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Abstract
The UniFrac metric has proven useful in revealing diversity across metagenomic communities. Due to
the phylogeny-based nature of this measurement, UniFrac has historically only been applied to 16S
rRNA data. Simultaneously, Whole Genome Shotgun (WGS) metagenomics has been increasingly
widely employed and proven to provide more information than 16S data, but a UniFrac-like diversity
metric suitable for WGS data has not previously been developed. The main obstacle for UniFrac
to be applied directly to WGS data is the absence of phylogenetic distances in the taxonomic
relationship derived from WGS data. In this study, we demonstrate a method to overcome this
intrinsic difference and compute the UniFrac metric on WGS data by assigning branch lengths to
the taxonomic tree obtained from input taxonomic profiles. We conduct a series of experiments to
demonstrate that this WGSUniFrac method is comparably robust to traditional 16S UniFrac and is
not highly sensitive to branch lengths assignments, be they data-derived or model-prescribed.
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1 Introduction

The study of microbial composition and diversity has demonstrated its value in both clinical
[13, 9, 6] and environmental [41] studies. Within-sample diversity (known also as alpha-
diversity) metrics, such as the Shannon index and Simpson diversity, have been used to
evaluate and quantify microbial diversity in various settings [24]. In contrast, between-sample
(or, beta-diversity) measurements allow measurement and analysis of differences across
multiple samples, giving insights to their significance [55, 19, 56]. Among the most frequently
utilized beta-diversity metrics is UniFrac [31, 32, 30, 16, 37, 53].
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UniFrac measures the phylogenetic differences between two microbial communities by
calculating the fraction of branch lengths unique to one of the two communities on a
phylogenetic tree that has been annotated with the predicted abundances of organisms in
the two communities [33]. This computation is established on the intuition that the degree
to which two communities or environments differ is positively correlated to the degree of
difference in the evolutionary path undergone that resulted in the observed divergence: the
longer the evolutionary path, the more divergent [31]. Since its introduction in 2005, the
UniFrac distance has been widely applied [55, 16, 13]. Its strengths over other beta-diversity
measures has been demonstrated [28] and its robustness has stood the test of time [32]. Over
time, the UniFrac metric has undergone a series of developments ranging from conceptual
understanding and application to computation efficiency. The variation of weighted UniFrac
was introduced two years after the introduction of the original unweighted version [33].
Fast UniFrac made its debut in 2010, improving the speed of UniFrac computation, hence
expanding its application to larger datasets [17]. In 2012, the understanding of the UniFrac
distance being equivalent to the earth mover’s distance was brought to light [14], based on
which an exact linear-time computation algorithm, EMDUniFrac, was later developed [35]
and then later implemented in Striped UniFrac [37]. All these demonstrate the popularity
and potential of the UniFrac metric.

In this paper, we discuss the possibility of applying the UniFrac metric to a new type
of data: whole genome shotgun metagenomic samples. Traditionally, UniFrac has been
employed almost exclusively in the analysis of 16S rRNA sequencing data. The 16S rRNA
sequencing method involves amplification and sequencing of the 16S small subunit ribosomal
RNA which contains both highly conserved and variable regions, leading to a simple and
cost effective “fingerprinting” approach to inferring microbial composition [47, 48]. An
alternative approach to 16S rRNA sequencing is whole genome shotgun sequencing (WGS).
Despite requiring more effort and cost, the advantages of WGS analysis are also apparent:
higher accuracy, sensitivity, and access to the entirety of the genetic material in a given
sample [48]. Additionally, WGS data are becoming more frequently utilized by clinicians
and biologists [5, 3] due in part to the ever-decreasing price.

Though UniFrac is widely employed in the analysis of 16S rRNA and other amplicon
studies, it has yet to find its application in WGS metagenomic data. While 16S rRNA and
other amplicon sequencing approaches naturally have a single gene to build a phylogeny
with, there is no consensus in the metagenomic community on how to best construct a
phylogenetic tree from WGS data, with approaches ranging from a variety of single gene
approaches [29, 42, 51], whole genome alignment approaches [54, 15], to k-mer based similarity
techniques [43, 27, 46]. As such, researchers have primarily focused on utilizing taxonomic
trees instead of phylogenetic trees due to the relative ease of identifying taxa present in
a sample [44, 50, 39]. Since UniFrac was originally intended for usage on a phylogenetic
tree, this difference in underlying tree structure in amplicon studies versus WGS studies
explains why UniFrac has not been used in WGS metagenomic analyses. In particular, the
absence of phylogenetic relationship among taxa in a taxonomic tree, as well as evolutionary
distances reflected in branch lengths, hinders the direct computation of UniFrac. Even so, the
robustness of UniFrac demonstrated in numerous amplicon studies motivates the endeavor
to overcome this intrinsic difficulty and extend its application to WGS data.

In this paper, we demonstrate that by assigning branch lengths to the corresponding
taxonomic tree, UniFrac can be applied to WGS data and achieve reasonable robustness. We
call this extension WGSUniFrac. We investigated the effect of branch lengths assignments on
the computational power of WGSUniFrac, laying the foundation of extending the application
of UniFrac to more general structures. A summary of how WGSUniFrac works is shown in
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Figure 1. Code implementing a prototype of WGSUniFrac is available at https://github.
com/KoslickiLab/WGSUniFrac while the results presented in this paper can be reproduced
using the code at https://github.com/KoslickiLab/WGSUniFrac-reproducibles.

Figure 1 An illustration of the WGSUniFrac workflow. (a) WGS Metagenomic samples are
collected. (b) Each sample is converted to its corresponding taxonomic profile using a profiler of
choice. Each profile contains the relative abundances of all the taxa present in the sample at all
taxonomic levels. The collection of all profiles form a taxonomic tree. (c) Branch lengths are assigned
to the taxonomic tree according to branch lengths function specified. In this case, the branches are
assigned lengths inversely proportional to their distance from the root. (d) Pairwise UniFrac values
of all samples are computed using the EMDUniFrac algorithm.

2 Methods

The UniFrac metric was first defined in 2005 by Lozupone et al. as the fraction of branch
lengths unique to only one of the two communities being compared on a phylogenetic tree
[31]. This original version of UniFrac (also known as the unweighted UniFrac) is a qualitative
measure that decides if two communities differ significantly based on if the computed UniFrac
is greater than what would be expected by chance [31]. The weighted UniFrac metric was
introduced soon after to offer insights to the degree of differences by taking into consideration
the relative abundances of the organisms [33], and the original computation is given by:

u=
∑n

i
bi×

∣∣∣∣ Ai

AT
− Bi

BT

∣∣∣∣ (1)

where n is the total number of branches on the tree, bi is the length of branch i, Ai and
Bi represent the number of sequences descended from branch i in communities A and B

respectively, and AT and BT are the respective total number of sequences for the purpose of
normalizing the abundances in the case of uneven sample sizes for communities A and B [33].
The original UniFrac was only intended for an application on phylogenetic trees reflecting
the evolutionary relationship amongst the organisms and on which all the abundances are
found on the leaf nodes.
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In a previous study, it has been demonstrated that the weighted UniFrac distance is
equivalent to the Kantorovich-Rubinstein metric, also known as the earth mover’s distance [14].
Under this definition, instead of building a phylogenetic tree from scratch using the samples,
a pre-existing reference tree can be used [14]. By mapping the reads to the appropriate nodes
on the reference tree through comparative methods, the information of relative abundances
gets incorporated into the tree. The equivalence with the earth mover’s distance then allows
us to view the UniFrac distance in a new light: viewing the relative abundances as piles of
sand, the UniFrac can be defined as the minimum amount of work required to move the sand
from the configuration of one sample to match that of the other, with the amount of work
being defined as mass multiplied by the total distance traveled along the tree branches [14].
This gives us an alternative formulation of UniFrac which will be described below.

Let T be a rooted tree with n nodes ordered from leaves to the root ρ representing
organisms and branch lengths proportional to evolutionary distances. For a node i in T ,
define depth(i) as the number of branches on the shortest path from i to the root node. We
impose a partial ordering on the set of all nodes in T in terms of depth: a node i is below
a node j if depth(i) > depth(j). Represent a branch length by l(i), indicating the weight
on the branch connecting node i to its ancestor a(i). Let P and Q be vectors of probability
distribution on the tree with non-negative entries summing up to 1, representing the relative
abundance of each organism/taxa on the tree in the two input samples respectively, ordered
from leaves to the root. Given a node i in T , let Ti be a subtree of T not containing ρ

obtained by deleting (i, a(i)). Define wi to be an indicator function that represents a subtree
rooted at node i such that the j-th entry of wi equals 1 if (j, a(j)) is a node in the subtree
rooted at i, and 0 otherwise. I.e.

wi(j) =
{

1 if j is a node on Ti

0 otherwise.
(2)

Now let W be an n × n matrix with column i given by wi and each row j scaled by l(j, a(j)).
The UniFrac distance (1) can then be represented equivalently as [34, Lemma 2.2.1], [38,
Suppl. pg 10]

||W (P − Q)||L1 . (3)

This formulation not only allows the exact UniFrac distance to be computed in linear
time [35] but also allows UniFrac to be computed on any tree, not necessarily a phylogenetic
one. This allows us to draw one step closer to the application of UniFrac on WGS data,
with which a phylogenetic tree is in general impossible to be built, but a taxonomic tree
instead. The only obstacle of a direct application lies in the absence of branch lengths l(i) on
taxonomic trees. As a solution we incorporate the assignment of branch lengths according to
a given branch lengths function into the algorithm of WGSUniFrac (Algorithm 1) prior to
the computation of UniFrac with the EMDUniFrac implementation.

In general, taxonomic trees do not have a natural notion of “branch lengths” as in a
phylogenetic tree. As such, we can impose a functional form for the branch l(i) = f(i, a(i))
where f(i, a(i)) is some function that assigns lengths to branches based on some biologically
reasonable form. For example, in the Results section below, we chose f(i, a(i)) := depth(i)k

for k ∈ Z. Defining f in this way means branch lengths are assigned uniformly at each depth,
with lengths increasing (or decreasing, depending on the sign of k) the further the branches
are from the root.The exploration of other values of k and their impact on the performance
of WGSUniFrac can be found under the Results section. One can also imagine a data-derived
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Listing 1 WGSUniFrac Algorithm where P and Q are probability vectors with entries representing
relative abundances summing up to 1, T being the taxonomic tree, and f being a function that maps
a branch to its length.

1 Input: P, Q, f, T
2 Initialization : M = P - Q, unifrac = 0
3 for i in 1 ... |T| do # Ordered from the leaves to the root
4 v = M[i]
5 M[a(i)] = M[a(i)] + v
6 l(i) = f(i,a(i))
7 unifrac = unifrac + l(i) * |v|
8 return unifrac

definition of the branch lengths if given access to, say, the rate of accumulation of mutations
for an organism belonging to the taxonomic clade defined by the node i. In this exposition,
the exact form of f does not impact the algorithm we describe.

We now give a complete description of the WGSUniFrac algorithm below. Given a rooted
tree T with nodes ordered from leaves to the root, represented by an edge set E = {(i, a(i))}
for i ∈ T , with a(i) being the ancestor of node i; probability distribution vectors P and Q

representing relative abundances in two samples respectively. For i ∈ T , let l(i) = f(i, a(i))
for some function f which the user specifies.

This algorithm runs in linear time with respect to the number of nodes. We also give
a simple proof that this algorithm does indeed calculate the UniFrac as formulated in
equation 3.

▷ Claim 1. Algorithm 1 computes the UniFrac as formulated in equation 3.

Proof. Consider the matrix W in equation 3. Let L be a vector with the ith entry being l(i)
and W be the skeleton matrix of W such that W ij = 1 if Wij ̸= 0 and W ij = 0 otherwise.
Also, for simplicity of comparison, let M = P − Q as in the algorithm. With these notations,
(1) can be rewritten as ||L · (WM)||L1 (· denotes the dot product).

By the construction of W , for a given row i, W ij = 1 if and only if j = i or node j is an
ancestor of i on the tree. It is then easy to observe that line 4-6 of Algorithm 1 computes
WM . The scaling of WM by taking the dot product with L, followed by computing the L1
distance, is done in line 7. ◁

3 Results

3.1 On taxonomic data converted from phylogenetic data
To test the hypothesis that assigning branch lengths to a taxonomic tree allows computation
of UniFrac that reflects beta-diversity using only WGS data, we begin with the most ideal
scenario: one in which the taxonomic profile of the WGS data exactly reflects the phylogenetic
profile of the 16S rRNA data. To this end we constructed the most ideal taxonomic profiles
as follows: using the mapping file provided in the Greengenes database [12] that maps 16S
OTUs with a known phylogenetic tree to their corresponding NCBI taxonomic IDs (taxIDs),
we converted a phylogenetic sample to its taxonomic counterpart by simply changing the ID
type while maintaining the relative abundance of each species. Using the lineage information
associated with the taxID of each species in NCBI, we constructed the full taxonomic profile
with the ranks of superkingdom, phylum, class, order, family, genus, and species, representing
the taxonomic relations among the species.

WABI 2022
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Since UniFrac is frequently used to observe qualitative difference in samples when
partitioned by certain metadata variables and viewed on a Principal Coordinates Analysis
(PCoA) plot, we evaluated the performance of UniFrac computed on such a taxonomic profile
based on the hypothesis that if the method makes biological sense, the clustering of samples in
the WGS data should agree with that using 16S data. As such, we assessed the performance
of WGSUniFrac by observing the clustering of samples under PCoA in comparison to that
of their 16S counterparts, as well as quantitatively evaluated the clustering quality with
commonly used clustering evaluation metrics.

To better observe the clusters, we created a simple model to mimic samples collected from
two distinct environments with the aid of the given phylogenetic tree. To create samples
from an environment, we first select a random leaf node on the phylogenetic tree and call
it a pivot node. We then randomly selected a fixed number of nodes sufficiently close to
the pivot node first selected. To create samples from the other environment, we select a
second pivot node sufficiently far away from the first node chosen, and create samples in the
same manner centering on the second pivot node. For simplicity of computation, when the
distance between two leaf nodes was considered, instead of considering the actual distance
in the sense of total branch lengths separating the two nodes, we considered the position
of the second node in a list of all nodes ranked according to distance with respect to the
first node. For instance, instead of considering “nodes within x units of branch length from
node 1”, we would consider “nodes among the y (for example, 500) nodes closest to node 1”.
Throughout this paper, we will call this aforementioned value y the “range” of an environment.
The distance between the two pivot nodes is also defined in this manner, which we will
call “dissimilarity” in this paper (refer to Figure S1). This proxy of replacing the actual
distance by the relative position of a node in a list of ranked nodes may very likely result
in nonlinearity in the relationship between clustering score and the range or dissimilarity
setting, as well as greater variability among repeated experiments having identical range
or dissimilarity setting. Nonetheless, it greatly simplifies the calculation and it should not
affect the general trend that the greater the dissimilarity and the smaller the range, the more
tightly clustered the samples would be on the given phylogenetic tree.

To respectively test the effect of range and dissimilarity on the quality of clustering, we
first fixed the dissimilarity to be the maximum (35,461) and generated data across ranges
200, 500, 1,000, 5,000, 10,000, 15,000 and 20,000, and then generated data with dissimilarities
800, 900, 1,000, 5,000, 10,000, 20,000, 30,000 and maximum respectively for a fixed range of
500. We generated 100 replicates for each of these setups, each consisting of 25 samples for
each environment, with 200 organisms approximately exponentially distributed in relative
abundances in each sample. The quality of clustering for each replicate was assessed with
the Silhouette Index [49].

In this experiment, the branches of the taxonomic tree were set to the reciprocal of the
depth of the branch in the tree (i.e. 1/ distance from root node); we investigate other branch
length specifications subsequently. Figure 2 shows the overall results of this experiment, with
the trends demonstrated by the plots being expected and intuitive. Namely, the higher the
dissimilarity, the greater the differences between samples from the two environments, resulting
in more distinguishable clusterings (reflected in higher Silhouette scores). On the other hand,
increasing range indirectly decreases dissimilarity by spreading out the clusters/environments,
resulting in a decreasing trend of clustering quality. It is noteworthy that these trends were
observed in both WGSUniFrac and 16S UniFrac with similar sensitivity. The same trend was
observed when other clustering metrics are used (Figure S2). It is also interesting to note
that it appears WGSUniFrac is less sensitive to changes in range compared to 16S UniFrac.



W. Wei and D. Koslicki 15:7

Figure 2 A comparison between the Silhouette scores computed using 16S data and WGS data
under different settings of range and dissimilarity. Higher Silhouette score indicates better clustering.
Left: Clustering quality of simulated 16S and WGS samples by environments given different within-
sample diversity. X-axis (range) indicates the degree of phylogenetic diversity in each sample. Right:
Clustering quality of simulated 16S and WGS samples by environments given different degrees of
between-sample dissimilarity. X-axis (dissimilarity) indicates the degree of difference among the two
simulated community.

3.2 Insensitivity to model or data derived branch length assignment

3.2.1 Model-based branch length assignment

Since the consensus on how branch lengths should be assigned, if it ever exists, has yet to be
established, in this section we examine the impact of different branch lengths assignments on
WGSUniFrac performance. We first investigated three major categories of branch lengths
assignment with respect to the depth of the tree: increasing, constant, decreasing. To this
end we defined a branch lengths function to compute the length of a branch located x nodes
away from the root, denoted by l(x), by l(x) = xk for some integer k. In other words, the
only factor we take into consideration was the depth of the branch in the tree. We first
compared the results by repeating the experiment in the previous section with k set to −1,
0, and 1, resulting in decreasing, constant, and increasing branch lengths respectively, when
viewed from the root to the leaves.

From Figure 3, the branch length function x−1 yielded the best performance, followed by
constant branch length assignment, while assigning branch lengths proportional to tree levels
yielded the worst result. This is consistent with the observation that organismal similarity
increases as one moves to lower taxonomic rank.

Upon establishing the general relationship between the branch lengths and the depths
of the tree, we then examined how sensitive the performance is with respect to fine-tuning
of k by setting k to be -2, -1.5 and -0.5 and repeating the procedure. The results are
shown in Supplementary Figure S2, in which we observed an improvement of WGSUniFrac
in comparison to the 16S UniFrac with respect to increasing magnitude of k (i.e. more
negative). This improvement is much more drastic with respect to range than with respect to
dissimilarity. In other words, the within-sample diversity is more sensitive to the fine-tuning
of ratios between branch lengths. In terms of dissimilarity, which is an intuitive reflection of
beta diversity, the improvement in comparison to 16S UniFrac is far less apparent, especially
when dissimilarity is small. As such, we conjecture that the magnitude of k does not have a
significant effect on detecting beta diversity, although it can be suggestive that WGSUniFrac
may potentially be more robust than 16S UniFrac when within-sample diversity is large.

WABI 2022
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Figure 3 The effect of branch lengths choice. From top to bottom: k = −1 (decreasing branch
lengths down the tree), k = 0 (uniform branch length), k = 1 (increasing branch lengths down the
tree).
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Figure 4 A comparison between the Silhouette scores computed using the GTDB tree and that
using the transformed tree with branch lengths reassigned according to branch length function x−1.

However, it should be noted that the clustering quality decreases if the value of k creates
edge lengths on a taxonomic tree that deviates too much from what is biologically reasonable,
as can be seen in Supplementary Figure S4.

For the subsequent experiments, we only considered the branch length function x−1 in
all calculations unless otherwise stated and we revisit the effect of branch lengths selection
in Section 3.4 below.

3.2.2 Branch lengths specified with data derived phylogeny-aware
taxonomy

In this section, we further examine the robustness of WGSUniFrac with the aid of data
obtained from the Genome Taxonomy Database (GTDB), a database providing taxonomic
trees with topology and branch lengths based on protein phylogeny [45]. As a basis of
comparison, we used the bac120 tree from GTDB, which is a tree with branch lengths
reflecting the phylogenetic information as inferred from the concatenation of 120 marker
genes [45].

To assess the impact of branch length specification, we first investigated the performance
of WGSUniFrac when the actual branch lengths on the bac120 tree were replaced by the
assignment according to the x−1 function, following the same experimental setup in Section 3.1.
The results are shown in Figure 4.

From Figure 4, it can be noted that the behavior of UniFrac computed using the
transformed tree closely mimics the original bac120 tree from GTDB, though slightly inferior
in all cases. Though a different type of tree was used and different types of data were
compared, the nature of this experiment was, in actuality, very similar to that in section 3.1.
In both cases, we tested how robust UniFrac would remain when a phylogenetic tree of
finely annotated branch lengths was replaced by one that only reflected a general trend
instead of having finely labeled branches. The stories told in the two cases were also similar:
phylogenetic information does add quality to UniFrac, though UniFrac still reflects general
trends without it. In fact, a tree reflecting a general trend among the organisms is sufficient
for UniFrac to offer decent insights into beta diversity.

We next investigated the effect of difference in taxonomic topology on UniFrac. According
to the authors of GTDB, more than half of the genomes in GTDB had changes in their existing
taxonomy [45], resulting in significant differences in the GTDB taxonomy and the existing
NCBI taxonomy. As such, among around 4,979 organisms having both complete GTDB and

WABI 2022
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NCBI taxonomy, we selected 200 for each sample according to the protocol in section 2.1.
For each sample, we generated taxonomic profiles according to GTDB taxonomy and NCBI
taxonomy respectively, each having identical organisms and relative abundance distribution.
For both taxonomies, we used the branch lengths function x−1. Fixing dissimilarity to be
4000 nodes apart on the GTDB tree, we created samples with varying values of range, ranging
from 200 where nodes from two environments were most tightly clustered, to 2,500 where
the two environments were slightly overlapping. Similarly, to test the performance under
different values of dissimilarity, we fixed the range to be 600 and generated samples having
dissimilarities ranging from 800, where the two environments were relatively similar, to 4,000,
where the two environments were highly distinct. Each of these setups was repeated 100
times. The results are shown in Figure 5.

Figure 5 A comparison between the Silhouette scores computed using the GTDB taxonomy and
NCBI taxonomy.

Even with differing underlying taxonomic tree topology, we observed highly similar
behavior of UniFrac when using the GTDB taxonomy and when using the NCBI taxonomy.
In some cases, specifically when dissimilarity was relatively small, the NCBI taxonomy
appeared to yield slightly better performance when WGSUniFrac was applied. In most
other cases, GTDB taxonomy yielded slightly better overall results, which agreed with
previous experiments where 16S data yielded better overall results. This is due to the
GTDB taxonomy being more consistent with 16S-derived taxonomy compared to the NCBI
taxonomy. Nonetheless, the similarity in performance between the approaches using the
GTDB taxonomy and the NCBI taxonomy, together with the previous experiment, suggest
that neither the granularity of the branch lengths nor the taxonomic topology is a significant
limiting factor to the application of UniFrac, supporting our hypothesis.

3.3 On simulated reads
In the previous section, it has been demonstrated that WGSUniFrac is able to cluster samples
according to environments in the most ideal situation in which both the 16S OTU tables
and WGS profiles were created without the consideration of sequencing errors and profiling
biases, which are common in real-world applications. In addition, different profiling methods
and taxonomic classification methods may produce different results both between 16S and
WGS data and within the same data type [39, 50, 25].

To answer the question if WGSUniFrac would remain robust under a more realistic
setting, in this section we investigate the performance of WGSUniFrac on profiles produced
from simulated reads. We also increased the complexity of the experimental setup by testing
not only with two environments but also with five.
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We used Grinder [4] to simulate both 16S amplicon reads and WGS reads with sequencing
protocols similar to those of common modern-day sequencing platforms as much as possible
while maintaining computation efficiency (see Supplementary Experimental setup details).
We used the built-in Dada2 [7] plugin in QIIME [8] to infer taxonomic feature tables from
16S amplicon reads and mOTUs [40] to generate taxonomic profiles from the simulated WGS
reads. We then calculated and compared UniFrac and WGSUniFrac respectively on the
results.

Following a similar approach as section 3.1, the following setups were conducted twice, one
using two environments and the other using five: Fixing the range to be 500, we generated
experiments having dissimilarities 1,000 to 6,000 in steps of 1,000; fixing dissimilarity to be
4,000, generate experiments with range 200, 1,000, 2,000, 3,000. Each of these combinations
was repeated five times with organisms chosen at random. The results are summarized in
Table 1 and Figure 6.

Figure 6 An instance of the comparison between PCoA plots produced using 16S and WGS data
with range 300 and dissimilarity 4,000, colors depicting environments. Left: 16S UniFrac. Right:
WGSUniFrac.

Table 1 Mean Silhouette Indices for 16S and WGS clusterings by pairwise UniFrac. Higher
Silhouette index indicates better clustering of environments.

2 Environments 5 Environments
16S 0.226 0.051

WGS 0.562 0.206

It was somewhat surprising that the mean Silhouette scores significantly favored the WGS
approach in contrast to the 16S approach, which was expected to have better performance.
This could be due to the intrinsic differences in simulation protocols and tools used. It has
also been pointed out that abundance profiling has much better accuracy when WGS data
is used compared to when 16S data is used [25]. This might potentially explain the poor
performance of 16S data when inferring of abundances from reads was involved, which also
shows the limitation of 16S data and motivates our endeavor to explore a good metric that
can be applied to WGS data. Still, an average score of 0.562 allowed us to believe that
UniFrac can be applied to WGS data even in the presence of sequencing errors and noises.

WABI 2022
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3.4 On real WGS studies
While running the experiment on simulated reads allowed a glimpse of the feasibility and
performance of WGSUniFrac in a more realistic setting, the real-world situation is still much
more complex. For instance, the organisms involved in the previous experiments all come
from one single phylogenetic tree [36, 12]. In each experiment setting, organisms were selected
to simulate distinct environments, with each sample consisting of the exact same number of
organisms with relative abundances distributed over a near-ideal exponential distribution.
Also, in order to have a fair comparison with 16S UniFrac, combined with limitations of
tools in read simulation and profiling processes, compromises such as limiting read lengths
were made, further impacting the resemblance between the simulated data and potential real
world data.

As such, we proceeded to test WGSUniFrac on real world studies using human whole
genome shotgun data. It has been observed and reported in various 16S studies that
metagenomic samples collected at different body sites of a human significantly differ [20, 26,
11]. We investigated if this property could be captured using WGS data alone by investigating
if samples can be clustered depending on the site of collection.

Using the HumanMetagenomeDB database [23], a curated database for human WGS
metagenomic data, we searched for metagenomic projects with specified body sites. To
minimize the effect of differences in sampling and sequencing protocols in different studies, we
limited our search to studies originating from the Sequence Read Archive (SRA), sequenced
using ILLUMINA, and with number of sequences 10 million and above. Among these, we
considered only paired-end data and applied the same quality control to all samples prior to
profiling to maintain consistency across samples as much as possible (See Supplementary
Materials section: Experimental Setup Details). The samples were then converted to
taxonomic profiles using mOTUs [40]. Among these profiles, we removed those containing
less than 100 species. The resulting PCoA plots are shown below. To eliminate the potential
bias that the samples might be clustering by studies instead of by body sites, as most studies
involved one single body site each, we also produced the PCoA plot colored according to
project ID for each category as a comparison.

Figure 7 Left: samples colored by body sites. Right: samples colored by study IDs.

From Figure 7, we can see that samples were clustered with reasonable sensitivity
according to body sites rather than by study, despite the varying protocols across studies, a
demonstration of the robustness of WGSUniFrac in real-world applications.
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Figure 8 A comparison between the average Silhouette scores computed using OGU method and
WGSUniFrac method under different settings of range and dissimilarity. Higher Silhouette score
indicates better clustering.

At this point we revisit the open problem of branch lengths function selection in section 1,
using these real data. Since the number of data points were massive, for the ease of observing
patterns, we stratified the profiles into three categories and analyse them separately: low
diversity (containing 100 to 200 species), medium diversity (200 to 300 species), and high
diversity (300 species and above). For each of these categories, we produced PCoA plots using
branch lengths functions x−1 and x−2 respectively. The results are shown in Supplementary
Figure S3.

A careful examination of the plots shows that changing the k value from -1 to -2 in
the branch lengths function xk only resulted in scaling of the clusters. Specifically, it
only clustered more tightly what had already been clustered and revealed no additional
information. Hence, there is no strong reason that -2 should be favored over -1. The user
could potentially decide on the magnitude of k depending on the alpha diversity of the
samples, if this information is known.

3.5 Comparison with the OGU method

In this section, we compare the performance of our WGSUniFrac method with the recently
published OGU method [57], which provides an alternative way for similarity metrics such
as UniFrac to be computed on WGS data by defining the operational genomic unit (OGU).
The fundamental difference between our method and the OGU method is that the OGU
method is not taxonomic-based while WGSUniFrac is.

We followed a similar protocol as that in section 3.3, simulating reads from two environ-
ments using a randomly selected subset of 3,000 species of the Web of Life (WoL) database
[58] as reference genomes. The distance matrices for OGU method were produced following
the woltka workflow suggested by the authors [2]. The clustering quality using these matrices
were compared with that using our method. Each experimental setup was repeated five times
and the average Silhouette score was computed for each experimental setup. The results are
shown in Figure 8.

From Figure 8, the clustering quality of WGSUniFrac method exceeds that of the OGU
method in every setting, demonstrating the robustness of the WGSUniFrac method and
the value of the presence of taxonomic structure. Further, unlike the OGU method that
requires the presence of a phylogenetic tree, such as the Web of Life tree [58] in this case,
WGSUniFrac can be applied with only the taxonomic profiles, which can be easily obtained
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directly from WGS reads using a profiler, giving WGSUniFrac more flexibility and adaptivity.
This simplicity of the workflow also gives WGSUniFrac computational advantage, making it
much more efficient and straightforward than the current OGU workflow [2].

4 Discussions

Up to this point, we have tested the performance of WGSUniFrac in comparison to the
traditional UniFrac metric applied to 16S data under various settings, ranging from the
most ideal scenario to real-world data. Under the most ideal scenario, where samples
with a phylogenetic classification were directly compared to the corresponding taxonomic
classification, WGSUniFrac exhibited comparable ability to distinguish samples from different
environments under various parameter settings, providing evidence for the hypothesis that
UniFrac can be applied to WGS data simply by assigning branch lengths to a taxonomic
tree without significant loss of information on beta-diversity. We then further investigated
the effects of different branch length assignments and reached the conclusion that having
branch lengths inversely proportional to the height of the taxonomic tree best capitulated
the expected clustering trend, while fine-tuning of the magnitude of this proportion did not
seem to reveal additional information.

A more detailed investigation of the effect of differences in branch lengths assignments
was conducted using the GTDB data, with which we investigated the effect of phylogenetic
information both in terms of branch lengths and topology. The results showed that neither
the decrease in the resolution of branch lengths nor the change of topology from that of
GTDB taxonomy to the conventional NCBI taxonomy significantly decreased the quality of
clustering.

The results were slightly puzzling when read simulation was involved in the second
part of the experiments, with WGSUniFrac outperforming 16S UniFrac in most cases. We
conjecture that this was due to the limitation of simulation and profiling tools and the
intrinsic differences in data preparation protocols between 16S and WGS data. The poor
performance of 16S UniFrac when sequencing errors were involved demonstrated the potential
superiority of WGSUniFrac in real applications. However, further studies are needed to
confirm this conjecture. The limitation of efficient read simulation tools that simulate both
16S rRNA and WGS data impeded our further investigation into this matter.

It was perhaps most interesting to evaluate the performance of WGSUniFrac on real data.
To this end we tested the ability of WGSUniFrac in recapitulating a known phenomenon
previously demonstrated by UniFrac applied on 16S data. Though the lack of corresponding
16S counterparts made a direct comparison to 16S UniFrac impractical, the PCoA plots
did clearly demonstrated the ability of WGSUniFrac in clustering metagenomic samples
according to body sites, confirming also in this process that the the differences among samples
from different body sites are more prominent than the differences of the same body sites
across individuals.

It is also noteworthy that except the experiment in section 3.4 where observations were
made purely on WGS data without a quantitative or qualitative “ground truth” to compare
to, most of the experiments used 16S data as a reference of comparison. However, this was
simply because the UniFrac metric was originally designed to be used data with phylogenetic
information, which was typically available when 16S data is employed, not necessarily that
the 16S phylogeny is indeed the gold standard. In fact, limitations of 16S data in taxonomic
classification have been reported in previous studies [48, 25] which undermines the use of 16S
as the standard reference. In addition, such as in the case of GTDB, there have been methods
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capable of producing phylogenetically consistent taxonomy, and has been shown in the
experiments above to yield better results than taxonomy without the additional phylogenetic
information. This shows that WGSUniFrac will likely prove itself to be increasingly useful as
better methods to uncover the “real” taxonomic classification in WGS data emerge.

5 Conclusion

In this paper, we provided an algorithm for UniFrac to be computed directly on WGS data by
assigning branch lengths to taxonomic profiles. Though branch lengths assignments remain
an open area of exploration, the insensitivity of the performance of WGSUniFrac to branch
lengths assignments demonstrated in our experiments is a strong advocate of the potential of
WGSUniFrac. Overall, our study demonstrated that UniFrac can be freed from requiring
phylogenetic trees and can find its application in a much wider range of data.
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A Appendix

A.1 Experimental setup details
All computations of UniFrac of 16S data were done using the “beta-phylogenetics” function
in Qiime2 [8]. All profiling of WGS reads into profiles were performed using mOTUs2 [40]
with the parameter “precision.”

A.1.1 On taxonomic data converted from phylogenetic data
We used the 99_otus dataset from the gg_13_5_otus data package downloaded from Green-
genes database [12]. We converted the phylogenetic tree into its corresponding taxonomic
tree using the mapping file provided in the ete3 python package [18] that maps OTUs
to taxonomic IDs and the taxonomic lineage provided in NCBI Taxonomy database. We
considered only OTUs in the 99_otus phylogenetic tree that map to taxonomic IDs with a
complete lineage of the ranks superkingdom, kingdom, phylum, class, order, family, genus,
and species as can be retrieved from the NCBI Taxonomy database. There are 35,461 such
OTUs in total. With respect to each of these OTUs, we computed its phylogenetic distance
on the tree (using the “get_distance” method in the ete3 module) from all the other OTUs
and obtained a list of OTUs ranked by proximity.

A.1.2 Comparison with phylogeny-aware taxonomy
The GTDB data were obtained from https://data.gtdb.ecogenomic.org with release 202.
We obtained the bac120 taxonomic tree together with the corresponding taxonomy. The
taxonomic ID for each of the organism in the bac120 taxonomy file was retrieved using
TaxonKit [52]. Species without a matching taxonomic ID in any part of the lineage were
removed. There were approximately 4,900 species remaining after this process. The general
approach for this part of the experiment is highly similar to that of the section above, with
the original GTDB tree playing the role of the phylogenetic tree. There were 100 repeats for
each combination of range and dissimilarity shown.

For the first part of the experiment, we selected species from the bac120 taxonomic
tree according to the protocols above and treated these samples as 16S samples, computing
pairwise UniFrac distance matrix using Qiime2 [8]. For each sample, its corresponding
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taxonomic profile was generated, following the GTDB taxonomy as provided in the taxonomy
file obtained from the database. The UniFrac distance matrix for each sample was computed
using our method with the branch length function l(x) = x−1, where x is the depth of the
tree a branch belongs to, counted from the root.

For the second part of the experiment, the profiles using GTDB taxonomy were used
as a reference. For each of these profiles, the species were singled out and for each species,
the taxonomic path was reconstructed by retrieving the lineage from NCBI using the ete3
python package [18], thus creating a second set of profiles differing from the first set only
in taxonomic path. The UniFrac matrices of these GTDB profiles and NCBI profiles were
compared, using the same branch length function of l(x) = x−1, such that the differences in
the results were solely accountable by the difference in taxonomy and nothing else.

A.1.3 On simulated reads

To evaluate the applicability of UniFrac on more realistic data, we tested our method on
simulated reads. Both simulations of 16S amplicon libraries and of WGS libraries were done
using Grinder [4]. For the 16S part, we used the reference genomes 99_otus.fasta provided
in the same gg_13_5_otus package from Greengenes as the first part of the experiment.
With the aid of the mapping file provided that maps OTUs to NCBI accessions, we used
the esearch and efetch functions in Entrez Direct [22] to extract the whole genome of
each organism present in the 16S reference genomes, if it existed. To simulate amplicon
sequencing reads, we use the forward primer sequence AAACTYAAAKGAATTGRCG as suggested
by Grinder. Both the amplicon sequencing and WGS sequencing were single-end, with read
length 150bp, 4th degree polynomial error model parameters suggested by Grinder and
the default 80:20 substitution:indel error ratio, 5× coverage for 16S reads and a total read
number of 1,000,000 for WGS reads.

The resulting 16S libraries were denoised using Qiime2 plugin dada2 [7], with phylogenetic
tree built using Qiime2 plugin fragment-insertion SEPP method [21], and finally converted to
pairwise UniFrac distance matrix. The WGS libraries were profiled using mOTUs [40] into
CAMI format [1] profiles, from which the pairwise UniFrac matrix was computed for each
experiment.

Using the same protocol in “environment” creation as the first part of the study described
above, with the restriction to only organisms with an WGS reference sequence available
on NCBI (around 6000 in total), we simulated either two or five environments for each
experiment with varying combinations of range and dissimilarity. Each experiment was
repeated five times.

A.1.4 On real-world studies

We used the HumanMetagenomeDB [23] to filter and select human whole genome shotgun
SRA data from nine body parts with number of sequences within 10 to 437 million (the
maximum number in the HumanMetagenomeDB database) and sequenced using Illumina,
which came out to be 12,261 samples in total. Among them, we selected only studies that
were paired-end. For these paired-end reads, we performed a quality control using fastp [10],
after which each sample was profiled using mOTUs [40]. Among the profiles we removed those
having too few species (less than 100).
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A.2 Supplementary Figures
A.2.1 Experiment design illustration
Figure S1 provides a conceptual idea of the experimental design adopted in most of the
simulated experiments presented in this paper. The dissimilarity can be considered to be the
dissimilarity between the center of the two circles labeled “range”.

Figure S1 An illustration demonstrating the concept of range and dissimilarity.

A.2.2 Clustering quality measured using different metrics
Figure S2 Shows the results of Section 3.1 measured in clustering quality metrics other than
the Silhouette score as presented in Figure 2.

Figure S2 Clustering quality measured using different metrics. Top panel: Calinski-Harabasz
index. Bottom panel: Davies-Bouldin index.
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A.3 Effect of branch length function further demonstrated using real
data

Figure S3 shows a comparison between PCoA plots produced using branch lengths function
x−1 versus branch lengths function x−2 on real WGS data from different body sites. The
plots suggest that x−2 allows clusters to cluster more tightly, but otherwise not offering other
significant insights, demonstrating the robustness of WGSUniFrac.

Figure S3 From left to right: low diversity, medium diversity, high diversity. Top: branch lengths
function x−1, bottom: branch lengths function x−2.

A.3.1 The caveat of using non-biologically reasonable branch lengths
assignments

Figure S4 is produced using one of the raw data used in Section 3.5 with range 1,500 and
dissimilarity 1,500 among 3,000 organisms. WGSUniFrac was applied on profiles generated
from these data using branch lengths functions ranging from x−4 to x4. The results show
that clustering quality decreases as the exponent increases. This suggests that though
WGSUniFrac is largely insensitive to branch lengths assignment methods, be it data-driven or
model-based, the user should avoid using branch lengths assignments that create taxonomic
trees that are simply too far from the reality.

Figure S4 A plot showing the effect of k on clustering quality. As k increases, the topological
structure becomes less and less biologically reasonable, resulting in a decrease in clustering quality.
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