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Abstract
The treedepth of a graph G is the least possible depth of an elimination forest of G: a rooted forest on
the same vertex set where every pair of vertices adjacent in G is bound by the ancestor/descendant
relation. We propose an algorithm that given a graph G and an integer d, either finds an elimination
forest of G of depth at most d or concludes that no such forest exists; thus the algorithm decides
whether the treedepth of G is at most d. The running time is 2O(d2) · nO(1) and the space usage
is polynomial in n. Further, by allowing randomization, the time and space complexities can be
improved to 2O(d2) · n and dO(1) · n, respectively. This improves upon the algorithm of Reidl et
al. [ICALP 2014], which also has time complexity 2O(d2) · n, but uses exponential space.
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1 Introduction

An elimination forest of a graph G is a rooted forest F whose vertex set is the same as that
of G, where for every edge uv of G, either u is an ancestor of v in F or vice versa. The
treedepth of G is the least possible depth of an elimination forest of G. Compared to the
better-known parameter treewidth, treedepth measures the depth of a tree-like decomposition
of a graph, instead of width. The two parameters are related: if by td(G) and tw(G)
we denote the treedepth and the treewidth of an n-vertex graph G, then it always holds
that tw(G) ⩽ td(G) ⩽ tw(G) · log2 n (Section 6.4 of [16]). However, the two notions are
qualitatively different: for instance, a path on t vertices has treewidth 1 and treedepth
Θ(log t).

Treedepth appears prominently in structural graph theory, especially in the theory of
sparse graphs of Nešetřil and Ossona de Mendez. There, it serves as a basic building block
for fundamental decompositions of sparse graphs – low treedepth colorings – which can
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be used for multiple algorithmic purposes, including designing algorithms for Subgraph
Isomorphism and model-checking First-Order logic. See [16, Chapters 6 and 7] for an
introduction and [8, 9, 15, 17, 18, 19, 21, 20] for examples of applications.

In this work we are interested in using treedepth as a parameter for the design of fixed-
parameter (FPT) algorithms. Clearly, every dynamic programming algorithm working on a
tree decomposition of a graph can be adjusted to work also on an elimination forest, just
because an elimination forest of depth d can be easily transformed into a tree decomposition
of width d− 1. However, it has been observed in [7, 22, 10, 14, 20] that for multiple basic
problems, one can design FPT algorithms working on elimination forests of bounded depth
that have polynomial space complexity without sacrificing on the time complexity. These
include the following: (In all results below, n is the vertex count and d is the depth of the
given elimination forest.)

A 3d · nO(1)-time O(d+ logn)-space algorithm for 3-Coloring [22].
A 2d · nO(1)-time nO(1)-space algorithm for counting perfect matchings [7].
A 3d · nO(1)-time nO(1)-space algorithm for Dominating Set [7, 22].
A d|V (H)| · nO(1)-time nO(1)-space algorithm for Subgraph Isomorphism [20].
(Here, H is the sought pattern graph.)
A 3d · nO(1)-time nO(1)-space algorithm for Connected Vertex Cover [10].
A 5d · nO(1)-time nO(1)-space algorithm for Hamiltonian Cycle [14].

We note that the approach used in [10, 14] to obtain the last two results applies also to
several other problems with connectivity constraints. However, as these algorithms are based
on the Cut&Count technique [4], they are randomized and no derandomization preserving
the polynomial space complexity is known. An in-depth complexity-theoretical analysis of
the time-space tradeoffs for algorithms working on different graph decompositions can be
found in [22].

In the algorithms mentioned above one assumes that the input graph is supplied with
an elimination depth of depth at most d. Therefore, it is imperative to design algorithms
that given the graph alone, computes, possibly approximately, such an elimination forest.
Compared to the setting of treewidth and tree decompositions, where multiple approaches
have been proposed over the years (see e.g. [2, 11] for an overview), so far there is only a
handful of algorithms to compute the treedepth exactly or approximately.

It is well-known (see e.g. [16, Section 6.2]) that just running depth-first search and
outputing the forest of recursive calls gives an elimination forest of depth at most
2td(G). So this gives a very simple linear-time approximation algorithm, but with the
approximation factor exponential in the optimum.
Czerwiński et al. [5] gave a polynomial-time algorithm that outputs an elimination forest
of depth at most O(td(G)tw(G) log3/2 tw(G)), which is thus an O(tw(G) log3/2 tw(G))-
approximation algorithm.
Reidl et al. [23] gave an exact FPT algorithm that in time 2O(d·tw(G)) ·n either constructs
an elimination forest of depth at most d, or concludes that the treedepth is larger than d.
There is a naive algorithm computing treedepth directly from its definition that works in
O(ntd(G)) time and uses polynomial space.
Using a tradeoff that runs either of the last two approaches, depending on whether d is
greater than

√
ϵ · logn or not, for any fixed ϵ > 0, one can obtain an algorithm running

in time 2O( d3
ϵ ) + O(n1+ϵ) and using polynomial space.

Recall here that tw(G) ⩽ td(G), hence when parameterized by treedepth only, the mentioned
results can be seen as an O(td(G) log3/2 td(G))-approximation in polynomial time, as well as
an exact FPT algorithm with running time 2O(d2) ·n. In particular, obtaining a constant-factor
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approximation for treedepth running in time 2O(td(G)) · nO(1) is a well-known open problem,
see e.g. [5]. We note that implementation of practical FPT algorithms for computing treedepth
was the topic of the 2020 Parameterized Algorithms and Computational Experiments (PACE)
Challenge [12].

Our contribution. The exact algorithm of Reidl et al. [23] uses not only exponential time
(in the treedepth), but also exponential space. This would make it a space bottleneck when
applied in combination with any of the polynomial-space algorithms developed in [7, 22, 10,
14, 20]. The mentioned tradeoff trick brings back the polynomial space, but significantly
deteriorates the running time both in terms of the factor exponential in d and the one
polynomial in n. In this work we bridge these issues by proving the following result.

▶ Theorem 1. There is an algorithm that given an n-vertex graph G and an integer d, either
constructs an elimination forest of G of depth at most d, or concludes that the treedepth of G
is larger than d. The algorithm runs in 2O(d2) · nO(1) time and uses nO(1) space.

The space and time complexities can be improved to dO(1) · n and expected 2O(d2) · n,
respectively, at the cost of allowing randomization: the algorithm may return a false negative
with probability at most 1

c·nc , where c is any constant fixed a priori; there are no false positives.

Thus, the randomized variant of the algorithm of Theorem 1 has the same time complexity
as the algorithm of Reidl et al. [23], but uses polynomial space. However, the algorithm
of Reidl et al. [23] is deterministic, contrary to ours. Note that apart from possible false
negatives, the bound on the running time is only in expectation and not worst-case (in other
words, our algorithm is both Monte Carlo and Las Vegas). However, one can turn this into
a worst-case bound at the cost of increasing the probability of false negatives to 1/2 by
forcefully terminating the execution if the algorithm runs for twice as long as expected.

Simultaneously achieving time complexity linear in n and polynomial space complexity is
a property that is desired from an algorithm for computing the treedepth of a graph. While
many of the polynomial-space FPT algorithms working on elimination forests do not have
time complexity linear in n due to the usage of various algebraic techniques, the simplest
ones that exploit only recursion – like the ones for 3-Coloring or Independent Set
considered in [22] – can be easily implemented to run in time 2O(d) · n and space dO(1) · n.
Thus, the randomized variant of the algorithm of Theorem 1 would neither be a bottleneck
from the point of view of space complexity nor from the point of view of the dependency of
the running time on n. Admittedly, the parametric factor in the runtime of our algorithm is
2O(d2), as compared to 2O(d) in most of the aforementioned polynomial-space FPT algorithms
working on elimination forests; this brings us back to the open problem about constant-factor
approximation for treedepth running in time 2O(td(G)) · nO(1) raised in [5].

Let us briefly discuss the techniques behind the proof of Theorem 1. The algorithm
of Reidl et al. [23] starts by approximating the treewidth of the graph (which is upper
bounded by the treedepth) and tries to constructs an elimination forest of depth at most
d by bottom-up dynamic programming on the obtained tree decomposition. By applying
the iterative compression technique, we may instead assume that we are supplied with an
elimination forest of depth at most d+ 1, and the task is to construct one of depth at most d.

Applying now the approach of Reidl et al. [23] directly (that is, after a suitable adjustment
from the setting of tree decompositions to the setting of elimination forests) would not give an
algorithm with polynomial space complexity. The reason is that their dynamic programming
procedure is quite involved and in particular keeps track of certain disjointness conditions;
this is a feature that is notoriously difficult to achieve using only polynomial space. Therefore,
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we resort to the technique of inclusion-exclusion branching, used in previous polynomial-
space algorithms working on elimination forests; see [7, 22] for basic applications of this
approach. In a nutshell, the idea is to count more general objects where the disjointness
contraints are relaxed, and to use inclusion-exclusion at each step of the computation to
make sure that objects not satisfying the constraints eventually cancel out. We note that
while the application of inclusion-exclusion branching was rather simple in [7, 22], in our
case it poses a considerable technical challenge. In particular, along the way we do not
count single values, but rather polynomials with one formal variable that keeps track of how
much the disjointness constraints are violated. In the exposition layer, our application of
inclusion-exclusion branching mostly follows the algorithm for Dominating Set of Pilipczuk
and Wrochna [22].

In this way, we can count the number of elimination forests1 of depth at most d in time
2O(d2) · nO(1) and using polynomial space. So in particular, we can decide whether there
exists at least one such elimination forest. Such a decision algorithm can be quite easily
turned into a construction algorithm using self-reducibility of the problem. This establishes
the first part of Theorem 1.

As for the second part – the randomized linear-time FPT algorithm using polynomial
space – there are several obstacles that need to be overcome. First, there is a multiplicative
factor n in the running time coming from the iterative compression scheme. We mitigate
this issue by replacing iterative compression with the recursive contraction scheme used
by Bodlaender in his linear-time FPT algorithm to compute the treewidth of a graph [1].
Second, when using self-reducibility, we may apply the decision procedure n times, each
taking at least linear time. This is replaced by an approach based on color coding, whose
correctness relies on the fact that in a connected graph of treedepth at most d there are
at most dO(d) different feasible candidates for the root of an optimum-depth elimination
tree [3]. Finally, in the counting procedure we may operate on numbers of bitsize as large as
polynomial in n. This is resolved by hashing them modulo a random prime of magnitude
Θ(logn), so that we may assume that arithmetic operations take unit time.

We remark that it is relatively rare that a polynomial-space algorithm based on algebraic
techniques can be also implemented so that it runs in time linear in the input size. Therefore,
we find it interesting and somewhat surprising that this can be achieved for the problem of
computing the treedepth of a graph, which combinatorially is rather involved.

Organization. After brief preliminaries in Section 2, in Section 3 we prove the first part of
Theorem 1: we give a deterministic algorithm that runs in time 2O(d2) · nO(1) time and uses
polynomial space. Then, in Section 4 we improve the time and space complexities to 2O(d2)n

and dO(1)n respectively, at the cost of introducing randomization. The proofs of the results
marked ⋆ are deferred to the full version of the work due to the space constraints.

2 Preliminaries

Standard notation. All graphs in this paper are finite, undirected, and simple (i.e. with no
loops on vertices or multiple edges with the same endpoints). For a graph G and a vertex
subset A ⊆ V (G), by NG[A] we denote the closed neighborhood of A: the set consisting of all
vertices that are in A or have a neighbor in A.

1 Formally, we count only elimination forests satisfying some basic connectivity property, which we call
sensibility.
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For a function f : A → B and a subset of the domain X ⊆ A, by f(X) we denote the
image of f on X. The image of f is denoted im(f) = f(A). For an element e outside of the
domain and a value α, by f [e → α] we denote the extension of f obtained by additionally
mapping e to α.

We denote the set {1, 2, . . . , k} as [k]. We assume the standard word RAM model of
computation with words of length logn, where n is the vertex count of the input graph.

(Elimination) forests and treedepth. Consider a rooted forest F . By AncF we denote
the ancestor/descendant relation in F : for u, v ∈ V (F ), AncF (u, v) holds if and only if u is
an ancestor of v or v is an ancestor of u in F . We assume that a vertex is an ancestor of
itself, so in particular AncF (u, u) is always true. We also use the following notation. For
u ∈ V (F ), by tailF [u] we denote the set of all ancestors of u (including u) and by treeF [u]
we denote the set of all descendants of u, including u. Further, let tailF (u) = tailF [u] − {u},
treeF (u) = treeF [u] − {u}, and compF [u] = tailF [u] ∪ treeF [u]. Note that v ∈ compF [u] if
and only if AncF (u, v) holds. By chldF (u) we denote the set of children of u in F , and by
depthF (u) we denote the depth of u in F , that is, depthF (u) = |tailF [u]| (in particular, roots
have depth one). The depth of a rooted forest F is the maximum depthF among its vertices.
For a set of vertices A ⊆ V (F ), by clF (A) =

⋃
u∈A tailF [u] we denote the ancestor closure

of A. A prefix of a rooted forest F is a rooted forest induced by some ancestor-closed set
A ⊆ V (F ); that is, it is the forest on A with the parent-child relation inherited from F .

In this paper we are mostly interested in the notion of an elimination forest and of the
treedepth of a graph.

▶ Definition 2. An elimination forest of a graph G is a rooted forest F on the same set
of vertices as G such that for every edge uv ∈ E(G), we have that AncF (u, v) holds. The
treedepth of a graph G is the least possible depth of an elimination forest of G.

Note that an elimination forest of a connected graph must be connected as well, so in this
case we may speak about an elimination tree (however, elimination forest of a disconnected
graph could be a tree as well). Sometimes, instead of identifying V (G) and V (F ), we treat
them as disjoint sets and additionally provide a bijective mapping ϕ : V (G) → V (F ) such
that uv ∈ E(G) entails AncF (ϕ(u), ϕ(v)). In such case we consider the pair (F, ϕ) to be
an elimination forest of G. This will be always clear from the context. More generally, for
B ⊆ V (G) and a rooted forest F , we shall say that a mapping ϕ : B → V (F ) respects edges
if uv ∈ E(G) entails AncF (u, v) for all u, v ∈ B. In this notation, (F, ϕ) is an elimination
forest of G if and only if ϕ is a bijection from V (G) to V (F ) that respects edges on V (G).

3 Deterministic FPT algorithm

In this section we prove the first part of Theorem 1: we give a deterministic polynomial-space
algorithm with running time 2O(d2) · nO(1) that for a given n-vertex graph G, either outputs
an elimination forest of G of depth at most d or concludes that no such forest exists. The
most complex part of the algorithm will be procedure CountElimTrees, which, roughly
speaking, counts the number of different elimination trees of a connected graph G of depth at
most d. We describe CountElimTrees first, and then we utilize it to achieve the main result.

3.1 Description of CountElimTrees

As mentioned above, procedure CountElimTrees counts the number of different elimination
trees of G of depth at most d. However, we will not count all of them, but only such that are
in some sense minimal; a precise formulation will follow later. We remark that this part is
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inspired by the 3d · nO(1)-time polynomial space algorithm of Pilipczuk and Wrochna [22] for
counting dominating sets in a graph of bounded treedepth. This algorithm exploits the same
underlying trick – sometimes dubbed “inclusion-exclusion branching” – but the application
here is technically more involved than in [22].

Before describing CountElimTrees, let us carefully define objects that we are going to
count. We start by recalling the following standard fact about the existence of elimination
forests with basic connectivity properties.

▶ Lemma 3 (⋆). Let H be a graph and let R be an elimination forest of H. Then there
exists an elimination forest R′ of H such that

for every vertex u of H, we have depthR′(u) ⩽ depthR(u); and
whenever vertices u, v ∈ V (H) belong to the same connected component of R′, they also
belong to the same connected component of H.

We remark that computing R′ can be easily done in linear time by using depth-first
search from the root of each elimination tree in R. This procedure will be used many times
throughout the algorithm when justifying the usual assumption that our current graph is
connected. (Disconnected graphs will often naturally appear when recursing after performing
some deletions in the original graph.)

The following lemma can be proved using a very similar, though a bit more involved
reasoning. We will work with a fixed connected graph G and its elimination tree T .

▶ Lemma 4 (⋆). Let G be a connected graph of treedepth at most d and T be an elimination
tree of G (possibly of depth larger than d). Then there exists an elimination tree R of G of
depth at most d that satisfies the following property: for every u ∈ V (G) and v1, v2 ∈ chldT (u),
v1 ̸= v2, we have

clR(compT [v1]) ∩ clR(compT [v2]) = clR(tailT [u]). (1)

An elimination tree R of a graph G satisfying the conclusion of Lemma 4 (that is, the
depth of R is at most d and for all u ∈ V (G) and distinct v1, v2 ∈ chldT (u) we have (1)) will
be called sensible with respect to T . In our search for elimination trees of low depth, we will
restrict attention only to trees that are sensible with respect to some fixed elimination tree
T . Then Lemma 4 justifies that we may do this without losing all solutions.

With all ingredients introduced, we may finally precisely state the goal of this section.

▶ Lemma 5. There exists an algorithm CountElimTrees(G,T, d) that, given a connected
graph G on n vertices, an elimination tree T of depth k, and an integer d, runs in time
2O(dk) · nO(1), uses nO(1) space, and outputs the number of different elimination trees of G
of depth at most d that are sensible with respect to T .

Note here that the input to CountElimTrees consists not only of G and d, but also of an
auxiliary elimination tree T of G. The depth k of T may be, and typically will be, larger than
d. Also, we assume that an elimination tree is represented solely by its vertex set and the
ancestor relation. In particular, permuting children of a vertex yields the same elimination
tree, which should be counted as the same object by procedure CountElimTrees.

The remainder of this section is devoted to the proof of Lemma 5. We first need to
introduce some definition.

Let us arbitrarily enumerate the vertices of G as v1, v2, . . . , vn in a top-down manner
in T . That is, whenever vi is an ancestor of vj , we have i ⩽ j. Consider another rooted tree
R and a mapping ϕ : V (T ) → V (R). For a vertex u of T , we call a vertex vi ∈ treeT (u) a
proper surplus image (for u and (R,ϕ)) if at least one of the following conditions holds:
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(i) ϕ(vi) ∈ clR(ϕ(tailT [u])), or
(ii) there exists j such that j < i, vj ∈ treeT (u), and ϕ(vj) = ϕ(vi).

We define non-proper surplus images analogously, but using sets tailT (u) and treeT [u] instead
of tailT [u] and treeT (u), respectively.

We will work in the ring of polynomials Z[x], where x is a formal variable. By an abuse
of notation, we equip this ring with an operation of division by x defined through equations:

xi

x
=

{
xi−1 if i ⩾ 1,
0 if i = 0

αA+ βB

x
= α · A

x
+ β · B

x
for all A,B ∈ Z[x] and α, β ∈ Z.

Formally speaking, division by x is just the unique function from Z[x] to Z[x] satisfying the
two properties above.

Even though our final goal is to count the number of elimination trees, along the way we
are going to count more general objects, called generalized elimination trees. A generalized
elimination tree of a graph H is a rooted tree R along with a mapping ϕ : V (H) → V (R)
such that ϕ respects edges. Note that in particular, it may be the case that im(ϕ) ⊊ V (R)
or that ϕ(u) = ϕ(v) for some u, v ∈ V (H). Clearly, a generalized elimination tree is an
elimination tree in the usual sense if and only if ϕ is a bijection between V (H) and V (R).
We shall call two generalized elimination trees (R,ϕ) and (R′, ϕ′) isomorphic if there is an
isomorphism of rooted trees ψ mapping R to R′ such that ϕ′ = ψ ◦ ϕ.

A generalized elimination tree (R,ϕ) of an induced subgraph H of G is sensible for T
if for every u ∈ V (H) and distinct v1, v2 ∈ chldT (u) ∩ V (H), we have clR(ϕ(compT [v1])) ∩
clR(ϕ(compT [v2])) = clR(ϕ(tailT [u])). Thus, this notion projects to sensibility of (standard)
elimination trees when H = G and (R,ϕ) is an elimination tree of G. Generalized elimination
trees of induced subgraphs of G that are sensible for T shall be called monsters.

For a rooted tree K, a mapping ϕ with co-domain V (K) is called a cover of K if
clK(im(ϕ)) = V (K), or equivalently, every leaf of K is in the image of ϕ. For a vertex
u ∈ V (G), rooted tree K of depth at most d, a subset of vertices A ⊆ V (K) that contains
all leaves of K, and a mapping ϕ : tailT (u) → A that is a cover of K, we define

f(u,K, ϕ,A) =
n∑

i=0
aix

i ∈ Z[x],

where ai is the number of non-isomorphic monsters (R,ϕ) such that:
(i) (R,ϕ) is a generalized elimination tree of G[compT [u]] of depth at most d;
(ii) K is a prefix of R;
(iii) ϕ is an extension of ϕ satisfying

V (R) − V (K) ⊆ im(ϕ) ⊆ (V (R) − V (K)) ∪A; and

(iv) in treeT [u] there are exactly i non-proper surplus images for u and (R,ϕ).
Note that since ϕ is assumed to be a cover of K, and by the second and third condition, the
last condition can be rephrased as follows:

i = |treeT [u]| − |V (R) − V (K)|.

We define polynomial g(u,K, ϕ, L) analogously, but using tailT [u], treeT (u), and proper
surplus images, instead of tailT (u), treeT [u] and non-proper surplus images. That in treeT (u)
there are i proper surplus images is then equivalent to i = |treeT (u)| − |V (R) − V (K)|.
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Informally, f and g count partial solutions on subgraphs induced on subtrees of T , where in
g we exclude the root u of the subtree. Values of g are computed by combining results of f
from separate subtrees rooted at the children u into the result for the forest representing
their union. Values of f are computed from the values of g by including a new vertex u that
connects that forest into one tree.

Our goal now is to compute the polynomials f(·, ·, ·, ·) and g(·, ·, ·, ·) recursively over the
elimination tree T . It can be easily seen that if chldT (u) = ∅ then

g(u,K, ϕ,A) =
{

1 if ϕ respects edges,
0 otherwise.

(2)

Indeed, (R,ϕ) = (K,ϕ) is the only possible pair that can satisfy the last three conditions,
and it is a sensible generalized elimination tree of G[compT [u]] if and only if ϕ respects edges.

First, we show how to compute polynomials g(u, ·, ·, ·) based on the knowledge of polyno-
mials f(v, ·, ·, ·) for children v of u.

▶ Lemma 6 (⋆). If chldT (u) ̸= ∅, then for all relevant u,K, ϕ,A we have

g(u,K, ϕ,A) =
∏

v∈chldT (u)

f(v,K, ϕ,A)

The detailed proof of this Lemma can be found in the full version, however a short justification
is that monsters counted in the definition of g(u,K,Φ, A) can be expressed in a product struc-
ture of monsters counted in the definitions of f(vi,K,Φ, A), where chldT (u) = {v1, . . . , vc}.

Let us elaborate on the intuition on what happened in Lemma 4. Intuitively, we aggregated
information about the children of u to the information about u itself. Since in the definitions
of monsters we do not insist on the mappings being injective, this aggregation could have
been performed by a simple product of polynomials (though, the assumption of sensibility
was crucial for arguing the correctness). In a natural dynamic programming, such as the
one in [23], one would need to ensure injectivity when aggregating information from the
children of u, which would result in a dynamic programming procedure that would need to
keep track of all subsets of K (and thus use exponential space). Thus, relaxing injectivity
here allows us to use simple multiplication of polynomials, but obviously we will eventually
need to enforce injectivity. The idea is that we enforce surjectivity instead, and make sure
that the size of the co-domain matches the size of the domain. In turn, surjectivity is
enforced using inclusion-exclusion in the computation of polynomials f(u, ·, ·, ·) based on
polynomials g(u, ·, ·, ·), which is the subject of the next lemma. Ensuring that the size of the
co-domain matches the size of the domain is done through maintaining the number of surplus
images. The intuition behind their somewhat intricate definition is the following. We want
to maintain the difference between (i) the number of vertices we have already processed and
forgotten about, and (ii) the number of forgotten vertices in a monster that we introduced in
order to accommodate the vertices (i). Vertices contributing to this difference are exactly the
vertices that have been mapped to forgotten vertices of a monster that have already been
“taken” or that have not been forgotten yet; this corresponds to the definition of surplus
images. We know that if multiple vertices were mapped to the same vertex of a partial
monster, then this partial monster will not become a valid treedepth decomposition. We do
not have a way of discovering this immediately (as we cannot keep track of any disjointness
conditions), but extensions of such partial monsters will not be counted in the final result.
The reason for that is that either the sizes of the co-domains will not match the sizes of the
domains, or they will cancel out in the exclusion-inclusion computation due to not being
surjective.
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▶ Lemma 7 (⋆). For all relevant u,K, ϕ,A, we have:

f(u,K, ϕ,A) =
∑
v∈A

x · g(u,K, ϕ[u → v], A)+

∑
w∈K

d−depth(w)∑
p=1

1
xp−1∑

B⊆{w1,...,wp−1}

(−1)p−1−|B|g(u,K[w,w1, . . . , wp], ϕ[u → wp], A ∪B ∪ {wp}),

where K[w,w1, . . . , wp] denotes the rooted tree obtained from K by adding a path
[w,w1, . . . , wp] so that w is the parent of w1 and each wi is the parent of wi+1, for
i ∈ {1, . . . , p− 1}.

We need to take an additional care of how to deduce the overall number of elimination
trees based on the polynomial f(·, ·, ·, ·) and g(·, ·, ·, ·). Define polynomial

h =
d∑

p=1

1
xp−1

∑
B⊆{w1,...,wp−1}

(−1)p−1−|B|g(r, [w1, . . . , wp], [r → wp], B ∪ {wp}) ∈ Z[x],

where r is the root of T , [w1, . . . , wp] is a path on p vertices rooted at w1, and [r → wp]
denotes the function with domain {r} that maps r to wp.

▶ Lemma 8. The number of elimination trees of G that are sensible with respect to T and
have depth at most d is the term in h standing by x0.

Proof. By Lemma 7, the formula can be seen as the formula for f(r,K, ϕ,A) for empty
K, ϕ, and A. Therefore, h can be written as h =

∑n
i=0 aix

i, where ai is the number of
non-isomorphic sensible generalized elimination trees (R,ϕ) such that R has depth at most
d, ϕ : V (G) → V (R) is surjective, and in G there are i non-proper surplus images for r and
(R,ϕ). However, since K is empty, the number of surplus images is exactly the number of
vertices vj ∈ V (G) that are mapped by ϕ to the same vertex of R as some other vertex of G
with a smaller index. Then the assertion that ϕ is injective is equivalent to the assertion
that the number of such surplus images is 0. It follows that the number of non-isomorphic
sensible elimination trees of G of depth at most d is equal to the term in h that stands by
x0. ◀

Having established Lemmas 6, 7 and 8, we can conclude the description of procedure
CountElimTrees. By 8, the goal is to compute polynomial h and return the coefficient
standing by x0. We initiate the computation using the formula for h, and then we use two
mutually-recursive procedures to compute polynomials f(·, ·, ·, ·) and g(·, ·, ·, ·) using formulas
provided by Lemmas 6 and 7. The base case of recursion is for a leaf of T , where we use
formula (2).

The correctness of the procedure is established by Lemmas 6, 7 and 8. So it remains to
bound its time complexity and memory usage. It is clear that polynomials that we compute
will always have degrees at most n. Trees K relevant in the computation will never have
more than dk vertices, for at every recursive call the tree K can grow by at most d new
vertices.

As the next step, we bound the numbers that can be present in the computations.

▶ Lemma 9 (⋆). Every coefficient of f(u,K, ϕ,A) is an integer from the range
[0, (dk · 2d)|treeT [u]|] and every coefficient of g(u,K, ϕ,A) is an integer from the range
[0, (dk · 2d)|treeT (u)|]. Hence, all integers present in the computations are at most (dk2d)n.
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It follows that all integers present in the computation have bitsize bounded polynomially
in n.

As for the memory usage, the run of the algorithm is a recursion of depth bounded by 2k.
The memory used is a stack of at most 2k frames for recursive calls of procedures computing
polynomials f(·, ·, ·, ·) and g(·, ·, ·, ·) for relevant arguments. Each of these frames requires
space polynomial in n, hence the total space complexity is polynomial in n.

As for the time complexity, each call to a procedure computing a polynomial of the form
f(u, ·, ·, ·) makes at most dk · 2d recursive calls to procedures computing polynomials of the
form g(u, ·, ·, ·). In turn, each of these calls makes one call to a procedure computing a
polynomial of the form f(v, ·, ·, ·) for each child v of u. It follows that the total number of
calls to procedures computing polynomials of the form f(u, ·, ·, ·) and g(u, ·, ·, ·) is bounded by
2·(dk·2d)k = 2O(dk). The internal work needed in each recursive call is bounded by 2O(d)·nO(1).
As T has n vertices, the total time complexity is 2O(dk) · 2O(d) · nO(1) · n = 2O(dk) · nO(1), as
claimed. This concludes the proof of Lemma 5.

We note that having designed CountElimTrees(G,T, d), it is easy to design a similar
function CountElimForest(G,T, d) that does not need an assumption of G being connected
and where T is some elimination forest instead of an elimination tree (by using the procedure
described after Lemma 3).

3.2 Utilizing CountElimTrees

With the description of CountElimTrees completed, we can describe how we can utilize it in
order to construct a bounded-depth elimination tree of a graph. That is, we prove the first
part of Theorem 1.

First, we lift CountElimTrees to a constructive procedure that still requires to be provided
an auxiliary elimination tree of the graph.

▶ Lemma 10. There is an algorithm ConstructElimForest(G,T, d) that, given an n-vertex
graph G, an elimination forest T of G of depth at most k, and an integer d, runs in time
2O(dk) · nO(1), uses nO(1) space, and either correctly concludes that td(G) > d or returns an
elimination forest of G of depth at most d.

Proof. By treating every connected component separately, we may assume thatG is connected
(see the remark after Lemma 3). Thus T is an elimination tree of G.

The first step of ConstructElimForest(G,T, d) is calling CountElimTrees(G,T, d). If
this call returns 0, we terminate ConstructElimForest and report that td(G) > d; this is
correct by Lemma 4. Otherwise we are sure that td(G) ⩽ d, and we need to construct any
elimination tree of depth at most d. In order to do so, we check, for every vertex v ∈ V (G),
whether v is a feasible candidate for the root of desired elimination tree. Note that a vertex
v can be the root of an elimination tree of G of depth at most d if and only if td(G− v) < d,
or equivalently, if an only if the procedure CountElimForest(G− v, T − v, d− 1) returns a
positive value. (Here, by T − v we mean the forest T with v removed and all former children
of v made into children of the parent of v, or to roots in case v was a root.) As td(G) ⩽ d,
we know that for at least one vertex v, this check will return a positive outcome. Then we
recursively call ConstructElimForest(G − v, T − v, d − 1), thus obtaining an elimination
forest F ′ of G− v of depth at most d− 1, and we turn it into an elimination tree F of G by
adding v as the new root and making it the parent of all the roots of F ′. As F has depth at
most d, it can be returned as the result of the procedure.
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That the procedure is correct is clear. As for the time and space complexity, it is easy to
see that there will be at most dn calls to the procedure CountElimTrees in total, because
at each level of the recursion there will be at most one invocation of CountElimTrees per
vertex of the original graph. As each of these calls uses 2O(dk) · nO(1) time and nO(1) space,
the same complexity bounds also follow for ConstructElimForest. ◀

It remains to show how to lift the assumption of being provided an auxiliary elimination
forest of bounded depth. For this we use the iterative compression technique.

Proof of the first part of Theorem 1. Arbitrarily enumerate the vertices of G as v1, . . . , vn.
For i ∈ {1, . . . , n}, let Gi = G[{v1, . . . , vi}] be the graph induced by the first i vertices.
For each i = 1, 2, . . . , n we will compute Fi, an elimination forest of Gi of depth at most
d. For i = 1 this is trivial. Assume now that we have already computed Fi and want to
compute Fi+1. We first construct Ti+1, an elimination tree of Gi+1, by taking Fi, adding
vi+1, and making vi+1 the parent of all the roots of Fi. Note that Ti+1 has depth at most
d+ 1. We now call ConstructElimForest(Gi+1, Ti+1, d). If this procedure concludes that
td(Gi+1) > d, then this implies that td(G) > d as well, and we can terminate the algorithm
and provide a negative answer. Otherwise, the procedure returns an elimination forest Fi+1
of Gi+1 of depth at most d, with which we can proceed. Eventually, the algorithm constructs
an elimination forest F = Fn of G = Gn of depth at most d.

The algorithm is clearly correct. Since every call to ConstructElimForest is supplied
with an elimination forest of depth at most d+ 1, and there are at most n calls, the total
time complexity is 2O(d2) · nO(1) and the space complexity is nO(1), as desired. ◀

4 Randomized linear FPT algorithm

In this section we sketch the second part of Theorem 1, where we reduce the time and space
complexities to linear in n at the cost of relying on randomization. There are three main
reasons why the algorithm presented in the previous section does not run in time linear in n.

First, in procedure ConstructElimForest, we applied CountElimTrees O(dn) times.
Even if CountElimTrees runs in time linear in n, this gives at least a quadratic time
complexity for ConstructElimForest.
Second, in the iterative compression scheme we add vertices one by one and apply
procedure ConstructElimForest n times. Again, even if ConstructElimForest runs in
linear time, this gives at least a quadratic time complexity.
Third, in procedure CountElimTrees we handle polynomials of degree at most n and
with coefficients of bitsize bounded only polynomially in n. Algebraic operations on those
need time polynomial in n.

In short, the second and third obstacles are mitigated as follows:
Iterative compression is replaced by a contraction scheme of Bodlaender [1] that allows us
to replace iteration with recursion, where every recursive step reduces the total number
of vertices by a constant fraction, rather than peels off just one vertex.
We observe that in CountElimTrees, we may care only about monomials with degrees
bounded by dk, so the degrees are not a problem. As for coefficients, we hash them
modulo a sufficiently large prime. This is another source of randomization.

As the techniques discussed above are rather standard, their details can be found in
the full version only. Here we provide an overview of how we optimize the procedure
ConstructElimForest, as this part contains original ideas.
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Faster root recovery
We assume we have already improved the running time of CountElimTrees to linear. Now
we are going to improve the running time of ConstructElimForest to linear. Recall that
ConstructElimForest in its current version works over a connected graph G, iterates over
all vertices v ∈ V (G) and checks whether td(G− v) ⩽ d− 1 by calling CountElimTrees with
appropriate parameters. Such vertices v could be placed as roots of an elimination tree of G
of depth at most d. Finding any feasible root is the crucial part that needs to be optimized
in order to achieve a linear running time for ConstructElimForest. The key fact we are
going to use is that the number of possible roots of optimum-depth elimination forests of a
connected graph is bounded in terms of the treedepth [3, 6].

▶ Lemma 11 (⋆). Suppose G is a graph whose treedepth is equal to d. Then there are at
most dO(d) vertices v ∈ V (G) such that td(G− v) < d.

Observe that supposing G is connected, vertices v satisfying td(G−v) < td(G) are exactly
those that can be placed as roots of an optimum-depth elimination tree.

We are going to modify the procedure CountElimTrees(G,T, d) by introducing weights.
Let G be a connected graph. Enumerate vertices of G as V (G) = {v1, . . . , vn} and let ti be
the number of elimination trees of G that are sensible with respect to T and in which vi is
the root. Then the result of CountElimTrees(G,T, d) can be expressed as t1 + t2 + . . .+ tn.
However, with a slight modification, we are able to compute t1µ1 + t2µ2 + . . .+ tnµn for any
sequence µ1, µ2, . . . , µn ∈ Z. That can be achieved by multiplying by µi the contribution of
transitions when we map vi to the root of a monster.

Assume wishfully that there is exactly one vertex vi ∈ V (G) that could serve as the
root of an elimination tree of G of depth d; equivalently, vi is the only vertex such that
td(G − vi) < d. In other words, tj is nonzero if and only if i = j. Note that in such case

we have i =
∑n

j=1
j·tj∑n

j=1
tj

. The denominator of this expression is simply the number of all

elimination trees of G of depth at most d that are sensible with respect to T , while the
numerator is the result of the modified version of CountElimTrees where we set µj = j for
all j ∈ [n]. Hence, we can find i (that is: pinpoint the unique root) by dividing the outcomes
of two calls to weighted CountElimTrees, instead of calling CountElimTrees n times, as we
did previously.

Next, we lift the assumption about the uniqueness of the candidate for the root of an
elimination tree. There are two key ingredients here. The first one is Lemma 11, which
bounds the number of possible candidate roots for elimination trees of optimum depth. The
second one is the color coding technique. The idea is to randomly color vertices into dO(d)

colors. Because there are at most dO(d) possible roots, with high probability there will exist
a color such that there is exactly one possible root in it. By modifying the idea from the
previous paragraph, we can generalize it to identifying root within a color class provided
there is exactly one possible root of this color.

Similarly as in the slower version, after identifying any possible root, we can delete it and
recurse to connected components of the remaining part of the graph.
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