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Abstract
We study efficient and exact shortest path algorithms for routing on road networks with realistic
traffic data. For navigation applications, both current (i.e., live) traffic events and predictions of
future traffic flows play an important role in routing. While preprocessing-based speedup techniques
have been employed successfully to both settings individually, a combined model poses significant
challenges. Supporting predicted traffic typically requires expensive preprocessing while live traffic
requires fast updates for regular adjustments. We propose an A*-based solution to this problem. By
generalizing A* potentials to time dependency, i.e. the estimate of the distance from a vertex to the
target also depends on the time of day when the vertex is visited, we achieve significantly faster
query times than previously possible. Our evaluation shows that our approach enables interactive
query times on continental-sized road networks while allowing live traffic updates within a fraction
of a minute. We achieve a speedup of at least two orders of magnitude over Dijkstra’s algorithm
and up to one order of magnitude over state-of-the-art time-independent A* potentials.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases realistic road networks, shortest paths, live traffic, time-dependent routing

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.89

Related Version Full Version: http://arxiv.org/abs/2207.00381 [21]

Supplementary Material Software (Source Code): https://github.com/kit-algo/tdpot
archived at swh:1:dir:f0d810343d53d5ad87db428e89a32cb038dcaeab

Acknowledgements We want to thank Jonas Sauer for many helpful discussions on algorithmic ideas
and proofreading of drafts of this paper. Further, we also want to thank the anonymous reviewers
for their helpful comments.

1 Introduction

An important feature of modern routing applications and navigation devices is the integration
of traffic information into routing decisions. The more comprehensive the considered traffic
information, the better the suggested routes, the more accurate the predicted arrival times
and ultimately, the more satisfied the users. For routing, we can distinguish between two
aspects of traffic: On the one hand, there are predictable traffic flows. For example, certain
highways will consistently have traffic jams on weekday afternoons due to commuters driving
home. On the other hand, unexpected events such as accidents may also have significant
influence on the current (i.e., live) traffic situation. While it may be sufficient to focus on
the current traffic situation to answer short-range routing requests, mid- and long-range
queries require taking both types of traffic into account. We therefore aim to provide routing
algorithms which incorporate combined predicted and live traffic information.
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A common approach for routing in road networks is to model the network as a directed
graph where intersections are represented by vertices and road segments by edges. With
edge weights representing travel times, routing requests can be answered by solving the
classical shortest path problem. When considering predicted traffic, edge weights can be
modeled as functions of the time of day, which is commonly referred to as time-dependent
routing. Dijkstra’s algorithm can be used to solve these problems exactly and, at least from a
theoretical perspective, efficiently [8]. However, on the continental-sized road networks used
in modern routing applications, it may take seconds to answer mid- or long-range queries,
which is too slow for most practical applications. We therefore study algorithms to compute
shortest paths significantly faster than Dijkstra’s algorithm while retaining exactness.

One approach to accelerate Dijkstra’s algorithm is goal-directed search, i.e. the A*
algorithm [13]. Dijkstra’s algorithm uses a priority queue to explore vertices by ascending
distance from the source until it reaches the target. A* changes this slightly and employs
a potential function which estimates the remaining distance from vertices to the target to
change the queue order and explore vertices closer to the target earlier. The performance of
A* crucially depends on the tightness of these estimates. The core algorithmic idea of this
work is to use A* with time-dependent potential functions, i.e. we obtain tighter estimates
and therefore faster queries by taking the time of day when a vertex is visited into account.

1.1 Related Work
Efficient and exact route planning in road networks has received a significant amount of
research effort in the past decade. Since a comprehensive discussion is beyond the scope
of this paper, we refer to [1] for an overview. An approach that has proven effective is to
exploit the fact that usually many queries have to be answered on the same network, which
rarely changes. Thus, these queries can be accelerated by computing auxiliary data in an
off-line preprocessing phase.

A popular technique which follows this approach is Contraction Hierarchies (CH) [9].
During the preprocessing vertices are ranked heuristically by “importance” where more
important vertices are part of more shortest paths. Shortcut edges are inserted to skip over
unimportant vertices. This allows for a very fast query where only a few vertices are explored.
On typical continental-sized networks, queries take well below a millisecond. Multi-Level
Dijkstra (MLD) [17] is a similar approach that also utilizes shortcut edges but inserts them
based on a multi-level partitioning. It achieves slightly slower query times of around a
millisecond. MLD is the first algorithm to operate under the Customizable Route Planning
(CRP) framework [5], i.e. it has a second, faster preprocessing phase called customization
which allows integrating arbitrary weight functions (or live traffic updates for the current
weights) into the auxiliary data without rerunning the entire first preprocessing phase, which
is much slower. The MLD customization takes a few seconds, which allows for running it
every minute. This three-phase setup has proven to be instrumental to support live traffic
scenarios in practical applications [14]. Therefore, CH was generalized to Customizable
Contraction Hierarchies (CCH) [7] to support customizability as well.

Both CH and MLD have been extended to time-dependent routing. However, dealing
with weight functions instead of scalar weights makes the preprocessing much harder and
leads to difficult trade-offs. TCH [2] has fast queries but a very expensive preprocessing phase
(up to several hours) and may produce prohibitive amounts of auxiliary data (> 100 GB).
TD-CRP [3], an extension of MLD, even follows a three-phase approach and has a relatively
fast customization phase. However, this is only possible by giving up exactness. Also, TD-
CRP does not support path unpacking. CATCHUp [19] adapts CCH to the time-dependent
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setting and has fast and exact queries with significantly reduced memory consumption. While
it has a customization phase, running it takes significantly longer than a traditional CCH or
CRP customization. On the networks used in this paper, a CATCHUp customization may
even take hours, which is too slow for a setting with live traffic updates. Time-dependent
Sampling (TDS) [18] is another CH-based approach. While TDS does support both predicted
and dynamic traffic information, it cannot guarantee exactness.

ALT [10, 11] is an early A*-based speedup technique for routing in road networks. It
combines precomputed distances to a few landmark vertices with the triangle inequality
to obtain distance estimates to the target vertex. However, query times are significantly
slower than with shortcut-based approaches such as CH or MLD. ALT also has been
extended to dynamic and time-dependent settings [6]. While this approach allows incremental
modifications of the input travel times, it is not as flexible as customization based approaches
allowing arbitrary updates.

CH-Potentials [20] is another more recent A*-based approach. CH-Potentials use Lazy
RPHAST [20], an incremental many-to-one CH query variant, to compute exact distances
toward the target. This allows for tighter estimates and faster queries than what is possible
with ALT. CH-Potentials can be applied to a variety of routing problem variants. The
original publication even mentions a combination of live and predicted traffic. However, the
reported query times are above 100 ms. We consider this too slow for practical applications.

1.2 Contribution
In this work, we introduce a time-dependent generalization of A* potentials. We present two
Lazy RPHAST extensions that realize a time-dependent potential function and discuss how
to apply them to queries in a setting that combines live and predicted traffic. An extensive
evaluation confirms the effectiveness of our potentials. Queries incorporating both predicted
and current traffic can be answered within few tens of milliseconds. Live traffic updates
can be integrated within a fraction of a minute. Our time-dependent potentials are up to
an order of magnitude faster than CH-Potentials and about two orders of magnitude faster
than Dijkstra’s algorithm. To the best of our knowledge, this makes our approach the first
to achieve interactive query performance while allowing fast updates in this setting.

2 Preliminaries

We consider simple directed graphs G = (V, E) with n = |V | vertices and m = |E| edges. We
use uv as a short notation for an edge from a tail vertex u to a head vertex v. Weight functions
w : E → (Z→ N0) map edges to time-dependent functions, which in turn map a departure
time τ at the tail u to a travel time w(uv)(τ). To simplify notation, we will often write
w(uv, τ). When it is clear from the context that we are writing about constant functions, we
omit the time argument and write w(uv). The reversed graph←−G = (V,

←−
E ) contains a reversed

edge vu for every edge uv ∈ E. In this paper, we only need time-independent corresponding
reversed weight functions. Therefore, we define ←−w (vu) = w(uv). The travel time of a path
P = (v1, . . . , vk) is defined recursively w(P, τ) = w(v1v2, τ) + w((v2, . . . , vk), τ + w(v1v2, τ))
with the base case of an empty path having a travel time of zero. A path’s travel time can
be obtained by successively evaluating travel times of the edges of the path. We denote
the travel time of a shortest path between vertices s and t for the departure time τdep as
Dw(s, t, τdep). We assume that all travel time functions adhere to the First-In First-Out
(FIFO) property, i.e. departing later may never lead to an earlier arrival. Formally stated,
this means τ + w(τ) ≤ τ + ϵ + w(τ + ϵ) for any ϵ ≥ 0. With non-FIFO travel time functions,
the shortest path problem becomes NP-hard [15, 22].

ESA 2022
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τnow
τ end(e)

τ

c(e, τ)

p(e)

ℓ(e)

p(e, τ end(e))
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Figure 1 Combined travel time function c(e, τ) = max(p(e, τ), min(ℓ(e), p(e, τ end(e))+τ end(e)−τ))
with both predicted and live traffic information. The predicted traffic p(e) is indicated in black. The
live travel time ℓ(e) with expected end τ end(e) is depicted in red. The switch back to the predicted
function is colored in blue. The solid line indicates the combined function c(e) for the current day.
For later days, only p will be used. Dotted lines only serve the purpose of visualization.

2.1 Problem Model

We consider an application model with three phases. During the preprocessing phase, the
graph G = (V, E) and a weight function p of time-dependent traffic predictions are given.
Predicted travel time functions are periodic piecewise linear functions represented by a
sequence of breakpoints covering one day. A preprocessing algorithm may now precompute
auxiliary data, which may take several hours. In the update phase, a weight function ℓ of
currently observed live travel times are given for the current moment τnow. These live travel
times are time-independent and can be represented by a single scalar value. Further, each
edge e has a point in time τ end(e) when we switch back to the predicted travel time. For
edges without live traffic data, we set τ end(e) = τnow. We assume that traffic predictions
are conservative estimates and that live traffic will only be slower than the predicted traffic
due to accidents and other traffic incidents, i.e. p(e, τnow) < ℓ(e). Therefore, we define the
combined travel time function c(e, τ) = max(p(e, τ), min(ℓ(e), p(e, τ end(e)) + τ end(e)− τ)).
It follows that p(e, τ) ≤ c(e, τ). The update phase will be repeated frequently and should
therefore be as fast as possible. During the final query phase, many shortest path queries
(s, t, τdep) where τdep ≥ τnow should be answered as quickly as possible by obtaining a path
P = (s, . . . , t) that minimizes c(P, τdep). Figure 1 depicts an example of such a combined
travel time function.

Our model has two important restrictions. First, the dynamic real-time traffic information
ℓ is handled separately from the traffic predictions p. Fast updates to the predicted traffic
functions p are not the goal of our work. While this might seem less flexible than dynamic
traffic predictions p, we believe that our model is actually more practical. This is because
the traffic predictions are periodic functions. But live traffic incidents are inherently tied to
the current moment and are not expected to repeat in 24 hours. Second, our model assumes
predicted traffic to be a lower bound of the real-time traffic. If the observed live travel time
were faster than the predicted travel time, the live travel time would be ignored. While this a
severe restriction from a theoretical perspective, it is only a minor limitation for our practical
problem. Live traffic should account for unexpected traffic events which will almost always
only make traffic worse. If the live traffic is frequently better than the predicted traffic,
the predictions should be adjusted at some point. We discuss these restrictions further and
compare our problem to similar models in related work in the full version of this paper [21].
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2.2 Fundamental Algorithms

Dijkstra’s algorithm [8] computes Dw(s, t, τdep) by exploring vertices in increasing order of
distance from s until t is reached. The distances from s to each vertex u are tracked in an
array D[u], initially set to ∞ for all vertices. A priority queue of vertices ordered by their
distance from s is maintained. The priority queue is initialized with s and D[s] set to τdep.
In each iteration, the next closest vertex u is extracted from the queue and settled. Outgoing
edges uv are relaxed, i.e. the algorithm checks if D[u] + w(uv, D[u]) improves D[v]. If so, the
queue position of v is adjusted accordingly. Once t has been settled, the final distance is
known, and the search terminates. We denote visited vertices as the search space of a query.

A* [13] is a goal-directed extension of Dijkstra’s algorithm. It applies a potential function
πt which maps vertices to an estimate of the remaining distance to t. This estimate is added
to the queue key. Thus, vertices closer to the target are visited earlier, and the search space
becomes smaller. It can be guaranteed that A* has computed the shortest distance once t

is settled when the estimates of the potential function are lower bounds of the remaining
distances. However, with only lower bound potentials, the theoretical worst case running time
of A* is exponential. Therefore, a stronger correctness property is often used. A potential
function is called feasible if w(uv) − πt(u) + πt(v) ≥ 0 for any edge uv ∈ E. Feasibility
guarantees correctness and polynomial running time. When the potential of the target is
zero, i.e. πt(t) = 0, it also implies the lower bound property.

Contraction Hierarchies (CH) [9] is a speedup technique to accelerate shortest path
searches on time-independent road networks through precomputation. During the prepro-
cessing, a total order v1 ≺ · · · ≺ vn of all vertices vi ∈ V by “importance” is determined
heuristically, where more important vertices should lie on more shortest paths. Then, an
augmented graph G+ = (V, E+) with additional shortcut edges and weights w+ is constructed.
Shortcut edges uv allow to “skip over” paths (u, . . . , xi, . . . , v) where xi ≺ u and xi ≺ v.
Therefore, w+(uv) is assigned the length of the shortest such path. We sometimes split
G+ into an upward graph G↑ = (V, E↑) which contains only edges uv where v ≻ u and a
downward graph G↓ = (V, E↓) defined analogously. The augmented graph has the property
that between any two vertices s and t, there exists an up-down-path P with w+(P ) = Dw(s, t)
which uses first only edges from E↑ and then only edges from E↓. Such a path can be found
by running the bidirectional variant of Dijkstra’s algorithm from s on G↑ and from t on

←−
G↓.

Because only a few vertices are reachable in this CH search space, queries are very fast, i.e.
about a tenth of a millisecond on continental-sized networks.

In this work we build on Customizable Contraction Hierarchies (CCH) [7]. For CCH,
the construction of the augmented graph is split into two phases. In the first phase, the
topology of the augmented graph is constructed without considering any weight functions. It
is therefore valid for all weight functions. In the second customization phase, the weights w+

of the augmented graph are computed for a given weight function w. The customization can
be parallelized efficiently [4] and takes a couple of seconds on typical networks.

Lazy RPHAST [20] is a CH query variant to incrementally compute distances from many
sources toward a common target. The first step is to run Dijkstra’s algorithm on

←−
G↓ from

t, similarly to a regular CH query. The second Dijkstra search is replaced with a recursive
depth-first search (DFS) which memoizes distances. Algorithm 1 depicts this routine which
will be called for all sources. If the distance of a vertex u was previously computed, the
routine terminates immediately and returns the memoized value D[u]. Otherwise, the distance
for all upward neighbors v is obtained recursively. The final distance is the minimum over
the path distances w+(uv) + D[v] via the upward neighbors v and the distance possibly found

ESA 2022
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Algorithm 1 Computing the distance from a single vertex u to t with Lazy RPHAST.

Data: D↓[u]: tentative distance from u to t computed by Dijkstra’s algorithm on
←−
G↓

Data: D[u]: memoized final distance from u to t, initially ⊥
Function ComputeAndMemoizeDist(u):

if D[u] = ⊥ then
D[u]← D↓[u];
for all edges uv ∈ E↑ do

D[u]← min(D[u], ComputeAndMemoizeDist(v) + w+(uv));

return D[u];

in the backward search D↓[u]. Using a DFS to compute shortest distances works because
G↑ is a directed acyclic graph. Using the distance to t obtained by Lazy RPHAST as an
A* potential is called CH-Potentials. Just like a regular CH query, Lazy RPHAST can be
used on CCH without modifications. In [20] additional optimizations for A* are discussed
which we also utilize. The goal is to reduce the impact of the potential evaluation overhead
by avoiding unnecessary potential evaluations, for example for chains of degree-two vertices.

3 Time-Dependent A* Potentials

We now propose a time-dependent generalization πt : V → (T → Z≥0) of A* potentials,
i.e. estimates are a function of the time. This allows us to obtain tighter estimates and
enables faster queries. Analogue to classical potentials, there are properties of time-dependent
potentials to consider for the correctness of A*:

Strong First-In First-Out (FIFO): πt(v, τ) < πt(v, τ + ϵ) + ϵ for v ∈ V , τ > Dw(s, u, τdep)
and ϵ > 0. This ensures that queue keys increase monotonically with the distance from s.
This property has no time-independent equivalent because it holds trivially in this case.
Feasibility: w(uv, τ) + πt(v, τ + w(uv, τ))− πt(u, τ) ≥ 0 for all edges uv ∈ E and times
τ > Dw(s, u, τdep). A* can be analyzed as an equivalent run of Dijkstra’s algorithm
with a modified weight function derived from the input weights and the potentials.
With feasibility, these modified weights are non-negative, which implies correctness and
polynomial running time. When πt(t, τ) = 0, feasibility also implies the lower bound
property. However, feasibility is not strictly necessary to guarantee correctness.
Lower bound: πt(v, τ) ≤ Dw(v, t, τ) for every vertex v ∈ V and time τ = Dw(s, v, τdep).
This ensures that the search has found the correct distance once the target vertex is
settled. This is also sufficient for correctness. However, without feasibility, A* may settle
vertices multiple times. In theory, this can lead to an exponential running time.

We discuss these properties in detail and prove the correctness in the full version of this
paper [21]. Note that these properties only need to hold for specific times τ , not all possible
times of the day. Our practical potentials heavily rely on this and only compute data for the
specific times necessary to answer a query correctly.

In the following, we present two practical realizations of time-dependent A* potentials.
Both are extensions of Lazy RPHAST. Lazy RPHAST/CH-Potentials is already a very
efficient potential and obtains exact distances for scalar lower bound weights, i.e. the tightest
possible estimates with a time-independent potential definition. To outperform CH-Potentials,
on the one hand, we have to obtain significantly tighter estimates. On the other hand, we
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also must avoid the potential evaluation becoming too expensive. Therefore, we avoid costly
operations on functions and work with scalar values as much as possible. As a result, even
though our potentials are time-dependent, computed estimates during a single query usually
will not change depending on the visit time of a vertex.

3.1 Multi-Metric Potentials
Let (s, t, τdep) be a query and τmax an upper bound on the optimal arrival time at the target.
Consider any τ ′ ≤ τdep, τmax ≤ τ ′′ and the weight function l[τ ′, τ ′′](e) := minτ ′≤τ≤τ ′′ p(e, τ).
Clearly, Dl[τ ′,τ ′′](v, t) provides lower bound estimates of distances to the target vertex during
the time relevant for this query. If τ ′ and τ ′′ are close to τdep and τmax and, if the difference
between τ ′ and τ ′′ is not too big, the estimates will be significantly tighter than global lower
bound distances. The Multi-Metric Potentials (MMP) approach is based on this observation.
Instead of using a single potential based on a global lower bound valid for the entire time,
we process multiple lower bound weight functions for different time intervals. At query time,
we then select an appropriate weight function. The upper bound τmax is computed with a
time-independent CCH query on a scalar upper bound function c+

max computed during the
update phase. Efficiently computing distances with respect to the selected weight function is
done with Lazy RPHAST. Therefore, no time-dependent computations need to be performed
to evaluate this potential function. MMP only depend on the departure time of the query
but not of the potential evaluation time. Still, MMP will be significantly tighter than any
time-independent potential can be.

Phase Details. The first step of the preprocessing for this potential is to perform the regular
CCH preprocessing, i.e. compute an importance ordering and construct the unweighted
augmented graph. Now let I be a set of time intervals. In our implementation, we cover the
time between 6:00 and 22:00 with intervals of a length of one, two, four, and eight hours,
starting every 30 minutes, and one interval covering the entire day. We do not maintain
any additional intervals between 22:00 and 6:00 as most edge weights correspond to their
respective free-flow travel time during this period. Thus, the lower bound weights would be
equal to the full-day lower bounds. During preprocessing, for each interval [τ ′

i , τ ′′
i ] ∈ I, we

extract lower bound functions l[τ ′
i , τ ′′

i ] and run the CCH customization algorithm to obtain
l[τ ′

i , τ ′′
i ]+. This can be parallelized trivially. Also, the customization can be parallelized

internally. For further engineering details, we refer to [7, 4, 12].
During the update phase, we compute an additional lower bound weight function starting

at τnow with duration δ derived from the combined weights c and run the basic customization
for it. We use δ = 59 minutes to reasonably cover the live traffic but keep the live interval
shorter than any other interval. Further, we extract an upper bound weight function cmax
which is valid for the entire day for both the predicted and the live traffic, and perform the
CCH basic customization to obtain c+

max.
The query starts with a classical CCH query on the customized upper bound c+

max to
obtain a pessimistic estimate of τmax. We then select the smallest interval [τ ′

i , τ ′′
i ] such that

[τdep, τmax] ⊆ [τ ′
i , τ ′′

i ]. Running Lazy RPHAST on G+
l with the customized weight function

l[τ ′
i , τ ′′

i ]+ yields the desired potential function. See the full version of this paper [21] for
additional optimizations.

Correctness. For any given single query, the estimates obtained by MMP are actually time-
independent. They return the exact shortest distances with respect to a lower bound weight
function valid for the query. Constant potentials trivially adhere to the strong FIFO property.
Also, shortest distances for a lower bound weight function are feasible potentials [20].

ESA 2022
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3.2 Interval-Minimum Potentials

Interval-Minimum Potentials (IMP) is a time-dependent adaptation of the Lazy RPHAST
algorithm. While Lazy RPHAST has a single scalar weight for each edge, the Interval-
Minimum Potential uses a time-dependent function. This allows for tighter estimates but
introduces new challenges. First, we need an augmented graph with sufficiently accurate
time-dependent lower bounds. We utilize the existing CATCHUp customization [19] because
it is based on CCH. Second, storing the shortcut travel time functions w+ may consume a lot
of memory. Further, the representation as a list of breakpoints makes the evaluation more
expensive than looking up a scalar weight. Therefore, we resort to a different representation
and store functions as piecewise constant values in buckets of equal duration. Third, evaluating
these functions requires a time argument. While πt(v, τ) includes the time argument τ for
the time at v, Lazy RPHAST also needs a time for every recursive invocation. Therefore,
we apply Lazy RPHAST a second time on global upper and lower bound weight functions
c+

max and p+
min to quickly obtain arrival intervals for arbitrary vertices. We then use these

intervals to evaluate the edge weights and obtain tight time-dependent lower bounds.

Phase Details. The first preprocessing step is the CCH preprocessing. For the second step,
we need to obtain time-dependent travel times for the augmented graph G+ based on the
predicted traffic weights p. For this, we utilize CATCHUp [19], a time-dependent adaptation
of CCH. The CATCHUp customization yields for each edge in uv ∈ E+ approximated
time-dependent lower bound functions b+(uv). We transform the time-dependent piecewise
linear lower bound functions b+ into piecewise constant lower bound functions b′+(uv, τ) :=
min

{
b+(uv, τ ′) | β⌊ τ

β ⌋ ≤ τ ′ < β(⌊ τ
β ⌋+ 1)

}
where β is the length of each constant segment.

This enables a compact representation. Functions can be represented with a fixed number
of values per edge. We use 96 buckets of length β = 15 minutes. Additionally, we derive
a scalar lower bound b+

min. Note that b+
min is typically tighter than bounds obtained by a

time-independent customization on lower bounds of the input functions, i.e. w+
min.

In the update phase, we extract a combined traffic upper bound weight function cmax for
the entire day and run the CCH customization to obtain c+

max.
The query consists of two instantiations of the Lazy RPHAST algorithm. The first one

uses the scalar bounds b+
min and c+

max and computes an interval of possible arrival times at
arbitrary vertices when departing from s at τdep. Since arrival intervals are distances from
the source vertex, we have to apply Lazy RPHAST in reverse direction. This means we first
run Dijkstra’s algorithm from s on G↑, and then, we apply the recursive distance-memoizing
DFS on

←−
G↓ for any vertex for which we want to obtain an arrival interval. We denote this

instance as AILR for Arrival Interval Lazy RPAHST. With these arrival intervals, we can
now compute lower bounds to the target with the second Lazy RPHAST instantiation, which
uses the time-dependent lower bounds b′+. The first step is to run Dijkstra’s algorithm from
t on

←−
G↓. To relax an edge uv ∈

←−
E↓, we first need to obtain an arrival interval [τmin, τmax] at

v using AILR. This allows us to determine for vu at the relevant time a tight lower bound
d := minτ∈[τmin,τmax] b′+(vu, τ). Then, we check if we can improve the lower bound from v to
t, i.e. D↓[v]← min(D↓[v], D↓[u] + d). Having established preliminary backward distances for
all vertices in the CH search space of t, we can now compute estimates with the recursive
distance-memoizing DFS. To obtain a distance estimate for vertex u, we first recursively
compute distance estimates D↓[v] for all upward neighbors v where uv ∈ E↑. Then, we use
AILR to obtain an arrival interval [τmin, τmax] at u. Finally, we relax the upward edges uv set
D↓[u]← min(D↓[u], D↓[v] + minτ∈[τmin,τmax] b′+(uv, τ)). This yields the final estimate for u.
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Choosing a good memory layout for the bucket weights is crucial for the performance.
We store all edge weights of each bucket consecutively. Typically, only a few buckets per
edge are relevant because the arrival intervals are relatively small. Also, all outgoing edges
of each vertex are evaluated consecutively. Thus, having their weights for the same bucket
close to each other increases cache hits. See [21] for additional optimizations.

Correctness. Estimates obtained by IMP are lower bounds of the actual time-dependent
shortest distances. This directly follows from the correctness of the CATCHUp preprocessing
and the Lazy RPHAST algorithm. Also, they do satisfy the strong FIFO property because,
for any given single query, the estimates are constant. However, they are not feasible due to
the piecewise constant approximation schema. We could not observe any practical negative
consequences of this, though.

3.3 Compression
Both of our time-dependent potentials use many weight functions. This can lead to problem-
atic memory consumption. However, since we only need lower bounds, we can merge weight
functions. Consider two MMP intervals with weight functions l1 and l2. A combined function
l1∪2(uv) = min(l1(uv), l2(uv)) is valid for both intervals, albeit less tight. We can merge IMP
buckets analogously. Thus, we can reduce memory consumption by trading tightness. Both
potentials can handle merged lower bound functions with a layer of indirection: Buckets and
intervals are mapped to a weight function ID. The weight of an edge in a merged weight
function is the minimum weight of this edge in all included functions.

We now discuss an efficient and well-parallelizable algorithm to iteratively merge weight
functions until only k functions remain. In each step, we merge the pair of weight functions
with the minimal sum of squared differences of all edge weights. Since comparing all pairs of
weight functions is expensive, we track the minimum difference sum ∆min we have found so
far and stop any comparison where the sum exceeds ∆min. However, even when stopping a
comparison, we store the preliminary sum and the edge ID up to which we have summed up
the differences. Then, we do not need to start from scratch should we continue to compare
this particular pair of weight functions. Finally, we maintain all pairs of weights along with
the (possibly preliminary) difference sums in a priority queue ordered by the difference sums.
When merging two weight functions, all other associated queue entries are removed from
the queue and new entries for comparisons between the new weight function and all other
functions are inserted. To determine the next weight function pair to merge, unfinished
weight function pairs are popped from the queue and processed in parallel. The minimum
difference is tracked in an atomic variable.

4 Evaluation

Environment. Our benchmark machine runs openSUSE Leap 15.3 (kernel 5.3.18), and
has 192 GiB of DDR4-2666 RAM and two Intel Xeon Gold 6144 CPUs, each of which
has 8 cores clocked at 3.5 GHz and 8 × 64 KiB of L1, 8 × 1 MiB of L2, and 24.75 MiB of
shared L3 cache. Hyperthreading was disabled and parallel experiments use 16 threads.
We implemented our algorithms in Rust1 and compiled them with rustc 1.61.0-nightly
(c84f39e6c 2022-03-20) in the release profile with the target-cpu=native option.

1 Our code and experiment scripts are available at https://github.com/kit-algo/tdpot.

ESA 2022

https://github.com/kit-algo/tdpot


89:10 Combining Predicted and Live Traffic with Time-Dependent A* Potentials

Datasets. We evaluate our algorithms on two networks for which we have proprietary
traffic data available. Sadly, we cannot provide access to these datasets due to non-disclosure
agreements. We are not aware of any publicly available real-world traffic feeds or predictions.
However, as these datasets are the same ones used in [19, 20], at least some comparability is
given. Our first network, PTV Europe, has been provided by PTV2 in 2020 and is based
on TomTom3 routing data covering Western Europe. It has 28.5 M vertices and 61 M edges.
76% of the edges have a non-constant travel time. The data includes a traffic incident
snapshot from 2020/10/28 07:47 with live speeds and estimated incident durations for 215 k
vertex pairs. Our second network, OSM Germany, is derived from an early 2020 snapshot of
OpenStreetMap and was converted into a routing graph using RoutingKit4. It has 16.2 M
vertices and 35.2 M edges. For this instance, we have proprietary traffic data provided by
Mapbox5. This includes traffic predictions for 38% of the edges in the form of predicted
speeds for all five-minute periods over the course of a week. We only use the predictions for
one day. Also, we exclude speed values which are faster than the free-flow speed computed
by RoutingKit. The data also includes two live traffic snapshots in the form of OSM node ID
pairs and live speeds for the edge between the vertices. One is from Friday 2019/08/02 15:41
and contains 320 k vertex pairs and the other from Tuesday 2019/07/16 10:21 and contains
185 k vertex pairs. The datasets do not contain any estimate for how long the observed
live speeds will be valid. We set τ end to one hour after the snapshot time. Note that even
though it is smaller and has fewer time-dependent edges, OSM Germany is actually the
harder instance. This is because it has more breakpoints per time-dependent edge (124.8
compared to 22.5 on PTV Europe) and the predicted travel times fluctuate more strongly.

Methodology. We evaluate our algorithms by sequentially solving batches of 100 k shortest
path queries with three different query sets: First, there are random queries where source
and target are drawn from all vertices uniformly at random. These are mostly long-range
queries. Second are 1h queries where we draw a source vertex uniformly at random, run
Dijkstra’s algorithm from it and pick the first node with a distance greater than one hour
as the target. Third, we generate queries following the Dijkstra rank methodology [16] to
investigate the performance with respect to query distance. For these rank queries, we pick a
source uniformly at random and run Dijkstra’s algorithm from it. We use every 2i-th settled
vertex as the target for a query of Dijkstra rank 2i. For queries with only predicted traffic,
we pick τdep uniformly at random. When using live traffic, we set τdep = τnow. To evaluate
the performance of the preprocessing and update phases, we run them 10 and 100 times,
respectively. Preprocessing and update phases utilize all cores using 16 threads.

We compare our time-dependent potentials MMP and IMP against time-independent CH-
Potentials algorithm realized on CCH. Therefore, we denote this approach as CCH-Potentials.
All three potentials use the same CCH vertex order and augmented graph. CCH-Potentials
provide heuristic estimates based on a lower bound without any real-time or predicted traffic.
Thus, no update phase is necessary to integrate real-time traffic updates. It is the only
other speedup technique we are aware of that supports exact queries for our problem model.
Dijkstra’s algorithm without any acceleration is our baseline.

2 https://ptvgroup.com
3 https://www.tomtom.com
4 https://github.com/RoutingKit/RoutingKit
5 https://mapbox.com
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Table 1 Query and preprocessing performance results of different potential functions on different
graphs and live traffic scenarios. We report average running times, number of queue pops, relative
increases of the result distance over the initial distance estimate and speedups over Dijkstra’s
algorithm for 100 k random queries. Additionally, we report preprocessing and update times and the
memory consumption of precomputed auxiliary data.

Live Running Queue Length Speedup Prepro. Update Space
Graph traffic time [ms] [·103] incr. [%] [s] [s] [GB]

C
C

H
Po

t. Ger
– 137.5 92.3 12.2 24.8 – 0.8

10:21 236.5 158.3 18.9 14.7 165.2 – 0.8
15:41 128.0 89.6 19.1 27.0 – 0.8

Eur – 102.6 65.2 4.2 58.0 249.7 – 1.0
07:47 152.2 102.2 8.4 39.3 – 1.0

M
M

P Ger
– 117.7 74.6 9.9 29.0 – 33.7

10:21 170.0 110.0 13.0 20.4 382.6 15.2 34.0
15:41 119.0 79.5 15.8 29.0 15.3 34.0

Eur – 95.3 58.6 3.5 62.5 581.5 – 56.2
07:47 131.2 84.5 5.8 45.6 22.7 57.2

IM
P

Ger
– 22.2 5.1 1.8 154.1 – 30.7

10:21 29.1 7.6 2.6 119.2 13 687.0 13.5 31.2
15:41 37.7 11.3 4.2 91.5 13.6 31.2

Eur – 11.5 1.8 0.4 518.0 1 799.9 – 52.1
07:47 25.4 7.4 1.7 235.5 20.1 53.1

Experiments. In Table 1, we report key performance results for our time-dependent poten-
tials on random queries. We observe that IMP is the fastest approach by a significant margin,
up to an order of magnitude faster than time-independent CCH-Potentials and roughly two
orders of magnitude faster than Dijkstra’s algorithm. The search space reduction is even
greater, but this does not fully translate to running times due to the higher evaluation
overhead of IMP. With only predicted traffic, IMP is only two to three times slower than
CATCHUp [19]. This shows that using A* to gain algorithmic flexibility comes at a price,
but the overhead compared to purely hierarchical techniques is manageable. In contrast,
MMP is only slightly faster than CCH-Potentials. This is expected since random queries are
mostly long-range for which MMP is not particularly well suited.

Preprocessing times are within a couple of minutes for CCH-Potentials and MMP. IMP
preprocessing is significantly more expensive because of the time-dependent CATCHUp pre-
processing. This is especially pronounced on OSM Germany where the time-dependent travel
time functions fluctuate strongly. Still, running preprocessing algorithms on a daily basis
is quite possible. This also underlines that frequently running a CATCHUp customization
to include live traffic is not feasible. For both our approaches, real-time traffic updates are
possible within a fraction of a minute. MMP is slightly slower because it uses a few more
weight functions. Both our approaches are quite expensive in terms of memory consumption,
but this can be mitigated through the use of compression (see Figure 4).

Introducing live traffic decreases the quality of the estimates and thus increases search
space sizes and running times. For IMP, this increases running times by roughly a factor of
two. Even with heavy rush hour traffic, IMP is still more than 90 times faster than Dijkstra’s
algorithm. Surprisingly, for CCH-Potentials and MMP, this scenario seems easier to handle
than light midday traffic. This actually is an effect of the predicted traffic. It also has a strong
influence on the performance of CCH-Potentials and MMP depending on the departure time.
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Figure 2 Average running time of 100 k uniform and 1h queries on OSM Germany with only
predicted traffic. Each query has a departure time drawn uniformly at random. The resulting
running times are grouped by the departure time hour.

We investigate this behavior with Figure 2 which depicts query performance by departure
time over the course of the day. Clearly, the departure time has a significant influence both
for short-range and long-range queries. For long-range queries, the peaks are shifted and
smeared because of the travel time (4–5 hours on average on OSM Germany) covered by the
query. This is the reason why the heavy afternoon traffic appears to be easier than the light
midday traffic for MMP and CCH-Potentials. For IMP, the influence of the departure time
is much smaller, which makes it consistently the fastest approach on long-range queries. For
short-range queries, the overhead of IMP make it the slowest during the night. Moreover,
MMP is roughly as fast as IMP for 1h queries during the daytime. Therefore, MMP may
actually be a simple and effective approach for practical applications where short-range
queries are more prominent.
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Figure 3 Box plot of running times for 1 000 queries per Dijkstra-rank on PTV Europe with live
traffic and fixed departure at 07:47. The boxes cover the range between the first and third quartile.
The band in the box indicates the median; the whiskers cover 1.5 times the interquartile range. All
other running times are indicated as outliers.
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Figure 4 Left: Mean running times of 100 k queries on OSM Germany with only predicted traffic
by number of remaining weight functions. Right: Boxplot of the per-query relative slowdown over
the running time of the respective query with all weight functions.

Figure 3 depicts the performance by query distance. For short-range queries, IMP is
slower than the other approaches because the potential is expensive to evaluate, but it scales
much better to long-range queries because of its estimates are tighter. Also, the variance in
running times is significantly smaller. Even for rank 224, most queries can be answered within
a few tens of milliseconds. Nevertheless, MMP is actually faster on most ranks. Only at rank
224, MMP running times become as slow as the CCH-Potentials baseline. A jump in MMP
running times can be observed from rank 223 to 224. This is because the mean query distance
jumps from five to six hours on rank 223 to over eight hours on rank 224, which is longer than
the longest covered interval. Thus, on rank 224, MMP fall back to classical CCH-Potentials
on many queries. We also observe a few strong outliers. This happens because of blocked
streets in the live traffic data. When the target vertex of a query is only reachable through a
blocked road segment, A* will traverse large parts of the networks until the blocked road
opens up. This affects all three potentials in the same way and demonstrates an inherent
weakness of A*-based approaches: the performance always depends on the quality of the
estimates. However, on realistic instances, the time-dependent preprocessing algorithms of
purely hierarchical approaches are too expensive for frequent rerunning. This makes our
approach the first to enable interactive query times across all distances in a setting with
combined live and predicted traffic.

Finally, Figure 4 showcases the effects of reducing the number of weight functions. MMP
appears to be very robust against compression. We can reduce the number of weight
functions to 16 (a memory usage reduction of about a factor of 6) before the slowdowns
become noticeable in the mean running time. However, MMP only achieves relatively small
speedups compared to CCH-Potentials, i.e. rarely more than a factor of three. Therefore,
its robustness is not particularly surprising. IMP, which achieves stronger speedups, is less
robust against compression. Nevertheless, we can reduce the memory consumption by a
factor of about three to 32 functions and still achieve very decent query times. With 32
functions, the absolute memory consumption decreases to less than 20 GB, which is at least
manageable. Surprisingly, even with only four weight functions, IMP is still faster than MMP
on long-range queries. This clearly shows the superiority of IMP for long-range queries. The
compression algorithm itself takes less than a minute, depending on the final number of
weight functions. Thus, its running time is dominated by the regular preprocessing. See the
full paper version [21] for further details on the effectiveness of the parallelization.
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5 Conclusion

In this paper, we proposed time-dependent A* potentials for efficient and exact routing
in time-dependent road networks with both predicted and live traffic. We presented two
realizations of time-dependent potentials with different trade-offs. Both allow fast live traffic
updates within a fraction of a minute. IMP achieves query times two orders of magnitude
faster than Dijkstra’s algorithm and up to an order of magnitude faster than state-of-the-art
time-independent potentials. To the best of our knowledge, this makes our approach the
first to achieve interactive query performance while allowing fast updates in this setting.
For future work, we would like to apply our time-dependent potentials to other extended
scenarios in time-dependent routing, for example to incorporate turn costs.
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