
distance to q”-order). The only difference with the algorithm as described in Lemma 2.1 is
that for TP < the roles of the left and right subtree are reversed. Splitting T into TP < and
TP ≥ takes O(log n) time. Since both subtrees have height at most O(log n), Lemma 2.1 also
takes O(log n) time. So, we obtain the following result:

▶ Theorem 2.2. Let P be a set of n points in R1. In O(n log n) time we can build a linear
space data structure so that given a query q, k we can find the smallest disk Dk

m(q), with
respect to any Lm metric, containing k-NNm(q) in O(log n) time.

Range mode queries. What remains is to store P such that given a query interval Q we
can efficiently report the mode color among P ∩ Q. Chan et al. [8] show that an array A of
size n can be preprocessed in O(n3/2) time into a linear space structure that can report the
range mode of a query range A[i : j] in O(n1/2) time. By implementing arrays with balanced
binary search trees, we can also implement this structure in the pointer machine model. This
increases the query and preprocessing times by an O(log n) factor. We then store (the colors
of) the points in increasing order in this structure. Together with Theorem 2.2 we obtain:

▶ Theorem 2.3. Let P be a set of n points in R1. In O(n3/2 log n) time, we can build a data
structure of size O(n), that answers chromatic k-NN queries on P in O(n1/2 log n) time.

3 Range finding queries two dimensions

In this section we give a data structure that, given a query point q ∈ R2, reports the smallest
range Dk

m(q) centered at q containing k-NNm(q). In Section 3.1 we consider the case where
the L∞ metric is used. In Section 3.2 we then consider the L2 metric.

ESA 2022

67:6 Chromatic k-Nearest Neighbor Queries

r∗
r`

r1

q

Figure 2 The considered radii ri, and r∗, for k = 5.

3.1 The L∞ metric case

For a given value r ≥ 0, define S(q, r) = [qx − r, qx + r] × [qy − r, qy + r] as the axis-aligned
square with sidelength 2r centered at q. We call r the radius of such a square. Now observe
that Dk(q) = S(q, r∗) is also an axis-aligned square, in particular with radius r∗ equal to
the distance L∞(q, p) between q and the kth nearest neighbor p of q. Thus we either have
r∗ = |qx − px| or r∗ = |qy − py|. This leads us to the following data structure. We store
the x-coordinates x1, . . . , xn of the points in P in increasing order in a balanced binary
search tree. Similarly, we store the y-coordinates of the points in P in sorted order y1, . . . , yn.
We set x0 = y0 = −∞ and xn+1 = yn+1 = ∞, and call these values coordinates as well.
In addition, we store P in a data structure for O(log n) time orthogonal range counting
queries, for which we use a range tree [5, 23]. The entire data structure can be constructed
in O(n log n) time, and uses O(n log n) space.

Now let x0, . . . , xℓ be the x-coordinates that are at most qx. The sequence ri = |qx − xi|,
for i = 0, . . . , ℓ, defines a sequence of decreasing radii. See Figure 2 for an illustration. We
can find the smallest radius ri for which S(q, ri) contains at least k points by performing
binary search over the radii, performing orthogonal range counting at each step to guide the
search. By performing a similar procedure for the x-coordinates greater than qx, as well as
for the y-coordinates, we obtain a set of four squares, that each contain at least k points.
The smallest of these squares contains exactly k points and is thus Dk(q). As each procedure
performs O(log n) orthogonal range counting queries, we obtain the following theorem.

▶ Theorem 3.1. Let P be a set of n points in R2. In O(n log n) time, we can build a data
structure of size O(n log n), that can report Dk

1 (q) and Dk
∞(q) in O(log2 n) time.

Following an idea of Chan et al. [8] we can reduce the space used by replacing the binary
range tree used for the orthogonal range queries by one with fanout nδ for some constant
δ > 0. This increases the query time to O(nδ + k′) time, where k′ is the output size.

▶ Theorem 3.2. Let P be a set of n points in R2. Let δ > 0 be an arbitrarily small constant.
In O(n log n) time, we can build a data structure of O(n) size, that can report Dk

1 (q) and
Dk

∞(q) in O(nδ) time.

T. van der Horst, M. Löffler, and F. Staals 67:7

3.2 The L2 metric case

3.2.1 Randomized query times
In this section, we sketch a simple randomized data structure that finds Dk

2 (q) in expected
O(n1/2 logB+1 n) time1. The data structure consists of the large fan-out partition tree of
Agarwal et al. [2], used for semialgebraic range searching. Together with this tree, we take
a random sample P ′ of P by including each point with probability 1/n1/2. Note that this
random sample will contain n1/2 points in expectation.

The main idea is to combine binary search on the ordered distances R = {L2(q, p′) |
p′ ∈ P ′} with circular range counting. Let r∗ be the distance between q and its kth nearest
neighbor among P . We then search for two consecutive distances ri, ri+1 ∈ R, such that
ri ≤ r∗ ≤ ri+1. Because the number of points p ∈ P with ri ≤ L2(q, p) ≤ ri+1 is n1/2 in
expectation, we can then afford to report these points with semialgebraic range reporting,
and combining binary search with range counting again to find r∗. This leads to an expected
query time of O(n1/2 logB+1 n).

3.2.2 Worst-case query times
In this section we show how to achieve the same complexity bounds of Section 3.2.1, but
with a worst-case query time bound, rather than a randomized bound.

The data structure. For now, we assume that the set P lies in D0-general position for
some constant D0 (see [2] for a definition). The details on this assumption are not important,
and we show in the full version of the paper how to handle arbitrary point sets. The data
structure consists of two copies of the large fan-out (fan-out nδ, for some constant δ > 0)
partition tree of Agarwal et al. [2], built on P . The first copy, which we call T , will be
augmented slightly to support generating candidate ranges (disks) that will eventually lead
to Dk(q). The second copy will be used as a black box, answering circular range counting
queries to guide the search for Dk(q) by counting the number of points inside the candidate
ranges.

The tree T is constructed by recursively partitioning the space into open, connected
regions, called cells. Once a cell contains a small (constant) number of points of P , the
recursion stops and T gets a leaf node containing these points. There may be points of
P that do not lie on these cells, but rather on the zero set of the partitioning polynomial
used to partition the space. For range searching with arbitrary point sets, Agarwal et al. [2]
store these points in an auxiliary data structure. However, with our assumption that P lies
in D0-general position, we do not need this auxiliary data structure, and will simply store
the points inside a leaf node, whose parent is the node corresponding to the partitioning
polynomial. We further adjust T such that each internal node corresponding to a cell ω

stores an arbitrary point in ω. During the construction of T , a point inside each cell is
already computed. Hence the construction time is unaltered.

Answering a query. To query the structure with a query point q, we keep track of a set
of nodes Ni for each level i of T that is explored by our algorithm. With slight abuse of
terminology, we refer to the sets P ′ of points stored in the leaves of T as cells. Let Ωi denote

1 We would like to thank an anonymous reviewer for the solution sketched in this section, which led to
our current solution for finding Dk

2 (q) in Section 3.2.

ESA 2022

67:8 Chromatic k-Nearest Neighbor Queries

q r−

r+

q

Figure 3 (left) A partitioning of P into four cells. The red crosses are the points p(ω). (right) The
disk Dk(q) (dashed boundary) and the disks D(q, r−) (dotted boundary, dark gray) and D(q, r+)
(dotted boundary, light gray).

the cells corresponding to the internal nodes in Ni, and Pi denote the cells corresponding to
the leaf nodes in Ni. We maintain that pk(q), the kth nearest neighbor of q, is contained
in a cell in Ωi ∪ Pi. Initially, N1 contains the root node. If T is a single leaf, then the cell
corresponding to the root node will be stored in P1. Otherwise, it will be stored in Ω1.

The query algorithm works as follows. Say the algorithm is at level i in T . For a cell
ω ∈ Ωi stored in an internal node, let p(ω) be the point inside ω that was stored with it. Let

Ri = {L2(q, p(ω)) | ω ∈ Ωi} ∪
⋃

P ′
i
∈Pi

{L2(q, p) | p ∈ P ′
i }

be the set of distances to these points p(ω), as well as to all points stored in the leaves in
Pi and in the nodes in Ni. Let r∗ be the distance between q and its kth nearest neighbor
among P . This is the radius of Dk(q). To find this radius, we compute the largest distance
r− ∈ Ri, and the smallest distance r+ ∈ Ri, such that r− < r∗ ≤ r+. See Figure 3. If r−

(respectively r+) does not exist, set it to 0 (respectively ∞). We show how to compute r+.
Computing r− works similarly.

To compute r+, we use a combination of median finding and binary search. For some
radius r ∈ Ri, we decide if r+ > r or r+ ≤ r using a circular counting query. If D(q, r)
contains less than k points, we have r+ > r. Otherwise, we have r+ ≤ r. By performing this
procedure for the median radius in Ri, we can discard half of Ri with each query.

Once we have that r+ is the distance between q and a point in P (it is constructed
through a leaf node of T), we have found r∗. We then terminate the algorithm, returning
the disk with the found radius. Otherwise we continue the search in the next level of T . To
continue the search through the tree, we construct the set Ni+1 by replacing every node
ν ∈ Ni with its children whose cells are crossed by one of D(q, r−) and D(q, r+). A cell ω is
crossed by a disk D if ω ∩ D ̸= ∅ and ω ⊈ D. The sets Ωi+1 and Pi+1 are then constructed
from these child nodes. Once these sets are constructed, we advance the algorithm to level
i + 1 and repeat the procedure.

▶ Lemma 3.3. The query algorithm correctly returns Dk(q).

Proof. We claim that this algorithm correctly returns Dk(q). First, note that if the algorithm
returns a disk, that disk contains k points, and its radius is equal to the distance between
q and a point of P . Therefore, it is indeed Dk(q). We now show that our algorithm will
always return a disk, and therefore that our algorithm is correct. To show this, it suffices to
show that for every level i of T traversed by our algorithm, the set Ωi ∪ Pi contains the cell
containing pk(q).

T. van der Horst, M. Löffler, and F. Staals 67:9

We give a proof by induction. It holds trivially that Ω1 ∪ P1 contains a cell containing
pk(q). We prove that if Ωi ∪ Pi contains a cell ω′ containing pk(q), then either the algorithm
terminates and returns Dk(q), or there is a cell ω ∈ Ωi+1 ∪ Pi+1 containing pk(q).

If ω′ ∈ Pi, then Ri will contain r∗. It will then find r+ = r∗ and terminate, returning
D(q, r+) = Dk(q). Now assume that ω′ ∈ Ωi. Let ν ∈ Ni be the internal node corresponding
to ω′. Now let ω be the cell stored in a child of ν, such that pk(q) lies in ω. We show that
ω ∈ Ωi+1 ∪ Pi+1.

Our algorithm performs repeated median finding on the radii in Ri, resulting in the largest
radius r− ∈ Ri and smallest radius r+ ∈ Ri, such that D(q, r−) and D(q, r+), contains less
than, respectively at least, k points of P . Let rω be the distance between q and p(ω), the
point in ω that was stored in T . If rω < r∗, then we have that rω ≤ r−, implying that
D(q, r−) intersects ω. Also, because ω is open, and because pk(q) ∈ ω, there must be a point
p′ ∈ ω such that r− < r∗ = L2(q, pk(q)) < L2(q, p′). This shows that ω is not contained in
D(q, r−), and thus that D(q, r−) crosses ω. With similar reasoning, it can be seen that if
rω ≥ r∗, then D(q, r+) crosses ω. Thus, ω will be crossed by at least one of D(q, r−) and
D(q, r+), and thus ω ∈ Ωi+1 ∪ Pi+1. Hence, our algorithm is correct. ◀

▶ Theorem 3.4. Let P be a set of n points in R2. Let δ > 0 be an arbitrarily small constant.
In O(n1+δ) expected time, we can build a data structure of O(n) size, that can report Dk

2 (q)
in O(n1/2 polylog n) time.

4 Range mode queries in two dimensions

In this section we discuss answering range mode queries in R2, and see how we can use
them together with the data structures from Section 3 to answer chromatic k-NN queries.
Our results build on the data structure of Chan et al. [8] for finding the mode color among
three-dimensional points in halfspaces. We show that using a standard lifting transformation
that maps the points P ⊆ R2 into planes in R3, we can apply their result to answer range
mode queries with disks in the L2 metric. Our main contribution is that we show that a
similar approach can answer range mode queries with squares (disks in the L∞ metric).
Somewhat surprisingly, this leads to better query times compared to directly using the
existing range mode data structures for orthogonal ranges [8]. Finally, we show that we
can, in fact, construct the data structures in (expected) O(n5/3) time rather than O(n2)
(worst-case) time. We briefly sketch these ideas here. Refer to the full version for details.

The data structure for the L2 metric. We lift the set of points P ⊆ R2 to a set of planes
H in R3. The points in a query disk Q map to the subset of planes passing below a point
h∗. Hence, we have to report the mode color c of these planes. The main idea in the data
structure of Chan et al. [8] is to build a (1/r)-cutting on the planes in H; a subdivision of
R3 into O(r3) interiorly disjoint cells, whose interiors are each crossed by at most n/r planes
(for r = n1/3). Let ∆ be the cell containing the query point h∗. The key insight is that the
mode color c of the planes passing below the query point h∗ is either the mode color c∆ of
all planes passing below ∆, or the color of one of the planes that intersect ∆. The data
structure stores the color c∆ for each cell ∆, so at query time we only have to consider the
at most n/r colors of the planes that intersect ∆. Our insight is that for k-NN queries we
can use the tools from Section 3 to find these colors in Õ(n1/2) time, leading to a total query
time of Õ(n5/6) (rather than Õ(n8/9) time in the case of arbitrary query points in R3).

ESA 2022

67:10 Chromatic k-Nearest Neighbor Queries

The data structure for the L∞ metric. For a point p ∈ P ⊆ R2, the graph of the distance
function L∞(p, q) = max{|px − qx|, |py − qy|} forms an upside-down pyramid ∇p in R3. For
a point q ∈ R2 we have that L∞(p, q) ≤ r if and only if (qx, qy, r) lies above ∇p. Thus, we
can again transform the problem to that of finding the mode color among those graphs in R3

that lie below a given query point. Using a similar cutting-based solution as sketched above –
again exploiting that we can quickly find the (colors of the) graphs intersecting a cell ∆ in
R2 rather than R3 – yields a linear space data structure answering queries in an O(n2/3+δ)
time. Using O(n log n) space we can decrease the query time to O(n5/3 log2/3 n).

Construction. Our final contribution in terms of the range mode data structures is that
we show how to efficiently construct the above data structures. In case of both the L2
and the L∞ metrics, there is a somewhat straightforward algorithm to construct the above
data structures in O(n2) time. The bottleneck being the time required to compute the
mode color c∆ for all cells ∆ of the cutting. We argue that this can actually be done in
roughly Õ(nr2 + r3nα) time, for some α ∈ (0, 1). For our choice of parameter r, this leads to
algorithms with subquadratic running time. We summarize our results for the chromatic
k-NN problem in the following theorems.

▶ Theorem 4.1. Let P be a set of n points in R2. There is a linear space data structure
that answers chromatic k-NN queries on P with respect to the L2 metric. Building the data
structure takes expected O(n5/3) time, and queries take O(n5/6 polylog n) time.

▶ Theorem 4.2. Let P be a set of n points in R2. There is a linear space data structure
that answers chromatic k-NN queries on P with respect to the L∞ metric. Building the data
structure takes O(n5/3) time, and queries take O(n2/3+δ) time. We can decrease the query
time to O(n2/3 log2/3 n) time using O(n log n) space and O(n5/3 log2/3 n) preprocessing time.

5 Lower bounds

We now discuss to what extent our results for the exact version of the problem may be
improved further. Chan et al. [8] show that there is a conditional Ω(n1/2−δ) time lower
bound on range mode queries, provided we insist on using only linear space and O(n3/2)
preprocessing time. We extend this bound to chromatic k-NN queries in R1. More generally,
Lemma 5.1 shows that we can reduce chromatic k-NN queries in Rd to range mode queries
using range counting. Due to space restrictions, further details on the lower bound can be
found in the full version of the paper.

▶ Lemma 5.1. Let P be a set of n points in Rd. A range mode query with a query ball Dm

(with respect to the Lm metric) can be answered using a single range counting query with
query range Dm and a single chromatic k-NN query.

Proof. We use the range counting query to find the number of points in the range Dm. Let
this be k, and let q be the center point of the ball Dm. Hence, Dk

m(q) = Dm, and thus the
answer to the chromatic k-NN query with center q and value k is the mode color of Dm. ◀

Relations to range counting queries. Next, we relate the cost of range finding queries, i.e.
the problem solved in our first step, to range counting queries. Given a data structure for
range finding queries we can answer range counting queries using only logarithmic overhead:

▶ Lemma 5.2. Let P be a set of n points in Rd. A range counting query on P with a disk
Dm under metric m can be performed using O(log n) range finding queries.

T. van der Horst, M. Löffler, and F. Staals 67:11

Proof. Let q be the center of the query disk. We binary search over the integers 0, . . . , n,
using a range finding query to find a disk Dk

m(q) for each considered integer k. If the reported
disk is smaller than Dm, the number of points inside Dm is at least k. Otherwise, the number
of points is smaller than k. It follows that with O(log n) range finding queries, we can count
the number of points in Dm. ◀

It thus follows that range finding is roughly as difficult as range counting. In particular,
a Q(n) time lower bound for range counting queries using S(n) space implies an Ω̃(Q(n))
time lower bound for range finding queries with S(n) space. For example, in the semigroup
model there is an Ω̃(n/S(n)1/d) time lower bound for halfspace range counting [4]. Since
every halfspace is a disk D2 (of radius ∞), this lower bound also holds for range counting
with disks in the L2 metric, and thus also for range finding.

The range mode queries from step 2 are also related to a form of range counting. A
“type-2” range counting query with query range Q asks for all the distinct colors appearing
in Q together with their frequencies, i.e. for each reported color c we must also report the
number of points in P ∩ Q that have color c [9]. Clearly, answering “type-2” queries is more
difficult than range counting (just assign all points the same color), so the above lower bounds
also hold for “type-2” queries. Such “type-2” queries however also allow us to solve the range
mode problem. When the number of colors is small (e.g. two), and we already know the
number of points k in the query range Dk(q) it seems that answering range mode queries is
not much easier than answering (“type-2”) range counting queries. We therefore conjecture
that answering range mode queries is roughly as difficult as answering range counting queries.

▶ Conjecture 5.3. If answering a range counting query with a query range D using S(n)
space requires Q(n) time then answering a range mode query with query range D using S(n)
space requires Ω̃(Q(n)) time.

Note that this conjecture together with Lemma 5.1 would imply that answering a k-NN
query is at least as hard as answering a range counting query. Furthermore, since we can
answer a range counting query using O(log n) range finding queries (Lemma 5.2) that would
then mean our two-step approach has negligible overhead with respect to an optimal solution
to chromatic k-NN queries.

6 The approximate problems

In this section we sketch our approach for answering ε-approximate chromatic k-NN queries.
Refer to the full version for details. Our goal is to report a color c that occurs at least
(1 − ε)f∗ times, where f∗ is the frequency of the mode color c∗ of k-NN(q). We again use
the two-step approach of finding the range Dk(q) (step (1)) and computing the mode of the
range (step (2)). We use exact range finding data structures from Sections 2 and 3, and
focus our attention on approximating step (2) for two reasons: first, the running times in our
exact solutions are dominated by step (2), and second, it is unclear how to use approximate
solutions to k-NN queries (that is, approximate ranges) and still obtain guarantees on the
approximation factor of our ε-approximate chromatic k-NN queries.

For points in R1 we can directly use the result of Bose et al. [7] to answer (1 − ε)-
approximate range mode queries. In O(n log 1

1−ε
n) time, we can thus build an O(n/ε) size

data structure that can answer k-NN queries in O(log n + log log 1
1−ε

n) time.
For points in R2, and the L2-metric, we answer approximate range mode queries as

follows; we use similar ideas for the L∞ metric. We use the standard lifting transformation
to transform the set of points P a set of planes H. A query disk Q now corresponds to a

ESA 2022

67:12 Chromatic k-Nearest Neighbor Queries

Lc,1

Lc,2

Lc,i

Lc,i+1

Li

L1

Li+1

q

Figure 4 (left) An illustration of the idea in R2, the planes (here lines) of a single color, their
ki =

(
1

1−α

)i-levels (bright red), and the g(ε)-approximate ki-levels Lc,0, Lc,1, . . . (in dark red).
(right) For each i, the Li forms the lower envelope of the Lc,i surfaces over all colors c. We search
for the largest i for which q lies above Li (dashed).

vertical halfline with a top endpoint h∗, and the mode color c∗ of P ∩Q is the most frequently
occurring color among the planes passing below h∗. Our aim is to report a color c such that
at least (1 − ε)f∗ planes of that color pass below h∗.

The main idea to answer approximate range mode queries efficiently is to compute, for
each color c, a series of g(ε)-approximate ki-levels (for some function g) considering only the
planes of color c. For each choice of i, we then consider the lower envelope Li of all those
ki-levels among the various colors. See Figure 4 for an illustration. Now observe that if h∗

lies in between Li and Li+1, the frequency f∗ of a mode color c∗ may only be a g(ε) fraction
larger than ki+1, while the frequency of the color defining Li directly below h∗ is at least ki.
So if g(ε) and ki/ki+1 are sufficiently small this is a (1 − ε)-approximation. One additional
complication is that even though our g(ε)-approximate ki-levels have fairly small complexity,
their lower envelopes do not. So, we need to design a data structure that can test if h∗ lies
above or below Li without explicitly storing Li. We show that with near-linear space we can
answer such queries in Oε(n1/2) time. This then leads to an Õε(n1/2) time query algorithm
for answering k-NN queries.

We use the same approach to answer approximate queries under the L∞ metric. Here,
the approximate levels are constructed using the result of Kaplan et al. [13]. This leads to
roughly the same complexities.

7 Concluding Remarks

We presented the first data structures for the chromatic k-NN problem with query times that
depend only on the number of stored points. While we focused mostly on the two-dimensional
case, our exact result extend to higher dimensions and other metrics as well (see full version).
Our two-step approach essentially reduces the problem to efficiently answering range mode
queries. The main open question is how to answer such queries efficiently. Since it is unlikely
that we can answer such queries in Ω(n1/2) time (using only near-linear space), it is also
particularly interesting to consider further improvements to the ε-approximate query data
structures. For the Euclidean distance, finding the query range may now be the dominant
factor (depending on the choice of ε). One option is to report a range that contains only
approximately the k nearest neighbors of a query point. However, this further complicates
the analysis. For the L∞ distance it may also be possible to reduce the space usage by using
a different method for computing the approximate levels (e.g. using the results by Agarwal
et al. [1] or the recent results of Liu [16]).

T. van der Horst, M. Löffler, and F. Staals 67:13

References
1 Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow levels in

3-dimensional arrangements and its applications. SIAM Journal on Computing, 29:912–953,
1999.

2 Pankaj K. Agarwal, Jirí Matousek, and Micha Sharir. On range searching with semialgebraic
sets. II. SIAM J. Comput., 42(6):2039–2062, 2013. doi:10.1137/120890855.

3 Charu C Aggarwal. Data classification: algorithms and applications. CRC press, 2014.
4 Sunil Arya, David M. Mount, and Jian Xia. Tight lower bounds for halfspace range searching.

Discrete & Computational Geometry, 47(4):711–730, 2012. doi:10.1007/s00454-012-9412-x.
5 Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM,

23(4):214–229, 1980. doi:10.1145/358841.358850.
6 Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Papadopoulou,

and Maksym Zavershynskyi. On the complexity of higher order abstract voronoi diagrams.
Computational Geometry, 48(8):539–551, 2015. doi:10.1016/j.comgeo.2015.04.008.

7 Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Approximate range mode and
range median queries. In Volker Diekert and Bruno Durand, editors, STACS, pages 377–388,
2005. doi:10.1007/978-3-540-31856-9_31.

8 Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T.
Wilkinson. Linear-space data structures for range mode query in arrays. Theory of Computing
Systems, 55:719–741, 2014.

9 Timothy M. Chan, Qizheng He, and Yakov Nekrich. Further Results on Colored Range
Searching. In Sergio Cabello and Danny Z. Chen, editors, 36th International Symposium on
Computational Geometry (SoCG 2020), volume 164 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 28:1–28:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2020.28.

10 Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

11 Jerome H. Friedman, Jon Louis Bentley, and Raphael A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathematical Software,
3(3):209–226, 1977. doi:10.1145/355744.355745.

12 W. E. Henley and D. J. Hand. A k-nearest-neighbour classifier for assessing consumer credit
risk. Journal of the Royal Statistical Society. Series D (The Statistician), 45(1):77–95, 1996.
URL: http://www.jstor.org/stable/2348414.

13 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar voronoi diagrams for general distance functions and their algorithmic applications.
Discrete & Computational Geometry, 64:838–904, 2020.

14 Yan-Nei Law and Carlo Zaniolo. An adaptive nearest neighbor classification algorithm for data
streams. In Alípio Mário Jorge, Luís Torgo, Pavel Brazdil, Rui Camacho, and João Gama,
editors, Knowledge Discovery in Databases: PKDD 2005, pages 108–120, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

15 D. T. Lee. On k-nearest neighbor voronoi diagrams in the plane. IEEE Transactions on
Computing, 31:478–487, 1982.

16 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2842–2859. SIAM, 2020. doi:10.1137/1.9781611975994.173.

17 Chih-Hung Liu, Evanthia Papadopoulou, and Der-Tsai Lee. The k-nearest-neighbor voronoi
diagram revisited. Algorithmica, 71(2):429–449, 2015. doi:10.1007/s00453-013-9809-9.

18 N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852–865, 1983.

19 Nimrod Megiddo. Combinatorial optimization with rational objective functions. Mathematics
of Operations Research, 4(4):414–424, 1979. doi:10.1287/moor.4.4.414.

ESA 2022

https://doi.org/10.1137/120890855
https://doi.org/10.1007/s00454-012-9412-x
https://doi.org/10.1145/358841.358850
https://doi.org/10.1016/j.comgeo.2015.04.008
https://doi.org/10.1007/978-3-540-31856-9_31
https://doi.org/10.4230/LIPIcs.SoCG.2020.28
https://doi.org/10.1145/355744.355745
http://www.jstor.org/stable/2348414
https://doi.org/10.1137/1.9781611975994.173
https://doi.org/10.1007/s00453-013-9809-9
https://doi.org/10.1287/moor.4.4.414

67:14 Chromatic k-Nearest Neighbor Queries

20 D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. Chromatic nearest neighbor
searching: A query sensitive approach. Computational Geometry, 17:97–119, 2000.

21 Neil Sarnak and Robert E Tarjan. Planar point location using persistent search trees. Com-
munications of the ACM, 29(7):669–679, 1986.

22 Robert Endre Tarjan. Data structures and network algorithms. SIAM, 1983.
23 Dan E. Willard. New data structures for orthogonal range queries. SIAM Journal on Computing,

14(1):232–253, 1985. doi:10.1137/0214019.

https://doi.org/10.1137/0214019

	1 Introduction
	2 The one-dimensional problem
	3 Range finding queries two dimensions
	3.1 The L_infinity metric case
	3.2 The L_2 metric case
	3.2.1 Randomized query times
	3.2.2 Worst-case query times

	4 Range mode queries in two dimensions
	5 Lower bounds
	6 The approximate problems
	7 Concluding Remarks

