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Preface

This proceedings volume contains peer-reviewed contributions accepted at the 33rd Interna-
tional Conference on Concurrency Theory (CONCUR), 2022.

The CONCUR conference series brings together researchers, developers, and students
in order to advance the theory of concurrency, and promote its applications. CONCUR
2022 was organised at Warsaw University (Poland), as part of the umbrella conference
CONFEST 2022. In addition to CONCUR 2022, the CONFEST 2022 comprised also the
27th International Conference on Formal Methods for Industrial Critical Systems (FMICS),
the 20th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS) and the 19th International Conference on Quantitative Evaluation of SysTems
(QEST), alongside with several workshops.

Out of 90 submissions, the PC has accepted 32 papers for presentation at CONCUR
2022. Given the great quality of many submissions, the acceptance bar was quite high. The
quality criteria for acceptance were very strict and we thank our program committee and
external reviewers for their excellent job in reviewing the CONCUR 2022 submissions. We
are especially grateful to all our reviewers for their efforts in providing high-quality and
timely reviews and conducting active discussions on each submission.

We are honored to have had Wojciech Czerwiński (Warsaw University, Poland), Philippa
Gardner (Imperial College London, UK), Rupak Majumdar (Max Planck Institute for
Software Systems, Germany) and Sergio Rajsbaum (Universidad Nacional Autónoma de
México) as our invited speakers.

Starting in 2020, a CONCUR Test-of-Time(ToT) Award has been established by the
CONCUR conference and the IFIP 1.8 Working Group on Concurrency Theory. The purpose
of this award is to recognise important achievements in Concurrency Theory that were
published at CONCUR conferences and have stood the test of time. For the 2022 edition, two
periods are considered. Two awards were given to papers published in CONCUR between
1998 and 2001 and two more were given to papers published between 2000 and 2003. The
award winners for the CONCUR ToT Awards 2022 have been selected by a jury composed
of Ilaria Castellani (chair), Paul Gastin, Orna Kupferman, Mickael Randour, and Davide
Sangiorgi. The results and winners of the CONCUR ToT Award 2022 selection process are
described in the invited contribution by Ilaria Castellani in these proceedings.

We are very grateful to the University of Warsaw for hosting CONCUR. We thank the
Ministry of Science and Higher Education of Poland for its generous financial support. As
usual, the CONCUR 2022 proceedings are open access thanks to the LIPIcs series, and we are
grateful to LIPIcs and Schloss Dagstuhl – Leibniz Center for Informatics for the invaluable
service they provide.

Bartek Klin, Sławomir Lasota and Anca Muscholl
CONCUR 2022 PC Chairs
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Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl
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CONCUR Test-Of-Time Award 2022
Ilaria Castellani #

INRIA Sophia Antipolis Méditerranée, France

Paul Gastin #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, France

Orna Kupferman #

School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel

Mickael Randour #

F.R.S.-FNRS & UMONS - Université de Mons, Belgium

Davide Sangiorgi #

Department of Computer Science, University of Bologna, Italy

Abstract
This short article recaps the purpose of the CONCUR Test-of-Time Award and presents the four
papers that received the Award in 2022.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases CONCUR Test-of-Time Award

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.1

Category Invited Paper

Acknowledgements We thank Javier Esparza (chair of the CONCUR Steering Committee), Pedro
d’Argenio and Ana Sokolova (chair and secretary of the IFIP Working Group 1.8 on Concurrency
Theory), and Bartek Klin, Sławomir Lasota and Anca Muscholl (chairs of the CONCUR 2022
Programme Committee) for their assistance throughout our work as a jury for this year’s award.

1 Introduction

The CONCUR Test-of-Time Award was established in 2020 by the Steering Committee of
the CONCUR conference and by the IFIP Working Group 1.8 on Concurrency Theory. Its
purpose is to recognise important achievements in Concurrency Theory that were published
at CONCUR and have stood the test of time. At its normal pace, starting from 2024, the
CONCUR Test-of-Time Award will be attributed every other year, during the CONCUR
conference, to one or two papers published in the 4-year period from 20 to 17 years earlier.
In the transient period from 2020 to 2023, on the other hand, two such awards are attributed
every year, in order to catch up with papers published in the first fifteen years of the
conference, namely between 1990 and 2004. At CONCUR 2020 two awards were given, each
rewarding two papers published in the period 1990–1995. Similarly, at CONCUR 2021 two
awards were given, each rewarding two papers published in the period 1994–1999.

We had the honour to serve as members of the third CONCUR Test-of-Time Award
Jury. All papers published at CONCUR in the period 1998-2003 were eligible, and we were
asked to select one or two papers for each of the two periods 1998–2001 and 2000–2003
(the overlap between the two periods allowing for some variability in the number of selected
papers over the years). After setting up a shortlist of candidate papers and discussing their
relative merits and influence on the CONCUR research community and beyond, we selected
the four papers described below for the Award, out of a number of excellent candidates.

© Ilaria Castellani, Paul Gastin, Orna Kupferman, Mickael Randour, and Davide Sangiorgi;
licensed under Creative Commons License CC-BY 4.0
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1:2 CONCUR Test-Of-Time Award 2022

The presentation of the Award will take place during CONCUR 2022, the 33th edition of
the CONCUR conference, which is co-chaired by Bartek Klin, Sławomir Lasota and Anca
Muscholl, and will be held in Warsaw.

2 The Award Winning Contributions

2.1 Period 1998–2001
Christel Baier, Joost-Pieter Katoen & Holger Hermanns. Approximate symbolic model
checking of continuous-time Markov chains. CONCUR 1999.
https://doi.org/10.1007/3-540-48320-9_12
This paper presents the first symbolic model-checking algorithm for systems that combine
probabilistic and real-time behaviours. Specifically, the model-checking algorithm handles
real-time probabilistic systems, modelled by continuous-time Markov chains systems, and
specifications in CSL – a branching and continuous-time stochastic logic. This setting
significantly extends the scope of systems to which automatic model-checking can be
applied. Beyond the new model-checking algorithm, the paper introduces several ideas
that have been extensively used since their introduction in the paper. This includes a
reduction from a quantitative model-checking problem to the problem of solving a system
of equations, as well as a generalisation of BDDs to MTDDs (multi-terminal decision
diagrams, which allow both Boolean and real-valued variables), which enables symbolic
reasoning.
Franck Cassez & Kim Larsen. The Impressive Power of Stopwatches. CONCUR 2000.
https://doi.org/10.1007/3-540-44618-4_12
This paper studies the expressive power of timed automata enriched with stopwatches
and unobservable behaviours. Surprisingly, it is proved with smart constructions that
this seemingly mild extension already reaches the full expressive power of linear hybrid
automata, a very powerful model using a finite discrete control together with continuous
variables, linear guards and linear updates. An important consequence is the reduction of
the reachability analysis of linear hybrid automata to that of stopwatch automata. Even
though both problems are undecidable, approximate reachability for stopwatch automata
is easier to develop and implement. Stopwatch automata find another very important
application in the field of scheduling problems for timed pre-emptive systems.

2.2 Period 2000–2003
James J. Leifer & Robin Milner. Deriving Bisimulation Congruences for Reactive Systems.
CONCUR 2000.
https://doi.org/10.1007/3-540-44618-4_19
This paper presents a uniform approach for deriving a Labelled Transition System (LTS)
semantics from a reduction semantics, in such a way that the resulting bisimilarity is
a congruence. LTS semantics, inspired by automata theory, specifies the interactive
behaviour of systems, while reduction semantics specifies their internal evolution and
is closer to the operational semantics of sequential programs. LTS semantics has been
favoured in early work on process calculi, as it lends itself to the definition of a variety of
behavioural equivalences that are easy to work with. Subsequently, a wealth of process
calculi have been proposed, tailored to specific features (mobility, locations, security,
sessions, etc). In these more complex calculi, it became more debatable what to adopt
as labels or “observables” for the LTS semantics, and this motivated the shift towards a
reduction semantics in conjunction with a structural congruence, allowing for a compact
semantic description.

https://doi.org/10.1007/3-540-48320-9_12
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/3-540-44618-4_19


I. Castellani, P. Gastin, O. Kupferman, M. Randour, and D. Sangiorgi 1:3

The thrust to retrieve an LTS semantics from a reduction semantics is an important one,
and this paper is a milestone in this line of work. The solution proposed is robust, i.e.,
broadly applicable. It is also mathematically elegant, formulated using the categorical
notion of relative pushout (RPO). The paper has spurred a whole trend of research on
congruence properties for bisimilarity in which RPOs constitute the key notion. Good
examples are applications to bigraphs, graph rewriting and name calculi.
Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar & Mariëlle
Stoelinga. The Element of Surprise in Timed Games. CONCUR 2003.
https://doi.org/10.1007/978-3-540-45187-7_9
This paper studies concurrent two-player games played on timed game structures, and in
particular the ones arising from playing on timed automata. A key contribution of the
paper is the definition of an elegant timed game model, allowing both the representation of
moves that can take the opponent by surprise as they are played “faster”, and the definition
of natural concepts of winning conditions for the two players – ensuring that players
can win only by playing according to a physically meaningful strategy. This approach
provides a clean answer to the problem of time convergence, and the responsibility of the
players in it. For this reason, it has since been the basis of numerous works on timed
games. The algorithm established in the paper to study omega-regular conditions in
this neat model of timed games is also enticing, resorting to mu-calculus on a cleverly
enriched structure.

3 Concluding Remarks

Interviews with the award recipients, which give some information on the historical context
that led them to develop their award-winning work and on their research philosophy, have
been conducted by Luca Aceto with the help of some jury members. The interviews
are accessible as blog posts in the Process Algebra Diary maintained by Luca Aceto at
https://processalgebra.blogspot.com/. Links to these interviews may also be found on
the award’s webpage https://concur2022.mimuw.edu.pl/tot-award/.

CONCUR 2022
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Concurrent Separation Logics: Logical Abstraction,
Logical Atomicity and Environment Liveness
Conditions
Philippa Gardner #

Imperial College London, UK

Abstract
Scalable verification for concurrent programs with shared memory is a long-standing, difficult problem.
In 2004, O’Hearn and Brookes introduced concurrent separation logic to provide compositional
reasoning about coarse-grained concurrent programs with synchronisation primitives (Gödel prize,
2016).

In 2010, I introduced logical abstraction (the fiction of separation) to CSL, developing the
CAP logic for reasoning about fine-grained concurrent programs in general and fine-grained lock
algorithms in particular. In one logic, it was possible to provide two-sided specifications of concurrent
operations, with formally verified implementations and clients.

In 2014, I introduced logical atomicity (the fiction of atomicity) to concurrent separation logics,
developing the TaDA logic to capture when individual operations behave atomically. Unlike CAP,
where synchronisation primitives leak into the specifications, with TaDA the specifications are “just
right” in that they provide more general atomic functions specifications to capture, for example, the
full behaviour of lock operations.

In 2021, I introduced environment liveness conditions to concurrent separation logics, developing
the TaDA Live logic for reasoning compositionally about the termination of blocking fine-grained
concurrent programs. The crucial challenge is how to deal with abstract atomic blocking: that is,
abstract atomic operations that have blocking behaviour arising from busy-waiting patterns as found
in, for example, fine-grained spin locks. The fundamental innovation is with the design of abstract
specifications that capture this blocking behaviour as liveness assumptions on the environment.

In this talk, I will explain this on-going journey in the wonderful world of concurrent separation
logics. I will also explain why I have a bright green office chair in the corner of my office, patterned
in gold lamé.

Many thanks to my fabulous coauthors on concurrent separation logics: Thomas Dinsdale-Young,
Emanuele D’Osualdo, Mike Dodds, Azadeh Farzan, Matthew Parkinson, Pedro da Rocha Pinto,
Julian Sutherland, Viktor Vafeiadis and more.

Suggested Reading:
Peter O’Hearn: Resources, Concurrency and Local Reasoning, Journal of Theoretical Computer
Science, Festschrift for John C Reynolds 70th birthday, 2007.
Thomas Dinsdale-Young, Pedro da Rocha Pinto and Philippa Gardner: A Perspective on
Specifying and Verifying Concurrent Modules, Journal of Logical and Algebraic Methods in
Programming, 2018.
Emanuele D’Osualdo, Azadeh Farzan, Philippa Gardner and Julian Sutherland: TaDA Live:
Compositional Reasoning for Termination of Fine-grained Concurrent Programs, ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 2021.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Concurrent separation logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.2
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Distributed Decision Problems: Concurrent
Specifications Beyond Binary Relations
Sergio Rajsbaum # Ñ
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Abstract
Much discussion exists about what is computation, but less about is a computational problem.
Turing’s definition of computation was based on computing functions. When we move from sequential
computing to interactive computing, discussions concentrate on computations that do not terminate,
overlooking notions of distributed problems. Many models where concurrency happens have been
proposed, ranging from those equivalent to a Turing machine, to those where much heated discussion
has taken place, claiming that interactive models are fundamentally different from Turing machines.

It is argued here that there is no need to go all the way to non-terminating interaction, to
appreciate how different distributed computation is from sequential computation. The discussion
concentrates on the various ways that exist of representing a distributed decision problem. Each
process of a distributed system starts with an initial private input value, and after communicating
with other processes in the system, produces a local output value. An input/output relation is
needed, to specify which output values are legal for a particular assignment of input values to the
processes.

An overview is provided of some results that show how rich the topic of distributed decision
problems can be, when asynchronous processes can fail, but mostly independent of particular models
of distributed computing and their many intricate details (types of failures and of communication).
We are in a world very different from that of the functions of sequential computation; moving away
from the world of graphs beyond binary relations, to the world of simplicial complexes.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Distributed decision tasks, simplicial complex, linearizability, interval-
linearizability, Arrow’s impossibility, Speedup theorems
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1 What is Computation and what is a Computational Problem?

The tools of a barber include scissors, razor, shave brush, comb, clipper, neck duster; the
process that repeatedly uses these tools is barbering. It is awkward to talk about barbering
before saying what the problem being solved is: shaving, hair-cutting, and hair-dressing. Yet,
it seems we are sometimes more obsessed with understanding what is computation, than
with understanding what is a computational problem.

The first ACM Ubiquity symposium (2011) thoroughly discussed the question: What is
computation? The most fundamental question of our field, says Peter Denning in the Editor’s
Introduction [18]. But except for mentioning Turing and how he invented his machine to
classify functions according to computability, not much is said about computational problems.

For sequential computing not much is discussed about computational problems, beyond
functions, and for distributed computing even less. The participants of the workshop were
asked to consider how three new developments might have affected the traditional answers
to the question. One of the three developments is interactive computation, motivated by
situations such as operating systems and networks that are based on computations that do
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not terminate and regularly interact with their environments. All through the discussions
in the workshop, it seems that the interest on interactive computation comes from their
non-terminating nature, e.g. [24].

Some argue about the enduring legacy of the Turing Machine like Lance Fortnow [21],
while others strongly against it, like Peter Wegner [54]. But in the conclusions of the
workshop, Denning [17] mentions that there is an emerging consensus that interactive models
are fundamentally different from Turing machines.

Aho [1] easily describes the computational problem: A function f from strings to strings
is computable if there is some Turing machine M that given any input string w always halts
in the accepting state with just f(w) on its tape. But describes in detail what a Turing
machine is:

The reason we went through this explanation is to point out how much detail is involved
in precisely defining the term computation for the Turing machine, one of the simplest
models of computation. It is not surprising, then, as we move to more complex models,
the amount of effort needed to precisely formulate computation in terms of those
models grows substantially.

Aho [1] continues: Many real-world computational systems compute more than just a
single function – the world has moved to interactive computing. But there is no discussion
of what is it that they compute.

Indeed, as the authors of the workshop discuss, there are many models of distributed
computing, consisting of autonomous computing processes that communicate with one
another. To model multicore shared memory systems, wide area message passing networks,
biological systems such as cells and organisms, even the human brain. There are theoretical
models such as message-passing Actor model, Petri nets, process calculi, I/O automata, etc.
Many shared-memory and message passing models are discussed in the distributed computing
literature, e.g. [5, 33, 48, 49].

2 Distributed Decision Problems

To discuss distributed computing problems, very few details about the computational model
need to be considered; the same notions of distributed computing problem are relevant to
many of the models mentioned above.

2.1 Distributed computing problems
There are many problems to discuss about distributed computing. Distributed systems can
exhibit behaviors such as deadlock, livelock, race conditions. And there are many aspects to
study about routing, robot coordination, agents moving along a network, distributed graph
algorithms, and the like that cannot be studied using Turing machines. Concerns such as
reliability, performance, scalability and adaptivity, mobility, psychical locality, are inherently
different from sequential computing.

All through the symposium, it is emphasized the importance of models where interaction
takes place, assuming as evident that the interest is in non-terminating computations. I would
like to slow down here, to show the richness exhibited already in terminating distributed
computation. Furthermore, that there is no need to get into the intricacies of a distributed
computing model, to discuss distributed problems. The goal is to show that indeed very novel
issues arise that do not exists in Turing machines, already when we consider input/output
problems.
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In this paper the goal is to focus on possibly the purest form of distributed computing
problem, a direct analogue of the notion of a function for a Turing machine. The input x to
the function is now distributed, each process knows only part of x. Also the output f(x) is
distributed: after communicating with each other, the processes collectively compute f(x),
each one computes one part of it. As we shall see, instead of functions it is of interest to
consider relations T (x), called tasks, possibly allowing for more than one output for each
input x.

Assume the simplest case of a fixed, finite set of n individual processes composing the
distributed system. To focus only on the problem of computing a task in a distributed way,
disregard any routing and network communication problems, and assume that the processes
can directly communicate with each other. Similarly, to focus only on the distributed aspects
of the problem, disregard any individual sequential computing limitation. It turns out that
some tasks have no solution, even if each process is an infinite state automata, while when
there is a solution, each process is a (usually) simple Turing machine.

For the purposes of discussing distributed problems, there is no need to discuss many of
the specifics about the computational model – ways in which processes communicate with
each other, their relative speeds and failures. Roughly, the only thing needed, is that a
process may have to produce an output value without knowing the input values of some of
the other processes.

2.2 Distributed decision tasks
Early on in the development of distributed computing theory, Moran and Wolfstahl [43]
defined the notion of distributed decision task, to encompass the various problems that were
being studied at that time, such as consensus, approximate agreement and renaming. It was
already known that consensus is impossible to solve in a message passing system even if
only one process can fail by crashing [20] (even if each process is an infinite state machine).
Moran and Wolfstahl extended the impossibility to general decision tasks, and then Biran,
Moran and Zaks [6] extended it to a full characterization.

Consider n-dimensional vectors with entries over some set of possible values V : the i-th
entry of a vector is associated to the i-th process. A distributed decision task T = ⟨I, O, ∆⟩
consists of a set of input vectors, I a set of output vectors, O and a relation ∆, specifying,
for each input vector I ∈ I, a set of legal output vectors ∆(I) ⊆ O. The i-th entry of an
input vector is the input value of the i-th process. The i-th entry of an output vector is the
output value of the i-th process. It is assumed that each process, has two special variables, a
read-only one for the input value and a write-once variable for the output value.

A decision task is solvable by a distributed algorithm in some model of computation, if
the following holds. The system can start in any of the input vectors I ∈ I allowed by the
task. Now, consider any execution starting with input vector I, where all processes produce
an output value, defining a vector O consisting of all the n output values. Then, it must be
the case that O ∈ ∆(I).

Notice that task solvability is defined only by a safety requirement. There is also a liveness
requirement defined by the specifics of the model of computation. In the sequel of papers by
Biran, Moran, Zaks and Wolfstahl [6, 7, 8, 43], the focus was on 1-resilient asynchronous
processes (running at arbitrary speeds, independent from each other) communicating by
message passing. In this case, the liveness requirement is that, in an execution where at most
one process crashes, all processes that do not crash have to produce a decision value. A similar
situation but in shared memory was considered by Moran and Taubenfeld [53], including the
case where t < n processes may crash, where the liveness is adjusted accordingly.

CONCUR 2022



3:4 Distributed Decision Problems

The following examples are well-known by now.
1. Consensus. For a set of values V , the inputs are all n-vectors over V . There is one

output vector for each v ∈ V , consisting of all output values equal to v, denoted Ov, and
O = ∪v∈V {Ov}. For any input vector with at least two different input values, ∆(I) = O,
for an input vector Iv with a single input value v, ∆(Iv) = {Ov}.

2. Approximate agreement. It is defined in [6] for any given ϵ > 0, and V the set of rational
numbers. Any n-vector over V is a possible input vector, and the output vectors contain
rational numbers so that for any two entries di, dj , |di − dj | ≤ ϵ. Then, ∆(I) contains all
output vectors with entries di such that m ≤ di ≤ M , where m is the smallest value of I

and M is the largest.
There are many variants of consensus and approximate agreement, including multidimensional
ones e.g. [41].

2.3 Participating processes

The discovery of the intimate connection between distributed computing and topology,
overviewed in [30], was facilitated by the realization that the 1-resilient case is not the most
fundamental situation, and surprisingly not the easiest to analyze – it is the wait-free case.
Wait-freedom is a progress condition which guarantees that each process can make progress in
a finite number of steps regardless of the behavior of other processes. So long as processes are
scheduled, wait-freedom guarantees progress for all processes. Thus, a distributed algorithm
that is wait-free never includes instructions by which a process waits for an event of another
process (if that process crashes, the event might never happen).

For this paper, the important property is that any set of processes may have to produce
output values, without knowing the input values of the remaining processes. Therefore,
the vectors of a decision task need to incorporate a notion of participating processes. Not
all entries in a given input (output) vector need contain an input (output) value; some
may contain the special value ⊥, indicating that some processes do not participate in the
execution (crashes before taking any steps). Thus, the set of input vectors is required to be
prefix closed. Meaning that if I is an input vector, then the task has to consider also any
input vector I ′ contained in I, in the sense that any subset of the entries of I is replaced by
⊥. Furthermore, for each such input vector I ′, where the input values of some subset of the
processes P ′ is defined as ⊥, the input/output relation ∆ has to specify what are the legal
output vectors. Namely, ∆(I ′) is a set of vectors, all with ⊥ in the entries for processes P ′.

As already discussed by Herlihy and Shavit [32] and Hoest and Shavit [35], the intuitive
notion of “order of actions in time” is captured through the use of participating processes.
The example given is how it can be used to distinguish between tasks such as Unique-Id
and Fetch-And-Increment, which have the same sets of input and output vectors, have the
same ∆ when all processes participate, but have quite different task specification maps when
subsets of participating processes are taken into account. The Figure 1 is from [35], for a set
of n + 1 processes.

The Unique-Id task is defined as follows: each participating process i ∈ {0, . . . , n} has an
input xi = 0 and chooses an output yi ∈ {0, . . . , n} such that for any pair of processes i ≠ j,
yi ̸= yj .

In the Fetch-And-Increment task, each participating process i ∈ {0, . . . , n} has an input
xi = 0 and chooses a unique output yi ∈ {0, . . . , n} such that (1) for some participating
process i, yi = 0, and (2) for 1 ≤ k ≤ n, if yi = k, then for some j ̸= i, yj = k − 1.
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(a) Unique-Id task. (b) Fetch-And-Increment task.

Figure 1 Two tasks with the same set of vectors when all participate. First column is the input
vector, and for each row I, in the second column ∆(I) .

2.4 Beyond binary relations
These two examples already hint at why by moving from vectors to partial vectors, the
notion of decision task is interestingly enriched. This is clearly exposed using the appropriate
mathematical structure for partial vectors closed under containment: simplicial complexes.
Here follows and overview of how to use them to represent tasks, additional details are in
e.g. [30].

The following notions are illustrated in Figure 2, where the Fetch-And-Increment task
is represented using simplicial complexes, for three processes denoted 0, 1, 2. Intuitively,
triangles represent vectors with 0 entries equal to ⊥, edges represent vectors with 1 entry
equal to ⊥, and vertices correspond to vectors with 0 entires equal to ⊥. An input vertex
(i, x) means that process i has input value x, and for the vertex (0, 0), ∆(i, x)) = σ1. For
the input edge {(0, 0), (1, 0)}, ∆({(0, 0), (1, 0)}) = {σ2, σ3}, while for the input triangle
{(0, 0), (1, 0), (2, 0)}, ∆({(0, 0), (1, 0), (2, 0)}) consists of all 6 triangles of O.

A simplicial complex is a generalization of a graph, where sets of vertices of cardinality
more than two can also be grouped into a simplex (the generalization of an edge). Formally,
it is a collection K of non-empty sets, closed under containment, i.e., if σ ∈ K then, for every
non-empty set σ′ ⊆ σ, σ′ ∈ K. Every set in K is called a simplex. A subset of a simplex is
called a face, and a facet of K is a face that is maximal for inclusion in K. The dimension of
a simplex σ is |σ| − 1, where |σ| denotes the cardinality of σ. The dimension of a complex is
the maximal dimension of its facets. A complex in which all facets are of the same dimension
is called pure. The vertices of K are all simplices with a single element (i.e., of dimension 0).
The set of vertices of a complex K are denoted by V (K).

All complexes in this paper are chromatic, i.e., every vertex is a pair v = (i, x) where
i ∈ [n] = {1, . . . , n} for some n ≥ 1 is the color of v denoting a process, and x is some value
(an input value or an output value). Moreover, in a chromatic complex, a color i must appear
at most once in every simplex. Let σ = {(i, xi) : i ∈ I} be a simplex. We denote by id(σ)
the set of colors in σ, i.e., id(σ) = I. Indeed, in the following, the color of a vertex is actually
the identity of a process.

A task can be defined using vectors as above, or using simplicial complexes as follows,
exposing the role of combinatorial topology notation, and why going beyond binary relations
is intrinsic to distributed computing problems.

A task for n processes is a triple Π = (I, O, ∆) where I and O are (n − 1)-dimensional
complexes, respectively called input and output complexes, and ∆ : I → 2O is an input-
output specification. Every simplex σ = {(i, xi) : i ∈ I} of I, where I = id(σ) is a non-empty
subset of [n], defines a legal input state corresponding to the scenario in which, for every
i ∈ I, process i starts with input value xi. Similarly, every simplex τ = {(i, yi) : i ∈ I} of O
defines a legal output state corresponding to the scenario in which, for every i ∈ I, process i

outputs the value yi. The map ∆ is an input-output relation specifying, for every input state
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1

<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2

<latexit sha1_base64="xRaalbRKNtGb7A1SmUdH3APrRRs=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPAi8cI5gHJEmYnvcmQmdl1ZlYIIT/hxYMiXv0db/6NkweiiQUNRVU33V1RKrixvv/lra1vbG5t53byu3v7B4eFo+OGSTLNsM4SkehWRA0KrrBuuRXYSjVSGQlsRsObqd98RG14ou7tKMVQ0r7iMWfUOqnVMbwvabfcLRT9kj8D+SHBMinCArVu4bPTS1gmUVkmqDHtwE9tOKbaciZwku9kBlPKhrSPbUcVlWjC8ezeCTl3So/EiXalLJmpvyfGVBozkpHrlNQOzLI3Ff/z2pmNr8MxV2lmUbH5ojgTxCZk+jzpcY3MipEjlGnubiVsQDVl1kWUdyGsvLxKGuVScFmq3FWKVX8RRw5O4QwuIIArqMIt1KAODAQ8wQu8eg/es/fmvc9b17zFzAn8gffxDcY7j8A=</latexit>�2

<latexit sha1_base64="Nd8t82NrXoBGL5E+eUvdw2EkCxM=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0N6jHgxWME84BkCbOT3mTIzOw6MyuEkJ/w4kERr/6ON//GyQPRxIKGoqqb7q4oFdxY3//yVlbX1jc2c1v57Z3dvf3CwWHdJJlmWGOJSHQzogYFV1iz3ApsphqpjAQ2osHNxG88ojY8Ufd2mGIoaU/xmDNqndRsG96TtHPRKRT9kj8F+SHBIinCHNVO4bPdTVgmUVkmqDGtwE9tOKLaciZwnG9nBlPKBrSHLUcVlWjC0fTeMTl1SpfEiXalLJmqvydGVBozlJHrlNT2zaI3Ef/zWpmNr8MRV2lmUbHZojgTxCZk8jzpco3MiqEjlGnubiWsTzVl1kWUdyEsvbxM6uel4LJUvisXK/48jhwcwwmcQQBXUIFbqEINGAh4ghd49R68Z+/Ne5+1rnjzmSP4A+/jG8e/j8E=</latexit>�3

<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2

<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥
<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥ <latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0

<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0
<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0

<latexit sha1_base64="FgsVyF6Z9DEBO9vxS4jxukqPeMA=">AAAB73icdVBNSwMxEJ31s9avqkcvwSJ4KtlSansrePFYwX5Au5RsmrahSXZNskJZ+ie8eFDEq3/Hm//GbFtBRR8MPN6bYWZeGAtuLMYf3tr6xubWdm4nv7u3f3BYODpumyjRlLVoJCLdDYlhgivWstwK1o01IzIUrBNOrzK/c8+04ZG6tbOYBZKMFR9xSqyTun3Dx5IM/EGhiEvYoVpFGfFr2HekXq+Vy3XkLyyMi7BCc1B47w8jmkimLBXEmJ6PYxukRFtOBZvn+4lhMaFTMmY9RxWRzATp4t45OnfKEI0i7UpZtFC/T6REGjOToeuUxE7Mby8T//J6iR3VgpSrOLFM0eWiUSKQjVD2PBpyzagVM0cI1dzdiuiEaEKtiyjvQvj6FP1P2uWSXy1VbirFBl7FkYNTOIML8OESGnANTWgBBQEP8ATP3p336L14r8vWNW81cwI/4L19Ahqdj/s=</latexit>�1

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

Figure 2 The Fetch-And-Increment task. Inside a vertex is its id, outside is its input or output
value. The input complex I consists of a single triangle, and its faces. The input complex O consists
of 6 triangles, and its faces. The triangles marked with an × are deleted.
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<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0

<latexit sha1_base64="M6Cnmdl/c5LIx7D4JM1Eq/xJ4fs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdbmMpA==</latexit>

1

<latexit sha1_base64="M6Cnmdl/c5LIx7D4JM1Eq/xJ4fs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdbmMpA==</latexit>

1

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>
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Figure 3 The input complex of the set agreement task for 3 processes, and part of the output
complex. The triangle marked with × is deleted. The corners of the input triangle are mapped by
∆ to the corners of O. The boundary of the input triangle is mapped to the boundary of O. The
input triangle is mapped to all the depicted 12 triangles of O.

σ ∈ I, the set of output states τ ∈ O with id(τ) = id(σ) that are legal with respect to σ.
That is, assuming that only the processes in id(σ) participate to the computation (the set
of participating processes is not known a priori to the processes in σ), these processes are
allowed to output any simplex τ ∈ ∆(σ). It is often assumed that ∆ is a carrier map (that
is, for every σ, σ′ ∈ I, if σ′ ⊆ σ then ∆(σ′) ⊆ ∆(σ) as subcomplexes).

An important example is the set agreement task, with a single input facet (and all its
faces), where process i starts with input value i. The n processes need to agree on at most
n− 1 input values of participating processes. For three processes, at most two different values
can be decided, as illustrated in Figure 3, where part of the output complex is depicted.
This task is important, because it is unsolvable wait-free [9, 32, 52], and the reason for
the impossibility is a topological one: intuitively, the task has a hole while no wait-free
distributed algorithm has one.
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3 Selected Topics

Here is a selection of the various aspects about tasks that have been studied. Consensus is
the most fundamental task, in a sense the most difficult one together with variants such as
interactive consistency where all of the processes have to agree on the same vector such that
the ith entry of the vector contains the value proposed by the i-process; any task is solvable,
if processes can agree on their inputs. Much can be said about consensus in long-lived
situations, and consensus is known to be enormously important in real systems since early
on [37], as well as in theory e.g. [29], for reasons including the consensus hierarchy [39] and
as a universal object [50], but here the focus is on decision problems.

3.1 Colorless tasks, local tasks, continuous tasks: decidability and
reductions

The class of colorless tasks was identified in [10]. Such a task can be defined in terms of sets
of input and output values, without referring to which process is assigned which input value
or produces which output value, and without referring to the number of processes in the
system. Many widely-studied tasks are colorless, including consensus, set-agreement, and
approximate agreement. Some important tasks like renaming [13] and others [12] are not
colorless, and are more difficult to study, but easier than set agreement [11]. A notion of
continuous task has been prosed aiming at obtaining wait-free solvability characterization [25]
in a more intuitive way than the original one [32].

The rendezvous task [38] is a colorless task that models scenarios where autonomous
agents move around in a specific space to meet one another. A chromatic version where
a process must end in a vertex of its own color in a chromatic subdivision of an input
simplex, is the chromatic simplex agreement task, important for the wait-free task solvability
theorem [32], and the affine tasks, on subcomplexes of the chromatic subdivision by Kuznetsov
and Rieutord [36]. The loop agreement task is an example of rendezvous task, which is defined
in terms of an edge loop in a 2-complex. Herlihy and Rajsbaum [31] showed that a loop
agreement task is wait-free solvable if and only if the loop is contractible in the 2-complex,
as a result, the wait-free solvability of loop agreement tasks is undecidable. Rendezvous on
the vertices of a graph was introduced in [15], and variants were studied in [3] including
applications to robot coordination problems [2].

A task G implements task F if one can construct a protocol for F by calling any
protocol for G, possibly followed by access to a shared read/write memory. This notion of
implementation induces a partial order on tasks and hence it induces a classification of a set
of tasks, into disjoint classes such that tasks in the same class implement each other. In this
sense, all tasks in a class are computationally equivalent. A classification of loop agreement
tasks was presented in [31], and extended in [55] to rendezvous tasks.

A task T is wait-free checkable if and only if it satisfies a certain locality condition. Notions
of locality considered by Fraigniaud, Travers and Rajsbaum [23] are mostly independent of
the computing model. Wait-free solvability of local tasks remains undecidable. A strong
notion of locality is defined by covering tasks whose output complex is a covering of the
input complex. This topological property yields obstacles for wait-free solvability different in
nature from the classical agreement impossibility results, and, apart from the identity task,
locality-preserving tasks are not wait-free solvable. A classification of locality-preserving
tasks in term of their computational power is presented. Also closely related to covering
tasks and with a similar impossibility argument [26], is the equality negation task. For two
processes, each of which has an input from a set of three distinct values, each process must
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decide a binary output value so that the decisions of the processes are the same if and
only if the initial values of the processes are different. This task was defined by Lo and
Hadzilacos [39], as the central idea to prove that the consensus hierarchy is not robust.

Fraigniaud, Paz and Rajsbaum [22] study consensus and approximate agreement, through
an approach for proving lower bounds and impossibility results, called the asynchronous
speedup theorem. For a given task T and a given computational model M , the closure of
T with respect to M is a task that is supposed to be a slightly easier version of T . The
asynchronous speedup theorem states that if a task T is solvable in t ≥ 1 rounds in M , then
its closure w.r.t. M is solvable in t − 1 rounds in M . As an application they study the power
of test&set and binary consensus, for wait-free solving approximate agreement faster.

3.2 Domain restrictions and social choice
A research line started by Mostefaoui, Rajsbaum and Raynal [44] considers restricting the
input domain of a task, to obtain an easier task. A restriction of the input complex is called
a condition. For example, although consensus is unsolvable even if only one process can crash,
if we assume that more than a majority of processes propose the same value then consensus
becomes solvable (n ≥ 4). The paper identified the conditions for which consensus is solvable
in an asynchronous distributed system with t crash failures. In a sequel paper [45] they
study conditions for consensus in a synchronous system where processes can fail by crashing.
A hierarchy of conditions parametrized by d is presented, that allows solving synchronous
consensus with less and less rounds, as we go from d = t to d = 0.

There are remarkable analogies between social choice theory and distributed computing,
despite the fact that social choice theory is typically not concerned with concurrency (for
decentralised studies see [16, 40]). The modern field of social choice theory took off with
Kenneth Arrow’s remarkable 1950 result [4] for the basic problem of democracy: it is
impossible to aggregate individual preferences into a single social preference, under some
reasonable-looking axioms. In Arrow’s setting, each process proposes a total order on the
possible candidates, and the outcome of the election, computed by a centralized aggregation
function f , is also a total order, that should reflect the social preference. One requirement
is unanimity, if everyone prefers candidate x over y, so should the social preference. With
only this requirement, the aggregation function can simply decide on the preferences of
one individual, say the 1st one, which would become a dictator. Arrow’s impossibility says
that f must be dictatorial, if one requires, additionally to the unanimity requirement, an
independence of irrelevant alternatives (IIS) requirement, stating that f depends only on
pairwise preferences.

Much research has been devoted to identify domain restriction to circumvent Arrow’s
impossibility theorem. Rajsbaum and Raventós [47] identify the exact domain restrictions for
the case of two voters and three alternatives, and present a new proof of Arrow’s impossibility
based on a task formalization using simplicial complexes, showing that any unanimous IIS
aggregation function must be dictatorial, on any of the corresponding restricted domains.
The proof uses techniques analogous to those used in distributed computing [13, 26].

3.3 Tasks and objects
Tasks are not the only possible input/output distributed specifications. Objects are defined
in terms of sequential specifications, and can specify ongoing, never-ending behavior, such as
for concurrent data structures [42]. For this paper consider their one-shot version, and one
method that can be invoked only once by each process, with an input parameter. The object
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returns an output value to the invoking process. Thus, one-shot objects are similar to tasks,
in that they specify input/output problems. Objects come with an accompanying notion of
when a concurrent execution satisfies the object’s sequential specification, linearizability.

In fact we encounter in the literature three ways of talking about distributed decision
problems. As a set of informal requirements, as a sequential object plus a consistency
condition (linearizability), and as a task. For example, we have seen that consensus can be
defined as a task. But often it is defined by two safety requirements. Validity: a decided
value is the input of some participating process; Agreement: any two decided values are
equal. The third way is to think of consensus as an object, defined by a sequential automata,
whose states represent which values have been proposed to the object, and which values can
be returned to a process.

The relation between tasks and objects has been studied by Castañeda, Rajsbaum and
Raynal [14], motivated by Neiger [46], who proposed a generalization of linearizability to
be able to specify tasks, such as set agreement, which have no natural specification as
sequential objects. Set-sequential objects can define executions in which a set of processes
access an object concurrently. The notion of an interval-sequential object [14], together
with a corresponding consistency condition, is able to express any concurrency pattern of
overlapping invocations of operations, that might occur in an execution [27]. While some
important tasks have no specification either as a sequential object nor as a set-sequential
object, all tasks can be naturally expressed as interval-sequential objects. Remarkably,
there are objects that cannot be expressed as tasks. An extension of the task framework is
described, called refined tasks, that has more expressive power, and is able to specify any
one-shot interval-sequential object.

An interesting notion appears with objects, composabilty, which has not been studied
as much for tasks. Linearizability is very popular to design components of large systems
because one can consider linearizable object implementations in isolation and compose them
for free, without sacrificing linearizability of the whole system [34]. It was shown that by
going from linearizability to interval-linearizability, one does not sacrifice the benefits of
composability [14].

3.4 Tasks and knowledge
Rosenbloom [51] argues that computation is information transformation. In this sense, one
may view a distributed problem as setting the goals, from an initial state of information, to
a final one. More precisely, a task is reformulated by Goubault, Rajsbaum and Ledent [28]
as a knowledge transformation goal. The input complex defines what processes know about
each other inputs, formalized as a simplicial model, the dual of the classic one-dimensional
Kripke model, that exposes relations beyond binary. A task can be re-interpreted as a goal
in terms of knowledge gain, using an output simplicial model, which is the product update
of the initial simplicial model and an action model. This formally specifies the knowledge
gain required by the task.

The importance of common knowledge for reaching agreement is well understood [19].
Consensus and common knowledge is discussed in [28], as well as approximate agreement,
in terms of knowledge gain. After all, the difficulty of distributed decisions comes from the
absence of common knowledge about the inputs and consensus gives us just that. Indeed, in
the epistemic setting, consensus is the requirement of achieving common knowledge on an
input value. This is impossible in asynchronous systems. In contrast, approximate agreement
is solvable, because it is a finite version of common knowledge, requiring only that everybody
knows that everybody knows, and so on, a certain number of times.
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Abstract
We survey some recent results in sequential decision making under uncertainty, where there is
an information asymmetry among the decision-makers. We consider two versions of the problem:
persuasion and mechanism design. In persuasion, a more-informed principal influences the actions
of a less-informed agent by signaling information. In mechanism design, a less-informed principal
incentivizes a more-informed agent to reveal information by committing to a mechanism, so that the
principal can make more informed decisions. We define Markov persuasion processes and Markov
mechanism processes that model persuasion and mechanism design into dynamic models. Then
we survey results on optimal persuasion and optimal mechanism design on myopic and far-sighted
agents. These problems are solvable in polynomial time for myopic agents but hard for far-sighted
agents.
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1 Introduction

Sequential decision making under uncertainty is a fundamental problem in modeling and
analysis of systems. In concurrency theory and formal verification, many such models have
been studied extensively. In Markov decision processes (MDPs), a single agent observes
the state of the world, picks an action, and the new state of the world is determined by an
uncertain transition relation. The goal of the agent is to find a policy that optimizes her
expected utility, usually over an infinite horizon. In partially observable MDPs (POMDPs),
the state is no longer perfectly observed; the agent gets a signal about the state of the world
and has to find a policy with partial information about the world. Finally, in stochastic
games, multiple agents play against each other. The objectives of the agents can be zero-sum
(the two player, purely adversarial situation) or non-zero sum. The complexity landscape of
these models have been studied extensively. Broadly, full information settings (MDPs) are
polynomial time solvable [14], partial observation settings are undecidable [20, 4], and games
are intermediate in complexity [6, 13, 5].
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There are a number of applications of sequential decision making where the interaction
between agents and the world involve information asymmetry. These are games of imperfect
information on one side, in which one agent influences the behavior of another by selectively
signaling additional information about the state of the world, or incentivizes the other to
provide accurate information about the world. These models have been largely studied in the
economics and artificial intelligence literature, as problems of persuasion or of mechanism
design, but have not received attention in the concurrency theory literature.

In persuasion (also called information design), a knowledgeable principal knows some
aspects of the state of the world and interacts with an agent who does not. However, only the
agent has the capacity to take an action. Since the objectives of the principal and the agent
may be misaligned, the agent may not do the principal’s bidding. The goal of the principal
is to strategically reveal information about the world, through a process of signaling, so that
the agent’s actions optimize the principal’s own interests.

In mechanism design, one or more agents know the state of the world; the principal can
take an action based on the report from the agents. Again, it is possible that the agent
misrepresents the state of the world to optimize their own payoff. The goal of the principal
is to design incentive mechanisms to elicit the agent’s private information about the state of
the world, so as to make more informed decisions.

If the principal and the agent are completely aligned in their utilities, the signals or the
mechanisms involve revealing the unknown information; the more interesting case is when
the objectives are misaligned. Persuasion and mechanism design problems in the sequential
setting involve partial information and strategic interaction but have not been considered in
the concurrency theory literature. The goals of this paper are to provide an introduction to
these models, describe some basic results and pointers to the literature, and to point out
open problems in the domain.

Persuasion. Kamenica and Gentzkow [17] introduced a fundamental and very influential
model of Bayesian persuasion as a formal model for persuasion problems. They consider a
two player game between a principal and an agent. The players share a common prior on the
state of the world, but only the principal observes the realization. The principal commits
to a signaling strategy before the game starts. On observing the realization, the principal
signals the agent and the agent picks an action based on the signal. They each receive a
payoff dependent on the realized state of the world and the action. Kamenica and Gentzkow
characterize the optimal signaling strategy of the principal.

Since the publication of this work [17], Bayesian persuasion has seen many applications
in the field of economics and algorithmic game theory. The basic model has also been
extended in many ways. We refer the reader to the comprehensive survey [16] for pointers
to the literature. Our focus in this survey is on algorithmic problems in dynamic models,
where persuasion is performed repeatedly over time. Work in this direction is fairly new
[12, 23, 15, 26].

Mechanism Design. In automated mechanism design, we consider models where the roles
of the players are reversed: now, the principal is the receiver of information, and commits
to a mechanism that specifies the action they will take upon receiving each signal. The
agent is the signal sender and, knowing the principal’s mechanism, sends signals optimally
in response. Intuitively, to design a good mechanism requires balancing between the goals
of eliciting more information from the agent and of acting optimally based on the elicited
information. The principal aims to find a mechanism that maximizes their overall utility
from the interaction.
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The model follows the line of work on automated mechanism design, initiated by Conitzer
and Sandholm [7, 8]. It is shown in their work that the problem of computing an optimal
mechanism is NP-hard in general, in settings that allow restrictions to be placed on what
signals can be sent given the true state of the world. We consider models without such
restrictions, which are less expressive in this regard but arguably also captures a wide range
of applications. Following the seminal work of Conitzer and Sandholm, variants of their
model have been proposed and studied [24, 18, 19, 27, 28]. A recent work of Zhang and
Conitzer [28] introduces a dynamic model of automated mechanism design, and studies some
fundamental algorithmic questions for this model. There is a broader literature on various
forms of dynamic mechanism design in economics. We refer the reader to the comprehensive
surveys [22, 2].

Dynamic Models. Most problems in persuasion and mechanism design were studied in the
one-shot setting. More recently, dynamic versions of these models have been introduced to
capture persuasion and mechanism design in sequential decision making [12, 23, 26, 3, 15, 28].
Dynamic models generalize MDPs from a single agent to settings in which a principal and
an agent interact, with an information asymmetry between them. The game is played
over a state space. In addition, there is an external parameter, chosen from a known prior
distribution, that is the source of information asymmetry. In a Markov persuasion process
(MPP), in each step, the principal observes the realizations of the external parameters and
signals the agent to elicit a favorable action. The agent picks the action based on the current
state of the MPP and the signal, both the principal and the agent receive a reward, and
the game moves to the next state based on a probabilistic transition relation. In a Markov
mechanism process (MMP), in each step, the agent observes the realizations of the external
parameters. The agent is incentivized by the principal to provide true information by a
mechanism – a precommitment to act in a certain way. The agent reports the external
parameters as a best response to the precommitment, and the principal chooses an action
based on this information. Both principal and agent receive a reward, and the game moves
to a new state based on the current state and the chosen action.

Dynamic models of persuasion and mechanism design are special cases of stochastic games
of incomplete information [1, 25] and many fundamental insights in characterizing optimal
strategies carry over. By focusing on the subclass of games with persuasion and mechanism
design as the central aspects, we are able to provide specialized algorithmic results that are
applicable to many problems of practical interest.

Myopic and Far-sighted Agents. A new aspect in the study of dynamic persuasion and
mechanism design problems is the nature of the agent. In models of concurrency, we usually
assume that all players are long-lived, that is, survive throughout the game. In MPPs and
MMPs, we distinguish between far-sighted and myopic agents. A far-sighted agent is long
lived and optimizes their expected utility in the long run – it is the “usual case” we study in
concurrent games.

In contrast, a myopic agent is short-lived, and only interested in optimizing the payoff
in the current stage of the game. In a game with myopic agents, the long-lived principal
interacts with a sequence of independent myopic agents, one for each time step. As we shall
see, decision problems often become easier when we deal with myopic agents.

There is good motivation for studying myopic agents in both persuasion and mechanism
design problems. As an example of a dynamic persuasion problem with myopic agents,
consider a ride-sharing app, where the application developer is the long-running principal,
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and users of the app can be seen as myopic agents. The users are interested in optimizing
their current commute times. The application developer may have a different goal, that
of minimizing congestion. The application developer may provide a noisy signal about the
status of roads to persuade the commuters to choose routes that minimize overall congestion.

As an example of a dynamic mechanism design problem with myopic agents, consider a
firm that consults with a research organization to decide upon a product strategy [28]. Each
year, the research organization presents its market research. The firm decides to invest in
certain directions based on the reports. The goal of the firm is to have a strong long term
business while keeping costs low. On the other hand, the research organization’s goal can be
myopic – to generate as much revenue from the firm each year, by possibly misrepresenting
market conditions. A mechanism in this case is a compensation strategy of the firm that
ensures each research report truthfully represents market conditions.

Current Status. In this article, we summarize some recent decidability and complexity
results for MPPs and MMPs [15, 28, 26]. We shall see that the principal’s optimal signaling
strategy and optimal mechanism design problems can be solved in polynomial-time in
the infinite horizon setting, against myopic agents. In contrast, we can only show some
intractability for these problems against far-sighted agents but a complete characterization
remains open.

We have collected the basic results of persuasion and mechanism design in this article and
we hope it can serve as the starting point for investigating the specification and verification
of dynamic models with information asymmetry in the context of concurrency theory.

2 Persuasion: Principal Observes, Agents Act

2.1 One-shot Bayesian Persuasion
The basic persuasion model by Kamenica and Gentzkow [17] considers two agents: Sender
and Receiver (who are the principal and agent, respectively). Receiver has a utility function
u(a, ω) that depends on her action a from a fixed set A of available actions, as well as a state
of the world ω from a set Ω (chosen by nature). Sender has a utility function v(a, ω), that
also depends on the receiver’s action a and ω. Both players share a common prior µ0 on Ω.
Sender does not influence the world by picking an action himself, but influences Receiver by
transmitting a signal.

A signal, broadly construed, is some information about the state of the world that Sender
can transmit to Receiver. Let G be a sufficiently large space of signal realizations. A signaling
strategy π : Ω → ∆(G) of Sender is a map that associates each realization of the state of
the world to a distribution over G. Using π, Sender will send a signal g to Receiver with
probability π(ω, g) whenever ω is observed. Intuitively, the strategy specifies a statistical
relationship between the state of the world and Receiver’s observed data.

For example, one simple signaling strategy is to always reveal the true information, which
always sends a deterministic signal gω associated with the observed ω (i.e., gω is a message
saying “The current state of the world is ω.”, and π(ω) is a Dirac delta distribution at gω).
In contrast, if the same signal is sent irrespective of the realized ω, i.e., π(ω) = π(ω′) for all
ω, ω′ ∈ Ω, then the signaling strategy is completely uninformative: observing the signal gives
Receiver no information about the current realization of ω.

The steps of Bayesian persuasion are as follows.
1. Sender and Receiver share a prior µ0.
2. Sender picks a signaling strategy π : Ω → ∆(G) and commits to it; Receiver observes π.
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3. Nature picks ω ∼ µ0 and reveals it to Sender.
4. Sender picks g ∼ π(ω) according to his commitment.
5. Receiver observes the realized g, and takes some action a ∈ A (we describe below how

the action is chosen).
6. Sender receives utility v(a, ω) and Receiver receives u(a, ω).

Upon receiving a signal g, Receiver updates her posterior belief about the state of the
world using the Bayes’ rule, whereby the following conditional probability is derived:

Pr(ω | g, π) = µ0(ω)·π(ω,g)∑
ω′∈Ω

µ0(ω′)·π(ω′,g)
. (1)

Receiver picks an action a∗(Pr(· | g, π)) that maximizes Eω∼Pr(·|g,π)[u(a, ω)]. By convention,
we assume that Receiver breaks ties in favor of Sender when there are multiple optimal
actions. Given the choice of Receiver, Sender solves

max
π∈Π

Eω∼µ0Eg∼π(ω)v(a∗(Pr(· | g, π)), ω) (2)

to optimize her expected utility, where Π is the set of all signaling strategies.
The optimization problem seems complicated at a first glance, since the space G of signals

can be arbitrary, and the choice of π influences the utility of Sender both by influencing how
the signal realizations are distributed and by influencing the action that Receiver picks based
on the signal realization. However, we shall show that the problem can be reduced to an
optimization problem of a simpler form.

2.2 The Revelation Principle and Action Advice

According to a standard argument via the revelation principle [21, 17], we can restrict
attention to signaling strategies in the form of action advice without any loss of generality.
Specifically, for any signaling strategy in an arbitrary space of signals, there exists an
equivalent strategy π that uses only a finite set GA := {ga : a ∈ A} of signal realizations,
where each signal ga corresponds to an action a ∈ A. With the signal ga, Sender “advises”
Receiver to play a. Moreover, we can additionally ensure that π is incentive compatible (IC),
which means that Receiver is indeed incentivized to take the corresponding action a upon
receiving ga. Formally, π ensures that

Eω∼Pr(·|ga,π)u(a, ω) ≥ Eω∼Pr(·|ga,π)u(a′, ω)

for all a′ ∈ A, or equivalently:∑
ω∈Ω

Pr(ω | ga, π)· (u(a, ω) − u(a′, ω)) ≥ 0 for all a′ ∈ A. (3)

In other words, π signals which action Receiver should take and it is designed in a way such
that Receiver cannot be better off deviating from the advised action with respect to the
posterior belief. (Again, we assume that Receiver breaks ties in favor of Sender, which means
following the advice in this case.) We call a signaling strategy that only uses signals in GA

an action advice, and call it an IC action advice if it also satisfies (3).
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4:6 Sequential Decision Making with Information Asymmetry

In case A and Ω are finite sets, we can write Sender’s optimization problem as a linear
program (LP) with variables {π(ω, ga) | ω ∈ Ω, a ∈ A} (see, e.g., [11, 10]):

max
∑
ω∈Ω

∑
a∈A

µ0(ω) · π(ω, ga) · v(a, ω) (4)

subject to
∑
ω∈Ω

µ0(ω) · π(ω, ga) · (u(a, ω) − u(a′, ω)) ≥ 0, for a, a′ ∈ A (5)∑
a∈A

π(ω, ga) = 1, for ω ∈ Ω (6)

π(ω, ga) ≥ 0, for ω ∈ Ω, a ∈ A (7)

The variable π(ω, ga) denotes the conditional probability of recommending action a when
the state of the world is ω. The LP maximizes the expected utility of Sender over the joint
distribution of ω and a, subject to incentive compatibility (i.e., (5), where Pr(ω | ga, π) in
(3) is replaced by µ0(ω) · π(ω, ga) according to (1)). Since linear programming can be solved
in polynomial time, the above formulation shows that one-shot persuasion can be solved in
polynomial time when the actions and the external parameters are given explicitly.

▶ Theorem 2.1 [11]. Sender’s optimization problem can be solved in polynomial time in |A|
and |Ω|.

More generally, Kamenica and Gentzkow showed a characterization of the optimal function
for compact action spaces and payoff functions that are continuous in the action [17].

Given a signal, each signal realization ga induces a posterior belief µa ∈ ∆(Ω). The
marginal probability of signal realization ga is Pr[ga] =

∑
ω∈Ω µ0(ω)·π(ω, a) and the posterior

distribution Pr(ω | ga, π) = µ0(ω)·π(ω,ga)
Pr[ga] .

Thus, we can think of a feasible solution of the LP as a distribution over posteriors (an
element of ∆(∆(Ω))), one per signal realization, whose expectation equals the prior µ0 (such
a distribution of posteriors is called Bayes plausible). Thus, if µ0 is represented as a point
in the simplex ∆(Ω), then the signal corresponds to writing µ0 as a convex combination of
posterior distributions in ∆(Ω). The incentive compatibility constraints ensure that action a

is preferred by Receiver on the posterior distribution on Ω induced by a.
Each posterior distribution µ ∈ ∆(Ω) is associated with a preferred action a∗(µ) for

Receiver, i.e., the action that maximizes Eω∼µu(a, ω). We can plot Sender’s utility as a
function V : ∆(Ω) → R of the posterior: V (µ) = Eω∼µv(a∗(µ), ω). Define cav(V ) as the
concavification of V : the pointwise smallest concave function that is an upper bound for V .
Equivalently,

cav(V )(µ) = sup{z : (µ, z) ∈ co(V )} (8)

where co(V ) is the convex hull of the graph of V . The convex hull co(V ) is the set of pairs
(µ, z) such that if the prior is µ, there exists a signal with value z. Thus, cav(V )(µ0) is the
optimal utility that Sender can achieve when the prior is µ0.

This is a very general result, holding also for compact spaces of actions and continuous
reward functions. It also follows from an older result on games of imperfect information
studied by Aumann and Maschler [1].

Note that if V is already concave, then Sender reveals no information. For example, in the
zero-sum case when the utility functions of Sender and Receiver sum to zero, V is concave.
On the other hand, if the Sender and Receiver have completely aligned utility functions, V

is convex and Sender reveals all information.
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In general, we do not know how to compute the concavification of an arbitrary function
V : ∆(Ω) → R. If the graph of V is semi-algebraic (defined by a Boolean combination
of polynomial inequalities), we can use techniques from the theory of reals, using the
characterization that the concavification of V evaluated at µ is sup{z | (µ, z) ∈ co(V )} and
that co(V ) is a semi-algebraic set if the graph of V is semi-algebraic.

The above LP assumes that the world is given explicitly. In case the world is given
symbolically, as valuations to a set of variables, it still works if we assume that the prior
has small (polynomial-size in the size of the problem) support. The optimization problem
can sometimes be solved even when this assumption is not true. Consider the case in
which u(a, ω) and v(a, ω) are real-valued random variables that can be arbitrarily correlated.
We say actions are independent if u(a) = u(a, ω) and u(a′) = u(a′, ω) are independent
random variables for distinct actions a ̸= a′, and the same is true for v(a) = v(a, ω) and
v(a′) = v(a′, ω). Then, the distribution µ0 is fully specified by the marginal distribution of
the pair (u(a), v(a)) for each action a. We assume that each action’s marginal distribution
has finite support, and refer to each element of the support as a type.

Dughmi and Xu [11] show that in case u(a) and u(a′) are independent and identically
distributed (IID) for a ̸= a′, and v(a) and v(a′) are also IID, Sender’s optimization problem
can be solved in polynomial time in the number of actions n and the number of types m.
This is non-trivial, since the above LP has exponentially many (mn) states of the world. On
the other hand, the problem becomes #P-hard if the distributions are arbitrary.

2.3 Examples
Prosecution. Kamenica and Gentzkow [17] give an example of Bayesian persuasion in a
courtroom setting. A prosecutor (Sender) is trying to convince a judge (Receiver) that a
defendant is guity. When the defendant is guilty, revealing all the evidence will help the
prosecutor, but when the defendant is innocent, revealing all the evidence will likely hurt the
prosecutor’s case. Kamenica and Gentzkow show that when the prosecutor and the judge
are rational Bayesian, a prosecutor can organize their argument to increase the probability
of conviction.

Concretely, assume that the judge has two actions: acquit or convict. The states of the
world correspond to the defendant’s status: guilty or innocent. The judge gets a utility of 1
for choosing the just action (convict the guilty and acquit the innocent) and utility 0 for
the unjust action. The prosecutor gets a utility of 1 if the judge convicts and 0 otherwise
– regardless of the defendant’s status. Assume that the prior Pr[guilty] = 0.3 is common
knowledge.

We model the prosecutor’s possible investigations into the case as distributions π(· | guilty)
and π(· | innocent). The prosecutor has to pick π and truthfully report the realization to
the judge (the commitment step). (It is required by law that the prosecutor cannot hide
evidence, even it makes a conviction unlikely.)

If there is no communication, e.g., if the investigation is completely uninformative, the
judge always acquits, since innocence is more likely than guilt according to the prior. If
the investigation is fully informative, i.e., reveals the defendant’s status with probability 1,
then the judge convicts 30% of the time. However, suppose that the prosecutor picks an
investigation as follows:

π(acquit | innocent) = 4
7 π(acquit | guilty) = 0

π(convict | innocent) = 3
7 π(convict | guilty) = 1
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4:8 Sequential Decision Making with Information Asymmetry

This constitutes an IC action advice for the judge. Notice that the judge convicts with
probability 60% (Bayes’ rule!). This is true even though the judge knows that 70% of
defendants are innocent and even though the judge is fully aware that the prosecutor’s advice
(the signal) is designed to maximize the probability of conviction!

Traffic Control. Das et al. [9] describe a simple example of persuasion to improve congestion
in uncertain traffic conditions. Imagine a traffic network with two paths between a source
and an origin. Travel time on Path I is independent of the number of agents using it, but
depends on an uncertain state of nature (e.g., Path I is a highway that is prone to repair).
Travel time on Path II depends on the number of agents taking the path: the more agents
take the path, the more time it takes. The goal of Sender (a social planner) is to signal
the state of Path I to the agents so that the congestion on Path II is reduced to a social
optimum. Hence, each agent is an individual Receiver, and they are modeled as non-atomic
players, who individually is a zero-measure and have negligible influence to the system (but
collectively their influence integrates).

Let us be more precise. There are two paths P1 and P2, and the state of the world is
ω ∈ {0, 1}, both states are equally likely. The travel times are given by c(P1) = ω and
c(P2) = 1

3 + 2s. Agents seek to minimize their travel costs.
If Sender can mandate how everyone drives, the socially optimum cost is calculated as

follows. If ω = 0, everyone uses P1 and the total cost is zero. If ω = 1, the socially optimum
move is to send 1

6 of the agents to P2 so that the aggregate cost is 17
18 . Thus, the expected

aggregate travel cost is 17
36 .

Suppose Sender provides exact information. Then, when ω = 1, agents will crowd P2
until the costs of the two paths are equalized: 1

3 + 2s = 1, or s = 1
3 . The aggregate cost is 1

and therefore the expected aggregate cost is 1
2 , which is worse than the optimum.

Now consider the following signaling strategy.

π(take P1 | ω = 0) = 1 π(take P2 | ω = 0) = 0

π(take P1 | ω = 1) = 5
6 π(take P2 | ω = 1) = 1

6

(Namely, when ω = 1, we send the message “take P1” to 5/6 of the agents and “take P2” to
the rest.) Then, when ω = 0, everyone takes P1 and the cost is zero. When ω = 1, we expect
1
6 fraction to go on P2. The overall expected cost is the same as the optimal: 17

36 . Thus, the
social planner persuades some fraction of people to take P1.

We observe that the signal is incentive compatible. Upon seeing the advice “take P1” the
expectation of the cost of P1 is

Pr[ω = 1 | take P1] · 1 =
5
6

5
6 + 1

= 5
11

(where Pr[ω = 1 | take P1] is the posterior belief given π) and the expectation of the cost of
P2 is

1
3 + 2

(
Pr[ω = 0 | take P1] · 0 + Pr[ω = 1 | take P1] · 1

6

)
= 16

33 >
5
11

Thus, the agent should pick P1. Similarly, on seeing “take P2”, the expectation of P1 is 1
and the expectation of P2 is 2

3 < 1. Thus, the agent should again pick P2.
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2.4 Markov Persuasion Processes
We now extend the model of Bayesian persuasion to the sequential setting. Our formal
model, called Markov persuasion processes (MPP),1 is an MDP with reward uncertainties,
given by a tuple

M = ⟨S, A, P, Ω, (µs)s∈S , u, v⟩ (9)

that represents the repeated interaction between Sender and Receiver.
Similar to a standard MDP, S is a finite state space; A is a finite action space available to

Receiver; P : S×A×S → [0, 1] is the transition dynamics of the state. When the environment
is in state s and Receiver takes action a, the state transitions to s′ with probability P (s, a, s′);
both Sender and Receiver are aware of the state throughout. Meanwhile, rewards are generated
for both Sender and Receiver, and are specified by the reward functions u : S × Ω × A → R
and v : S × Ω × A → R, respectively. That is, unlike in a standard MDP, the rewards in our
setting also depend on an external parameter ω ∈ Ω (akin to the state of the world in the
basic model). This parameter captures an additional layer of uncertainty of the environment.
At each state s ∈ S, we assume that the parameter follows a distribution µs ∈ ∆(Ω) and is
drawn anew every time the state changes. µs is common prior knowledge shared between
Sender and Receiver, but only Sender has access to the realization of ω.

Since the actions are taken only by Receiver, Sender does not directly influence the
state. As in Bayesian persuasion, Sender influences Receiver’s action by signaling. We only
consider Markovian signaling strategies, whereby signals only depend on the current state
(independent of the history). As in the one-shot case, a revelation theorem argument shows
that Sender only needs to consider IC action advice at each state.

Formally, a signaling strategy π = (πs)s∈S of Sender consists of a function πs : Ω → ∆(GA)
for each state s ∈ S. Sender will commit to a strategy before the start of play. In every
step, upon observing the realization of the external parameter ω, Sender will send an action
advice sampled from πs(ω) when the current state is s.

2.5 Optimal Signaling Problem
Similarly to the one-shot setting, we take Sender’s point of view and investigate the problem
of optimal signaling strategy design: given M, find a signaling strategy π that maximizes
Sender’s (discounted) cumulative reward. The cumulative reward is defined as

E

[
T∑

t=0
γt · v(st, at, ωt)

∣∣∣∣∣ z, π, P

]
, (10)

where z = (zs)s∈S is the distribution of the starting state, γ ∈ [0, 1) is a discount factor, T is
a given horizon, and the expectation is taken over the trajectory (st, ωt, at)T

t=0 induced by z,
the signaling strategy π, and the dynamics P . If T is finite, we call the problem the finite
horizon setting, and if T is infinite, we call the setting infinite horizon.

Finally, we introduce a behavioral model for Receiver. We will consider two major types
of Receivers – myopic and far-sighted. A myopic Receiver only cares about their instant
reward in each step, whereas a far-sighted Receiver considers the cumulative reward with
respect to a discount factor γ̃ > 0 (which need not be equal to γ).

1 The nomenclature comes from [26].
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In summary, the game proceeds as follows. At the beginning, Sender commits to a
signaling strategy π and announces it to Receiver. Then in each step, an external parameter
ω ∼ µs is drawn (by nature) according to the state s ∈ S of the MPP; Sender observes
ω ∈ ω, samples an action advice g ∼ πs(ω), and sends g to Receiver. Receiver receives g,
updates their belief about ω and decides an action a ∈ A to take. Sender receives v(s, ω, a)
and Receiver receives u(s, ω, a). The state then transitions to s′ ∼ P (s, a, ·), which both
players observe. The game proceeds until the horizon T (or forever, if T = ∞).

2.6 Solving the Optimal Signaling Problem
2.6.1 Myopic Receiver
We first consider the case where Receiver is myopic. In this case, Receiver aims to maximize
her reward in each individual step. Upon receiving a signal g in state s, Receiver takes a
best action a ∈ A, which maximizes the immediate expected reward Eω∼Pr(·|g,πs)u(s, a, ω).
Think of a myopic Receiver as a sequence of “short-lived” Receivers, one for each time step.
Receiver in step t plays a one-shot Bayesian persuasion game with Sender, collects their
reward, and disappears.

We consider the problem of computing an optimal signaling strategy in an infinite-horizon
MPP (T = ∞) with a myopic Receiver. We call this problem OptimalSignaling∞-myopic.

▶ Theorem 2.2 [15]. OptimalSignaling∞-myopic can be solved in polynomial time.

The proof of Theorem 2.2 is via a reduction from the problem to linear programming.
The approach is as follows.

We can easily characterize the outcome of an IC action advice π: at each state s, since
Receiver is incentivized to follow the advice, with probability ϕπ

s (ω, a) := µs(ω) · πs(ω, ga)
they will take action a when the realized external parameter is ω. Thus, ϕπ

s is a distribution
over Ω × A.

We then define the following set As ⊆ ∆(Θ × A), which contains all such distributions
that can be induced by some IC action advice:

As = {ϕπ
s ∈ ∆(Ω × A) : π is an IC action advice} .

We can now view the problem facing Sender as an (single-agent) MDP

M∗ = ⟨S, (As)s∈S , P ∗, v∗⟩ ,

where S is the same state space in M; As defines an (possibly infinite) action space for
each s; the transition dynamics P ∗ : S × ∆(Ω × A) × S → [0, 1] and reward function
v∗ : S × ∆(Ω × A) → R are such that

P ∗(s, x, s′) = E(ω,a)∼xP (s, a, s′) and v∗(s, x) = E(ω,a)∼xv(s, a, ω)

for any x ∈ As. Namely, M∗ is defined as if Sender can choose actions (which are (ω, a)
pairs) freely from As, whereas the choice is actually realized through persuasion. A policy σ

for M∗ maps each state s to an action x ∈ As, and it corresponds to an IC action advice
π in M, with ϕπ

s = σ(s) for all s. The problem of designing an optimal action advice then
translates to computing an optimal policy for M∗.

The standard approach to computing an optimal policy for an MDP is to compute a
value function V : S → R that satisfies the Bellman equation:

V (s) = max
x∈As

[
v∗(s, x) + γ ·

∑
s′∈S

P ∗(s, x, s′) · V (s′)
]

for all s ∈ S.
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There exists a unique solution to the above system of constraints, from which an optimal
policy can be extracted. The solution is posed as the following linear program over variables
{V (s) : s ∈ S}:

min
∑
s∈S

zs · V (s) (11)

subject to V (s) ≥ v∗(s, x) + γ ·
∑
s′∈S

P ∗(s, x, s′) · V (s′) for all s ∈ S, x ∈ As (12)

The optimal value of this LP directly gives the cumulative reward of optimal policies under
a given initial state distribution z.

The issue with this LP formulation is that there may be infinitely many constraints as
(12) must hold for all x ∈ As. This is unlike MDPs with a finite action space, where there
are a finite number of constraints, one for each action.

Gan et al. [15] show that LP (11) can nevertheless be solved in polynomial time by using
the ellipsoid method. The key to this approach is to implement the separation oracle in
polynomial time. For any given value assignment of the variables (in the above LP, values of
V (s)), the oracle should decide correctly whether all the constraints of the LP are satisfied
or not and, if not, output a violated one.

Implementing the separation oracle for the LP requires solving maxx∈As v∗(s, x) + γ ·∑
s′∈S P ∗(s, x, s′) · V (s′) − V (s) for all s ∈ S: by checking if the maximum value is positive,

we can identify if (12) is violated for some x ∈ As. Indeed, the set of IC action advice
can be characterized by (5)–(7). Hence, we obtain the following LP implementation of the
separation oracle, where {x(ω, a) : ω ∈ Ω, a ∈ A} and {πs(ω, ga) : ω ∈ Ω, a ∈ A} are the
variables.

max v∗(s, x) + γ ·
∑
s′∈S

P ∗(s, x, s′) · V (s′) − V (s)

s.t. x(ω, a) = µs(ω) · πs(ω, ga) for all ω ∈ Ω, a ∈ A, s ∈ S∑
ω∈Ω

µs(ω) · πs(ω, ga) · (u(s, a, ω) − u(s, a′, ω)) ≥ 0, for a, a′ ∈ A, s ∈ S∑
a∈A

πs(ω, ga) = 1, for ω ∈ Ω, s ∈ S

πs(ω, ga) ≥ 0, for ω ∈ Ω, a ∈ A, s ∈ S

Since the ellipsoid method runs in polynomial time, the tractability of
OptimalSignaling∞-myopic follows immediately. By exploiting the duality of linear
programming, one can provide a different, “direct” encoding into a linear programming
problem as well (see [15]).
▶ Remark 2.3 Finite Horizon. When the horizon is finite, one can set up the Bellman equation
and evaluate it by backward induction. Each step in the process solves a one-shot persuasion
problem using the linear programming formulation. This gives a polynomial time algorithm
when the time horizon is given in unary. Wu et al. [26] study several variants of this problem,
as well as the setting of reinforcement learning.
▶ Remark 2.4. In the reachability problem for Markov persuasion processes, there is a subset
of marked states and Sender receives a unit reward if and only if one of these states is
reached along a trajectory. The reachability problem asks what is the expected probability
that the subset is reached. The above linear programming formulation can be used to solve
the reachability problem against myopic Receivers. Since the reachability problem is at the
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core of model checking logics on MDPs, we should be able to build up a logic on Markov
persuasion processes and obtain efficient model checking algorithms in case of myopic agents.
We leave the design of appropriate logics and model checking, as well as the computation of
optimal signals for omega-regular properties, as future work.

2.6.2 Far-sighted Receiver
A far-sighted (FS) Receiver looks beyond the immediate reward and optimizes the cumulative
reward

E

[
T∑

t=0
γ̃t · u(st, at, ωt)

∣∣∣∣∣ z, π, P

]
, (13)

where, as in (10), z = (zs)s∈S is the distribution of the starting state, γ̃ ∈ [0, 1) is a discount
factor possibly different from Sender’s discount factor, T is the horizon, and the expectation
is taken over the trajectory (st, at, ωt)T

t=0 induced by the initial distribution z, the signaling
strategy π, and the dynamics P .

When facing an FS Receiver, we cannot define a set As independently for each state.
Sender needs to take a global view and aim to induce Receiver to use a policy that benefits
Sender. We consider the problem of optimal signaling strategy design in an infinite horizon
setting against an FS Receiver, called OptimalSignaling∞-FS.

At this point, we know very little about the decidability and complexity of this problem
or a characterization of optimal strategies. For example, we know that Sender can do better
with history-dependent signaling. We also know that the problem is hard.

▶ Theorem 2.5 [15]. Assuming that P ̸= NP, OptimalSignaling∞-FS does not admit
any polynomial-time 1

λ1−ϵ -approximation algorithm for any constant ϵ > 0, where λ is the
number of states s ∈ S in which the prior distribution µs is non-deterministic (i.e., supported
on at least two external parameters). This holds even when |Θ| = 2 and the discount factors
γ, γ̃ ∈ (0, 1) are fixed.

The proof of Theorem 2.5 is via a reduction from the Maximum Independent Set
problem, which is known to be NP-hard to approximate [29].

2.6.3 Advice-myopic Receiver
Between the tractable (myopic) Receivers and the intractable (FS) Receivers lie the advice-
myopic Receivers. An advice-myopic (AM) Receiver accounts for the cumulative future
rewards just as an FS Receiver, but behaves myopically in ignoring the future signals of
Sender. In other words, an AM Receiver always assumes that Sender will disappear in the
next step and relies only on their own prior knowledge to estimate any future payoff.

▶ Theorem 2.6 [15]. OptimalSignaling∞-AM is solvable in polynomial time.

The idea is that, since an AM Receiver does not consider future signals, their future
reward is independent of Sender’s signaling strategy. One can compute the future payoff in
polynomial time by fixing the uninformative signal for Sender and solving the resulting MDP.
This payoff is added to the reward function of the AM Receiver, but now we can consider
Receiver to be myopic since the future payoffs have been taken into account.

The interest in AM Receiver is that an optimal signaling policy of Sender assuming an
AM Receiver can be used to define a strategy against an arbitrary FS Receiver. The idea
is to provide a threat: if Receiver ever deviates from the action advice, Sender will forever
provide only uninformative signals. One can show that this threat strategy enables Sender
to get an expected payoff that is at least as much against any AM Receiver.
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s0

s1

s2

a

b

a (0, 0)

b
(0.1, 10)

c (0.1, 0)

External parameter
ωa ωb

a (1, 1) (−1, 0)
b (−1, 0) (1, 1)

Figure 1 A simple example from [15].

The threat strategy uses one bit of memory (to remember if Receiver had deviated
from the advice). However, this threat-based strategy may not be an optimal one-memory
strategy. Indeed, for any positive integer k, the problem of computing an optimal k-memory
strategy against FS Receivers is inapproximable (via an adapted version of the reduction for
proving Theorem 2.5). In contrast, in the myopic and advice-myopic settings, since Receiver’s
behavior is Markovian, the optimal signaling strategies we designed remain optimal even
when we are allowed to use memory-based strategies.

2.7 Example
Figure 1 shows a simple example to distinguish myopic, far-sighted, and advice-myopic
Receivers. In the MPP, Sender wishes to reach s2 while maximizing rewards. Transitions
are deterministic. Each edge is labeled with the corresponding action and (in the brackets)
rewards for Receiver and Sender, respectively. The rewards for state-action pairs (s0, a) and
(s0, b) (dashed edges) also depend on the 2-valued state of the world {ωa, ωb}, as specified
in the table. The state of the world is sampled uniformly at random at each step. Assume
discount factor 1

2 both for Sender and for Receivers.
With no signaling, Receiver will always take action c in s0, so Sender will obtain payoff 0.

Sender can reveal information about the external parameter to attract Receiver to move to
s1. If Receiver is myopic, Sender can reveal full information, which leads to Receiver moving
to s1, taking action b, and ending in s2. As a result, Sender obtains payoff 6.

However, if Receiver is FS, this strategy will not work. Receiver will loop between s0
and s1, resulting in overall payoff 4/3 for Sender. To improve, Sender can choose to be less
informative in s0, e.g., advising Receiver to take the more profitable action 10% of the time
and a uniformly sampled action in {a, b} the remaining 90% of the time. Receiver will move
to s1 under this signaling, breaking ties in favor of Sender. Sender’s expected payoff is 5.55.

Alternatively, Sender can also use the following threat-based strategy, which again yields
a payoff of 6. Sender always reveals the true information in s0, advises Receiver to take b in
s1, and threatens to stop providing any information if Receiver does not follow the advice.
The outcome of this strategy coincides with how an advice-myopic Receiver behaves. Such a
Receiver will choose b at s1 as future disclosures are not considered.

2.8 Extensions to the Model
In our model of MPPs thus far, the external parameter ω is picked independently at each
step. We can envision a more general model, in which the external parameter also evolves
according to a stochastic process. For example, we can assume that the external parameter
evolves according to a Markov chain. Such extensions have been studied [12, 23], but we do
not know of any general algorithmic results.
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One can show that against myopic Receivers, the optimal value can be calculated on a
Markov process on the space of distributions in S × ∆(Ω); the initial belief is the initial
distribution of the state of the world and the value function maps beliefs to values and is the
fixpoint of a functional mapping beliefs to beliefs. The functional is a contraction map on a
suitable topological space, and therefore the fixpoint exists and is unique. While one can
approximately evaluate the fixpoint numerically, we do not know how to characterize the
complexity of the decision problem. Since the belief space ∆(Ω) is infinite, we can no longer
set up a (finite) linear programming problem nor argue about termination of the iterations.

3 Mechanism: Agent Observes, Principal Acts

A dual scenario of persuasion is one where Receiver is the principal and Sender is the agent.
In this case Receiver can commit to a mechanism to influence Sender’s signaling behavior.
A mechanism σ : G → ∆(A) is a map from Sender’s signal space G to a distribution over
the action space A, which specifies how Receiver will act, upon receiving each signal from
Sender.

3.1 One-shot Mechanism Design
In the one-shot setting, the steps in this scenario are as follows.
1. Sender and Receiver share a prior µ0.
2. Receiver picks a mechanism σ : G → ∆(A) and commits to it; Sender observes σ.
3. Nature picks ω ∼ µ0 and reveals it to Sender.
4. Sender observes ω and sends a signal g ∈ G (we describe below how this signal is chosen).
5. Receiver observes g and takes an action a ∼ σ(g) according to her commitment.
6. Sender receives utility v(a, ω) and Receiver receives u(a, ω).

In Step 4, as a rational player, Sender best-responds to the mechanism σ, sending a signal
so that the action taken by Receiver in Step 5 maximizes Sender’s payoff in expectation.
Namely, the following signal is sent:

g ∈ arg max
g∈G

Ea∼σ(g)v(a, ω). (14)

Here, one subtlety, similar to the one in the persuasion setting, is that there is actually no
predefined signal space or one that is agreed upon between the two players, so the mechanism
is not well-defined if Sender picks a signal outside of G. The revelation principle then comes
in again, which now says that it is without loss of generality to consider direct mechanisms,
whereby the signal space is restricted to a finite set GΩ := {gω : ω ∈ Ω}; each signal gω ∈ GΩ
corresponds to a realization of the state of the world. In other words, the interaction in
Step 4 can be viewed as an information elicitation process, where Receiver asks Sender: what
is the realization of the external parameter? Sender answers ω by sending the corresponding
signal gω.

Specifically, given an arbitrary mechanism σ : G → ∆(A), an equivalent mechanism
ς : GΩ → ∆(A) can be constructed by letting ς(gω) = σ (f(ω)) for all ω ∈ Ω, where f : Ω → G

is a map defined by (14) (by fixing an arbitrary tie-breaking rule to select g in case there are
multiple optimal signals). It is not hard to see that ς induces an equivalent signaling behavior
of Sender and the same payoffs in Step 6. Moreover, it also elicits truthful information from
Sender, incentivizing Sender to send gω whenever the realization is ω.
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In summary, the revelation principle indicates that it is without loss of generality to
consider mechanisms that are both direct and IC. Given this result, the problem of computing
an optimal mechanism for Receiver can be formulated as the following LP with variables
{σ(gω, a) : ω ∈ Ω, a ∈ A}, i.e., σ(gω, a) is the probability of Receiver taking action a upon
receiving gω.

max
∑
ω∈Ω

∑
a∈A

µ0(ω) · σ(gω, a) · u(a, ω) (15)

subject to
∑
a∈A

σ(gω, a) · v(a, ω) ≥
∑
a∈A

σ(gω′ , a) · v(a, ω), for ω, ω′ ∈ A (16)∑
a∈A

σ(gω, a) = 1, for a ∈ A (17)

σ(gω, a) ≥ 0 for ω ∈ Ω, a ∈ A (18)

The formulation takes a form symmetric to LP (4). The first constraint requires σ to be IC.

3.2 Markov Mechanism Process
Moving to the dynamic setting, we consider the same MDP M = ⟨S, A, P, Ω, (µs)s∈S , u, v⟩
as in (9). Receiver commits to a state-dependent mechanism σs : GΩ → ∆(A). At every step,
both players observes the state s of M, and nature samples an external parameter ω ∼ µs.
Sender observes ω and sends a signal g to Receiver. Receiver plays an action a ∼ σs(g)
according to a pre-committed state-dependent mechanism. Consequently, rewards v(s, a, ω)
and u(s, a, ω) are generated for the players, and M transitions to a next state s′ ∼ P (s, a, ·).
We ask the infinite-horizon optimal mechanism design problem from Receiver’s prospective. In
what follows we present a polynomial-time algorithm for this problem when Sender is myopic.
The approach is similar to the LP-based algorithm for OptimalSignaling∞-myopic.

3.3 Optimal Mechanism Design for Myopic Sender
Call the optimal mechanism design problem OptimalMechanism∞-myopic when Sender
is myopic.

▶ Theorem 3.1. OptimalMechanism∞-myopic can be solved in polynomial time.

The proof is similar to that of Theorem 2.2. We reduce the problem to linear programming
and use the ellipsoid method. We define the set of possible outcomes of a direct IC mechanism
σ as follows:

As = {ϕσ
s ∈ ∆(Ω × A) : σ is a direct IC mechanism} ,

where ϕσ
s is a distribution with ϕσ

s (ω, a) := µs(ω)·σs(gω, a) being the probability that Receiver
takes action a while the realized external parameter is ω. The problem facing Receiver
then reduces to an (single-agent) MDP M∗ = ⟨S, (As)s∈S , P ∗, u∗⟩, where the transition
dynamics P ∗ and reward function u∗ are such that P ∗(s, x, s′) = E(ω,a)∼xP (s, a, s′), and
u∗(s, x) = E(ω,a)∼xu(s, ω, a) for any x ∈ As. The follwoing LP, similar to LP (11), is then
devised to compute an optimal mechanism (with variables {V (s) : s ∈ S}).

min
∑
s∈S

zs · V (s) (19)

subject to V (s) ≥ u∗(s, x) + γ ·
∑
s′∈S

P ∗(s, x, s′) · V (s′) for s ∈ S, x ∈ As (20)
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The separation oracle of this LP can further be implemented by solving the following LP for
all s ∈ S, where {x(ω, a) : ω ∈ Ω, a ∈ A} and {σs(gω, a) : ω ∈ Ω, a ∈ A} are the variables.

max u∗(s, x) + γ ·
∑
s′∈S

P ∗(s, x, s′) · V (s′) − V (s)

subject to x(ω, a) = µs(ω) · σs(gω, a) for s ∈ S, ω ∈ Ω, a ∈ A∑
a∈A

σs(gω, a) · v(s, a, ω) ≥
∑
a∈A

σs(gω′ , a) · v(s, a, ω), for ω, ω′ ∈ A, s ∈ S∑
a∈A

σs(gω, a) = 1, for a ∈ A, s ∈ S

σs(gω, a) ≥ 0 for ω ∈ Ω, a ∈ A, s ∈ S

▶ Remark 3.2. Zhang and Conitzer [28] studied a more general model in the finite-horizon
case and consider history-dependent mechanisms. In their model, Receiver cannot observe
the state of the MDP and has to rely on Sender to make observations; essentially, the state
is equivalent to the external parameter in our model but follows a stochastic process. They
show that the problem is polynomial time solvable in the finite horizon case when Sender is
myopic, but NP-hard to approximate when Sender is FS. They also characterize optimal
mechanisms and show that the optimal mechanism against an FS sender depends on the
history of state-action trajectories, as well as the current state. Note that the NP-hardness
does not imply the hardness of the optimal mechanism design problem we defined against
an FS Sender, where the goal is to compute an optimal Markov mechanism for an infinite
horizon, whereas the external parameter is sampled independently in each step. We leave
the complexity of this problem open for future work.

4 Conclusion

We have described some basic results in the theory of Markov decision processes with
information asymmetry. We show that in the two settings we study, persuasion and mechanism
design, one can obtain optimal signaling policy and optimal mechanism design in polynomial
time against myopic agents. As we point out throughout the article, many algorithmic
questions in these domains remain open. While the models have been applied to many
problems in economics and game theory, their applications to system design have not been
explored so far. We hope our article can act as a starting point for studying these models
and their algorithmic properties, in the context of concurrency theory and system design.

References
1 Robert J. Aumann and Michael B. Maschler. Repeated Games with Incomplete Information.

MIT Press, 1995.
2 Dirk Bergemann and Juuso Välimäki. Dynamic mechanism design: An introduction. Journal

of Economic Literature, 57(2):235–74, 2019.
3 Andrea Celli, Stefano Coniglio, and Nicola Gatti. Private Bayesian persuasion with sequential

games. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’20), pages
1886–1893, 2020.

4 Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol. What is decidable about
partially observable markov decision processes with ω-regular objectives. J. Comput. Syst.
Sci., 82(5):878–911, 2016. doi:10.1016/j.jcss.2016.02.009.

5 Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic ω-regular games. J.
Comput. Syst. Sci., 78(2):394–413, 2012. doi:10.1016/j.jcss.2011.05.002.

https://doi.org/10.1016/j.jcss.2016.02.009
https://doi.org/10.1016/j.jcss.2011.05.002


J. Gan, R. Majumdar, G. Radanovic, and A. Singla 4:17

6 Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
doi:10.1016/0890-5401(92)90048-K.

7 Vincent Conitzer and Tuomas Sandholm. Complexity of mechanism design. In Adnan Darwiche
and Nir Friedman, editors, Proceedings of the 18th Conference in Uncertainty in Artificial
Intelligence (UAI’02), pages 103–110. Morgan Kaufmann, 2002.

8 Vincent Conitzer and Tuomas Sandholm. Self-interested automated mechanism design and
implications for optimal combinatorial auctions. In Proceedings of the 5th ACM Conference
on Electronic Commerce (EC’04), pages 132–141, 2004.

9 Sanmay Das, Emir Kamenica, and Renee Mirka. Reducing congestion through information
design. In Proceedings of the 55th Allerton Conference on Communication, Control, and
Computing, pages 1279–1284, 2017.

10 S. Dughmi. Algorithmic information structure design. ACM SIGecom Exch., 15(2):2–24, 2017.
11 Shaddin Dughmi and Haifeng Xu. Algorithmic Bayesian persuasion. In Daniel Wichs and

Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 412–425. ACM,
2016. doi:10.1145/2897518.2897583.

12 J. Ely. Beeps. American Economic Review, 107(1):31–53, 2017.
13 Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other

fixed points. SIAM J. Comput., 39(6):2531–2597, 2010. doi:10.1137/080720826.
14 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.
15 Jiarui Gan, Rupak Majumdar, Goran Radanovic, and Adish Singla. Bayesian persuasion

in sequential decision-making. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence, (AAAI’22). AAAI Press, 2022.

16 Emir Kamenica. Bayesian persuasion and information design. Annual Review of Economics,
11:249–272, 2019.

17 Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. American Economic Review,
101(6):2590–2615, 2011.

18 Andrew Kephart and Vincent Conitzer. Complexity of mechanism design with signaling costs.
In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’15), pages 357–365, 2015.

19 Andrew Kephart and Vincent Conitzer. The revelation principle for mechanism design with
reporting costs. In Proceedings of the 2016 ACM Conference on Economics and Computation
(EC’16), pages 85–102, 2016.

20 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Artif. Intell., 147(1-2):5–34, 2003.
doi:10.1016/S0004-3702(02)00378-8.

21 Roger B. Myerson. Incentive compatibility and the bargaining problem. Econometrica,
47(1):61–73, 1979.

22 Alessandro Pavan. Dynamic mechanism design: Robustness and endogenous types. In Advances
in Economics and Econometrics: Eleventh World Congress, volume 1, pages 1–62, 2017.

23 J. Renault, E. Solan, and N. Vieille. Optimal dynamic information provision. Games and
Economic Behavior, 104:329–349, 2017.

24 Tuomas Sandholm, Vincent Conitzer, and Craig Boutilier. Automated design of multistage
mechanisms. In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI’07), volume 7, pages 1500–1506, 2007.

25 Sylvain Sorin. A First Course on Zero-Sum Repeated Games. Springer, 2008.
26 Jibang Wu, Zixuan Zhang, Zhe Feng, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan,

and Haifeng Xu. Sequential information design: Markov persuasion process and its efficient
reinforcement learning. CoRR, abs/2202.10678, 2022. arXiv:2202.10678.

27 Hanrui Zhang, Yu Cheng, and Vincent Conitzer. Automated mechanism design for classification
with partial verification. In Proceedings of the 25th AAAI Conference on Artificial Intelligence
(AAAI’21), volume 35(6), pages 5789–5796, 2021.

CONCUR 2022

https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1145/2897518.2897583
https://doi.org/10.1137/080720826
https://doi.org/10.1016/S0004-3702(02)00378-8
http://arxiv.org/abs/2202.10678


4:18 Sequential Decision Making with Information Asymmetry

28 Hanrui Zhang and Vincent Conitzer. Automated dynamic mechanism design. Advances in
Neural Information Processing Systems (NeurIPS’21), 34, 2021.

29 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC’06), pages 681–690. Association for Computing Machinery, 2006.



Involved VASS Zoo
Wojciech Czerwiński #

University of Warsaw, Poland

Abstract
We briefly describe recent advances on understanding the complexity of the reachability problem
for vector addition systems (or equivalently for vector addition systems with states - VASSes). We
present a zoo of a few involved VASS examples, which illustrate various aspects of hardness of
VASSes and various techniques of proving lower complexity bounds.
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1 Introduction

Vector addition systems and essentially equivalent Petri nets are one of the most natural
models of computation. They are also widely used in practise [21]. A convenient way to work
with vector addition systems is to consider its extension by states (which is also essentially
equivalent), namely vector addition systems with states (VASSes). A d-dimensional VASS
(shortly a d-VASS) is a finite automaton equipped with d integer counters. Each transition
can increase or decrease the counters by fixed values. Importantly, no counter can be ever
decreased below zero. The counter represents the current number of items of some resource
in the modelled system, thus it is natural to assume that this number is nonnegative.

▶ Example 1. The following 3-VASS was introduced in [9], we call it the HP-gadget after
the names of authors of [9]. This VASS has interesting properties, which we use in the sequel.
Transition colours are just to distinguish particular transitions, they have no semantics in
the VASS behaviour.

p q(−1, 1, 0) (2, −1, 0)

(0, 0, 0)

(0, 0, −1)

The following is an example of a run

p(2, 0, 7) −→ p(1, 1, 7) −→ p(0, 2, 7) −→ q(0, 2, 7) −→ q(2, 1, 7) −→ q(4, 0, 7) −→ p(4, 0, 6)

Observe that in a similar way there is a run from p(k, 0, n) to p(2k, 0, n − 1): we apply k

times the blue transition reaching p(0, k, n), then once the black transition reaching q(0, k, n),
then k times the green transition reaching q(2k, 0, n) and finally once the red transition
reaching p(2k, 0, n − 1). Intuitively in the state p we transfer value k from the first counter
to the second one and then jump to state q. In the state q we transfer back value k to the
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first counter while multiplying it by 2. Finally we jump back to the state p decreasing the
third counter by one. We will use similar approach many times in the sequel. Notice that
repeating this process n times we have the following run

p(1, 0, n) −→ p(2, 0, n − 1) −→ . . . −→ p(2n−1, 0, 1) −→ p(2n, 0, 0),

where each black arrow represents a sequence of transitions (in the sequel we often draw a
sequence of transitions as one arrow). We also have

p(2n, 0, 0) −→ p(x, y, 0)

for any x + y = 2n, so the set of configurations reachable from p(1, 0, n) is of at least
exponential size.

On the other hand the size of the reachability set of p(1, 0, n) (set of configurations
reachable from p(1, 0, n)) is finite. Indeed, the red transition can be fired at most n times and
it is easy to see that in between of two firings of the red transition all the other transitions
also have to be fired only finitely many times. Thus the above example is the first interesting
one: the reachability set is finite, but of at least exponential size (in that case of exactly
exponential size).

Various decision problems for VASSes are studies since the 70-ties (with the proviso that
in those times they were known under the name of Petri nets). Probably the most central
one is the reachability problem. It asks whether in a given VASS there is a run from a given
source configuration, to a given target configuration. A configuration is a state together
with a counter valuation. Another related fundamental problem is the coverability problem,
which asks whether in a given VASS there is a run from a given source configuration to a
configuration which is above a given target configuration. We say that one configuration is
above the other one if it has the same state, but counter values may be higher.

2 History of the problem

The reachability and coverability problems are considered since the 70-ties. The first milestone
result was ExpSpace-hardness of the coverability problem by Lipton in 1976 [17]. Notice that
this implies ExpSpace-hardness of the reachability problem, as coverability can be reduced
to reachability by adding to a VASS additional transitions decreasing counters in the target
state (one transition for each counter). In 1978 Rackoff has proven that the coverability
problem is in ExpSpace [19]. He achieved it by showing that if there is a run from the source
configuration s to some configuration t′ ⪰ t (namely t′ is above t) then there is also some
short run from the source configuration s to some configuration t′′ ⪰ t, where by short be
mean at most doubly-exponential in the input size. This approach, by small witness (which
is often a short run) turns out to be successful in many cases for the reachability problem in
VASSes. In 1982 finally decidability of the reachability problem was proved by Mayr [18].
The construction was very involved, so the follow-up works by Kosaraju and Lambert tried
to simplify the solution and phrase it in a bit simpler setting [10, 11]. This construction is
currently often known by the name KLM decomposition, as it decomposes the input VASS
into many simpler ones.

After these breakthrough results there was a long period of not much progress on the
reachability problem. The community tried to improve the state of art, but it was hard, so
results about VASSes are scarce in the 90-ties. In 2009 Haase at al. proved that in 1-VASSes
with numbers on transitions encoded in binary (we call such VASSes binary) the reachability



W. Czerwiński 5:3

problem is NP-complete [8]. It is easy to show that for unary 1-VASSes the problem is
NL-complete. More progress on low dimensional VASSes followed. In 2015 Blondin at el.
proved that in binary 2-VASSes the reachability problem is PSpace-complete [1], while a year
later this result was improved by Englert at el. to NL-completeness in unary 2-VASSes [6].
Both the upper complexity bounds in dimension two were shown by the use of short run
approach: authors of [1] proved that if there is any run from the source to the target in
binary 2-VASS then there is also one of at most exponential length, while in [6] the same
was shown for unary 2-VASSes and polynomial length runs.

Recently there was also a big progress in fixing complexity of the reachability problem.
In 2015 Leroux and Schmitz have obtained first complexity upper bound on the problem [15].
By careful analysis of the KLM decomposition algorithm they proved that it runs in cubic-
Ackermann time. In 2019 the same authors improved their previous result. They proposed
a slight modification of the KLM decomposition algorithm and elegantly analysing the
dimension a some vector spaces proved that the modified version runs in Ackermann time [16].
Also in 2019 Czerwiński et al. proved that the reachability problem is Tower-hard [2]. This
was a surprise as many people felt that the problem should rather be ExpSpace-complete,
but we probably lack some insight to prove the upper bound. In [2] we have used the
technique of multiplication triples described later. Just two years later the complexity of
the problem was finally settled to be Ackermann-complete. Two teams have independently
shown Ackermann-hardness using slightly different techniques: Leroux [13] and Czerwiński
and Orlikowski [4]. In [4] we have used the technique of controlling-counter and amplifiers,
the technique of controlling-counter is described later.

3 Remaining challenges

Despite the fact that the complexity of the reachability problem is VASSes was established
the problem still remains elusive in my opinion. The gap in our understanding is most striking
in dimension three. For binary 2-VASSes the problem is PSpace-complete [1]. However for
binary 3-VASSes the best complexity lower bound is still PSpace-complete inherited from the
dimension two, while the best known upper bound is higher than Tower, namely in the F7
complexity class of the fast growing hierarchy [16]. We define the hierarchy of fast growing
functions as F1(n) = 2n and Fk+1(n) = Fk−1 ◦ . . . ◦ Fk−1︸ ︷︷ ︸

n

(1) for any k > 1. One can easily

see that in particular F2(n) = 2n and F3(n) = Tower(n). Based on the hierarchy of fast
growing functions Fi one defines a hierarchy of fast growing complexity classes Fi, which
roughly speaking is the class of problems solvable in time Fi closed under a few natural
operations [20]. Thus in particular we do not know whether existence of a run from the
source to the target always implies existence of exponential length run or not. Or maybe
length of this short run is doubly-exponential or tower size. Similarly we lack knowledge
about other low dimensions.

Generally in dimension d the best upper bound for the reachability problem is Fd+4 [16]
(that is how we get F7 in dimension three). The current best lower complexity bound
is Fd-hardness in dimension 2d + 4, so F(d−4)/2-hardness for d-VASSes [14]. The current
research goal here is to find out whether we can get Fd-hardness in dimension d + C for
some constant C ∈ N.

Recently we worked with co-authors on the reachability problem for low dimensional
VASSes [3, 5] motivated by the following two main ideas: 1) low dimensional VASSes
are by itself a natural computation model, 2) understanding problems in low dimensional
VASSes often turns out to be the best way of developing techniques very useful in general
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dimension. Indeed, understanding low dimensions was actually the triggering point for our
results [2] and [4]. Current best complexity lower bounds for low dimensional VASSes are
proven in our work with Łukasz Orlikowski [4]:

NP-hardness for unary 4-VASSes;
PSpace-hardness for unary 5-VASSes;
ExpSpace-hardness for binary 6-VASSes;
Tower-hardness for unary 8-VASSes.

The rest of this text focuses on presenting techniques of proving lower complexity bounds
from the perspective of concrete low dimensions or concrete examples of involved low
dimensional VASSes. We believe this perspective is the best way to illustrate the intuitions
behind various approaches and to introduce various techniques useful in general.

4 Big finite reachability sets

We start the involved examples zoo from a family of examples, which is a folklore since years.
These are VASSes, which have finite reachability set, but this set is very big. We first present
a 3-VASS with finite, but doubly-exponential reachability set. For simplicity we do not write
a vector on the transition if it does not change the counters at all (we often colour such
transitions black).

▶ Example 2. The following 3-VASS has doubly-exponential reachability set.

p1 q1

r

p2 q2

(−1, 1, 0) (2, −1, 0)

(0, 0, −1)

(−1, 0, 1)

(1, 0, 0)

(−1, 1, 0) (2, −1, 0)

(0, 0, −1)

Notice that the above example consists of two copies of the HP-gadget from Example 1.
Thus we have the following run:

p1(1, 0, n) −→ . . . −→ q1(2n, 0, 0) −→ r(2n, 0, 0) −→ . . . −→ r(0, 0, 2n)
−→ p2(1, 0, 2n) −→ . . . q2(22n

, 0, 0).

In other words in the first copy of the HP-gadget from p1(1, 0, n) we reach p2(2n, 0, 0). Then
in state r we transfer value from the third counter to the first one. The transition from r to
p2 adds one to the first counter such that we start from p2(1, 0, 2n) in the second copy of the
HP-gadget.

It is easy to show that the reachability set of p1(1, 0, n) is finite, the proof goes as in
Example 1.
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In a similar way one can constructs a 3-VASS which has k-fold exponential reachability
set, we just take k copies of the HP-gadget and connect them by states ri as above. However
this requires a growing number of states in a VASS. Here comes another idea: by adding just
one additional counter we can simulate any number of copies on this counter.

▶ Example 3. The following 4-VASS has finite, but tower size reachability set. It is just a
slight modification of Example 2.

p q

r

(−1, 1, 0, 0) (2, −1, 0, 0)

(0, 0, −1, 0)

(−1, 0, 1, 0)(1, 0, 0, −1)

In this 4-VASS we have added the fourth counter and the only transition which modifies
this counter is the orange transition. The rest is exactly like in the HP gadget with additional
state r. Thus for any k we have to following run:

p(1, 0, k, n) −→ . . . −→ q(2k, 0, 0, n) −→ r(2k, 0, 0, n) −→ . . . −→ r(0, 0, 2k, n) −→ p(1, 0, 2k, n−1).

In other words we can exponentiate the first counter for the cost of decreasing the forth
counter by one. Thus for any n ∈ N there is also the following run:

p(1, 0, 1, n) −→ p(2, 0, 1, n − 1) −→ p(4, 0, 1, n − 2) −→ . . . −→ p(Tower(n), 0, 1, 0).

This easily implies that the reachability set from p(1, 0, 1, n) is of at least Tower(n) size. It
remains to show that this reachability set is finite. To see this notice first that the orange
transition can be fired at most n times. Now it is easy to see that in between of any two
firings of the orange transition other transitions can be fired at most exponentially many
times wrt. the current counter values, which finishes the argument.

The Example 3 already shows that a very simple VASS can have a pretty complicated
behaviour. It is not hard to see that in a similar vein one can construct in any dimension d a
unary d-VASS with finite reachability set of size around Fd−1(n), where n is the size of the
source configuration.

5 Finite reachability sets are enough

It is a good moment to emphasise that authors of [16] not only have shown that the
reachability problem in d-VASSes can be solved in Fd+4, but they proved that if there is
a run from the source to the target then there is also one of length bounded by roughly
speaking Fd+4(n). Using this result and the generalised Example 3 one can show that
VASSes with finite reachability sets are actually not much simpler than VASSes without that
restriction. More concretely speaking one can reduce the reachability problem for d-VASSes
to the reachability problem for (d + 6)-VASSes with finite reachability sets. Assume we need
to check whether s −→ t in a d-VASS V . We construct a (d + 6)-VASS U as follows. First
part of U behaves like generalised Example 3 in dimension d + 5, thus on one of the counters
(say counter number d + 5) can have values up to Fd+4(n). We use the last (d + 6)-th counter

CONCUR 2022
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to keep the sum of all the dimensions numbered from 1 to d + 4. In the second part U

simulates V on dimensions from 1 to d. In the target configuration of U we demand that
dimension d + 6 is equal to zero, so after the first part all the dimensions from 1 to d + 4
need also to be zero. The only change of the second part of U wrt. to V is that to simulate
any transition of V in U we decrease the (d + 5)-th counter by one. Notice now that if there
is a run from s to t in U by [16] there is also one of length at most Fd+4(n) thus there is also
one in V . Of course no run in U implies no run in V as the simulation is faithful. On the
other hand the reachability set of any configuration in V is finite as in each step we decrease
the (d + 5)-th counter. This finishes the argument.

The above reasoning does not show that considering VASSes with finite reachability sets is
enough, because we have added six additional dimensions. However it suggests that in order
to understand well low dimensions it might be sufficient to look sometimes at this special
case of finite reachability set. Notice that this is a strong statement, as the reachability
problem can be easily solved for VASSes with finite reachability set: we just compute the
whole set of configurations reachable from the source and after this computation stops (it
has to, as the reachability set is finite) we check whether the target belongs to the set.
Moreover we have a pretty good complexity upper bounds for this very naive algorithm.
By [7] the longest sequence of configurations in a d-VASS without a domination (situation
that a configuration further in the sequence is strictly bigger than a configuration earlier in
the sequence) is bounded roughly speaking by Fd+1(n), where n upper bounds the size of
VASS and the source configuration. Notice that in VASSes with finite reachability set no run
has a domination, as domination allows for pumping counters up and would imply an infinite
reachability set. Thus [7] shows that exploring the whole space of reachable configurations in
a d-VASS can be achieved in the complexity class Fd+1.

Notice however that for 3-VASSes even assuming finite reachability set we still get
complexity F4, which is much higher than the known lower bound of PSpace-hardness. Thus
there might be a possibility of constructing a 3-VASS or other lower dimensional VASS with
shortest run being exponential, doubly exponential or even Tower length. Below we show
a few current, still very weak, techniques which can lead in the future to some involved
examples.

6 Telescope equations

Example 3 and its generalisations exhibit a complicated behaviour of low dimensional VASSes.
Notice however that it does not eliminate a possibility that in low dimensional VASSes there
are always some short paths. Imagine the following slight modification of Example 3.

p q

rt

(−1, 1, 0, 0) (2, −1, 0, 0)

(0, 0, −1, 0)

(−1, 0, 1, 0)(1, 0, 0, −1)(−1, 0, 0, 0)
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From Example 3 we know that in the above VASS there are Tower(n)-long paths
from p(1, 0, 1, n) to t(0, 0, 1, 0): such a path first reaches p(Tower(n), 0, 1, 0), then goes
to t(Tower(n), 0, 1, 0) and then in a loop decreases the first counter. However there are also
some very short runs: we n times apply the sequence

p(ℓ, 0, 1, k) −→ q(ℓ, 0, 1, k) −→ r(ℓ, 0, 1, k) −→ p(ℓ + 1, 0, 1, k − 1)

then go to state t and quickly decrease the first counter.
This illustrates the main challenge with proving lower bounds for the reachability problem

in VASSes: it is very hard to force a VASS to take some long run from the source to the
target. Here we present one approach how to force a VASS to have only long runs, the
example is taken from [3]. It is based on the following simple telescope equation:

k = k

k − 1 · k − 1
k − 2 · . . . · 3

2 · 2
1 . (1)

Based on (1) we build a 3-VASS Vk with size of all the transitions bounded by k and a
property that the shortest path from the source to the target is of length exponential in k.

▶ Example 4. In this example the source configuration is s(0, 0, 0) and the target configuration
is t(0, 0, 0).

s

s′ pk

qk

pk−1

qk−1

. . .

p2

q2

t(1, 1, 0)

(1, 1, 0)

(−1, −k, 0)

(0, −(k − 1), k)

(0, 1, −1)

(0, −(k − 2), k − 1)

(0, 1, −1)

(0, −1, 2)

(0, 1, −1)

Let us analyze how a run from the source to the target in VASS Vk can look like. In
the state s we fire the blue transition to s′(1, 1, 0) and then some number N − 1 times the
blue loop in state s′ reaching the configuration s′(N, N, 0). So the prefix of our run is the
following

s(0, 0, 0) −→ s′(1, 1, 0) −→ . . . −→ s(N, N, 0) −→ pk(N, N, 0).

States s and s′ are distinguished to assure that N ≥ 1. Notice now that the only other
transition in Vk which modifies the first counter is the red transition in state t. Thus the
considered run need to finish in the following way:

q2(N, Nk, 0) −→ t(N, Nk, 0) −→ . . . −→ t(0, 0, 0).

Observe now that for each i ∈ {2, . . . , k} the orange transitions in qi do not change the sum
of the second and the third counter while the violet transitions in pi can multiply this sum
by at most i

i−1 . Moreover this is the case if and only if the run enters pi in the configuration
of the form pi(0, K, 0) where K is divisible by i − 1 and leaves it in the configuration of the
form pi(0, 0, K · i

i−1 ). In other words in the state pi the whole value of second counter needs
to be transferred to the third counter while multiplying it by i

i−1 . Notice now that from
pk(N, N, 0) till q2(N, Nk, 0) the second counter needs to be multiplied by exactly k. Using
Equation (1) we derive that in any run from pk(N, N, 0) to q2(N, Nk, 0) in all the states the
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whole value of the second counter have to be transferred to the third counter or vice versa.
In particular each loop have to be fired the maximal number of times. So the run needs to
look as follows:

pk(N, N, 0) −→ pk(N, 0,
Nk

k − 1
) −→ qk(N, 0,

Nk

k − 1
) −→ qk(N,

Nk

k − 1
, 0) −→ pk−1(N,

Nk

k − 1
, 0)

−→ pk−1(N, 0,
Nk

k − 2
) −→ qk−1(N, 0,

Nk

k − 2
) −→ qk−1(N,

Nk

k − 2
, 0) −→ pk−2(N,

Nk

k − 2
, 0)

. . .

−→ p3(N, 0,
Nk

2
) −→ q3(N, 0,

Nk

2
) −→ q3(N,

Nk

2
, 0) −→ p2(N,

Nk

2
, 0)

−→ p2(N, 0, Nk) −→ q2(N, 0, Nk) −→ q2(N, Nk, 0).

Now notice that in the run for each i ∈ {2, . . . , k − 1} we have a configuration qi(N, Nk
i , 0),

which means that Nk is divisible by each i ∈ {2, . . . , k − 1}. Thus Nk is a multiplicity of the
lcm(2, . . . , k − 1), which is known to be exponential wrt. k (see [3], Claim 6). This finishes
the proof that any run from the source to the target needs to be of length exponential wrt. k.

The above example can also be expressed by another formalism, which is often much
more convenient to present VASSes then drawing them as automata. This formalism is called
the counter programs. We do not introduce counter programs formally, instead we present
VASS from Example 4 as a counter program hoping that this clarifies the issue. We assume
that the three counters are named x, y and z. For more details look into [3].

1: x += 1 y += 1
2: loop
3: x += 1 y += 1
4: for i := k down to 2 do
5: loop
6: y −= i − 1 z += i

7: loop
8: y += 1 z −= 1
9: loop

10: x −= 1 y −= k

Using similar trick with the telescope equation (but a bit more involved) we have shown
in [3] an example a 4-VASS in which the shortest run from the source to the target is of
doubly-exponential length.

7 Controlling-counter

VASSes, in contrast to counter machines lack zero-tests, thus it is pretty hard to force their
runs to be exact. Notice that with zero-tests we can easily force the modified Example 3
(mentioned in paragraph Telescopic equations) to have only runs of Tower length. We just
enforce that all the loops are fired maximally by zero-testing appropriate counters after the
loops. Of course we cannot hope to simulate zero-tests by VASSes as VASSes with zero-tests
(called counter machines) have undecidable reachability problem.

However, we are able to simulate some restricted number of zero-tests in VASSes. First
of all notice that in the reachability problem we ask whether we can reach the target
configuration, so we already have some very weak for of zero-tests: if we set the target
configuration to be zero at some counter then we can test this counter to be zero at the end
of the run. Now the idea is to boost this single zero-test to simulate more zero-tests during
the run.
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Let us assume that we have a d-VASS V with some the counter x and we want to zero-test
counter x in some three moments during the run. First very naive idea is to add three
additional counters x1, x2, x3 to V , which are copies of x and modify them exactly as x. The
first one is stopped being modified after the first moment, the second one is not modified
after the second moment and the third one is not modified after the third moment. In this
way if in the modified (d + 3)-VASS we set the target configuration to be zero on counters
x1, x2, x3 then we enforce that any run reaching the target indeed have value zero in the
three considered moments. The main drawback of this idea is that it introduces additional
counters, so is too costly. However, already this technique illustrates that zero-test in the
target configuration can be used to simulate zero-tests in other moments in the run.

Here we introduce the technique of the controlling-counter, which was proposed in [4].
Assume we have a run ρ in our d-VASS V of the following form:

s
ρ1−→ c1

ρ2−→ c2
ρ3−→ c3

ρ4−→ t

and we want to zero-test the counter x in the configurations c1, c2, c3. Let us assume that the
value of the counter x in the source configuration s is zero. Let the value of the counter x in
configurations ci be xi, for i ∈ {1, 2, 3}. We need to check whether x1 = x2 = x3 = 0. Notice
that it is enough to check if x1 + x2 + x3 = 0 as all the counter values xi are nonnegative.
Let ∆i be the effect of the run ρi on the counter x. Thus we have x1 = ∆1, x2 = ∆1 + ∆2
and x3 = ∆1 + ∆2 + ∆3. Therefore x1 + x2 + x3 = 3∆1 + 2∆2 + ∆3 and it is enough to
check whether this expression has value zero. In order to do that we introduce one additional
controlling-counter y which is tested for zero in the target configuration t. We set the value
of the counter y in the configuration s to be zero. Each change of x by C in ρ1 is matched
by change of y by 3C. Similarly, each change of x by C in ρ2 is matched by change of y by
2C. Finally, each change of x by C in ρ3 is matched by change of y by the same value C.
Thus indeed final value of y is exactly 3∆1 + 2∆2 + ∆3 and it is enough to check y for zero
in the target configuration in order to assure that x1 = x2 = x3 = 0.

It is easy to observe that this reasoning can be extended to any number of zero-tests.
In general if we are in the part of the run ρ such that after this part still k zero-tests are
performed on x then each change of x by C needs to be matched by the change of y by k · C.
We only need that configurations c1, c2, c3, . . . are distinguishable in the sense that we can
change behaviour of counter y after any ci. This can be often easily implemented by use of
states.

It is also not hard to see that one controlling-counter can control many original counters,
not just one.

Below we present the simplest possible application of the controlling-counter to 3-VASSes.
Consider the following 2-VASS with two counters x and y starting in the counter valuation
(x, y) = (1, 0).

1: for i := 1 to k do
2: loop
3: x −= 1 y += 2
4: loop
5: x += 1 y −= 1
6: loop
7: x −= 1
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It is easy to see that if all the loops are fired maximally then before entering line 6
counter values are (x, y) = (2k, 0) and loop in lines 6-7 can be fired 2k times. Thus if we
want to reach values (0, 0) at the end of the counter program there exists an exponential run.
However, there is also a very short run, the one totally ignoring the loops in lines 2-3 and in
lines 4-5 and immediately jumping to the loop in lines 6-7 which is fired just once. However,
introducing a controlling-counter z we may enforce the loops to be fired maximal number of
times and thus obtain another example of a VASS with shortest one run being exponential.

▶ Example 5. In the 2-VASS above both counters x and y are tested exactly k times. Thus
as the starting valuation is (x, y) = (1, 0) we should start from value z = k. Therefore in
the i-th iteration of the for-loop in the line 3 the counter x is still waiting for k − (i − 1)
zero-tests as well as the counter y. Similarly as in the line 3 the counter x in the line 5 is still
waiting for k − i zero-tests while the counter y is waiting for k − (i − 1) zero-tests. Therefore
in the line 3 we should increase z by (−1) · (k − i + 1) + 2 · (k − i + 1) = k − i + 1 while in the
line 5 we should increase z by 1 · (k − i) + (−1) · (k − i + 1) = −1. Therefore the resulting
3-VASS have the property that the shortest (and the only) run from (1, 0, k) to (0, 0, 0) is
exponential in k.

1: for i := 1 to k do
2: loop
3: x −= 1 y += 2 z += k − i + 1
4: loop
5: x += 1 y −= 1 z −= 1
6: loop
7: x −= 1

The use of the controlling-counter technique may be much more intricate, however the
above Example 5 presents its main idea. In [4] the whole Ackermann-hardness idea was based
on controlling-counters. Lasota in [12] simplified our approach and presented it without
the use of controlling-counters. It turns however that in low dimensions controlling-counter
technique can be very convenient as it uses only one additional dimension to control others
in contrast to the multiplication triple technique (explained below), which requires three
dimensions (at least in its classical version). Below we briefly describe the multiplication
triple technique. We also show how to use it together with the controlling-counter technique
to obtain Tower-hardness for the reachability problem in VASSes already in dimension eight.

8 Multiplication triples

Both the above presented techniques of telescope equations and controlling-counter are useful
for designing VASSes with long runs, but it is not clear how they solely can be used to get
some complexity lower bounds.

Here we briefly introduce the technique of multiplication triples and show how to use
it to get pretty easily PSpace-hardness lower bound for the reachability problem in unary
7-VASSes. Notice that it is not hard to improve this result, in [4] we have show PSpace-
hardness for unary 5-VASSes. Here we present this simple result to illustrate briefly an
application of the multiplication triple technique.

Recall that a d-counter machine is just a d-VASS with possibility of zero-tests. We say
that a run of a counter machine is B-bounded if at each configuration on this run the sum of
all the counter values does not exceed B. We first recall the following theorem, which is a
folklore.



W. Czerwiński 5:11

▶ Theorem 6. The problem whether a given three-counter machine for a given number n ∈ N
has a 2n-bounded run from a given source configuration to a given target configuration is
PSpace-hard.

The main idea behind the multiplication triple technique is that a d-VASS equipped with
three additional counters (x, y, z) with initial values (B, C, BC) can simulate C/2 zero-tests
on B-bounded counters. Here we do not explain how this simulation exactly works and why
this is the case, explanations can be found in [12, 4]. It is important for us here that in order
to obtain PSpace-hardness for 7-VASSes it is enough to construct a family Vn of 7-VASSes
with the following properties:

transition values of Vn are bounded by 2n (any polynomial function of n is fine),
all the reachable configurations of the form t(x1, . . . , x7), where t is the target state, have
the property that if x7 = 0 then x1 = x2 = x3 = 0, x4 = 2n and x6 = 2n · x5.

Intuitively speaking by testing x7 for zero in the target configuration we get a triple of
the form (2n, C, 2n · C) on counters (x4, x5, x6). In the latter part of the VASS run we can
simulate a three-counter machine on counters (x1, x2, x3) and use the counters (x4, x5, x6)
to check whether x1, x2, x3 are indeed 2n-bounded and for simulating zero-tests on them.
Thus in the rest of this paragraph we focus on showing how to construct the above family
Vn. Recall that counter programs are just ways of presenting VASSes, so we interchangeably
speak about VASSes and counter programs.

▶ Example 7. The idea is simple. We only use counters x1, x4, x5, x6, x7. We first set x4 = 1
and x5 = x6 = C for some guessed value C. Then using x1 as an auxiliary counter we
multiply n times counters x4 and x6 by 2. Counter x7 is used as the controlling-counter to
assure that the multiplications are exact. During this process the counters x4 and x6 are
zero-tested n times while the counter x1 is zero-tested 2n times. Therefore in the line 1 the
increase of x4 by 1 results in the increase of x7 by n. Similarly in line 3 the increase of x6 by
1 results in the increase of x7 by 2n. In the i-th iteration of the for-loop we have that:

in the line 6 counter x4 is waiting for n − i + 1 zero-tests and counter x1 is waiting for
2(n − i + 1) zero-tests, so x7 should be increased by 3n − 3i + 3,
in the line 8 counter x1 is waiting for 2(n − i + 1) zero-tests and counter x4 is waiting for
n − i zero-tests, so x7 should be decreased by n − i + 2,
in the line 6 counter x6 is waiting for n − i + 1 zero-tests and counter x1 is waiting for
2(n − i + 1) − 1 zero-tests, so x7 should be increased by 3n − 3i + 1,
in the line 8 counter x1 is waiting for 2(n − i + 1) − 1 zero-tests and counter x6 is waiting
for n − i zero-tests, so x7 should be decreased by n − i + 1,

1: x4 += 1 x7 += n

2: loop
3: x5 += 1 x6 += 1 x7 += 2n

4: for i := 1 to n do
5: loop
6: x4 −= 1 x1 += 2 x7 += 3n − 3i + 3
7: loop
8: x1 −= 1 x4 += 1 x7 −= n − i + 2
9: loop

10: x6 −= 1 x1 += 2 x7 += 3n − 3i + 1
11: loop
12: x1 −= 1 x6 += 1 x7 −= n − i + 1
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If after this counter program the controlling-counter x7 has value zero then it means that
indeed x1 = 0, x4 = 2n, x6 = 2n · x5 and clearly x2 = x3 = 0, so all the necessary conditions
for PSpace-hardness are fulfilled.

The above example shows how to join forces of controlling-counter and multiplication
triples technique to rather easily show some not entirely trivial PSpace-hardness lower bound
for 7-VASSes. By more clever constructions we can get a bit stronger lower bounds, but we
are still very far away from matching the upper and the lower bounds for the reachability
problem in low dimensional VASSes.

9 Afterthought

In this short tutorial we tried to present in the simplest possible way almost the whole
spectrum of current techniques of designing involved VASSes. Many of the applications are
more elaborate than the presented once, however it is still surprising that most of them are
not extremely complicated and some problems open for decades are solvable by techniques
which are at the end of the day rather simple. In my opinion we still need at least a few
more techniques in order to understand what phenomena are hiding in the low dimensional
VASSes.
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In this paper we investigate the equational theory of (the restriction, relabelling, and recursion free
fragment of) CCS modulo rooted branching bisimilarity, which is a classic, bisimulation-based notion
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show that CCS is not finitely based modulo the considered congruence. As a key step of independent
interest in the proof of that negative result, we prove that each CCS process has a unique parallel
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1 Introduction

This paper is a new chapter in the saga of the axiomatisation of the parallel composition
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studied the equational theory of (recursion free) CCS and proposed a ground-complete
axiomatisation for it modulo strong bisimilarity and observational congruence, two classic
notions of behavioural congruence (i.e., an equivalence relation that is compositional with
respect to the language operators) that allow one to establish whether two processes have the
same observable behaviour [34]. That axiomatisation included infinitely many axioms, which
were instances of the expansion law used to “simulate equationally” the operational semantics
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6:2 On the Axiomatisation of Branching Bisimulation Congruence over CCS

modulo bisimilarity can be obtained by enriching CCS with two auxiliary operators, i.e., the
left merge and the communication merge |, expressing one step in the pure interleaving
and the synchronous behaviour of ∥, respectively. Their result was strengthened by Aceto et
al. in [7], where it is proved that, over the fragment of CCS without recursion, restriction
and relabelling, the auxiliary operators and | allow for finitely axiomatising ∥ modulo
bisimilarity also when CCS terms with variables are considered. Moreover, in [9] that
result is extended to the fragment of CCS with relabelling and restriction, but without
communication. From those studies, we can infer that and | are sufficient to finitely
axiomatise ∥ over CCS modulo bisimilarity. (Henceforth, we only consider the recursion,
restriction and relabelling free fragment of CCS.) Moller showed, in [30,31], that they are
also necessary. He considered a minimal fragment of CCS, including only the inactive
process, action prefixing, nondeterministic choice and interleaving, and proved that, even
in the presence of a single action, bisimilarity does not afford a finite ground-complete
axiomatisation over that language. Moller’s proof technique was then used to show that the
same negative result holds if we replace and | with the so called Hennessy’s merge [21],
which denotes an asymmetric interleaving with communication, or, more generally, with a
single binary auxiliary operator satisfying three assumptions given in [3].

The aforementioned works considered equational characterisations of ∥ modulo strong
bisimilarity. However, a plethora of behavioural congruences have been proposed in the
literature, corresponding to different levels of abstraction from the information on process
execution. Hence, another chapter in the saga consisted in extending the studies recalled above
to the behavioural congruences in van Glabbeek’s linear time-branching time spectrum [15].
The work [5] delineated the boundary between finite and non-finite axiomatisability of ∥
modulo all the congruences in the spectrum.

Our contribution: branching bisimulation congruence. Some information on process
behaviour can either be considered irrelevant or be unavailable to an external observer.
Weak behavioural semantics have been introduced to study the effects of these unobservable
(or silent) actions, usually denoted by τ , on the observable behaviour of processes, each
semantics considering a different level of abstraction. A taxonomy of weak semantics is
given in [17], and studies on the equational theories of various of these semantics have been
carried out over the algebra BCCSP, which consists of the basic operators from CCS and
CSP [24] but does not include ∥ (see, among others, [6, 14, 20, 23, 33]). A finite, ground-
complete axiomatisation of parallel composition modulo rooted weak bisimilarity (also known
as observational congruence [23]) is provided by Bergstra and Klop in [13] over the algebra
ACPτ that includes the auxiliary operators and |. To the best of our knowledge, the only
study on the axiomatisability of CCS’s ∥ over open terms modulo weak congruences is the
negative result from [2], which shows that a class of weak congruences (including rooted
weak bisimilarity) does not afford a finite, complete axiomatisation over the open terms of
the minimal fragment of CCS with interleaving.

In this paper we focus on branching bisimilarity [19], which generalises strong bisimilarity
to abstract away from τ -steps of terms while preserving their branching structure [19, 20],
and its rooted version, which is a congruence with respect to CCS operators.

As a first main contribution, we show that rooted branching bisimilarity affords no finite
ground-complete axiomatisation over CCS. To this end, we adapt the proof-theoretic technique
used by Moller to prove the corresponding negative result for strong bisimilarity. We remark
that, even though the general proof strategy is a natural extension of Moller’s, our proof
requires a number of original, non-trivial technical results on (rooted) branching bisimilarity.
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In particular, we observe that equational proofs of τ -free equations might involve terms
having occurrences of τ in some intermediate steps (see, e.g., page 175 of Moller’s thesis [30]),
and our proof of the negative result for rooted branching bisimilarity will account for those
uses of τ , thus making our results special for the considered weak congruence. Moreover, as
an intermediate step in our proof, we establish a result of independent interest: we show
that each CCS process has a unique decomposition into indecomposable processes modulo
branching bisimilarity. A similar result was proven in [26], but only for interleaving parallel
composition. Here, we extend this result to the full merge operator, including thus the
possibility of communication between the parallel components.

Having established the negative result, a natural question is whether the use of the
auxiliary operators from [12] can help us to obtain an equational basis for rooted branching
bisimilarity. Hence, as our second main contribution, we consider the language CCSLC,
namely CCS enriched with and |, and we provide a complete axiomatisation for rooted
branching bisimilarity over CCSLC that is finite when so is the set of actions over which
terms are defined. This axiomatisation is obtained by extending the complete axiom system
for strong bisimilarity over CCSLC from [7] with axioms expressing the behaviour of and |
in the presence of τ -actions (from [13]), and with the suitable τ -laws (from [20,23]) necessary
to deal with rooted branching bisimilarity. Specifically, we will see that we can express
equationally the fact that left merge and communication merge distribute over choice (left
merge in one argument, communication merge in both), thus allowing us to expand the
behaviour of the parallel components using only a finite number of axioms, regardless of
their size. A key step in the proof of the completeness result consists in another intermediate
original contribution of this work: the definition of the semantics of open CCSLC terms.

Our contribution can then be summarised as follows:
1. We show that every branching equivalence class of CCS processes has a unique parallel

decomposition into indecomposables.
2. We prove that rooted branching bisimilarity admits no finite equational axiomatisation

over CCS.
3. We define the semantics of open CCSLC terms.
4. We provide a (finite) complete axiomatisation for ∼RBB over CCSLC.

2 Background

Labelled transition systems. As semantic model we consider classic labelled transition
systems [25]. We assume a non-empty set of action names A, and we let A denote the set of
action co-names, i.e., A = {a | a ∈ A}. As usual, we postulate that a = a and a ̸= a for all
a ∈ A. Then, we define Aτ = A ∪ A ∪ {τ}, where τ ̸∈ A ∪ A. Henceforth, we let µ, ν, . . .

range over actions in Aτ , and α, β, . . . range over actions in A ∪ A.

▶ Definition 1 (Labelled Transition System). A labelled transition system (LTS) is a triple
(P, Aτ , −→), where P is a set of processes (or states), Aτ is a set of actions, and −→ ⊆
P × Aτ × P is a (labelled) transition relation.

As usual, we use p
µ−→ p′ in lieu of (p, µ, p′) ∈ −→. For each p ∈ P and µ ∈ A, we write

p
µ−→ if p

µ−→ p′ holds for some p′, and p
µ−↛ otherwise. The initials of p are the actions that

label the outgoing transitions of p, that is, init(p) = {µ ∈ Aτ | p
µ−→}.
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Table 1 The SOS rules for CCS operators (µ ∈ Aτ , α ∈ A ∪ A).

µ.t
µ−→ t

t
µ−→ t′

t + u
µ−→ t′

t
µ−→ t′

t ∥ u
µ−→ t′ ∥ u

t
α−→ t′ u

α−→ u′

t ∥ u
τ−→ t′ ∥ u′

The language CCS. We consider the recursion, relabelling and restriction free fragment of
Milner’s CCS [28], which for simplicity we still call CCS, given by the following grammar:

t ::= 0 | x | µ.t | t + t | t ∥ t ,

where x is a variable drawn from a countably infinite set V disjoint from Aτ , and µ ∈ Aτ .
We use the Structural Operational Semantics (SOS) framework [35,36] to equip processes
with an operational semantics. The SOS rules (or inference rules) for the CCS operators
given above are reported in Table 1 (symmetric rules for + and ∥ are omitted).

We shall use the meta-variables t, u, v, w to range over process terms, and write var(t)
for the collection of variables occurring in the term t. We use a summation

∑
i∈{1,...,k} ti to

abbreviate t1+· · ·+tk, where the empty sum represents 0. We call the term tj (j ∈ {1, . . . , k})
a summand of t =

∑
i∈{1,...k} ti if it does not have + as head operator. The size of a term t,

denoted by size(t), is the number of operator symbols in t. A term is closed if it does not
contain any variables. Closed terms, or processes, will be denoted by p, q, r. Moreover, we
omit trailing 0’s from terms. A (closed) substitution is a mapping from process variables to
(closed) terms. Substitutions are extended from variables to terms, transitions, and rules in
the usual way. Note that σ(t) is closed, if so is σ. We let σ[x 7→ p] denote the substitution
that maps the variable x into process p and behaves like σ on all other variables. In particular,
[x 7→ p] denotes the substitution that maps the variable x into process p and behaves like
the identity on all other variables.

The inference rules in Table 1 allow us to derive valid transitions between closed terms.
The operational semantics for our language is then modelled by the LTS whose processes
are the closed terms, and whose labelled transitions are those that are provable from the
SOS rules. Henceforth, we let P denote the set of CCS processes. We remark that whenever
p

µ−→ p′, then size(p) > size(p′).

Branching bisimilarity. Branching bisimilarity is a bisimulation-based behavioural equival-
ence that abstracts away from computation steps in processes that are deemed unobservable,
while preserving their branching structure. The abstraction is achieved by labelling these
computation steps with τ , and giving τ -labelled transitions a special treatment in the defini-
tion of the behavioural equivalence. Preservation of the branching structure is mainly due to
the stuttering nature of branching bisimulation, which guarantees that the behaviour of a
term is preserved in the execution of a sequence of silent steps [19,20].

Let ε−→ denote the reflexive and transitive closure of the transition τ−→.

▶ Definition 2 (Branching bisimilarity). Let (P, Aτ , −→) be a LTS. Branching bisimilarity,
denoted by ∼BB, is the largest symmetric relation over P such that, whenever p ∼BB q, if
p

µ−→ p′, then either:
µ = τ and p′ ∼BB q, or
there are processes q′, q′′ such that q

ε−→ q′′ µ−→ q′, p ∼BB q′′, and p′ ∼BB q′.
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Table 2 Some axioms for rooted branching bisimilarity.

Some axioms for bisimilarity over CCS:

A0 x + 0 ≈ x P0 x ∥ 0 ≈ x

A1 x + y ≈ y + x P1 x ∥ y ≈ y ∥ x

A2 (x + y) + z ≈ x + (y + z) P2 (x ∥ y) ∥ z ≈ x ∥ (y ∥ z)
A3 x + x ≈ x

Additional axioms for rooted branching bisimilarity over CCS:

TB µ(τ(x + y) + y) ≈ µ(x + y) T1 µτx ≈ µx

Branching bisimilarity satisfies the stuttering property [20, Lemma 2.5]: Assume that
p ∼BB q. Whenever p

τ−→ p1
τ−→ . . .

τ−→ pn and pn ∼BB q, for some n ≥ 1, then pi ∼BB q for
all i = 1, . . . , n − 1.

To guarantee compositional reasoning over a process language, we require a behavioural
equivalence ∼ to be a congruence with respect to all language operators. This consists in
verifying whether, for all n-ary operators f

if ti ∼ t′
i for all i = 1, . . . , n, then f(t1, . . . , tn) ∼ f(t′

1, . . . , t′
n).

It is well known that branching bisimilarity is an equivalence relation [11, 20]. Moreover,
action prefixing and parallel composition satisfy the simple BB cool rule format [18] and
hence ∼BB is compositional with respect to those operators. However, ∼BB is not a congruence
with respect to nondeterministic choice. To remedy this inconvenience, the root condition
is introduced: rooted branching bisimilarity behaves like strong bisimilarity on the initial
transitions, and like branching bisimilarity on subsequent transitions.

▶ Definition 3 (Rooted branching bisimilarity). Rooted branching bisimilarity, denoted by
∼RBB, is the symmetric relation over P such that, whenever p ∼RBB q, if p

µ−→ p′, then there
is a process q′ such that q

µ−→ q′ and p′ ∼BB q′.

It is well known that rooted branching bisimilarity is an equivalence relation [11,20], and
that ∼RBB is a congruence over CCS (see, e.g., [18]).

Equational Logic. An axiom system E is a collection of (process) equations t ≈ u over the
considered language, thus CCS in this paper. An equation t ≈ u is derivable from an axiom
system E , notation E ⊢ t ≈ u, if there is an equational proof for it from E , namely if t ≈ u

can be inferred from the axioms in E using the rules of equational logic.
We assume, without loss of generality, that the substitution rule is only applied on

equations (t ≈ u) ∈ E . In this case, σ(t) ≈ σ(u) is called a substitution instance of an axiom
in E . Moreover, by postulating that for each axiom in E also its symmetric counterpart is
present in E , one may assume that the symmetry rule is never used in equational proofs.

We are interested in equations that are valid modulo some congruence relation ∼ over
terms. The equation t ≈ u is said to be sound modulo ∼ if σ(t) ∼ σ(u) for all closed
substitutions σ. For simplicity, if t ≈ u is sound, then we write t ∼ u. An axiom system is
sound modulo ∼ if, and only if, all of its equations are sound modulo ∼. Conversely, we
say that E is complete modulo ∼ if t ∼ u implies E ⊢ t ≈ u for all terms t, u. If we restrict
ourselves to consider only equations over closed terms then E is said to be ground-complete
modulo ∼. We say that ∼ has a finite, (ground) complete axiomatisation, if there is a finite
axiom system E that is sound and (ground) complete for ∼.
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6:6 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Henceforth, we exploit the associativity and commutativity of + and ∥ modulo the
relevant behavioural equivalences. The symbol = will then denote equality modulo A1–A2
and P1–P2 in Table 2.

3 The main results

Our aim is to study the axiomatisability of rooted branching bisimilarity over CCS. Our
investigations produced, as main outcomes, a negative result (Theorem 4) and a positive one
(Theorem 5). In detail, in the first part of the paper we prove the following theorem:

▶ Theorem 4. Rooted branching bisimilarity has no finite equational ground-complete axio-
matisation over CCS.

Given the negative result, it is natural to wonder whether an equational basis for rooted
branching bisimilarity can be obtained if we enrich CCS with some auxiliary operators.
Considering the similarities between ∼RBB and strong bisimilarity, the principal candidates
for this role are the left merge and the communication merge | from [12]. Indeed, we show
that if we add those two operators to the syntax of CCS, then we can obtain a complete
axiomatisation of rooted branching bisimilarity over the new language, denoted by CCSLC.
The desired equational basis is given by the axiom system ERBB, which is presented fully
in Table 7 in Section 10. ERBB is an extension of the complete axiom system for strong
bisimilarity over CCSLC from [7] with axioms expressing the behaviour of left merge and
communication merge in the presence of τ -actions (taken from [13]), and with the suitable
τ -laws necessary to deal with rooted branching bisimilarity (taken from [20,23]).

Formally, our second main contribution consists in a proof of the following theorem:

▶ Theorem 5 (Completeness). Let t, u be CCSLC terms. If t ∼RBB u, then ERBB ⊢ t ≈ u.

We will also argue that this axiomatisation is finite when so is the set of actions. Hence,
when A is finite, CCSLC modulo ∼RBB is finitely based, unlike CCS.

Considering the amount of technical results that we will need to fulfil our objectives,
we devote Section 4 to a presentation of the proof strategy that we will apply to obtain
Theorem 4. Sections 5–7 then present the formalisation of the ideas discussed in that section.
Similarly, in Section 8 we give a high-level description of the approach that we will follow to
prove Theorem 5. The technical development of the proof is then reported in Sections 9–10.

4 Proof strategy for Theorem 4

In this section we present the proof strategy we will apply to obtain Theorem 4.
Our proof follows the so-called proof-theoretic approach to non-finite-axiomatisability

results, whose use in the field of process algebra stems from [30–32], where Moller proved
that CCS modulo strong bisimilarity is not finitely based. In the proof-theoretic approach,
the idea is to identify a specific property of terms parametric in n ≥ 0, say Pn, and show
that if E is an arbitrary finite axiom system that is sound with respect to ∼RBB, then Pn is
preserved by provability from E when n is “large enough”. Next, we exhibit an infinite family
of equations {en | n ≥ 0} over closed terms that are all sound modulo ∼RBB, but are such that
only one side of en satisfies Pn, for each n ≥ 0. In particular, this implies that whenever n is
“large enough” then the sound equation en cannot be proved from E . Since E is an arbitrary
finite sound axiom system, it follows that no finite sound axiomatisation can prove all the
equations in the family {en | n ≥ 0} and therefore no finite sound axiomatisation is ground
complete for CCS modulo modulo ∼RBB.
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The choice of Pn and the family of equations. In [30–32] Moller applied the proof method
sketched above to prove that strong bisimilarity has no finite, complete axiomatisation over
CCS. The key idea underlying this result is that, since ∥ does not distribute over + in either
of its arguments modulo strong bisimilarity, then no finite, sound axiom system can “expand”
the initial behaviour of process a ∥

∑n
i=1 ai (where ai = aai−1 for each i = 1, . . . , n, with

a0 = 0) when n is large.
Since, by definition, rooted branching bisimilarity behaves exactly like strong bisimilarity

on the first step, and parallel composition does not distribute over choice in either of its
arguments, modulo ∼RBB, it is natural to exploit a similar strategy to prove Theorem 4. In
detail, we will consider, for each n ≥ 2, the process pn =

∑n
i=2 aa≤i, where a≤i =

∑i
j=1 aj

for each i = 2, . . . , n. Then, for each n ≥ 2, the property Pn will consist in having a summand
rooted branching bisimilar to the process a ∥ pn, and we will show that, when n is large
enough, Pn is an invariant under provability from an arbitrary finite, sound axiom system
(Theorem 18). Hence, the sound equation en : a ∥ pn ≈ apn +

∑n
i=2 a(a ∥ a≤i) cannot be

derived from E because its right-hand side has no summand that is rooted branching bisimilar
to a ∥ pn, unlike its left-hand side. Therefore no finite sound axiom system can prove the
infinite family of equations {en | n ≥ 2}, yielding the desired negative result.

In proving that Pn is invariant under provability, one pivotal ingredient will be the
fact that processes pn and a≤i, for n ≥ 2 and i ∈ {2, . . . , n}, are indecomposable. The
existence of a unique parallel decomposition into indecomposable processes modulo branching
bisimilarity over CCS with interleaving parallel composition was studied in [26]. In Section 6,
we extend the result from [26] to the full merge operator, thus including communication
(Proposition 16).

The choice of n. The choice of a sufficiently large n plays a crucial role in proving that Pn

is an invariant under provability from a finite, sound axiom system E (Theorem 18). The
key step in that proof deals with the case in which p ≈ q is a substitution instance of an
equation in E (Proposition 20), i.e., p = σ(t), q = σ(u), and t ≈ u ∈ E for some terms t, u and
closed substitution σ. In this case, assuming that n > size(t), we can prove that if p = σ(t)
satisfies Pn then this is due to the behaviour of σ(x) for some variable x. In order to reach
this conclusion, in Section 5, we study how the behaviour of closed instances of terms may
depend on the behaviour of the closed instances of variables occurring in them. Moreover,
we one can show that if t ≈ u is sound modulo rooted branching bisimilarity and x occurs in
t, then it occurs also in u. Hence, we can infer that σ(x) triggers in σ(u) the same behaviour
that it induced in σ(t), and thus that q = σ(u) satisfies Pn.

5 Decomposing the semantics of terms

In the proofs to follow, we shall sometimes need to establish a correspondence between the
behaviour of open terms and that of their closed instances. In detail, we are interested in the
correspondence between a transition σ(t) µ−→ p, for some term t, closed substitution σ, action
µ, and process p, and the behaviour of t and that of σ(x), for each variable x occurring in t.
The simplest case is a direct application of the operational semantics in Table 1.

▶ Lemma 6. For all terms t, t′, substitution σ, and µ ∈ Aτ , if t
µ−→ t′ then σ(t) µ−→ σ(t′).

Let us focus now on the role of variables. A transition σ(t) µ−→ p may also derive from
the initial behaviour of some closed term σ(x), provided that the collection of initial moves
of σ(t) depends, in some formal sense, on that of the closed term substituted for the variable

CONCUR 2022



6:8 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 3 Inference rules for the transition relation ℓ−→ρ (µ ∈ Aτ , α ∈ A ∪ A).

(a1)
x

(x)−−→µ xµ

(a2)
t

ℓ−→ρ c

t + u
ℓ−→ρ c

(a3)
t

ℓ−→ρ c

t ∥ u
ℓ−→ρ c ∥ u

(a4)
t

(x)−−→α c u
(y)−−→α c′

t ∥ u
(x,y)−−−→τ c ∥ c′

(a5)
t

(x)−−→α c u
α−→ u′

t ∥ u
(x)−−→ α,τ c ∥ u′

(a6)
t

α−→ t′ u
(x)−−→α c

t ∥ u
(x)−−→ α,τ t′ ∥ c

x. In this case, we say that x triggers the behaviour of t. To fully describe this situation, we
introduce an auxiliary transition relation over open terms. The notion of configuration over
terms, which stems from [8], will play an important role in their definition.

The presence of communication in CCS entails a complex definition of the semantics of
configurations. In particular, it is necessary to introduce a fresh set of variables VAτ

= {xµ |
x ∈ V , µ ∈ Aτ }, disjoint from V, and terms. Intuitively, the symbol xµ denotes that the
closed term substituted for an occurrence of variable x has begun its execution (expressed
in terms of a µ-action), and it contributes thus to triggering the behaviour of the term
in which x occurs (see Example 8 below). Moreover, we also need to introduce special
labels and subscripts for the auxiliary transitions over configurations, which will be of the
form c

ℓ−→ρ c′. Briefly, the label ℓ is used to keep track of the variables that trigger the
transition c

ℓ−→ρ c′. The subscript ρ, instead, will allow us to correctly define the semantics
of communication: it will allow us to distinguish a τ -action directly performed by (the term
substituted for) a variable x (transition c

(x)−−→τ c′, with ρ = τ), from a τ -action resulting
from the communication of x with a subterm of the configuration (transition c

(x)−−→α,τ c′,
with ρ = α, τ , where α is the action performed by the term substituted for x).

CCS configurations are defined over the set of variables VAτ
and CCS terms.

▶ Definition 7. The collection of CCS configurations, denoted by C, is given by:

c ::= xµ | t | c ∥ c , where t is a term, and xµ ∈ VAτ
.

The auxiliary transitions of the form ℓ−→ρ are then formally defined via the inference rules
in Table 3, where we omitted the symmetric rules to (a2), (a4), (a5) and (a6). We have that
ρ ∈ Aτ ∪ ((A ∪ A) × {τ}), whereas the label ℓ can be either of the form (x) or (x, y), for
some variables x, y ∈ V . Given a variable x and a label ℓ, we write x ∈ ℓ if x occurs in ℓ.

The distinguished variables xµ allow us to keep track of which variable and action trigger
the behaviour of the term, and they also allow us to present substitutions in an intuitive
fashion. As explained in the following example, it is precisely because of substitutions (and
communication) that we need to make the action µ explicit in xµ.

▶ Example 8. Let x ∈ V and consider the term x ∥ x. By rules (a1) and (a4) in Table 3,
we have that x ∥ x

(x,x)−−−−→τ xα ∥ xα because x
(x)−−→α xα and x

(x)−−→α xα. Hence, given any
substitution σ such that σ(x) α−→ p1 and σ(x) α−→ p2, for some terms p1, p2, we want to be
able to correctly infer that σ(x) ∥ σ(x) τ−→ p1 ∥ p2. Since the two occurrences of x, xα and xα,
can be distinguished by the subscripts, the substitution σ[xα 7→ p1, xα 7→ p2](xα∥xα) = p1∥p2
is well-defined. Without the subscripts, it would not have been possible to correctly define
the substitution σ on the configuration c that is the target of x ∥ x

(x,x)−−−−→τ c.
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▶ Lemma 9. Let t be term and σ be a closed substitution. Let x, y ∈ V.
1. For any µ ∈ Aτ , if σ(x) µ−→ p, for some process p, and t

(x)−−→µ c, for some configuration
c ∈ C, then σ(t) µ−→ σ[xµ 7→ p](c).

2. For any α ∈ A ∪ A, if σ(x) α−→ p, for some process p, and t
(x)−−→α,τ c, for some

configuration c ∈ C, then σ(t) τ−→ σ[xα 7→ p](c).
3. For any α ∈ A ∪ A, if σ(x) α−→ px, σ(y) α−→ py, for some processes px, py, and t

(x,y)−−−→τ

c ∈ C, for some configuration c, then σ(t) τ−→ σ[xα 7→ px, yα 7→ py](c).

Lemma 9 shows how the auxiliary transitions can be used to derive the behaviour of σ(t)
from those of the variables in t. We are now interested in analysing the converse situation:
we show how a transition σ(t) µ−→ p can stem from transitions of the term t and of the
process σ(x), for x ∈ var(t). We limit ourselves to present the case of silent actions σ(t) τ−→ p

as it requires a detailed analysis. The case of transitions labelled with observable actions is
simpler and therefore omitted.

▶ Lemma 10. Let t be a term, σ be a closed substitution, and p be a process. If σ(t) τ−→ p,
then one of the following holds:
1. There is a term t′ s.t. t

τ−→ t′ and σ(t′) = p.
2. There are a variable x, a process q, and a configuration c s.t. σ(x) τ−→ q, t

(x)−−→τ c, and
σ[xτ 7→ q](c) = p.

3. There are a variable x, a process q, and a configuration c s.t., for some α ∈ A ∪ A,
σ(x) α−→ q, t

(x)−−→α,τ c, and σ[xα 7→ q](c) = p.
4. There are variables x, y, processes qx, qy and a configuration c s.t., for some α ∈ A ∪ A,

σ(x) α−→ qx, σ(y) α−→ qy, t
(x,y)−−−→τ c, and σ[xα 7→ qx, yα 7→ qy](c) = p.

6 Unique parallel decomposition

As explained in Section 4, our approach for establishing that Pn is invariant under equational
proofs relies on processes having a unique parallel decomposition modulo ∼BB.

▶ Definition 11 (Parallel decomposition modulo ∼BB). A process p is indecomposable if
p ̸∼BB 0 and p ∼BB p1 ∥p2 implies p1 ∼BB 0 or p2 ∼BB 0, for all processes p1 and p2. A parallel
decomposition of a process p is a finite multiset *p1, . . . , pk+ of indecomposable processes
p1, . . . , pk such that p ∼BB p1 ∥ · · · ∥ pk. We say that p has a unique parallel decomposition
if p has a parallel decomposition *p1, . . . , pk+ and for every other parallel decomposition
*p′

1, . . . , p′
ℓ+ of p there exists a bijection f : {1, . . . , k} → {1, . . . , ℓ} such that pi ∼BB p′

f(i) for
all 1 ≤ i ≤ k.

To prove that processes have a unique parallel decomposition we shall exploit a general
result stating that a partial commutative monoid has unique decomposition if it can be
endowed with a weak decomposition order that satisfies power cancellation [26]; we shall define
and explain the notions below. Note that, in view of axioms P0–P2, which are (also) sound
modulo ∼BB, the set of processes P modulo ∼BB is a commutative monoid with respect to the
binary operation naturally induced by ∥ on ∼BB-equivalence classes and the ∼BB-equivalence
class of 0 as identity element. We permit ourselves a minor abuse in notation and use → to
(also) denote the binary relation {(p, q) | ∃µ. p

µ−→ q}, and proceed to argue that → induces
a weak decomposition order satisfying power cancellation on the commutative monoid of
processes modulo ∼BB.
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Given any process p and n ≥ 1, let pn denote the n-fold parallel composition p ∥ pn−1,
with p0 = 0. We first state some properties of the reflexive-transitive closure →∗ of →:

▶ Proposition 12. The relation →∗ is an inversely well-founded partial order on processes
satisfying the following properties:
1. For every process p there exists a process p′ such that p →∗ p′ ∼BB 0.
2. For all processes p, p′ and q, if p →∗ p′, then p ∥ q →∗ p′ ∥ q and q ∥ p →∗ q ∥ p′.
3. For all processes p, q and r, if p ∥ q →∗ r, then there exist p′ and q′ such that p →∗ p′,

q →∗ q′ and r = p′ ∥ q′.
4. For all processes p and q, if p →∗ qn for all n ∈ N, then q ∼BB 0.

The following lemma is a direct consequence of the definition of branching bisimilarity.

▶ Lemma 13. For all processes p, p′ and q, if p ∼BB q and p →∗ p′, then there exists q′ such
that q →∗ q′ and p′ ∼BB q′.

By this lemma we can define a binary relation ⪯ on P/∼BB, the set of ∼BB-equivalence
classes of processes, by stating that [p]∼BB ⪯ [q]∼BB if, and only if, there exists p′ ∈ [p]∼BB

such that q →∗ p′ (here [p]∼BB and [q]∼BB denote the ∼BB-equivalence classes of p and q,
respectively). The following result is then a straightforward corollary of Proposition 12.

▶ Corollary 14. The relation ⪯ is a weak decomposition order on P/∼BB, namely:
1. it is well-founded, i.e., every non-empty subset of P/∼BB has a ⪯-minimal element;
2. the identity element [0]∼BB of P/∼BB is the least element of P/∼BB with respect to ⪯, i.e.,

[0]∼BB ⪯ [p]∼BB for all p ∈ P;
3. it is compatible, i.e., for all p, q, r ∈ P if [p]∼BB ⪯ [q]∼BB , then [p ∥ r]∼BB ⪯ [q ∥ r]∼BB ;
4. it is precompositional, i.e., for all p, q, r ∈ P we have that [p]∼BB ⪯ [q ∥ r]∼BB implies

[p]∼BB = [q′ ∥ r′]∼BB for some [q′]∼BB ⪯ [q]∼BB and [r′]∼BB ⪯ [r]∼BB ; and
5. it is Archimedean, i.e., for all p, q ∈ P we have that [pn]∼BB ⪯ [q]∼BB for all n ∈ N implies

that [p]∼BB = [0]∼BB .

According to [26, Theorem 34] it now remains to prove that ⪯ satisfies power cancellation.
The weak decomposition order ⪯ on the commutative monoid of processes modulo ∼BB

satisfies power cancellation if for every indecomposable process p and for all processes q and
r such that [p]∼BB ̸≺ [q]∼BB , [r]∼BB , for all k ∈ N, we have that [pk ∥ q]∼BB = [pk ∥ r]∼BB implies
[q]∼BB = [r]∼BB .

▶ Proposition 15. The weak decomposition order ⪯ on the commutative monoid of processes
modulo ∼BB satisfies power cancellation.

We have now established that ⪯ is a weak decomposition order on the commutative
monoid of processes modulo ∼BB that satisfies power cancellation. Thus, with an application
of [26, Theorem 34] we get the following unique parallel decomposition result.

▶ Proposition 16. Every process in P has a unique parallel decomposition.

In what follows, we shall make use of the following direct consequence of Proposition 16.

▶ Corollary 17. If p ∥ r ∼BB q ∥ r, then p ∼BB q.
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7 Nonexistence of a finite axiomatisation

We devote this section to proving Theorem 4. Following the strategy sketched in Section 4,
we introduce a particular family of equations on which we will build our negative result:

pn =
n∑

i=2
aa≤i (n ≥ 2)

en : a ∥ pn ≈ apn +
n∑

i=2
a(a ∥ a≤i) (n ≥ 2).

It is easy to check that each equation en, for n ≥ 2, is sound modulo rooted branching
bisimilarity (as, in particular, it is sound modulo strong bisimilarity).

In order to prove Theorem 4, we proceed to show that no finite collection of equations
over CCS that are sound modulo rooted branching bisimilarity can prove all of the equations
en (n ≥ 2) from the family given above. Formally, for each n ≥ 2, we consider the property
Pn: having a summand rooted branching bisimilar to a ∥ pn. Then, we prove the following:

▶ Theorem 18. Let E be a finite axiom system over CCS that is sound modulo ∼RBB, let n

be larger than the size of each term in the equations in E, and let p, q be closed terms such
that p, q ∼RBB a ∥ pn. If E ⊢ p ≈ q and p satisfies Pn then so does q.

The crucial step in the proof of Theorem 18 is delivered by the proposition below, which
ensures that the property Pn (n ≥ 2) is preserved by the closure under substitutions of
equations in a finite, sound axiom system. Proposition 20 is proved by means of the technical
results provided so far, and the notion of 0-factor of a term:

▶ Definition 19. We say that a term t has a 0 factor if it contains a subterm of the form
t′ ∥ t′′, and either t′ ∼RBB 0 or t′′ ∼RBB 0.

▶ Proposition 20. Let t ≈ u be an equation over CCS terms that is sound modulo ∼RBB. Let
σ be a closed substitution with p = σ(t) and q = σ(u). Suppose that p and q have neither 0
summands nor 0 factors, and p, q ∼RBB a ∥ pn for some n larger than the sizes of t and u. If
p satisfies Pn, then so does q.

Theorem 18 shows the property Pn to be an invariant under provability from finite sound
axiom systems. As the left-hand side of equation en, i.e., the term a ∥ pn, satisfies Pn, whilst
the right-hand side, i.e., the term apn +

∑n
i=2 a(a ∥ a≤i), does not, we can conclude that the

infinite collection of equations en (n ≥ 2) cannot be derived from any finite, sound axiom
system. Hence, Theorem 4 follows.

8 Towards a positive result

We now proceed to study the role of the auxiliary operators left merge ( ) and communication
merge ( | ) from [12] in the axiomatisation of parallel composition modulo ∼RBB. We will show
that by adding them to CCS we can obtain a complete axiomatisation of rooted branching
bisimilarity over the new language. This axiomatisation is finite if so is Aτ .

We denote the language obtained by enriching CCS with and | by CCSLC:

t ::= 0 | x | µ.t | t + t | t ∥ t | t t | t | t , (CCSLC)

where x ∈ V , and µ ∈ Aτ . The SOS rules for the CCSLC operators are given by the rules in
Table 1 plus those reported in Table 4.

CONCUR 2022



6:12 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 4 Additional SOS rules for CCSLC operators (µ ∈ Aτ , α ∈ A ∪ A).

t
µ−→ t′

t u
µ−→ t′ ∥ u

t
α−→ t′ u

α−→ u′

t | u
τ−→ t′ ∥ u′

To obtain the desired completeness result, we consider the axiom system ERBB (see Table 7
in Section 10), obtained by extending the complete axiom system for strong bisimilarity
over CCSLC from [7] with axioms expressing the behaviour of and | in the presence of
τ -actions (from [13]), and with the suitable τ -laws (from [20, 23]) necessary to deal with
rooted branching bisimilarity. Then, we adjust the semantics of configurations given in
Section 5 to the CCSLC setting, and we use it to extend the definition of rooted branching
bisimilarity to open CCSLC terms (Definition 24). Usually, a behavioural equivalence ∼ is
defined over processes and is then possibly extended to open terms by saying that t ∼ u

iff σ(t) ∼ σ(u) for all closed substitutions σ. However, we adopt the same approach of,
e.g., [10, 16, 29], and present the definition of ∼RBB directly over configurations. We will
show in Section 9 that the two approaches yield the same equivalence relation over terms
(Theorem 25). Finally, we apply the strategy used in [10] to obtain the completeness of the
axiomatisation of prefix iteration with silent moves modulo rooted branching bisimilarity:
1. We identify normal forms for CCSLC terms (Definition 27) and show that each term can

be proven equal to a normal form using ERBB (Proposition 28).
2. We establish a relationship between ∼BB and derivability in ERBB (Proposition 29).
3. We show that for all terms t, u, if t ∼RBB u, then ERBB ⊢ t ≈ u (Theorem 5).

9 Rooted branching bisimilarity over terms

In this section we discuss the decomposition of the semantics of CCSLC terms, and the
extension of the definition of (rooted) branching bisimilarity to open CCSLC terms.

The first step towards our completeness result consists in providing a semantics for open
CCSLC terms. To this end, we need to extend the semantics of configurations given in
Section 5. For the sake of readability, we present the syntax of CCSLC configurations and
the inference rules for variables and summations, even though they are identical to the
corresponding ones presented in Section 5 for CCS. However, we omit the explanations on
the roles of labels ℓ, ρ, and variables xµ, as those can be found in Section 5. In particular,
the use of variables xµ ∈ VAτ

(as explained in Example 8) remains unchanged.

▶ Definition 21 (CCSLC configuration). The collection of CCSLC configurations, denoted by
CLC, is given by:

c ::= xµ | t | c ∥ c , where t is a CCSLC term, and xµ ∈ VAτ
.

The auxiliary transitions of the form ℓ−→ρ are formally defined via the inference rules
in Table 5, where we omitted the rules (a′

1) and (a′
2) for prefixing and choice (which are

identical to, respectively, rules (a1) and (a2) in Table 3) the symmetric rules to (a′
2), (a′

4),
(a′

5) and (a′
6), as well as the rules for ∥. We remark that Lemma 10 can be easily extended

to CCSLC to show how a transition σ(t) µ−→ p can stem from transitions of the CCSLC term
t and of the process σ(x), for x ∈ var(t).

Since VAτ
is disjoint from V, we also need to introduce auxiliary rules for the special

configuration xµ ∈ VAτ
. These are identified by a proper label xµ on the transition and

reported in Table 6 as rules (c1) and (c2). To conclude our analysis of the decomposition
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Table 5 Inference rules for the transition relation ℓ−→ρ (µ ∈ Aτ , α ∈ A ∪ A).

(a′
3)

t
ℓ−→ρ c

t u
ℓ−→ρ c ∥ u

(a′
4)

t
(x)−−→α c u

(y)−−→α c′

t | u
(x,y)−−−→τ c ∥ c′

(a′
5)

t
(x)−−→α c u

α−→ u′

t | u
(x)−−→ α,τ c ∥ u′

(a′
6)

t
α−→ t′ u

(x)−−→α c

t | u
(x)−−→ α,τ t′ ∥ c

Table 6 Inference rules completing the operational semantics of CCSLC configurations (µ ∈ Aτ ).

(c1)
xµ

xµ−−→ xµ

(c2)
c1

xµ−−→ c′
1

c1 ∥ c2
xµ−−→ c′

1 ∥ c2
(c3)

c1
µ−→ c′

1

c1 ∥ c2
µ−→ c′

1 ∥ c2
(c4)

c1
ℓ−→ρ c′

1

c1 ∥ c2
ℓ−→ρ c′

1 ∥ c2

of the semantics of terms, we then need to extend the transition relations µ−→ and ℓ−→ρ

to configurations. This is done by rules (c3) and (c4) in Table 6, where their symmetric
counterparts have been omitted. Let

ξ
↠ range over the possible transitions over configurations,

i.e.,
ξ
↠ can be either µ−→, ℓ−→ρ, or xµ−−→. The operational semantics of CCSLC configurations is

then given by the LTS whose states are configurations in CLC, whose actions are in Aτ ∪V∪VAτ
,

and whose transitions are those that are provable from the rules in Tables 1, 4, 5, and 6.
Following the same approach of, e.g. [10,16,29], we now present the definitions of branching

and rooted branching bisimulation equivalences directly over configurations.

▶ Definition 22 (Branching bisimulation over configurations). A symmetric relation R over
CLC is a branching bisimulation iff whenever c1 R c2, if c1

ξ
↠ c′

1 then:
either

ξ
↠ = τ−→ and c′

1 R c2,
or c2

ε−→ c′′
2

ξ
↠ c′

2 for some c′′
2 , c′

2 such that c1 R c′′
2 and c′

1 R c′
2.

Two configurations c1, c2 are branching bisimilar, denoted by c1 ∼BB c2, iff there exists a
branching bisimulation R such that c1 R c2.

The definition of ∼BB given in Definition 22 yields the same equivalence relation over
configurations that we would have obtained with the standard approach, i.e., by defining
c1 ∼BB c2 iff σ(c1) ∼BB σ(c2) for all closed substitutions σ.

▶ Theorem 23. For all configurations c1, c2 ∈ CLC it holds that c1 ∼BB c2 iff σ(c1) ∼BB σ(c2)
for all closed substitutions σ.

The approach for ∼BB can be extended in a straightforward manner to ∼RBB.

▶ Definition 24 (Rooted branching bisimilarity over configurations). Let c1, c2 ∈ CLC. We say
that c1 and c2 are rooted branching bisimilar, denoted by c1 ∼RBB c2, iff:

if c1
ξ
↠ c′

1 then c2
ξ
↠ c′

2 for some c′
2 such that c′

1 ∼BB c′
2;

if c2
ξ
↠ c′

2 then c1
ξ
↠ c′

1 for some c′
1 such that c′

1 ∼BB c′
2.

▶ Theorem 25. For all c1, c2 ∈ CLC it holds that c1 ∼RBB c2 iff σ(c1) ∼RBB σ(c2) for all closed
substitutions σ.
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Table 7 Equational basis modulo rooted branching bisimilarity.

Equational basis modulo strong bisimilarity: EB

A0 x + 0 ≈ x C0 0 | x ≈ 0
A1 x + y ≈ y + x C1 x | y ≈ y | x

A2 (x + y) + z ≈ x + (y + z) C2 (x | y) | z ≈ x | (y | z)
A3 x + x ≈ x C3 (x + y) | z ≈ x | z + y | z

C4 αx | βy ≈ τ(x ∥ y) if α = β

L0 0 x ≈ 0 C5 αx | βy ≈ 0 if α ̸= β

L1 µx y ≈ µ(x ∥ y) C6 (x y) | z ≈ (x | z) y

L2 (x y) z ≈ x (y ∥ z) C7 x | y | z ≈ 0
L3 x 0 ≈ x

L4 (x + y) z ≈ x z + y z P x ∥ y ≈ x y + y x + x | y

Additional axioms for ∼RBB: ERBB = EB ∪ {T B, T L}

TB µ(τ(x + y) + y) ≈ µ(x + y) TL x τy ≈ x y

Derivable axioms

D1 x ∥ y ≈ y ∥ x DT1 µτx ≈ µx

D2 (x ∥ y) ∥ z ≈ x ∥ (y ∥ z) DT2 x (τ(y + z) + y) ≈ x (y + z)
D3 (x y) | (z w) ≈ (x | z) (y ∥ w) DT3 τx | y ≈ 0
D4 x ∥ 0 ≈ x

10 The equational basis

We now present the complete axiomatisation for rooted branching bisimilarity over CCSLC.
In [20] it was proved that if we consider the fragment BCCS of CCS (i.e., the fragment

consisting only of 0, variables, prefixing, and choice), then a ground-complete axiomatisation
of rooted branching bisimilarity over BCCS is given by E0∪{TB}, where E0 = {A0,A1,A2,A3}
from Table 2 (also reported in Table 7), and axiom TB is in Table 7. Informally, TB reflects
that if executing a τ -step does not discard any observable behaviour, then it is redundant.
In [7] it was proved that the axiom system EB given in Table 7, is a complete axiomatisation of
bisimilarity over CCSLC. Starting from these works, we now study a complete axiomatisation
for ∼RBB. Our aim is to show that the axiom system ERBB = EB ∪ {TB,TL} presented in
Table 7 is a complete axiomatisation of rooted branching bisimilarity over CCSLC.

If executing a τ -move does not resolve a choice within a parallel component, then it will
also not resolve a choice of the parallel composition; axiom TL expresses a similar property
of rooted branching bisimilarity for left merge. Interestingly, by combining TL and TB, it is
possible to derive, as shown below, equation DT2 in Table 7, which is the equation for the
left merge corresponding to TB.

x (τ(y + z) + y)
(TL)
≈ x τ(τ(y + z) + y)

(TB)
≈ x τ(y + z)

(TL)
≈ x (y + z).

In Table 7 we report also some other equations that can be derived from ERBB, and that are
useful in the technical development of our results. We refer the reader interested in the
derivation proofs of D1–D3 and DT3 to [7]. Notice that DT1 corresponds essentially to the
substitution instance of TB in which y is mapped to 0.
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First of all, it is immediate to prove the soundness of ERBB modulo ∼RBB.

▶ Theorem 26 (Soundness). The axiom system ERBB is sound modulo ∼RBB over CCSLC.

To obtain the desired completeness result, we apply the same strategy used in [10] that
consists in the three steps discussed in Section 8.

Let us proceed to the first step: identifying normal forms for CCSLC terms.

▶ Definition 27 (Normal forms). The set of normal forms over CCSLC is generated by the
following grammar:

S ::= µ.N | x N | (x | α) N | (x | y) N

N ::= 0 | S | N + N

where x, y ∈ V, µ ∈ Aτ and α ∈ A ∪ A. Normal forms generated by S are also called simple
normal forms and are characterised by the fact that they do not have + as head operator.

▶ Proposition 28. For every term t there is a normal form N such that ERBB ⊢ t ≈ N .

We can then proceed to prove that branching bisimilar terms can be proven equal to
rooted branching bisimilar terms using the axiom system ERBB.

▶ Proposition 29. For CCSLC terms t, u, if t ∼BB u then ERBB ⊢ µ.t ≈ µ.u, for any µ ∈ Aτ .

The completeness of the axiom system ERBB then follows from Proposition 28 and Proposi-
tion 29. Notice that axioms L1 and TB are actually axiom schemata that both generate |Aτ |
axioms. Similarly, the schema C4 generates 2|A| axioms, and C5 generates 2|A| × (2|A| − 1)
axioms. Hence, ERBB is finite when so is the set of actions.

▶ Theorem 5 (Completeness). Let t, u be CCSLC terms. If t ∼RBB u, then ERBB ⊢ t ≈ u.

11 Concluding remarks

In this paper we have shown that the use of auxiliary operators, such as the left merge and
communication merge, is crucial to obtain a finite, complete axiomatisation of the CCS
parallel composition operator modulo rooted branching bisimilarity. Indeed, rooted branching
bisimilarity does not afford a finite, complete axiomatisation over CCS without the auxiliary
operators (our negative result), whereas CCS with the auxiliary operators added does have
such a finite complete axiomatisation modulo rooted branching bisimilarity (our positive
result).

A natural direction for future research is the extension of our results to other weak
congruences from the spectrum [17]. The infinite family of equations used in the proof of
our negative result (Theorem 4) is the same as that used by Moller to prove that CCS does
not afford a finite complete axiomatisation of strong bisimilarity [32]. Our proof that the
parametric property Pn is preserved by provability from every collection of equations that
are bounded in size by n and that are sound with respect to rooted branching bisimilarity
refines Moller’s proof that Pn is preserved by provability if the equations are required to
be sound with respect to strong bisimilarity. Our next goal will be to identify the weakest
congruence ∼ in the spectrum that includes strong bisimilarity and for which provability
from a collection of sound equations that are sound with respect to ∼ preserves Pn. It will
then follow that CCS does not afford a finite complete axiomatisation for all congruences
including strong bisimilarity and included in ∼.
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Regarding extensions of the positive result, we will focus on three weak congruences,
namely rooted η-bisimilarity (∼RηB), rooted delay bisimilarity (∼RDB), and rooted weak bisim-
ilarity (∼RWB), and provide complete axiomatisations for them. We are confident that the
axiomatisation for ∼RηB can be obtained by exploiting a proof technique from [10] based on
the notion of saturation. It should then be established that ∼RηB coincides with ∼RBB on the
class of η-saturated terms. Hence, if we can show that each term is provably equal to an
η-saturated term using the axiom system for ∼RηB, the completeness of the considered axiom
system then directly follows from that for ∼RBB we provided in this paper.

The quest for complete axiomatisations for ∼RDB and ∼RWB will require a different approach,
as these equivalences are not preserved by the communication merge operator. For instance,
we have that τ.a ∼RWB τ.a + a, but τ.a | a.b ̸∼RWB (τ.a + a) | a.b. Regarding ∼RDB, similar
observations can be made (see [18] for more details). The complete axiomatisation for
observational congruence [23] (and thus rooted weak bisimilarity) over ACPτ presented
in [13] includes the axiom

τ.x | y ≈ x | y. (TC)

Similarly, in [1, 21] it was argued that in order to reason compositionally, and obtain an
equational theory of CCS modulo observational congruence, it is necessary to define the
operational semantics of communication merge in terms of inference rules of the form

t
α=⇒ t′ u

α=⇒ u′

t | u
τ=⇒ t′ ∥ u′

where we use µ=⇒ as a short-hand for the sequence of transitions ε−→ µ−→ ε−→. This means
that in order for | to preserve ∼RWB (and/or ∼RDB), we need to consider a sequence of weak
transitions as a single step. Clearly, since | is an auxiliary operator that we introduce
specifically to obtain finite axiomatisations, its semantics can be defined in the most suitable
way for our purposes, i.e., so that it is consistent with the considered congruence relation.
However, it is also clear that if we modify the semantics of one operator in CCSLC, then we
are working with a new language. In particular, some axioms that are sound modulo strong
bisimilarity (and thus also modulo ∼RBB) over CCSLC become unsound modulo rooted weak
bisimilarity over the new language: this is the case of axioms C6 and C7 in Table 7. As a
consequence, we cannot exploit the completeness of the axiomatisation for rooted branching
bisimilarity to derive complete axiomatisations for rooted weak bisimilarity and rooted delay
bisimilarity, but we must provide new axiomatisations for them and prove their completeness
from scratch. Hence, we leave as future work the quest for complete axiomatisations for
∼RWB and ∼RDB over (recursion, relabelling, and restriction free) CCS with left merge and
communication merge.
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Abstract
We present a generic design of abstract machines for non-deterministic programming languages, such
as process calculi or concurrent lambda calculi, that provides a simple way to implement them. Such
a machine traverses a term in the search for a redex, making non-deterministic choices when several
paths are possible and backtracking when it reaches a dead end, i.e., an irreducible subterm. The
search is guaranteed to terminate thanks to term annotations the machine introduces along the way.

We show how to automatically derive a non-deterministic abstract machine from a zipper
semantics – a form of structural operational semantics in which the decomposition process of a term
into a context and a redex is made explicit. The derivation method ensures the soundness and
completeness of the machines w.r.t. the zipper semantics.
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1 Introduction

Abstract machines, i.e., first-order tail-recursive transition systems for term reduction, such
as SECD [29], CEK [13], and the KAM [28], are a traditional and celebrated artifact in
the area of programming languages based on the λ-calculus. They serve both as a form
of operational semantics [12,13,29] and an implementation model [26,33] of programming
languages, but they also play a role in other areas, e.g., in proof theory [28], higher-order
model checking [41], or cost models [1]. They are used as an implementation model also in
concurrent languages [16,18,34,37,46], in particular to study distribution [4, 19–21,24,38].

Since in general designing a new abstract machine is a serious undertaking, several
frameworks supporting mechanical or even automatic derivations of abstract machines from
other forms of semantics have been developed [2,7,23,44]. However, these frameworks assume
a language that satisfies the unique decomposition property [7,11], which entails that at each
step one specific redex is selected, and thus the language follows a deterministic reduction
strategy. This property does not hold in non-deterministic languages such as process calculi
(or even in the λ-calculus without a fixed reduction strategy) and the existing methodology
cannot be applied. Existing machines for non-deterministic languages are ad-hoc and may
not be complete, i.e., not all reduction paths of the language can be simulated by the
corresponding abstract machine [16,18,20,34,46].
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7:2 Non-Deterministic Abstract Machines

This work presents a generic framework for the definition of complete abstract machines
that implement a non-deterministic reduction relation in a systematic way. The idea is to go
through a term to find a redex without following a specific strategy, picking arbitrarily a
subterm when several are available – e.g., going left or right of an application in λ-calculus.
The two main ideas are: (1) the machine should not remain stuck when it chooses a subterm
which cannot reduce – in such a case we make it backtrack to its last choice; (2) the machine
should not endlessly loop searching for redexes in subterms which cannot reduce – the
machine annotates the subterms which are normal forms to prevent itself from visiting them
again.

Non-deterministic machines designed in this way can be complex even for small languages,
therefore we show how to generate them automatically from an intermediary zipper semantics.
This semantics, inspired by Huet [25], is a form of structural operational semantics (SOS) [40]
that remembers the current position in a term by building a context, i.e., a syntactic
object that represents a term with a hole [14]. This format of semantics makes it explicit
how a term is decomposed into a context and a redex, and thus it can be seen as a non-
deterministic counterpart of the decomposition function in (deterministic) context-based
reduction semantics [10,15]. While deterministic reduction semantics is directly implementable
and the corresponding abstract machine can be viewed (roughly) as its optimization [11],
non-deterministic reduction semantics, even when expressed as a zipper semantics, requires
non-trivial instrumentation to become implementable in a complete way. Deriving the non-
deterministic abstract machine (NDAM) from the zipper semantics consists exactly in such
an instrumentation with the backtracking mechanism and normal-form annotations. We show
how to derive an NDAM from an arbitrary zipper semantics that satisfies minimal conditions,
and we prove that the resulting NDAM is sound and complete w.r.t. the semantics. Our
approach applies in particular to process calculi, for which the abstract machines defined so
far were ad-hoc and usually not complete.

The contributions of this paper are: (1) a generic design of sound and complete, non-
deterministic abstract machines which cannot get stuck or infinitely loop in a redex search, (2)
with a systematic derivation procedure from an intermediary format, called zipper semantics.
The resulting machine is an implementation of the non-deterministic source language.

We illustrate our method on the λ-calculus without a fixed reduction strategy and on
a minimal process calculus HOcore [31], respectively in Sections 2 and 3. We then give a
derivation procedure of an NDAM from an arbitrary zipper semantics in Section 4. We
discuss related work in Section 5 and future work in Section 6. The appendix contains further
examples, including the zipper semantics and abstract machine of HOπ [42] that extends
HOcore with name restriction. An extended version [6] contains the proofs missing from the
paper. An implementation of the derivation procedure is also available [5].

2 Lambda-calculus

As a warm-up example, we present the zipper semantics and the corresponding NDAM for
the λ-calculus with no fixed reduction strategy.

2.1 Syntax and Context-based Reduction Semantics
We let t, s range over λ-terms. We denote application with an explicit operator @ to annotate
it later on. We represent a context E as a list of elementary contexts called frames F.

t, s ::“ x | λx.t | t @ s F ::“ λx | @ t | t @ E,F,G ::“ ‚ | F ::E
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init
t

‚
ÝÑapp t1

t ÝÑzs t1

appL
t @ s :: E
ÝÝÝÝÑapp t1

t @ s
E
ÝÑapp t1

appR
s

t @ :: E
ÝÝÝÝÑapp s1

t @ s
E
ÝÑapp s1

appλ
t

λx :: E
ÝÝÝÝÑapp t1

λx.t
E
ÝÑapp t1

appβ
t

s,E
ÝÝÑlam t1

t @ s
E
ÝÑapp t1

lamβ

λx.t
s,E
ÝÝÑlam Ertts{xus

Figure 1 Zipper semantics for the λ-calculus.

Because it is more convenient for the definition of the machine, we interpret contexts inside-
out [12]: the head of the context is the innermost frame. The definition of plugging a term
in a context Erts is therefore as follows:

‚rts
∆
“ t pλx ::Eqrts ∆

“ Erλx.ts p@ s ::Eqrts ∆
“ Ert @ ss ps @ ::Eqrts ∆

“ Ers @ ts

We write tts{xu for the capture-avoiding substitution of x by s in t, and define the context-
based reduction semantics Ñrs of the λ-calculus by the following rule

Erpλx.tq@ ss Ñrs Ertts{xus

which can be read declaratively: if we find a redex in a context E built according to the
given grammar of contexts, then we can reduce. This format of semantics does not make it
apparent how to decompose a term to find a redex. On the other hand, structural operational
semantics offers another common semantic format that makes it more explicit how to navigate
in a term to find a redex, but it does not store the traversed path.

2.2 Zipper Semantics
A first step towards an abstract machine is to make explicit the step-by-step decomposition of
a term into a context and a redex. To this end, we propose zipper semantics, a combination
of SOS and reduction semantics. Like a regular SOS, a zipper semantics goes through a term
looking for a redex using structural rules, except the current position in the term is made
explicit with a context as in reduction semantics.

The zipper semantics for the λ-calculus is defined in Figure 1. It looks for a β-redex while
constructing the surrounding context E at the same time. The decomposition happens in the
rules appL, appR, and appλ, where we search for a redex by descending into the appropriate
subterm of a given term. Each of these rules corresponds to a frame, with init initiating the
search by setting the context to ‚.

These rules actually look for the application at the root of the β-redex; checking that
an application t @ s is indeed a β-redex is done by the rule appβ. It relies on an auxiliary
transition t

s,E
ÝÝÑlam t1, which checks that its source is indeed a λ-abstraction. In that case, we

can β-reduce with rule lamβ. We can see that computation only occurs in the axiom; the
other rules are simply propagating the result unchanged.

One may wonder why we need the rules appβ and lamβ while a single axiom
pλx.tq@ s

E
ÝÑapp Ertts{xus is enough to recognize a β-redex. The reason is that we re-

strict ourselves to patterns discriminating only the head constructor of a term, to remain
close to an abstract machine where the decomposition of a term occurs only one operator at
a time.

CONCUR 2022



7:4 Non-Deterministic Abstract Machines

We prove that the zipper semantics and reduction semantics coincide in Appendix A.

▶ Example 1. To illustrate further how to recognize a redex one operator at a time, suppose
we restrict the argument of the β-redex to a value v ::“ x | λx.t, so that Erpλx.tq@ vs Ñrs

Erttv{xus. In such a case, we would need an extra transition s
x,t,E
ÝÝÝÑv t1, checking that s is a

value. The rule lamβ would be replaced by the rule lamβv below.

lamβv

s
x,t,E
ÝÝÝÑv t1

λx.t
s,E
ÝÝÑlam t1

varv

y
x,t,E
ÝÝÝÑv Ertty{xus

lamv

λy.s
x,t,E
ÝÝÝÑv Erttλy.s{xus

{

2.3 Non-Deterministic Abstract Machine
Design principles. Zipper semantics describes how to decompose a term into a redex and a
context, but it is not yet an implementation, as it does not explain what to do when several
rules can be applied, like appL, appR, and appβ. The NDAM simply picks one of them, and
backtracks if it reaches a dead-end. We present how we implement this backtracking and how
it can be derived from the zipper rules, before giving the formal definition of the NDAM.

The decomposition at work in the zipper semantics rules can be turned into machine
steps: we see the change of focus occurring in the source term between the conclusion and
the premise. We introduce a machine mode for each transition kind (here, app and lam), and
the rules appL, appR, and appβ are translated to the following forward machine steps, with |
separating the term from the context:

xt @ s |Eyapp ÞÑ xt |@ s ::Eyapp xt @ s |Eyapp ÞÑ xs | t @ ::Eyapp xt @ s |Eyapp ÞÑ xt | s,Eylam

We see why interpreting the context inside-out is convenient: focusing on t in Ert @ ss amounts
to pushing the frame @ s on top of E. It is the same as decomposing the term as p@ s ::Eqrts:
the innermost constructor becomes the topmost one in the context.

The resulting machine is non-deterministic as three different steps can be taken from the
configuration xt @ s |Eyapp. Unlike typical deterministic machines, it does not implement a
strategy and does not choose, e.g., to always go left of an application as in the KAM [28].
A consequence is that the machine can make a wrong choice, i.e., focus on a term which
cannot reduce, like a variable. In such cases, we want the machine to backtrack to the last
configuration for which a choice had to be made, and no further. To do so, we record the
applied rules in a stack π. When we reach a term which cannot reduce, we switch to a
backtracking mode (here, bapp) where we can “unapply” a rule.

xt @ s ; π |Eyapp ÞÑ xt ; appL :: π |@ s ::Eyapp

xx ; π |Eyapp ÞÑ xπ ; x |Eybapp

xappL :: π ; t |@ s ::Eybapp ÞÑ xt @ s ; π |Eyapp

The machine may try other rules on t @ s, e.g., to find a redex in s. However, it should
not try appL again, as the backtracking step implies there is no redex in t. We refer to
backtracking steps like the last one as backward, and to steps like the middle one as switching.
The backward step is simply the reverse of the corresponding forward step.

We prevent the machine from choosing a previously explored path by annotating the root
operator of an already tested subterm. An annotation t @app s means that t @ s has already
been tried for E

ÝÑapp transitions and is a normal form for it. Similarly, a term annotated lam
is a normal form w.r.t. s,E

ÝÝÑlam (it is not a λ-abstraction). A term can be annotated with
both app and lam, for instance if it is a variable.
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The machine can take a forward step only if the term in focus has not been already tested.
For t @ s, we try appL (resp. appR) only if t (resp. s) is not annotated app, and appβ only
if t is not annotated lam. If none of the steps applies because of the annotations, then all
possible rules have been tried and t @ s is a normal form for app: the machine backtracks
and annotates the term accordingly. In what follows, Σ represents an annotation set.

xxΣ ; π |Eyapp ÞÑ xπ ; xΣYtappu |Eybapp

xt @Σ s ; π |Eyapp ÞÑ xπ ; t @ΣYtappu s |Eybapp if no other step applies

Switching steps are of two kinds: either the language construct does not have a forward step
for a given mode (like a variable in the app mode), or all possible rules have been tried for
the construct. They both can be derived from the zipper semantics by looking at which rule
can be applied to each construct. This derivation is made easier by the constraint that the
decomposition occurs one operator at a time in zipper rules. If we allowed for more complex
patterns such as pλx.tq@ s, we would have to create a switching step for the terms not fitting
this pattern, like x @ s, and enumerating these anti-patterns would be more difficult [27].

Finally, because we store the annotations of a term in its root operator, we need to
remember them when a forward step removes the operator, to be able to restore them when
we backtrack. We do so in the stack π.

xt @Σ s ; π |Eyapp ÞÑ xt ; pappL, Σq :: π |@ s ::Eyapp

xpappL, Σq :: π ; t |@ s ::Eybapp ÞÑ xt @Σ s ; π |Eyapp

In this simple example we could do without the stack because the contexts encode precisely
the rules that have been applied along the way. In general, however, a single context cannot
always reflect the derivation tree, as we can see in the HOπ example (Appendix C).

The next example illustrates how annotations work, and also that they may no longer
hold after reduction. Therefore they should be erased before searching for the next redex.

▶ Example 2. Let Ω ∆
“ pλHx.xH @H xHq@HpλHx.xH @H xHq. We show a possible machine

run for this term, where we label forward and backward steps with the rule they apply or
unapply, and switching steps with a constant τ. For readability, we write only the term
under focus.

The machine may first go left and under the λ-abstraction.

xΩ | . . .yapp
appL
ÞÝÝÝÑ

appλ
ÞÝÝÝÑ xxH @H xH | . . .yapp

At that point, it may test whether the application is a β-redex. Since it is not the case, it
backtracks, annotating the variable in function position.

xxH @H xH | . . .yapp
appβ
ÞÝÝÝÑ xxH | . . .ylam

τ
ÞÝÑ

´appβ
ÞÝÝÝÝÑ xxlam @H xH | . . .yapp

From there, it necessarily tests the other possibilities appL and appR (in no predefined order),
and fails in both cases.

xxlam @H xH | . . .yapp
appL
ÞÝÝÝÑ

τ
ÞÝÑ

´appL
ÞÝÝÝÝÑ

appR
ÞÝÝÝÑ

τ
ÞÝÑ

´appR
ÞÝÝÝÝÑ xxtapp,lamu@Hxapp | . . .yapp

Then it can only backtrack to reconstruct the λ-abstraction on the left, and then the whole
term.

xxtapp,lamu@Hxapp | . . .yapp
τ
ÞÝÑ

´appλ
ÞÝÝÝÝÑ xλHx.xtapp,lamu@appxapp | . . .yapp

τ
ÞÝÑ

´appL
ÞÝÝÝÝÑ xpλappx.xtapp,lamu@appxappq@HpλHx.xH @H xHq | . . .yapp

CONCUR 2022



7:6 Non-Deterministic Abstract Machines

xtyzs ÞÑ xt ; init | ‚yapp

xt @Σ s ; π |Eyapp ÞÑ xt ; pappL, Σq :: π |@ s ::Eyapp if app R anptq
xt @Σ s ; π |Eyapp ÞÑ xs ; pappR, Σq :: π | t @ ::Eyapp if app R anpsq
xt @Σ s ; π |Eyapp ÞÑ xt ; pappβ, Σq :: π | s,Eylam if lam R anptq
xλΣx.t ; π |Eyapp ÞÑ xt ; pappλ, Σq :: π |λx ::Eyapp if app R anptq

xt ; π |Eyapp ÞÑ xπ ; tYapp |Eybapp otherwise

xinit ; t | ‚ybapp ÞÑ xtynf

xpappL, Σq :: π ; t |@ s ::Eybapp ÞÑ xt @Σ s ; π |Eyapp

xpappR, Σq :: π ; s | t @ ::Eybapp ÞÑ xt @Σ s ; π |Eyapp

xpappβ, Σq :: π ; t | s,Eyblam ÞÑ xt @Σ s ; π |Eyapp

xpappλ, Σq :: π ; t |λx ::Eybapp ÞÑ xλΣx.t ; π |Eyapp

xλΣx.t ; π | s,Eylam ÞÑ x|Ertts{xus|yzs

xt ; π | s,Eylam ÞÑ xπ ; tYlam | s,Eyblam otherwise

Figure 2 Non-Deterministic Abstract Machine for the λ-calculus.

The machine can then look for a redex in the λ-abstraction on the right, and it would result
in the same annotations as for the one on the left, not necessarily generated in the same order.
It can also rightfully recognize the term as a β-redex, with the sequence appβ

ÞÝÝÝÑ
lamβ
ÞÝÝÝÑ, the

last step performing the reduction. After the reduction, we should also erase the remaining
annotations. If we do not erase them, the result of the reduction would be

xpλHx.xH @H xHq@tappupλHx.xH @H xHq | . . .yapp

and the app annotation would wrongfully signal the term as a normal-form, preventing it
from being reduced. Erasing all the remaining annotations ensures the machine finds the next
redex, but a finer, language-specific analysis would erase only the problematic annotations.
We leave such an optimization as a future work. {

Formal definition. We let α range over annotations, Σ over annotation sets, and denote
the empty set by H. We extend the λ-calculus syntax as follows:

α ::“ app | lam t, s ::“ xΣ | λΣx.t | t @Σ s

We write anptq for the annotation set at the root of t, e.g., anpt @Σ sq
∆
“ Σ. We write tYα for

its extension with α so that anptYαq “ anptq Y tαu. We write |t| for the erasure of t, where
all the annotation sets in t are made empty.

The syntax of contexts uses annotated terms, and plugging returns an annotated term
where the annotation sets of the context operators are empty: e.g., pλx ::Eqrts ∆

“ ErλHx.ts.
Plugging is used only after a reduction step, where all the annotation sets are erased anyway.

We let ρ range over rule names and π over rule stacks, defined as π ::“ init | pρ, Σq :: π.
The definition of the machine for the λ-calculus is given in Figure 2.
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A forward configuration xt ; π |Eym (with m P tapp, lamu) discriminates on (the root
operator of) t to apply a rule of the zipper semantics. For an inductive rule, it results in
a change of focus and an extension of the stack, on which we record the applied rule and
the annotation set of the root operator. Taking such a step is possible only if the new term
under focus is not a normal form. A special case of forward step is the initial one from xtyzs
which does not have a side-condition, as we assume the annotation sets of t to be empty.

The β-reduction happens in the first transition of the lam mode. Backtracking is no
longer necessary so we drop the stack. We reconstruct the entire term, and switch to the
initial mode to search for a new redex starting from the root of the new term. We erase all
annotations, as they may no longer be valid, as illustrated by Example 2.

If a forward configuration cannot apply a rule, we switch to the corresponding backward
mode, annotating t in the process: these are the two “otherwise” steps. A backward
configuration xπ ; t |Eybm inspects the stack π to unapply the rule at its top. While a
backward step restores the configuration of the corresponding forward step, the term contains
more annotations after a backward step than before taking the forward step: in xπ ; t |Eybm,
we have m P anptq by construction. The annotations prevent the machine from reapplying a
rule it just unapplied. The normal form mode xtynf signals that the term cannot reduce.

A machine run starts with an initial configuration xtyzs where all the annotation sets of t

are empty. The semantics of the machine is given by these configurations: if xtyzs ÞÑ
` xt1yzs

such that the sequence ÞÑ` does not go through another initial configuration, then t ÝÑzs t1.
Similarly, if xtyzs ÞÑ

` xt1ynf , then |t1| “ t and t is a normal form. We state the correspondence
and termination theorems independently from the source zipper semantics in Section 4.

3 HOcore

We consider a minimal process calculus called HOcore [31], which can be seen as an extension
of the λ-calculus with parallel composition.

3.1 Syntax and Semantics

We let a, b range over channel names, X, Y over process variables, and we define the syntax
of processes as follows.

P, Q, R ::“ X | 0 | P ∥ Q | apXq.P | axP y

The process 0 is the inactive process, P ∥ Q runs P and Q in parallel, and a communication
may happen between an input apXq.P and an output axQy that run in parallel. The
communication is asynchronous because a message output does not have a continuation [43];
we discuss the synchronous case in Remark 3. In spite of its minimal number of constructors,
HOcore is Turing-complete [31].

The semantics of process calculi is usually presented either with a structural congruence
relation which reorders terms to make redexes appear, bringing input and output processes
together, or with a labeled transition system which preserves the structure of the term [43].
Instead, we present it first as a reduction semantics with explicit contexts, as in Section 2.1,
which makes it easier to come up with (or translate into) the corresponding zipper semantics.

We define frames as F ::“ ∥ P | P ∥ and plugging as follows.

‚rP s
∆
“ P p∥ Q ::EqrP s ∆

“ ErP ∥ Qs pQ ∥ ::EqrP s ∆
“ ErQ ∥ P s
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init
P

‚
ÝÑpar P 1

P ÝÑzs P 1

parL

P
∥ Q :: E
ÝÝÝÝÑpar P 1

P ∥ Q
E
ÝÑpar P 1

psq

parOutL
P

‚,L,E,Q
ÝÝÝÝÝÑout P 1

P ∥ Q
E
ÝÑpar P 1

parOutR
Q

‚,R,E,P
ÝÝÝÝÝÑout P 1

P ∥ Q
E
ÝÑpar P 1

outParL
P

∥ Q :: F,S,E,R
ÝÝÝÝÝÝÝÝÑout P 1

P ∥ Q
F,S,E,R
ÝÝÝÝÝÑout P 1

psq

outIn
R

‚,S,a,P,E,F
ÝÝÝÝÝÝÝÑin P 1

axP y
F,S,E,R
ÝÝÝÝÝÑout P 1

inParL
R

∥ Q :: G,S,a,P,E,F
ÝÝÝÝÝÝÝÝÝÝÝÑin P 1

R ∥ Q
G,S,a,P,E,F
ÝÝÝÝÝÝÝÑin P 1

psq

inComL
b “ a

bpXq.R
G,L,a,P,E,F
ÝÝÝÝÝÝÝÑin ErFr0s ∥GrRtP {Xuss

psq

Figure 3 Output-first Zipper Semantics for HOcore.

A redex is a parallel composition with an input on one side and an output on the same
name on the other side, both surrounded with contexts. The general formulation of such
communication sites in a program can be expressed with the following reduction semantics,
where we write P tQ{Xu for the capture-avoiding substitution of X by Q in P :

ErFraxQys ∥GrapXq.P ss Ñrs ErFr0s ∥GrP tQ{Xuss
ErGrapXq.P s ∥FraxQyss Ñrs ErGrP tQ{Xus ∥Fr0ss

3.2 Zipper Semantics
Finding an HOcore redex requires us to recognize three constructs (parallel composition
along with output and input on a shared name) and build the contexts E, F, and G. The first
step is to find the parallel composition; once the communicating processes P ∥ Q are found,
the communication rules of typical LTSs for process calculi [31, 42, 43] have two premises
looking for the output and the input in P and Q respectively. To be closer to an abstract
machine, we sequentialize the search by looking for the output first (while constructing F)
and then the input (with G) – the opposite choice would produce a completely symmetric
semantics. Figure 3 presents such an output-first zipper semantics, where we omit the
symmetric versions of the rules marked with the symbol psq. The resulting semantics is close
to complementary semantics [32], where the communication is also sequentialized.

The transition E
ÝÑpar is looking for the parallel composition while building E: it proceeds

as E
ÝÑapp in the λ-calculus. Once we find the parallel composition, we look for the output

either on the left or on the right with respectively rules parOutL and parOutR. We record
the side we pick with a parameter S ::“ L | R. For example, in rule parOutL, we look for
an output in P on the left (L), remembering that we should later search for a corresponding
input in Q. We also initialize the context F surrounding the output with ‚ and remember E
as the context enclosing the whole redex.

The transition F,S,E,R
ÝÝÝÝÝÑout decomposes its source process to find an output, building F

at the same time: the other parameters S, E, and R remain unchanged during the search.
When we find the output axP y (rule outIn), we look for a corresponding input in R using
G,S,a,P,E,F
ÝÝÝÝÝÝÝÑin, which builds the context G during the search. Once we find an input on a, we
compute the result of the communication, which depends whether the output is on the left
(rule inComL) or on the right (omitted rule inComR).
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xP yzs ÞÑ xP ; init | ‚ypar

xP ∥Σ Q ; π |Eypar ÞÑ xP ; pparL, Σq :: π | ∥ Q ::Eypar if par R anpP q

xP ∥Σ Q ; π |Eypar ÞÑ xP ; pparOutL, Σq :: π | ‚, L,E, Qyout if pout, |Q|q R anpP q

xP ∥Σ Q ; π |Eypar ÞÑ xQ ; pparOutR, Σq :: π | ‚, R,E, P yout if pout, |P |q R anpQq

xP ; π |Eypar ÞÑ xπ ; P Ypar
|Eybpar otherwise

xinit ; P | ‚ybpar ÞÑ xP ynf

xpparL, Σq :: π ; P | ∥ Q ::Eybpar ÞÑ xP ∥Σ Q ; π |Eypar

xP ∥Σ Q ; π |F, S,E, Ryout ÞÑ xP ; poutParL, Σq :: π | ∥ Q ::F, S,E, Ryout if pout, |R|q R anpP q

xaΣ
xP y ; π |F, S,E, Ryout ÞÑ xR ; poutIn, Σq :: π | ‚, S, a, P,E,Fyin if pin, aq R anpRq

xP ; π |F, S,E, Ryout ÞÑ xπ ; P Ypout,|R|q
|F, S,E, Rybout otherwise

xpparOutL, Σq :: π ; P | ‚, L,E, Qybout ÞÑ xP ∥Σ Q ; π |Eypar

xpparOutR, Σq :: π ; Q | ‚, R,E, P ybout ÞÑ xP ∥Σ Q ; π |Eypar

xpoutParL, Σq :: π ; P | ∥ Q ::F, S,E, Rybout ÞÑ xP ∥Σ Q ; π |F, S,E, Ryout

xR ∥Σ Q ; π |G, S, a, P,E,Fyin ÞÑ xR ; pinParL, Σq :: π | ∥ Q ::G, S, a, P,E,Fyin if pin, aq R anpRq

xbΣ
pXq.R ; π |G, L, a, P,E,Fyin ÞÑ x|ErFr0s ∥GrRtP {Xuss|yzs if a “ b

xbΣ
pXq.R ; π |G, R, a, P,E,Fyin ÞÑ x|ErGrRtP {Xus ∥Fr0ss|yzs if a “ b

xR ; π |G, S, a, P,E,Fyin ÞÑ xπ ; RYpin,aq
|G, S, a, P,E,Fybin otherwise

xpoutIn, Σq :: π ; R | ‚, S, a, P,E,Fybin ÞÑ xaΣ
xP y ; π |F, S,E, Ryout

xpinParL, Σq :: π ; R | ∥ Q ::G, S, a, P,E,Fybin ÞÑ xR ∥Σ Q ; π |G, S, a, P,E,Fyin

Figure 4 Non-Deterministic Abstract Machine for HOcore.

We prove the correspondence between the two semantics in Appendix B.

▶ Remark 3 (Synchronous communication). For a synchronous calculus with an output axP yQ,
the rule outIn would pass the continuation Q as an argument of the input transition in. The
continuation Q would then be plugged into F in the axioms inComL and inComR.

▶ Remark 4 (Left-first search). After finding the communicating processes P ∥ Q, we could
always go left (in P ). When we find an output or input in P , we look for its complement
in Q. A right-first search is also possible. We present the left-first zipper semantics and its
machine in Appendix B; such an approach does not scale to HOπ, as explained in Remark 22.

3.3 Non-Deterministic Abstract Machine

We derive the HOcore NDAM from its zipper semantics along the same principles as for the
λ-calculus: each rule of the semantics corresponds to a forward step and a backward step,
and when no forward step applies to a configuration, we switch to a backward configuration.
The difference is in the normal-form annotations: in λ-calculus, to be a normal form w.r.t.
s,E
ÝÝÑlam or E

ÝÑapp does not depend on the arguments s and E. In HOcore, being a normal form
depends on some of the arguments in the input and output transitions.
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For example, in a process pax0y ∥ bx0yq ∥ Q, we may look into Q for an input on a or on b.
If Q does not contain an input on a, then annotating it with the mode in would prevent from
searching in Q for an input on b. We therefore include the name in the annotation, marking
the root operator of Q with pin, aq, meaning that Q cannot do an input on a. If it also cannot
do an input on b, then its root operator will be annotated with both pin, aq and pin, bq.

With outputs the problem is similar, but not completely symmetric. Let Pa,b “ ax0y ∥ bx0y,
and consider a process pPa,b ∥ Qq ∥ R. We may try to find a communication between Pa,b and
Q first. If Q does not contain an input on a or b, then Pa,b is a normal form w.r.t. the output
search transition ‚,L,∥ R :: ‚,Q

ÝÝÝÝÝÝÝÝÑout, but a communication between Pa,b and R is still possible.
As a result, we annotate the root operator of Pa,b with pout, Qq, meaning that the outputs of
Pa,b are not complemented by the inputs in Q. Such an annotation does not prevent trying
to make Pa,b and R communicate, which would correspond to the transition ∥ Q :: ‚,L,‚,R

ÝÝÝÝÝÝÝÝÑout.
As before, Σ ranges over annotation sets, and |P | is the erasure of P , the annotated

process with empty annotation sets. The syntax of annotations and processes is as follows.

α ::“ par | pout, |P |q | pin, aq P, Q, R ::“ XΣ | 0Σ | P ∥Σ Q | aΣpXq.P | aΣxP y

Substitution and plugging are extended to annotated processes as expected. The definition
of the machine is given in Figure 4. The process P in an annotation pout, |P |q – as in the side
conditions in the par-transitions – is erased, because normal forms are defined with respect
to the zipper semantics transitions, where processes are not annotated. Apart from richer
annotations, the definition of the machine follows the principles of Section 2.3. Note that the
“otherwise” step for the input mode includes the operators that are not parsed in that mode,
but also the inputs on a name distinct from a.

4 Derivation of the Abstract Machine

We show how to derive an abstract machine from a zipper semantics under some conditions.
To this end, we specify zipper semantics as a transition system [22], a framework used to
describe rule formats.

4.1 Zipper Semantics as a Transition System
Given an entity e, we write re for a possibly empty sequence pe1, . . . , enq for some n. We
assume a set S of sorts ranged over by s, denoting the entities of the language (contexts,
names, etc), and which includes the sort t of terms that are reduced. For each sort s, let Os

be the signature of s, i.e., a set of operators, each having a typing rs Ñ s. In particular, we
let op range over the operators of the terms Ot. We also assume a set F of auxiliary functions
that are used to build terms, like term substitution or context plugging, each of type rs Ñ t.

For each s, we assume an infinite set Vs of rule variables, denoted by vs, ws, or v, w if the
sort does not matter. The set Es of rule entities of sort s, ranged over by es, fs (or e, f if we
ignore the sort), are the entities built out of the signature Os extended with rule variables.
We define Es inductively so that Vs Ď Es, and for all o P Os of signature ps1, . . . , snq Ñ s and
pesi

P Esi
qiP1...n for some n, we have opes1 , . . . , esn

q P Es. A special case are term entities et,
which can also be built out of auxiliary functions in F. We write rvpesq for the set of rule
variables of es; es is ground if rvpesq “ H.

A rule substitution σ is a sort-respecting mapping from rule variables to rule entities.
It should not be confused with the substitution ¨t¨{¨u which may exist for terms and is
considered an auxiliary function in F. We write vσ for the application of σ to v, and eσ – for
its extension to rule entities, defined in the expected way. A ground entity e is an instance
of e1 if there exists σ such that e1σ “ e.
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toy
P

a,E
ÝÝÑ P 1

P
E
ÝÑ P 1

outInL
R

Fr0s ∥ :: E,a,P
ÝÝÝÝÝÝÝÝÑin P 1

axP y
F,L,E,R
ÝÝÝÝÝÑout P 1

choiceBad
P

E
ÝÑ P 1

P `Q
E
ÝÑ P 1

choiceOk
P

E,Q :: θ
ÝÝÝÝÑ P 1

P `Q
E,θ
ÝÝÑ P 1

rec
P tµX.P {Xu

E
ÝÑ P 1

µX.P
E
ÝÑ P 1

Figure 5 Rules for variants of HOcore.

Given some rule variables rv, we write Pprvq for a decidable predicate on rv. We assume a
set M of modes, denoted by m, such that each mode is associated with a sequence Ăsm giving
the sorts of its arguments. The set M includes the initial mode zs with no argument.

A transition is a predicate ei
re
ÝÑm eo, where ei and eo are respectively the source and

the target. We consider only three kinds of rule: inductive (whose names are ranged over
with ρ), axiom, and initial, of the following respective shapes.

et

rf
ÝÑm1 vt Pp rwq

opprvq
re
ÝÑm vt

ρ
Pp rwq

opprvq
re
ÝÑm et

vt

rf
ÝÑm wt

vt ÝÑzs wt

init

We extend the notion of set of rule variables rv and the application of a substitution to
transitions and rules.

An inductive rule has only one premise, and may have side-conditions, represented by P ,
on some of the variables rw occurring in the rule. The modes m and m1 may be distinct or
not, and the sequences re and rf should be rule entities of sorts respectively Ăsm and Ăsm1 . The
sources and targets of the transitions are terms; in the conclusion, the source term is of
the form opprvq, enforcing that a rule can only pattern-match the head operator of the term.
Both targets should be the same term variable, meaning that an inductive rule is simply
passing along the result. Computation occurs in axioms, where the target can be any term.

An initial rule defines the initial mode zs. The source of the conclusion is a variable, so
an initial rule does not perform any pattern-matching. An initial rule is just a means to
set up the arguments of another mode m (such that m ‰ zs). A zipper semantics is a triple
pS,O,Rq where R is a finite set of zipper rules with exactly one initial rule. The associated
semantics on terms is defined by ÝÑzs.

4.2 Derivable Zipper Semantics
Not every zipper semantics can be turned into an NDAM. Some conditions have to be
satisfied for the transformation to be possible and to ensure termination.

The first one is that the rules of the semantics must be constructive w.r.t. the machine,
meaning that the entities in its premise are constructed from the ones in the conclusion.
Indeed, the abstract machine searches for redexes with forward steps by going from the
conclusion to the premise of a rule. As a result, a rule like toy in Figure 5 cannot be turned
into a machine step, as the machine would have to guess the name a. We forbid such a rule
by requiring that in each inductive rule of the zipper semantics, the rule variables of the
premise are included in the rule variables of the conclusion.

▶ Definition 5.
et

rf
ÝÑm1 vt Pp rwq

opprvq
re
ÝÑm vt

is machine constructive if rvpet

rf
ÝÑm1qY rw Ď rvpopprvq

re
ÝÑmq.
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The other constraint is that the rules must be reversible to allow for backtracking: it
should be possible to reconstruct the entities in the conclusion from the ones in the premise.
We say a rule is reversible if it cannot have two different instances with the same premise.
For example, we could make the input search in HOcore less verbose, by combining the
contexts E and F in a single context, like in the rule outInL in Figure 5. In ErR ∥Fr0ss, the
input process is plugged into the context ∥Fr0s ::E, that we build in rule outInL, instead
of keeping E and F separate as in Figure 3. However, to unapply the rule outInL, we need
to uniquely decompose a context as ∥Fr0s ::E, which is not possible as soon as there are
several occurrences of 0 in Fr0s: the rule outInL is not reversible. We give a simple sufficient
criterion for a rule to be reversible.

▶ Lemma 6.
et

rf
ÝÑm1 vt Pp rwq

opprvq
re
ÝÑm vt

is reversible if we have rvpopprvq
re
ÝÑmq Ď rvpet

rf
ÝÑm1q, and

the auxiliary functions used to build the entities in et and rf are injective.

The first condition states that the rules variables of the conclusion have to be included in
those of the premise. Indeed, if we forget an entity between the conclusion and the premise,
like Q in the rule for choice choiceBad in Figure 5, then we have no information to restore Q

when backtracking. Instead, it should be kept in an extra argument of the zipper semantics,
like the stack θ in the rule choiceOk in Figure 5. The stack θ is useful only for backtracking
and not to define the semantics of the language, as it is simply thrown away when we apply
an axiom. Any rule forgetting entities between its conclusion and premise can be made
reversible using this principle [39].

Finally, we want the machine to always terminate when searching for a redex. Consider
for instance the rec rule for a recursion operator in Figure 5. The corresponding machine
would infinitely loop with µX.X. Indeed, the forward step of this rule changes focus from
the source of the conclusion to the source of the premise, but these two terms are equal when
P “ X. To avoid this, we require the zipper semantics to be well-founded.

▶ Definition 7. A zipper semantics is well-founded if there exists a well-founded size ζ such

that for all inductive rules
e1t

rf
ÝÑm1 vt Pp rwq

et
re
ÝÑm vt

, we have ζpe1t
rf
ÝÑm1 vtq ă ζpet

re
ÝÑm vtq.

In the calculi of this paper, each rule either focuses on a subterm or it changes mode
(like in rule outIn in HOcore). We therefore define an ordering on modes such that m ą m1

if the derivation of m depends on m1; e.g., we have zs ą app ą lam in λ-calculus, and
zs ą par ą out ą in in HOcore and HOπ. The size we consider is then the lexicographic
ordering composed of the ordering on modes followed by the subterm ordering on the source
term of the transition. This size works as long as we have no cyclic dependencies in modes
and only congruence rules within each mode. It rules out unconstrained recursion, but we
can still adapt it for guarded recursion, where the recursion variable occurs only after an
input, as in µX.apY q.pX ∥ Y q. In the premise of the rec rule, the µ operator itself becomes
guarded, so the number of recursion operators at toplevel strictly decreases.

The semantics of Figures 1, 3, and 9 are machine constructive well-founded, and revers-
ible (they satisfy Lemma 6). Henceforth, we assume the zipper semantics to be machine
constructive, reversible, and well-founded.
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et

rf
ÝÑm1 vt Pp rwq

opprvq
re
ÝÑm vt

ρ

xoppvΣ, rvq ; π | reym ÞÑ x∥et∥ ; pρ, vΣq :: π | rfym1

if ϕpm1, rfq R anp∥et∥q and Pp rwq

xpρ, vΣq :: π ; ∥et∥ | rfybm1 ÞÑ xoppvΣ, rvq ; π | reym

vt

rf
ÝÑm wt

vt ÝÑzs wt

init
xvtyzs ÞÑ xvt ; init | rfym

xinit ; vt | rfybm ÞÑ xvtynf

Pp rwq

opprvq
re
ÝÑm et

xoppvΣ, rvq ; π | reym ÞÑ x| ∥et∥ |yzs if Pp rwq

Figure 6 Forward and backward steps generated from a zipper semantics rule.

4.3 Machine Derivation
Annotations. The machine annotates terms which cannot do certain transitions, to forbid
repeated tries which would lead to an infinite loop. The arguments of the transition may
play a role in whether the term is a normal form or not: in HOcore an output axP y is a
normal form w.r.t. the output transition F,S,E,R

ÝÝÝÝÝÑout if R cannot receive the message on a, so
the annotation is pout, |R|q. Similarly an input G,S,a,E,F

ÝÝÝÝÝÝÑin depends on the name a.
The arguments kept in the annotation are the ones either taking part in the reduction,

like R in the output case, or in side-conditions, like a in the input case. Given a mode m
with arguments re, its annotation ϕpm, req is defined as pm, rfq where rf Ď re are the arguments
occurring either in side-conditions or source terms of the rules defining m. Repeating this for
each mode of a zipper semantics, we define the annotation function ϕ of the semantics.

Annotated terms. Let pS,O,Rq be a zipper semantics with annotation function ϕ. We
extend S with the sort of annotation sets sΣ, for which we assume the usual operators on
sets. The machine is built on a signature A which replaces the signature for terms Ot with
annotated terms, so that for all op P Ot of type ps1, . . . , snq Ñ t for some n, we have a
corresponding operator op P At of type psΣ, s1, . . . , snq Ñ t.

We let a range over annotated terms At, built out of A, Vt, and a single rule variable for
annotation sets vΣ: one variable is enough, as at most one annotation set occurs in a given
machine step. Given an annotated term a “ oppeΣ, req, we write anpaq for its annotation
set eΣ. Given a term et P Et, its annotated version, written ∥et∥, is inductively defined so
that ∥vs∥ “ vs and ∥oppreq∥ “ oppvΣ, Ą∥e∥q. Given an annotated term a P At, its erasure |a|
produces a term with empty annotation sets, inductively defined so that |vs| “ vs and
|oppeΣ, req| “ oppH, Ă|e|q.

Machine steps. The syntax of rule stacks π is given by π ::“ init | pρ, Σq :: π. We denote
configurations xa ; π | reym as forward, a special case being initial ones xayzs. Backward
configurations are of the form xπ ; a | reybm with normal-form ones xaynf as a subcase.

Figure 6 presents the forward and backward steps generated from an inductive rule ρ,
an initial rule init, and an axiom. The forward step for an inductive rule goes from the
conclusion to the premise, while the backward step goes in the opposite direction. Terms are
extended with the rule variable for annotated sets vΣ. The initial rule case is the same as the
inductive one but simpler, as there is no side-condition: the annotated sets of the term vt in
xvtyzs are assumed to be empty. We can see that the annotations are erased after applying
an axiom, as we end up with x| ∥et∥ |yzs. There is no backward step associated to axioms.
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What remains are the switching steps when we realize that the current mode m does
not apply to the term oppvΣ, rvq we reduce. These are the “otherwise” steps in Figures 2
and 4, which actually cover different cases. The first possibility is that op does not have a
rule applying to it in the mode m. For such cases, we add a step

xoppvΣ, rvq ; π | reym ÞÑ xπ ; oppvΣ Y tϕpm, requ, rvq | reybm

When going to a backward configuration, we extend the annotation set of the operator with
the current annotation.

The other case is that no rule
ei

t

Ăfi
ÝÑmi

vt Pip rwq

opprvq
re
ÝÑm vt

ρi for op in the mode m applies,

because either the premise or the side condition do not hold. If the machine has already
checked that the premise fails, then ei

t has been annotated with ϕpmi, rfiq. The corresponding
switching step is therefore

xoppvΣ, rvq ; π | reym ÞÑ xπ ; oppvΣYtϕpm, requ, rvq | reybm if
ľ

i

´

ϕpmi, rfiq P anp∥ei
t∥q _ ␣Pip rwq

¯

Equivalence. The equivalence between the zipper semantics and its derived NDAM is proved
in the research report [6]; we state here the main results. We let T (resp. A) range over
(resp. annotated) ground terms. For all T , we write ∥T∥H for the corresponding annotated
term with empty annotations sets. For all A, we write |A| for A where all annotations sets
are made empty; there exists an unique T such that |A| “ ∥T∥H. We call a search path a
sequence of machine steps ÞÑ` which does not go through an initial configuration. Search
paths are finite, and result either in an initial or a normal-form configuration.

▶ Theorem 8. For all T , there exists n such that any search path starting from x∥T∥Hyzs
is of size at most n. For all maximal search paths x∥T∥Hyzs ÞÑ

` c, either c “ x∥T 1∥Hyzs for
some T 1, or c “ xAynf for some A with |A| “ ∥T∥H.

We write $ T ÝÑzs T 1 when there exists a zipper semantics derivation ended with T ÝÑzs T 1.
Search paths correspond to derivations in the following way.

▶ Theorem 9. For all T , T 1, and A,
$ T ÝÑzs T 1 iff there exists a search path x∥T∥Hyzs ÞÑ

` x∥T 1∥Hyzs;
T is a normal form iff there exists a search path x∥T∥Hyzs ÞÑ

` xAynf with |A| “ ∥T∥H.

5 Related Work

The zipper semantics of the process calculi are inspired by complementary semantics [32],
a format dedicated to bisimulation proofs. In both semantics, the derivation tree of two
communicating processes is sequentialized. The difference is in the transition labels, which
should be as minimal as possible in complementary semantics to keep the bisimulation proofs
simple, while ours are detailed enough to be able to reconstruct the whole term.

Typical abstract machines for deterministic languages based on the λ-calculus are in
refocused form [11]; such machines continue term decomposition from the contraction site.
They have been shown to be uniformly derivable from the underlying reduction semantics
by a refocusing method [7,44], and the correctness of the derivation hinges on the unique
decomposition property. NDAMs do not have this property, and after contracting a redex they
completely reconstruct the term. An optimization similar to refocusing for non-deterministic
languages appears more challenging in general. Another common feature of abstract machines
for the λ-calculus is an efficient implementation of substitution with environments [8]. The
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use of environments is orthogonal to the derivation of NDAMs: if the source zipper semantics
uses environments, then so does its derived NDAM. We consider substitution-based zipper
semantics in this paper because they are simpler than environment-based ones.

Process algebras have been implemented in various frameworks ranging from rewriting
logic [45] to biological systems [35], including dedicated implementations and abstract
machines [4, 16, 18–21, 24, 34, 37, 38, 46]. These implementations are ad-hoc and calculus-
specific, and only some of them are complete [4, 19,21,24,37,38]. We believe we can handle
most of these calculi in our framework in a uniform and complete way. However, the resulting
implementation would be “single-threaded”, while the distribution of processes is a concern of
previous machines [19], especially for calculi with localities [4, 20, 21, 24, 38]. Considering the
many different models of distribution, making our machine distributed requires significantly
more work, especially if we want to remain generic and complete.

Our use of backtracking evokes reversible calculi [9, 47], where one can revert communica-
tion steps, not necessarily in the order they were taken, as long as the causality between
them is preserved. The concerns are different, though: in reversible calculi it is to keep
enough information to track causality [30, 39], while here it is to control backtracking to
avoid infinite searches. As a result, we store less information in machine configurations, but
the annotations we use to prevent loops would not be typically needed in the other setting.

6 Conclusion

We present a generic design of abstract machines for non-deterministic languages. The
machine looks for a redex in the term, making arbitrary choices when several paths are
possible, and backtracks when it reaches a subterm which cannot reduce. The machine
annotates such subterms to avoid trying them again, preventing infinite search. An NDAM
is automatically derived from zipper semantics, a form of SOS in which the decomposition
process of a term into a context and a redex is made explicit. The machine is sound and
complete w.r.t. the zipper semantics. The derivation procedure has been implemented in
OCaml [5]. The presented methodology is readily applicable to other non-deterministic
calculi not shown in this paper, such as concurrent lambda calculi, with communication via
channels or via futures [3, 17,36].

An improvement of the current design would be to keep as many annotations as possible
after reducing, in order to prune redundant search. Another optimization would be to find a
way to manage annotations that would generically enable refocusing.

Finally, we would like to derive the zipper semantics from a more commonly used format,
such as reduction semantics or SOS. An appropriate starting point should be able to express
the different families of non-deterministic languages, such as concurrent λ-calculi or process
calculi. A multi-hole context-based reduction semantics could be such a starting point.
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A Lambda-calculus

We prove the correspondence between the zipper and reduction semantics.

▶ Lemma 10. For all t
s,E
ÝÝÑlam t1, we have Ert @ ss Ñrs t1.

For all t
E
ÝÑapp t1, we have Erts Ñrs t1.

Proof. The first item is by definition, and the second one is proved by induction on the
derivation of t

E
ÝÑapp t1. The base case is appβ, where we conclude using the first item.

For the recursive case, suppose we apply appL: we have t @ s
E
ÝÑapp t1 because t @ s :: E

ÝÝÝÝÑapp t1.
By induction, we have p@ s ::Eqrts Ñrs t1, i.e., Ert @ ss Ñrs t1, as wished. The other cases are
similar. ◀

▶ Theorem 11. For all t ÝÑzs t1, we have t Ñrs t1.
For completeness, we need Erpλx.t2q@ ss Ñrs Ert2ts{xus implies Erpλx.t2q@ ss ÝÑzs

Ert2ts{xus. First, we notice that λx.t2
s,E
ÝÝÑlam Ert2ts{xus holds by definition of s,E

ÝÝÑlam.
With appβ, we get pλx.t2q@ s

E
ÝÑapp Ert2ts{xus. To conclude, we use the following result.

▶ Lemma 12. For all t
E
ÝÑapp t1, we have Erts ‚

ÝÑapp t1.
Proof. We proceed by induction on E. There is nothing to prove for ‚. If E “ λx ::E1, then
t

λx :: E1

ÝÝÝÝÑapp t1 implies λx.t
E1

ÝÑapp t1 by appλ, from which we deduce E1rλx.ts
‚
ÝÑapp t1 by the

induction hypothesis , i.e., Erts ‚
ÝÑapp t1, as wished. The proof is similar in the remaining

cases. ◀

▶ Theorem 13. For all t Ñrs t1, we have t ÝÑzs t1.
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init
P

‚
ÝÑpar P 1

P ÝÑzs P 1

parL

P
∥ Q :: E
ÝÝÝÝÑpar P 1

P ∥ Q
E
ÝÑpar P 1

psq

parCom
P

‚,E,Q
ÝÝÝÑleft P 1

P ∥ Q
E
ÝÑpar P 1

leftParL
P

∥ Q :: F,E,R
ÝÝÝÝÝÝÝÑleft P 1

P ∥ Q
F,E,R
ÝÝÝÑleft P 1

psq

leftOut
R

‚,a,P,E,F
ÝÝÝÝÝÝÑin P 1

axP y
F,E,R
ÝÝÝÑleft P 1

leftIn
R

‚,a,X,P,E,F
ÝÝÝÝÝÝÝÑout P 1

apXq.P
F,E,R
ÝÝÝÑleft P 1

inParL
R

∥ Q :: G,a,P,E,F
ÝÝÝÝÝÝÝÝÝÑin P 1

R ∥ Q
G,a,P,E,F
ÝÝÝÝÝÝÑin P 1

psq

inCom

apXq.R
G,a,P,E,F
ÝÝÝÝÝÝÑin ErFr0s ∥GrRtP {Xuss

outParL
R

∥ Q :: G,a,X,P,E,F
ÝÝÝÝÝÝÝÝÝÝÝÑout P 1

R ∥ Q
G,a,X,P,E,F
ÝÝÝÝÝÝÝÝÑout P 1

psq

outCom

axRy
G,a,X,P,E,F
ÝÝÝÝÝÝÝÝÑout ErFrP tR{Xus ∥Gr0ss

Figure 7 Left-first Zipper Semantics for HOcore.

B HOcore

The output-first zipper semantics is equivalent to reduction semantics in the following way.

▶ Lemma 14. For all R
G,a,S,P,E,F
ÝÝÝÝÝÝÝÑin R1, there exists R2 such that either we have R1 “

ErFr0s ∥GrR2tP {Xuss if S “ L or R1 “ ErGrR2tP {Xus ∥Fr0ss if S “ R.
For all P

F,S,E,R
ÝÝÝÝÝÑout P 1, we have either ErFrP s ∥ Rs Ñrs P 1 if S “ L or ErR ∥FrP ss Ñrs

P 1 if S “ R.
For all P

E
ÝÑpar P 1, we have ErP s Ñrs P 1.

Each result is proved by induction on the zipper derivation.

▶ Theorem 15. For all P ÝÑzs P 1, we have P Ñrs P 1.

The reverse implication relies on the following results about contexts in zipper semantics.

▶ Lemma 16. For all R
G,S,a,P,E,F
ÝÝÝÝÝÝÝÑin R1, we have GrRs ‚,S,a,P,E,F

ÝÝÝÝÝÝÝÑin R1.
For all P

F,S,E,R
ÝÝÝÝÝÑout P 1, we have FrP s ‚,S,E,R

ÝÝÝÝÝÑout P 1.
For all P

E
ÝÑpar P 1, we have ErP s ‚

ÝÑpar P 1.

Suppose R Ñrs R1 with R “ ErFraxQys ∥GrapXq.P ss; the proof is similar in the sym-
metric case. We have apXq.P

G,L,a,Q,E,F
ÝÝÝÝÝÝÝÑin R1, and by the first item of Lemma 16, we

deduce GrapXq.P s ‚,L,a,Q,E,F
ÝÝÝÝÝÝÝÑin R1. We get axQy

F,L,E,GrapXq.P s
ÝÝÝÝÝÝÝÝÝÝÑout R1 by rule outIn,

i.e., FraxQys ‚,L,E,GrapXq.P s
ÝÝÝÝÝÝÝÝÝÝÑout R1 with the second item. With rule parOutL, we obtain

FraxQys ∥GrapXq.P s E
ÝÑpar R1, from which we can conclude using the last item.

▶ Theorem 17. For all P Ñrs P 1, we have P ÝÑzs P 1.
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xP yzs ÞÑ xP ; init | ‚ypar

xP ∥Σ Q ; π |Eypar ÞÑ xP ; pparL, Σq :: π | ∥ Q ::Eypar if par R anpP q

xP ∥Σ Q ; π |Eypar ÞÑ xQ ; pparR, Σq :: π | P ∥ ::Eypar if par R anpQq

xP ∥Σ Q ; π |Eypar ÞÑ xP ; pparCom, Σq :: π | ‚,E, Qyleft if pleft, |Q|q R anpP q

xP ; π |Eypar ÞÑ xπ ; P Ypar
|Eybpar otherwise

xinit ; P | ‚ybpar ÞÑ xP ynf

xpparL, Σq :: π ; P | ∥ Q ::Eybpar ÞÑ xP ∥Σ Q ; π |Eypar

xpparR, Σq :: π ; Q | P ∥ ::Eybpar ÞÑ xP ∥Σ Q ; π |Eypar

xP ∥Σ Q ; π |F,E, Ryleft ÞÑ xP ; pleftParL, Σq :: π | ∥ Q ::F,E, Ryleft if pleft, |R|q R anpP q

xP ∥Σ Q ; π |F,E, Ryleft ÞÑ xQ ; pleftParR, Σq :: π | P ∥ ::F,E, Ryleft if pleft, |R|q R anpQq

xaΣ
xP y ; π |F,E, Ryleft ÞÑ xR ; pleftOut, Σq :: π | ‚, a, P,E,Fyin if pin, aq R anpRq

xaΣ
pXq.P ; π |F,E, Ryleft ÞÑ xR ; pleftIn, Σq :: π | ‚, a,F,E, X, P yout if pout, aq R anpRq

xP ; π |F,E, Ryleft ÞÑ xπ ; P Ypleft,Rq
|F,E, Rybleft otherwise

xpparCom, Σq :: π ; P | ‚,E, Qybleft ÞÑ xP ∥Σ Q ; π |Eypar

xpleftParL, Σq :: π ; P | ∥ Q ::F,E, Rybleft ÞÑ xP ∥Σ Q ; π |F,E, Ryleft

xpleftParR, Σq :: π ; Q | P ∥ ::F,E, Rybleft ÞÑ xP ∥Σ Q ; π |F,E, Ryleft

xR ∥Σ Q ; π |G, a, P,E,Fyin ÞÑ xR ; pinParL, Σq :: π | ∥ Q ::G, a, P,E,Fyin if pin, aq R anpRq

xR ∥Σ Q ; π |G, a, P,E,Fyin ÞÑ xQ ; pinParR, Σq :: π | R ∥ ::G, a, P,E,Fyin if pin, aq R anpQq

xaΣ
pXq.R ; π |G, a, P,E,Fyin ÞÑ x|ErFr0s ∥GrRtP {Xuss|yzs

xR ; π |G, a, P,E,Fyin ÞÑ xπ ; RYpin,aq
|G, a, P,E,Fybin otherwise

xpleftOut, Σq :: π ; R | ‚, a, P,E,Fybin ÞÑ xaΣ
xP y ; π |F,E, Ryleft

xpinParL, Σq :: π ; R | ∥ Q ::G, a, P,E,Fybin ÞÑ xR ∥Σ Q ; π |G, a, P,E,Fyin

xpinParR, Σq :: π ; Q | R ∥ ::G, a, P,E,Fybin ÞÑ xR ∥Σ Q ; π |G, a, P,E,Fyin

Figure 8 Left-first NDAM for HOcore.

The left-first semantics for HOcore is given in Figure 7. The par transition is going through
the process to find the parallel composition at the root of the communication redex, building
the context E surrounding the redex at the same time. Finding the parallel composition
triggers the F,E,R

ÝÝÝÑleft transition, which looks for an input or an output in the process on the
left, while building the context F and remembering E and the process on the right R. If we
find an output, we look for an input on the same name in R using G,a,P,E,F

ÝÝÝÝÝÝÑin (rule leftOut),
otherwise we look for an output using G,a,X,P,E,F

ÝÝÝÝÝÝÝÝÑout (rule leftIn). These two transitions
are building the context G and use the remaining arguments to compute the results of the
communication (rules inCom and outCom).

The corresponding NDAM is in Figure 8, except for the out and bout modes, which are
symmetric to the in and bin modes.
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C HOπ

We present the zipper semantics of HOπ, an extension of HOcore with name restriction. The
main difficulty is that the evaluation contexts surrounding the communicating processes can
be themselves modified by the reduction.

C.1 Syntax and Semantics
We add name restriction to HOcore processes and frames.

P, Q, R ::“ . . . | νa.P F ::“ . . . | νa

To remain close to HOcore, the calculus of this section is asynchronous: outputs axP y do not
have a continuation, unlike the original HOπ [42], Adding continuations would not be an
issue as pointed out in Remark 3.

The scope of a in νa.P is restricted to P , so that a communication on a is possible inside
P only. For instance, the process apXq.X ∥ νa.ax0y cannot reduce, because the name a is
restricted to the process on the right. In general, a process EraxP ys or ErapXq.P s cannot
communicate on a if E captures a. To check this, we compute the set of names bound by E,
written bnpEq, as follows.

bnp‚q ∆
“ H bnp∥ P ::Eq ∆

“ bnpEq

bnpνa ::Eq ∆
“ tau Y bnpEq bnpP ∥ ::Eq ∆

“ bnpEq

Name restriction does not forbid the communication on unrestricted names, but the scope
of restricted names has to be enlarged to prevent them from escaping their delimiter. For
example, we have

bpXq.pX ∥ cx0yq ∥ νa.pbxapY q.Y y ∥ ax0yq Ñrs

νa.papY q.Y ∥ cx0y ∥ 0 ∥ ax0yq

The scope of a has been extended to include the receiving process on b. This phenomenon
is known as scope extrusion. To reflect it at the level of contexts, we define an operation
extrpEq which returns a pair of contexts pE1,E2q such that E2 contains the binding frames,
while E1 contains the remaining frames. We assume free names to be distinct from bound
names using α-conversion if necessary, to avoid capture during extrusion.

extrp‚q ∆
“ p‚, ‚q

extrpEq “ pE1,E2q

extrpνa ::Eq ∆
“ pE1, νa ::E2q

extrpEq “ pE1,E2q

extrp∥ P ::Eq ∆
“ p∥ P ::E1,E2q

extrpEq “ pE1,E2q

extrpP ∥ ::Eq ∆
“ pP ∥ ::E1,E2q

We define the reduction semantics Ñrs of HOπ as follows, assuming a R bnpFq Y bnpGq and
extrpFq “ pF1,F2q.

ErFraxQys ∥GrapXq.P ss Ñrs ErF2rF1r0s ∥GrP tQ{Xusss
ErGrapXq.P s ∥FraxQyss Ñrs ErF2rGrP tQ{Xus ∥F1r0sss

CONCUR 2022
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init
P

‚
ÝÑpar P 1

P ÝÑzs P 1

parNu
P

νa :: E
ÝÝÝÝÑpar P 1

νa.P
E
ÝÑpar P 1

parL

P
∥ Q :: E
ÝÝÝÝÑpar P 1

P ∥ Q
E
ÝÑpar P 1

psq

parOutL
P

‚,‚,L,E,Q
ÝÝÝÝÝÝÑout P 1

P ∥ Q
E
ÝÑpar P 1

parOutR
Q

‚,‚,R,E,P
ÝÝÝÝÝÝÑout P 1

P ∥ Q
E
ÝÑpar P 1

outParL
P

∥ Q :: F1,F2,S,E,R
ÝÝÝÝÝÝÝÝÝÝÝÑout P 1

P ∥ Q
F1,F2,S,E,R
ÝÝÝÝÝÝÝÑout P 1

psq

outNu
P

F1,νb :: F2,S,E,R
ÝÝÝÝÝÝÝÝÝÝÑout P 1

νb.P
F1,F2,S,E,R
ÝÝÝÝÝÝÝÑout P 1

outIn
R

‚,S,a,P,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÑin P 1 a R bnpF2q

axP y
F1,F2,S,E,R
ÝÝÝÝÝÝÝÑout P 1

inParL
R

∥ Q :: G,S,a,P,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑin P 1

R ∥ Q
G,S,a,P,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÑin P 1

psq

inNu
R

νb :: G,S,a,P,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑin P 1 a ‰ b

νb.R
G,S,a,P,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÑin P 1

inComL
a “ b

bpXq.R
G,L,a,P,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÑin ErF2rF1r0s ∥GrRtP {Xusss

psq

Figure 9 Zipper Semantics for HOπ.

C.2 Zipper Semantics and NDAM
We present the zipper semantics of HOπ in Figure 9. The out and in transitions differ from
HOcore as they carry two contexts F1 and F2: as in the reduction semantics, F1 collects the
parallel compositions (rules outParL and outParR) while F2 collects the name restrictions
(rule outNu).

Checking that the name a on which the communication happens is not captured by F2 or
G is not done the same way in the out and in transitions, because the transitions themselves
are not completely symmetric. In the input transition, we already know the name a, so we
simply verify that the names bound by G differ from a on the fly in rule inNu. We cannot do
the same in rule outNu, because we do yet not know a at this point. We know a when we
find the output (rule outIn), so we check here that F2 does not capture it.

We first prove that zipper semantics implies reduction semantics.

▶ Lemma 18. For all transitions R
G,a,S,P,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÑin R1, there exists R2 such that R1 “

ErF2rF1r0s ∥GrR2tP {Xusss if S “ L and R1 “ ErF2rGrR2tP {Xus ∥F1r0sss if S “ R.
For all transitions P

F1,F2,S,E,R
ÝÝÝÝÝÝÝÑout P 1 and F such that extrpFq “ pF1,F2q, we have

ErFrP s ∥ Rs Ñrs P 1 if S “ L and ErR ∥FrP ss Ñrs P 1 if S “ R.
For all P

E
ÝÑpar P 1, we have ErP s Ñrs P 1.
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xP yzs ÞÑ xP ; init | ‚ypar

xP ∥Σ Q ; π |Eypar ÞÑ xP ; pparL, Σq :: π | ∥ Q ::Eypar if par R anpP q
xP ∥Σ Q ; π |Eypar ÞÑ xQ ; pparR, Σq :: π |P ∥ ::Eypar if par R anpQq
xνΣa.P ; π |Eypar ÞÑ xP ; pparNu, Σq :: π | νa ::Eypar if par R anpP q
xP ∥Σ Q ; π |Eypar ÞÑ xP ; pparOutL, Σq :: π | ‚, ‚, L,E, Qyout if pout, |Q|, ‚q R anpP q
xP ∥Σ Q ; π |Eypar ÞÑ xQ ; pparOutR, Σq :: π | ‚, ‚, R,E, P yout if pout, |P |, ‚q R anpQq

xP ; π |Eypar ÞÑ xπ ; PYpar |Eybpar otherwise

xinit ; P | ‚ybpar ÞÑ xP ynf

xpparL, Σq :: π ; P | ∥ Q ::Eybpar ÞÑ xP ∥Σ Q ; π |Eypar

xpparR, Σq :: π ; Q |P ∥ ::Eybpar ÞÑ xP ∥Σ Q ; π |Eypar

xpparNu, Σq :: π ; P | νa ::Eybpar ÞÑ xνΣa.P ; π |Eypar

xP ∥Σ Q ; π |F1,F2, S,E, Ryout ÞÑ xP ; poutParL, Σq :: π | ∥ Q ::F1,F2, S,E, Ryout

if pout, |R|,F2q R anpP q
xP ∥Σ Q ; π |F1,F2, S,E, Ryout ÞÑ xQ ; poutParR, Σq :: π |P ∥ ::F1,F2, S,E, Ryout

if pout, |R|,F2q R anpQq
xνΣa.P ; π |F1,F2, S,E, Ryout ÞÑ xP ; poutNu, Σq :: π |F1, νa ::F2, S,E, Ryout

if pout, |R|, νa.F2q R anpP q
xaΣxP y ; π |F1,F2, S,E, Ryout ÞÑ xR ; poutIn, Σq :: π | ‚, S, a, P,E,F1,F2yin

if pin, aq R anpRq, a R bnpF2q

xP ; π |F1,F2, S,E, Ryout ÞÑ xπ ; PYpout,|R|q |F1,F2, S,E, Rybout

otherwise

xpparOutL, Σq :: π ; P | ‚, ‚, L,E, Qybout ÞÑ xP ∥Σ Q ; π |Eypar

xpparOutR, Σq :: π ; Q | ‚, ‚, R,E, P ybout ÞÑ xP ∥Σ Q ; π |Eypar

xpoutParL, Σq :: π ; P | ∥ Q ::F1,F2, S,E, Rybout ÞÑ xP ∥Σ Q ; π |F1,F2, S,E, Ryout

xpoutParR, Σq :: π ; Q |P ∥ ::F1,F2, S,E, Rybout ÞÑ xP ∥Σ Q ; π |F1,F2, S,E, Ryout

xpoutNu, Σq :: π ; P |F1, νa ::F2, S,E, Rybout ÞÑ xνΣa.P ; π |F1,F2, S,E, Ryout

Figure 10 Non-Deterministic Abstract Machine for HOπ– parallel and output modes.

Proof. We sketch the proof of the second item, the others are easy. The proof is by induction
on the derivation of the out transition. We assume S “ L, the case S “ R is similar. In
the base case (rule outIn), we have P “ axP 2y and R

‚,a,S,P 2,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÝÑin P 1, which implies

P 1 “ ErF2rF1r0s ∥GrR2tP 2{Xusss for some R2 by the first item.
Suppose we are in the case of rule outNu, and let F such that extrpFq “ pF1,F2q.

Then P “ νa.P 2 and P 2 F1,νa.F2,S,E,R
ÝÝÝÝÝÝÝÝÝÑout P 1. By induction, for all F1 such that

extrpF1q “ pF1, νa ::F2q, we have ErF1rP 2s ∥ Rs Ñrs P 1. But since extrpFq “ pF1,F2q, we
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xR ∥Σ Q ; π |G, S, a, P,E,F1,F2yin ÞÑ xR ; pinParL, Σq :: π | ∥ Q ::G, S, a, P,E,F1,F2yin

if pin, aq R anpRq
xR ∥Σ Q ; π |G, S, a, P,E,F1,F2yin ÞÑ xQ ; pinParR, Σq :: π |R ∥ ::G, S, a, P,E,F1,F2yin

if pin, aq R anpQq
xνΣb.R ; π |G, S, a, P,E,F1,F2yin ÞÑ xR ; pinNu, Σq :: π | νb ::G, S, a, P,E,F1,F2yin

if pin, aq R anpRq, b ‰ a

xbΣpXq.R ; π |G, L, a, P,E,F1,F2yin ÞÑ x|ErF2rF1r0s ∥GrRtP {Xusss|yzs

if a “ b

xbΣpXq.R ; π |G, R, a, P,E,F1,F2yin ÞÑ x|ErF2rGrRtP {Xus ∥F1r0sss|yzs

if a “ b

xR ; π |G, S, a, P,E,F1,F2yin ÞÑ xπ ; RYpin,aq |G, S, a, P,E,F1,F2ybin

otherwise

xpoutIn, Σq :: π ; R | ‚, S, a, P,E,F1,F2ybin ÞÑ xaΣxP y ; π |F1,F2, S,E, Ryout

xpinParL, Σq :: π ; R | ∥ Q ::G, S, a, P,E,F1,F2ybin ÞÑ xR ∥Σ Q ; π |G, S, a, P,E,F1,F2yin

xpinParR, Σq :: π ; Q |R ∥ ::G, S, a, P,E,F1,F2ybin ÞÑ xR ∥Σ Q ; π |G, S, a, P,E,F1,F2yin

xpinNu, Σq :: π ; R | νb ::G, S, a, P,E,F1,F2ybin ÞÑ xνΣb.R ; π |G, S, a, P,E,F1,F2yin

Figure 11 Non-Deterministic Abstract Machine for HOπ– input mode.

have extrpνa ::Fq “ pF1, νa ::F2q by definition, so by the induction hypothesis, we obtain
Erpνa.FqrP 2s ∥ Rs Ñrs P 1. This is the same as ErFrνa.P 2s ∥ Rs Ñrs P 1, but νa.P 2 “ P , so
we get the expected result. The cases of rules outParL and outParR are similar. ◀

▶ Theorem 19. For all P ÝÑzs P 1, we have P Ñrs P 1.

The proof of the reverse implication follows the same strategy as in HOcore, using the
following result.

▶ Lemma 20. For all R
G,S,a,P,E,F1,F2
ÝÝÝÝÝÝÝÝÝÝÑin R1, we have GrRs ‚,S,a,P,E,F1,F2

ÝÝÝÝÝÝÝÝÝÝÑin R1.
For all P

F1,F2,S,E,R
ÝÝÝÝÝÝÝÑout P 1 and F such that extrpFq “ pF1,F2q, we have FrP s ‚,‚,S,E,R

ÝÝÝÝÝÝÑout
P 1.

For all P
E
ÝÑpar P 1, we have ErP s ‚

ÝÑpar P 1.

▶ Theorem 21. For all P Ñrs P 1, we have P ÝÑzs P 1.

▶ Remark 22. The zipper semantics for HOπ cannot be written in the left-first style (Remark 4)
because of scope extrusion. After finding the communicating processes P ∥ Q, we search for
an output or input in P . Because we do not know the operator in advance, we do not know
if we should decompose the context surrounding it to account for scope extrusion.

While writing the zipper semantics for HOπ requires some care, the corresponding NDAM
is as expected (cf. Figures 10 and 11). A difference with HOcore is the side-conditions in
the outIn and inNu rules, which are added to the step. If the side-condition is not met, the
“otherwise” step applies and we switch to the backward mode bout. The side-condition also
makes the output mode annotation become pout, |R|,F2q: a process axP y is a normal form
w.r.t. output if F2 captures a, so being a normal form in this mode depends on F2.
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Abstract
We look at the construction of compact Petri net models corresponding to process algebra expressions
supporting sequential, choice, and parallel compositions. If “silent” transitions are disallowed, a
construction based on Cartesian product is traditionally used to construct places in the target Petri
net, resulting in an exponential explosion in the net size. We demonstrate that this exponential
explosion can be avoided, by developing a link between this construction problem and the problem of
finding an edge clique cover of a graph that is guaranteed to be complement-reducible (i.e., a cograph).
It turns out that the exponential number of places created by the Cartesian product construction
can be reduced down to polynomial (quadratic) even in the worst case, and to logarithmic in the
best (non-degraded) case. As these results affect the “core” modelling techniques based on Petri
nets, eliminating a source of an exponential explosion, we hope they will have applications in Petri
net modelling and translations of various formalisms to Petri nets.
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1 Introduction

Petri nets have a special place among modelling formalisms due to their simplicity of
semantics, intuitive graphical notation, and the possibility of capturing behaviours concisely
without making subsequent processing (e.g., formal verification or synthesis) undecidable.
This has led to the abundance of software tools for Petri nets, and to extensive use of Petri
nets both as a modelling formalism and as an intermediate representation to which a model
that was initially expressed in a different formalism is translated, e.g., to utilise efficient
formal verification techniques and tools. In fact, developing translations from various process
algebras and other formalisms to Petri nets has been a hot research topic for the past four
decades, see e.g., [2, 5, 9, 12].

The possibility to create concise models is often the key advantage of Petri nets over
simpler formalisms like Finite State Machines (fsms). Indeed, it is generally accepted that one
is likely to encounter the exponential state space explosion [13] during, e.g., formal verification
– this problem is believed to be fundamental (unless p=pspace), and mitigating this explosion
using heuristics has been a hot research topic for many years. However, encountering an
exponential explosion already during the modelling stage would be unfortunate and indicative
of problems in modelling techniques or even the formalism itself.

However, as we observed in [8], a naïve translation of even simple control flows to Petri
nets may lead to an exponential explosion in the Petri net size. As a motivating example, [8]
considers Burst Automata (ba) [3] – a formalism with applications in the area of asynchronous
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Figure 1 A Burst Automata specification of the C-element and an fsm expressing its interleaving
semantics. A C-element waits for both inputs to switch to 1 (actions i+

1 and i+
2 ) before switching its

output to 1 (action o+), and then waits for both inputs to switch to 0 (actions i−
1 and i−

2 ) before
switching its output to 0 (action o−). It is assumed that the environment fulfills its part of the
contract, i.e. each input switches only once before the output switches.

circuits design. Intuitively, Burst Automata are similar to fsms, except that their arcs are
labelled not by single actions but by sets of actions (“bursts”) which fire concurrently. One can
define the interleaving semantics of Burst Automata by allowing the actions in a burst to fire
in any order, which results in the usual fsm, see the example in Figure 1. When developing
a translation between two formalisms, some kind of behavioural equivalence between the
models is required, e.g., language equivalence or bisimulation of the corresponding fsms. As
Burst Automata are a very simple fsm-like formalism, it would be reasonable to expect that
translating them to Petri nets would be quite simple and efficient.

However, developing a compact translation from Burst Automata to Petri nets is more
complicated than one could expect – in particular, efficiently expressing a choice between
several bursts of concurrent transitions is not trivial in Petri nets. In [3] a language-preserving
linear size translation is proposed, that prefixes each burst with a silent “fork” transition
and then uses another “join” transition after the burst to detect completion. Unfortunately,
there are situations when this translation is unacceptable. First of all, silent transitions
turn a deterministic model into a non-deterministic one, which is often undesirable (e.g.,
non-determinism cannot be directly implemented physically, say in an asynchronous logic
circuit [4]). Second, language equivalence may be too weak (e.g., it does not preserve
branching time temporal properties or even deadlocks), and prefixing bursts with silent
transitions breaks not only strong but also weak bisimulation, see Figure 2.

To preserve strong bisimulation, the following Cartesian Product Construction (×-
construction) is traditionally used, see e.g., [1, 2, 5, 14]. To express a choice between
several bursts (i.e., sets of concurrent transitions) B1, B2, . . . , Bn, this construction would
create a set of places corresponding to tuples in B1 × B2 × · · · × Bn, so that a place cor-
responding to a tuple (b1, . . . , bn) is connected to each transition bi occurring in the tuple.
This means that the number of created places is |B1| · |B2| · . . . · |Bn|, i.e., the Petri net size
is exponential in the number of bursts. For example, [3] developed two translations from
Burst Automata to Petri nets based on ×-construction, which preserve either weak or strong
bisimulation. However, in contrast to the linear size translation of [3] (that does not preserve
even weak bisimulation), they may result in an exponentially large Petri net.

In [8] we proposed an alternative to ×-construction, that uses at most quadratic (in
the total size of all bursts) number of places to express a choice between bursts, thereby
reducing the size of Burst Automata to Petri net translation from exponential [3] down to
polynomial. Furthermore, in some cases a logarithmic number of places is sufficient, yielding
a double-exponential reduction compared with ×-construction. The technique was based
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Figure 2 A Burst Automaton with singleton bursts, so coinciding with the fsm expressing
its interleaving semantics (left); its Petri net translation prefixing each burst with a silent “fork”
transition (middle); the reachability graph (fsm) of this Petri net (right). Note that the two fsms
are language-equivalent but not weakly bisimilar.

on showing the equivalence between the modelling problem of expressing a choice between
bursts of concurrent events and the problem of finding an edge clique cover of a complete
multipartite graph.

In this paper, we generalise the technique of [8] to arbitrary control flows which are built
from atomic actions using choice, concurrency, and sequencing operators. In particular, a
polynomial translation of such control flows to Petri nets is possible, that preserves strong
bisimulation (in fact, it guarantees the isomorphism of reachability graphs, which is an even
stronger equivalence). The developed technique allowed us to further improve the translation
of Burst Automata to Petri nets proposed in [8] by handling the sequence operator better,
see Figure 3. The developed Petri net translation is compositional – this is ensured by
augmenting Petri Box Algebra [2] with the notion of interface graphs (superseding the entry
and exit places of Petri boxes) in a way that allowed us to import many results from Petri
Box Algebra into the new framework.

Since the proposed construction affects the “core” modelling techniques for Petri nets
and because the choice, concurrency, and sequencing operators are included in most process
algebras and other formalisms for behavioural modelling, we believe it will have many
applications. In particular, translations from various formalisms to Petri nets relying on the
×-construction can be significantly improved by using the proposed construction instead,
eliminating thus a source of an exponential explosion.

The proposed construction is based on the observation that the problem of “gluing” two
Petri boxes sequentially is equivalent to finding an edge clique cover of a certain complement-
reducible graph (cograph) where some of the edges are already considered as “covered”, with
the number of created places corresponding to the number of cliques in the cover. This results
in an interesting optimisation problem that is in np and likely np-complete. In practice, the
optimality is usually not required, and one can use simple approximations which yield useful
lower and upper bounds – it is easy to see that at most polynomial (quadratic) number of
cliques are always sufficient, which yields a polynomial Petri net.

2 Setting the scene

In this section, we describe a “bare bones” process algebra for expressing control flows, which
can be regarded as a core fragment shared by many existing process algebras. We also discuss
some basic notions related to Petri nets and clique covers of undirected graphs.
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2.1 Models of concurrency
2.1.1 “Bare bones” process algebra
Consider a “bare bones” process algebra, where expressions are constructed from a finite
alphabet of actions using operators “□ ” (choice), “ ∥ ” concurrency, and “ ; ” (sequencing).
This algebra allows one to model acyclic control flows. It is very simple and, in fact,
most existing process algebras build on it, by adding more features and operators (e.g.,
communication and recursion).

One can then define the semantics of such expressions, e.g., using Finite State Machines,
which can be exponential in the size of the expression due to concurrency, e.g., the fsms for
expressions of the form a1 ∥ a2 ∥ . . . ∥ an would contain 2n states.

One might hope that using Petri nets instead of fsms would cope with the exponential
explosion, i.e., that a polynomial translation from this process algebra to Petri nets is possible.
However, as observed in [8], this is not trivial. In fact, the traditional ×-construction for
modelling a choice between several “bursts” of concurrent actions creates an exponential
number of places. For example, consider expressions of the form

(a11 ∥ . . . ∥ a1n)□ · · · □ (am1 ∥ . . . ∥ amn)

representing a choice between m “bursts” each containing n concurrent actions. The ×-
construction creates mn places to express this in a Petri net, which is exponential in the
length of the above expression.

In this paper, we demonstrate that a polynomial bisimulation-preserving translation to
Petri nets is indeed possible for any “bare bones” process algebra expressions. In fact, the
isomorphism of reachability graphs (which is a stronger equivalence than strong bisimulation)
holds for the developed translation.

2.1.2 Petri nets
We focus on safe (i.e., at most one token per place) Petri nets, which are often used for
modelling control flows. For a safe Petri net, the total number of tokens in its initial marking
cannot exceed the number of places, so we can define its size as the total number of places,
transitions, and arcs, disregarding the initial marking. Note that the size of a Petri net is
dominated by its arcs, except the uninteresting degraded case when there are many isolated
nodes.

In this paper, the set of transitions is usually given (e.g., when translating a model from
some other formalism to Petri nets, the transitions often correspond to the occurrences of
actions in that model), and the objective is to express the intended behaviour using small
numbers of places and arcs. Note that having a small number of places is often desirable for
formal verification as they correspond to state variables, and having a small number of arcs
is desirable as they dominate the Petri net size.

2.2 Graphs
We consider undirected graphs with no parallel edges and no self-loops. For simplicity, a
graph ({v}, ∅) comprising a single vertex v and no edges will be denoted just by v.

2.2.1 Edge clique covers
A clique in a graph is a set of vertices which are pairwise connected by edges. A clique is
called maximal (or max-clique) if it is not a subset of any other clique. In what follows,
maxCL(G) is the set of all the max-cliques of an undirected graph G.
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A set of cliques in a graph form an edge clique cover (ecc) if, for every edge, there is at
least one clique that contains both endpoints of this edge. The number of cliques in an ecc
is called its size. Note that, given an ecc, one can expand each clique in it to some maximal
one, without increasing the size of the ecc. The minimum possible size of an ecc of a graph
G is the edge clique cover number (a.k.a. intersection number) of G, and will be denoted
ecc(G).

2.2.2 Complete multipartite graphs

A graph is called multipartite if its vertices are partitioned into several sets in such a way
that there are no edges between vertices in the same part. A multipartite graph is complete
if for every pair of vertices from different parts there is an edge connecting them. A complete
multipartite graph with the parts of sizes t1 ≤ t2 ≤ · · · ≤ tn will be denoted Kt1,t2,...,tn

.

2.2.3 Cographs

Complement-reducible graphs (cographs) [10] can be recursively defined as follows: (i) a single
vertex graph is a cograph; (ii) the complement of a cograph is a cograph; (iii) the disjoint
union of cographs is a cograph. Intuitively, for every cograph G with more than one vertex,
either G or its complement G is not connected. One can easily show that any complete
multipartite graph is a cograph.

The join operation G1−−G2 consists of forming the disjoint union G1 ⊎ G2 and then
adding an edge between every vertex of G1 and every vertex of G2. One can see that one can
reformulate the above definition of cographs so that it uses the join instead of the complement.
Indeed, it is easy to see that G1−−G2 = G1 ⊎ G2, i.e., join can be expressed via disjoint
union and complementation. Similarly, one can express the complementation via disjoint
union and join for cographs by repeatedly applying the following rewriting rules:

v = v

G = G

G1 ⊎ G2 = G1−−G2 .

3 Sequential composition and edge clique covers

In this section we informally present the underlying idea of the proposed construction,
and illustrate it on a simple example from [8] of modelling a fragment of a ba shown in
Figure 3(top-left) as a Petri net. There, a ba state with incoming bursts {i1, i2} and {i3}
and outgoing bursts {o1, o2}, {o3, o4}, and {o5, o6, o7} should be modelled as a set of Petri
net places, assuming that the actions occurring in bursts are modelled as transitions with
the corresponding names. More generally, we consider control flows constructed from atomic
actions using sequential, choice, and parallel compositions. Such control flows can be naturally
to represented by acyclic safe Petri nets (though there are interesting “unnatural” Petri net
representations with cycles, see e.g., Section 4.3). The technique illustrated by the translation
of this ba fragment can be applied recursively, and thus naturally generalises to such control
flows.

In Petri nets modelling control flows, places have the dual role of enforcing both sequencing
of transitions and choice between transitions. Indeed, let t1 and t2 be two transitions connected
to the same place p:
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Figure 3 An example of bisimulation-preserving ba to Petri net translation: (top-left) a ba state
with its incoming and outgoing bursts; (top-centre) Petri net translation [8] of incoming bursts – the
maximal incoming burst size is two, so two places are created; (top-right) Petri net translation [8]
of outgoing bursts – ecc(K2,2,3) = 6 places are created; (middle) the combined Petri net [8] – the 12
places correspond to pairs in {p1, p2} × {q1, . . . , q6}; (bottom) the improved construction presented
in this paper – the 6 places correspond to an ecc of (i1⊎i2)−−i3−−(o1⊎o2)−−(o3⊎o4)−−(o5⊎o6⊎o7)
with the edges of (i1 ⊎ i2)−−i3 being optional to cover.

If the connections are of the form t1 → p → t2 then p enforces sequencing of these
transitions, as t2 can fire only after t1.
If the connections are of the form p → t1 and p → t2 then p enforces the choice between
these transitions, as only one of them can fire.
If the connections are of the form t1 → p and t2 → p then there is a choice between these
transitions (as otherwise the Petri net would be unsafe), but this choice is enforced not
by p but by some other place.

Note that t1 and t2 are not concurrent if they are connected to the same place.
In our example, there is a choice between the incoming bursts {i1, i2} and {i3} but

it is enforced not by state s of the ba (or the places corresponding to s in the Petri net
translation) but elsewhere. There is a choice between outgoing bursts {o1, o2}, {o3, o4}, and
{o5, o6, o7}, and it is enforced by s (and the corresponding places in the Petri net translation).
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Moreover, the sequencing between these incoming and outgoing bursts is enforced by s (and
the corresponding places in the Petri net translation). Note also that there is sequencing
within neither incoming nor outgoing bursts, which leads to the following notion.

A set of transitions T is called non-sequential if no two distinct transitions in it are
sequential. In other words, there may be choices between some transitions in such a set,
and the transitions in any subset of T are concurrent as long as this subset contains no two
transitions which are in the choice relationship. In our example, the set of incoming transitions
{i1, i2, i3} and the set of outgoing transitions {o1, o2, o3, o4, o5, o6, o7} are non-sequential. The
behaviour of T can be viewed as a collection of maximal such sets of concurrent transitions.
One can represent the choice relation between transitions in T as a graph G(T ) (that will be
later formalised in the notion of interface graphs) where the vertices are the transitions of T

and there is an edge between two vertices iff the corresponding transitions are in the choice
relationship.

Consider now two disjoint non-empty non-sequential sets of transitions, T1 and T2, which
are to be composed sequentially. In the example shown in Figure 3(top-left),

T1 = {i1, i2, i3}
G(T1) = (i1 ⊎ i2)−−i3

T2 = {o1, o2, o3, o4, o5, o6, o7}
G(T2) = (o1 ⊎ o2)−−(o3 ⊎ o4)−−(o5 ⊎ o6 ⊎ o7) .

The task is now to add places “between” transitions in T1 and T2 and connected to the
transitions in T1 by transition→place arcs, and to transitions in T2 by place→transition arcs,
so that:

the behaviours of T1 and T2 are composed sequentially, i.e., none of the transitions in T2
can fire until a maximal concurrent set of transitions in T1 fires;
the choices between transitions in T2 are enforced (no need to enforce the choices between
transitions in T1 – this is done elsewhere).

Consider now a place p connected to some set of transitions C ⊆ T1 ∪ T2 (the directions of
arcs can be easily inferred). The key observation is that C must be a clique in G(T1)−−G(T2),
as otherwise the resulting behaviour will be wrong. Indeed, for the sake of contradiction,
suppose t, t′ ∈ C but there is no edge in G(T1)−−G(T2) connecting t and t′. Then these
transitions are either both in T1 or both in T2, as otherwise there would be an edge between
them. If these transitions are both in T1, they are concurrent and both produce a token on p,
resulting in an unsafe Petri net; e.g., in our example i1 and i2 are concurrent and including
them both into C would result in p being unsafe. If t, t′ ∈ T2 then p creates a choice between
them, even though they were meant to be concurrent, thus changing the intended behaviour;
e.g., in our example o1 and o2 are concurrent, and including them both into C would result
in p creating a choice between them.

Furthermore, though we consider acyclic control flows, in practice they are often just
fragments of a higher level control flow that may contain cycles, which means the constructed
acyclic Petri net will be a fragment of a larger Petri net that may contain cycles. This means
the constructed Petri net should be “reusable”, i.e., executable in a cycle without breaking
the safeness of Petri net or introducing deadlocks. We now argue that in such a case C must
be a max-clique in G(T1)−−G(T2).

First, we show that reusability implies C ⊈ T1 and C ⊈ T2. Indeed, if C ⊆ T1 then p

has no outgoing arcs – besides being useless as it will never affect the enabledness of any
transitions, p also accumulates tokens and an attempt to reuse this Petri net will result in
unsafeness. If C ⊆ T2 then p has no incoming arcs and so cannot obtain a new token – even
if it contains a token initially, the Petri net fragment cannot be reused as this can introduce
a deadlock.
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Now, for the sake of contradiction, suppose C is not maximal, i.e., it can be expanded to
a larger clique by adding t. If t ∈ T1 then firing t means none of the transitions in C ∩ T1 ̸= ∅
can fire, as each of them is in choice relationship with t, in which case p does not obtain
a token and transitions in C ∩ T2 ≠ ∅ will not be able to fire, which changes the intended
behavior. If t ∈ T2 then firing t means none of the transitions in C ∩ T2 ̸= ∅ can fire, as each
of them is in choice relationship with t, in which case the token in p cannot be consumed and
the Petri net is not reusable as this would introduce unsafeness. Hence, C is a max-clique in
G(T1)−−G(T2); note that this implies C ⊈ T1 and C ⊈ T2.

We have now established that every constructed place must correspond to some max-clique
in G(T1)−−G(T2). The question now is how to select a set of such places sufficient to express
the desired behavior, which can be reformulated as a question of selecting a sufficient number
of max-cliques in G(T1)−−G(T2). One can observe that this problem is similar to the well
known problem of computing an edge clique cover of G(T1)−−G(T2), except that covering
the edges in the induced subgraph G(T1) is optional. (Note that any edge clique cover can
be easily extended to one containing only max-cliques, without increasing the number of
cliques.) Indeed, suppose (t, t′) is an edge of G(T1)−−G(T2):

If t, t′ ∈ T1 then t and t′ are in the choice relationship but this is enforced elsewhere, so it
is not necessary (and not possible) to enforce it by adding a place p with the arcs t → p

and t′ → p; on the other hand, there is no harm having such a place, e.g., both t and t′

can be in the same max-clique that also covers other edges of G(T1)−−G(T2). Hence, it
is optional to cover the edge (t, t′).
If t, t′ ∈ T2 then t and t′ are in the choice relationship and this must be enforced by
having a place p with the arcs p → t and p → t′. Hence, it is necessary to cover the edge
(t, t′).
If t ∈ T1 and t′ ∈ T2 then t must fire before t′ and this must be enforced by having a
place p with the arcs t → p and p → t′. Hence, it is necessary to cover the edge (t, t′).

This version of the edge clique cover problem will be called partial edge clique cover
problem (peccp). It is a natural extension of the standard edge clique cover problem (eccp),
in fact some state-of-art eccp algorithms, e.g., [6], start from an empty cover and keep
adding cliques one-by-one until all edges are covered; hence, at the intermediate stages of
the computation, the problem is equivalent to peccp, with the edges covered by previously
added cliques becoming optional to cover. This means that many existing eccp algorithms
can be adapted to solve peccp.

Note that peccp is trivially in np. Moreover, since eccp is np-complete for general
graphs and is a special case of peccp, it follows that peccp is np-complete for general
graphs. However, for control flows constructed from atomic actions using sequential, choice,
and parallel compositions, the graphs on which peccp is solved are guaranteed to be
cographs, which is a very restricted subclass of graphs, with many np-complete problems
(e.g., computing a clique of maximal cardinality) becoming polynomial when restricted to
this class. However, to our knowledge, the question whether eccp or peccp is np-complete
on cographs is still open. Note also that for modelling control flows the optimality is not
required, so fast heuristic algorithms computing small but not necessarily smallest covers
would be sufficient – in fact, the trivial ecc covering each edge by a separate clique already
avoids the exponential explosion due to the ×-construction.

Coming back to our example, our previous method described in [8] creates 12 places. It
handles incoming and outgoing bursts separately; for the incoming bursts the number of
created places corresponds to the maximal input burst cardinality (2 in our example, see
Figure 3(top-centre)), and for the outgoing bursts the places correspond to ecc of G(T2),
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i.e., (o1 ⊎ o2)−−(o3 ⊎ o4)−−(o5 ⊎ o6 ⊎ o7) in our example. For bas G(T2) is guaranteed to be
a multipartite graph, K2,2,3 in this case – it has an ecc of size 6, i.e., 6 places are created,
see Figure 3(top-right). Then a variant of ×-construction is used to enforce the sequencing of
incoming and outgoing bursts, which results in 2 ·6 = 12 places, as shown in Figure 3(middle).

Though the construction in [8] yields a polynomial ba to Petri net translation, the trans-
lation presented in this paper significantly improves it. For this example, G(T1)−−G(T2) =
(i1 ⊎ i2)−−i3−−(o1 ⊎ o2)−−(o3 ⊎ o4)−−(o5 ⊎ o6 ⊎ o7), with the edges of the induced subgraph
(i1 ⊎ i2)−−i3 being optional to cover. Solving peccp yields a cover with 6 cliques, and the
corresponding Petri net fragment with 6 places is shown in Figure 3(bottom).

4 Slimming down Box Algebra

Box Algebra [2] provided a generic process-algebraic syntax together with a compositional
translation to a class of Petri nets called (Petri) boxes. The algebra has several concrete
incarnations, including ccs [11] and tcsp [7]. Here we are only interested in a small fragment
of Box Algebra corresponding to the “bare bones’ process algebra, in order to focus on
the salient aspect of control flow in nets constructed from three fundamental composition
operators. In particular, we omit all communication and synchronisation aspects.

Process expressions, or box expressions, are derived from the syntax

E ::= a | E ; E | E □E | E ∥ E (1)

where a is an atomic action. Since we deal only with control flows and actions do not have
any special semantics (e.g., communication), we can assume that no action occurs more than
once in any box expression we consider. Intuitively, a denotes a process which can execute
atomic action a and terminate, E ; F denotes sequential composition of two processes, E □F

denotes choice composition, and E ∥ F denotes parallel composition.
The semantics of box expressions is given through a translation into Petri nets, called

boxes. For the simple syntax (1), each place can be uniquely identified by its input and output
transitions, and πU,W will denote a place with input transitions U and output transitions W ,
i.e., there is an arrow from transition t to πU,W iff t ∈ U , and there is an arrow from πU,W

to transition t iff t ∈ W .
A box is a pair N = (P, T ), where P (= PN ) is a finite set of places (local states) and

T (= TN ) is a disjoint finite set of transitions (actions) such that, for every transition t ∈ T ,
there is a place πU,W ∈ P with t ∈ W .

The flow relation of N (represented by arrows) is implicit and can be recovered from the
sets indexing places: the input and output places of a transition t ∈ T are respectively given
by preN (t) = {πU,W ∈ P | t ∈ W} and postN (t) = {πU,W ∈ P | t ∈ U}.

Associating boxes with box expressions is done compositionally, through the box(·)
mapping, by combining their entry and exit places to reflect the intended control flow of
execution, where the entry places N e of a box N have the form π∅,W ∈ P , and the exit
places N x have the form πU,∅ ∈ P . The internal places N i are all the remaining places of N .
Intuitively:

box(E ∥ F ) is obtained simply by placing box(E) and box(F ) side by side.
box(E □F ) is obtained by placing box(E) and box(F ) side by side and then gluing each
entry place of box(E) with each entry place of box(F ), effectively creating the product
box(E)e × box(F )e, and similarly for the exit places.
box(E ; F ) is obtained by placing box(E) above box(F ) and then gluing each exit place of
box(E) with each entry place of box(F ), effectively creating the product box(E)x×box(F )e.
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The above procedure will be referred to as the ×-construction. Formally, the box correspond-
ing to a given box expression is defined recursively as follows:

box(a) = ({π∅,{a}, π{a},∅}, {a})
box(E ∥ F ) = (Pbox(E) ∪ Pbox(F ), T )
box(E □F ) = (E ∪ P ∪ X , T )
box(E ; F ) = (box(E)e ∪ P ∪ I ∪ box(F )x, T )

where T = Tbox(E) ∪ Tbox(F ), P = box(E)i ∪ box(F )i, and:

E = {π∅,U∪W | π∅,U ∈ box(E)e ∧ π∅,W ∈ box(F )e}
X = {πU∪W,∅ | πU,∅ ∈ box(E)x ∧ πW,∅ ∈ box(F )x}
I = {πU,W | πU,∅ ∈ box(E)x ∧ π∅,W ∈ box(F )e}.

(2)

Markings (global states) of a box N = (P, T ) we consider are sets of places. The default
initial marking is N e. A transition t ∈ T is enabled at marking M if preN (t) ≤ M . It then
can be fired leading to the marking M ′ = M − preN (t) + postN (t), and we denote this by
M [t⟩N M ′. An overall behaviour of N is given by its reachability graph defined as a labelled
directed graph RG(N) = (R, A, N e), where R are the reachable markings of N (i.e., the least
set containing N e and such that if M ∈ R and M [t⟩N M ′ then M ′ ∈ R), and A contains all
labelled arcs (M, t, M ′) such that M ∈ R and M [t⟩N M ′.

To formulate a central semantical result of this paper – a full (local) characterisation of
successful slimming down of compositionally defined boxes – we need two more notions. The
local conflict and local causality of N are two relations on transitions given respectively by:

Confl(N) = {(t, u) ∈ T × T | preN (t) ∩ preN (u) ̸= ∅}
Caused(N) = {(t, u) ∈ T × T | postN (t) ∩ preN (u) ̸= ∅}.

(3)

Intuitively, these two relations capture the dual role of Petri net places in enforcing both
choice and causality between transitions.

▶ Proposition 1. Let E be a box expression derived from the syntax (1), and N = (P, Tbox(E))
be a box such that P ⊆ Pbox(E).
Then RG(N) and RG(box(E)) are isomorphic reachability graphs if and only if Confl(N) =
Confl(box(E)) and Caused(N) = Caused(box(E)).

Proposition 1 means that we can safely delete places from box(E) iff the local conflict and
local causality relations on the transitions are retained. Note that such a property does
not hold in general – in either direction – not even for boxes which are safe and acyclic.
Indeed, let N = box(a; b; c), and let N ′ be N with an added place π{a},{c}. Then RG(N) is
isomorphic to RG(N ′), but

Caused(N ′) = Caused(N) ⊎ {(a, c)} .

As a complementary example, let N = box((a□ b); c), and let N ′ be N with an added place
π{b},{c}. Then

Confl(N) = Confl(N ′) and Caused(N) = Caused(N ′) ,

but RG(N) is not isomorphic to RG(N ′) as in RG(N ′) one cannot “execute’ a followed by c.
Our goal now becomes that of finding criteria for identifying possibly largest sets of such

“safe deletions” characterised by Proposition 1, and thus transferring the slimming down
problem from semantic to algorithmic setting. What is more, we aim at developing a “static”
approach to slimming, i.e., one that does not require looking into the behaviour of boxes.
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4.1 Interface graphs
In this section, we introduce and investigate a novel concept in the area of Petri boxes which
aims at capturing different ways in which local conflict and local causality can arise. We start
by introducing efficient (quadratic) representation of the entry and exit places of box(E)
without going through the expensive (exponential) process of applying the ×-construction.

For each box expression E derived from the syntax (1), let Ge
E and Gx

E be undirected
interface graphs defined recursively as follows:

Ge
a = a Gx

a = a

Ge
E;F = Ge

E Gx
E;F = Gx

F

Ge
E □ F = Ge

E−−Ge
F Gx

E □ F = Gx
E−−Gx

F

Ge
E ∥ F = Ge

E ⊎ Ge
F Gx

E ∥ F = Gx
E ⊎ Gx

F

(4)

Note that the vertices of Ge
E and Gx

E are transitions of box(E), and that inteface graphs are
cographs. For example,

Ge
(a∥b) □ c);(d∥e) = Ge

(a∥b) □ c

= Ge
a∥b−−c

= (a ⊎ b)−−c

Gx
(a∥b) □ c);(d∥e) = Gx

d∥e

= d ⊎ e .

▶ Proposition 2. For box expression E derived from the syntax (1),

box(E)e = {π∅,Cl | Cl ∈ maxCL(Ge
E)}

box(E)x = {πCl,∅ | Cl ∈ maxCL(Gx
E)} .

Hence the entry places of box(E) can be identified with the set of all max-cliques of Ge
E , and

similarly for the exit places. As a result, by Proposition 1, removing some entry places from
box(E) without changing the overall behaviour is the same as choosing an edge covering
of Ge

E by max-cliques (and the best result is therefore obtained by taking a minimal edge
covering of Ge

E by max-cliques).
A similar observation holds for the internal places:

▶ Proposition 3. If I is a set of internal places as in Eq. (2), derived during the ×-
construction, then:

I = {πCl∩Tbox(E),Cl∩Tbox(F ) | Cl ∈ maxCL(Gx
E−−Ge

F )} .

4.2 New construction
“Some people want it to happen.
Some wish it would happen.
Others make it happen” Michael Jordan on healthy dieting

We now introduce an alternative to the ×-construction, for a box expression H derived
from the syntax (1). Formally, a slimming of H is any box N derived from box(H), in the
following way:

The places in box(H)e are replaced by {π∅,Cl | Cl ∈ CL}, where CL is any minimal edge
covering of Ge

H by max-cliques.
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Set I of internal places as in Eq. (2) corresponding to every sub-expression of the form
E; F within H is replaced by

{πCl∩Tbox(E),Cl∩Tbox(F ) | Cl ∈ CL},

where CL is any minimal edge covering of Gx
E−−Ge

F by max-cliques, with the edges
within its subgraph Gx

E being optional to cover.
The places in box(H)x are deleted.

Note also that there is no need to generate at all the sets box(H)e, box(H)x and I, and only
operate on graphs and their covers to derive the places of N . The proposed (non-deterministic)
construction is therefore truly static and local.

▶ Proposition 4. Let E be a box expression derived from the syntax (1) and N be a slimming
of E. Then the following hold:
1. RG(N) and RG(box(E)) are isomorphic reachability graphs.
2. If N ′ = (P, Tbox(E)) is a box such that P ⊂ Pbox(E) and |P | < |PN |, then RG(N ′) and

RG(box(E)) are not isomorphic reachability graphs (and not even language equivalent).
The above is a key result validating the proposed way of deleting places from the composite
boxes, and demonstrating its local optimality in the sense that deleting any remaining place
will change the behaviour (note that there are other reasonable notions of optimality, see
below). As was explained before, computing an optimal slimming is equivalent to solving
peccp on a cograph – to our knowledge it is still an open question whether this problem is
np-complete. Having said that, in practice, one does not need minimal covers and heuristic
approximations yield good solutions (even trivial covers yield polynomial boxes contrasting
with the exponential ×-construction). Note also that Proposition 4 can be lifted to other
control flow operators of the Box Algebra, e.g., iteration.

4.3 No global optimality
The construction proposed in this paper achieves local optimality in terms of the number of
places, as well as a guaranteed polynomial (in the length of the box expression) size of the
overall Petri net, as opposed to the original ×-construction that is exponential. Furthermore,
in cases like

(a1 ∥ b1)□ . . . □ (an ∥ bn) ,

the number of created places can be as low as logarithmic – a double-exponential reduction
w.r.t. the ×-construction.

This naturally raises the question whether the proposed construction is globally optimal,
i.e., whether for a given box expression, a safe Petri net with the minimum possible number
of places is always constructed. Unfortunately the answer turns out to be negative. In fact,
the number of places is not even asymptotically optimal. We demonstrate this using the
following very simple example.

Consider the box expression a1 ; . . . ; an, for which the proposed construction generates a
Petri net with n places (denoted pi, for i = 1, . . . , n), such that there are arcs from ai to pi+1,
for i = 1, . . . , n − 1, and from pi to ai, for i = 1, . . . , n. Moreover, p1 is initially marked.

Observe that at most one of these places contains a token, and so the reachable markings
of this Petri nets can be compactly encoded using only a logarithmic number of places, e.g.,
using the following construction. For simplicity, we assume that n =

(
k

k/2
)

for some even k,
i.e., n is the number of subsets of size k/2 of {1, . . . , k}. We denote these subsets P1, . . . , Pn

(the order can be chosen arbitrarily). Note that k ∼ log2 n as one can check (using, e.g.,
wolframalpha.com) that

wolframalpha.com
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lim
k→+∞

log2 n

k
= lim

k→+∞

log2
(

k
k/2

)
k

= 1 .

Consider now a Petri net with the transitions ai, i = 1, . . . , n, and k places numbered 1 to
k. One can now interpret P1, . . . , Pn as subsets of the set of places of this Petri net. These
places and transitions are connected so that there are arcs from ai to each place in Pi+1, for
i = 1, . . . , n − 1, and from each place in Pi to ai, for i = 1, . . . , n. Moreover, the places in P1
are initially marked. One can easily see that this Petri net has the expected behaviour, but
only k ∼ log2 n rather than n places.

5 Conclusions

In this paper, we observed that the ×-construction traditionally used for composing, e.g.,
Petri boxes, is sub-optimal and causes an exponential explosion in the size of Petri nets that
can be avoided. We showed the equivalence between this modelling problem and the problem
of finding an ecc of a cograph, where the covering of some edges is considered optional. This
allowed us to develop a polynomial Petri net translation of arbitrary control flows built from
atomic actions using the sequential, choice, and parallel compositions.

These results affect the “core” modelling techniques based on Petri nets and eliminate
a source of exponential explosion when modelling control flows, and in translations from
various process algebras and other formalisms to Petri nets.
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A Additional notions and notations

Let N = (P, T ) be a box.
If a transition t ∈ T is enabled at marking M , we denote t ∈ enabledN (M).
A marking M ′ is reachable from marking M if there are markings M0, . . . , Mk (k ≤ 0)
and transitions t1, . . . , tk such that M0 = M , Mk = M ′, and

M0[t1⟩N M1 . . . Mk−1[tk⟩N Mk.

Moreover, if M0 = N e then σ = t1 . . . tk is a firing sequence of N (we denote this by
σ ∈ fseq(N)) and Mk is a reachable marking of N (we denote this by Mk ∈ reach(N)).
Two transitions t ̸= u ∈ T are in conflict if there is a place p = πU,W ∈ P such that
t, u ∈ W (we denote this by (t, u) ∈ cflN (p)), and t directly causes u if there is a place
p = πU,W ∈ P such that t ∈ U and u ∈ W (we denote this by (t, u) ∈ csdN (p)). Moreover,
for a set of places P ′ ⊆ P :

cflN (P ′) =
⋃

{cflN (p) | p ∈ P ′} and csdN (P ′) =
⋃

{csdN (p) | p ∈ P ′}.

B Proof of Proposition 1

▶ Lemma 5. Let E be a box expression derived from the syntax (1), N = box(E), t ∈ TN ,
and (N e =)M0[t1⟩N M1 . . . Mk−1[tk⟩N Mk.1

1. N is safe box (i.e., each reachable marking is a set of places).2

2. N x is a marking reachable from Mk, and enabledN (N x) = ∅.
3. postN (ti) ∩ postN (tj) = ∅ and ti ̸= tj, for all 1 ≤ i < j ≤ k.
4. If Mk ∩ preN (t) ̸= ∅ then:

there is 1 ≤ i ≤ k such that t ∈ enabledN (Mi), or
there is a marking M reachable from Mk such that t ∈ enabledN (M).

Proof. Different parts follow by induction on the structure of a box expression (see also [2]).
◀

1 Hence t1 . . . tk is a firing sequence of N .
2 Hence we can use set notation when dealing with the semantics of composite boxes.

https://doi.org/10.1007/3-540-52559-9_68


V. Khomenko, M. Koutny, and A. Yakovlev 8:15

We then proceed with the proof proper, using the same notations as in the formulation
of Proposition 1. We first observe that N e = box(E)e ∩ P as well as cflbox(E)(p) = cflN (p)
and csdbox(E)(p) = csdN (p), for every p ∈ P . Hence cflbox(E)(Pbox(E)) = cflN (P ) and
csdbox(E)(Pbox(E)) = csdN (P ). Moreover, if

box(E)e[t1⟩box(E)M1 . . . Mk−1[tk⟩box(E)Mk

then N e[t1⟩N (M1 ∩ P ) . . . (Mk−1 ∩ P )[tk⟩N (Mk ∩ P ) since N is a subnet of box(E) with the
same set of transitions (*).

We then observe that fseq(N) = fseq(box(E)). Indeed, the (⊇) inclusion follows from (*).
If the (⊆) inclusion does not hold, then there is t1 . . . tkt ∈ fseq(N) \ fseq(box(E)) such that
t1 . . . tk ∈ fseq(box(E)). Thus (also by (*)) there are markings M0, . . . , Mk such that

(box(E)e =)M0[t1⟩box(E)M1 . . . Mk−1[tk⟩box(E)Mk

(N e =)M0 ∩ P [t1⟩N (M1 ∩ P ) . . . (Mk−1 ∩ P )[tk⟩N (Mk ∩ P ).

We have, t ∈ enabledN (Mk ∩P )\enabledbox(E)(Mk). Hence there is p = πU,W ∈ prebox(E)(t)\
preN (t) such that Mk(p) = 0. On the other hand, since preN (t) ̸= ∅ and t ∈ enabledN (Mk ∩
P ), prebox(E)(t) ∩ Mk ̸= ∅. Hence, by Lemma 5(4), one of the following two cases holds:

Case 1: There is 1 ≤ i ≤ k such that t ∈ enabledbox(E)(Mi) and so p ∈ Mi. Then there
is i < j ≤ k such that p ∈ prebox(E)(tj). By cflN (P ) = cflbox(E)(Pbox(E)), there is p′ ∈ P

such that Mk(p′) = 1 and p′ ∈ prebox(E)(t) ∩ prebox(E)(u). However, by Lemma 5(1), this
means that p′ must have been filled with a token twice along the firing sequence t1 . . . tk,
contradicting Lemma 5(3).

Case 2: There is a marking M reachable from Mk such that t ∈ enabledbox(E)(M). This
means p ∈ M , and there is u ∈ U which is executed when reaching M from Mk. Then
(u, t) ∈ csdbox(E)(p), and so, by csdbox(E)(P ) = csdbox(E)(Pbox(E)), there is p′ ∈ P such that
(u, t) ∈ csdbox(E)(p′). Thus p′ ∈ Mk. As a result, p′ must have received a token twice along a
firing sequence of box(E) leading to M , contradicting Lemma 5(3).

Hence fseq(N) = fseq(box(E)) (**). Moreover, by (*), if σ and σ′ are firing sequences
leading in box(E) to the same marking, then they also lead to the same marking in N .
Suppose then that σ and σ′ are firing sequences leading in N to the same marking. Then,
by Lemma 5(2), they can be extended by the same σ′′ to yield firing sequences σσ′′ and
σ′σ′′ leading to the marking N x. Thus, by (**), σσ′′ and σ′σ′′ lead to some markings M

and M ′ in box(E). If, for example, σσ′′ ≠ boxx then, by Lemma 5(2), it can be extended by
a nonempty σ′′′ to lead to box(E)x. However, contradicting (*), σ′′′ cannot be fired from
N x. Hence, M = M ′, and so σ and σ′ lead to the same marking in box(E). This and the
deterministic nature of RG(box) and RG(N) means that the two reachability graphs are
isomorphic.

C Proofs of Propositions 2 and 3

Proposition 2 follows by a straightforward induction on the structure of E. Propositions 3
follows directly from the definitions and Proposition 2.

D Proof of Proposition 4

We first shows that interface graphs are what we need to have in order to characterise local
conflict and causalities.
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▶ Lemma 6. Let E and F be box expressions derived from the syntax (1) with disjoint sets
of actions. Then:

Confl(box(E ; F )) = Confl(box(E)) ∪ Confl(box(F ))
Caused(box(E ; F )) = Caused(box(E)) ∪ Confl(box(F ))∪

{{t, u} ∈ Tbox(E) × Tbox(F ) | {t, u} ∈ edge(Gx
E−−Ge

F )}
Confl(box(E □F )) = Confl(box(E)) ∪ Confl(box(F ))∪

{{t, u} ∈ Tbox(E) × Tbox(F ) | {t, u} ∈ edge(Ge
E−−Ge

F )}
Caused(box(E □F )) = Caused(box(E)) ∪ Caused(box(F ))

Confl(box(E ∥ F )) = Confl(box(E)) ∪ Confl(box(F ))
Caused(box(E ∥ F )) = Caused(box(E)) ∪ Caused(box(F ))

Proof. The result follows directly from the definitions. ◀

We then proceed with the proof proper, using the same notations as in the formulation of
Proposition 4. The first part follows directly from Proposition 1(⇐), Propositions 2 and 3,
and Lemma 6. The second part follows from the minimality of covers used in the construction
of N and Proposition 1(⇒).
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Abstract
We consider the Sequential Probability Ratio Test applied to Hidden Markov Models. Given two
Hidden Markov Models and a sequence of observations generated by one of them, the Sequential
Probability Ratio Test attempts to decide which model produced the sequence. We show relationships
between the execution time of such an algorithm and Lyapunov exponents of random matrix systems.
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1 Introduction

A (discrete-time, finite-state) Hidden Markov Model (HMM) (often called labelled Markov
chain) has a finite set Q of states and for each state a probability distribution over its possible
successor states. Every state is associated with a probability transition over a successor state
and an emitted letter (observation). For example, consider the following HMM:

q1 q21
3 a

2
3 b

2
3 a

1
3 b

In state q1, the probability of emitting a and the next state being also q1 is 1
3 , and the

probability of emitting b and the next state being q2 is 2
3 . An HMM is typically viewed as

a producer of a finite or infinite word of emitted observations. For example, starting in q1,
the probability of producing a word with prefix aba is 1

3 · 2
3 · 2

3 , whereas starting in q2, the
probability of aba is 2

3 · 1
3 · 1

3 . The random sequence of states is considered not observable
(which explains the term hidden in HMM).

HMMs are widely employed in fields such as speech recognition (see [28] for a tutorial),
gesture recognition [6], signal processing [10], and climate modeling [1]. HMMs are heavily
used in computational biology [14], more specifically in DNA modeling [8] and biological
sequence analysis [13], including protein structure prediction [22] and gene finding [3]. In
computer-aided verification, HMMs are the most fundamental model for probabilistic systems;
model-checking tools such as Prism [23] or Storm [12] are based on analyzing HMMs efficiently.
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One of the most fundamental questions about HMMs is whether two initial distributions
are (trace) equivalent, i.e., generate the same distribution on infinite observation sequences.
In the example above, we argued that (the Dirac distributions on) the states q1, q2 are not
equivalent. The equivalence problem is very well studied and can be solved in polynomial
time using algorithms that are based on linear algebra [29, 25, 31, 9]. The equivalence
problem has applications in verification, e.g., of randomised anonymity protocols [20].

Equivalence is a strong notion, and a natural question about nonequivalent distributions
in a given HMM is how different they are. For initial distributions π1, π2 on the states of
the HMM, let us write Pπ1 ,Pπ2 for the induced probability measure on infinite observation
sequences; i.e., Pπi

(E), for a measurable event E ⊆ Σω, is the probability that the random
infinite word w ∈ Σω produced starting from πi is in E. Then, the total variation distance
between Pπ1 ,Pπ2 is defined as

d(π1, π2) := sup {|Pπ1(E) − Pπ2(E)| | measurable E ⊆ Σω} .

This supremum is a maximum; i.e., there always exists a “maximizing event” E ⊆ Σω with
d(π1, π2) = Pπ1(E) −Pπ2(E). In these terms, initial distributions π1, π2 are equivalent if and
only if d(π1, π2) = 0. The total variation distance was studied in more detail in [7]. There it
was shown that the problem whether d(π1, π2) = 1 holds can also be decided in polynomial
time. Call distributions π1, π2 distinguishable if d(π1, π2) = 1. Distinguishability was used
for runtime monitoring [21] and diagnosability [4, 2] of stochastic systems.

Distributions π1, π2 that are distinguishable (i.e., d(π1, π2) = 1) can nevertheless be “hard”
to distinguish. In our example above, (the Dirac distributions on) q1, q2 are distinguishable.
If we replace the transition probabilities 1

3 , 2
3 in the HMM by 1

2 − ε, 1
2 + ε, respectively, states

q1, q2 remain distinguishable for every ε > 0, although, intuitively, the smaller ε > 0 the
more observations are needed to define an event E such that Pπ1(E) − Pπ2(E) is close to 1.

To make this more precise, for initial distributions π1, π2, a word w ∈ Σω and n ∈ N
consider the likelihood ratio

Ln(w) := Pπ1(wnΣω)
Pπ2(wnΣω) ,

where wn denotes the length-n prefix of w. In the example above, we argued that
Pq1(abaΣω) = 1

3 · 2
3 · 2

3 and Pq2(abaΣω) = 2
3 · 1

3 · 1
3 . Thus, for any word w starting with

aba we have Ln(w) = 2. We consider the likelihood ratio Ln as a random variable for
every n ∈ N. It turns out more natural to focus on the log-likelihood ratio ln Ln. One can
show that the limit limn→∞ ln Ln ∈ [−∞, ∞] exists Pπ1 -almost surely and Pπ2 -almost surely
(see, e.g., [7, Proposition 6]). In fact, if π1, π2 are distinguishable, then limn→∞ ln Ln = ∞
holds Pπ1-almost surely and limn→∞ ln Ln = −∞ holds Pπ2-almost surely. This suggests
the “average slope”, limn→∞

1
n ln Ln, of increase or decrease of ln Ln as a measure of how

distinguishable two distinguishable distributions π1, π are.
The log-likelihood ratio plays a central role in the sequential probability ratio test

(SPRT) [32], which is optimal [33] among sequential hypothesis tests (such tests attempt
to decide between two hypotheses without fixing the sample size in advance). In terms of
an HMM and two initial distributions π1, π2, the SPRT attempts to decide, given longer
and longer prefixes of an observation sequence w ∈ Σω, which of π1, π2 is more likely to
emit w. The SPRT works as follows: fix a lower and an upper threshold (which determine
type-I and type-II errors); given increasing prefixes of w keep track of ln Ln(w), and when
the upper threshold is crossed output π1 and stop, and when the lower threshold is crossed
output π2 and stop. Again, it is natural to assume that the average slope of increase or
decrease of ln Ln determines how long the SPRT needs to cross one of the thresholds.
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If the average slope limn→∞
1
n ln Ln exists and equals a number ℓ with positive probability,

we call ℓ a likelihood exponent. The term is motivated by a close relationship to Lyapunov
exponents, which characterise the growth rate of certain random matrix products. As the
most fundamental contribution of this paper, we show that the average slope exists almost
surely and that any HMM with m states has at most m2 + 1 likelihood exponents.

The rest of the paper is organised as follows. In Section 3 we exhibit a tight connection
between the SPRT and likelihood exponents; i.e., the time taken by the SPRT depends on
the likelihood exponents of the HMM. This connection motivates our results on likelihood
exponents in the rest of the paper. In Section 4 we prove complexity results concerning
the probability that the average slope equals a particular likelihood exponent. In Section 5
we show that the average slope exists almost surely and prove our bound on the number
of likelihood exponents. Further, we show that the likelihood exponents can be efficiently
expressed in terms of Lyapunov exponents. In Section 6 we show that for deterministic
HMMs one can compute likelihood exponents in polynomial time. We conclude in Section 7.

2 Preliminaries

We write N for the set of non-negative integers. For d ∈ N we write [d] = {1, . . . , d}. For a
finite set Q, vectors µ ∈ RQ are viewed as row vectors, and their transpose (a column vector) is
denoted by µ⊤. The norm ∥µ∥ is assumed to be the l1 norm: ∥µ∥ =

∑
q∈Q |µq|. We write 0⃗, 1⃗

for the vectors all whose entries are 0, 1, respectively. For q ∈ Q, we denote by eq ∈ {0, 1}Q

the vector with (eq)q = 1 and (eq)q′ = 0 for q′ ̸= q. A matrix M ∈ [0, 1]Q×Q is stochastic if
1⃗⊤ = M 1⃗⊤. We often identify vectors µ ∈ [0, 1]Q such that ∥µ∥ = 1 with the corresponding
probability distribution on Q. For µ ∈ [0, ∞)Q we write supp(µ) := {q ∈ Q | µq > 0}.

For a finite alphabet Σ and n ∈ N we denote by Σn, Σ∗, Σω the sets of length-n words,
finite words, infinite words, respectively. For w ∈ Σω we write wn for the length-n prefix
of w.

A Hidden Markov Model (HMM) is a triple H = (Q, Σ, Ψ) where Q is a finite set of
states, Σ is a set of observations (or “letters”), and the function Ψ : Σ → [0, 1]Q×Q specifies
the transitions such that

∑
a∈Σ Ψ(a) is stochastic. A Markov chain is a pair (Q, T ) where Q

is a finite set of states and T ∈ [0, 1]Q×Q is a stochastic matrix. A Markov chain (Q, T ) is
naturally associated with its directed graph (Q, {(q, r) | Tq,r > 0}), and so we may use graph
concepts, such as strongly connected components (SCCs), in the context of a Markov chain.
Trivial SCCs are considered SCCs. The embedded Markov chain of an HMM (Q, Σ, Ψ) is the
Markov chain (Q,

∑
a∈Σ Ψ(a)). We say that an HMM is strongly connected if the graph of

its embedded Markov chain is.

▶ Example 1. The HMM from the introduction is the triple H = ({q1, q2}, {a, b}, Ψ) with

Ψ(a) =
( 1

3 0
0 2

3

)
and Ψ(b) =

(
0 2

3
1
3 0

)
. The embedded Markov chain is ({q1, q2},

( 1
3

2
3

1
3

2
3

)
).

Fix an HMM H = (Q, Σ, Ψ) for the rest of the section. We extend Ψ to the mapping
Ψ : Σ∗ → [0, 1]Q×Q with Ψ(a1 · · · an) = Ψ(a1) · . . . · Ψ(an) and Ψ(ε) = I, where ε is the empty
word and I the Q×Q identity matrix. We call a finite sequence v = q0a1q1 · · · anqn ∈ Q(ΣQ)∗

a path and v(ΣQ)ω a cylinder set and an infinite sequence q0a1q1a2q2 · · · ∈ Q(ΣQ)ω a run.
To H and an initial probability distribution π ∈ [0, 1]Q we associate the probability space
(Q(ΣQ)ω,G∗,Pπ) where G∗ is the σ-algebra generated by the cylinder sets and Pπ is the
unique probability measure with Pπ(q0a1q1 · · · anqn(ΣQ)ω) = πq

∏n
i=1 Ψ(ai)qi−1,qi

. As the
states are often irrelevant, for E ⊆ Σω and E↑ := {q0a1q1a2q2 · · · | a1a2 · · · ∈ E} ∈ G∗ we
view also E as an event and may write Pπ(E) to mean Pπ(E↑). In particular, for w ∈ Σ∗ we
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have Pπ(wΣω) = ∥πΨ(w)∥. For E ⊆ Σω we write 1E for the indicator random variable with
1E(w) = 1 if w ∈ E and 1E(w) = 0 if w ̸∈ E. By Eπ we denote the expectation with respect
to Pπ. If π is the Dirac distribution on state q, then we write Eq.

A Markov chain (Q, T ) and an initial distribution ι ∈ [0, 1]Q are associated with a
probability measure Pι on measurable subsets of Qω; the construction of the probability
space is similar to HMMs, without the observation alphabet Σ.

Let (Q, Σ, Ψ) be an HMM and let π1, π2 be two initial distributions. The total variation
distance is d(π1, π2) := supE↑∈G∗ |Pπ1(E) − Pπ2(E)|. This supremum is actually a maximum
due to Hahn’s decomposition theorem; i.e., there is an event E ⊆ Σω such that d(π1, π2) =
Pπ1(E) − Pπ2(E). We call π1 and π2 distinguishable if d(π1, π2) = 1. Distinguishability is
decidable in polynomial time [7].

Let π1 and π2 be initial distributions. For n ∈ N, the likelihood ratio Ln is a random
variable on Σω given by Ln(w) = ∥π1Ψ(wn)∥

∥π2Ψ(wn)∥ . Based on results from [7] we have the following
lemma.

▶ Lemma 2. Let π1, π2 be initial distributions.
1. limn→∞ Ln exists Pπ2-almost surely and lies in [0, ∞).
2. limn→∞ Ln = 0 Pπ2-almost surely if and only if π1 and π2 are distinguishable.

▶ Example 3. We illustrate convergence of the likelihood ratio using an example from [24]
where the authors use HMMs to model sleep cycles. They took measurements of 51 healthy
and 51 diseased individuals and using electrodes attached to the scalp, they read electrical
signal data as part of an electroencephalography (EEG) during sleep. They split the signal
into 30 second intervals and mapped each interval onto the simplex ∆3 = {(x1, x2, x3, x4) ∈
[0, 1]4 |

∑4
i=1 xi = 1}. For each individual this results in a time series of points in ∆3.

They modelled this data using two HMMs, each with 5 states, for healthy and diseased
individuals using a numerical maximum likelihood estimate. Each state is associated with a
probability density function describing the distribution of observations in ∆3. We describe
in [11] how we obtained from this an HMM H = (Q, Σ, Ψ) with (finite) observation alphabet
Σ = {a1, . . . , a5} and two initial distributions π1, π2 corresponding to healthy and diseased
individuals, respectively. Using the algorithm from [7] one can show that π1 and π2 are
distinguishable.

We sampled runs of H started from π1 and π2 and plotted the corresponding sequences
of ln Ln. We refer to each of these two plots as a log-likelihood plot; see Figure 1.

Figure 1 The two images show two log-likelihood plots of sample runs produced by π1 and π2,
respectively.
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By Lemma 2.2 it follows that ln Ln converges Pπ1 -a.s. (almost-surely) to ∞ and Pπ2 -a.s.
to −∞. This is affirmed by Figure 1. Both log-likelihood plots also appear to follow a
particular slope. This suggests that we can distinguish between words produced by π1 and π2
by tracking the value of ln Ln to see whether it crosses a lower or upper threshold. This is
the intuition behind the Sequential Probability Ratio Test (SPRT).

3 Sequential Probability Ratio Test

Fix an HMM H = (Q, Σ, Ψ) for the rest of the paper. Given initial distributions π1, π2 and
error bounds α, β ∈ (0, 1), the SPRT runs as follows. It continues to read observations and
computes the value of ln Ln until ln Ln leaves the interval [A, B], where A := ln α

1−β and
B := ln 1−α

β . If ln Ln ≤ A the test outputs “π2” and if ln Ln ≥ B the test outputs “π1”. We
may view the SPRT as a random variable SPRTα,β : Σω → {π1, π2, ?}, where ? denotes that
the SPRT does not terminate, i.e., ln Ln ∈ [A, B] for all n. We have the following correctness
property.

▶ Proposition 4. Suppose π1 and π2 are distinguishable. Let α, β ∈ (0, 1). By choosing
A = ln α

1−β and B = ln 1−α
β , we have Pπ1(SPRTα,β = π2) ≤ α and Pπ2(SPRTα,β = π1) ≤ β.

In the following we consider the SPRT with respect to the measure Pπ2 . This is without
loss of generality as there is a dual version of the SPRT, say SPRT with Ln = 1/Ln instead
of Ln, such that SPRTβ,α = SPRTα,β . Define the stopping time

Nα,β := min{n ∈ N | ln Ln ̸∈ [A, B]} ∈ N ∪ {∞} .

We have that Nα,β is monotone decreasing in the sense that for α ≤ α′ and β ≤ β′ we have
Nα,β ≥ Nα′,β′ . When π1 and π2 are distinguishable, Nα,β is Pπ2 -a.s. finite by Lemma 2.2.

3.1 Expectation of Nα,β

Consider the two-state HMM where p1 ̸= p2.

s1 s2p1 : a (1 − p1) : b p2 : a (1 − p2) : b

(The Dirac distributions of) s1 and s2 are distinguishable. Further, the increments ln Ln+1 −
ln Ln are independent and identically distributed (i.i.d.) and 0 > Es2 [ln Ln+1 − ln Ln] =
p2 ln p1

p2
+ (1 − p2) ln 1−p1

1−p2
=: ℓ. Intuitively as ℓ gets more negative, the HMMs become more

different.1 Indeed, Wald [32] shows that the expected stopping time Es2 [Nα,β ] and ℓ are
inversely proportional:

Es2 [Nα,β ] =
β ln 1−α

β + (1 − β) ln α
1−β

ℓ
. (1)

This Wald formula cannot hold in general for (multi-state) HMMs. The increments ln Ln+1 −
ln Ln need not be independent and Es2 [ln Ln+1 − ln Ln] can be different for different n.
Further, | ln Ln+1 − ln Ln| can be unbounded; cf. [21, Example 6].

1 In fact, ℓ is the KL-divergence of the distributions f1, f2 where fi(a) = pi and fi(b) = 1 − pi for i = 1, 2.
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Nevertheless, in Figure 1 we observed that ln Ln appears to decrease linearly (on the π2
plot). Indeed, we show in Theorem 8 below that the limit limn→∞

1
n ln Ln exists Pπ2 -almost

surely. Intuitively it corresponds to the average slope of the log-likelihood plot for π2. In the
two-state case, there is a simple proof of this using the law of large numbers:

lim
n→∞

1
n

ln Ln = lim
n→∞

1
n

n−1∑
i=0

[ln Li+1 − ln Li] = Eπ2 [ln L1 − ln L0] = ℓ Pπ2 -a.s.

The number ℓ is called a likelihood exponent, as defined generally in the following definition.

▶ Definition 5. For initial distributions π1, π2, a number ℓ ∈ [−∞, 0] is a likelihood exponent
if Pπ2(limn→∞

1
n ln Ln = ℓ) > 0.

By Lemma 2.1 we have Pπ2(limn→∞
1
n ln Ln > 0) = 0, as Pπ2(limn→∞ Ln < ∞) = 1. Hence,

we may restrict likelihood exponents to [−∞, 0]. We write Λπ1,π2 ⊆ [−∞, 0] for the set of
likelihood exponents for π1, π2 and define Λ :=

⋃
π1,π2

Λπ1,π2 ; i.e., Λ depends only on the
HMM H. For ℓ ∈ Λ we define the event Eℓ = {limn→∞

1
n ln Ln = ℓ}.

▶ Example 6. In the case of Example 3 we have Λπ1,π2 = {ℓ} where the slope of the right
hand side of Figure 1 suggests that ℓ ≈ − 80

10000 = −0.008.

▶ Example 7. Even for fixed π1, π2 there may be multiple likelihood exponents. Consider
the following HMM with initial Dirac distributions π1 = es1 and π2 = es4 .

s1s2 s3 s4

1
4 a 3

4 b

2
3 b

1
3 a

1
2 b

1
2 a

1
2 a 1

2 b

We observe two different likelihood exponents depending on the first letter produced. If
the first letter is a then ln Ln+1 − ln Ln are i.i.d. for n ≥ 1 and limn→∞

1
n ln Ln = 1

2 ln 1/3
1/2 +

1
2 ln 2/3

1/2 = 1
2 ln 8

9 =: ℓ like the two-state example above. If the first letter is b then Ln = 3
2

for all n ≥ 1 and limn→∞
1
n ln Ln = 0. Thus, Λπ1,π2 = {ℓ, 0} and Pπ2(Eℓ) = Pπ2(E0) = 1

2 .

The following theorem is perhaps the most fundamental contribution of this paper.

▶ Theorem 8. For any initial distributions π1, π2 the limit limn→∞
1
n ln Ln exists Pπ2-almost

surely. Furthermore, we have |Λ| ≤ |Q|2 + 1.

It follows from a stronger theorem, Theorem 23, which we prove in Section 5.
Returning to the SPRT, we investigate how limn→∞

1
n ln Ln influences the performance

of the SPRT for small α and β. Intuitively we expect a steeper slope in the likelihood plot
(cf. Figure 1) to lead to faster termination. In the two-state case, Wald’s formula (1) becomes

Es2 [Nα,β ] =
β ln 1−α

β + (1 − β) ln α
1−β

ℓ
∼ ln α

ℓ
(as α, β → 0), (2)

where we use the notation ∼ defined as follows. For functions f, g : (0, ∞) × (0, ∞) → (0, ∞)
we write “f(x, y) ∼ g(x, y) (as x, y → 0)” to denote that for all ε > 0 there is δ > 0 such
that for all x, y ∈ (0, δ) we have f(x, y)/g(x, y) = [1 − ε, 1 + ε].

In Theorem 9 below we generalise Equation (2) to arbitrary HMMs. Indeed a very similar
asymptotic identity holds. In the case that Λ = {ℓ} and ℓ ∈ (−∞, 0) we have Es2 [Nα,β ] ∼ ln α

ℓ

as α, β → 0. If |Λ| > 1 then we condition our expectation on limn→∞
1
n ln Ln.
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▶ Theorem 9 (Generalised Wald Formula). Let ℓ be a likelihood exponent and let π1 and π2
be initial distributions.
1. If ℓ ∈ (−∞, 0) then Eπ2

[
Nα,β | Eℓ

]
∼ ln α

ℓ
(as α, β → 0).

2. If ℓ = 0 then there exist α, β > 0 such that Eπ2

[
Nα,β | Eℓ

]
= ∞.

3. If ℓ = −∞ then sup
α,β

Eπ2

[
Nα,β | Eℓ

]
< ∞.

The theorem above pertains to the expectation of Nα,β . In the next subsection we give
additional information about the distribution of Nα,β , further strengthening the connection
between Nα,β and likelihood exponents.

3.2 Distribution of Nα,β

3.2.1 Likelihood Exponent 0
▶ Example 10. We continue with Example 7 to illustrate the second case in Theorem 9.
By picking α = 1

4 , β = 1
4 the thresholds for the SPRT are A = ln 1

3 and B = ln 3. If the
first letter is b, then ln Ln = ln 3

2 for all n > 1, thus never crosses the SPRT bounds and
limn→∞

1
n ln Ln = 0. Hence with probability 1

2 the SPRT fails to terminate and Nα,β = ∞.
It follows that Pπ2(E0) = 1

2 and Eπ2 [Nα,β | E0] = ∞ and, thus, Eπ2 [Nα,β ] = ∞.
The second part of Theorem 9 says that the expectation of Nα,β conditioned under E0 is
infinite. The following proposition strengthens this statement. Conditioning under E0, the
probability that Nα,β is infinite converges to 1 as α, β → 0. Recall that Nα,β is monotone
decreasing. It follows that {Nα′,β′ = ∞} ⊆ {Nα,β = ∞} if α ≤ α′ and β ≤ β′.

▶ Proposition 11. The following two equalities hold up to Pπ2-null sets:

E0 =
{

lim
n→∞

Ln > 0
}

=
⋃

α,β>0
{Nα,β = ∞} .

Thus, limα,β→0 Pπ2(Nα,β = ∞) = Pπ2(E0).

▶ Corollary 12 (using Lemma 2.2). Initial distributions π1 and π2 are distinguishable if and
only if Pπ2(E0) = 0 if and only if Pπ2(Nα,β < ∞) = 1 holds for all α, β > 0.

3.2.2 Likelihood Exponent −∞
▶ Example 13. Consider now a modification of Example 7 where state s3 has the b loop
removed.

s1s2 s3 s4

1
4 a 3

4 b

2
3 b

1
3 a 1a

1
2 a 1

2 b

The likelihood exponents are −∞ and ℓ := 1
2 ln 8

9 so that Λ = {−∞, ℓ}. Also, Ps4(E−∞) =
Ps4(Eℓ) = 1

2 . Up to Ps4-null sets the events E−∞, bΣω and ba∗bΣω are equal. The event
ba∗bΣω represents the right chain producing an observation which the left chain cannot
produce, causing the SPRT to terminate for any α, β. Therefore conditioned on E−∞, the
random variable Nα,β − 1 is bounded by a geometric random variable with parameter 1

2 .
Hence supα,β Eπ2

[
Nα,β | E−∞

]
≤ 1 + 2.

We define the stopping time N⊥ = min{n ∈ N | Ln = 0}. Note that supα,β Nα,β ≤ N⊥ since
{Ln = 0} ⊆ {Ln ≤ α

1−β } for all α, β. By the following proposition, the reverse inequality
also holds.
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▶ Proposition 14. The events E−∞ and {Ln = 0 for some n} are equal. Thus,
supα,β Nα,β = N⊥ and limα,β→0 Pπ2(Nα,β < ∞) = Pπ2(E−∞).

Applying this to Example 13, we obtain supα,β Eπ2

[
Nα,β | E−∞

]
= 3.

3.2.3 Likelihood Exponent in (−∞, 0)
Conditioned on Eℓ where ℓ ∈ (−∞, 0), Theorem 9 states that Nα,β scales with ln α

ℓ in
expectation. The following result shows that this relationship also holds Pπ2 -almost surely.

▶ Proposition 15. Let ℓ ∈ Λ and assume ℓ ∈ (−∞, 0). We have

Pπ2

(
Nα,β ∼ ln α

ℓ
(as α, β → 0)

∣∣∣ Eℓ

)
= 1.

In fact, we prove the first part of Theorem 9 using Proposition 15. If there were a
bound M ∈ N such that Pπ2 -a.s. Nα,β

− ln α ≤ M , the first part of Theorem 9 would follow from
Proposition 15 by the dominated convergence theorem. However this is not the case in
general. Instead we show in [11] that the set of random variables { Nα,β

− ln α | 0 < α, β ≤ 1
2 }

is uniformly integrable with respect to the measure Pπ2 and then use Vitali’s convergence
theorem.

▶ Example 16. Recall Example 3, where Λ = {ℓ}. Figure 2 demonstrates the asymptotic

Figure 2 The time taken by the SPRT for 0 ≤ − ln α = − ln β ≤ 1000.

relationship in Proposition 15. Each of the 50 lines correspond to a sample run and we
record the value of Nα,β for 0 ≤ − ln α = − ln β ≤ 1000. From the figure we estimate − 1

ℓ as
105

800 = 125. This coincides with the estimate given in Example 6.

We conclude from this section that the performance of the SPRT, in terms of its termina-
tion time Nα,β , is tightly connected to likelihood exponents. This motivates our study of
likelihood exponents in the rest of the paper.

4 Probability of Eℓ

In this section we aim at computing Pπ2(Eℓ) for a likelihood exponent ℓ. We show the
following theorem.
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▶ Theorem 17. Given an HMM and initial distributions π1, π2,
1. one can compute Pπ2(E−∞) and Pπ2(E0) in PSPACE;
2. one can decide whether Pπ2(E0) = 0 (i.e., 0 ̸∈ Λπ1,π2) in polynomial time;
3. deciding whether Pπ2(E0) = 1, whether Pπ2(E−∞) = 0, and whether Pπ2(E−∞) = 1 are

all PSPACE-complete problems.
The following example illustrates the construction underlying the PSPACE upper bound.

▶ Example 18. Consider another adaption of Example 7.

s1s2 s3 s4s5

1
4 a 3

4 b

1
2 b

1
2 a

1
2 a 1

2 b

1
3 b

1
3 a

1a

1
3 a

If the first letter produced by s4 is b, then Ln = 3
2 for all n ∈ N. If the first two letters are ab,

then L1 = 1
2 and Ln = 0 for n ≥ 2. If the first two letters are aa, then s5 ∈ supp(es1Ψ(aaw))

for all w ∈ Σ∗, and therefore, up to a Ps4-null set, Ln > 0 holds for all n ∈ N, which
implies (using Proposition 14) that there is ℓ ∈ (−∞, 0) such that limn→∞

1
n ln Ln = ℓ. Thus,

Λs1,s4 = {−∞, ℓ, 0}.
The likelihood ratio Ln is 0 if and only if supp(π1Ψ(wn)) = ∅. In order to track the

support of π1Ψ(wn), we consider the left part of the HMM as an NFA with s1 as the initial
state and its determinisation as shown in the DFA below.

{s1}{s2} {s3}{s5}

{s2, s5} ∅ a, b

a b

b

ab
a

b
ab

a

Almost surely, s4 produces a word that drives this DFA into a bottom SCC, which then
determines limn→∞

1
n ln Ln: concretely, the bottom SCC {{s5}, {s2, s5}} is associated with ℓ,

the bottom SCC {∅} with −∞, and the bottom SCC {{s3}} with 0.

In general, the observations need not be produced uniformly at random but by an HMM.
Therefore, in the following construction, we also keep track of the “current” state of the
HMM which produces the observations. For S ⊆ Q and a ∈ Σ, define δ(S, a) := {q′ ∈ Q |
∃ q ∈ S : Ψ(a)q,q′ > 0}. Define the Markov chain B := (2Q × Q, T ) where

T(S,q),(S′,q′) :=
∑

δ(S,a)=S′

Ψ(a)q,q′ .

Given initial distributions π1, π2 on Q as before, define an initial distribution ι on 2Q × Q by
ι((supp(π1), q)) := (π2)q. Intuitively, the left part S of a state (S, q) tracks the support of
π1Ψ(wn), and the right part q tracks the current state of the HMM that had been initialised
at a random state from π2. The following lemma states the key properties of this construction.

▶ Lemma 19. Consider the Markov chain B = (2Q × Q, T ) defined above.
1. Every bottom SCC of B is associated with a single likelihood exponent; i.e., for every

bottom SCC C ⊆ 2Q × Q there is ℓ(C) ∈ [−∞, 0] such that for any initial distribution
π1 ∈ [0, 1]Q and any state q2 ∈ Q with (supp(π1), q2) ∈ C we have Λπ1,eq2

= {ℓ(C)}.
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2. Let (S, q) ∈ C for a bottom SCC C. If S = ∅ then ℓ(C) = −∞; otherwise, if eq

and the uniform distribution on S are not distinguishable then ℓ(C) = 0; otherwise
ℓ(C) ∈ (−∞, 0).

3. We have Pπ2(Eℓ) = Pι({visit bottom SCC C with ℓ(C) = ℓ}).
All parts of the lemma rely on the observation that limn→∞

1
n ln Ln depend only on the

support of π1 and on the support of π2. The first part of the lemma follows from Lévy’s 0-1
law. We use this lemma for the proof of Theorem 17.1.

Proof sketch for Theorem 17.1. The Markov chain B from Lemma 19 is exponentially big
but can be constructed by a PSPACE transducer, i.e., a Turing machine whose work tape
(but not necessarily its output tape) is PSPACE-bounded. This PSPACE transducer can
also identify the bottom SCCs. For each bottom SCC C, the PSPACE transducer also
decides whether ℓ(C) = −∞ or ℓ(C) ∈ (−∞, 0) or ℓ(C) = 0, using Lemma 19.2 and the
polynomial-time algorithm for distinguishability from [7]. Finally, to compute Pπ2(E−∞)
and Pπ2(E0), by Lemma 19.3, it suffices to set up and solve a linear system of equations for
computing hitting probabilities in a Markov chain. This system can also be computed by
a PSPACE transducer. Since linear systems of equations can be solved in the complexity
class NC, which is included in polylogarithmic space, one can use standard techniques for
composing space-bounded transducers to compute Pπ2(E−∞) and Pπ2(E0) in PSPACE. ◀

Proof of Theorem 17.2. Immediate from Corollary 12 and the polynomial-time decidability
of distinguishability [7]. ◀

Towards a proof of Theorem 17.3, we use the mortality problem, which asks, given a finite
set of states Q, a finite alphabet Σ, and a function Φ : Σ → {0, 1}Q×Q, whether there exists
a word w ∈ Σ∗ such that Φ(w) is the zero matrix. The mortality problem can be viewed
as a special case of the NFA non-universality problem (given an NFA, does it reject some
word?). Like NFA universality, the mortality problem is PSPACE-complete [19].

Concerning Pπ2(E−∞) (cf. Theorem 17.3), we actually show a stronger result, namely
that any nontrivial approximation of Pπ2(E−∞) is PSPACE-hard. The proof is also based
on the mortality problem.

▶ Proposition 20. There is a polynomial-time computable function that maps any instance
of the mortality problem to an HMM and initial distributions π1, π2 so that if the instance is
positive then Pπ2(E−∞) = 1 and if the instance is negative then Pπ2(E−∞) = 0. Thus, any
nontrivial approximation of Pπ2(E−∞) is PSPACE-hard.

Proof. Let (Q, Σ, Φ) be an instance of the mortality problem. If there is q ∈ Q that indexes
a zero row in

∑
a∈Σ Φ(a), remove the row and column indexed by q in all Φ(a). Thus, we

can assume without loss of generality that
∑

a∈Σ Φ(a) has no zero row. Construct an HMM
(Q, Σ, Ψ) so that Φ(a) and Ψ(a) have the same zero pattern for all a ∈ Σ. Define π1 as a
uniform distribution on Q. Define π2 as a Dirac distribution on a fresh state that emits
letters from Σ uniformly at random. Thus, if (Q, Σ, Φ) is a positive instance of the mortality
problem then Pπ2(E−∞) = 1, and if (Q, Σ, Φ) is a negative instance then Pπ2(E−∞) = 0. ◀

The proof that deciding whether Pπ2(E0) = 1 is PSPACE-hard is similarly based on
mortality.
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5 Representing Likelihood Exponents

In the following we show that one can efficiently represent likelihood exponents in terms
of Lyapunov exponents. The definition of Lyapunov exponents is based on the following
definition.

▶ Definition 21. A matrix system is a triple M = (Q, Σ, Ψ) where Q is a finite set of states,
Σ is a finite set of observations, and Ψ : Σ → RQ×Q

≥0 specifies the transitions. (Note that an
HMM is a matrix system.) A Lyapunov system is a pair S = (M, ρ) where M = (Q, Σ, Ψ)
is a matrix system and ρ ∈ (0, 1]Σ is a probability distribution with full support, such that the
directed graph (Q, E) with E = {(q, r) |

∑
a∈Σ Ψq,r(a) > 0} is strongly connected.

We can identify the probability distribution ρ from this definition with the single-state
HMM ({s}, Σ, Ψρ) where Ψρ(a)s,s = ρ(a) for all a ∈ Σ. In this way, ρ produces a random
infinite word from Σω. The following lemma is known from [26].

▶ Lemma 22 ([26]). Let ((Q, Σ, Ψ), ρ) be a Lyapunov system. Then there is λ ∈ R such that,
for all q ∈ Q, Pρ-a.s., either eqΨ(wn) = 0⃗ for some n ∈ N or the limit limn→∞

1
n ln ∥eqΨ(wn)∥

exists and equals λ.

For a Lyapunov system S we call λ(S) = λ from the lemma the Lyapunov exponent defined
by S. We prove the following theorem, which implies Theorem 8.

▶ Theorem 23. Given an HMM (Q, Σ, Ψ) we can compute in polynomial time 2K ≤ 2|Q|2
Lyapunov systems S1

1 , S2
1 , S1

2 , S2
2 , . . . , S1

K , S2
K such that for any initial distributions π1, π2 the

limit limn→∞
1
n ln Ln exists Pπ2-a.s. and lies in

Λ ⊆ {−∞} ∪ {λ(S1
1 ) − λ(S2

1 ), . . . , λ(S1
K) − λ(S2

K)} .

In particular, the HMM (Q, Σ, Ψ) has at most |Q|2 + 1 likelihood exponents.

In the rest of the section we provide more details on the construction underlying The-
orem 23. As an intermediate concept (between the given HMM and the Lyapunov systems
from Theorem 23) we define generalized Lyapunov systems.

First, for two matrix systems M1 = (Q1, Σ, Ψ1) and M2 = (Q2, Σ, Ψ2) with finite
Q1, Q2, Σ and transitions Ψ1, Ψ2 : Σ → RQ×Q

≥0 we define the directed graph GM1,M2 =
(Q1 × Q2, E) such that there is an edge from (q1, q2) to (r1, r2) if there is a ∈ Σ with
Ψ1(a)q1,r1 > 0 and Ψ2(a)q2,r2 > 0.

A generalized Lyapunov system is a triple S = (M, H, C) where M = (Q1, Σ, Ψ1) is a
matrix system and H = (Q2, Σ, Ψ2) is a strongly connected HMM and C ⊆ Q1 × Q2 is a
bottom SCC of GM,H. Given a generalized Lyapunov system, one can efficiently compute
an “equivalent” Lyapunov system:

▶ Lemma 24. Let S = ((Q1, Σ, Ψ1), (Q2, Σ, Ψ2), C) be a generalized Lyapunov system.
1. There is λ ∈ R, henceforth called λ(S), such that, for all π1 ∈ [0, ∞)Q1 and all prob-

ability distributions π2 ∈ [0, 1]Q2 with supp(π1) × supp(π2) ⊆ C, we have Pπ2-a.s. that
either π1Ψ1(wn) = 0⃗ for some n ∈ N or the limit limn→∞

1
n ln ∥π1Ψ1(wn)∥ exists and

equals λ(S).
2. One can compute in polynomial time a Lyapunov system S ′ such that λ(S) = λ(S ′).

Let H = (Q, Σ, Ψ) be an HMM. Let R ⊆ Q × Q be a (not necessarily bottom) SCC of
the graph GH,H such that QR := {q2 ∈ Q | ∃ q1 ∈ Q : (q1, q2) ∈ R} is a bottom SCC of
the graph of

∑
a∈Σ Ψ(a). We call such R a right-bottom SCC. Clearly there are at most
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|Q|2 right-bottom SCCs. Towards Theorem 23 we want to define, for each right-bottom
SCC R, two generalized Lyapunov systems S1

R, S2
R. Intuitively, S1

R and S2
R correspond to

the numerator and the denominator of the likelihood ratio, respectively.
For a function of the form Φ : Σ → RQ×Q and P ⊆ Q we write Φ|P : Σ → RP ×P for the

function with Φ|P (a)(q, r) = Φ(a)(q, r) for all a ∈ Σ and q, r ∈ P ; i.e., Φ|P (a) denotes the
principal submatrix obtained from Φ(a) by restricting it to the rows and columns indexed
by P .

Define Ψ′(a, r)q,r := Ψ(a)q,r for all a ∈ Σ and q, r ∈ Q. Then (Q, Σ × Q, Ψ′) is an
HMM, which is similar to H, but which emits, in addition to an observation from Σ,
also the next state. Since QR is a bottom SCC of the graph of

∑
a∈Σ Ψ(a), the HMM

H2 := (QR, Σ × QR, Ψ′
|QR

) is strongly connected. This HMM H2 will be used both in S1
R

and in S2
R.

Next, define Ψ : (Σ × Q) → [0, 1](Q×Q)×(Q×Q) by

Ψ(a, r2)(q1,q2),(r1,r2) := Ψ(a)q1,r1 for all a ∈ Σ and q1, q2, r1, r2 ∈ Q .

Now define S1
R := (M1, H2, C1), where M1 := (R, Σ × QR, Ψ|R) and C1 := {((q1, q2), q2) |

(q1, q2) ∈ R}. Finally, denoting by R′ ⊆ QR × QR the SCC of the graph GH,H that
contains the “diagonal” vertices (q, q) ∈ QR × QR, define S2

R := (M2, H2, C2), where
M2 := (R′, Σ × QR, Ψ|R′) and C2 := {((q1, q2), q2) | (q1, q2) ∈ R′}.

For sets U, V ⊆ Q × Q let U −→GH,H V denote that there are u ∈ U and v ∈ V such
that v is reachable from u in GH,H. We are ready to state the following key technical lemma:

▶ Lemma 25. Given an HMM (Q, Σ, Ψ), let R ⊆ 2Q×Q be the set of its right-bottom SCCs,
and, for R ∈ R, let S1

R, S2
R be the generalized Lyapunov systems defined above. Then, for

any initial distributions π1, π2, the limit limn→∞
1
n ln Ln exists Pπ2-a.s. and lies in

{−∞} ∪ {λ(S1
R) − λ(S2

R) | R ∈ R, supp(π1) × supp(π2) −→GH,H R} .

Thus, Λπ1,π2 ⊆ {−∞} ∪ {λ(S1
R) − λ(S2

R) | R ∈ R, supp(π1) × supp(π2) −→GH,H R}.

Proof sketch. Let π1, π2 be initial distributions. Very loosely speaking, we show in the
appendix that on Pπ2-almost every run w there is a right-bottom SCC R which “traps”
“most” of the mass of π1Ψ(wn) and π2Ψ(wn). This can be made meaningful and formal using
(the cross-product systems) S1

R, S2
R. We then show that on Pπ2 -almost every such run w, for

both i = 1, 2, the limit limn→∞
1
n ln ∥πiΨ(wn)∥ exists and equals λ(Si

R) (or π1Ψ(wn) = 0⃗ for
some n). It follows that

lim
n→∞

1
n

ln Ln = lim
n→∞

1
n

ln ∥π1Ψ(wn)∥
∥π2Ψ(wn)∥ = λ(S1

R) − λ(S2
R) . ◀

With Lemma 25 at hand, the proof of Theorem 23 is easy:

Proof of Theorem 23. As argued before, the set R of right-bottom SCCs of the given HMM
has at most |Q|2 elements. These right-bottom SCCs R and the associated generalized
Lyapunov systems S1

R, S2
R can be computed in polynomial time. By Lemma 25 we have

Λ =
⋃

π1,π2
Λπ1,π2 ⊆ {−∞} ∪ {λ(S1

R) − λ(S2
R) | R ∈ R}. By Lemma 24.2, for each R ∈ R

one can compute in polynomial time an equivalent Lyapunov system. ◀

Theorem 23 allows us to represent the likelihood exponents of an HMM in terms of
Lyapunov exponents. In general, approximating or even computing Lyapunov exponents is
hard, but there are practical approximation algorithms using convex optimisation [27, 30].
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6 Deterministic HMMs

In Sections 4 and 5 we have seen that the problems of representing/computing likelihood
exponents and of computing their probabilities tend to be computationally difficult. In
this section we study deterministic HMMs and show that this subclass leads to tractable
problems. An HMM (Q, Σ, Ψ) is deterministic if, for all a ∈ Σ, all rows of Ψ(a) contain at
most one non-zero entry. Thus, for all q ∈ Q and w ∈ Σ∗, we have |supp(eqΨ(w))| ≤ 1.

A useful observation is that the Markov chain B = (2Q × Q, T ), which was defined before
Lemma 19 and can be exponential in general, has only quadratic size in the deterministic
case if we restrict it to the part that is reachable from initial Dirac distributions.

▶ Example 26. Consider the deterministic HMM (Q, Σ, Ψ) in Figure 3(a). Let π1 = eq1

(a):

q1 q22
3 a

1
3 b

2
3 b

1
3 a

(b):

{q2}, q1 {q1}, q2
2
3

1
3

2
3

1
3

(c):

q2, q1 q1, q22
3 a

1
3 b

2
3 b

1
3 a

(d):

q2, q1 q1, q22
3 : ln 1

2

1
3 : ln 2

2
3 : ln 1

2

1
3 : ln 2

Figure 3 Cross-product constructions for a deterministic HMM.

and π2 = eq2 (the latter is indicated by an arrow pointing to q2). Then the relevant (i.e.,
reachable from ({q1}, q2)) part of B is shown in Figure 3(b). Let us add back the observations
that gave rise to the transitions in B, and for simplicity drop the set brackets in the left
component of states. We obtain the HMM in Figure 3(c). With this HMM we may keep track
of the exact likelihood ratio. For example, suppose that the word aba is emitted, so that
L3 = ∥eq1 Ψ(aba)∥

∥eq2 Ψ(aba)∥ = 1
2 and supp(eq1Ψ(aba)) = {q2} and supp(eq2Ψ(aba)) = {q1}. Suppose the

next letter is b (which is the case with probability 1
3 ). Then L4 arises from L3 by multiplying

with Ψq2,q1 (b)
Ψq1,q2 (b) = 2, and the supports are switched again. In terms of log-likelihoods, we

have ln L4 = ln L3 + ln 2. This motivates the Markov chain shown in Figure 3(d), where
the transitions outgoing from a state (r1, r2) are labelled by the log-likelihood ratio of their
corresponding probabilities in the HMM. The Markov chain has stationary distribution ( 2

3 , 1
3 ).

By the strong ergodic theorem for Markov chains, we obtain (the irrational number)

limn→∞
1
n ln Ln = 2

3

(
2
3 ln 1

2 + 1
3 ln 2

)
+ 1

3

(
1
3 ln 2 + 2

3 ln 1
2

)
= 1

3 ln 2 + 2
3 ln 1

2 = − 1
3 ln 2 .

CONCUR 2022
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In general there may again be several likelihood exponents, including −∞ and 0. For the
rest of the section, let H = (Q, Σ, Ψ) be a deterministic HMM. Motivated by Example 26,
define an HMM A = ((Q × Q) ∪ s⊥, Σ̂, Ψ̂), where s⊥ is a fresh state, and

Σ̂ :=
{

ln Ψ(a)q1,r1

Ψ(a)q2,r2

∈ [−∞, ∞)
∣∣∣∣ a ∈ Σ, q1, r1, q2, r2 ∈ Q, Ψ(a)q2,r2 ̸= 0

}
∪ {−∞}

Ψ̂(â)(q1,q2),(r1,r2) :=
∑ {

Ψ(a)q2,r2

∣∣∣∣ a ∈ Σ : â = ln Ψ(a)q1,r1

Ψ(a)q2,r2

}
for â ̸= −∞

Ψ̂(−∞)(q1,q2),s⊥ :=
∑ {

Ψ(a)q2,r2

∣∣∣ a ∈ Σ, r2 ∈ Q :
∑

r1∈Q Ψ(a)q1,r1 = 0
}

Ψ̂(−∞)s⊥,s⊥ := 1 .

Note that the embedded Markov chain of A is similar to the Markov chain B from
Lemma 19: states ({q1}, q2) in B are called (q1, q2) in A, the states (∅, q) in B are subsumed
by the state s⊥ of A, and the states (S, q) in B with |S| > 1 are not represented in A. The
observations in Σ̂ ⊆ [−∞, ∞) track the log-likelihood ratio.

▶ Example 27. Consider the HMM H on the left, with initial distributions π1 = eq1 and
π2 = eq2 . The part of A reachable from (q1, q2) is shown on the right:

q1 q2
1a

1
2 a

1
2 b

s⊥ q1, q2 q2, q21 : −∞
1
2 : −∞ 1

2 : ln 2
1 : 0

Here we have Λπ1,π2 = {−∞, 0} with Pπ2(E−∞) = Pπ2(E0) = 1
2 .

Denote by Ā the embedded Markov chain of A. Let C ⊆ Q × Q be a non-{s⊥} bottom
SCC of Ā. Let µ ∈ [0, 1]C denote the stationary distribution of the restriction of Ā on C.
Define the vector ν ∈ RC of average observations by ν(r1,r2) :=

∑
â∈Σ̂ ∥e(r1,r2)Ψ̂(â)∥ · â.

By the strong ergodic theorem for Markov chains, the average observation in C equals
µν⊤ =: ℓ(C). Extend this definition by ℓ({s⊥}) := −∞. Then we have the following lemma.

▶ Lemma 28. Let π1 = eq1 and π2 = eq2 be initial distributions. For the Markov chain Ā
define ι := e(q1,q2). We have Pπ2(Eℓ) = Pι({visit bottom SCC C with ℓ(C) = ℓ}).

The proof is essentially the same as in Lemma 19.3. This gives us the following result.

▶ Theorem 29. Given a deterministic HMM (Q, Σ, Ψ) with initial Dirac distributions π1, π2,
one can compute in polynomial time
1. Λπ1,π2 as a set of expressions of the form

∑
i xi ln yi where xi, yi ∈ Q, and

2. Prπ2(Eℓ) for each such ℓ ∈ Λπ1,π2 .

Proof sketch. The theorem follows mostly from Lemma 28, with the slight complication that
for part 2 we have to check numbers of the form

∑
i xi ln yi (where xi, yi ∈ Q) for equality.

But this can be done in polynomial time as shown in [15]. ◀

7 Conclusions

We have shown that the performance of the SPRT is tightly connected with likelihood
exponents. These numbers are related to Lyapunov exponents and can be viewed as a
distance measure between HMMs. We have shown that the number of likelihood exponents
is quadratic in the number of states. The associated computational problems tend to be
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complex (PSPACE-hard), but become tractable for deterministic HMMs. In our work we did
not make any ergodicity assumptions on the HMMs, unlike in earlier works from mathematics
and engineering such as [18, 5, 16, 17]. Efficient approximation of likelihood exponents, in
theory or praxis, remains an open problem.
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Abstract
We consider the model-checking problem for parametric probabilistic dynamical systems, formalised
as Markov chains with parametric transition functions, analysed under the distribution-transformer
semantics (in which a Markov chain induces a sequence of distributions over states).

We examine the problem of synthesising the set of parameter valuations of a parametric Markov
chain such that the orbits of induced state distributions satisfy a prefix-independent ω-regular
property.

Our main result establishes that in all non-degenerate instances, the feasible set of parameters is
(up to a null set) semialgebraic, and can moreover be computed (in polynomial time assuming that
the ambient dimension, corresponding to the number of states of the Markov chain, is fixed).
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1 Introduction

The algorithmic analysis of Markov chains, in particular by means of model checking, is a
central topic in probabilistic verification [7]. It is in fact fairly common to consider parametric
Markov chains (PMCs), in which probabilities are given not as explicit numbers but rather
as functions of certain parameters. One is then interested in the set of parameters giving rise
to a Markov chain that meets a certain specification.

Markov chains are typically analysed under one of two standard semantics: the path
semantics considers the set of all possible control-state trajectories, weighted by relevant
probabilities, whereas the distribution-transformer semantics views the Markov chain as a
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single sequence of distributions over control states; this sequence is the orbit of the initial
distribution under the repeated application of the underlying stochastic linear transformation.
In this paper we focus exclusively on the second modelling paradigm, viewing Markov chains
as special instances of linear dynamical systems (LDS). We consider parametric Markov
chains, in which probabilities are given by rational functions over a set of parameters. Such
parameters might account for uncertainties in the environment or in the exact values of the
probabilities at hand, etc. Given a particular specification, we are interested in computing
the set of all parameter valuations such that the resulting concrete Markov chains meets the
specification. More precisely: Given a parametric Markov chain M over set of parameters
X, i.e., a (parametric) matrix M and initial distribution π (see Definition 3), as well as
a specification φ, compute the set of parameter instantiations p ∈ RX for which the orbit
(π · M [p]n)n≥0 of M satisfies φ.

Our properties are specified with respect to the characteristic word of a Markov chain,
which describes the orbit of the Markov chain relative to a set of targets. Given a Markov
chain (Q, M, π) and a partition of the space [0, 1]Q = T1 ∪ · · · ∪ Tk, the characteristic word
is the infinite word w ∈ {1, . . . , k}ω such that wi = j if and only if π · M i ∈ Tj . For a
parametric Markov chain, each admissible valuation of the parameters p ∈ RX induces a
concrete characteristic word w[p]. In this case we call w : RX → {1, . . . , k}ω the parametric
characteristic word of the parametric Markov chain.

The model-checking problem asks, given a specification φ over {1, . . . , k} (typically
specified in LTL, MSO, or simply as an automaton), whether the characteristic word w

satisfies φ, denoted by w |= φ. In the parametric setting, we are interested in the set of
parameters Dφ = {p ∈ RX | w[p] |= φ}.

We consider ω-regular prefix-independent specifications, i.e., (intuitively speaking) prop-
erties that are invariant under finitely many changes to w (see Section 2.4 for the formal
definition). The Ultimate Positivity Problem [22] is an example of a prefix-independent
property: it asks whether the orbit is eventually trapped inside a certain target (chosen to be
the region where a particular quantity is always positive). Other examples include repeatedly
revisiting a target, since such a property only depends on any infinite suffix of w, regardless
of the initial prefix. On the other hand, reachability is not a prefix-independent property.
Note that LTL properties starting with “eventually always” or “always eventually” define
prefix-independent properties (see [4]), although we do not limit ourselves to LTL properties.

Consider a parametric Markov chain with parametric characteristic word w and a prefix-
independent specification φ. The set Dφ = {p ∈ RX | w[p] |= φ} of feasible parameters
can be a highly complex object. Nevertheless, one of our main results is that, assuming
the specification is non-degenerate (a fairly mild technical condition), Dφ differs from a
semialgebraic set by a null set (a set of Lebesgue measure zero), and moreover we can
compute this semialgebraic set (in polynomial time assuming that the ambient dimension,
corresponding to the number of states of the Markov chain, is fixed). More precisely, we
show how to synthesise a semialgebraic set D′ contained in the full set of feasible parameters
such that D0 = Dφ \ D′ is a null set.

Before going into the details of our construction, we show that the restriction to prefix-
independent specifications is indeed necessary. Dropping it may lead to situations in which
the set of feasible parameters is not semialgebraic, even up to a null set, as the following
example shows.

▶ Example 1 (A prefix-dependent property). Consider the parametric Markov chain depicted
in Figure 1a, with the single parameter p. Let us denote by (l, r, s) a distribution over Q,
with l, r, s denoting the probability in states qL, qR, qS respectively. Consider the following
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qS

qL

qR π = (1, 0, 0)

1− p

1− p

0.1p

0.1p

0.
9p

0.
9p

(a) Parametric Markov chain with parameter p. (b) The partition of Dist(Q) into B, L, R, O.

O R L R L R . . .

p = 0 p = 0.5 p = 1

(c) Satisfying parameters (green), denoting whether
π · M [p]n first hits L, R, or O after B.

Figure 1 A Markov chain, a partition, and the parameter satisfying the prefix-dependent property
B until L.

partition of Dist(Q) (the set of probability distributions over Q) into the sets B, L, R, O,
defined by: B = {(l, r, s) | s < 0.5}, O = {(l, r, s) | s > 0.9}, L = {(l, r, s) | l ≥ r and 0.5 <

s < 0.9}, R = {(l, r, s) | 0.5 < s < 0.9 and r > l} (see Figure 1b). Observe that the limit
distribution of the Markov chain is equal to (0, 0, 1) for every concrete parameter p ∈ (0, 1),
which is in O but not in the boundary between any of the sets B, L, R, O.

Define the LTL formula φ = B U L. It requires that the orbit should be in B until L is
reached. Let the initial distribution be π = (1, 0, 0), which means that the orbit starts in B.
At each step some probability “moves” to the state qS , and therefore from some point on
the orbit reaches L, R or O. We are interested in the parameter values p for which the first
region reached after B is L in the characteristic word w[p].

For n ≥ 0, let l(n), r(n), s(n) denote the probability of being at state qL, qR, qS , respect-
ively, after step n. First observe that s(n) = 1 − pn. Therefore, for each n > 0 there exists a
non-empty interval Pn of parameters p such that the predicate s(n) ∈ (0.5, 0.9) is satisfied
for the first time at step n in w[p]. Observe that Pi and Pj are disjoint and disconnected for
i ̸= j. Next, observe that for every value of p, l(n) ≥ r(n) is satisfied precisely if n is even.
And for all n there is a continuous region in [0, 1] such that 1 − pn < 0.5.

From the preceding arguments we then see that the set of all parameters that satisfy φ is
precisely

⋃
i∈N P2i. These regions are depicted in Figure 1c. However, a semialgebraic set

can always be represented as a finite union of connected components2. But Dφ =
⋃

i∈N P2i

has infinitely many disconnected components with positive measure. This shows that no
semialgebraic set D′ exists which has the same measure as Dφ and such that for all p ∈ D′

we have w[p] |= φ.

2 If S is a semialgebraic set, C ⊆ S is connected if for every x, y ∈ C, intuitively, x can reach y without
leaving C. Formally, there exists a continuous semialgebraic function f : [0, 1] → S such that f(0) = x
and f(1) = y [8, Section 3.2].
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Figure 2 Example Parametric Markov chain with parameter p.

In Appendix A we give a second example, which shows that reachability properties also do
not have semialgebraic feasibility sets (up to a null set).

Let us consider another example, highlighting how we can use the limit distribution of an
aperiodic Markov chain to decide prefix-independent properties.

▶ Example 2 (Ultimate Positivity). Consider the parametric Markov chain, depicted in
Figure 2, with a single parameter p. The system represented by the diagram is a Markov
chain for p ∈ [0, 0.5] and has constant structure for all for p ∈ (0, 0.5) (that is, each edge
either exists for all p in the interval, or for none).

Consider the property that the probability distribution in states q1 is eventually above
0.4 and q2 is eventually above 0.55. We are interested in the set of parameters D = {p ∈
[0, 0.5] | ∃N ∈ N.∀n ≥ N. π · M [p]n ≥ (0, 0.4, 0.55)}.

The limit distribution of the Markov chain is (0, 1−2p
2−3p , 1−p

2−3p ). Hence D, up to a null set,
corresponds to the interval (0, 0.5)∩{p | 1−2p

2−3p > 0.4}∩{p | 1−2p
2−3p > 0.55} = ( 2

13 , 1
4 ). Moreover

all parameters in the interval ( 2
13 , 1

4 ) satisfy the property.

1.1 Related work

The papers [18, 19] introduce the logic iLTL to specify LTL-definable properties of the
orbit of a Markov chain, where atomic propositions correspond to half-spaces. The authors
devise a model-checking procedure which assumes that the Markov chain is aperiodic and
diagonalisable, and that the unique limit distribution, which exists due to the aperiodicity
condition, does not lie on the boundary of any of the half-spaces used to define the property.
The paper [19] also presents case studies in the areas of software reliability and medicine.
Our work extends these previous works in three directions: we consider parametric Markov
chains, we allow the Markov chains to be periodic, and we allow semialgebraic sets as atomic
propositions. Due to new difficulties that arise in the parametric setting we do not cover full
LTL, rather we handle arbitrary prefix-independent ω-regular properties.

Agrawal et al. [1] consider the model-checking problem of Markov chains under the
distribution-transformer semantics, where the target sets are specified as intervals on each
component. They also remark that full ω-regular model checking will not be possible in
general, and instead they consider whether an approximation of the trajectory satisfies a
property.
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In [17], a related problem for Markov decision processes (MDPs) is studied. The orbit of
an MDP is not fixed but depends on the scheduler, and this additional feature often leads to
undecidability. Several restrictions on schedulers and specifications are studied [17] under
which decidability can be achieved. [10] considers a restriction on the MDP.

Markov chains under the distribution-transformer semantics are a special case of LDS.
Presumably one is interested in expressive specifications, e.g., those that are specifiable in
LTL or MSO. Unfortunately, even simple reachability queries for LDS are known to be
extremely challenging [11], and the attendant hardness propagates to Markovian dynamical
systems as well [2].

Baier et al. [5] showed that parametric point-to-point reachability, which asks whether
there exist parameter choices under which a given state distribution is reachable, is decidable
only for a single parameter, and Skolem-hard for two or more parameters. The problem is
well-known to be decidable in polynomial time for LDS [16] (and thus for non-parametric
Markov chains). We circumvent this limitation, allowing us to consider an arbitrary number
of parameters, by synthesising, up to a null set, the set of parameter choices for which an
arbitrary prefix-independent property holds (rather than reachability of a single point target).

Model checking prefix-independent properties on diagonalisable LDS is decidable [3]
(see also [22] for Ultimate Positivity specifically). However, in general, the decidability
status of the Ultimate Positivity Problem is a major open question – in fact, decidability of
Ultimate Positivity for LDS of dimension 6 would entail major breakthroughs in number
theory as it would solve certain longstanding open problems in Diophantine approximation
of transcendental numbers that are widely believed to be hard [21].

Typically, only very few border cases are particularly difficult, and thus in the parametric
setting such border cases amount to a null set which we can exclude. This is the case for all
but degenerate instances in which all of the parameter valuations lead to such hard border
cases. It is therefore necessary to impose a technical restriction on the expressible targets in
order to exclude these degenerate instances.

The problem of model checking parametric Markov chains with respect to the standard
trace semantics has been considered extensively [12, 20, 14, 6, 13]. In this setting one can
express properties such as “the set of traces reaching a certain state has probability above
λ”, which can be described using standard logics such as PCTL [15, 7]. This semantics does
not allow specifying properties such as “the probability of being in state s1 is eventually
larger than the probability of being in state s2”, which can be expressed by the properties
we consider.

2 Preliminaries

2.1 Parametric Markov chains
Given a set of variables X, we denote the field of rational functions over X with base field Q
by Q(X). We denote the set of all probability distributions over Q by Dist(Q).

▶ Definition 3. A parametric Markov chain (PMC) is a tuple M = (Q, X, M, π), where
Q is a finite set of states;
X is a finite set of variables, here typically called parameters;
M ∈ Q(X)Q×Q is the parametrised transition matrix;
π ∈ Dist(Q) is an initial distribution.

Given a concrete instantiation p ∈ RX of the parameters X, we denote by M [p] ∈ RQ×Q

the matrix M [p]s,t = Ms,t(p), provided that Ms,t(p) is defined for every s, t ∈ Q. That is,
M [p] is the concrete transition function obtained by replacing in M every occurrence of a
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parameter v ∈ X by the value assigned to v in p. We call p ∈ RX admissible if M [p] is a
probabilistic transition function, i.e., 0 ≤ M [p]s,t ≤ 1 for all s, t ∈ Q, and

∑
t∈Q M [p]s,t = 1

for all s ∈ Q. The Markov chain induced by the parameter value p will be denoted by
M[p] = (Q, M [p], π). Finally, we remark that parametrised initial distributions can be
encoded in our framework by adding a single state to the Markov chain that is visited only
once at the beginning. The probabilities associated with the outgoing edges of the new start
state are then used to simulate the parametrised initial probabilities.

2.2 The topological structure of a PMC
Throughout the paper we will use structural arguments about the underlying graph (or
topological structure) of a Markov chain (Q, M, π), which is defined as (Q, {(s, t) | Ms,t > 0}).
For a parametric Markov chain (Q, X, M, π) we consider the main structure (Q, {(s, t) |
∃p . M [p]s,t ̸= 0}). That is, we only keep the entries of M that are not identically zero. We
will show that the main structure matches the structure of M [p] almost everywhere (that is,
everywhere except possibly on a set with null measure). This means that w.l.o.g. we can
assume that the given PMC has a constant topological structure. We begin by recalling
a well-known fact which is immediate from the observation that a non-zero polynomial is
non-zero almost everywhere (see, e.g., [9]).

▶ Lemma 4. Any non-zero rational function f ∈ Q(X) is almost everywhere defined and
non-zero.

▶ Lemma 5 (Constant topological structure). Let D ⊆ RX be the set of parameters defined as
D = {p | p is admissible and M [p] has the main structure}. Then RX \ D has null measure.

Proof. Observe that

RX \ D =
⋃

s,t∈Q

{p | Ms,t is not well-defined at p} ∪

⋃
s,t∈Q

{p | the structure of M [p] differs from the main structure at (s, t)}

which is a finite union of sets of measure zero. Hence RX \ D also has a null measure. ◀

Henceforth we define D to be the set described above.
We recall some basic structural notions about Markov chains. These descriptions also

apply to the main structure of a parametric Markov chain. We say a collection of states
C ⊆ Q is strongly connected if there is a path from any state to another in the restriction of
the underlying graph of M to C. We only refer to (maximally) strongly connected components
(SCCs), that is, SCCs for which there does not exists s ∈ Q such that C ∪ {s} is also strongly
connected. A singleton state with no self loops and no other path to itself is considered its
own SCC. Given an SCC C, its period is the greatest common divisor of the lengths of cycles
in C. A SCC is called aperiodic if its period is 1, and otherwise it is called periodic. We say
that a SCC C is a bottom SCC, or recurrent, if for all s ∈ C, Ms,s′ = 0 for all s′ ∈ Q \ C.
That is, no probability is lost from C. If C is not recurrent, it is called transient.

A Markov chain is aperiodic if all of its SCCs are aperiodic (and otherwise periodic) and
recurrent if all its SCCs are recurrent. If the Markov chain consists of only one recurrent SCC
then the Markov chain is said to be irreducible. As these properties are structural, depending
only on the matrix M of M = (Q, X, M, π), we may say M is aperiodic or irreducible.
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2.3 Semialgebraic targets
A set T ⊆ Rd is semialgebraic if it is a finite Boolean combination of sets specified by a
polynomial inequality. That is, T can be obtained from sets of the form {x ∈ Rd | f(x) ▷◁ 0}
for some ▷◁ ∈ {≥, ≤, >, <, =} using finitely many union and intersection operations. In fact,
without loss of generality we can assume the sets to be of the form {x ∈ Rd | f(x) ▷ 0}
for ▷ ∈ {≥, >}. Written in disjunctive normal form, with ∧ corresponding to ∩ and ∨
corresponding to ∪, we can write T as

⋃k
i=1

⋂li

j=1 {x ∈ Rd | fij(x) ▷ij 0}. Note that many
restricted classes of target sets, such as singleton points and Boolean combinations of linear
inequalities (e.g., polyhedra, halfspaces, and cones) are all examples of semialgebraic sets.

We will be considering the semialgebraic targets T1, . . . , Tk within the universe of U =
Dist(Q) ⊂ RQ, which will be endowed with the subspace topology with respect to the usual
Euclidean topology on RQ. In this topology, a vector (i.e., a probability distribution) x is
in the interior T ◦ of a target T if and only if there exists ϵ > 0 such that Bϵ(x) ∩ U ⊆ T ,
where Bϵ(x) is the ϵ-ball around x in RQ. We will be particularly interested in points on the
boundary of T . The boundary of T , denoted ∂T , is the set of all limit points of T in U that
are not in the interior of T . That is, ∂T = T \ T ◦, where T is the closure of T in U .

We denote by vol(D) the Lebesgue measure of a measurable set D ⊆ RX . Recalling that
a vector v lies on the boundary of T if v ∈ ∂T , we say that a parametrised vector (v[p])p∈D

is contained within the boundary of T if v[p] ∈ ∂T for all p ∈ D. Given a parametrised
vector, we will often be interested in the quantity vol({p ∈ D | v[p] ∈ ∂T}).

2.4 Prefix-independent model checking
Let {T1, . . . , Tk} be a partition of the ambient space Dist(Q) and Σ = {1, . . . , k}. Recall that
properties over the predicates T1, . . . , Tk are modelled by the subsets of Σω. An ω-regular
property P is prefix-independent if for every infinite word w and every finite word u acting
as a prefix, w ∈ P ⇐⇒ uw ∈ P . For such a property P it holds that for every w, w′ ∈ Σω

that can be obtained from one another through finitely many insertions and deletions,
w ∈ P ⇐⇒ w′ ∈ P .3

Given a property φ over Σ, we say a Markov chain M satisfies φ, denoted M |= φ,
when the characteristic word of the Markov chain with respect to the targets T1, . . . , Tk

satisfies φ. In this paper we assume the property to be given as an ω-automaton (e.g., a
non-deterministic Büchi automaton) over Σ. Then, one can check whether a given ultimately
periodic word is accepted by such an automaton. This is done by checking non-emptiness on
the automaton built by the product construction on the given automaton and an automaton
for the ultimately periodic word. Properties given in other specification languages such
as LTL or MSO can be handled by first creating an equivalent non-deterministic Büchi
automaton, provided that the input property is prefix-independent.

2.5 Problems: synthesising parameters
First, we consider the set of parameters such that the sequence of distributions of the resulting
Markov chain is ultimately trapped inside one of the target sets (“the positive set”). This
is the parametric analogue of the well-known Ultimate Positivity Problem [22] (with the
halfspace generalised to arbitrary semialgebraic set). Formally, we consider the following
problem:

3 To see this, consider the common suffix v such that w = uv and w′ = u′v and then observe that
uv ∈ P ⇐⇒ v ∈ P ⇐⇒ u′v ∈ P .
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▶ Problem 6 (Ultimate Positivity on PMCs). Given a PMC M = (Q, X, M, π) and a
semialgebraic set T ⊆ Dist(Q), and letting D ⊆ RX be the set of admissible parameter
instantiations that give rise to the main structure, synthesise the set of feasible parameters
{p ∈ D | ∃N ∈ N.∀n ≥ N. π · M [p]n ∈ T}.

Since the set of parameters could give rise to concrete instances which are hard, we do not
synthesise the full set of feasible parameters exactly, but rather compute a semialgebraic subset
that differs from the full set by a null set. In particular all of the parameter valuations in the
set we compute give rise to an ultimately positive instance. If the computed semialgebraic
set is non-empty, one can be sure that there does exist a parameter choice satisfying the
property, and that such a parameter valuation can be computed. However, if the set is empty,
then one cannot be sure that there does not exists a choice; but in this case one would know
that even if there is such a parameter choice, there are “not too many choices”.

In Theorem 9 of Section 3 we compute this set for aperiodic recurrent finite-state
parametric Markov chains, before generalising the result to periodic Markov chains in
Theorem 13 in Section 4.

Being ultimately trapped inside a semialgebraic set is a prefix-independent property.
Next, we generalise the problem to any prefix-independent property.

▶ Problem 7 (Prefix-independent model checking on PMCs). Given
a PMC M = (Q, X, M, π),
semialgebraic sets T1, . . . , Tk which form a partition of Dist(Q), and
a prefix-independent property φ over T1, . . . , Tk,

and letting D ⊆ RX be the set of admissible parameter instantiations that give rise to
the main structure, synthesise the set of the feasible parameters, i.e., those satisfying φ:
{p ∈ D | M[p] |= φ}.

In Theorem 15 of Section 5 we compute a semialgebraic subset of the feasible parameters
differing up to a null set for the prefix-independent model checking problem.

3 Synthesising satisfying parameters for Ultimate Positivity in
aperiodic and irreducible PMCs

Let M = (Q, X, M, π) be an aperiodic and irreducible Markov chain. It is well-known that
any such Markov chain has a unique stationary distribution and that this distribution is also
the unique limit distribution. In our case this means that for every choice of parameters
p ∈ D there is a unique probability distribution µ[p] ∈ Dist(Q) such that µ[p] · M [p] = µ[p].
The fact that M is irreducible implies that µ[p] will be strictly positive in each entry. The
following lemma assures that this distribution is also a rational function in X and can be
effectively computed.

▶ Lemma 8. Given an aperiodic and irreducible PMC M = (Q, X, M, π), let D ⊆ RX be
the set of admissible parameters leading to the main structure of M. There exists a unique
parametric limit distribution µ ∈ Q(X)Q such that limn→∞ π · M [p]n = µ[p] for all p ∈ D.
Furthermore, µ can be effectively computed.

Proof. The stationary distribution µ : D → Dist(Q) is the unique solution of the linear
equation system µ[p] · M [p] = µ[p] in probability distributions. Hence µ can be computed by
performing Gaussian elimination on the system µ[p] · M [p] = µ[p] followed by a normalisation
step. This shows that every entry µ[p]s of µ[p] is a rational function in p. ◀
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We now establish the main theorem of our paper, showing how to compute a semialgebraic
set of parameters which, up to a null set, equals the set of admissible parameters satisfying
Ultimate Positivity. Our approach relies on the assumption that the volume of limit
distributions lying on the boundary of a target T is null, that is, vol({p ∈ D | µ[p] ∈ ∂T}) = 0.
We say that an instance of Problem 6 is degenerate if vol({p ∈ D | µ[p] ∈ ∂T}) > 0. If one
considers only half-spaces as target sets, our requirement of non-degeneracy corresponds
exactly to the third condition of [19, Theorem 1], which tackles the corresponding model-
checking question for non-parametric Markov chains.

To see why such an assumption is strictly needed we show that, without this assumption,
Problem 6 is as hard as ultimate positivity. That is, one would need to answer potentially
intractable instances of the Ultimate Positivity Problem. Consider the following scenario.
There is a single parameter p and all of its instantiations lead to the same non-parametric
Markov chain M. For any Markov chain M, such a parametric Markov chain M[p] can
easily be constructed. Recall that the Ultimate Positivity Problem for stochastic matrices
asks whether there exists N such that for all n ≥ N , it holds that (π · Mn)s ≥ 1/2, for a
given stochastic matrix M , an initial vector π and a state s [2]. Ultimate Positivity Problem
for stochastic matrices can be easily expressed as an Ultimate Positivity Problem for PMCs
(Problem 6). Then, the answer to the non-parametric Ultimate Positivity instance is yes if
and only if the measure of parameters satisfying the formula is 1 (and in case the answer is
no, the computed semialgebraic set will be empty, having measure zero). The decidability
status of the Ultimate Positivity Problem is a major open question. However, it is solvable if
the limit distribution of M in state s is not zero. Our non-degeneracy assumption essentially
excludes the currently intractable cases of this problem.

▶ Theorem 9. Consider a non-degenerate instance of Problem 6, in which the following are
given:

an aperiodic and irreducible PMC M = (Q, X, M, π), for which D ⊆ RX is the semial-
gebraic set of admissible parameter values that give rise to the main structure,
the parametric limit distribution µ ∈ Q(X)Q such that limn→∞ π · M [p]n = µ[p] for all
p ∈ D, and
a semialgebraic set T =

⋃k
i=1

⋂li

j=1 {x ∈ Dist(Q) | fij(x) ▷ij 0}, for which vol({p ∈ D |
µ[p] ∈ ∂T}) = 0.

Then a semialgebraic set D′
T , contained in DT = {p ∈ D | ∃N ∈ N.∀n ≥ N. π · M [p]n ∈ T}

but differing from DT only by a null set, can be effectively computed.

Proof. Since for all p ∈ D, we have limn→∞ πM [p]n = µ[p] then for all p ∈ D such that
µ[p] ∈ T ◦ it holds that there exists N such that for all n ≥ N , πM [p]n ∈ T . Clearly,
if p ∈ D is such that µ[p] ̸∈ T , then the sequence of distributions of M[p] is eventually
outside of T . It remains to consider the case where µ[p] ∈ ∂T . Since by our assumption
vol({p ∈ D | µ[p] ∈ ∂T}) = 0 it holds that DT differs from D′

T = {p ∈ D | µ[p] ∈ T ◦} by
only a null set. Therefore it suffices to show how to compute a representation for D′

T .
The set D′

T is a semialgebraic set, for which an implicit representation in the first
order theory of the reals can be found in polynomial time. To see this, observe that
D′

T = {p ∈ RX | p ∈ D ∧ ∃y . y = µ[p] ∧ y ∈ T ◦}, with also D semialgebraic. The set T ◦

is itself a semialgebraic set, which can easily be seen by specification in the theory of the
reals as {x ∈ U | ∃ϵ > 0 . ∀z ∈ U, |z − x| ≤ ϵ =⇒ z ∈ T} (recall from Section 2.3 that
U = Dist(Q) is the universe of probability distributions over Q). Finally, z ∈ T can be
expressed in the theory of the reals by asserting that

∨k
i=1

∧li

j fij(x) ▷ij 0 where fi,j ▷ij 0
are the polynomial inequalities defining T . This concludes the proof in case one is satisfied
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with the set D′
T represented in the first order theory of the reals. In case an explicit form

is required, quantifier elimination can be used to compute D′
T as boolean combination of

polynomial inequalities, i.e., of the form {x ∈ RX |
∧

i

∨
j gij(x) ▷ij 0} [23, Theorem 1.2]. ◀

▶ Remark 10. Since the Lebesgue measure is complete (i.e., every subset of a null set is
measurable), it follows from the second part of Theorem 9 that the set DT is Lebesgue
measurable and hence Problem 6 is well-defined.
▶ Remark 11. Observe that it is decidable whether the instance is degenerate. This amounts
to asking whether vol({p ∈ D | µ[p] ∈ ∂T}) = 0, which is the case if and only if the interior
of the set is empty. The set D∂T = {p ∈ D | µ[p] ∈ ∂T} is semialgebraic, thus the interior
D◦

∂T is also semialgebraic, for which one can test emptiness.
Secondly, we note that degenerate instances are somewhat unlikely. Recall the limit

distribution is a rational function. Should the limit distribution coincide with the boundary
of T for a positive volume of points then the function must essentially correspond with one of
the polynomials defining a boundary of T . If the difference is zero with positive measure then
by Lemma 4 the difference is the zero function, and we conclude that they must be the same
function. This would seem to indicate that the target had been constructed adversarially
with a priori knowledge of the limit distribution.

3.1 Complexity
Together Lemma 8 (which shows how to compute µ using Gaussian elimination) and The-
orem 9 produce, up to a null set, the set of parameters of M satisfying ultimate positivity
for a target T in the case that M is an irreducible and aperiodic PMC. We now consider the
complexity of this reduction.

In general, the number of terms of a rational functions one gets from applying Gaussian
elimination over the field of rational functions may become exponential. However, for a
fixed number of parameters the parametrised stationary distribution µ (from Lemma 8)
can be computed in polynomial time using fraction-free Gaussian elimination [6] (thus the
representation of µ needs at most polynomial space).

It is then straightforward to see that the implicit representation, given as a sentence
in the first order theory of the reals, can be found in polynomial time. We consider the
complexity of computing the explicit representation in the following lemma and observe that
this is polynomial time for fixed Markov chains M.

▶ Lemma 12. The explicit representation of D′
T can be found in time p(x)O(|X||Q|2), where

p is a polynomial in the size of the inputs M = (Q, X, M, π), µ, and T (represented by x).

Proof. Consider an implicit description of a semialgebraic set given by a sentence in the theory
of the reals of the form {y ∈ Rℓ | Q1x1 ∈ Rn1 . . . Qωxω ∈ Rnω P (B1(y, x), . . . , Bm(y, x))},
where Qi ≠ Qi+1 are quantifiers in {∃, ∀}, P is a Boolean formula in m variables and
the Bi’s are polynomial inequalities of degree at most d in variables from x1, . . . , xω and
integer coefficients of bit-size at most L. Define K1 = ℓ

∏ω
k=1 nk and K2 = ℓ +

∑ω
k=1 nk.

By Theorem 1.2 of [23] the explicit description can be found from the implicit description
using LO(1)(md)2O(ω)K1 many arithmetic operations and (md)K2 evaluations of the Boolean
formula P .

The formula described in Theorem 9 implicitly uses inequalities on rational functions,
with rational coefficients. Observe that this can be converted to polynomial inequalities
with integer coefficients, e.g., f(x)/g(x) > 0 ⇐⇒ g(x) ̸= 0 ∧ f(x)g(x) > 0. Then, rational
coefficients can be removed by multiplying through by the lcm of denominators.
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In the proof of Theorem 9, the implicit representation of D′
T is constructed in polynomial

time by suitably describing the set in the first order theory of the reals, in time polynomial
in the sizes of M, µ and T . Let q(x) be such a polynomial. We observe that the resulting
representation has bounded quantifier alternation. In particular, composing the descriptions
of DT and T ◦ into a single formula, the description has free parameters p ∈ D (thus ℓ = |X|)
and quantification of the form ∃y ∈ Dist(Q), ϵ > 0, ∀z ∈ Dist(Q) followed by a Boolean
combination of polynomial inequalities. Hence, there are two blocks of quantifiers (ω = 2),
of size n1 = |Q| + 1 and n2 = |Q|. The degree d of the polynomials and the number of such
polynomial inequalities m are polynomial in the same parameters to describe T and µ. Let
u(x) be such a polynomial.

Since |P | is at most q(x), the Boolean formula can be evaluated in linear time, i.e., q(x).
Thus the conversion to explicit representation using the procedure of Renegar thus takes
O(u(x)O(|X||Q|2)q(x)) many operations. But O(u(x)O(|X||Q|2)q(x)) = O(p(x)O(|X||Q|2)) for
some larger polynomial p(x) (assuming |X| ̸= 0 and |Q| ̸= 0), which concludes the proof. ◀

Recall that when |X| is fixed then µ can be computed in time polynomial in M, then the
size of x is itself polynomial. Further, when the size of |Q| is fixed, then the procedure is
polynomial time in the size of M and T and polynomial in T when M is fixed (the parametric
Markov chain may be considered fixed when the chain is given but the problem needs to be
considered for several possible targets).

4 The limit distribution of periodic Markov chains with transient
states

We have observed that we can compute the parametric stationary distribution for aperiodic
and irreducible PMCs. Next, we show how to drop both of these restrictions by handling
periodicity and transient states.

4.1 Managing periodicity
We observe that we can assume that the matrix is aperiodic for all parameters by considering
subsequences. Recall that we can assume that the topological structure of M = (Q, X, M, π)
is constant. When a Markov chain is periodic with period H we have that MH is aperiodic.
We consider H many parametric Markov chains M(h) = (Q, X, MH , π · M [p]h) for each
h ∈ {0, . . . , H − 1}, each leading to the parametric orbit (π · M [p]h(M [p]H)n)n. Each Markov
chain M(h) has the same aperiodic update matrix M [p]H but a different starting point
π · M [p]h. For reachability questions, we can simply analyse each subsequence independently,
although we must suitably interleave the results if considering more general properties.

4.2 Managing transient states
Secondly, we consider transient states, that is, the states outside of a bottom strongly
connected component. Let us assume M = (Q, X, M, π) is an aperiodic Markov chain.
We know from the standard literature that the limit probability for any transient state is
zero. However, we must decide how much of the total weight which started in a transient
state ultimately reaches each of the bottom strongly connected components and weight the
respective stationary distributions accordingly.

We are interested in the absorption probability of each bottom SCC. We consider a new
(parametric) Markov chain (Q′, X, N, π) where each BSCC C is reduced to a single, aperiodic,
absorbing state qC . Let B = {bC | C is a bottom SCC.}, F = {q ∈ Q | q is transient} and
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Q′ = F ∪ B, the set of transient states and the new representative bottom states. Let
N ∈ Q(X)Q′×Q′ , be defined such that Nq,q′ = Mq,q′ if q, q′ are in F , Nq,bC =

∑
q′∈C Mq,q′ ,

NbC,bC = 1 and NbC,q′ = 0 if q′ ̸= bC .
We compute absorbing probabilities a ∈ Q(X)Q′×B, where aq,bC is the probability of

reaching bottom state bC starting in state q. Note that this is parametric in variables X.
To compute a, we solve the linear equation system, where for each bC ∈ B we require
that abC,bC = 1 (every bottom SCC is absorbing), aq,bC = 0 if q cannot reach bC , and
aq,bC =

∑
q′∈F Nq,q′aq′,bC if q can reach bC .

We can also compute the limit distribution µC for each bottom strongly connected
component C in isolation, this is the stationary distribution as computed in Lemma 8. We can
then reweight these stationary distributions according to the probability which reaches each
bottom SCC using the absorbing probabilities. For a bottom strongly connected component
C, the limit distribution of state s ∈ C, is ℓ[p]s = (

∑
q∈Q′ πqa[p]q,bC +

∑
q∈C πq)µC [p]s, when

the initial distribution is π. For states not in any bottom strongly connected component,
s ∈ F , we have ℓ[p]s = 0. Note that ℓ is also a rational function, since it is simply the product
and sums of functions found by Gaussian elimination.

4.3 Managing periodic Markov chains with transient states
We now induce a limit distribution for each of the H aperiodic Markov chains (M(h))H−1

h=0
found in Section 4.1. For each such chain, the matrix is M [p]H , and we assume the stationary
distributions µC for each bottom SCC C (this does not depend on h). However, we must
consider the limit distribution for each of the H starting points we consider. That is the
initial distribution is π · M [p]h for each h ∈ {0, . . . , H − 1}. Thus for each subsequence,
distinguished by h, we can compute a unique limit distribution, where

ℓ(h)[p]s =

 ∑
q∈Q′

(π · M [p]h)qa[p]q,bC +
∑
q∈C

(π · M [p]h)q

 µC [p]s for s ∈ C, and

ℓ(h)[p]s = 0 for s transient,

such that limn→∞(M [p]H)n(π · M [p]h) = ℓ(h)[p] for all p ∈ D.

4.4 Ultimate Positivity in the general case
Using the limit distribution established in this section, we now complete the proof of ultimate
Positivity for periodic Markov chains with transient states.

▶ Theorem 13. Consider a non-degenerate instance of Problem 6, in which the following
are given:

M = (Q, X, M, π) is a PMC with period H, for which D ⊆ RX is the semialgebraic set
of admissible parameter values that give rise to the main structure,
H parametric limit distributions ℓ(h) ∈ Q(X) for h ∈ {0, . . . , H − 1} such that
limn→∞(M [p]H)n(π · M [p]h) = ℓ(h)[p] for all p ∈ D.
a semialgebraic set T =

⋃k
i=1

⋂li

j=1 {x ∈ Dist(Q) | fij(x) ▷ij 0}, such that, for all limit
distributions (ℓ(h))H−1

h=0 , we have vol({p ∈ D | ℓ(h)[p] ∈ δT}) = 0.
Then a semialgebraic set D′

T , contained in DT = {p ∈ D | ∃N ∈ N.∀n ≥ N. π · M [p]n ∈ T}
but differing from DT only by a null set, can be effectively computed.
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Proof. Ultimate Positivity requires that ∃N ∈ N.∀n ≥ N.π · M [p]n ∈ T . Since we have
split the orbit into H subsequences, we require that all of these subsequences eventually
enter and remain inside T . That is there exists N ∈ N such that for all h ∈ {0, . . . , H}
and all n ≥ N we have π · M [p]h(M [p]H)n ∈ T . To compute a set D′

T as required,
we use Theorem 9 on the limit distribution ℓ(h). This gives us a set D′

h contained in{
p ∈ D | ∃N ∈ N.∀n ≥ N. π · M [p]h(M [p]H)n ∈ T

}
, but of the same measure as Dh, for

each h. Then, the set D′
T =

⋂
h∈{0,...,H} D′

h satisfies the requirements which concludes the
proof. ◀

▶ Remark 14. In the case M is aperiodic but not irreducible then the complexity result
of Section 3.1 also applies. Note that in general the period H may be exponential, thus
the periodic case requires consideration of exponentially many subsequences, for which the
matrix of the system is MH , which could be much larger than M .

5 Synthesising satisfying parameters for prefix-independent model
checking

Finally we show how to compute a set with volume equivalent to the parameters which
induce a Markov chain satisfying a prefix-independent property.

Consider semialgebraic targets T1, . . . , Tk which partition Dist(Q). That is Ti ∩ Tj = ∅
for i ̸= j and Dist(Q) = T1 ∪ · · · ∪ Tk.

We generalise the notion of degenerate instances to multiple targets. We say that an
instance is non-degenerate if the the volume of any of the limit distributions lying on the
boundary of any of the targets is zero. That is, vol({p ∈ D | ℓ(h)[p] ∈ ∂Ti}) = 0 for each Ti

and ℓ(h). This allows us to be sure that every subsequence is eventually inside one of the
targets, for all but a null-set of parameters.

▶ Theorem 15. Consider a non-degenerate instance of Problem 7, in which the following
are given:

M = (Q, X, M, π) is a PMC, with period H, for which D ⊆ RX is the semialgebraic set
of admissible parameter values that give rise to the main structure,
H parametric limit distributions ℓ(h) ∈ Q(X) for h ∈ {0, . . . , H − 1} such that
limn→∞(M [p]H)n(π · M [p]h) = ℓ(h)[p] for all p ∈ D,
T1, . . . , Tk are semialgebraic targets partitioning Dist(Q) such that, for all limit distribu-
tions (ℓ(h))H−1

h=0 , and all targets Ti, we have vol({p ∈ D | ℓ(h)[p] ∈ ∂Ti}) = 0, and
φ is a prefix-independent ω-regular property over T1, . . . , Tk.

Then, a semialgebraic set D′
φ, contained in Dφ = {p ∈ D | M[p] |= φ}, but differing from

Dφ only by a null set, can be effectively computed.

Proof. We know that any aperiodic Markov chain M will eventually converge to its limit
distribution ℓ, that is, for any ϵ for sufficiently large n we have |πMn − ℓ| < ϵ. So if the limit
distribution is not on the boundary of a target, eventually the Markov chain stays inside the
target or outside the target.

Hence, for all but a null set of p ∈ D and each h ∈ {0, . . . , H − 1}, we have that the orbit
πM [p]h(M [p]H)n enters, and stays in, exactly one of T1, . . . , Tk from some point on. Given
p, we can determine this final target by checking in which set T1, . . . , Tk the point ℓ(h)[p]
lies. Then, since πM [p]h(M [p]H)n is stationary from some point on, we have that every
Hth character of the characteristic word of M[p] w.r.t. T1, . . . , Tk is fixed, and therefore the
characteristic word is eventually periodic.
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We consider each of the possible kH periodic words describing the limit behaviour. That
is, we consider wω for a word w ∈ {1, . . . , k}H , i.e., w repeated infinitely many times. For all
but a null set of parameters, the resulting characteristic word must have such a suffix. We
can model check each such word, and decide if the word satisfies the property φ by asking
whether w is accepted by the automaton representing φ.

We discard the parameter values leading to a periodic suffix which does not satisfy the
specification φ. However, for each periodic word w that does satisfy φ, we compute D′

w ⊆ D

which, up to a null set, represents the parameters leading to this word. Fix w ∈ {1, . . . , k}H .
We compute, up to a null set, the set of parameters for which the periodic word of M[p]
matches w at each position. Using Theorem 9 on limit distribution ℓ(h) and target Twh

compute the set D′
w,h ⊆ D, D′

w,h =
{

p ∈ D | ∃N ∈ N.∀n ≥ N. π · M [p]h(M [p]H)n ∈ Twh

}
.

To represent the whole word, we take intersection, that is let D′
w =

⋂
h∈{0,...,H−1} D′

w,h.
Finally, we compute D′

φ =
⋃

w∈{1,...,k}H s.t. wω|=φ D′
w, which is contained in Dφ (the set

of parameters for which the PMC satisfies the property φ), and differs from Dφ by at most
a null set. ◀
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Let M be the 2-parameter Markov chain with states (qI , q1, q2, q3, qS) depicted in Figure 3a.
For convenience we restrict the parameters to D = {(a, b) | a > 3, b > 2}. The initial
distribution of M is (1, 0, 0, 0, 0), the limit distribution is (0, 0, 0, 0, 1) and after n > 0 steps
the probability of being in states q1, q2, q3 is 1

a
1

2n−1 , 1
b

1
4n−1 , 1

6
1

4n−1 , respectively. Let T =
{(u, x, y, z, w) | 2

3z − 2
x + 6z

y < 0} be the semialgebraic target4. Observe that the specification
is non-degenerate. We will show that the set DT = {(a, b) ∈ D | ∃n. π · Mn[(a, b)] ∈ T} is
not semialgebraic, even up to a null set.

By definition of T it holds that (a, b) ∈ DT if and only if the linear recurrence sequence
un = 4n − 2na + b is negative for some n. Hence

DT =
⋃

n∈N
{(a, b) | 4n − 2na + b < 0} =

⋃
n∈N

{(a, b) | b < 2na − 4n}.

By analysing the family of inequalities above we can show that the set DT is a polytope with
infinite vertices {(3 · 2n, 2 · 4n) | n ∈ N}, as depicted in Figure 3b. To prove the desired result,
assume for contradiction that there exists semialgebraic S ⊆ DT such that the measure of
DT \ S is null. As DT is open, it follows that DT ⊆ Interior(Closure(S)). On the other
hand, inspecting the accumulation points of DT yields the reverse containment, so that
DT = Interior(Closure(S)), whence DT itself is semialgebraic. Finally, observe that we can
write the set of vertices V = {(3 · 2n, 2 · 4n) | n ∈ N} as the set of all points on the boundary
of DT that cannot be expressed as a convex combination of two distinct points in D \ DT .
That is,

V = {x ∈ Closure(DT ) \ DT | ¬∃y, z ∈ D \ DT . y ̸= z ∧ ∃λ ∈ (0, 1). x = λy + (1 − λ)z}.

This in turn makes V a semialgebraic set. However V is an infinite discrete set, and as such
has infinitely many distinct connected components, contradicting a well-known property
enjoyed by semialgebraic sets.
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Figure 3 A parametric Markov chain M and the parameter set satisfying reachability in T .

4 One can write T = {(u, x, y, z, w) | 2
3 xy − 2yz + 6xz2 < 0} in order to make the inequality a polynomial.
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Abstract
We consider the problem of approximating the reachability probabilities in Markov decision processes
(MDP) with uncountable (continuous) state and action spaces. While there are algorithms that, for
special classes of such MDP, provide a sequence of approximations converging to the true value in
the limit, our aim is to obtain an algorithm with guarantees on the precision of the approximation.

As this problem is undecidable in general, assumptions on the MDP are necessary. Our main
contribution is to identify sufficient assumptions that are as weak as possible, thus approaching the
“boundary” of which systems can be correctly and reliably analyzed. To this end, we also argue why
each of our assumptions is necessary for algorithms based on processing finitely many observations.

We present two solution variants. The first one provides converging lower bounds under weaker
assumptions than typical ones from previous works concerned with guarantees. The second one
then utilizes stronger assumptions to additionally provide converging upper bounds. Altogether, we
obtain an anytime algorithm, i.e. yielding a sequence of approximants with known and iteratively
improving precision, converging to the true value in the limit. Besides, due to the generality of our
assumptions, our algorithms are very general templates, readily allowing for various heuristics from
literature in contrast to, e.g., a specific discretization algorithm. Our theoretical contribution thus
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infinite. For example, the intervals [a, b]× [c, d] ⊆ R2 can model a safe area for a robot to
move in or a set of available control inputs such as acceleration and steering angle. This
gives rise to MDP with uncountable state- and action-spaces (sometimes called controlled
discrete-time Markov process [51, 52] or discrete-time Markov control process [11, 28]), with
applications ranging from modelling a Mars rover [10, 24], over water reservoir control [36]
and warehouse storage management [38], to energy control [51], and many more [41].

Although systems modelled by MDP are often safety-critical, the analysis of uncountable
systems is so complex that practical approaches for verification and controller synthesis are
usually based on “best effort” learning techniques, for example reinforcement learning. While
efficient in practice, these methods guarantee, even in the best case, convergence to the true
result only in the limit, e.g. [40], or for increasingly precise discretization, e.g. [51, 32]. In line
with the tradition of learning and to make the analysis more feasible, the typical objectives
considered for MDP are either finite-horizon [37, 3] or discounted properties [18, 53, 25],
together with restrictive assumptions. Note that when it comes to approximation, discounted
properties effectively are finite-horizon. In contrast, ensuring safety of a reactive system or a
certain probability to satisfy its mission goals requires an unbounded horizon and reduces
to optimizing the reachability probabilities. Moreover, the safety-critical context requires
reliable bounds on the probability, not an approximation with unknown precision.

In this paper, we provide the first provably correct anytime algorithm for (unbounded)
reachability in uncountable MDP. As an anytime algorithm, it can at every step of the
execution return correct lower and upper bounds on the true value. Moreover, these bounds
gradually converge to the true value, allowing approximation up to an arbitrary precision.
Since the problem is undecidable, the core of our contribution is identifying sufficient
conditions on the uncountable MDP to allow for approximation.

Our primary goal is to provide conditions as weak as possible, thereby pushing towards
the boundary of which systems can be analyzed provably correctly. To this end, we do not
rely on any particular representation of the system. Nonetheless, for classical scenarios, and,
in particular, for finite MDP, our conditions are mostly satisfied trivially.

Our secondary goal is to derive the respective algorithms as an extension of value iteration
(VI) [29, 43], while avoiding drawbacks of discretization-based approaches. VI is a de
facto standard method for numerical analysis of finite MDP, in particular with reachability
objectives, regarded as practically efficient and allowing for heuristics avoiding the exploration
of the complete state space, e.g. [9]. Interestingly, even for finite MDP, anytime VI algorithms
with precision guarantees are quite recent [9, 19, 4, 44, 22]. Previous to that, the most
used model checkers could return arbitrarily wrong results [19]. Providing VI with precision
guarantees for general uncountable MDP is thus worthwhile on its own. Finally, while
discretization is conceptually simple, we prefer to provide a solution that avoids the need
to introduce arbitrary boundaries through gridding the whole state space and, moreover,
instead utilizes information from one “cell” of the grid in other places, too.

To summarize, while algorithmic aspects form an important motivation, our primary
contribution is theoretical: an explicit and complete set of generic assumptions allowing for
guarantees, disregarding practical efficiency at this point. Consequently, while our approach
lays foundations for further, more tailored approaches, it is not to be seen as a competitor to
the existing practical, best-effort techniques, as these aim for a completely different goal.

Our Contribution. In this work, we provide the following:
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Section 3: A set of assumptions that allow for computing converging lower bounds on
the reachability probability in MDP with uncountable state and action spaces. We
discuss in detail why they are weaker than usual, necessary, and applicable to typically
considered systems. With these assumptions, we extend the standard (convergent but
precision-ignorant) VI to this general setting.

Section 4: An additional set of assumptions that yield the first anytime algorithm, i.e.
with provable bounds on the precision/error of the result, converging to 0. We combine
the preceding algorithm with the technique of bounded real-time dynamic programming
(BRTDP) [39] and provide also converging upper bounds on the reachability probability.

Section 5: A discussion of theoretical extensions and practical applications.

Related work. For detailed theoretical treatment of reachability and related problems on
uncountable MDP, see e.g. [52, 11]. Reachability on uncountable MDP generalizes numerous
problems known to be undecidable. For example, we can encode the halting problem of
(probabilistic) Turing machines by encoding the tape content as real value. Similarly, almost-
sure termination of probabilistic programs (undecidable [33]) is a special case of reachability
on general uncountable MDP (see e.g. [16]). As precise reachability analysis is undecidable
even for non-stochastic linear hybrid systems [26], many works turn their attention to more
relaxed notions such as δ-reachability, e.g. [48], and/or employ many assumptions.

In order to obtain precision bounds, we assume that the value function, mapping states
to their reachability probability, is Lipschitz continuous (and that we know the Lipschitz
constant). This is slightly weaker than the classical approach of assuming Lipschitz continuity
of the transition function (and knowledge of the constant), e.g. [2, 49]. In particular, these
assumptions (i) imply our assumption (as we show in [17, App. B.2.1]) and (ii) are used even
in the simpler settings of finite-horizon and discounted reward scenarios [5, 2, 49, 51] or even
more restricted settings to obtain practical efficiency, e.g. [35]. In contrast to our approach,
they are not anytime algorithms and require treatment of the whole state space.

To provide context, we outline how continuity is used (explicitly or implicitly) in related
work and mention their respective results. Firstly, [25, 47] assume Lipschitz continuity, but
not explicit knowledge of the constant. In essence, these approaches solve the problem by
successively increasing internal parameters.The parameters then eventually cross a bound
implied by the Lipschitz constant, yielding an “eventual correctness”. In particular, they
provide “convergence in the limit” or “probably approximately correct” results, but no bounds
on the error or the convergence rate; these would depend on knowledge of the constant.

Secondly, [18, 40, 2, 49, 51] (and our work) assume Lipschitz continuity and knowledge
of the constant. Relying on the constant being provided externally, these works derive
guarantees. Previously, the guarantees given are weaker than our convergent anytime bounds:
Either convergence in the limit [40] or a bound on a discretization error, relativized to
sub-optimal strategies [18] or bounded horizon [2, 49, 51].

Several of the above mentioned works employ discretization [18, 2, 49, 51]. This method
is quite general, but obtaining any bounds on the error requires continuity assumptions [1].
Further, there are works that use other assumptions: [23, 24] use reinforcement learning
methods to tackle reachability and more general problems, without any continuity assumption.
However, they do not provide any guarantees. See [53] for a detailed exposition of similar
approaches. Assuming an abstraction is given, abstraction and bisimulation approaches,
e.g. [21, 20], provide guarantees, but only on the lower bounds. With significant assumptions
on the system’s structure, symbolic approaches [37, 54, 45, 14] may even obtain exact
solutions.

CONCUR 2022



11:4 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

2 Preliminaries

In this section, we recall basics of probabilistic systems and set up the notation. As usual, N
and R refer to the (positive) natural numbers and real numbers, respectively. For a set S, 1S

denotes its characteristic function, i.e. 1S(x) = 1 if x ∈ S and 0 otherwise. We write S⋆ and
Sω to refer to the set of finite and infinite sequences comprising elements of S, respectively.

We assume familiarity with basic notions of measure theory, e.g. measurable set or
measurable function, as well as probability theory, e.g. probability spaces and measures [8].
For a measure space X with sigma-algebra ΣX , Π(X) denotes the set of all probability
measures on X. For a measure µ ∈ Π(X), we write µ(Y ) =

∫
1Y dµ to denote the mass of a

measurable set Y ∈ ΣX (also called event). For two probability measures µ and ν, the total
variation distance is defined as δT V (µ, ν) := 2 · supY ∈ΣX

|µ(Y )− ν(Y )|. Some event happens
almost surely (a.s.) w.r.t. some measure µ if it happens with probability 1. We write supp(µ)
to denote the support of the probability measure µ.
▶ Remark 1. It is surprisingly difficult to give a well-defined notion of support for measures
in general. Intuitively, supp(µ) describes the “smallest” set which µ assigns a value of 1.
However, this is not well-defined for general measures. We discuss these issues and a proper
definition in [17, App. E]. Throughout this work, similar subtle issues related to measure
theory arise. For the sake of readability, these are mostly delegated to footnotes or the
appendix of the full version [17], and readers may safely skip over these points.
We work with Markov decision processes (MDP) [43], a widely used model to capture both
non-determinism and probability. We consider uncountable state and action spaces.

▶ Definition 2. A (continuous-space, discrete-time) Markov decision process (MDP) is a
tuple M = (S, Act, Av, ∆), where S is a compact set of states (with topology TS and Borel σ-
algebra ΣS = B(TS)), Act is a compact set of actions (with topology TAct and Borel σ-algebra
ΣAct = B(TAct)), Av : S → ΣAct \ {∅} assigns to every state a non-empty, measurable, and
compact set of available actions, and ∆: S ×Act→ Π(S) is a transition function that for
each state s and (available) action a ∈ Av(s) yields a probability measure over successor
states (i.e. a Markov Kernel). An MDP is called finite if |S| <∞ and |Act| <∞.

See [43, Sec. 2.3] and [6, Chp. 9] for a more detailed discussion on the technical considerations
arising from uncountable state and action spaces. Note that we assume the set of available
actions to be non-empty. This means that the system can never get “stuck” in a degenerate
state without successors. Markov chains are a special case of MDP where |Av(s)| = 1 for all
s ∈ S, i.e. a completely probabilistic system without any non-determinism. Our presented
methods thus are directly applicable to Markov chains as well.

Given a measure µ ∈ Π(X) and a measurable function f : X → R mapping elements of a
set X to real numbers, we write µ⟨f⟩ :=

∫
f(x) dµ(x) to denote the integral of f with respect

to µ. For example, ∆(s, a)⟨f⟩ denotes the expected value Es′∼∆(s,a)f(s′) of f : S → R over
the successors of s under action a. Moreover, abusing notation, for some set of state S′ ⊆ S

and function Av′ : S′ → Act, we write S′ ×Av′ = {(s, a) | s ∈ S′, a ∈ Av′(s)} to denote the
set of state-action pairs with states from S′ under Av′.

An infinite path in an MDP is some infinite sequence ρ = s1a1s2a2 · · · ∈ (S × Av)ω,
such that for every i ∈ N we have si+1 ∈ supp(∆(si, ai)). A finite path (or history)
ϱ = s1a1s2a2 . . . sn ∈ (S ×Av)⋆ × S is a non-empty, finite prefix of an infinite path of length
|ϱ| = n, ending in state sn, denoted by last(ϱ). We use ρ(i) and ϱ(i) to refer to the i-th state
in an (in)finite path. We refer to the set of finite (infinite) paths of an MDP M by FPathsM
(PathsM). Analogously, we write FPathsM,s (PathsM,s) for all (in)finite paths starting in s.
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In order to obtain a probability measure, we first need to eliminate the non-determinism.
This is done by a so-called strategy (also called policy, controller, or scheduler). A strategy
on an MDP M = (S, Act, Av, ∆) is a function π : FPathsM → Π(Act), s.t. supp(π(ϱ)) ⊆
Av(last(ϱ)). The set of all strategies is denoted by ΠM. Intuitively, a strategy is a “recipe”
describing which step to take in the current state, given the evolution of the system so far.

Given an MDP M, a strategy π ∈ ΠM, and an initial state s0, we obtain a measure on
the set of infinite paths PathsM, which we denote as Prπ

M,s0
. See [43, Sec. 2] for further

details. Thus, given a measurable set A ⊆ PathsM, we can define its maximal probability
starting from state s0 under any strategy by Prsup

M,s0
[A] := supπ∈ΠM

Prπ
M,s0

[A]. Depending on
the structure of A it may be the case that no optimal strategy exists and we have to resort
to the supremum instead of the maximum. This may already arise for finite MDP, see [12].

For an MDP M = (S, Act, Av, ∆) and a set of target states T ⊆ S, (unbounded)
reachability refers to the set ♢T = {ρ ∈ PathsM | ∃i ∈ N. ρ(i) ∈ T}, i.e. all paths which
eventually reach T . The set ♢T is measurable if T is measurable [51, Sec. 3.1], [52, Sec. 2].

Now, it is straightforward to define the maximal reachability problem of a given set of
states. Given an MDP M, target set T , and state s0, we are interested in computing the
maximal probability of eventually reaching T , starting in state s0. Formally, we want to
compute the value of the state s0, defined as V(s0) := Prsup

M,s0
[♢T ] = supπ∈ΠM

Prπ
M,s0

[♢T ].
This state value function satisfies a straightforward fixed point equation, namely

V(s) = 1 if s ∈ T V(s) = supa∈Av(s)∆(s, a)⟨V⟩ otherwise. (1)

Moreover, V is the smallest fixed point of this equation [6, Prop. 9.8, 9.10], [52, Thm. 3].
In our approach, we also deal with values of state-action pairs (s, a) ∈ S × Av, where
V(s, a) := ∆(s, a)⟨V⟩. Intuitively, this represents the value achieved by choosing action a in
state s and then moving optimally. Clearly, we have that V(s) = supa∈Av(s) V(s, a). See [15,
Sec. 4] for a discussion of reachability on finite MDP and [52] for the general case.

In this work, we are interested in approximate solutions due to the following two reasons.
Firstly, obtaining precise solutions for MDP is difficult already under strict assumptions and
undecidable in our general setting.(1) We thus resort to approximation, allowing for much
lighter assumptions. Secondly, by considering approximation we are able to apply many
different optimization techniques, potentially leading to algorithms which are able to handle
real-world systems, which are out of reach for precise algorithms even for finite MDP [9].

We are interested in two types of approximations. Firstly, we consider approximating
the value function in the limit, without knowledge about how close we are to the true value.
This is captured by a semi-decision procedure for queries of the form Prsup

M,s[♢T ] > ξ for a
threshold ξ ∈ [0, 1]. We call this problem ApproxLower. Secondly, we consider the variant
where we are given a precision requirement ε > 0 and obtain ε-optimal values (l, u), i.e.
values with V(s0) ∈ [l, u] and 0 ≤ u− l < ε. We refer to this variant as ApproxBounds.

3 Converging Lower Bounds

In this section, we present the first set of assumptions, enabling us to compute converging
lower bounds on the true value, solving the ApproxLower problem. In Section 3.1, we discuss
each assumption in detail and argue on an intuitive level why it is necessary by means of

(1)For example, one can encode the tape of a Turing machine into the binary representation of a real
number and reduce the halting problem to a reachability query.
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counterexamples. With the assumptions in place, in Section 3.2 we then present our first
algorithm, also introducing several ideas we employ again in the following section.

Our assumptions and algorithms are motivated by value iteration (VI) [29], which we
briefly outline. In a nutshell, VI boils down to repeatedly applying an iteration operator to a
value vector vn. For example, the canonical value iteration for reachability on finite MDP
starts with v0(s) = 1 for all s ∈ T and 0 otherwise and then iterates

vn+1(s) = maxa∈Act(s)
∑

s′∈S
∆(s, a, s′) · vn(s′) (2)

for all s /∈ T . The vector vn converges monotonically from below to the true value for all states.
We mention two important points. Firstly, the iteration can be applied “asynchronously”.
Instead of updating all states in every iteration, we can pick a single state and only update
its value. The values vn still converge to the correct value as long as all states are updated
infinitely often. Secondly, instead of storing a value per state, we can store a value for each
state-action pair and obtain the state value as the maximum of these values. Both points
are a technical detail for finite MDP, however they play an essential role in our uncountable
variant. See [17, App. A.1] for more details on VI for finite MDP.

In the uncountable variant of Equation (2), v is a function, Act(s) is potentially uncount-
able, and the sum is replaced by integration. As in this setting the problem is undecidable,
naturally we have to employ some assumptions. Our goal is to sufficiently imitate the essence
of Equation (2), obtaining convergence without being overly restrictive. In particular, we
want to (i) represent (an approximation of) vn using finite memory, (ii) safely approximate
the maximum and integration, and (iii) select appropriate points to update vn.

3.1 Assumptions
Before discussing each assumption in detail, we first put them into context. As we argue in
the following, most of our assumptions typically hold implicitly. Still, by stating even basic
computability assumptions in a form as weak as possible, we avoid “hidden” assumptions,
e.g. by assuming that the state space is a subset of Rd. Two of our assumptions are more
restrictive, namely Assumption C: Value Lipschitz Continuity (Section 3.1.3) and,
introduced later, Assumption D: Absorption (Section 4.1.2). However, they are also
often used in related works, as we detail in the respective sections. Moreover, in light of
previous results, the necessity of restrictive assumptions is to be expected: Computing
bounds is hard or even undecidable already for very restricted classes. Aside from the
discussion in the introduction, we additionally mention two further cases. In the setting
of probabilistic programs (which are a very special case of uncountable MDP), deciding
almost sure termination for a fixed initial state (which is a severely restricted subclass
of reachability on uncountable MDP without non-determinism) is an actively researched
topic with recent advances, see e.g. [30, 31], and shown to be Π0

2-complete [33], i.e. highly
undecidable. In [27] and the references therein, the authors present (un-)decidability results
for hybrid automata, which are a special case of uncountable MDP without any stochastic
dynamics (flow transitions can be modelled as actions indicating the delay). As such, it is to
be expected that the general class of models we consider has to be pruned very strictly in
order to hope for any decidability results.
▶ Remark 3. As already mentioned, we want to provide assumptions which are as general as
possible. Importantly, we avoid (unnecessarily) assuming any particular representation of the
system. Our motivation is to ultimately identify the boundary of what is necessary to derive
guarantees. While our assumptions are motivated by VI and built around Equation (2), we
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note that being able to represent the state values and evaluate (some aspect of) the transition
dynamics intuitively are a necessity for any method dealing with such systems. We do not
claim that our framework of assumptions is the only way to approach the problem, instead
we provide arguments why it is a sensible way to do so.

3.1.1 A: Basic Assumptions (Asm. A1-A4)

We first present a set of basic computability assumptions (A1-A4). These are essential,
since for uncountable systems even the simplest computations are intractable without any
assumptions. More specifically, such systems cannot be given explicitly (due to their infinite
size), but instead have to be described symbolically by, e.g., differential equations. Thus, we
necessarily require some notion of computability and structural properties for each part of
this symbolic description. And indeed, each assumption essentially corresponds to one part
of the MDP description (Metric Space to S ×Act, Maximum Approximation to Av,
Transition Approximation to ∆, and Target Computability to T ). They are weak and
hold on practically all commonly considered systems (see [17, App. B.1]). In particular, finite
MDP and discrete components are trivially subsumed by considering the discrete metric.
A1: Metric Space S and Act are metric spaces with (computable) metrics dS and dAct,

respectively, and d× is a compatible(2) metric on the space of state-action pairs S ×Av,
A2: Maximum Approximation For each state s and computable Lipschitz f : Av(s)→ [0, 1],

the value maxa∈Av(s) f(a) can be under-approximated to arbitrary precision.
A3: Transition Approximation For each state-action pair (s, a) and Lipschitz g : S → [0, 1]

which can be under-approximated to arbitrary precision, the successor expectation
∆(s, a)⟨g⟩ can be under-approximated to arbitrary precision.

A4: Target Computability The target set T is decidable, i.e. we are given a computable
predicate which, given a state s, decides whether s ∈ T .

We denote the approximations for A2 and A3 by Approx≤, i.e. given a pair (s, a) and func-
tions f , g as in the assumptions, we write (abusing notation) Approx≤(maxa∈Av(s) f(a), ε)
and Approx≤(∆(s, a)⟨g⟩, ε) for approximation of the respective values up to precision ε, i.e.
0 ≤ maxa∈Av(s) f(a)−Approx≤(maxa∈Av(s) f(a), ε) ≤ ε and analogous for ∆(s, a)⟨g⟩. Note
that A2 and A3 are satisfied if we can sample densely in Av(s) and approximate ∆(s, a).

3.1.2 B: Sampling (Asm. B.VI)

As there are uncountably many states, we are unable to explicitly update all of them at
once and instead update values asynchronously. Moreover, as there may also be uncountably
many actions, we instead store and update the values of state-action pairs. Together, we
need to pick state-action pairs to update. We delegate this choice to a selection mechanism
GetPair, an oracle for state-action pairs. We allow for GetPair to be “stateful”, i.e. the
sampled state-action pair may depend on previously returned pairs. This is required in,
for example, round-robin or simulation-based approaches. We only require a basic notion
of fairness in order to guarantee that we do not miss out on any information. Note the
additional identifier .VI (value iteration) on the assumption name; later on, a similar, but
weaker variant (B.BRTDP) is introduced.

(2)For two pairs (s, a) and (s, a′) we have that k · dAct(a, a′) ≤ d×((s, a), (s, a′)) ≤ K · dAct(a, a′) for some
constants k, K ≥ 0, analogous for dS , achieved by, e.g. d×((s, a), (s′, a′)) := dS(s, s′) + dAct(a, a′).
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B.VI: State-Action Sampling Let S♢ = {last(ϱ) | ϱ ∈ FPathsM,s} the set of all reachable
states. Then, for any ε > 0, s ∈ S♢, and a ∈ Av(s) we have that GetPair eventually
yields a pair (s′, a′) with d×((s, a), (s′, a′)) < ε and δT V (∆(s, a), ∆(s′, a′)) < ε a.s.(3)

Essentially, this means that GetPair provides a way to “exhaustively” generate all behaviours
of the system up to a precision of ε. This fairness assumption is easily satisfied under usual
conditions. For example, if S×Av is a bounded subset of Rd, we can randomly sample points
in that space or consider increasingly dense grids. Alternatively, if we can sample from the
set of actions and from the distributions of ∆, GetPair can be implemented by sampling
paths of random length, following random actions. Note that we can view the procedure as
a “template”: Instead of requiring a concrete method to acquire pairs to update, we leave
this open for generality; we discuss implications of this in Sections 5.1 and 5.3.

The requirement on total variation may seem unnecessary, especially given that we will
also assume continuity. However, otherwise we could, for example, miss out on solitary
actions which are the “witnesses” for a state’s value: suppose that Av(s) = [0, 1] and ∆(s, 0)
moves to the goal, while ∆(s, a) just loops back to s. Only selecting actions close to a = 0
w.r.t. the product metric is not sufficient to observe that we can move to the goal. Note that
this would not be necessary if we assumed continuity of the transition function – selecting
“nearby” actions then also yields “similar” behaviour.

3.1.3 C: Lipschitz Continuity
Finally, we present our already advertised continuity assumption. For simplicity, we give it
in its strict form and discuss relaxations later in Section 5.2. Intuitively, Lipschitz continuity
allows us to extrapolate the behaviour of the system from a single state to its surroundings.
C: Value Lipschitz Continuity The value functions V(s) and V(s, a) are Lipschitz continuous

with known constants CS and C×, i.e. for all s, s′ ∈ S and a ∈ Av(s), a′ ∈ Av(s′) we have

|V(s)− V(s′)| ≤ CS · dS(s, s′) |V(s, a)− V(s′, a′)| ≤ C× · d×((s, a), (s′, a′))

This requirement may seem quite restrictive at first glance. Indeed, it is the only one in this
section to not usually hold on “standard” systems. However, in order to obtain any kind of
(provably correct) bounds, some notion of continuity is elementary, since otherwise we cannot
safely extrapolate from finitely many observations to an uncountable set. The immediately
arising questions are (i) why Lipschitz continuity is necessary compared to, e.g., regular or
uniform continuity, and (ii) why knowledge of the Lipschitz constant is required. For the first
point, note that we want to be able to extrapolate from values assigned to a single state to
its immediate surroundings. While continuity means that the values in the surroundings do
not “jump”, it does not give us any way of bounding the rate of change, and this rate may
grow arbitrarily (for example, consider the continuous but not Lipschitz function sin( 1

x ) for
x > 0). So, also relating to the second point, without knowledge of the Lipschitz constant,
regular continuity and Lipschitz continuity are (mostly) equivalent from a computational
perspective: The function does not have discontinuities, but we cannot safely estimate the
rate of change in general. To illustrate this point further, we give an intuitive example.

(3)Technically, it is sufficient to satisfy this property on any subset of S♢ which only differs from it up
to measure 0. More precisely, we only require that this assumption holds for S♢ = supp(Prsup

M,s), i.e.
the set of all reachable paths with non-zero measure. We omit this rather technical notion and the
discussion it entails in order to avoid distracting from the central results of this work.
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Figure 1 The value function of Example 4, showing that knowledge of the constant is important.

▶ Example 4. We construct an MDP with a periodic, Lipschitz continuous value function,
as illustrated in Figure 1 and formally defined below. Intuitively, for a given period width w

(e.g. 0.25) and a periodic function f (e.g. a triangle function), a state s between 0 and w

moves to a target or sink with probability f(s). All larger states s ≥ w transition to s− w

with probability 1. The value function thus is periodic and Lipschitz continuous, see Figure 1
for a possible value function and [17, App. B.2.3] for a formal definition.

For a finite number of samples, we can choose f and w such that all samples achieve a
value of 1. Nevertheless, we cannot conclude anything about states we have not sampled yet:
Without knowledge of the constant, we cannot extrapolate from samples.

We note the underlying connection to the Nyquist-Shannon sampling theorem [46, Thm. 1].
Intuitively, the theorem states that, for a function that contains no frequencies higher than
W , it is completely determined by giving its ordinates at a series of points spaced 0.5 ·W
apart. If we know the Lipschitz constant, this gives us a way of bounding the “frequency”
of the value function, and thus allows us to determine it by sampling a finite number of
points. On the other hand, without the Lipschitz constant, we do not know the frequency
and cannot judge whether we are “undersampling”.

Since we do not assume any particular representation of the transition system, we cannot
derive such constants in general. Instead, these would need to be obtained by, e.g., domain
knowledge, or tailored algorithms. As in previous approaches [18, 40, 2, 49, 51], we thus
resort to assuming that we are given this constant, offloading this (highly non-trivial) step.
Recall that Lipschitz continuity of the transition function implies Lipschitz continuity of the
value function (see [17, App. B.2.1]), but can potentially be checked more easily.

3.2 Assumptions Applied: Value Iteration Algorithm
Before we present our new algorithm, we explain how our assumptions allow us to lift VI
to the uncountable domain. Contrary to the finite state setting, we are unable to store
precise values for each state explicitly, since there are uncountably many states. Hence, the
algorithm exploits the Lipschitz-continuity of the value function as follows. Assume that we
know that the value of a state s is bounded from below by a value l, i.e. V(s) ≥ l. Then, by
Lipschitz-continuity of V , we know that the value of a state s′ is bounded by l−dS(s, s′) ·CS .
More generally, if we are given a finite set of states Sampled with correct lower bounds
L̂ : Sampled→ [0, 1], we can safely extend these values to the whole state space by

L(s) := maxs′∈Sampled

(
L̂(s′)− CS · dS(s, s′)

)
.

Since V(s) ≥ L̂(s) for all s ∈ Sampled, we have V(s) ≥ L(s) for all s ∈ S, i.e. L(·) is a valid
lower bound. We thus obtain a lower bound for all of the uncountably many states, described
symbolically as a combination of finitely many samples. See Figure 2 for an illustration.

This is sufficient to deal with Markov chains, but for MDPs we additionally need to take
care of the (potentially uncountably many) actions. Recall that value iteration updates
state values with the maximum over available actions, vn+1(s) = maxa∈Av(s) ∆(s, a)⟨vn⟩.
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Figure 2 Example of the function extension on the set [0, 2] with a Lipschitz constant of CS = 1.
Dots represent stored values in L̂, while the solid line represents the extrapolated function L. Note
that it is possible to have L̂(s) < L(s), as seen in the graph.

Algorithm 1 The Value Iteration (VI) Algorithm for MDPs with general state- and action-spaces.

Input: ApproxLower query with threshold ξ, satisfying A1–A4, B.VI and C.
Output: yes, if V(s0) > ξ.

1: Sampled← ∅, t← 1 ▷ Initialize
2: while Approx≤(L(s0), Precision(t)) ≤ ξ do
3: (s, a)← GetPair ▷ Sample state-action pair
4: if s ∈ T then L̂(s, ·)← 1 ▷ Handle target states
5: else L̂(s, a)← Approx≤(∆(s, a)⟨L⟩, Precision(t)) ▷ Update L̂
6: Sampled← Sampled ∪ {(s, a)}, t← t + 1
7: return yes

This is straightforward to compute when there are only finitely many actions, but in the
uncountable case obtaining L(s) = supa∈Av(s) L(s, a) is much more involved. We apply the
idea of Lipschitz continuity again, storing values for a set Sampled of state-action pairs
instead of only states. We bound the value of every state-action pair by

L(s, a) := max(s′,a′)∈Sampled

(
L̂(s′, a′)− d×((s, a), (s′, a′)) · C×

)
(3)

Observe that L(s, a) is computable and Lipschitz-continuous as well, so by Maximum
Approximation we can approximate the bound of any state, i.e. L(s) = maxa∈Av(s) L(s, a),
based on such a finite set of values assigned to state-action pairs. (Recall that Av(s) is
compact and L(s, a) continuous, hence the maximum is attained.) Consequently, we can
also under-approximate ∆(s, a)⟨L⟩ by Transition Approximation. To avoid clutter, we
omit the following two special cases in the definition of L(s, a): Firstly, if Sampled = ∅, we
naturally set L(s, a) = 0. Secondly, if all pairs (s′, a′) are too far away for a sensible estimate,
i.e. if Equation (3) was yielding L(s, a) < 0, we also set L(s, a) to 0.

We present VI for MDPs with general state- and action-spaces in Algorithm 1. It
depends on Precision(t), a sequence of precisions converging to zero in the limit, e.g.
Precision(t) = 1

t . The algorithm executes the main loop until the current approximation of
the lower bound of the initial state L(s0) = maxa∈Av(s0) L(s0, a) exceeds the given threshold
ξ. Inside the loop, the algorithm updates state-action pairs yielded by GetPair. For target
states, the lower bound is set to 1. Otherwise, we set the bound of the selected pair to an
approximation of the expected value of L under the corresponding transition. Here is the
crucial difference to VI in the finite setting: Instead of using Equation (2), we have to use
Equation (3) and Approx≤, the approximations that exist by assumption, see Section 3.1.1.
Since Precision(t) converges to zero, the approximations eventually get arbitrarily fine.
The procedure Precision(t) may be adapted heuristically in order to speed up computation.
For example, it may be beneficial to only approximate up to 0.01 precision at first to quickly
get a rough overview. We show that Algorithm 1 is correct, i.e. the stored values (i) are
lower bounds and (ii) converge to the true values in [17, App. E.1]. Here, we only provide a
sketch, illustrating the main steps.
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▶ Theorem 5. Algorithm 1 is correct under Assumptions A1–A4, B.VI, and C, i.e. it
outputs yes iff V(s) > ξ.

Proof sketch. First, we show that Lt(s) ≤ Lt+1(s) ≤ V(s) by simple induction on the step.
Initially, we have L1(s) = 0, obviously satisfying the condition. The updates in Lines 4 and 5
both keep correctness, i.e. Lt+1(s) ≤ V(s), proving the claim.

Since Lt is monotone as argued above, its limit for t→∞ is well defined, denoted by L∞.
By State-Action Sampling, the set of accumulation points of st contains all reachable
states S♢. We then prove that L∞ satisfies the fixed point equation Equation (1). For this, we
use the second part of the assumption on GetPair, namely that for every (s, a) ∈ S♢ ×Av

we get a converging subsequence (stk
, atk

) where additionally ∆(stk
, atk

) converges to ∆(s, a)
in total variation. Intuitively, since infinitely many updates occur infinitely close to (s, a), its
limit lower bound L∞(s, a) agrees with the limit of the updates values limk→∞ ∆(stk

, atk
)⟨Ltk

⟩.
Since L∞ satisfies the fixed point equation and is less or equal to the value function V, we
get the result, since V is the smallest fixed point. ◀

4 Converging Upper Bounds

In this section, we present the second set of assumptions, allowing us to additionally
compute converging upper bounds. With both lower and upper bounds, we can quantify the
progress of the algorithm and, in particular, terminate the computation once the bounds
are sufficiently close. Therefore, instead of only providing a semi-decision procedure for
reachability, this algorithm is able to determine the maximal reachability probability up to a
given precision. Thus, we obtain the first algorithm able to handle such general systems with
guarantees on its result. We again present our assumptions together with a discussion of their
necessity (Section 4.1), and then introduce the subsequent algorithm and prove its correctness
(Section 4.2). As expected, obtaining this additional information also requires additional
assumptions. On the other hand, quite surprisingly, we can use the additional information of
upper bounds to actually speed up the computation, as discussed in Section 5.3.

As before, our approach is inspired by algorithms for finite MDP, in this case by Bounded
Real-Time Dynamic Programming (BRTDP) [39, 9]. BRTDP uses the same update equations
as VI, but iterates both lower and upper bounds. A major contribution of [9] was to solve
the long standing open problem of how to deal with end components. These parts of the
state space prevent convergence of the upper bounds by introducing additional fixpoints of
Equation (1). We direct the interested reader to [17, App. A.2] for further details on BRTDP
and insights on the issue of end components. In the uncountable setting, these issues arise as
well alongside several other, related problems, which we discuss in Section 4.1.2.

4.1 Assumptions

The basic assumptions A1–A4 as well as Lipschitz continuity (Assumption C) remain
unchanged. For Maximum Approximation (A2) and Transition Approximation (A3),
we additionally require that we are able to over-approximate the respective results. The re-
spective assumptions are denoted by A5 and A6, respectively, and both over-approximations
by Approx≥. Further, we only require a weakened variant of State-Action Sampling,
now called Assumption B.BRTDP instead of Assumption B.VI. Finally, there is the new
Assumption D called Absorption, addressing the aforementioned issue of end components.
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4.1.1 B: Weaker Sampling (Asm. B.BRTDP)
We again assume a GetPair oracle, but, perhaps surprisingly, with weaker assumptions.
Instead of requiring it to return “all” actions, we only require it to yield “optimal” actions,
respective to a given state-action value function. We first introduce some notation. Intuitively,
we want GetPair to yield actions which are optimal with respect to the upper bounds
computed by the algorithm. However, these upper bounds potentially change after each
update. Thus, assume that fn : S × Av → [0, 1] is an arbitrary sequence of computable,
Lipschitz continuous, (point-wise) monotone decreasing functions, assigning a value to each
state-action pair, and set F = (f1, f2, . . . ). For each state s ∈ S, set

AvF (s) := {a ∈ Av(s) | ∀ε > 0. ∀N ∈ N. ∃n > N. maxa′∈Av(s)fn(s, a′)− fn(s, a) < ε},

i.e. actions that infinitely often achieve values arbitrarily close to the optimum of fn. Let
S♢

F = {last(ϱ) | ϱ ∈ FPathsM,s0 ∩ (S × AvF )∗ × S} be the set of all states reachable using
these optimal actions.(4) Essentially, we require that GetPair samples densely in S♢

F ×AvF .
B.BRTDP: State-Action Sampling For any ε > 0, F as above, s ∈ S♢

F , and a ∈ AvF (s) we
have that GetPair a.s. eventually yields a pair (s′, a′) with d×((s, a), (s′, a′)) < ε and
δT V (∆(s, a), ∆(s′, a′)) < ε.

While this new variant may seem much more involved, it is weaker than its previous variant,
since AvF (s) ⊆ Av(s) for each s ∈ S and thus also S♢

F ⊆ S♢. As such, it also allows for
more practical optimizations, which we briefly discuss in Section 5.3.

4.1.2 D: Absorption
We present our most specific assumption. While it is not needed for correctness, we require it
for convergence of the upper bounds to the value and thus for termination of the algorithm.
D: Absorption There exists a known and decidable set R (called sink) such that V(s) = 0

for all s ∈ R. Moreover, for any s ∈ S and strategy π we have Prπ
M,s[♢(T ∪R)] = 1.

Intuitively, the assumption requires that for all strategies, the system will eventually reach a
target or a goal state; in other words: It is not possible to avoid both target and sink infinitely
long. Variants of this assumption are used in numerous settings: On MDP, it is similar to the
contraction assumption, e.g. [6, Chp. 4]; in stochastic game theory (a two-player extension
of MDP) it is called stopping, e.g. [13]; and, using terms from the theory of the stochastic
shortest path problem, we require all strategies to be proper, see e.g. [7].

This assumption already is important in the finite setting: There, Absorption is equiva-
lent to the absence of end components, which introduce multiple solutions of Equation (1).
Then, a VI algorithm computing upper bounds can be “stuck” at a greater fixpoint than the
value and thus does not converge [9, 19]. Any procedure using value iteration thus either
needs to exclude such cases or detect and treat them. Aside from end components, which are
the only issue in the finite setting, uncountable systems may feature other complex behaviour,
such as Zeno-like approaching the target closer and closer without reaching it.

Unfortunately, even just detecting these problems already is difficult. For the mentioned,
restricted setting of probabilistic programs, almost sure termination is Π2

0-complete [33]. Yet,
universal termination with goal set T ∪R is exactly what we require for Absorption. So,
already on a restricted setting (together with a given guess for R), we cannot decide whether
the assumption holds, let alone treat the underlying problems. Thus, we decide to exclude
this issue and delegate treatment to specialized approaches.

(4)As in Section 3, we simplify the definition of S♢
F slightly in order to avoid technical details.
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Algorithm 2 The BRTDP algorithm for MDPs with general state- and action-spaces.

Input: ApproxBounds query with precision ε, satisfying A1–A6, B.BRTDP, C and D.
Output: ε-optimal values (l, u).

1: Sampled← ∅, t← 1 ▷ Initialize
2: while Approx≥

(
U(s0), Precision(t)

)
−Approx≤

(
L(s0), Precision(t)

)
≥ ε do

3: s, a← GetPair ▷ Sample stat-action pair
4: if s ∈ T then L̂(s, ·)← 1 ▷ Handle special cases
5: else if s ∈ R then Û(s, ·)← 0
6: else ▷ Update upper and lower bounds
7: Û(s, a)← Approx≥(∆(s, a)⟨U⟩, Precision(t))
8: L̂(s, a)← Approx≤(∆(s, a)⟨L⟩, Precision(t))
9: Sampled← Sampled ∪ {(s, a)}, t← t + 1

10: return (L(s0), U(s0))

In summary, while this assumption is indeed restrictive, it is the key point that allows us
to obtain convergent upper bounds and thus an anytime algorithm. As argued above, an
assumption of this kind seems to be necessary to obtain such an algorithm in this generality.

▶ Remark 6. These problems do not occur when considering finite horizon or discounted
properties, which are frequently used in practice. For details on treating finite horizon
objectives, see [17, App. C.1]. Discounted reachability with a factor of γ < 1 is equivalent to
normal reachability where at each step the system moves into a sink state with probability
(1− γ). Absorption is trivially satisfied and our methods are directly applicable.

4.2 Assumptions Applied: The Convergent Anytime Algorithm
With our assumptions in place, we are ready to present our adaptation of BRTDP to the
uncountable setting. Compared to VI, we now also store upper bounds, again using Lipschitz-
continuity to extrapolate the stored values. In particular, together with the definitions of
Equation (3) we additionally set

U(s, a) = min(s′,a′)∈Sampled

(
Û(s′, a′) + d×((s, a), (s′, a′)) · C×

)
.

We also set U(s, a) = 1 if either Sampled = ∅ or the above equation would yield U(s, a) > 1.
We present BRTDP in Algorithm 2. It is structurally similar to BRTDP in the finite

setting (see [17, App. A.2]). The major difference is given by the storage tables Û and L̂ used
to compute the current bounds U and L, again exploiting Lipschitz continuity. As before, the
central idea is to repeatedly update state-action pairs given GetPair. If GetPair yields
a state of the terminal sets T and R, we update the stored values directly. Otherwise, we
back-propagate the value of the selected pair by computing the expected value under this
transition. Moreover, we again require that Precision(t) converges to zero. Note that the
algorithm can easily be supplied with a-priori knowledge by initializing the upper and lower
bounds to non-trivial values. Moreover, in contrast to VI, this algorithm is an anytime
algorithm, i.e. it can at any time provide an approximate solution together with its precision.

Despite the algorithm being structurally similar to the finite variant of [9], the proof of
correctness unsurprisingly is more intricate due to the uncountable sets. We again provide
both a simplified proof sketch here and the full technical proof in [17, App. E.2].
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▶ Theorem 7. Algorithm 2 is correct under Assumptions A1–A6, B.BRTDP, C and D,
and terminates with probability 1.

Proof sketch. We again obtain monotonicity of the bounds, i.e. Lt(s, a) ≤ Lt+1(s, a) ≤
V(s, a) ≤ Ut+1(s, a) ≤ Ut(s, a) by induction on t, using completely analogous arguments.

By monotonicity, we also obtain well defined limits U∞ and L∞. Further, we define the
difference function Difft(s, a) = Ut(s, a)− Lt(s, a) together with its state based counterpart
Difft(s) and its limit Diff∞(s). We show that Diff∞(s0) = 0, proving convergence. To
this end, similar to the previous proof, we prove that Diff∞ satisfies a fixed point equation
on S♢

+ (see B.BRTDP), namely Diff∞(s) = ∆(s, a(s))⟨Diff∞⟩ where a(s) is a specially
chosen “optimal” action for each state satisfying Diff∞(s, a(s)) = Diff∞(s). Now, set
Diff∗ = maxs∈S♢

+
Diff∞(s) the maximal difference on S♢

+ and let S♢
∗ be the set of witnesses

obtaining Diff∗. Then, ∆(s, a(s), S♢
∗ ) = 1: If a part of the transition’s probability mass would

move to a region with smaller difference, an appropriate update of a pair close to (s, a(s))
would reduce its difference. Hence, the set of states S♢

∗ is a “stable” subset of the system
when following the actions a(s). By Absorption, we eventually have to reach either the
target T or the sink R starting from any state in S♢

∗ . Since Diff∞(s) = 0 for all (sampled)
states in T ∪R and Diff∞ satisfies the fixed point equation, we get that Diff∞(s) = 0 for all
states S♢

∗ and consequently Diff∞(s0) = 0. ◀

5 Discussion

5.1 Relation to Algorithms for Finite Systems and Discretization

Our algorithm directly generalizes the classical value iteration as well as BRTDP for finite
MDP by an appropriate choice of GetPair. In value iteration, it proceeds in round-robin
fashion, enumerating all state-action pairs. Note that the algorithm immediately uses the
results of previous updates, corresponding to the Gauß-Seidel variant of VI; to exactly obtain
synchronous value iteration, we would have to slightly modify the structure for saving the
values. In BRTDP, GetPair simulates paths through the MDP and we update only those
states encountered during the simulation.

Approaches based on discretization through, e.g., grids with increasing precision, es-
sentially reduce the uncountable state space to a finite one. This is also encompassed by
GetPair, e.g. by selecting the grid points in round robin or randomized fashion. However,
our algorithm has the following key advantages when compared to classical discretization.
Firstly, it avoids the need to grid the whole state space (typically into cells of regular sizes).
Secondly, in discretization, updating the value of one cell does not directly affect the value in
other cells; in contrast in our algorithm, knowledge about a state fluently propagates to other
areas (by using Equation (3)) without being hindered by (arbitrarily chosen) cell boundaries.

5.2 Extensions

We outline possible extensions and augmentations of our approach to showcase its versatility.

Discontinuities. Our Lipschitz assumption C actually is slightly stronger than required.
We first give an example of a system exhibiting discontinuities and then describe how our
approach can be modified to deal with it. More details are in [17, App. C.2].
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▶ Example 8. Consider a robot navigating a terrain with cliffs, where falling down a cliff
immediately makes it impossible to reach the target. There, states which are barely on the
edge may still reach the goal with significant probability, while a small step to the side results
in falling down the cliff and zero probability of reaching the goal.

To solve this example, one could model the cliff as a steep but continuous slope, which would
make our approach still possible. Unfortunately, this might not be very practical, since the
Lipschitz constant then is quite large.

However, if we know of discontinuities, e.g. the location of cliffs in the terrain the robot
navigates, both our algorithms can be extended as follows: Instead of requiring V to be
continuous on the whole domain, we may assume that we are given a (finite, decidable)
partitioning of the state set S into several sets Si. We allow the value function to be
discontinuous along the boundaries of Si (the cliffs), as long as it remains Lipschitz-continuous
inside each Si. We only need to slightly modify the assumption on GetPair by requiring
that for any state-action pair (s, a) with s ∈ Si we eventually get a nearby, similarly behaving
state-action pair (s′, a′) of the same region, i.e. s′ ∈ Si. While computing the bounds of a
particular state-action pair, e.g. U(s, a), we first determine which partition Si the state s

belongs to and then only consider the stored values of states inside the region Si.

Linear Temporal Logic. In [9], the authors extend BRTDP to LTL queries [42]. Several
difficulties arise in the uncountable setting. For example, in order to prove liveness conditions,
we need to solve the repeated reachability problem, i.e. whether a particular set of states is
reached infinitely often. This is difficult even for restricted classes of uncountable systems,
and impossible in the general case. In particular, [9] relies on analysing end components,
which we already identified as an unresolved problem. We provide further insight in [17,
App. C.3]. Nevertheless, there is a straightforward extension of our approach to the subclass
of reach-avoid problems [50] (or constrained reachability [52]), see [17, App. C.4].

5.3 Implementation and Heuristics
For completeness, we implemented a prototype of our BRTDP algorithm to demonstrate
its effectiveness. See [17, App. D] for details and an evaluation on both a one- and two-
dimensional navigation model. Our implementation is barely optimized, with no delegation
to high-performance libraries. Yet, these non-trivial models are solved in reasonable time.
However, since we aim for assumptions that are as general as possible, one cannot expect
our generic approach perform on par with highly optimized tools. Our prototype serves as
a proof-of-concept and does not aim to be competitive with specialized approaches. We
highlight again that the goal of our paper is not to be practically efficient in a particular,
restricted setting, but rather to provide general assumptions and theoretical algorithms
applicable to all kinds of uncountable systems.

Aside from several possible optimizations concerning the concrete implementation, we
suggest two more general directions for heuristics:

Adaptive Lipschitz constants. As an example, suppose that a robot is navigating mostly
flat land close to its home, but more hilly terrain further away. The flat land has a smaller
Lipschitz constant than the hilly terrain, and thus here we can infer tighter bounds. More
generally, given a partitioning of the state space and local Lipschitz constants for every
subset, we use this local knowledge when computing L̂ and Û instead of using the global
Lipschitz constant, which is the maximum of all local ones. See [17, App. C.2] for details.
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GetPair-heuristics. In Section 3.1.2, we mentioned two simple implementations of GetPair.
Firstly, we can discretize both state and action space, yielding each state-action pair in the
discretization for a finite number of iterations, choosing a finer discretization constant, and
repeating the process until convergence. Assuming that we can sample all state-action pairs
in the discretization, this method eventually samples arbitrarily close to any state-action pair
in S ×Av and thus trivially satisfies the sampling assumption. This intuitively corresponds
to executing interval iteration [19] on the (increasingly refined) discretized systems. Note
that this approach completely disregards the reachability probability of certain states and
invests the same computational effort for all of them. In particular, it invests the same
amount of computational effort into regions which are only reached with probability 10−100

as in regions around the initial state s0.
Thus, a second approach is to sample a path through the system at random, following

random actions. This approach updates states roughly proportional to the probability of
being reached, which already in the finite setting yields dramatic speed-ups [34].

However, we can also use further information provided by the algorithm, namely the
upper bounds. As mentioned in [9], following “promising” actions with a large upper bound
proves to be beneficial, since actions with small upper bound likely are suboptimal. To extend
this idea to the general domain, we need to apply a bit of care. In particular, it might be
difficult to select exactly from the optimal set of actions, since already arg maxa∈Av(s) U(s, a)
might be very difficult to compute. Yet, it is sufficient to choose some constant ξ > 0 and
over-approximate the set of ξ-optimal actions in a given state, randomly selecting from this
set. This over-approximation can easily be performed by, for example, randomly sampling
the set of available actions Av(s) until we encounter an action close to the optimum (which
can approximate due to our assumptions). By generating paths only using these actions,
we combine the previous idea of focussing on “important” states (in terms of reachability)
with an additional focus on “promising” states (in terms of upper bounds). This way, the
algorithm learns from its experiences, using it as a guidance for future explorations.

More generally, we can easily apply more sophisticated learning approaches by interleaving
it with one of the above methods. For example, by following the learning approach with
probability ν and a “safe” method with probability 1− ν we still obtain a safe heuristic, since
the assumption only requires limit behaviour. As such, we can combine our approach with
existing, learning based algorithm by following their suggested heuristic and interleave it with
some sampling runs guided by the above ideas. In other words, this means that the learning
algorithm can focus on finding a reasonable solution quickly, which is then subsequently
verified by our approach, potentially improving the solution in areas where the learner is
performing suboptimally. On top, the (guaranteed) bounds identified by our algorithm can
be used as feedback to the learning algorithm, creating a positive feedback loop, where both
components improve each other’s behaviour and performance.

6 Conclusion

In this work, we have presented the first anytime algorithm to tackle the reachability
problem for MDP with uncountable state- and action-spaces, giving both correctness and
termination guarantees under general assumptions. The experimental evaluation of our
prototype implementation shows both promising results and room for improvements.

On the theoretical side, we conjecture that Assumption D: Absorption can be
weakened if we complement it with an automatic procedure that finds and treats problematic
parts of the state space of a certain kind, similar to the collapsing approach on finite MDP
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[19, 9]. Note that as the general problem is undecidable, some form of Absorption will
remain necessary. On the practical side, we aim for a more sophisticated tool, applying our
theoretical foundation to the full range of MDP, including discrete discontinuities. Moreover,
we want to combine the tool with existing ways of identifying the Lipschitz constant.
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Abstract
We study the Büchi non-emptiness problem for networks of timed automata. Standard solutions
consider the network as a monolithic timed automaton obtained as a synchronized product and build
its zone graph on-the-fly under the classical global-time semantics. In the global-time semantics, all
processes are assumed to have a common global timeline.

Bengtsson et al. in 1998 have proposed a local-time semantics where each process in the network
moves independently according to a local timeline, and processes synchronize their timelines when
they do a common action. It has been shown that the local-time semantics is equivalent to the
global-time semantics for finite runs, and hence can be used for checking reachability. The local-time
semantics allows computation of a local zone graph which has good independence properties and is
amenable to partial-order methods. Hence local zone graphs are able to better tackle the state-space
explosion due to concurrency.

In this work, we extend the results to the Büchi setting. We propose a local zone graph
computation that can be coupled with a partial-order method, to solve the Büchi non-emptiness
problem in timed networks. In the process, we develop a theory of regions for the local-time
semantics.
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1 Introduction

Timed automata [2] are a popular model for real-time systems. Typically, systems are
modeled as a network of timed automata that communicate with each other via synchronizing
actions. We are interested in verifying Büchi properties of such models: does there exist
a run of the network that executes transitions from a given set infinitely often? This is
called the Büchi non-emptiness problem. Model checking LTL specifications can be reduced
to the Büchi non-emptiness problem. Moreover, verifying Büchi properties can be useful
in trouble-shooting the model under consideration, for example, a typo in the benchmark
CSMA/CD protocol model was discovered through a Büchi property verification [18]. Recent
works go even further and consider synthesis questions for Büchi timed automata [3, 8].

Existing algorithms for the Büchi non-emptiness problem view the network as a single
timed automaton obtained by a synchronized product, and build the so-called zone graph of
this product automaton on-the-fly [29, 28, 25, 23, 18]. The main challenge lies in guaranteeing
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the termination of the zone graph computation. This is achieved through a finite abstraction
of the zone graph that preserves the Büchi property. The aim of course is to get as
small a graph as possible. This has been the central subject of study in timed automata
verification [11, 7, 4, 21, 20]. As a matter of fact, new abstraction methods are usually first
studied in the context of reachability verification and then lifted to the Büchi setting. In
this paper, we continue this trend by extending a recent work on abstractions based on the
local-time semantics [15], to the Büchi non-emptiness problem.

The local-time semantics for timed automata networks was proposed by Bengtsson et
al. [5] with the aim of applying partial-order reduction methods that can exploit the network
representation of the model to build a smaller zone graph. In the local-time semantics, each
process in the network moves independently according to its local timeline which contrasts
with the standard semantics where time elapses synchronously in all the processes. When
processes perform a shared action, they synchronize their local timelines. This semantics gives
good independence properties: for instance, if a and b are actions performed by processes
Pa and Pb, an execution (a, 2)(b, 1) means a happens when the local time of Pa is 2 and b

happens when local time of Pb is 1. There is no “happens-before” between (a, 2) and (b, 1).
The local-time semantics leads to a local-zone graph computation in which performing ab

or ba from a local-zone leads to the same local-zone. This diamond property is essential
for applying partial-order reduction methods. In [15] we have proposed abstractions for the
local zone graph that can be coupled with partial-order methods to solve the reachability
problem. Extending these methods to the Büchi non-emptiness problem, poses certain
technical questions and requires some adaptations of the setting. We settle these issues here.

1.1 Contributions
The first question is whether the local-time semantics is sound for Büchi runs: does existence
of an infinite Büchi run in the local-time semantics ensure existence of an infinite Büchi run in
the usual global-time semantics? Surprisingly, we answer in the affirmative without any extra
assumption. This said, let us remark that this is not true if one allows invariants in states.
The solution is significantly different from the soundness argument used for reachability
where the last valuation of a local run needs to be synchronized.

The next question is whether the local-zone graph is sound for Büchi runs: does an infinite
Büchi run in the local-zone graph ensure existence of an infinite Büchi run in the local-time
semantics. For every finite prefix, we can get a finite run in the local-time semantics. But the
question of whether these prefixes can be glued together to form an infinite run is non-trivial.
The same question arises in the global-time semantics as well, and there the solution makes a
crucial use of Alur-Dill regions [2]. For the local-time semantics, there is no known notion of
a region equivalence. We have shown [15] that in general, there can be no finite time-abstract
bisimulation for the local-time semantics and proposed to restrict attention to a class of
networks called bounded spread networks. Every network can be converted to a bounded
spread network at the cost of reducing concurrency. In this work, we develop a finite region
equivalence over the local-time semantics for bounded spread networks.

Finally, we prove that the combination of the abstraction from [15] and partial-order
reduction can be suitably applied on the local-zone graph to solve the Büchi non-emptiness
problem. For the argument to work we need to assume that the network is deterministic.
This is usually not a strong assumption, as a network can be made deterministic by renaming
actions. The proof of correctness appropriately combines the guarantees known over finite
runs and the region machinery developed above.
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We remark that we do not propose here a concrete POR method. Instead, we consider
a POR method as an oracle that assigns a subset of edges to be explored from each node
of the local-zone graph. Our work can be seen as a theoretical development that allows to
plug in any POR method which is correct for the Büchi problem on untimed networks, to
timed networks. Most recent works in the POR literature consider a very special case where
every process is acyclic and has at most one outgoing action in every state [1, 33, 9, 22]. As
a further work we would like to have equally efficient methods for more general settings as
considered in works on stubborn/ample/persistent sets [30, 27, 13, 32].

1.2 Related Work
The early abstraction methods studied for timed automata depended on the maximum
constant appearing in the automaton [11, 7]. These abstractions were extended to Büchi
runs by Tripakis et al. [29, 28]. Later, superior abstractions were proposed based on the
maximum constant L occurring in lower bound guards (x > c, x ≥ c) and the maximum
constant U occurring in upper bound guards (x < c, x ≤ c) [4]. Li [25] showed that these
LU abstractions can be used to solve Büchi non-emptiness problem.

An abstraction method comes with an operator a that can be applied on zones Z. For
reachability, it is enough to check a(Z) ⊆ a(Z ′) (called a subsumption) to discard further
exploration from Z and continue from Z ′. On the other hand, for Büchi non-emptiness, we
need to check for equality a(Z) = a(Z ′). Subsumptions are instrumental in reducing the
size of the graph obtained. For the Büchi problem, a restricted usage of subsumption is
possible [23, 18]. However, the gains due to this restricted subsumption are less pronounced in
the Büchi setting as compared to the gains achieved for reachability. There is even a concrete
argument to support this statement: deciding Büchi non-emptiness starting from a zone
graph with subsumption is PSpace-hard [18]. The moral is that graphs computed for the
Büchi problem are in general expected to be much larger than the reachability counterparts.
In this situation it is even more interesting to use POR to reduce their size.

POR techniques have been applied for the reachability problem, but over the zone graph
computed using the standard global-time semantics. There is much less independence in the
global-time zone graph and the POR method needs to be restricted accordingly. Therefore
some approaches limit the POR methods to parts where independent actions occur in zero
time [26, 24, 6], and other approaches discover which actions remain independent either
statically [10] or dynamically [17].

1.3 Outline of the Paper
In the next section we introduce networks of timed automata and their local-time semantics.
Standard global-time semantics is a special case of the local-time semantics. We define the
Büchi non-emptiness problem over the global-time semantics. In Section 3 we show that
for the Büchi non-emptiness problem it is sound to use the local-time semantics instead of
the global one. We also recall local-zones, local-zone graphs and their properties from [15].
In Section 4, we develop a theory of regions for the local-time semantics. We employ the
concept of a bounded spread network from [15], and show that for such networks the number
of regions is finite if we have a bound on the constants used in the guards of the transitions.
Finally, in Section 5 we recall the abstraction operation aD

≼LU
from [15], introduce an abstract

notion of a POR method based on a source function, and show how to obtain a finite
abstract local-zone graph where we can use a POR method while retaining soundness and
completeness for Büchi runs. Missing proofs are presented in appendices.
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2 Preliminaries

We write R, R≥0 and N for the set of reals, non-negative reals and natural numbers,
respectively. We will write 2S for the power set of a set S. Let X be a set of real valued
variables. A constraint over X is described by the grammar: ϕ := x#c | ϕ ∧ ϕ, where x ∈ X,
c ∈ N and # ∈ {<, ≤, =, >, ≥}. Let Φ(X) denote the set of all constraints over X.

A network of timed automata N is a tuple ⟨A1, A2, . . . , Ak⟩ of k timed automata, each
Ai is called a process or a component of the network. Let Proc = {1, . . . , k} denote the set
of process identifiers. Process Ai is given by (Qi, qinit

i , Σi, Xi, ∆i) consisting of a finite set
Qi of states, an initial state qinit

i ∈ Qi, a finite alphabet of actions Σi, a finite set of clocks
Xi, and a finite set of transitions ∆i ⊆ Qi × Σi × Φ(Xi) × 2Xi × Qi.

Transitions in Ai are of the form (p, a, g, R, q) where p and q are the source and target
of the transition, a ∈ Σi is the action, g ∈ Φ(Xi) is a guard over local clocks Xi, and
R ⊆ Xi is the set of local clocks of Xi that are reset along the transition. We assume that
Qi ∩ Qj = ∅ and Xi ∩ Xj = ∅ for all distinct pairs i, j ∈ {1, . . . , k}. We define Σ :=

⋃i=k
i=1 Σi,

X :=
⋃i=k

i=1 Xi and Q :=
∏i=k

i=1 Qi. For a ∈ Σ, we write dom(a) := {i ∈ {1, . . . , k} | a ∈ Σi}.
For q = (q1, . . . , qk) in Q, we write q(i) for qi.

We say that N is deterministic if for every component Ai and for every action a, there
is at most one local transition (p, a, g, R, q) from every local state p ∈ Qi. We will assume
deterministic networks in Section 5.

There are two ways to describe the semantics of a network: one in which all the components
share a common timeline (global-time semantics), and another where each of them work
with a local timeline (local-time semantics). We define the local-time semantics and view
global-time semantics as a special case.

2.1 Local-Time Semantics
Fix a network N = ⟨A1, . . . , Ak⟩ for the rest of the section. We assume that each Ai has a
special clock ti called the reference clock of process Ai. Intuitively, it represents the local
time of process Ai. Let T = {t1, . . . , tk} denote the set of all reference clocks. A valuation
v : X ∪ T → R is a function that maps each variable in X ∪ T to a real number under the
condition that v(ti) ≥ v(xi) for all xi ∈ Xi. The value v(xi) represents the local time at
process Ai when xi was last reset. This explains why we require v(ti) ≥ v(xi). The value
of clock xi is then obtained as v(ti) − v(xi). This semantics that keeps reset time points
instead of clock ages has previously been introduced in [12] in the global-time setting. In the
rest of the document, we use the notation v(x − y) for v(x) − v(y). The semantics relies on
two operations.

The first one is a local-time elapse. Given a valuation v, a delay δi ∈ R and a process
i, the valuation v +i δi describes a local delay of δi units at process i. It is given by
(v +i δi)(ti) = v(ti) + δi and (v +i δi)(x) = v(x) for all other variables x. Notice that
((v +i δi) +j δj) is the same as ((v +j δj) +i δi): the order in which we sum the local delays
does not matter. We extend this notion to a tuple ∆ := (δ1, . . . , δk) ∈ Rk

≥0 of delays, one for
each process: v + ∆ is the valuation v +1 δ1 +2 δ2 · · · +k δk.

The next operation is clock reset. In the local-time interpretation, resetting a clock
xi ∈ Xi amounts to updating its value to the local-time of i given by ti. Given valuation v,
and a set of clocks R ⊆ X, we write v[R] to be the valuation obtained as (v[R])(x) = v(ti)
when x ∈ R ∩ Xi for some i ∈ {1, . . . , k} and v[R](x) = v(x) otherwise. Valuation v is said
to satisfy a constraint x#c for x ∈ Xi if v(ti − x)#c. We write v |= (x#c) in this case. A
valuation satisfies a conjunction of constraints ϕ1 ∧ ϕ2 if v |= ϕ1 and v |= ϕ2.
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A configuration of a network is a pair (q, v) where q ∈ Q and v is a valuation. Recall
that we have defined Q to be the product of the local states Qi. A valuation v is said to be
initial if v(x) = v(y) for all x, y ∈ X ∪ T : all timelines are synchronized and the constraint
x = 0 holds for every clock. A configuration (q, v) is initial if q = (qinit

1 , . . . , qinit
k ) and v is

an initial valuation.
There are two kinds of transitions between configurations: local delays and action

transitions. From a configuration (q, v) there is a local delay transition (q, v) ∆−→ (q, v + ∆)
for each ∆ ∈ Rk

≥0. For each b ∈ Σ, a b-transition is a tuple {(qi, b, gi, Ri, q′
i)}i∈dom(b) of local

transitions one from each process in its domain. From (q, v), we have an action transition
(q, v) b−→ (q′, v′) if there exists a b-transition {(qi, b, gi, Ri, q′

i)}i∈dom(b) such that:
source states match: q(i) = qi for all i ∈ dom(b),
valuation satisfies guard: v |= gi for all i ∈ dom(b),
all processes in dom(b) are synchronized: v(ti) = v(tj) for all i, j ∈ dom(b),
resets are performed: v′ = v[

⋃
i∈dom(b) Ri],

target states are reached: q′(i) = q′
i if i ∈ dom(b) and q′(i) = q(i) otherwise.

The important point is that when a common action is performed, the local times of all the
processes in its domain are the same.

We will write (q, v) ∆,b−−→ (q′, v′) for (q, v) ∆−→ b−→ (q′, v′), a local delay ∆ transition followed
by an action b. Observe that ∆ is determined by v and v′ because δp = v′(tp)−v(tp) where tp is
the reference clock of process p. A run is an infinite sequence (q0, v0) ∆0,b0−−−→ (q1, v1) ∆1,b1−−−→ · · ·
of transitions starting from an initial configuration (q0, v0). A finite run is defined similarly:
(q0, v0) ∆0,b0−−−→ (q1, v1) ∆1,b1−−−→ · · · (qn, vn) ∆n−−→ (q′

n, v′
n). Observe that finite runs have a final

delay. We write (q, v) σ
99K (q′, v′) to say that there is a finite run on a sequence of actions σ.

2.2 The Büchi Non-Emptiness Problem
Global-time semantics is a local-time semantics restricted to synchronized valuations. A
valuation v is said to be synchronized if v(tp) = v(tq) for all processes p, q. This implies that in
every delay (δ1, . . . , δk) that is part of the global-time semantics, we have δ1 = δ2 = · · · = δk.
The global-time semantics obtained this way is the usual semantics that is used in tools and
studies that involve networks of timed automata. To make a distinction, we refer to runs in
the local-time semantics as local runs and runs in the global-time semantics as global runs.
Clearly, a global run is also a local run.

▶ Definition 1 (Büchi non-emptiness problem). Given a network N and a set of actions
F ⊆ Σ, decide if N has a global run with infinitely many occurrences of actions from F .

In the case of finite runs, the correspondence between local and global semantics is
well-known. Indeed there is a local run to a configuration (q, v) with a synchronized valuation
v if and only if there exists a global run to (q, v) that follows the same transitions, although
in a different order. This is captured by the notion of independent actions and traces.

▶ Definition 2 (Independence). Two actions a, b ∈ Σ are said to be independent if dom(a) ∩
dom(b) = ∅. Two sequences of actions u, w ∈ Σ∗ are trace equivalent, u ∼ w, if one of them
can be obtained from the other by permuting adjacent independent actions.

▶ Lemma 3 ([16]). Let v, v′ be synchronized valuations, and let (q, v) u
99K (q′, v′) be a local

run. Then there exists a global run (q, v) w
99K (q′, v′) such that u ∼ w.
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▶ Remark 4. Putting Büchi conditions on transitions makes them trace invariant which is
important if we want to do partial-order methods: if u has infinitely many actions from F ,
then so does every w ∼ u, which may not be true with Büchi conditions on states.

Moreover, the local-time semantics enjoys a very nice property: any two independent
actions commute as stated by the following lemma.

▶ Lemma 5 (Diamond property). [16] Let a, b ∈ Σ with dom(a) ∩ dom(b) = ∅. If (q, v) ab
99K

(q′, v′) then (q, v) ba
99K (q′, v′).

Observe that this commutation property does not hold in the global-time semantics since
delays are synchronous in all processes. Our motivation for using local time over global
time comes from the fact that local time allows to reorder the actions in a run, hence using
partial-order reduction techniques becomes possible.

3 Büchi Runs in the Local-Time Semantics

In this section, we show that using the local-time semantics is sound for the Büchi emptiness
problem. Hence the local-time semantics looks appealing as it enables to use partial-order
reduction techniques. However, verification algorithms cannot work directly from the state-
space of the network as it is uncountable. We will then introduce the local zone graph as a
symbolic representation of the state-space of timed networks in the local time semantics.

3.1 The Local-Time Semantics is Sound
When state-reachability is considered the soundness of the local-time semantics follows
from Lemma 3. However, it is based on the notion of independence, Definition 2, that is
not adequate for infinite runs. The point is that for infinite runs we may need an infinite
number of permutations to get w from u. The more general definition refers to partial orders
defined by runs. These partial orders are often called traces. The other obstacle in repeating
Lemma 3 is that the lemma refers to runs ending in synchronized valuations, while for infinite
runs we do not have final valuations. For these two reasons the soundness argument is more
involved than that of reachability.

We start with an intuition and an illustrating example. To get a global run from a local run,
the natural idea would be to re-order the events based on the time-stamps. For example, if
we have a finite sequence (a, 2)(b, 1)(c, 3)(a, 2.5)(b, 1.5) where the number represents the local
time when the action occurred, then we get a reordered sequence (b, 1)(b, 1.5)(a, 2)(a, 2.5)(c, 3).
It can then be argued that this sequence has a global run where each clock can be delayed
up to the next action to be read. For the case of infinite runs, consider the following example
that consists of two processes A and B.

q (x < 1), aA : r (y = 1), b, {y}B :

Consider an infinite local run:

(a,
1
2) (b, 1) (a,

1
2 + 1

22 ) (b, 2) · · · (a,
1
2 + · · · + 1

2i
) (b, i) · · ·

Notice that all the a actions happen before global time 1, and b actions start from 1. Therefore,
a re-ordering of the events based on the time-stamps gives an infinite sequence of a’s “followed
by” an infinite sequence of b’s. This does not correspond to a global run. However, if a was
accepting, we have a global run (a, 1

2 )(a, 1
2 + 1

22 ) · · · that is accepting. Similarly, if b was
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accepting, we have a global run (b, 1)(b, 2) · · · . In each of these runs, the other process plays
no role except for elapsing time. Observe that the absence of state invariants is crucial here
as the infinite sequence of b’s would not be feasible in the global time semantics if state q of
process A had invariant (x < 1).

In general, when we have a local run, we can reorder it based on timestamps to get a
sequence which may have a block of infinite events (say between 0 and 1), followed by another
block of events (say between 1 and 2), and so on. However, the processes that participate
infinitely often in some block do not participate in the future blocks. This means there can
be only finitely many such blocks. Moreover, if the original run is Büchi accepting, then
there is some block (along with some events in blocks before it) that gives a global run which
is Büchi accepting. We formalize this intuition below.

For an infinite sequence w ∈ Σω we define a trace of w as a labelled partial order
Tσ = ⟨N, λσ,⊴σ⟩ where λσ(i) = wi, and ⊴σ the smallest transitive relation such that i ⊴σ j

if dom(wi) ∩ dom(wj) ̸= ∅ and i ≤ j. Observe that ⊴σ is reflexive.

▶ Definition 6. Two infinite runs u, w ∈ Σω are trace equivalent, u ∼ w, if the traces Tu

and Tw are isomorphic

We extend this notion to runs. Consider a local run

σ = (q0, v0) ∆0−−→ (q0, v′
0) b0−→ (q1, v1) ∆1−−→ (q1, v′

1) b1−→ (q2, v2) ∆2−−→ · · ·

A trace of σ is a labelled partial order Tσ = ⟨N, λσ,⊴σ⟩ where λσ(i) = (qi, v′
i, bi), and as

before ⊴σ the smallest transitive relation such that i ⊴σ j if dom(bi)∩dom(bj) ̸= ∅ and i ≤ j.
Observe that we take valuation v′

i in the label as it ensures that bi is enabled in (qi, v′
i).

To connect local and global time semantics we will rearrange actions depending on their
local time. We use θσ(i) for the local time of execution of action bi in the trace σ; it is
given by θσ(i) = v′

i(tp) where p ∈ dom(bi). Recall that by definition of an action transition,
v′

i(p) = v′
i(q) for all p, q, ∈ dom(bi).

▶ Lemma 7. If i ⊴σ j then θσ(i) ≤ θσ(j).

A trace prefix T ′ of a trace Tσ is a restriction of Tσ to some ⊴σ-downward closed subset
of N. A linearization of a trace Tσ is a bijection f : N → N such that if f(i) ⊴σ f(j) then
i ≤ j. This means that the order of elements in a linearization should respect the order in Tσ.
Observe that the sequence given by f should use all elements of Tσ, because f is bijective.
The next lemma says that every linearization yields a local run.

▶ Lemma 8. For every T ′ a prefix of Tσ, every linearization f of T ′ gives a local run.

The next result states the desired soundness property of the local-time semantics with
respect to the global semantics. As every global run is a local run, one direction of the
proposition is easy. The other side consists in finding a prefix of Tσ from which we can build
a global run as explained in the example above.

▶ Proposition 9. Consider a network of timed automata N . There is a Büchi local run of
N iff there is a Büchi global run of N .

3.2 Local-Zone Graphs
Thanks to Proposition 9, we know that we can safely use the local-time semantics to detect
Büchi runs. However, we cannot solve the Büchi non-emptiness problem by an exploration
of the state-space of timed automata as it is uncountable. Algorithms for timed automata

CONCUR 2022



12:8 Checking Timed Büchi Automata Emptiness Using the Local-Time Semantics

work with sets of configurations sharing the same discrete state. We copy this approach to
our setting. To start off, we lift operations on individual valuations to sets of valuations. For
a set of local valuations W , define:

local-elapse(W ) := {v + ∆ | v ∈ W, ∆ ∈ Rk
≥0},

W [R] := {v[R] | v ∈ W}, for a set of clocks R ⊆ X.
W ∩ g := {v | v ⊨ g} for a guard g.

Next, the transition relation on configurations can be lifted to sets. We write (q, W ) b==⇒
(q′, W ′) when there exists a b-transition {(qi, b, gi, Ri, q′

i)}i∈dom(b) such that:
source states match: q(i) = qi for all i ∈ dom(b),
target states are reached: q′(i) = q′

i for all i ∈ dom(b) and q′(i) = q(i) otherwise,
W ′ = local-elapse(W2) where W2 = W1[

⋃
p∈dom(b) Rp] with W1 = W ∩ (

∧
p∈dom(b) gp ∧∧

{tp = tq | p, q ∈ dom(b)}), and W ′ is not empty.
We will call b==⇒ a symbolic transition. We write (q, W ) b1...bn====⇒ (qn, Wn) if there is a sequence
of symbolic transitions (q, W ) b1==⇒ (q1, W1) · · · bn==⇒ (qn, Wn).

Local-zones are special sets of valuations that occur naturally while computing the
reachable configurations. A local-zone is a set of valuations described by a conjunction of
constraints of the form x − y#c where x, y ∈ X ∪ T , c ∈ Z and # ∈ {<, ≤}. Local-zones
can be efficiently represented using Difference Bound Matrices (DBMs). It can be shown
that for a local-zone Z, the sets local-elapse(Z), Z[R] and Z ∩ g (intersection with guard)
are local-zones [5, 16]. This leads to the definition of a local-zone graph that captures the
reachable configurations of a network.

▶ Definition 10 (Local-zone graph LZG(N )). The local-zone graph LZG(N ) of a network N
is a transition system whose nodes are of the form (q, Z) where q is a state of the network,
and Z is a local-zone. The initial node is (q0, Z0) with Z0 = local-elapse(V0) where V0 is the
set of initial valuations (given by the local-zone ∧x,y∈X∪T x−y = 0) and q0 = (qinit

1 , . . . , qinit
k ).

The transitions are given by the symbolic transition relation (q, Z) b==⇒ (q′, Z ′).

The next lemma relates transitions over valuations and zones. Proof follows from the
definition of symbolic transitions. If Z = local-elapse(Z) then Z is time-elapsed.

▶ Lemma 11. For every network of timed automata and every action b:
pre-property: If (q, v) b

99K (q′, v′) and v ∈ Z for some time-elapsed local-zone Z then
(q, Z) b==⇒ (q′, Z ′) and v′ ∈ Z ′ for some local-zone Z ′.

post-property: If (q, Z) b==⇒ (q′, Z ′) and v′ ∈ Z ′ for local-zones Z, Z ′, then (q, v) b
99K (q′, v′)

for some v ∈ Z.

The initial zone is time-elapsed. By definition of the symbolic transition, every zone
reachable by ==⇒ transitions is also time-elapsed. Using this observation along with the pre-
and post-properties of Lemma 11, we get the following theorem.

▶ Theorem 12 ([16, 5]). For a given network N , there is a run of N reaching a state q iff
there is a path in LZG(N ) from the initial node to a node (q, Z).

This shows soundness and completeness of the local-zone graph with respect to state
reachability. In particular, soundness follows from the post-property and completeness follows
from the pre-property. Interestingly, these two properties are not sufficient to show soundness
for infinite runs. In other words, does an infinite run in the local-zone graph imply existence
of an infinite run in the local-time semantics? From the post-property, each prefix of the
infinite run in the local-zone graph leads to corresponding finite local-time run in the network.
However the problem of forming an infinite run from these prefixes is non-trivial.
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In the global-time settings, the proof of soundness crucially relies on Alur&Dill’s finite
region bisimulation. However, there is no finite abstraction that is sound, complete and
that preserves all runs on the local zone graph [15]. This last property is crucial to apply
partial-order reduction techniques. In the next section, we consider a subclass of timed
networks for which we can define a finite region abstraction in the local-time settings.

4 A Region Equivalence for Bounded Spread Valuations

In this section we recall the notion of bounded spread networks of timed automata [15]. We
then define a region equivalence ≡D

M for such networks.

4.1 Bounded Spread Networks
We consider networks of timed automata where every feasible sequence of actions can be
done with bounded desynchronisation between the processes.

▶ Definition 13. Let D ∈ N. A valuation v is said to have spread D if |v(tp − tq)| ≤ D

for all processes p, q. A run (q0, v0) ∆0,b0−−−→ (q1, v1) ∆1,b1−−−→ · · · has spread D if vi and vi + ∆i

have spread D for all i ≥ 0. A network N has spread D if for every run (q0, v0) ∆0,b0−−−→
(q1, v1) ∆1,b1−−−→ · · · , there exists a D-spread run (q0, v0) ∆′

0,b0−−−→ (q1, v1) ∆′
1,b1−−−→ · · · over the

same sequence of actions, but with possibly different delays.

It has been shown that every network can be converted into a D spread network for any
arbitrary D ≥ 1, by adding extra synchronizations [15]. Moreover, for D-spread networks it
is possible to get a finite abstraction of the local zone graph, by making use of simulations.

4.2 A Finite Region Bisimulation
A time-abstract simulation relation on the local semantics is a reflexive and transitive
relation between configurations having the same control state. Two conditions need to
be satisfied when (q, v) ≼ (q, v′): (1) for every local delay ∆ there exists ∆′ such that
(q, v + ∆) ≼ (q, v′ + ∆′), and (2) for every transition (q, v) b−→ (q1, v1) there exists a transition
(q, v′) b−→ (q1, v′

1) such that (q1, v1) ≼ (q1, v′
1). When ∆ = ∆′, we simply call ≼ a simulation

relation. For technical convenience, we will use (time-abstract) simulation relations that do
not rely on the control state and depend only on the valuations. Hence we will write it as
v ≼ v′, a relation over valuations and use its straightforward extension to configurations:
(q, v) ≼ (q, v′) if v ≼ v′. The relation ≼ is a (time-abstract) bisimulation relation if both ≼
and ≼−1 are (time-abstract) simulation relations.

The region equivalence of Alur and Dill [2] is a fundamental concept in the global-time
semantics that leads to a finite region automaton recognizing the untimed behaviour of
the system. This has been cornerstone of several decidability results for timed automata.
In the global-time semantics two valuations are made region equivalent with respect to a
constant M if for every clock, the values given by the two valuations lie in one of the intervals
[0], (0, 1), [1], . . . , [M ], (M, ∞) and the ordering of fractional parts of clocks less than M is
the same in both valuations. In the local-time setting, there is an additional challenge. While
in the global-time semantics, when a clock goes beyond M , its actual value is irrelevant, it is
not the case in the local-time semantics. Indeed, if the difference tp − tq > M we cannot
forget the actual value, since tq can elapse some local time and bring the difference tp − tq

to something lesser than M . This is a fundamental difference between the two semantics,
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and this is the basic reason that leads to the result of [15] that there is no finite simulation
for the local-time semantics. This is why we need to restrict to D-spread valuations v

where |v(tp − tq)| ≤ D. We show that with this restriction there is an adequate notion of a
region equivalence. We proceed in two steps: first we define when two local valuations are
“close-enough”, next we factor in the maximum constant M and bounded spread D to get a
finite time abstract bisimulation. Some of these results appear in [14].

For x ∈ R, we write ⌊x⌋ for the greatest integer that is lesser than or equal to x.
We will write {x} for x − ⌊x⌋, the fractional part of x starting from ⌊x⌋. For example,
⌊4.2⌋ = 4, {4.2} = 0.2 and ⌊−4.2⌋ = −5, {−4.2} = 0.8. Notice that 0 ≤ {x} < 1 for all x ∈ R.

▶ Definition 14. For local valuations v and v′, we define v ≈⋆ v′ if for all pairs of clocks
x, y ∈ X ∪ T (including reference clocks), we have ⌊v(x − y)⌋ = ⌊v′(x − y)⌋.

Notice that the above definition does not explicitly make use of {v(x − y)}. Some
relation between fractional values gets derived through the definition. For example, suppose
v(x − y) = 1, then v(y − x) is −1. This will ensure v′(x − y) = 1 and v′(y − x) = −1. But if
v(x − y) = 1.5, then v(y − x) = −1.5, and in particular ⌊v(y − x)⌋ = ⌊v′(y − x)⌋ = −2. This
will say that 1 < v′(x − y) < 2 and −2 < v′(y − x) < −1. We will precisely derive some
useful properties later. Before that, we modify the definition to account for the maximum
constant.

▶ Definition 15 ((M, D)-equivalence). Let M : X → N∪{−∞} be a bounds function mapping
each process clock to a non-negative constant or −∞ when the value of the clock is irrelevant.
Let D ∈ N denote a spread. For a local valuation v, let Bounded(v) =

⋃
p∈P roc{tp} ∪ {x ∈

Xp | v(tp − x) ≤ M(x)}. Notice that Bounded(v) contains all the clocks that have a value
below bound M in v as well as all reference clocks.

Two D-spread local valuations v, v′ are (M, D)-equivalent, denoted as v ≡D
M v′, if

Bounded(v) = Bounded(v′)
v B ≈⋆ v′

B where v B and v′
B denote the valuations v and v′ restricted to clocks in

B = Bounded(v).
For a D-spread valuation v, we write [v]D

M to denote the equivalence class of v under ≡D
M and

refer to it as the (M, D)-region of v.

Intuitively, the above definition says that v ≡D
M v′ if the bounded part of v and v′ are

close enough. This is in the same spirit as in the global-time semantics. Now the goal is to
show that ≡D

M is a time-abstract bisimulation. The most difficult part is to prove that for all
local delays ∆, there exist local delays ∆′ such that v + ∆ ≡D

M v′ + ∆′. This is shown in the
next lemma. We denote by δ−−→p a delay of δ time units in process Ap.

▶ Lemma 16. Let v ≈⋆ v′. For every local delay v
δ−−→p u, there exists a δ′ such that

v′ δ′

−−→p u′ where u ≈⋆ u′.

The next task is to show that if M is appropriately chosen, the ≡D
M equivalence also

preserves actions. We say that a network N conforms to bounds function M if every
constraint x ∼ c in N satisfies c ≤ M(x).

▶ Lemma 17. Let v, v′ be D-spread valuations such that v ≡D
M v′. Let N be a network that

conforms to M . For every action transition (q, v) b−−→ (q1, v1) we have (q, v′) b−−→ (q1, v′
1)

such that v1 ≡D
M v′

1.
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▶ Corollary 18. Let N be a network that conforms to M and let v ≡D
M v′ be D-spread

valuations. For every (q, v) ∆−−→ b−−→ (q1, v1) such that v + ∆ is D-spread, there exists a ∆′

such that v′ + ∆′ is D-spread and (q, v′) ∆′

−−→ b−−→ (q1, v′
1) with v1 ≡D

M v′
1.

The corollary shows that ≡D
M is a time-abstract bisimulation on the local semantics

restricted to D-spread configurations. This also motivates the following definition of a region
graph obtained as a quotient of the ≡D

M equivalence. Recall that the initial valuations are
given by {v | v(x) = v(y) for all clocks x, y}. Hence by definition of ≡D

M equivalence all of
them fall in one equivalence class.

▶ Definition 19 ((M, D)-region graph). Let N be a network. A node of an (M, D)-region
graph of N is of the form (q, [v]D

M) where q is a state of N and v is a D-spread valuation.
There is a transition (q, [v]D

M) b−−→ (q1, [v1]D
M) if (q, v) ∆−−→ b−−→ (q1, v1) for some local delay ∆

such that v + ∆ is D-spread. The initial node is (q0, [v0]D
M ) where v0 is any initial valuation

and q0 is the tuple of initial states.

▶ Theorem 20. Let N be a network that conforms to bounds function M . Then:
For every D-spread local run (q0, v0) ∆0,b0−−−−→ (q1, v1) · · · , there exists a run (q0, [v0]D

M ) b−−→
(q1, [v1]D

M) · · · in the (M, D)-region graph.
For every run (q0, [v0]D

M) b0−−→ (q1, [v1]D
M) · · · in the (M, D)-region graph, there exists a

D-spread local run (q0, v′
0) ∆0,b0−−−−→ (q1, v′

1) · · · such that v′
i ∈ [vi]D

M for all i ≥ 0.
The (M, D)-region graph is finite.

5 Abstraction and Partial-Order Reduction for Büchi Runs

The goal of this section is to make use of the local zone graph (Definition 10) for solving the
Büchi non-emptines problem. We will start by showing that the local zone graph LZG(N )
is sound and complete for infinite runs of bounded spread networks (Proposition 21). This
is only the beginning because: (i) the local zone graph is still potentially infinite, and (ii)
the statement does not talk about partial-order reduction. In the next step we introduce a
quasi-abstraction aD

≼LU
, and a partial-order approach. Then, we show that their combination

maintains correctness for Büchi runs.

▶ Proposition 21. Let N be a D-spread network. There is an infinite D-spread local run
(q0, v0) ∆0,b0−−−−→ (q1, v1) ∆1,b1−−−−→ · · · in N iff there is an infinite path (q0, Z0) b0=⇒ (q1, Z1) b1=⇒ · · ·
in LZG(N ).

Proof. Left-to-right direction follows from the pre-property of local zone graph, Lemma 11.
We focus on the right-to-left direction.

Let Si be the set of all D-spread valuations ui ∈ Zi such that there is a D-spread run as
below leading to ui:

(q0, u0) ∆′
0−−→ b0−−→ (q1, u1) ∆′

1−−→ b1−−→ · · ·
∆′

i−1−−−→ bi−1−−−→ (qi, ui)

with u0 an initial local valuation. The set Si need not contain all D-spread valuations of
Zi. Consider some D-spread valuation v of Zi. Due to the post-property, it has some run
leading to it, not necessarily D-spread. As the network is D-spread, there is a corresponding
D-spread run over the same sequence of actions. However this run may not end up in the
same valuation v.
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Let us come back to the D-spread run given above. Due to the pre-property of local
zones, we have uk ∈ Zk for all 0 ≤ k ≤ i. As N is D-spread, Si is indeed non-empty, for all
i ≥ 0. In fact, each uk in the above run belongs to Sk as the prefix with actions b0 · · · bk−1 is
a D-spread run leading to (qk, uk). Therefore, for every ui+1 ∈ Si+1, there exists a ui ∈ Si

such that (qi, ui)
∆−−→ bi−−→ (qi+1, ui+1) for some local delay ∆′

i.
Construct a graph with nodes (i, qi, [ui]D

M ) for each ui ∈ Si. Add an edge (i, qi, [ui]D
M) →

(i + 1, qi+1, [ui+1]D
M) if (qi, ui)

∆−−→ bi−−→ (qi+1, ui+1). Due to the discussion in the previous
paragraph, every node has a predecessor. Moreover, by Theorem 20, there are finitely many
(M, D)-regions, so this graph is finitely branching. Hence there is an infinite path in this
graph. This path corresponds to an infinite path in the (M, D)-region graph. Thanks to
Theorem 20, this can be instantiated into an infinite D-spread local run ◀

5.1 Abstractions and Partial-Order Methods
We recall some notions from [15]. A quasi-abstraction a is a function that maps each zone
Z to a set of valuations a(Z) such that a(a(Z)) = a(Z). A finite quasi-abstraction function
aD
≼LU

has been studied in the context of reachability [15]. It is based on a preorder relation
between local valuations.

▶ Definition 22 (The ≼⋆
LU -preorder). Let L : X → {−∞} ∪ N and U : X → {−∞} ∪ N be

two functions. For two valuations v and v′, we say v ≼⋆
LU v′ if:

v(tp − tq) = v′(tp − tq) for all processes p, q

for all processes p and all x ∈ Xp,
v(tp − x) ≤ U(x) implies v′(tp − x) ≤ v(tp − x),
v(tp − x) ≤ L(x) implies v′(tp − x) ≥ v(tp − x),
v(tp − x) > L(x) implies v′(tp − x) > L(x)

Notice that if v is a D-spread valuation and if v ≼⋆
LU v′, valuation v′ is also D-spread.

Here is a known result about ≼⋆
LU . We say that a network N conforms to bound functions L

and U if for every process clock x we have L(x) ≥ c for every lower bound guard x ≥ c, x > c

occurring in N , and U(x) ≥ c for every upper bound guard x ≤ c, x < c in N .

▶ Lemma 23 ([15]). Let N be a D-spread network that conforms to given LU bounds. The
≼⋆

LU pre-order is a simulation on the local semantics of N : if v ≼⋆
LU v′ and (q, v) ∆,b−−→ (q1, v1)

then (q, v′) ∆,b−−→ (q1, v′
1) and v1 ≼⋆

LU v′
1.

The ≼⋆
LU relation is now lifted to zones, but restricted to D-spread valuations.

▶ Definition 24 (aD
≼LU

-quasi-abstraction). For a zone Z, we define spreadD(Z) = {v ∈ Z |
v has spread D}. We define aD

≼LU
(Z) = {v | ∃v′ ∈ spreadD(Z) such that v ≼⋆

LU v′}.

The aD
≼LU

operator can be used to give a finite abstraction of the local zone graph LZG(N ),
by truncating exploration of Z if aD

≼LU
(Z) ⊆ aD

≼LU
(Z ′) and continuing the exploration from

Z ′. The operation aD
≼LU

(Z) ⊆ aD
≼LU

(Z ′) is known as subsumption in the literature [23, 18].
For Büchi non-emptiness, subsumptions cannot be used directly since we need to find
cycles [23, 18]. We will define an abstraction of the local zone graph that makes use of
equality with respect to aD

≼LU
. Notice that the equality aD

≼LU
(Z) = aD

≼LU
(Z ′) can be checked

efficiently in time O((|X|+ |T |)2) [15]. We will first present our view of partial-order methods
and then combine this with the aD

≼LU
operator in our new abstraction of the local zone graph.
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We describe a generic approach to partial-order methods on local zone graphs. Then our
main result will say that once we have a method that works on LZG(N ), we can use the
same method on a finite abstraction of LZG(N ) obtained using aD

≼LU
.

We formalize what it means to have a partial-order method on LZG(N ) using a notion
of a source function. Let enabled(q, Z) denote the set of actions b ∈ Σ that are enabled from
the node (q, Z), i.e. such that there exists an edge (q, Z) b=⇒ (q′, Z ′) for some (q′, Z ′).

▶ Definition 25. A source function for a timed network N is a function src : Q × P(Σ) →
P(Σ). An action b is source enabled in (q, Z) if b ∈ src(q, enabled(q, Z)). A source path is
a path taking only source enabled actions. A source function is trace faithful if for every
node (q, Z) of LZG(N ), and an infinite path u from (q, Z) in LZG(N ) there is a source path
w ∼ u from (q, Z) in LZG(N ).

Obeserve that this definition of a source function allows to store some information in the
state (like which process moved just before, etc.). Indeed such information is important for
certain partial-order reduction approaches.

5.2 Local Zone Graph with Abstraction and Partial-Order

We are now in a position to define a local zone graph for the Büchi non-emptiness problem.
This zone graph will use aD

≼LU
for finiteness and an arbitrary source function for partial-order

reduction.

▶ Definition 26 (eLZGD,src

LU (N )). Let N be a D-spread network conforming to a given
LU -bounds. Let src : Q × P(Σ) → P(Σ) be a trace faithful source function. The graph
eLZGD,src

LU (N ) is a subset of nodes and edges of LZG(N ) together with some new edges called
equality edges. Each node is labeled either covered or uncovered. The graph must satisfy the
following conditions:

The initial node of LZG(N ) belongs to the graph.
For every uncovered node (q, Z) of eLZGD,src

LU (N ) and for every b ∈ src(q, enabled(Z))
the transition (q, Z) b=⇒ (q′, Z ′) present in LZG(N ) should be in eLZGD,src

LU (N ).

For every covered node (q, Z ′) there exists an uncovered node (q, Z) with aD
≼LU

(Z) =
aD
≼LU

(Z ′); moreover there is an explicit equality edge (q, Z) →e (q, Z ′) in eLZGD,src

LU (N ).
Every node of the graph is reachable from the initial node by a path of =⇒ edges.

We write b
❀ to mean a, possibly empty, sequence of equality edges followed by b=⇒ edge.

Similarly σ
❀ stands for a sequence of σ=⇒ edges possibly with equality edges in between.

Let M be defined as M(x) = max(L(x), U(x)) for every process clock x. The next lemma
gives a useful property of the aD

≼LU
abstraction which entails that the above local zone graph

is a finite object.

▶ Lemma 27. For every zone Z, the abstraction aD
≼LU

(Z) is a union of (M, D)-regions. The
graph eLZGD,src

LU (N ) is finite for D-spread networks N .

Our goal is to show soundness and completeness of eLZGD,src

LU (N ) for Büchi non-emptiness.
We have already seen in Proposition 21 that LZG(N ) is sound and complete. Therefore we
will now relate paths in LZG(N ) with paths in eLZGD,src

LU (N ).
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5.2.1 Soundness
For soundness, we want to show that every infinite path in eLZGD,src

LU (N ) corresponds to
an infinite path in LZG(N ). The main difficulty in the argument comes from equality
edges. Consider two reachable nodes (q1, Z1) and (q1, Z ′

1) such that aD
≼LU

(Z1) = aD
≼LU

(Z ′
1).

Let us say there is an equality edge (q1, Z1) →e (q1, Z ′
1). Hence, eLZGD,src

LU (N ) does not
contain paths from (q1, Z1). We must thus show that for every path from (q1, Z1) in LZG(N )
there is a similar path from (q1, Z ′

1). One may guess that as ≼⋆
LU is a simulation, for every

(q1, Z1) b=⇒ (q2, Z2), we have (q1, Z ′
1) b=⇒ (q2, Z ′

2) with aD
≼LU

(Z ′
1) = aD

≼LU
(Z ′

2). But this is not
true. Notice that the aD

≼LU
operator restricts to D-spread valuations. So it can say nothing

about the other valuations of Z1 and Z ′
1 and these non D-spread valuations may lead to

D-spread valuations in Z2 and Z ′
2. We have no control on such valuations just by using the

fact that ≼⋆
LU is a simulation. Nevertheless, we are able to show soundness of eLZGD

LU(N ),
albeit with a more involved reasoning that additionally uses the fact that N is a D-spread
system and the network N is deterministic.

▶ Lemma 28. Let N be a deterministic D-spread network conforming to LU -bounds. Let
(q1, Z1) be a node reachable from (q0, Z0), namely (q0, Z0) σ1==⇒ (q1, Z1) for some σ1 ∈ Σ∗.
Let (q1, Z ′

1) be a reachable node of LZG(N ) that satisfies aD
≼LU

(Z1) = aD
≼LU

(Z ′
1).

For every finite or infinite sequence of transitions σ2: if (q1, Z1) σ2==⇒ in LZG(N ), then

(q1, Z ′
1) σ2==⇒ in LZG(N ). Moreover, if σ2 is finite then enabled(q2, Z2) = enabled(q2, Z ′

2),

where (q1, Z1) σ2==⇒ (q2, Z2) and (q1, Z ′
1) σ2==⇒ (q2, Z ′

2).

Proof. Suppose σ2 is finite. Consider the sequence (q0, Z0) σ1==⇒ (q1, Z1) σ2==⇒ (q2, Z2). By post-

property, there exists a local run (q0, v0) σ1
99K (q1, v1) σ2

99K (q2, v2) with v0 ∈ Z0, v1 ∈ Z1 and
v2 ∈ Z2. As N is D-spread, we can assume this run to be D-spread. Thus, v1 ∈ spreadD(Z1).

As aD
≼LU

(Z1) = aD
≼LU

(Z ′
1), there exists v′

1 ∈ spreadD(Z ′
1) such that v1 ≼⋆

LU v′
1. Hence

there exists a run (q1, v′
1) σ2

99K (q2, v′
2). By pre-property, there exists a sequence of symbolic

transitions (q1, Z ′
1) σ2==⇒ (q2, Z ′

2).
If σ2 is infinite, then the above argument says that for every finite prefix σ3 of σ2 there is a

sequence (q2, Z ′
2) σ3==⇒. Since N is deterministic, the local zone graph LZG(N ) is deterministic.

Hence we get the presence of the infinite path σ2 from (q2, Z ′
2), that is, (q2, Z ′

2) σ2==⇒.

For the last statement consider (q1, Z1) σ2==⇒ (q2, Z2) and (q1, Z ′
1) σ2==⇒ (q2, Z ′

2). Say b is
enabled from (q2, Z2). Using the first statement of the lemma σ2b is possible from (q1, Z ′

1),
thus b is possible from (q2, Z ′

2), as the transition system is deterministic. The case of b from
(q2, Z ′

2) is the same by exchanging the roles of Z2 and Z ′
2. ◀

▶ Lemma 29. Let N be a deterministic D-spread network that conforms to a bounds
LU -bounds.

Let (q0, Z0) σp
❀ (q, Z) σc

❀ (q, Z) be a path in eLZGD,src

LU (N ) which could potentially contain
equality edges. Then, there exists an infinite D-spread local run over the sequence σp(σc)ω.

5.2.2 Completeness
We now move on to showing that the graph that is computed is complete for Büchi non-
emptiness. Recall that covered nodes and successors via actions that are outside the src are
not explored in eLZGD,src

LU . We will now make use of Lemma 28 to show that source paths in
LZG(N ) are preserved in eLZGD,src

LU (N ). Later, for the final result, we will use the fact that
src is trace faithful.
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▶ Lemma 30. Let N be a D-spread network that conforms to a bounds function LU . Let
(q0, Z0) b0=⇒ (q1, Z1) b1=⇒ be an infinite source path in LZG(N ). Then there is an infinite path

(q0, Z0) b0
❀ (q1, Z1) b1

❀ · · · in eLZGD,src

LU (N ).

▶ Theorem 31. Let N be a deterministic D-spread network that conforms to LU -bounds and
let F be a set of accepting actions. Then, there is an infinite global run visiting F infinitely
often, iff there is a reachable cycle in eLZGD

LU (N ) containing an edge over an action in F .

Proof. By Proposition 9, there is an infinite global run visiting F infinitely often iff there
is an infinite local run visiting F infinitely often. Since N is D-spread, there is an infinite
D-spread run with the same sequence of actions. Therefore it remains to prove that there is
a D-spread local run visiting F infinitely often iff there is a reachable cycle in eLZGD

LU(N )
with an action in F .

Suppose there is such a local run. Proposition 21 says that there is an infinite Büchi path
in LZG(N ) from (q0, Z0). Since the source function is assumed to be trace faithful, there
is a source path that visits F infinitely often. Lemma 30, gives us a Büchi source path in
eLZGD,src

LU (N ). The eLZGD,src

LU (N ) graph is finite (Lemma 27). Hence the infinite path leads
to a cycle. As the infinite path contains F infinitely often, the cycle contains an action in F .

For the other direction, suppose there is a reachable cycle containing F in eLZGD,src

LU (N ).
Lemma 29 gives a D-spread local run with the same sequence of actions and control states.
Hence, this local run visits F infinitely often. ◀

6 Conclusions

We have developed a setting allowing to use partial-order methods for solving the Büchi
non-emptiness problem for timed systems. Partial-order methods exploit commutation of
independent actions. This is why we use local-time semantics for networks of timed automata.
For a given network N we define a finite local-zone graph eLZGD,src

LU (N ) such that there is a
Büchi run in N if there is a Büchi path in eLZGD,src

LU (N ). Moreover, if we have a partial order
method that works on the, potentially infinite, local-zone graph LZG(N ), this method can be
used for exploring eLZGD,src

LU (N ). We find this a satisfying formulation since in eLZGD,src

LU (N )
independent actions do not necessarily commute, due to equality edges.

We did not present here a concrete partial-order method that can be used in our setting.
In principle, any ample/persistent/stubborn set method can be used to calculate what we
call here source sets. These methods become quite complicated when dealing with infinitary
conditions, and these complications limit the efficiency of partial-order reductions. As a first
step, it would be reasonable to assume some structural properties, like may-termination [31],
but we do not have a satisfying solution at this point.

We did not address the question of Zeno runs. Often one is not just interested in existence
of a Büchi run but also wants it to be non-Zeno, that is, a run where time diverges. While
there is no consensus on what kind of infinite runs can be considered realistic, it is rather clear
that Zeno runs are not realistic. It is always possible to convert a network to a strongly non-
Zeno network [29] and encode the non-Zeno requirement in a Büchi condition. Sometimes
this construction can produce a blow-up than can be alleviated with more complicated
approach [19]. It remains to be seen if this construction can be adapted to the local-time
semantics.
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A Appendix for Section 3

▶ Lemma 8. For every T ′ a prefix of Tσ, every linearization f of T ′ gives a local run.

Proof. We will suppose that T ′ is infinite. For finite T ′ the argument is essentially the same.
Consider a linearization of a prefix of Tσ given by a 1-1 function f : N → N. This means
that rng(f) is ⊴σ-downwards closed: if j ∈ rng(f) and i ⊴σ j then i ∈ rng(f). We construct
a local run:

(q̄f(0), v̄f(0))
∆f(0),bf(0)−−−−−−−→ (q̄f(1), v̄f(1))

∆f(1),bf(1)−−−−−−−→ · · ·

In order to state the invariant we define a function flast(i, p) giving the last action before
i with an action of process p: flast(i, p) = f(l) where l the largest number strictly smaller
than i with bf(l) an action of p; we keep flast(i, p) undefined if there is no such l. Recall that
a state q = (q1, . . . , qk) is a tuple of states of component processes. We use qp for the p-th
component of q. The invariants are:

for every process p, q̄p
f(i) = qp

flast(i,p)+1 or q̄p
f(i) = qp

0 if flast(i, p) undefined.
for every process p, v̄f(i)(tp) = θ(f(i)) if p ∈ dom(bf(i)); otherwise v̄f(i)(tp) = θ(flast(i, p))
or v̄f(i)(tp) = v0(tp) if flast(i, p) is not defined.
for every x ̸= tp a clock of process p: if flast(i, p) is defined then v̄f(i)(x) = v(x)
where v(x) = vflast(i,p)[R] and R are resets of bflast(i,p); if flast(i, p) not defined then
v̄f(i)(x) = v0(x).

We set q̄f(0) = qf(0) and v̄f(0)(tp) = θ(f(0)) for p ∈ dom(bf(0)) and v̄f(0)(tp) = v0(tp)
otherwise. Finally, we set v̄f(0) = v0(x) for all other clocks. This satisfies the invariant as
bf(0) is ⊴-minimal action.

Suppose that we have constructed a run up to (q̄f(i), v̄f(i)). The invariants guarantee
that for every process p ∈ dom(bf(i)) we have:

q̄p
f(i) = qp

f(i),
v̄f(i)(tp) = vf(i)(tp) and v̄f(i)(x) = vf(i)(x) for every clock x of p.

Since bf(i) is enabled from (qf(i), vf(i)) this shows that it is also enabled from (q̄f(i), v̄f(i)).

Consider (q̄f(i), v̄f(i))
bf(i)−−−→ (qb, vb). We need to show that qb = q̄f(i+1) and that there is ∆

giving vb + ∆ = v̄(f(i + 1)).
We start with qb. Take a process p ∈ dom(bf(i)) then flast(i + 1, p) = f(i) and we get

qp
b = qp

flast(i+1,p)+1. For p ̸∈ dom(bf(i)), we have qp
b = q̄p

f(i) = qp
flast(i,p)+1 = qp

flast(i+1,p)+1.
The last equality is because flast(i, p) = flast(i + 1, p) when p ̸∈ dom(bf(i)).

Now we look at reference clocks tp. If p ∈ dom(bf(i)) \ dom(bf(i+1)) then we have
vb(tp) = θ(f(i)) = θ(flast(i, p)) as required. If p ̸∈ dom(bf(i)) ∪ dom(bf(i+1)) then vb(tp) =
θ(flast(i, p)) = θ(flast(i + 1, p)). If p ∈ dom(bf(i+1)) then vb(tp) = θ(flast(i + 1, p)) ≤
θ(f(i + 1)) so we take δp = θ(f(i + 1)) − vb(tp) to reestablish the invariant.

Finally, to check the third invariant take a clock x ̸= tp of a process p. Recall that
vb = vf(i)[Rb] where Rb are resets of action bf(i). If p ∈ dom(bf(i)) then v in the invariant
is vf(i)[R] because flast(i + 1, p) = f(i). This is as required. If p ̸∈ dom(bf(i)) then
flast(i + 1, p) = flast(i, p) and vb(x) = v̄f(i), so we are done in this case too.

Hence, we have prolonged the run to (q̄f(i+1), v̄f(i+1)) and all invariants are satisfied. By
induction we obtain the desired local run corresponding to a linearization f . ◀

▶ Proposition 9. Consider a network of timed automata N . There is a Büchi local run of
N iff there is a Büchi global run of N .
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Proof. Since a global run is also a local run, one direction is easy.
For the other direction, let us take a local run with infinitely many occurrences of actions

from F , and construct a global run. Recall that θ(i) is the time of the execution of action bi,
namely v′

i(tp) for p ∈ dom(bi). Consider an order i ⋖ j when θ(i) < θ(j) or θ(i) = θ(j) and
i < j.

This order is a linear order ⊴σ and moreover if i ⋖ j then it is not the case that j ⊴ i

(Lemma 7). Yet the linear order ⋖ may not have type ω meaning that it can be a transfinite
sequence. We find a prefix T of Tσ such that ⋖ is a linearization of T of type ω and T has
infinitely many occurrences of actions from F .

Before doing this let us see how this gives us a desired global run. The ⋖-linearization of
some prefix T of Tσ gives us a local run (Lemma 8):

σ = (q0, v0) ∆0−−→ (q0, v′
0) b0−→ (q1, v1) ∆′

1−−→ · · ·

with θ(0) ≤ θ(1) ≤ · · · . We define v̄′
i(tp) = θ(i) for all process p and v̄′

i(x) = vi(x) for all
other clocks x. Clearly all v̄′

i are synchronized valuations. We claim that

σ = (q0, v̄0) δ0−→ (q0, v̄′
0) b0−→ (q1, v̄1) δ1−→ (q1, v̄′

1) b1−→ · · ·

is a global run (where δi = θ(i) − θ(i − 1), and v̄i+1 is determined by v̄′
i and resets of

bi). For this we verify that every transition (qi, v̄′
i)

bi−→ (qi+1, v̄i+1) δi+1−−−→ (qi+1, v̄′
i+1) exists.

We know (qi, v′
i)

bi−→ (qi+1, vi+1). We also have by assumption that v̄i(tp) = θ(i) = v′
i(tp)

for all p ∈ dom(bi), as well as v̄′
i(x) = v′

i(x) for all clocks x that are not reference clocks.
Hence (qi, v̄′

i)
bi−→ (qi+1, vb) exists. We have vb(x) = vi+1(x) for all clocks that are non-

reference clocks. Additionally vb(tp) = v′
i(tp) = θ(i) for every process p. Hence, if we take

δi+1 = θ(i + 1) − θ(i) we get v̄′
i+1 = vb + δi+1 as required. Repeating this reasoning we

construct a desired run.
We come back to the problem of finding a desired linearization. If ⋖ gives a linearization

of Tσ of type ω then we are done. Otherwise, consider the set I = {i : i has finitely many ⋖
−smaller elements}. We have that ⋖ is an order of type ω on I. Moreover I is a ⊴σ-downward
closed as it is impossible to have j ⊴σ i and i ⋖ j at the same time. If I contains infinitely
many occurrences of actions from F then I defines a prefix we are looking for. Otherwise
N \ I is infinite and there are infinitely many actions from F in N \ I. Consider the set of
processes Pω such that there is an action b ∈ N \ I with p in its domain. For every p ∈ P

find the ⋖-smallest jp ∈ N \ I such that p ∈ dom(bjp
). We claim that there are finitely

many i ∈ I with i ⊴σ jp. Indeed i ⊴σ jp implies i ≤ j in the standard order on natural
numbers. Let I0 contain all such i for all p ∈ P . We claim that for i ∈ I \ I0 we have i ̸⊴σ j

for every j ∈ N \ I. Hence I0 ∪ (N \ I) is a prefix of Tσ. Moreover, it contains infinitely
many occurrences of actions from F since I contains only finitely many of those and N has
infinitely many. If ⋖-linearization of I0 ∪ (N \ I) has type ω then we are done. If not then
we repeat the argument. Observe that this time we have fewer processes such that there are
infinitely many actions involving the process (none of the processes involved in actions from
I \ I0 are there). Thus the argument must terminate giving us the desired prefix. ◀

B Appendix for Section 4

▶ Lemma 32. For all x ∈ R \ Z, we have {−x} = 1 − {x}.

CONCUR 2022
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Proof. We have x = ⌊x⌋ + {x} and −x = ⌊−x⌋ + {−x}. Therefore −(⌊x⌋ + {x}) =
⌊−x⌋ + {−x}. Secondly, ⌊−x⌋ = −⌊x⌋ − 1 for all x ∈ R \ Z. Plugging this into the previous
equation gives the required conclusion. ◀

▶ Lemma 33. For x, y, z ∈ R such that z − x ∈ R \ Z, we have {z − x} ≤ {z − y} iff
⌊x − y⌋ = ⌊x − z⌋ + ⌊z − y⌋ + 1.

Proof.

x − y = x − z + z − y

= ⌊x − z⌋ + ⌊z − y⌋ + {x − z} + {z − y}
= ⌊x − z⌋ + ⌊z − y⌋ + 1 − {z − x} + {z − y}

This gives the statement of the lemma. ◀

▶ Lemma 34. Let x, y, z ∈ R, such that {x−z} > 0 and {y−z} > 0. Then, {x−z} ≤ {y−z}
iff {z − x} ≥ {z − y}.

Proof. Follows by using {x − z} = 1 − {z − x} and {y − z} = 1 − {z − y} (Lemma 32). ◀

▶ Lemma 35. Let v ≈⋆ v′. Then, for variables x, y, z ∈ X ∪ Xt, we have {v(z − x)} ≤
{v(z − y)} iff {v′(z − x)} ≤ {v′(z − y)}.

Proof. Follows from Lemma 33 and Definition 14. ◀

▶ Lemma 16. Let v ≈⋆ v′. For every local delay v
δ−−→p u, there exists a δ′ such that

v′ δ′

−−→p u′ where u ≈⋆ u′.

Proof. We assume that 0 < δ < 1. If δ ≥ 1 then we can decompose it into its integral part
and fractional part and repeat the reasoning.

We divide the variable differences into three sets:

C+ = {tp − z | z ∈ X \ {tp}}
C− = {z − tp | z ∈ X \ {tp}}
C0 = {x − y | x, y ∈ X \ {tp}}

A local delay of δ increases the value of differences in C+, decreases the ones in C− and
leaves the C0 differences unaltered. Consider an element ϕ ∈ C+. Based on the relation
between δ and 1 − {v(ϕ)}, its value either stays in the same integer interval, or moves to the
next integer point, or to the next integer interval. A symmetric change happens in C−. We
now make this idea more precise.

u(tp − z) = v(tp − z) + δ

= ⌊v(tp − z)⌋ + {v(tp − z)} + δ

= ⌊v(tp − z)⌋ + 1 − {v(z − tp)} + δ when v(tp − z) ̸= 0
u(z − tp) = v(z − tp) − δ

= ⌊v(z − tp)⌋ + {v(z − tp)} − δ

From the above calculations, we observe some properties:
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When {v(tp − z)} ̸= 0:

⌊u(tp − z)⌋ = ⌊v(tp − z)⌋ + 1 iff δ ≥ {v(z − tp)} (1)
⌊u(z − tp)⌋ = ⌊v(z − tp)⌋ − 1 iff δ > {v(z − tp)} (2)

When {v(tp − z)} = 0, as δ < 1 we have:

⌊u(tp − z)⌋ = ⌊v(tp − z)⌋ (3)
⌊u(z − tp)⌋ = ⌊v(z − tp)⌋ − 1 (4)

Note that the difference in the inequalities (≥ in (1) and > in (2)) is expected, since for
any x ∈ R we have ⌊−x⌋ = −⌊x⌋ if {x} = 0, and ⌊−x⌋ = −⌊x⌋ − 1 otherwise. Among the
ordering of fractional parts of differences in C− for v, consider (z1 − tp), (z2 − tp) that are
consecutive in this ordering such that {v(z1 − tp)} ≤ δ < {v(z2 − tp)}. Replace {v(z1 − tp)}
with 0 if no such z1 exists, and replace {v(z2 − tp)} with 1 if no such z2 exists.

We now propose a δ′ as required. From Lemmas 34 and 35, we know that the fractional
parts of differences in C− are ordered in the same way in v and v′. We take any δ′ with
{v′(z1 − tp)} ≤ δ′ < {v′(z2 − tp)}, such that in addition δ′ = {v′(z1 − tp)} if δ = {v(z1 − tp)}.
Let u′ = v′ + δ′. Since we started with v ≈⋆ v′, from (1) to (4) we get u ≈⋆ u′. ◀

The following lemma shows that ≡D
M equivalence is preserved by choosing appropriate

local delays.

▶ Lemma 36. Let v, v′ be D-spread valuations such that v ≡D
M v′. For every local delay ∆

such that v + ∆ is D-spread, there exists a local delay ∆′ such that v′ + ∆′ is D-spread and
v + ∆ ≡D

M v′ + ∆′.

Proof. Let ∆ = {δp}p∈Proc. We can break the local delay ∆ into a sequence of local delays
δp1−−→

δp2−−→ · · · happening one process at a time. Therefore it is sufficient to prove the lemma
for a local delay of one process, say δp at process p.

Consider the given valuations v, v′ which satisfy v ≡D
M v′. By definition, we have

Bounded(v) = Bounded(v′) and v B ≈⋆ v′
B , where B = Bounded(v). From Lemma 16, for

every local delay δp, there exists a delay δ′
p such that (v +p δp) B ≈⋆ (v′ +p δ′

p)
B

. Clocks
outside B are unbounded both in v +p δp and v′ +p δ′

p. Finally, we are interested only in
delays δp such that v +p δp is D-spread. Since all the reference clocks are present in B, we
have ⌊(v +p δp)(tr − ts)⌋ = ⌊(v′ +p δ′

p)(tr − ts)⌋. This shows that v′ +p δ′
p is D-spread. All

these observations lead to v +p δp ≡D
M v′ +p δ′

p. ◀

▶ Lemma 17. Let v, v′ be D-spread valuations such that v ≡D
M v′. Let N be a network that

conforms to M . For every action transition (q, v) b−−→ (q1, v1) we have (q, v′) b−−→ (q1, v′
1)

such that v1 ≡D
M v′

1.

Proof. As (q, v) b−−→ (q1, v1), we have v(tp − tq) = 0 for all p, q ∈ dom(b). Since v ≡D
M v′, we

also have v′(tp − tq) = 0 for p, q ∈ dom(b). Secondly, v satisfies the guard g present in the b-
transition. As N conforms to M , every constraint in g is of the form x < c, x ≤ c or x > c, x ≥
c with 0 ≤ c ≤ M(x). Hence, by definition of v ≡D

M v′, valuation v′ satisfies g too. This shows
that b is enabled at (q, v′). Finally, resetting R from v sets differences tp − x with x ∈ Xp ∩ R

to 0. It does not change the values of differences between reference clocks. Hence both
[R]v and [R]v′ are D-spread. Moreover, Bounded([R](v)) = Bounded(v) ∪ R, which equals
Bounded(v′) ∪ R and hence Bounded([R]v′). We need to show that [R](v) B1

≈⋆ [R](v′) B1

where B1 = Bounded([R]v). So, we need to show that ⌊[R](v)(x − y)⌋ = ⌊[R](v′)(x − y)⌋.

CONCUR 2022
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This is direct when both x, y ∈ R, or when both x, y /∈ R. Suppose x ∈ R, y /∈ R. We have
[R]v(x − y) = v(tp − y) when x ∈ Xp. Since tp and y are already in Bounded(v), we have
⌊v(tp − y)⌋ = ⌊v′(tp − y)⌋ and hence ⌊[R](v)(x − y)⌋ = ⌊[R](v′)(x − y)⌋. Symmetric reasoning
works when x /∈ R, y ∈ R. ◀

▶ Theorem 20. Let N be a network that conforms to bounds function M . Then:
For every D-spread local run (q0, v0) ∆0,b0−−−−→ (q1, v1) · · · , there exists a run (q0, [v0]D

M ) b−−→
(q1, [v1]D

M) · · · in the (M, D)-region graph.
For every run (q0, [v0]D

M) b0−−→ (q1, [v1]D
M) · · · in the (M, D)-region graph, there exists a

D-spread local run (q0, v′
0) ∆0,b0−−−−→ (q1, v′

1) · · · such that v′
i ∈ [vi]D

M for all i ≥ 0.
The (M, D)-region graph is finite.

Proof.
Follows from definition of region graph.
Given a transition (qi, [vi]D

M ) bi==⇒ (qi+1, [vi+1]D
M ), for every valuation ui ∈ [vi]D

M ), there is a
transition (qi, ui)

∆i,bi−−−→ (qi+1, ui+1) with ui+1 ∈ [vi+1]D
M . This holds due to Corollary 18

and is sufficient to extract a run starting from some arbitrary initial configuration.
We claim that an (M, D) region is specified by the following information:

a subset B ⊆
⋃

p∈Proc Xp of bounded clocks,
for every process clock x ∈ Xp that is bounded, whether tp −x = c or e−1 < tp −x < e

for c ∈ {0, . . . M(x)} and e ∈ {1, . . . , M(x)},
for every pair of reference clocks tp, tq, whether tp − tq = c or e − 1 < tp − tq < e for
c ∈ {−D, . . . , D} and e ∈ {−D + 1, . . . , D}
for a pair of bounded process clocks x, y ∈ B, whether x − y = c or e − 1 < x − y < e

for c ∈ {−M(x) − D, . . . , M(y) + D} and e ∈ {−M(x) − D + 1, . . . M(y) + D}.

The claim gives a finite bound on the number of regions. It remains to prove the claim.
Consider an (M, D)-region [v]D

M . We have Bounded(v) = Bounded(v′) for every valuation
v′ ∈ [v]D

M . Hence the set B in the first item above is given by Bounded(v). The next
three items follow from v B ≈⋆ v′

B and noticing the bounds on the differences: we
have 0 ≤ v(tp − x) ≤ M(x) for x ∈ B ∩ Xp by definition of bounded clocks; we have
−D ≤ v(tp − tq) ≤ D since v has spread D; finally for x, y ∈ B, we have v(x − y) ≤
v(x − tp) + v(tp − tq) + v(tq − y) assuming x ∈ Xp, y ∈ Xq. Now, we use the inequalities:
−M(x) ≤ v(x − tp) ≤ 0, −D ≤ v(tp − tq) ≤ D and 0 ≤ v(tq − y) ≤ M(y) to get
−M(x) − D ≤ v(x − y) ≤ M(y) + D. ◀

C Appendix for Section 5

▶ Lemma 37. Let N be a deterministic D-spread network conforming to LU -bounds. For
every path of the form (q0, Z0) σ1

❀ (q1, Z ′
1) →e (q1, Z1) σ2==⇒ (q2, Z2) in eLZGD,src

LU (N ) there

exists a path (q1, Z ′
1) σ2==⇒ (q2, Z ′

2) in LZG(N ).

Proof. Since (q1, Z1) is a node of eLZGD,src

LU (N ), it is reachable from (q0, Z0), and so is
(q1, Z ′

1). Since aD
≼LU

(Z1) = aD
≼LU

(Z ′
1), Lemma 28 gives us a path (q1, Z ′

1) σ2==⇒ (q2, Z ′
2) in

LZG(N ). ◀

▶ Lemma 29. Let N be a deterministic D-spread network that conforms to a bounds
LU -bounds.

Let (q0, Z0) σp
❀ (q, Z) σc

❀ (q, Z) be a path in eLZGD,src

LU (N ) which could potentially contain
equality edges. Then, there exists an infinite D-spread local run over the sequence σp(σc)ω.
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Proof. Let M be defined as M(x) = max(L(x), U(x)) for every process clock x. Let k ∈ N be
larger than the number of (M, D)-regions. Consider the finite path in eLZGD

LU (N ) obtained
by the sequence σp(σc)k. By repeated use of Lemma 37, there is a path σp(σc)k in LZG(N ).
By post-property of LZG(N ), there is a local run (q0, v0)

σp

999K (q, v1) σc
99K (q, v2) σc

99K

· · · σc
99K (q, vk+1). As N is D-spread, this run can be assumed to be D-spread. Due to

Theorem 20, there is a path σp(σc)k in the (M, D)-region graph: (q0, [v0]D
M ) σp−→ (q, [v1]D

M ) σc−→
· · · σc−→ (q, [vk+1]D

M). As k is larger than the number of regions, there exist i, j such that
[vi]D

M = [vj ]D
M . This gives a path σpσi−1

c σj−i
c σk+1−j

c in the region graph where the part σj−i
c

is a cycle, which can be iterated infinitely often. Hence there is a path σp(σc)ω in the region
graph. By Theorem 20, there is an infinite local run over the sequence σp(σc)ω, whose
intermediate valuations are all D-spread. ◀

▶ Lemma 30. Let N be a D-spread network that conforms to a bounds function LU . Let
(q0, Z0) b0=⇒ (q1, Z1) b1=⇒ be an infinite source path in LZG(N ). Then there is an infinite path

(q0, Z0) b0
❀ (q1, Z1) b1

❀ · · · in eLZGD,src

LU (N ).

Proof. Let wi = bibi+1 . . . . By induction on i we construct a path in eLZGD,src

LU (N )

(q0, Z0) b0
❀ (q1, Z ′

1) · · · bi
❀ (qi, Z ′

i)

such that in LZG(N ) there is a path

(qi, Z ′
i)

bi+1===⇒ (qi+1, Zi
i+1) bi+2===⇒ (qi+2, Zi

i+2) . . . and enabled(qj , Zi
j) = enabled(qj , Zj).

The second item implies that the later path is a source path in LZG(N ).
If (qi, Z ′

i) is not covered in eLZGD,src

LU then the induction step is direct.
If (qi, Z ′

i) is covered in eLZGD,src

LU then there exists (qi, Z ′
i) →e (qi, Z ′′

i ) with (qi, Z ′′
i )

uncovered and aD
≼LU

(Z ′
i) = aD

≼LU
(Z ′′

i ). As (qi, Z ′′
i ) is reachable from (q0, Z0) in LZG(N ) by

the definition of eLZGD,src

LU , we can use Lemma 28. The lemma gives us a path (qi, Z ′′
i ) bi+1===⇒

(qi+1, Zi+1
i+1 ) bi+2===⇒ (qi+2, Zi+1

i+2 ) . . . such that enabled(qj , Zi
j) = enabled(qj , Zi+1

j ). Thus we

also have enabled(qj , Zj) = enabled(qj , Zi+1
j ). We can prolong the finite prefix (q0, Z0) b0

❀

(q1, Z ′
1) . . .

bi
❀ (qi, Z ′

i) by (qi, Z ′
i) →e (qi, Z ′′

i ) bi+1===⇒ (qi+1, Z ′
i+1). ◀

The local zone graph eLZGD,src

LU
(N ) is finite. We will prove that for every zone Z, the

abstraction aD
≼LU

(Z) is a union of (M, D)-regions. To prove this statement, we will need
to reason about canonical representations of zones. Zones are typically represented using
Difference-Bound-Matrices (DBMs) or distance graphs [21]. We will use the distance graph
representation for our analysis. A constraint x − y ⋖ c of the zone is represented as an edge
y

⋖c−−→ x. An arithmetic over weights of (⋖, c) can be suitably defined (see [21], [15]) for more
details. A canonical graph is one where the shortest path from y to x is given by the direct
edge y → x. We will write Zyx to denote the weight of the y → x edge in the canonical
distance graph representing Z.

For convenience of presentation, we define two sets of clocks for a given local valuation v:

L -bounded(v) := T ∪
⋃

p∈Proc
{x ∈ Xp | v(tp − x) ≤ Lx}

U -bounded(v) := T ∪
⋃

p∈Proc
{x ∈ Xp | v(tp − x) ≤ Ux}

CONCUR 2022
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Notice that the reference clocks T are present in both L -bounded(v) and U -bounded(v).
Define ⟨v⟩⋆ := {v′ | v ≼⋆

LU v′}. We will now recall the distance graph representation of
⟨v⟩⋆ and an important property of the intersection ⟨v⟩⋆ ∩ Z for some arbitrary zone Z ′.

▶ Definition 38 (Distance graph Hv [15]). Let x, y ∈ X ∪ Xt be two clocks, possibly reference
clocks. Assume that y ≠ x and y ∈ Xq ∪ {tq} for some process q. The weight of the edge
x → y in the distance graph Hv is given by:

(≤, v(y − x)) if x ∈ U -bounded(v),
y ∈ L -bounded(v)

(≤, v(tq − x)) + (<, −Ly) if x ∈ U -bounded(v),
y /∈ L -bounded(v), Ly ̸= −∞

(≤, v(tq − x)) if x ∈ U -bounded(v),
y /∈ L -bounded(v), Ly = −∞

(<, ∞) otherwise

▶ Proposition 39. [15] The intersection ⟨v⟩⋆ ∩ Z is empty iff there are two variables x, y ∈
X ∪ T s.t. x ∈ U -bounded(v), Ly ̸= −∞ when y is a process clock, and Hv

xy + Zyx < (≤, 0).

The above proposition gives a simple characterization for when the upward closure of a
valuation v wrt to the ≼⋆

LU simulation does not intersect zone Z. Using this, we can show
that when two valuations belong to the same (M, D)-region, then one of them satisfies this
characterization iff the other does so. Here, we will make use of the fact that our atomic
constraints involve integer constants, and hence all zones that appear in the local zone graph
computation will only involve integer constants.

▶ Lemma 40. Let L, U and M be bound functions such that for every process clock x, we
have M(x) ≥ L(x) and M(x) ≥ U(x). For every zone Z, the set a⋆

≼LU
(spreadD(Z)) is a

finite union of (M, D)-regions.

Proof. We first remark that every valuation in a⋆
≼LU

(spreadD(Z)) is D-spread. Let v be a
D-spread valuation. We have v ∈ a⋆

≼LU
(spreadD(Z)) iff ⟨v⟩⋆ ∩ Z is non-empty. Let v ≡D

M v′.
We will show that ⟨v⟩⋆ ∩ Z is empty iff ⟨v′⟩⋆ ∩ Z is empty. This will prove the lemma. Let
Hv and Hv′ be the canonical distance graphs representing ⟨v⟩⋆ and ⟨v′⟩⋆ respectively.

From Proposition 39, ⟨v⟩⋆ ∩ Z is empty iff there exist two variables x, y such that
x ∈ U -bounded(v), and Ly ̸= −∞ when y is a process clock, such that Hv

xy + Zyx < (≤, 0).
As x ∈ U -bounded(v), we also have x ∈ Bounded(v), as M(x) = max(L(x), U(x)). Since
v ≡D

M v′, we have x ∈ U -bounded(v) iff x ∈ U -bounded(v′). When y ∈ Bounded(v),
we have ⌊Hv

xy⌋ = ⌊Hv′

xy⌋. Since Zyx is of the form (⋖, c) with c an integer, we have
Hv

xy + Zyx < (≤, 0) iff Hv′

xy + Zyx < (≤, 0). When y /∈ Bounded(v), then in particular, y is
a process clock, y /∈ L -bounded(v) and we have Hv

xy = (≤, v(tq − x)) + (<, −Ly) where q

is the process containing y. But, tq belongs to both Bounded(v) and Bounded(v′). Hence
⌊v(tq −x)⌋ = ⌊v′(tq −x)⌋ and the lemma follows for this case using the previous argument. ◀
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1 Introduction

Timed automata (TA) [4] are a well-established model for real-time systems and form the
basis for employing model-checking techniques. The most popular property that has been
considered in these systems is control state reachability. Reachability in timed automata
is a well-studied problem and was shown to be decidable (and PSPACE-complete) using
the so-called region construction [4]. This construction was primarily of theoretical interest,
as the number of regions, which are collections of reachable configurations, explodes both
in theory and in practice. On the other hand, timed automata have been implemented in
several tools: UPPAAL [26, 6], KRONOS [10], PAT [29], RED [31], TChecker [21], Theta [30],
LTS-Min [24], Symrob [28], MCTA [25], etc. Most of these tools have a common underlying
algorithm which is an explicit enumeration of reachable configurations stored as zones [7].
Since the late 90s, a substantial effort has been invested in improving zone enumeration
techniques, the common challenge being how to get a sound and complete enumeration while
exploring as few zones as possible.
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13:2 Simulations for Event-Clock Automata

The more general model checking problem of whether the system represented by TA
A satisfies the specification given by TA B reduces to the language inclusion problem
L(A) ⊆ L(B). There are two challenges here: first, the inclusion problem is undecidable in
its full generality, and second, having clocks, though excellent for timed implementations, are
often less than ideal for modeling timed specifications. This has led to the introduction of
event-clocks and the corresponding model of event-clock automaton (ECA) [5]. Event-clock
automata make use of special clocks that track the time since the last occurrence of an event
(history clocks) or the time until the next occurrence of an event (prophecy clocks). On one
hand this makes writing timed specifications more natural. Indeed, the role of prophecy clocks
is in the same spirit as future modalities in temporal logics. This has led to several extensions
of temporal logics with event-clocks [15, 1, 27], which are often used as specification languages
and can be converted into ECA. On the other hand, ECA can be determinized and hence
complemented. Observe that model-checking event-clock specifications over TA models can
be reduced to the reachability problem on the product of the TA with an ECA. This product
contains usual clocks, history clocks and prophecy clocks. The usual clocks can be treated in
the same way as history clocks for the zone analysis. Therefore, if we solve ECA reachability
(with history and prophecy clocks) using zones, we can incorporate usual clocks into the
procedure seamlessly. The bottomline is that the well-motivated problem of model-checking
event-clock specifications over TA models can be reduced to an ECA reachability problem.

Thus, in this paper, we focus on the core problem of building efficient, zone-based
algorithms for reachability in ECA. This problem turns out to be significantly different
compared to zone based reachability algorithms in usual TA, precisely due to prophecy clocks.
Our goal is to align the zone-based reachability algorithms for ECA with recent approaches
for TA that have shown significant gains.

As mentioned earlier, the core of an efficient TA reachability algorithm is an enumeration
of zones, where the central challenge is that naïve enumeration does not terminate. One
approach to guarantee termination is to make use of an extrapolation operation on zones:
each new zone that is enumerated is extrapolated to a bigger zone. Any freshly enumerated
zone that is contained in an existing zone is discarded. More recently, a new simulation
approach to zone enumeration has been designed, where enumerated zones are left unchanged.
Instead, with each fresh zone it is checked whether the fresh zone is simulated by an already
seen zone. If yes, the fresh zone is discarded. Otherwise, it is kept for further exploration.
Different simulations have been considered: the LU -simulation [22] which is based on LU -
bounds, or the G-simulation [18], which is based on a carefully-chosen set of constraints.
Coarser simulations lead to fewer zones being enumerated. The G-simulation is currently
the coarsest-known simulation that can be efficiently applied in the simulation approach.
The simulation based approach offers several gains over the extrapolation approach: (1)
since concrete zones are maintained, one could use dynamic simulation parameters and
dynamic simulations, starting from a coarse simulation and refining whenever necessary [23],
(2) the simulation approach has been extended to richer models like timed automata with
diagonal constraints [17, 16], updatable timed automata [18], weighted timed automata [9]
and pushdown timed automata [3]. In these richer models, extrapolation has either been
shown to be impossible [8] or is unknown.

Surprisingly, for ECA, an arguably more basic and well-known model, it turns out that
there are no existing simulation-based approaches. However, an extrapolation approach using
maximal constants has been studied for ECA in [19, 20]. In this work, the authors start by
showing that prophecy clocks exhibit fundamental differences as compared to usual clocks.
To begin with, it was shown that there is no finite time-abstract bisimulation for ECA in
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general. This is in stark contrast to TA where the region equivalence forms a finite time-
abstract bisimulation. The correctness of extrapolation is strongly dependent on the region
equivalence. Therefore, in order to get an algorithm, the authors define a weak semantics for
ECA and a corresponding notion of weak regions which is a finite time-abstract bisimulation
for the weak semantics and show that the weak semantics is sound for reachability. Building
on this, they define an extrapolation operation for the zone enumeration.

Contributions. Given the advantages of using simulations with respect to extrapolations in
the TA setting described above, we extend the G-simulation approach to ECA. Here are the
technical contributions leading to the result.

We start with a slightly modified presentation of zones in ECA and provide a clean
algebra for manipulating weights in the graph representation for such ECA-zones. This
simplifies the reasoning and allows us to adapt many ideas for simulation developed in
the TA setting directly to the ECA setting.
The G-simulation is parameterized by a set of constraints at each state of the automaton.
We adapt the constraint computation and the definition of the simulation to the context
of ECA, the main challenge being the handling of prophecy clocks.
We give a simulation test between two zones that runs in time quadratic in the number
of clocks. This is an extension of the similar test that exists for timed automata, but now
it incorporates new conditions that arise due to prophecy clocks.
Finally, we show that the reachability algorithm using the G-simulation terminates for
ECA: for every sequence Z0, Z1, . . . of zones that are reachable during a zone enumeration
of an ECA, there exist i < j such that Zj is simulated by Zi. This is a notable difference
to the existing methods in TA, where finiteness is guaranteed for all zones, not only the
reachable zones. In the ECA case, this is not true: we can construct an infinite sequence
of zones which are incomparable with respect to the new G-simulation. However, we show
that finiteness does hold when restricting to reachable zones, and this is sufficient to
prove termination of the zone enumeration algorithm. Our argument involves identifying
some crucial invariants in reachable zones, specially, involving the prophecy clocks.

The fundamental differences in the behaviour of prophecy clocks as compared to usual
clocks constitute the major challenge in developing efficient procedures for the analysis of
ECAs. In our work, we have developed methods to incorporate prophecy clocks alongside
the usual clocks. We prove a surprising property: in all reachable ECA-zones, the constraints
involving prophecy clocks come from a finite set. A direct consequence of this observation
is that the event zone graph of an ECA containing only prophecy clocks (known as Event-
Predicting Automata EPA) is always finite. We wish to emphasize that, in this work, we are
moving a step towards implementability, and at the same time towards more expressivity,
since simulation approaches are amenable to extensions, e.g., with diagonal constraints.

Organization of the paper. Section 2 recalls ECA and describes a slightly modified
presentation of the ECA semantics. Section 3 introduces event zones, event zone graph
and the simulation based reachability framework. Section 4 introduces the new algebra for
representing event zones and describes some operations needed to build the zone graph.
Section 5 introduces the G-simulation for event-clock automata and gives the simulation
test. Section 6 proves finiteness of the simulation when restricted to reachable zones. All the
missing proofs can be found in the full version of the paper [2].
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13:4 Simulations for Event-Clock Automata

2 Event Clock Automata and Valuations

Let X be a finite set of variables called clocks. Let Φ(X) denote a set of clock constraints
generated by the following grammar: φ ::= x ◁ c | c ◁ x | φ ∧ φ where x ∈ X, c ∈ Z =
Z ∪ {−∞, +∞} and ◁ ∈ {<,≤}. The base constraints of the form x ◁ c and c ◁ x will be
called atomic constraints. Constraints x < −∞ and +∞ < x are equivalent to false and
constraints −∞ ≤ x and x ≤ +∞ are equivalent to true.

Given a finite alphabet Σ, we define a set XH = {←−a | a ∈ Σ} of history clocks and a
set XP = {−→a | a ∈ Σ} of prophecy clocks. Together, history and prophecy clocks are called
event clocks. In this paper, all clocks will be event clocks, thus we set X = XH ∪XP .

0 ←−
a

−→
a

∞−∞

Figure 1 Range of valuations of event clocks. A valuation maps history clocks to R≥0 ∪ {+∞}
and prophecy clocks to R≤0 ∪ {−∞}.

▶ Definition 1 (Valuation). A valuation of event clocks is a function v : X 7→ R = R ∪
{−∞, +∞} which maps history clocks to R≥0 ∪ {+∞} and prophecy clocks to R≤0 ∪ {−∞}.
We say a history clock ←−a , for some a ∈ Σ is undefined (resp. defined) when v(←−a ) = +∞
(resp. v(←−a ) < +∞) and a prophecy clock −→a is undefined (resp. defined) when v(−→a ) = −∞
(resp. −∞ < v(−→a )). We denote by V(X) or simply by V the set of valuations over X.

We remark that the history clock and the prophecy clock of an event a are symmetric
notions. In the semantics that we introduce in this paper, history clock ←−a stores the amount
of time elapsed after seeing the last a, measuring how far ahead in the future we are w.r.t.
the last occurrence of a. Before we see an a for the first time, ←−a is set to +∞. The prophecy
clock −→a stores the negative of the amount of time that needs to be elapsed before seeing
the next a. In other words, −−→a tells us how far behind in the past we are w.r.t. the next
occurrence of a. If no more a’s are going to be seen, then the prophecy clock of a is set to
−∞, i.e., −→a = −∞. See Figure 1 for a pictorial representation of valuations of event clocks.

Notice that for history (resp. prophecy) clocks, useful constraints use non-negative (resp.
non-positive) constants. Also, ←−a < 0 and 0 < −→a are equivalent to false whereas 0 ≤ ←−a ,
←−a ≤ ∞, −→a ≤ 0 and −∞ ≤ −→a are equivalent to true. A constraint c ◁ ←−a does not imply
that the history clock ←−a is defined, whereas a constraint ←−a ◁ c with (◁, c) ̸= (≤,∞) does.
The same applies to prophecy clocks where a constraint c ◁ −→a with (c, ◁) ̸= (−∞,≤) implies
that −→a is defined, whereas −→a ◁ c does not; in fact, −→a ≤ −∞ states that −→a is undefined.

▶ Remark 2. In the earlier works on ECA [5, 20], prophecy clocks assumed non-negative
values and decreased along with time. This allowed to write guards on prophecy clocks with
non-negative constants, e.g., −→a ≤ 5 means that the next a occurs in at most 5 time units.
In our convention, this would be written as −5 ≤ −→a . Secondly, an undefined clock (history
or prophecy) was assigned a special symbol ⊥ in earlier works. We have changed this to use
−∞ and +∞ for undefined prophecy and history clocks respectively. We adopt these new
conventions as they allow to treat both history clocks and prophecy clocks in a symmetric
fashion, and a clean integration of undefined values when we describe zones and simulations.

We say that a valuation v satisfies a constraint φ, denoted as v |= φ, if φ evaluates to
true, when each variable x in φ is replaced by its value v(x). We write [←−a ]v to denote the
valuation v′ obtained from v by resetting the history clock ←−a to 0, keeping the value of other
clocks unchanged. We denote by [−→a ]v the set of valuations v′ obtained from v by setting
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the prophecy clock −→a non-deterministically to some value in [−∞, 0], keeping the value of
other clocks unchanged. We denote by v + δ the valuation obtained by increasing the value
of all clocks from the valuation v by δ ∈ R≥0. Not every time elapse may be possible from a
valuation, since prophecy clocks need to stay at most 0. For example, if there are two events
a, b, then a valuation with v(−→a ) = −3 and v(

−→
b ) = −2 can elapse at most 2 time units.

▶ Definition 3 (Event-clock automata [5]). An event-clock automaton (ECA) A is given by
a tuple (Q, Σ, X, T, q0, F ), where Q is a finite set of states, Σ is a finite alphabet of actions,
X is the set of event clocks for Σ, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting
states and T ⊆ Q× Σ× Φ(X)×Q is a finite set of transitions.
The semantics of an ECA A = (Q, Σ, X, T, q0, F ) is given by a transition system SA whose
states are configurations (q, v) of A, where q ∈ Q and v is a valuation. A configuration
(q, v) is initial if q = q0, v(x) = ∞ for all x ∈ XH and −∞ ≤ v(x) ≤ 0 for all x ∈ XP . A
configuration (q, v) is accepting if q ∈ F , and v(x) = −∞ for all x ∈ XP and 0 ≤ v(x) ≤ ∞
for all x ∈ XH . Transitions of SA are of two forms:

Delay transition: (q, v) δ−→ (q, v + δ), if (v + δ)(x) ≤ 0 for all x ∈ XP .
Action transition: (q, v) t−→ (q′, [←−a ]v′) if t = (q, a, g, q′) is a transition in A, v(−→a ) = 0,
v′ ∈ [−→a ]v and v′ |= g.
A transition with action a can be taken when the value of the prophecy clock −→a is 0,
then a new value in [−∞, 0] for −→a is non-deterministically guessed so that the resulting
valuation v′ satisfies the guard g, and finally, the history clock ←−a is reset to 0.

An ECA is called an event recording automaton (ERA) if it only contains history clocks
and event predicting automaton (EPA) if it only contains prophecy clocks. A run of an
event-clock automaton is a finite sequence of transitions from an initial configuration of SA.
A run is said to be accepting if its last configuration is accepting. We are interested in the
reachability problem of an event clock automaton. Formally,

▶ Definition 4 (Reachability problem for ECA). The reachability problem for an event-clock
automaton A is to decide whether A has an accepting run.

Different solutions based on regions and zones have been proposed in [5, 19, 20]. For
ERA, the standard region and zone based algorithms for timed automata work directly.
However, for EPA (and ECA), this is not the case. In fact, [19] show that the standard
region abstraction is not possible, as there exists no finite bisimulation due to the behavior
of prophecy clocks. Also, the standard definition of zones used for timed automata is not
sufficient to handle valuations with undefined clocks. The papers [19, 20] make use of special
symbols ⊥ and ? for this purpose. In this work, we use a different formulation of zones by
making use of +∞ and −∞. Instead of using x = ⊥ (resp. x ̸= ⊥) to state that a clock is
undefined (resp. defined) as in [19, 20], we write +∞ ≤ x or x ≤ −∞ or (resp. x < +∞ or
−∞ < x) depending on whether x is a history clock or a prophecy clock. This distinction
between being undefined for history and prophecy clocks plays an important role.

3 Event zones and simulation based reachability

The most widely used approach for checking reachability in a timed automaton is based on
reachability in a graph called the zone graph of a timed automaton [13]. Roughly, zones [7]
are sets of valuations that can be represented efficiently using difference constraints between
clocks. In this section, we introduce an analogous notion for event-clock automata. We
consider event zones, which are sets of valuations of event-clock automata.
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13:6 Simulations for Event-Clock Automata

▶ Definition 5 (Event zones). An event zone is a set of valuations satisfying a conjunction of
constraints of the form c ◁ x, x ◁ c or x− y ◁ c, where x, y ∈ X and c ∈ Z = Z∪ {−∞, +∞}.
Constraints of the form x−y ◁ c are called diagonal constraints. To evaluate such constraints,
we extend addition on real numbers with the convention that (+∞) + α = +∞ for all α ∈ R
and (−∞) + β = −∞, as long as β ̸= +∞. We simply write v(x− y) for v(x)− v(y).

Let W be a set of valuations and q a state. For transition t := (q, a, g, q1), we write
(q, W ) t−→ (q1, W1) if W1 = {v1 | (q, v) t−→ δ−→ (q1, v1) for some δ ∈ R≥0}. As is usual with
timed automata, zones are closed under the time elapse operation. We will show in the next
section that starting from an event zone Z, the successors are also event zones: (q, Z) t−→
(q1, Z1) implies Z1 is an event zone too. We use this feature to define an event zone graph.

▶ Definition 6 (Event zone graph). Nodes are of the form (q, Z) where q is a state and Z is
an event zone. The initial node is (q0, Z0) where q0 is the initial state and Z0 is given by∧

a∈Σ(∞ ≤ ←−a ) ∧ (−→a ≤ 0). This is the set of all initial valuations, which is already closed
under time elapse. For every node (q, Z) and every transition t := (q, a, g, q1) there is a
transition (q, Z) t−→ (q1, Z1) in the event zone graph. A node (q, Z) is accepting if q ∈ F and
Z ∩ Zf is non-empty where the final zone Zf is defined by

∧
a∈Σ
−→a ≤ −∞.

Two examples of ECA and their event zone graphs are given in Figure 3 and Figure 4 of
Appendix A.

Similar to the case of timed automata, the event zone graph can be used to decide
reachability. The next lemma follows by a straightforward adaptation of the corresponding
proof [13] from timed automata.

▶ Proposition 7. The event zone graph of an ECA is sound and complete for reachability.

However, as in the case of zone graphs for timed automata, the event zone graph for an
ECA is also not guaranteed to be finite. We will now define what a simulation is and see
how it can be used to get a finite truncation of the event zone graph, which is still sound
and complete for reachability.

▶ Definition 8 (Simulation). A simulation relation on the semantics of an ECA is a reflexive,
transitive relation (q, v) ⪯ (q, v′) relating configurations with the same control state and (1)
for every (q, v) δ−→ (q, v + δ), we have (q, v′) δ−→ (q, v′ + δ) and (q, v + δ) ⪯ (q, v′ + δ), (2) for
every transition t, if (q, v) t−→ (q1, v1) for some valuation v1, then (q, v′) t−→ (q1, v′1) for some
valuation v′1 with (q1, v1) ⪯ (q1, v′1).

For two event zones Z, Z ′, we say (q, Z) ⪯ (q, Z ′) if for every v ∈ Z there exists
v′ ∈ Z ′ such that (q, v) ⪯ (q, v′). The simulation ⪯ is said to be finite if for every sequence
(q1, Z1), (q2, Z2), . . . of reachable nodes, there exists j > i such that (qj , Zj) ⪯ (qi, Zi).

The reachability algorithm enumerates the nodes of the event zone graph and uses ⪯ to
truncate nodes that are smaller with respect to the simulation.

▶ Definition 9 (Reachability algorithm). Let A be an ECA and ⪯ a finite simulation for A.
Add the initial node of the event zone graph (q0, Z0) to a Waiting list. Repeat the following
until Waiting list is empty:

Pop a node (q, Z) from the Waiting list and add it to the Passed list.
For every (q, Z) t−→ (q1, Z1): if there exists a (q1, Z ′1) in the Passed or Waiting lists such
that (q1, Z1) ⪯ (q1, Z ′1), discard (q1, Z1); else add (q1, Z1) to the Waiting list.

If some accepting node is reached, the algorithm terminates and returns a Yes. Else, it
continues until there are no further nodes to be explored and returns a No answer.
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The correctness of the reachability algorithm follows once again from the correctness of
the simulation approach in timed automata [22]. Moreover, termination is guaranteed when
the simulation used is finite.

▶ Theorem 10. An ECA has an accepting run iff the reachability algorithm returns Yes.

We have now presented the framework for the simulation approach in its entirety. However,
to make it functional, we will need the following.
1. An efficient representation for event zones and algorithms to compute successors.
2. A concrete simulation relation ⪯ for ECA with an efficient simulation test (q, Z) ⪯ (q, Z ′).
3. A proof that ⪯ is finite, to guarantee termination of the reachability algorithm.
In the rest of the paper, we show how these can be achieved. To start with, for standard
timed automata, zones are represented using Difference-Bound-Matrices (DBMs) [14]. For
such a representation to work on event zones, we will need to incorporate the fact that
valuations can now take +∞ and −∞. In Section 4, we propose a way to merge +∞ and
−∞ seamlessly into the DBM technology. In the subsequent Section 5, we define a simulation
for ECA based on G-simulation, develop some technical machinery and present an efficient
simulation test. Finally, in Section 6, we deal with the main problem of showing finiteness.
For this, we prove some non-trivial invariants on the event zones that are reachable in ECA
and use them to show a surprising property regarding prophecy clocks. More precisely, we
show that constraints involving prophecy clocks in reachable event zones come from a finite
set depending on the maximum constant of the ECA only.

4 Computing with event zones and distance graphs

We now show that event zones can be represented using Difference-Bound-Matrices (DBMs)
and the operations required for the reachability algorithm can be implemented using DBMs.
Each entry in a DBM encodes a constraint of the form x − y ◁ c. For timed automata
analysis, the entries are (◁, c) where c ∈ R and ◁ ∈ {<,≤}, or (◁, c) = (<,∞). In our case,
we will need to deal with valuations having +∞ or −∞. For this purpose, we first extend
weights to include (≤,−∞) and (≤,∞) and define an arithmetic that admits the new entries
in a natural way.

▶ Definition 11 (Weights). Let C = {(≤,−∞)} ∪ {(◁, c) | c ∈ R ∪ {∞} and ◁ ∈ {≤, <}},
called the set of weights.

Order. Define (◁1, c1) < (◁2, c2) when either (1) c1 < c2, or (2) c1 = c2 and ◁1 is <

while ◁2 is ≤. This is a total order, in particular (≤,−∞) < (◁, c) < (<,∞) < (≤,∞)
for all c ∈ R.
Sum. Let α, β, γ, (◁1, c1), (◁2, c2) ∈ C with β ̸= (≤,∞), γ /∈ {(≤,−∞), (≤,∞)} and
c1, c2 ∈ R. We define the operation of sum on weights as follows.

(≤,∞) + α = (≤,∞) (≤,−∞) + β = (≤,−∞) (<,∞) + γ = (<,∞)
(◁1, c1) + (◁2, c2) = (◁, c1 + c2) with ◁ = ≤ if ◁1 = ◁2 = ≤ and ◁ = < otherwise.

The intuition behind the above definition of order is that when (◁, c) < (◁′, c′), the set of
valuations that satisfies a constraint x−y ◁ c is contained in the solution set of x−y ◁′ c′. For
the sum, we have the following lemma which gives the idea behind our choice of definition.

▶ Lemma 12. Let v be a valuation, x, y, z be event clocks and (◁1, c1), (◁2, c2) ∈ C. If
v |= x− y ◁1 c1 and v |= y − z ◁2 c2, then v |= x− z ◁ c where (◁, c) = (◁1, c1) + (◁2, c2).
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Equipped with the weights and the arithmetic over it, we will work with a graph
representation of zones (as so-called distance graphs), instead of matrices (i.e., DBMs),
since this makes the analysis more convenient. We wish to highlight that our definition
of weights, order and sum have been chosen to ensure that this notion of distance graphs
remains identical to the one for usual TA. As a consequence, we are able to adapt many of
the well-known properties about distance graphs for ECA.

▶ Definition 13 (Distance graphs). A distance graph is a weighted directed graph, with vertices
being XP ∪XH ∪ {0} where 0 is a special vertex that plays the role of constant 0. Edges are
labeled with weights from C. An edge x

◁ c−→ y represents the constraint y − x ◁ c. For a graph
G, we define [[G]] := {v | v |= y − x ◁ c for all edges x

◁ c−→ y in G}. Further,
The weight of a path in a distance graph G is the sum of the weight of its edges. A cycle
in G is said to be negative if its weight is strictly less than (≤, 0).
A graph G is said to be in canonical form if it has no negative cycles and for each pair of
vertices x, y, the weight of x→ y is not greater than the weight of any path from x to y.
For two graphs G1, G2, we write min(G1,G2) for the distance graph obtained by setting
the weight of each edge to the minimum of the corresponding weights in G1 and G2.

For an event zone Z, we write G(Z) for the canonical distance graph that satisfies [[G(Z)]] = Z.
We denote by Zxy the weight of the edge x→ y in G(Z).

We will make use of an important property, which has been shown when weights come
from C \ {(≤, +∞), (≤,−∞)}, but continues to hold even with the new weights added.

▶ Lemma 14. For every distance graph G, we have [[G]] = ∅ iff G has a negative cycle.

Successor computation. To implement the computation of transitions (q, Z) t−→ (q1, Z1)
in an event zone graph, we will make use of some operations on event zones that we define
below. Using distance graphs, we show that these operations preserve event zones, that is,
starting from an event zone and applying any of the operations leads to an event zone again.
Thanks to the algebra over the new weights that we have defined, the arguments are very
similar to the case of standard timed automata.

▶ Definition 15 (Operations on event zones). Let g be a guard and Z an event zone.
Guard intersection: Z ∧ g := {v | v ∈ Z and v |= g}
Release: [−→a ]Z =

⋃
v∈Z [−→a ]v

Reset: [←−a ]Z = {[←−a ]v | v ∈ Z}
Time elapse: −→Z = {v + δ | v ∈ Z, δ ∈ R≥0 s.t. v + δ |=

∧
a∈Σ
−→a ≤ 0}

A guard g can be seen as yet another event zone and hence guard intersection is just an
intersection operation between two event zones. By definition, for a transition t := (q, a, g, q′)
and a node (q, Z) the successor (q, Z) t−→ (q′, Z ′) can be computed in the following sequence:

Z1 := Z ∩ (0 ≤ −→a ) Z2 := [−→a ]Z1 Z3 := Z2 ∩ g Z4 := [←−a ]Z3 Z ′ := −→Z4

As an example, in Figure 2, suppose an action b with guard −→a = −1 (−→a ≤ −1 ∧ −1 ≤ −→a )
is fired from Zone Z as depicted, applying the above sequence in order gives Z1, Z2, Z3, Z4
resulting in the successor zone Z ′, as depicted in the figure.

We are now ready to state Theorem 16 that says that the operations on event zones
translate easily to operations on distance graphs and that the successor of an event zone is an
event zone. Except for the release operation [←−a ], the rest of the operations are standard in
timed automata, but need to be extended to cope with the new weights (≤, +∞), (≤,−∞).
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Z Z1 Z2 Z3 Z4 Z ′

−→a ≤ 0 ←−a =∞
−→
b ≤ 0

←−
b =∞

−→a ≤ 0 ←−a =∞
−→
b = 0

←−
b =∞

−→a −
−→
b ≤ 0

−→a ≤ 0 ←−a =∞
−→
b ≤ 0

←−
b =∞

−→a = −1 ←−a =∞
−→
b ≤ 0

←−
b =∞

−→
b −−→a ≤ 1

−→a = −1 ←−a =∞
−→
b ≤ 0

←−
b = 0

−→
b −−→a ≤ 1
←−
b −−→a = 1
−→
b −
←−
b ≤ 0

−1 ≤ −→a ≤ 0

0 ≤
←−
b ≤ 1

−→
b ≤ 0 ←−a =∞
−→
b −−→a ≤ 1
←−
b −−→a = 1
−→
b −
←−
b ≤ 0

Figure 2 Successor computation from event zone Z on an action b with guard −→a = −1.

We show that we can perform all these operations in the new algebra with quadratic
complexity, as in timed automata without diagonal constraints [32].

▶ Theorem 16. Let Z be an event zone and G be its canonical distance graph. Let g be a
guard. We can compute, in O(|XP ∪XH |2) time, distance graphs Gg, [−→a ]G, [←−a ]G and −→G
in canonical form, such that Z ∧ g = [[Gg]], [−→a ]Z = [[[−→a ]G]], [←−a ]Z = [[[←−a ]G]], and −→Z = [[−→G ]].

Proof (sketch). The distance graphs Gg, [−→a ]G, [←−a ]G and −→G are computed as follows:
Guard intersection: a distance graph Gg is obtained from G as follows,

for each atomic constraint x ◁ c in g, replace weight of edge 0→ x with the minimum
of its weight in G and (◁, c),
for each atomic constraint d ◁ y in g, replace weight of edge y → 0 with the minimum
of its weight in G and (◁,−d),
canonicalize the resulting graph.

Release: a distance graph [−→a ]G is obtained from G by
removing all edges involving −→a and then
adding the edges 0 (≤,0)−−−→ −→a and −→a (≤,∞)−−−−→ 0, and then
canonicalizing the resulting graph.

Reset: a distance graph [←−a ]G is obtained from G by
removing all edges involving ←−a and then
adding the edges 0 (≤,0)−−−→←−a and ←−a (≤,0)−−−→ 0, and then
canonicalizing the resulting graph.

Time elapse: the distance graph −→G is obtained by the following transformation:
if ←−x is defined, i.e., the weight of 0 −→←−x is not (≤,∞), then replace it with (<,∞),
if −→x is defined, i.e., the weight of 0 −→ −→x is not (≤,−∞), then replace it with (≤, 0),
canonicalize the resulting graph.

It is not hard to prove that they correspond to the operations on event zones. Other than
canonicalization, it can be easily checked that these operations can be computed in quadratic
time. Though canonicalization is cubic time in general, in each of the special cases above, it
can be implemented in quadratic time. ◀

5 A concrete simulation relation for ECAs

We fix an event-clock automaton A = (Q, Σ, X, T, q0, F ) for this section. We will define a
simulation relation ⪯A on the configurations of the ECA. We first define a map G from Q to
sets of atomic constraints. The map G is obtained as the least fixpoint of the set of equations:

G(q) = {
−→
b ≤ 0, 0 ≤

−→
b | b ∈ Σ} ∪

⋃
(q,a,g,q′)∈T

split(g) ∪ pre(a,G(q′))
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where split(g) is the set of atomic constraints occurring in g and, for a set of atomic constraints
G, pre(a, G) is defined as the set of constraints in G except those on −→a or ←−a . Notice that
constraints in G(q) use the constant 0 and constants used in constraints of A.

Let G be a set of atomic constraints. The preorder ⪯G is defined on valuations by

v ⪯G v′ if ∀φ ∈ G, ∀δ ≥ 0, v + δ |= φ =⇒ v′ + δ |= φ .

Notice that in the condition above, we do not restrict δ to those such that v + δ is a valuation:
we may have v(−→a ) + δ > 0 for some a ∈ Σ. This is crucial for the proof of Theorem 17
below. It also allows to get a clean characterizations of the simulation (Lemma 18) which in
turn is useful for deriving the simulation test and in showing finiteness. Based on ⪯G and
the G(q) computation, we can define a preorder ⪯A between configurations of ECA A as
(q, v) ⪯A (q′, v′) if q = q′ and v ⪯G(q) v′.

▶ Theorem 17. The relation ⪯A is a simulation on the transition system SA of ECA A.

When G = {φ} is a singleton, we simply write ⪯φ for ⪯{φ}. The definition of the ⪯G

simulation above in some sense declares what is expected out of the simulation. Below, we
give a constructive characterization of the simulation in terms of the constants used and the
valuations. For example, if v(←−a ) = 3 and ←−a ≤ 5 is a constraint in G, point 2 below says
that all v′ with v′(←−a ) ≤ 3 simulate v. The next lemma is a generalization of Lemma 8 from
[18] to our setting containing prophecy clocks and the undefined values +∞ and −∞.

▶ Lemma 18. Let v, v′ be valuations and G a set of atomic constraints. We have
1. v ⪯G v′ iff v ⪯φ v′ for all φ ∈ G.
2. v ⪯x◁c v′ iff v(x) ̸◁ c or v′(x) ≤ v(x) or (◁, c) = (≤,∞) or (◁, c) = (<,∞) ∧ v′(x) <∞.
3. v ⪯c◁x v′ iff c ◁ v′(x) or v(x) ≤ v′(x) or (c, ◁) = (∞, <) or (c, ◁) = (∞,≤) ∧ v(x) <∞.

We now state some useful properties that get derived from Lemma 18.
▶ Remark 19. Let v, v′ be valuations and G a set of atomic constraints.
1. For all a ∈ Σ, if {0 ≤ −→a ,−→a ≤ 0} ⊆ G and v ⪯G v′ then v(−→a ) = v′(−→a ).
2. Let x ◁1 c1 and x ◁2 c2 be constraints with (◁1, c1) ≤ (◁2, c2) < (<,∞) (we say that

x ◁1 c1 is subsumed by x ◁2 c2). If v ⪯x◁2c2 v′ then v ⪯x◁1c1 v′.
Indeed, from (◁2, c2) < (<,∞) and v ⪯x◁2c2 v′ we get v′(x) ≤ v(x) or v(x) ̸◁2 c2, which
implies v(x) ̸◁1 c1 since (◁1, c1) ≤ (◁2, c2).

3. Let c1 ◁1 x and c2 ◁2 x be constraints with (c1, ◁1) ≤ (c2, ◁2) < (∞,≤) (we say that
c1 ◁1 x is subsumed by c2 ◁2 x). If v ⪯c2◁2x v′ then v ⪯c1◁1x v′.
Indeed, from (c2, ◁2) < (∞,≤) and v ⪯c2◁2x v′ we get v(x) ≤ v′(x) or c2 ◁2 v′(x), which
implies c1 ◁1 v′(x) since (c1, ◁1) ≤ (c2, ◁2).
The ordering between lower weights is defined by (c1, ◁1) < (c2, ◁2) if c1 < c2 or c1 = c2,
◁1 = ≤ and ◁2 = <. We have (c1, ◁1) < (c2, ◁2) iff (◁2,−c2) < (◁1,−c1).

Before lifting the simulation to event zones, we present a central technical object that will be
used from time to time in the next set of results.

Distance graph for valuations that simulate a valuation v. For a valuation v, we let
↑Gv = {v′ ∈ V | v ⪯G v′}, i.e., the set of valuations v′ which simulate v. We will define a
distance graph, denoted GG(v), such that [[GG(v)]] = ↑Gv. We remark that [[GG(v)]] is not
really a zone since it may use constants that are not integers.

We assume that G contains {0 ≤ −→a ,−→a ≤ 0 | a ∈ Σ} so that v ⪯G v′ implies v(−→a ) = v′(−→a )
for all prophecy clocks −→a with a ∈ Σ. We remove from G constraints equivalent to true,
such as x ≤ ∞, −3 <←−a or 0 ≤ ←−a , or equivalent to false, such as ←−a < 0 or ∞ < x. Also, by
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Remark 19, we may remove from G constraints that are subsumed by other constraints in G,
while not changing the simulation relation. Hence, for history clocks, we have at most one
upper-bound constraint ←−a ◁ c with (≤, 0) ≤ (◁, c) < (<,∞), and at most one lower-bound
constraint c ◁ ←−a with (0,≤) < (c, ◁) < (∞,≤). From now on, we always assume that the
sets G of atomic constraints that we consider satisfy the above conditions.

The definition of the distance graph GG(v) which defines ↑Gv is based on Lemma 18.
For each prophecy clock −→a , we have the edges −→a (≤,−v(−→a ))−−−−−−−→ 0 and 0 (≤,v(−→a ))−−−−−−→ −→a .
For each history clock ←−a , we have the edge 0→←−a with weight

(≤, v(←−a )) if ←−a ◁ c ∈ G with (◁, c) < (<,∞) and v(←−a ) ◁ c,
(<,∞) if we are not in the case above and ←−a <∞ ∈ G, v(←−a ) <∞,
(≤,∞) otherwise.

For each history clock ←−a , we have the edge ←−a → 0 with weight
(≤,−∞) if ∞ ≤←−a ∈ G and v(←−a ) =∞, and if we are not in this case:
(◁,−c) if c ◁←−a ∈ G with (c, ◁) < (∞,≤) and c ◁ v(←−a ),
(≤,−v(←−a )) if c ◁←−a ∈ G with (c, ◁) < (∞,≤) and c ̸◁ v(←−a ),
(≤, 0) otherwise.

With this definition, while GG(v) is not in canonical form, it has the desired property:

▶ Lemma 20. We have v ⪯G v′ iff v′ satisfies all the constraints of GG(v).

Simulation for event zones and an efficient algorithmic check. Let Z, Z ′ be two event
zones and G be a set of atomic constraints. We say that Z is G-simulated by Z ′, denoted
Z ⪯G Z ′, if for all v ∈ Z there exists v′ ∈ Z ′ such that v ⪯G v′. Finally, we define
(q, Z) ⪯A (q′, Z ′) if q = q′ and Z ⪯G(q) Z ′. In the rest of this section, we show how to
check this relation efficiently. We let ↓GZ = {v ∈ V | v ⪯G v′ for some v′ ∈ Z}. Notice that
Z ⪯G Z ′ iff Z ⊆ ↓GZ ′ iff ↓GZ = ↓GZ ′.

▶ Lemma 21. For event zones Z, Z ′, we have Z ̸⪯G Z ′ iff ∃v ∈ Z with ↑Gv ∩ Z ′ = ∅.

To check Z ̸⪯G Z ′, we require a valuation v ∈ Z with a witness that ↑Gv ∩ Z ′ is empty.
In the language of distance graphs, the witness will be a negative cycle in min(↑Gv, Z ′). We
show that if ↑Gv ∩Z ′ is empty, then there is a small witness, i.e., a negative cycle containing
at most three edges, and belonging to one of three specific forms.

▶ Lemma 22. Let v be a valuation, Z ′ a non-empty reachable event zone with canonical
distance graph G(Z ′) and G a set of atomic constraints. Then, ↑Gv ∩ Z ′ is empty iff there is
a negative cycle in one of the following forms:
1. 0→ x→ 0 with 0→ x from GG(v) and x→ 0 from G(Z ′),
2. 0→ y → 0 with 0→ y from G(Z ′) and y → 0 from GG(v), and
3. 0→ x→ y → 0, with weight of x→ y from G(Z ′) and the others from GG(v). Moreover,

this negative cycle has finite weight.

Proof. Since Z ′ ̸= ∅, the distance graph G(Z ′) has no negative cycle. The same holds for
GG(v) since v ∈ ↑Gv ̸= ∅. We know that ↑Gv ∩ Z ′ = ∅ iff there is a (simple) negative cycle
using edges from GG(v) and from G(Z ′). Since G(Z ′) is in canonical form, we may restrict to
negative cycles which do not use two consecutive edges from G(Z ′). Now all edges of GG(v)
are adjacent to node 0. Hence, if a simple cycle uses an edge from G(Z ′) which is adjacent to
0, it consists of only two edges 0→ x→ 0, one from G(Z ′) and one from GG(v). Otherwise,
the simple cycle is of the form 0 → x → y → 0 where the edge x → y is from G(Z ′) and
the other two edges are from GG(v). It remains to show that the two clock negative cycle
0→ x→ y → 0 can be considered to have finite weight, i.e., weight is not (≤,−∞).
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For the cycle to have weight (≤,−∞), one of the edges should have weight (≤,−∞) and
the others should have a weight different from (≤,∞). We will show that for every such
combination, there is a smaller negative cycle with a single clock and 0. Hence we can ignore
negative cycles of the form 0→ x→ y → 0 with weight (≤,−∞).

Suppose Z ′xy = (≤,−∞). Then, for every valuation in u ∈ Z ′, we have u(y)−u(x) ≤ −∞,
which implies u(y) = −∞ or u(x) = +∞. If u(x) = +∞ for some valuation u ∈ Z ′, then the
value of x is +∞ for every valuation in Z ′. This follows from the successor computation:
initially, history clocks are undefined, and then an action a defines ←−a , and from that point
onwards, ←−a is always < ∞. Now, if x is not an undefined history clock in Z ′, then we
need to have u(y) = −∞ for all valuations of Z ′. Therefore, either x is a history clock
that is undefined in Z ′ or y is a prophecy clock that is undefined in Z ′. In the former case,
Z ′x0 = (≤,−∞) and in the latter case Z ′0y = (≤,−∞). This gives a smaller negative cycle

0→ x
Z′

x0−−→ 0 or 0
Z′

0y−−→ y → 0 with the remaining edge 0→ x or y → 0 coming from GG(v),
since by our hypothesis of a negative cycle, these edges have weight different from (≤,∞).

Suppose the weight of 0→ x is (≤,−∞). This can happen only when x is a prophecy clock,
v(x) = −∞ and weight of 0→ x is (≤, v(x)). Since Z ′xy ̸= (≤,∞), we infer Z ′x0 ̸= (≤,∞) by

†1 of Lemma 26. Hence 0 (≤,v(x))−−−−−→ x
Z′

x0−−→ 0 is also a negative cycle.
Suppose y → 0 has weight (≤,−∞). This can happen only when y is a history clock and

v(y) = +∞. Since Z ′xy ≠ (≤,∞), we obtain Z ′0y ̸= (≤,∞) and hence 0
Z′

0y−−→ y
(≤,−v(y))−−−−−−→ 0 is

a negative cycle. ◀

We now have all the results required to state our inclusion test. Using the above lemma,
and relying on a careful analysis (as shown in the full version [2]), we obtain the following
theorem.

▶ Theorem 23. Let Z, Z ′ be non-empty reachable zones, and G a set of atomic constraints
containing −→a ≤ 0 and 0 ≤ −→a for every prophecy clock −→a . Then, Z ̸⪯G Z ′ iff one of the
following conditions holds:
1. Z ′x0 < Zx0 for some prophecy clock x, or for some history clock x with

(x <∞) ∈ G and Z ′x0 = (≤,−∞), or
(x ◁1 c) ∈ G for c ∈ N and (≤, 0) ≤ Zx0 + (◁1, c).

2. Z ′0y < Z0y for some prophecy clock y, or for some history clock y with
(∞ ≤ y) ∈ G and Z0y = (≤,∞), or
(d ◁2 y) ∈ G for d ∈ N and Z ′0y + (◁2,−d) < (≤, 0)

3. Z ′xy < Zxy and Z ′xy is finite for two distinct (prophecy or history) clocks x, y with
(x ◁1 c), (d ◁2 y) ∈ G for c, d ∈ N and (≤, 0) ≤ Zx0 + (◁1, c) and Z ′xy + (◁2,−d) < Zx0.
From Theorem 23, we can see that the inclusion test requires iteration over clocks x, y

and checking if the conditions are satisfied by the respective weights.

▶ Corollary 24. Checking if (q, Z) ⪯A (q′, Z ′) can be done in time O(|X|2) = O(|Σ|2).

6 Finiteness of the simulation relation

In this section, we will show that the simulation relation ⪯A defined in Section 5 is finite, which
implies that the reachability algorithm of Definition 9 terminates. Recall that given an event
clock automaton A, we have an associated map G from states of A to sets of atomic constraints.
Let M = max{|c| | c ∈ Z is used in some constraint of A}, the maximal constant of A. We
have M ∈ N and constraints in the sets G(q) use constants in {−∞,∞} ∪ {c ∈ Z | |c| ≤M}.
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Recall that the simulation relation ⪯A was defined on nodes of the event zone graph
EZG(A) by (q, Z) ⪯A (q′, Z ′) if q = q′ and Z ⪯G(q) Z ′. This simulation relation ⪯A is finite
if for any infinite sequence (q, Z0), (q, Z1), (q, Z2), . . . of reachable nodes in EZG(A) we find
i < j with (q, Zj) ⪯A (q, Zi), i.e., Zj ⪯G(q) Zi. Notice that we restrict to reachable zones in
the definition above. Our goal now is to prove that the relation ⪯A is finite. The structure
of the proof is as follows.
1. We prove in Lemma 26 that for any reachable node (q, Z) of EZG(A), the distance graph

G(Z) in canonical form satisfies a set of (†) conditions which depend only on the maximal
constant M of A.

2. We introduce an equivalence relation ∼M of finite index on valuations (depending on M

only) and show in Lemma 28 that, if G is a set of atomic constraints using constants in
{c ∈ Z | |c| ≤ M} ∪ {−∞,∞} and if Z is a zone such that its distance graph G(Z) in
canonical form satisfies (†) conditions, then ↓GZ is a union of ∼M equivalence classes.

We start with a lemma which highlights an important property of prophecy clocks in
reachable event zones. This property is essential for the proof of the (†) conditions. The proof
follows from the observation that the property is true in the initial zone, and is invariant
under the zone operations, namely, guard intersection, reset, release and time elapse.

▶ Lemma 25. Let Z be a reachable event zone. For every valuation v ∈ Z, and for every
prophecy clock −→x , if −∞ < v(−→x ) < −M , then v[−→x 7→ α] ∈ Z for every −∞ < α < −M .

There is no similar version of the above lemma for history clocks. A reset of a history
clock makes its value exactly equal to 0 in every valuation and creates non-trivial diagonal
constraints with other clocks. Moreover repeated resets can generate arbitrarily large diagonal
constraints, for e.g., a loop with guard x = 1 and reset x. This is why simulations are
particularly needed to control history clocks. Notice that in our simulation v ⪯G v′, we have
v(−→a ) = v′(−→a ): there is no abstraction of the value of prophecy clocks and the simulation
relation by itself does not have any means to show finiteness. However, as we show below,
the reachable zones themselves take care of finiteness with respect to prophecy clocks. The
challenge is then to combine this observation on prophecy clocks along with the non-trivial
simulation happening for history clocks to prove that we still get a finite simulation. This is
the purpose of the above mentioned item 2.

Now, we give the (†) conditions and prove that they are satisfied by distance graphs of
reachable zones. In particular, the (†) conditions imply that the weight of edges of the form
0 → −→x , −→x → 0 and −→x → −→y belong to the finite set {(≤,−∞), (<,∞), (≤,∞)} ∪ {(◁, c) |
c ∈ Z ∧ −M ≤ c ≤M}. For an example, see Figure 4. Thus, we obtain as a corollary that,
for EPA, we do not even need simulation to obtain finiteness.

▶ Lemma 26. Let (q, Z) be a reachable node in EZG(A) with Z ̸= ∅. Then, the distance
graph G(Z) in canonical form satisfies the (†) conditions:
†1 If Z−→x 0 = (≤,∞) then Z−→x y = (≤,∞) for all y ̸= −→x .
†2 If Z−→x 0 = (<,∞) then for all y ≠ −→x , either y is a prophecy clock which is undefined in Z

and Z−→x y = Z0y = (≤,−∞) or Z−→x y ∈ {(<,∞), (≤,∞)}.
†3 If Z−→x 0 < (<,∞) then (≤, 0) ≤ Z−→x 0 ≤ (≤, M).
†4 If Z−→x←−y < (<,∞) then (≤, 0) ≤ Z−→x 0 ≤ (≤, M).
†5 Either Z0−→y = (≤,−∞) (−→y is undefined in Z), or Zx0 + (<,−M) ≤ Zx−→y for all x ̸= −→y

(including x = 0).
†6 Either Z0−→x = (≤,−∞) or (<,−M) ≤ Z0−→x ≤ (≤, 0).
†7 Either Z−→x−→y ∈ {(≤,−∞), (<,∞), (≤,∞)} or (<,−M) ≤ Z−→x−→y ≤ (≤, M).
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Proof sketch. †4 follows immediately from †1, †2, †3 and †6, †7 can be inferred from †5 and
the other conditions. So here, we focus on †1, †2, †3 and partially the case of †5, leaving other
details to the full version [2].

For †1, since Z−→x 0 = (≤,∞), there is a valuation v ∈ Z with v(−→x ) = −∞. Therefore,
for every clock y ̸= −→x , we have v(y −−→x ) = +∞. Since v ∈ Z, it satisfies the constraint on
y −−→x given by Z−→x y. This is possible only when Z−→x y = (≤,∞).

For †2, assume that Z−→x 0 = (<,∞) and let y ̸= −→x . Consider first the case Z0y = (≤,−∞),
i.e., y is a prophecy clock which is undefined in Z. Then, since G(Z) is in canonical
form, we have Z−→x y ≤ Z−→x 0 + Z0y = (<,∞) + (≤,−∞) = (≤ −∞). The second case
is when Z0y ̸= (≤,−∞). This implies Z−→x y ̸= (≤,−∞) since otherwise we would get
Z0y ≤ Z0−→x + Z−→x y = (≤,−∞). We claim that there is a valuation v ∈ Z with −∞ < v(y)
and −∞ < v(−→x ) < −M . Consider the distance graph G′ obtained from G(Z) by setting
the weight of edge y → 0 to min(Zy0, (<,∞)) and of edge 0 → −→x to min(Z0−→x , (<,−M)).
We show that there are no negative cycles in this graph. Since Z ̸= ∅, the candidates for
being negative must use the new weight (<,−M) of 0 → −→x or the new weight (<,∞) of
y → 0 or both. This gives the cycle 0→ −→x → 0 with weight (<,−M) + Z−→x 0 = (<,∞) since
Z−→x 0 = (<,∞), the cycle 0→ y → 0 with weight Z0y + (<,∞) which is not negative since
Z0y ≠ (≤,−∞), and the cycle y → 0→ −→x → y with weight (<,∞) + (<,−M) + Z−→x y which
is not negative since Z−→x y ̸= (≤,−∞). Since G′ has no negative cycle, Lemma 14 implies
[[G′]] ̸= ∅. Note that [[G′]] ⊆ [[G(Z)]] = Z. Finally, for all v ∈ G′, we have −∞ < v(y) and
−∞ < v(−→x ) < −M , which proves the claim. By Lemma 25, vα = v[−→x 7→ α] ∈ Z for all
−∞ < α < −M . Now, vα(y −−→x ) = v(y)− α satisfies the constraint Z−→x y. We deduce that
Z−→x y is either (<,∞) or (≤,∞).

Next, we turn to †3. Suppose Z−→x 0 = (◁, c) for some integer c > M . Then, there exists
a valuation v ∈ Z with v(−→x ) = −c or v(−→x ) = −c + 1

2 depending on whether ◁ is ≤ or <.
Since c, M are integers, we get −∞ < v(−→x ) < −M . By Lemma 25, v[−→x 7→ α] ∈ Z for
all −∞ < α < −M . In particular, v′ = v[−→x 7→ −c − 1] ∈ Z. For this valuation, we have
v′(−→x ) = −c− 1. This violates Z−→x 0 which says 0− v′(−→x ) ◁ c, or seen differently, −c ◁ v′(−→x ).

Finally, for †5, if Zx0 = (≤,−∞) the condition is trivially true. If Zx0 ∈ {(<,∞), (≤,∞)}
then x is a prophecy clock and †5 follows from †1, †2. Therefore, we assume Zx0 = (◁, c) for
c ∈ Z. The left hand side of the condition is Zx0 + (<,−M) = (<, c−M), with c−M ∈ Z.
Let Zx−→y = (◁′, e) with e ∈ Z ∪ {−∞, +∞}. To show †5 it then suffices to show c−M ≤ e.
This involves more arguments in the same spirit as in †2 case above, and we leave these
technical details to the full version [2]. ◀

We turn to the second step of the proof and define an equivalence relation of finite
index ∼M on valuations. First, we define ∼M on α, β ∈ R = R ∪ {−∞,∞} by α ∼M β if
(α ◁ c ⇐⇒ β ◁ c) for all (◁, c) with ◁ ∈ {<,≤} and c ∈ {−∞,∞} ∪ {d ∈ Z | |d| ≤ M}. In
particular, if α ∼M β then (α = −∞⇐⇒ β = −∞) and (α =∞⇐⇒ β =∞).

Next, for valuations v1, v2 ∈ V, we define v1 ∼M v2 by two conditions: v1(x) ∼M v2(x)
and v1(x) − v1(y) ∼2M v2(x) − v2(y) for all clocks x, y ∈ X. Notice that we use 2M for
differences of values. Clearly, ∼M is an equivalence relation of finite index on valuations.

The next result relates the equivalence relation ∼M and the simulation relation ⪯G when
the finite constants used in the constraints are bounded by M . Recall from Section 5 the
definition of the distance graph GG(v) for the set of valuations ↑Gv.

▶ Lemma 27. Let v1, v2 ∈ V be valuations with v1 ∼M v2 and let G be a set of atomic
constraints using constants in {−∞,∞} ∪ {c ∈ Z | |c| ≤ M}. By replacing the weights
(≤, v1(x)) (resp. (≤,−v1(x))) by (≤, v2(x)) (resp. (≤,−v2(x))) in the graph GG(v1) we
obtain the graph GG(v2).

Next we state the central lemma that says that ↓GZ is a union of ∼M equivalence classes.
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▶ Lemma 28. Let v1, v2 ∈ V be valuations with v1 ∼M v2 and let G be a set of atomic
constraints using constants in {−∞,∞}∪{c ∈ Z | |c| ≤M}. Let Z be a zone with a canonical
distance graph G(Z) satisfying (†). Then, v1 ∈ ↓GZ iff v2 ∈ ↓GZ.

Proof sketch. We will consider two valuations v1, v2 such that v1 ∼M v2 and v1 ∈ ↓GZ

and show that the assumption that v2 ̸∈ ↓GZ leads to a contradiction. Roughly the proof
proceeds as follows. Firstly, v2 ̸∈ ↓GZ implies that ↑Gv2 ∩ Z = ∅. Further, recall from
Lemma 22 that if ↑Gv2 ∩ Z = ∅, then we can find a negative cycle C2 using one edge from
G(Z) and one or two edges from GG(v2). From Lemma 27, there exists a cycle C1 involving
the corresponding edges from G(Z) and GG(v1). Since ↑Gv1 ∩ Z ̸= ∅, we know that C1 is
not negative. We will show that this implies that the C2 (which was a witness for emptiness
of ↑Gv2 ∩Z) also cannot be negative, which leads to a contradiction. The central part of the
proof involves a careful case analysis of the various forms that the cycle C2 can take, using
different † conditions. We detail two cases here. The remaining eight can be found in the
full version [2].

Cycle C2 = 0 (≤,v2(−→x ))−−−−−−→ −→x Z−→x 0−−−→ 0. We have C1 = 0 (≤,v1(−→x ))−−−−−−→ −→x Z−→x 0−−−→ 0.
Let Z−→x 0 = (◁, c). Since C2 is negative, we deduce that c ̸= ∞. From (†3), we infer
Z−→x 0 ≤ (≤, M) and 0 ≤ c ≤M .
Since C1 is not negative, we get (≤, 0) ≤ (◁, c+v1(−→x )), which is equivalent to −c ≤ v1(−→x ).
Using v1 ∼M v2 and 0 ≤ c ≤ M we deduce that −c ≤ v2(−→x ). This is equivalent to
(≤, 0) ≤ (◁, c + v2(−→x )), a contradiction with C2 being a negative cycle.
Cycle C2 = 0 Z0−→x−−−→ −→x (≤,−v2(−→x ))−−−−−−−−→ 0. We have C1 = 0 Z0−→x−−−→ −→x (≤,−v1(−→x ))−−−−−−−−→ 0.
Let Z0−→x = (◁, c). Since C2 is negative, we deduce that −v2(−→x ) ̸=∞. Using v1 ∼M v2,
we infer −v1(−→x ) ̸=∞. Since C1 is not negative, we get Z0−→x ̸= (≤,−∞). From (†6), we
infer (<,−M) ≤ Z0−→x and −M ≤ c ≤ 0.
Since C1 is not a negative cycle, we get (≤, 0) ≤ (◁, c− v1(−→x )), which is equivalent to
v1(−→x ) ≤ c. Using v1 ∼M v2 and −M ≤ c ≤ 0, we deduce that v2(−→x ) ≤ c. This is
equivalent to (≤, 0) ≤ (◁, c− v2(−→x )), a contradiction with C2 being a negative cycle. ◀

Finally, from Lemmas 26 and 28, we obtain our main theorem of the section.

▶ Theorem 29. The simulation relation ⪯A is finite.

Proof. Let (q, Z0), (q, Z1), (q, Z2), . . . be an infinite sequence of reachable nodes in EZG(A).
By Lemma 26, for all i, the distance graph G(Zi) in canonical form satisfies conditions (†).

The atomic constraints in G = G(q) use constants in {−∞,∞}∪{c ∈ Z | |c| ≤M}. From
Lemma 28 we deduce that for all i, ↓GZi is a union of ∼M -classes. Since ∼M is of finite
index, there are only finitely many unions of ∼M -classes. Therefore, we find i < j with
↓GZi = ↓GZj , which implies Zj ⪯G Zi. ◀

Note that the number of enumerated zones is bounded by 2r, where r is the number of
regions. This is similar to the exponential blow up that happens in normal timed automata.
Indeed, despite this blow up the interest in zone algorithms is that, at least in the timed
setting, they work significantly better in practice. We hope the above zone-based approach
for ECA will also pave the way for fast implementations for ECA.

7 Conclusion

In this paper, we propose a simulation based approach for reachability in ECAs. The main
difficulty and difference from timed automata is the use of prophecy clocks and undefined
values. We believe that the crux of our work has been in identifying the new representation
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for prophecy clocks and undefined values. With this as the starting point, we have been able
to adapt the zone graph computation and the G-simulation technique to the ECA setting.
This process required us to closely study the mechanics of prophecy clocks in the zone
computations and we discovered this surprising property that prophecy clocks by themselves
do not create a problem for finiteness.

The final reachability algorithm looks almost identical to the timed automata counterpart
and hence provides a mechanism to transfer timed automata technology to the ECA setting.
The performance benefits observed for the LU and G-simulation-based reachability procedures
for timed automata encourages us to believe that an implementation of our algorithm would
also yield good results, thereby providing a way to efficiently check event-clock specifications
on timed automata models. We also hope that our framework can be extended to other
verification problems, like liveness and to extended models like ECA with diagonal constraints
that have been studied in the context of timeline based planning [11, 12].
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A Appendix for Section 3

In Figure 3, we give the event zone graph of the event-clock automaton A1 that recognizes
the language {bna | n ≥ 1} such that there exists some b which occurs exactly one time unit
before a.
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Figure 3 An event-clock automaton and its event zone graph. Missing lower bounds are of the
form −∞ ≤ x − y and missing upper bounds are of the form x − y ≤ ∞ (including y = 0).

Further, Geeraerts et al. [19, 20] showed that there exists no finite time abstract bisimu-
lation relation for the event predicting automaton (EPA) A2 given in Figure 4. Figure 4 also
depicts the event zone graph of A2. Note that, since this is an event predicting automaton,
there are no history clocks. It is easy to see that there are only finitely many distinct
constraints involving the prophecy clocks.
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Figure 4 Event predicting automaton for which there exists no finite time abstract bisimulation
and its event zone graph. Missing lower bounds are of the form −∞ ≤ x − y and missing upper
bounds are of the form x − y ≤ ∞ (including y = 0).
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Abstract
We explore the notion of history-determinism in the context of timed automata (TA). History-
deterministic automata are those in which nondeterminism can be resolved on the fly, based on the
run constructed thus far. History-determinism is a robust property that admits different game-based
characterisations, and history-deterministic specifications allow for game-based verification without
an expensive determinization step.

We show yet another characterisation of history-determinism in terms of fair simulation, at the
general level of labelled transition systems: a system is history-deterministic precisely if and only if
it fairly simulates all language smaller systems.

For timed automata over infinite timed words it is known that universality is undecidable for
Büchi TA. We show that for history-deterministic TA with arbitrary parity acceptance, timed
universality, inclusion, and synthesis all remain decidable and are ExpTime-complete.

For the subclass of TA with safety or reachability acceptance, we show that checking whether
such an automaton is history-deterministic is decidable (in ExpTime), and history-deterministic TA
with safety acceptance are effectively determinizable without introducing new automata states.
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1 Introduction

Automata offer paradigmatic formalisms both for specifying and for modelling discrete
transition systems, i.e. for providing descriptive as well as executable definitions of formal
languages. Given a finite or infinite word, an automaton specifies whether or not the word
belongs to the defined language. Deterministic automata are executable, because the word
can be processed left-to-right, with each transition of the automaton determined by the
current input letter. Descriptive automata allow the powerful concept of nondeterminism,
which yields more succinct or even more expressive specifications.

The notion of history-determinism lies between determinism and nondeterminism. History-
deterministic automata are still executable, provided the execution engine is permitted to
keep a record of all past inputs. Formally, a strategy r (a.k.a. “resolver”) is a function from
finite prefix runs to transitions that suggests for each input word w a specific run r∗(w) of
the automaton over w, namely, the run that results from having the function r determine,
after each input letter, the next transition based on the prefix of the word processed so far.
An automaton is history-deterministic if there exists a resolver r so that for every input
word w, the automaton has an accepting run over w iff the specific run r∗(w) is accepting.
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The concept of history-determinism was first identified in [21], where it was noted that
for solving graph games, it is not necessary to determinize history-deterministic specifications
of ω-regular winning conditions. For this reason, history-deterministic automata were called
“good-for-games”. The term “history-determinism” was first used by [12]. The concept itself
has since been referred to as both “history-determinism” and “good-for-gameness.” Since [9]
recently showed that, in a general context of quantitative automata, the two notions do not
always coincide (specifically: for certain quantitative winning conditions, history-determinism
implies the “good-for-games” property of an automaton, but not vice versa), we follow their
more nuanced terminology and use the term “history-determinism” to denote the existence
of a resolver and “good-for-games” for automata that preserve the winner of games under
composition, as required for solving games without determinization.

There is also a tight link between a variant of the Church synthesis problem, called
good-enough synthesis [2], and deciding history-determinism. Church synthesis asks whether
a system can guarantee that its interaction with an uncontrollable environment satisfies a
specification language for all possible environment behaviours. This model assumes that the
environment is hostile and will, if possible, sabotage the system’s efforts. This pessimistic
view can be counter-productive. In the canonical example of a coffee machine, if the
users (the environment) do not fill in the water container, the machine will fail to produce
coffee. Church synthesis would declare the problem unrealisable: the machine may not
produce coffee for all environment behaviours. In the good-enough synthesis problem, on
the other hand, such failures are acceptable, and we can still return an implementation
that produces coffee (satisfies the specification) whenever the environment behaves in a way
that allows the desired behaviour (fills in the water container). Deciding the good-enough
synthesis problem for a deterministic automaton is polynomially equivalent to deciding
whether a nondeterministic automaton of the same type is history-deterministic [15, 9, 17].
The decidability and complexity of checking history-determinism is therefore particularly
interesting.

In this paper, we study, for the first time, history-determinism in the context of timed
automata. In a timed word, letters alternate with time delays, which are nonnegative real
numbers. The resolver gets to look not only at all past input letters, but also at all past
time delays, to suggest the next transition. We consider timed automata over infinite timed
words with standard ω-regular acceptance conditions [3]. For the results of this paper, it
does not matter whether or not the sum of all time delays provided by an infinite input word
is required to diverge.

Our results can be classified into two parts. The first part of our results applies to
all timed automata, and sometimes more generally, to all labelled transition systems. In
this part we are concerned with solving the quintessential verification problem for timed
systems, namely timed language inclusion, in the special case of history-deterministic (i.e.
executable) specifications. Since universality is undecidable for general timed automata,
so is the timed language-inclusion problem for nondeterministic specifications [3]. This
is the reason why much previous work in timed verification has focused on identifying
determinizable subclasses of timed automata, such as event-clock automata [4], and on
studying deterministic extensions of the timed-automaton model, such as deterministic two-
way timed automata [5]. Determinizable specifications can be complemented, thus supporting
the complementation-based approach to language inclusion: in order to check if every word
accepted by the implementation A is also accepted by the specification B, first determinize
and complement B, and then check the intersection with A for emptiness. We show that the
history-determinism of specifications suffices for deciding timed language inclusion, which
demonstrates that determinizability is not required. More precisely, we prove that if A is a
timed automaton and B is a history-deterministic timed automaton, it can be decided in
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ExpTime if every timed word accepted by A is also accepted by B (Corollary 18).
In contrast to the traditional complementation-based approach to language inclusion, the

history-deterministic approach is game-based. Like the complementation-based approach,
the game-based approach is best formulated in the generic setting of labelled transition
systems with acceptance conditions, so-called fair LTS. The acceptance condition of a fair
LTS declares a subset of the infinite runs of the LTS to be fair (a special case is safety
acceptance, which declares all infinite runs to be fair). Given two fair LTS A and B, the
language of A is included in the language of B if for every fair run of A there is a fair run of
B over the same (infinite) word. A sufficient condition for the language inclusion between A

and B is the existence of a fair simulation relation between the states of A and the states
of B, or equivalently, the existence of a winning strategy for player pB in the following
2-player fair simulation game: (i) every transition chosen by player pA on the state-transition
graph A can be matched by a transition chosen by player pB on the state-transition graph
B with the same label (letter or time delay), and (ii) if the infinite sequence of transitions
chosen by pA produce a fair run of A, then the matching transitions chosen by pB produce a
fair run of B [20]. Solving the fair simulation game is often simpler than checking language
inclusion; it may be polynomial where language inclusion is not (e.g. in the case of finite
safety or Büchi automata), or decidable where language inclusion is not (e.g. in the case of
timed safety or Büchi automata [28]).

We show that for all fair LTS A and all history-deterministic fair LTS B, the condition
that the language of A is included in the language of B is equivalent to the condition
that A is fairly simulated by B. This observation reduces the language inclusion problem
for history-deterministic specifications to the problem of solving a fair simulation game
between implementation and specification. The solution of fair simulation games depends
on the complexity of the acceptance conditions of A and B, but is often simpler than
the complementation of B, and fair simulation games can be solvable even in the case of
specifications that cannot be complemented. In the concluding Section 7, we conjecture the
existence of such a timed language. The game-based approach to checking language inclusion,
which requires history-determinism, is therefore more general, and often more efficient,
than the traditional complementation-based approach to checking language inclusion, which
usually requires full determinization. Indeed, history-determinism is exactly the condition
that allows the game-based approach to language inclusion: for a given fair LTS B, if it is
the case that B can fairly simulate all fair LTS A whose language is included in the language
of B, then B must be history-deterministic (Theorem 4).

More generally, turn-based timed games for which the winning condition is defined by a
history-deterministic timed automaton are no harder to solve than those with deterministic
winning conditions: the winner of such a timed game can be determined on the product of
the (timed) arena with the automaton specifying the winning condition. We conjecture that
this is the case also for the concurrent timed games of [13] (cf. Section 7). Timed games
have also been defined for the synthesis of timed systems from timed I/O specifications.
Again, we show that the synthesis game of [14] can be solved not only for I/O specifications
that are given by deterministic timed automata, but more generally, for those given by
history-deterministic timed automata (Theorem 20).

The second part of our results investigates the problem of deciding history-determinism for
timed automata and the determinizability of history-deterministic timed automata. In this
part, we have only partial results, namely results for timed safety and reachability automata.
Timed safety automata, in particular, constitute an important class of specifications, as many
interesting timed and untimed properties can be specified by timed safety automata if time is
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required to diverge [18, 19]. We prove that for timed safety automata and timed reachability
automata, it can be decided in ExpTime if a given timed automaton is history-deterministic
(Theorem 16). Checking history-determinism remains open for more general classes of
timed automata, such as timed Büchi and coBüchi automata. We also show that every
history-deterministic timed safety automaton can be determinized, without increasing the
number of automaton states, but with an exponential increase in the number of transitions
or length of guards (Theorem 9). While the question of determinizability is undecidable
for nondeterministic timed reachability automata [16], it is open for history-deterministic
timed reachability automata and for history-deterministic timed automata with more general
acceptance conditions. Finally, we show that if a timed safety or reachability automaton
is good-for-games (in the sense explained earlier), then the automaton must be history-
deterministic (Theorem 23). This implication is open for more general classes of timed
automata.

Related Work. The notion of history-determinism was introduced independently, with
slightly different definitions, by Henzinger and Piterman [21] for solving games without de-
terminization, by Colcombet [12] for cost-functions, and by Kupferman, Safra, and Vardi [24]
for recognising derived tree languages of word automata. Initially, history-determinism was
mostly studied in the ω-regular setting, where these different definitions all coincide [8]. For
some coBüchi-recognisable languages, history-deterministic automata can be exponentially
more succinct than any equivalent deterministic automaton [23], and for Büchi and coBüchi
automata, history-determinism is decidable in polynomial time [6, 23]. For transition-based
history-deterministic automata, minimisation is PTime [1], while for state-based ones, it is
NP-complete [27]. Recently, the notion has been extended to richer automata models, such
as pushdown automata [25, 17] and quantitative automata [9, 10], where deterministic and
nondeterministic models have different expressivity, and therefore, allowing a little bit of
nondeterminism can, in addition to succinctness, also provide more expressivity.

Paper Structure. After defining preliminary notions we proceed to introduce history-
determinism, and show a new, fair-simulation-based characterisation in Section 3. In Section 4
we demonstrate that history-deterministic TA with safety acceptance are determinizable,
and in Section 5 that one can decide whether a given safety or reachability TA is history-
deterministic. Section 6 considers questions concerning timed games, timed synthesis,
and timed language inclusion and shows that history-determinism coincides with good-for-
gameness for reachability and safety TA.

2 Preliminaries

Numbers, Words. Let N and R≥0 denote the nonnegative integers and reals, respectively.
For c ∈ R≥0 we write ⌊c⌋ for its integer and fract(c) def= c − ⌊c⌋ for its fractional part.

An alphabet Σ is a nonempty set of letters. Σε denotes Σ ∪ {ε}. Σ∗ and Σω denote the
sets of finite and infinite words over Σ, respectively and Σ∞ = Σ∗ ∪ Σω denotes their union.
The empty word is denoted by ε, the length of a finite word v is denoted by |v|, and the n-th
letter of a finite or infinite word is denoted by w[n] (starting with n = 0).

Labelled Transition Systems, Languages, Fair Simulation. A labelled transition system
(LTS) is a graph S = (V, Σ, E) with set V of states and edges E ⊆ V × Σ × V , labelled by
alphabet Σ. It is deterministic if for all (s, a) ∈ V × Σ there is at most one s′ with s

a−→ s′,
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and complete if for all (s, a) ∈ V × Σ there is at least one s′ with s
a−→ s′. We henceforth

consider only complete LTSs. Together with an acceptance condition Acc ⊆ Eω this can be
used to define languages over Σ as usual: a word w = l0l1 . . . ∈ Σω is accepted from s0 if
there is a path (also run) ρ = s0

l1−→ s1
l2−→ s2 . . . that is accepting, i.e., in Acc. The language

L(s0) ⊆ Σω of an initial state s0 ∈ V consists of all words for which there exists an accepting
run from s0. We will write s ⊆L s′ to denote language inclusion, meaning L(s) ⊆ L(s′). The
acceptance condition Acc can be given by a parity condition but does not have to be. We
consider in this paper especially reachability (does the run visit a state in a given target set
T ⊆ V ?) and safety conditions (does the run always stay in a “safe” region F ⊆ V ?). An
LTS together with an accepting condition is referred to as fair LTS [20].

Fair simulations [20] are characterised by simulation games on (a pair of) fair LTSs in
which Player 1 stepwise produces a path from s, and Player 2 stepwise produces an equally
labelled path from s′. Player 2 wins if she produces an accepting run whenever Player 1
does. That is, s is fairly simulated by s′ (write s ⪯ s′) iff Player 2 has a strategy in the
simulation game so that, whenever the run produced by Player 1 is accepting then so is the
run produced by Player 2 in response. Fair simulation s ⪯ s′ implies language inclusion
L(s) ⊆ L(s′) but not vice versa.

Timed Alphabets, Words, and LTSs. For any alphabet Σ let ΣT denote the timed alphabet
{(a, t)|a ∈ Σ, t ∈ R≥0}. A timed word is a finite or infinite word w ∈ (ΣT )∞ consisting of
letters in Σ paired with distinct non-negative non-decreasing real-valued timestamps. We will
also write d0a0d1a1... to denote a timed word (ai, ti) ∈ Σ∞

T where t0 = d0 and ti+1 = ti +di+1.
Conversely, the duration and the timed word of any sequence in (Σ ∪R)∞ is given inductively
as follows. For any d ∈ R≥0, τ ∈ Σ, α ∈ (Σ ∪ R)∗, and β ∈ (Σ ∪ R)∞ let duration(τ) def= 0;
duration(d) def= d; duration(αβ) = duration(α) + duration(β); tword(ε) = tword(d) def= ε;
tword(αd) def= tword(α); and tword(ατ) def= tword(α)(τ, duration(α)). An infinite timed word
of finite duration is called a zeno word. Our results hold whether time must diverge (i.e.,
zeno words are not considered) or not; we note whenever time divergence affects proofs.

A timed LTS is one with edge labels in Σ ⊎R≥0, so that edges labelled by R≥0 (modelling
the passing of time) satisfy the following conditions for all α, β, γ ∈ V and d, d′ ∈ R≥0.
1. (Zero-delay): α

0−→ α,
2. (Determinism): If α

d−→ β ∧ α
d−→ γ then β = γ,

3. (Additivity): α
d−→ β

d′

−→ γ then α
d+d′

−−−→ γ.
The timed language L(s) ⊆ Σω

T of a state s consists of all the timed words read along
accepting runs L(s) def= tword(L(s)). We write L(S) for the timed language of the initial
state of the LTS S.

Timed Automata. Timed automata are finite-state automata equipped with finitely many
real-valued variables called clocks, whose transitions are guarded by constraints on clocks.
Constraints on clocks C = {x, y, . . .} are (in)equalities x ◁ n where x ∈ C, n ∈ N and
◁ ∈ {≤, <}. Let B(C) denote the set of Boolean combinations of clock constraints, called
guards. A clock valuation ν ∈ RC assigns a value ν(x) to each clock x ∈ C. We write ν |= g

if ν satisfies the guard g. A timed automaton (TA) T = (Q, ι, C, ∆, Σ, Acc) is given by
Q a finite set of states including an initial state ι;
Σ an input alphabet;
C a finite set of clocks;
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∆ ⊆ Q × B(C) × Σ × 2C × Q a set of transitions; each transition is associated with a
guard, a letter, and a set of clocks to reset. A transition that reads letter a ∈ Σ will be
called an a-transition. We assume that for all (s, ν, a) ∈ Q × RC

≥0 × Σ there is at least
one transition (s, g, a, r, s′) ∈ ∆ so that ν satisfies g.
Acc ⊆ ∆ω an acceptance condition.

Timed automata induce timed LTSs, and can thus be used to define timed languages, as
follows. A configuration is a pair consisting of a control state and a clock valuation. These
can evolve in two ways, as follows. For all configurations (s, ν) ∈ Q × RC

≥0,
there is a delay step (s, ν) d−→ (s, ν + d) for every d ≥ 0, which increments all clocks by d.
there is a discrete step (s, ν) τ−→ (s′, ν′) if τ = (s, g, a, r, s′) ∈ ∆ is a transition so that ν

satisfies g and ν′ = ν[r → 0], that is, it maps r to 0 and agrees with ν on all other values.
Naturally, each delay d yields a unique successor configuration and ν

d−→ d′

−→ ν′ ⇐⇒ ν
d+d′

−→ ν′

for any two d, d′ ≥ 0 and valuations ν, ν′. So this indeed induces a timed LTS.
Discrete steps, however, are a source of nondeterminism: a configuration may have several

a-successors induced by different transitions whose guards are satisfied. T is deterministic if
its induced LTS is deterministic, which is the case iff for every state s, all transitions from s

have mutually exclusive guards.
A path ρ = (s0, ν0) l1−→ (s1, ν1) l2−→ (s2, ν2) . . . is called reduced if it does not contain

consecutive delay steps. It is a run on timed word w ∈ (ΣT )∞ if tword(l1l2 . . .) = w. The
acceptance condition is lifted to the LTS as expected. Namely, a run is accepting if ρ ∈ Acc.
This way, the language L(s, ν) ⊆ Σω

T of a configuration (s, ν) consists of all timed words for
which there exists an accepting run from (s, ν). The language of T is L(T ) def= L((ι, 0)), the
languages if the initial configuration with state ι and all clocks set to zero.

3 History-determinism

Informally, an automaton or LTS is history-deterministic if the non-determinism can be
resolved on-the-fly, based only on the history of the word and run so far. We give two equivalent
definitions, each being more convenient than the other for some technical developments.

▶ Definition 1 (History-determinism). A fair LTS S = (V, Σ, E) is history-deterministic
(from initial state s0 ∈ V ) if there is a resolver r : E∗ × Σ → E that maps every finite run
and letter a ∈ Σ to an a-labelled transition such that, for all words w = a0a1 · · · ∈ L(s0) the
run ρ defined inductively for i > 0 by ρi+1

def= ρir(ρi, ai+1), is an accepting run on w from s0.

Equivalently (from [8] for ω-regular automata), a resolver corresponds exactly to a winning
strategy for Player 2 in the following letter game.

▶ Definition 2 (Letter game). The letter game on a fair LTS S = (V, Σ, E) with initial state
s0 ∈ V is played between Players 1 and 2. At turn i:

Player 1 chooses a letter ai ∈ Σ.
Player 2 chooses an ai labelled edge τi ∈ E.

A play is a pair (w, ρ) where w = a0a1 . . . is an infinite word and ρ = τ0τ1... is a run on w.
A play is winning for Player 2 if either w /∈ L(s0) or ρ is an accepting run on w from s0.

In these and other games we consider, strategies for both players are defined as usual,
associating finite histories (runs) to valid player choices. Now winning strategies for Player 2
in the letter game exactly correspond to resolvers for S and vice-versa.

▶ Proposition 3. Player 2 wins the letter game on a fair LTS S if and only if S is history-
deterministic.
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While history-determinism is known to relate to fair simulation, in the sense that history-
deterministic automata simulate deterministic ones for the same language [21], their relation
has so far not been studied in more details. Below we show that history-determinacy can
equivalently be characterised in terms of fair simulation.

▶ Theorem 4. For every fair LTS S and initial state q the following are equivalent:
1. S is history-deterministic.
2. For all complete fair LTS S′ with initial state q′, q′ ⊆L q if and only if q′ ⪯ q.

Proof.

(1) =⇒ (2). Fair simulation q ⪯ q′ trivially implies q ⊆L q′ by definition.
For the other implication, assume that q ⊆L q′. By assumption (1) there exists a resolver,

i.e. a winning strategy in the letter game. Player 2 can win the fair simulation game
by ignoring her opponent’s configuration and moving according to this resolver. By the
completeness assumption on S′, Player 1 can never propose a letter for which there is no
successor in S′. So each player produces an infinite run on the same word w and the run
produced by Player 2 is the same as that produced by the resolver in S′. If w ∈ L(q) then it
is in L(q′) and Player 2’s run accepts. If w /∈ L(q) then Player 2 wins due to the fairness
condition. In both cases she wins the fair simulation game and therefore q ⪯ q′.

(2) =⇒ (1). If condition (2) holds for all complete fair LTSs then q can fairly simulate
the one consisting of a single state with self-loops for all transitions of S whose acceptance
condition contains exactly all accepting runs from q. Then the strategy for Player 2 in the
fair simulation game can be used as a strategy in the letter game. ◀

4 Expressivity

In this section we show that history-deterministic timed automata with safety acceptance are
determinizable. To do so, we show (in Lemma 8) that these automata have simple resolvers,
which only depend on the equivalence class of the current clock configuration with respect to
the region abstraction. That is to say, the resolver only needs to know the integer part of
clock values (up to the maximal value that appears in clock constraints) and the ordering of
their fractional parts. We can then use such a simple resolver to determinize the automaton
by adding guards that restrict transitions so that the automaton can only take one transition
per region, as dictated by the resolver.

The following is the standard definition of regions (cf. [3], def. 4.3).

▶ Definition 5 (Region abstraction). Let T = (Q, ι, C, ∆, Σ, Acc) be a timed automaton and
for any clock x ∈ C let cx denote the largest constant in any clock constraint involving x.
Two valuations ν, ν′ ∈ RC

≥0 are (region) equivalent (write ν ∼ ν′) if all of the following hold.
1. For all x ∈ C either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or both ν(x) and ν′(x) are greater than cx.
2. For all x, y ∈ C with ν(x) ≤ cx and ν(y) ≤ cy, fract(ν(x)) ≤ fract(ν(y)) iff fract(ν′(x)) ≤

fract(ν′(y)).
3. For all x ∈ C with ν(x) ≤ cx, fract(ν(x)) = 0 iff fract(ν′(x)) = 0.

Two configurations (q, ν) and (q′, ν′) are (region) equivalent, write (q, ν) ∼ (q′, ν′), if q = q′

and ν ∼ ν′.

▶ Definition 6 (Run-trees). A run-tree on a timed word u = (a0, t0)(a1, t1) . . . from TA
configuration (s0, ν0) is a tree where nodes are labelled by configurations, and edges by
transitions such that
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1. The labels along every branch form a run on u from (s0, ν0)
2. It is complete wrt. discrete steps: suppose the path leading towards some node is labelled

by a run ρ which reads tword(ρ) = (a0, t0) . . . (ai, ti), ends in a configuration (s, ν), and
has duration(ρ) = ti+1. Then for every transition τ = (s, g, ai+1, r, s′) ∈ ∆ with ν |= g

and so that (s, ν) τ−→ (s′, ν′), there is a τ -labelled edge to a new node labelled by (s′, ν′).
A run-tree is reduced if all its branches are. That is, there are no consecutive delay steps.

Notice that for every initial configuration and timed word, there is a unique reduced run-tree,
all of whose branches are runs on the word (since we have no deadlocks), and vice versa, all
reduced runs on the word appear as branches on the run-tree.

We extend the region equivalence from configurations to run-trees in the natural fashion:
two run-trees are equivalent if they are isomorphic and all corresponding configurations are
equivalent. That is, they can differ only in fractional clock values and the duration of delays.

The following is our key technical lemma.

▶ Lemma 7. Consider two region equivalent configurations (s, ν) ∼ (s′, ν′).
For every timed word u there is a timed word u′ so that the reduced run-tree on u from

(s, ν) is equivalent to the reduced run-tree on u′ from (s′, ν′).

Proof sketch. It suffices to show that for some (not necessarily reduced) run-tree on u from
(s, ν) there exists some equivalent run-tree from (s′, ν′) as this implies the claim by collapsing
all consecutive delay steps and thus producing the reduced tree on both sides.

We proceed by stepwise uncovering a suitable run-tree from (s, ν) for ever longer prefixes
of u and constructing a corresponding equivalent run-tree from (s′, ν′). The intermediate
finite trees we build have the property that all branches have the same duration. In each
round we extend all current leafs, in both trees, either by
1. all possible non-deterministic successors (for the letter prescribed by the word u), in case

the duration of the branch is already equal to the next time-stamp in u, or
2. one successor configuration due to a delay, which must be the same on all leafs.

For the second case, the delays used to extend the two trees need not be the same because
we only want to preserve region equivalence. Also, the delay chosen for the tree rooted in
(s, ν) need not follow the timestamps in u but can be shorter, meaning the run-tree may not
be reduced.. The difficulty lies in systematically choosing the delays to ensure that the two
trees remain equivalent and secondly, that in the limit this procedure generates a run-tree on
the whole word u from (s, ν). Together this implies the existence of a corresponding word u′

and a run-tree from (s′, ν′).
To this end we propose a stronger invariant, namely that the relative orderings of the

fractional values in all leafs are the same on both sides. The delays will be chosen in such
a way as to always increase the maximal fractional clock value among all leafs to the next
higher integer. Due to space constraints full details are deferred to Appendix A. ◀

We are now ready to show that history-deterministic TA with safety acceptance have
simple resolvers based on the region abstraction.

▶ Lemma 8. Every history-deterministic TA with safety acceptance has a resolver r that bases
its decision only on the current letter and region. That is, for any letter a ∈ Σ and any two
finite runs (ι, 0) ρ−→ (s, ν) and (ι, 0) ρ′

−→ (s′, ν′) consistent with r and so that (s, ν) ∼ (s′, ν′),
it holds that r(ρ, a) = r(ρ′, a).
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Proof. Let r be a resolver for a history-deterministic safety TA T .
We now build a resolver that only depends on the region of the current configuration. To

do so, we choose a representative configuration within each region, which will determine the
choice of the resolver for the whole region: For every region R ∈ [Q × RC

≥0]∼, consider the
configurations that are reached by at least one r-consistent run, and mark one of them mR,
if at least one exists, along with one r-consistent run ρR leading to the configuration mR.

Let r′ be the aspiring resolver that, when reading a letter a, considers the region R of the
current configuration, and follows what r does when reading a after the marked r-consistent
run ρR. We set r′(ρ, a) def= r(ρR, a) where R is the final region of the prefix-run ρ. Note that
r′ is well defined since it always follows transitions consistent with some r-consistent run
and can therefore only visit marked regions.

We claim that r′ is indeed a resolver. Towards a contradiction, assume that it is not a
resolver, that is, there is some word w ∈ L(T ) for which r′ builds a rejecting run. As T is a
safety automaton, we can consider the last configuration (s, ν) along this run from which the
remaining suffix au of w can be accepted 1.

Suppose that ρ is the prefix of the run built by r′ on w, which ends in (s, ν) and let
τ = r′(ρ, a) be the a-transition chosen by r′. We know that τ leads from (s, ν) to some
configuration (s′, ν′) from where u is not accepted. By definition of r′, there must be a
marked configuration mR ∼ (s, ν) reached by some run ρR from which r chooses the same
a-transition τ . By Lemma 7 there must be a word au′ so that the run-tree on au from (s, ν)
is equivalent to that on au′ from mR. This means that au′ ∈ L(mR) and, as r is a resolver,
there must be an accepting run that begins with a step (mR) τ−→ (m′

R). We derive that
u also has an accepting run from (q, ν) that begins with τ , contradicting the assumption
that (q, ν) is the last position on the run r′ built on w so that its suffix can be accepted.
Therefore, r′ is indeed a resolver. ◀

We can now use the region-based solver to determinize history-deterministic safety TA.

▶ Theorem 9. Every history-deterministic safety TA is equivalent to a deterministic TA.

Proof. Consider a history-deterministic TA T = (Q, ι, C, ∆, Σ, Acc), with a region-based re-
solver (as in Lemma 8) r, and let R be the region graph of T . Define T ′ = (Q, ι, C, ∆′, Σ, Acc)
where (q, g ∧ z, a, X, q′) ∈ ∆′ for z a guard defining a region of R, that is, a guard that
is satisfied exactly by valuations in R, if (q, g, a, X, q′) ∈ ∆ is the transition chosen by r

in the region defined by the guard z. In other words, T ′ is T with duplicated transitions
guarded so that a transition can only be taken from a region from which r chooses that
transition. Observe that T ′ is deterministic: the guards describing regions are mutually
exclusive, therefore the guards of any two transitions from the same state over the same
letter have mutually exclusive guards.

As runs of T ′ corresponds to a run of T with added guards, L(T ′) ⊆ L(T ). Conversely,
if w ∈ L(T ), then its accepting run consistent with r is also an accepting run in T ′, since
each transition along this run, being chosen by r, is taken at a configuration that satisfies
the additional guards in T ′. We can therefore conclude that L(T ) = L(T ′). ◀

1 The fact that a rejecting run produced by a non-resolver must ultimately reach a configuration that
cannot accept the remaining word also holds for TAs over finite words. However, this is not the case for
reachability acceptance, which is why we only state the claim for safety here. Still, we conjecture that
history-deterministic TA with reachability acceptance admit region-based resolvers.
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While this determinization procedure preserves the state-space of the automaton, it
multiplies the number of transitions (or the size of guards) by the size of the region abstraction.
Then, while history-deterministic safety TA are no more expressive than deterministic ones,
they could potentially be exponentially more succinct, when counting transitions and guards.

5 Deciding History-determinism

Recall the letter game characterisation of history-determinism: Player 1 plays timed letters
and Player 2 responds with transitions. Player 2 wins if either the word is not in the language
of the automaton, or her run is accepting. As TA are not closed under complement, it isn’t
clear how to solve this game. Bagnol and Kuperberg [6] introduced token games, which
are easier to solve, but which coincide with the letter game for some types of automata, in
particular for Büchi [6], coBüchi [7] and some quantitative automata [10].

In the k-token game, in addition to providing letters, Player 1 also builds k runs, of
which at least one should be accepting. The fewer runs Player 1 is allowed to use, the more
information he gives Player 2 about the word he will play. We show that the 1 and 2-token
games characterize history-determinism for fair LTSs with safety and reachability acceptance.

▶ Definition 10 (k-token game [6]). Given a fair LTS S = (V, Σ, E) with initial state s0 ∈ V

and an integer k > 0, the game Gk(S) proceeds in rounds. At each round i:
Player 1 plays a letter ai ∈ Σ
Player 2 plays a transition τi in E

Player 1 plays transitions τ1,i, τ2,i . . . τk,i in S

This way, Player 1 chooses an infinite word w = a0a1 . . . and exactly k runs ρi = τi,0τi,1τi,2 . . .

for 1 ≤ i ≤ k, and Player 2 chooses a run ρ = τ0τ1 . . . . The play is winning for Player 1 if
some ρj is an accepting run over t0a0... from s0 but ρ is not. Else it is winning for Player 2.

We write Gk(T ) to mean the k-token game on the LTS induced by T .

▶ Remark 11. Gk(S) and the letter game are determined for any k and fair LTS S for any
Borel-definable acceptance condition [26]. In particular, the letter game is determined for
both safety and reachability TA. Indeed, the winning condition for Player 2 is a disjunction of
the complement of L(B) and of the acceptance condition of B. Then, as long as L(B) is Borel,
by the closure of Borel sets under complementation and disjunction, the letter-game is Borel,
and therefore determined, following Martin’s Theorem [26]. If time is not required to diverge,
then reachability timed languages and safety timed languages are clearly Borel. Since words
in which time diverges are also Borel (they can be seen as the countable intersection of words
where time reaches each unit time), this remains the case when we require divergence.

The next lemma was first stated for finite [6], then for quantitative automata [10]. The
same proof works for all (generally infinite) fair LTSs, and is given again in Appendix B.

▶ Lemma 12. Given an fair LTS S, if Player 2 wins G2(S) then she wins Gk(S) for all k.

G1(S) was shown to characterise history-determinism for a number of quantitative
automata in [10]. In Appendix B we show, using similar proof techniques, that this is also
the case for all safety LTSs. The key observation is that for Player 2 to win the letter game,
it suffices that she avoids mistakes. We then show that a winning strategy for her in G1(S)
can be used to build such a strategy.

▶ Lemma 13. Given a fair LTS S with a safety acceptance condition, Player 2 wins G1(S)
if and only if S is history-deterministic.
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This argument does not work for reachability TA: it is no longer enough for Player 2
to avoid bad moves to win; she needs to also guarantee that she will actually reach a final
state. Here, we characterise history-determinism with the 2-token game. However, our proof
requires finite branching in Player 2’s choices, so we can not state it for LTSs in general.

▶ Lemma 14. Given a finitely branching fair LTS S with a reachability acceptance condition,
Player 2 wins G2(S) if and only if S is history-deterministic.

Proof. If Player 2 wins in the letter game, she wins in G2(S) by ignoring Player 1’s tokens.
Else, since the letter game is determined (Remark 11), Player 1 wins in the letter game

on S with a strategy σ. All plays that agree with σ must eventually play a good prefix,
that is, a prefix of a timed word of which either all continuations are in L(S) if time is not
required to diverge, or all non-zeno continuations are in L(S) if time is required to diverge.
At each turn Player 2 has only a finite number of enabled transitions to choose from, because
S is finitely branching. Therefore the strategy-tree for σ is finitely branching and by König’s
lemma, there is a bound k such that any play that agrees with σ has played a good prefix
after k steps.

We now argue that Player 1 wins in Gk′(S) for a large enough k′. Let k′ be larger than
the number of distinct run prefixes of length k on any word of length k played by σ (that is,
at most bk where b is the branching degree of S). Then, in G′

k(S), Player 1 wins by using the
following strategy: he plays the letters according to σ and Player 2’s moves and moves his
k′ tokens along all possible run prefixes for the first k moves, and then chooses transitions
arbitrarily. Since after k steps σ guarantees that he has played a good prefix, at least one of
his runs built in this manner is accepting.

This strategy is winning: indeed, if Player 2 could beat it with some strategy σ′, then
she could use σ′ in the letter game to beat σ, a contradiction. From Lemma 12, and the
determinacy of Gk(S), Player 1 therefore wins G2(S) whenever he wins the letter game. ◀

We now consider the problem of deciding whether a given safety or reachability TA is
history-deterministic. We use the observation that the k-token games played on LTSs induced
by TA can be expressed as a timed parity game from [11] played on the (k + 1)-fold product.

▶ Lemma 15. For all k (given in unary) and timed safety or reachability automata T , the
game Gk(T ) is solvable in ExpTime.

Proof. Gk(T ) is a timed game on an arena consisting of the configuration space of the
product of k + 1 copies of T . The winning condition consists of a boolean combination of
safety or reachability conditions. Such games can be solved as timed parity games as defined
in [11] in time exponential in the number of clocks c and in k [11, Theorem 3]. Note that [11]
uses concurrent timed parity games, of which turn-based ones are a special case. ◀

▶ Theorem 16. Given a safety or reachability TA, deciding whether it is history-deterministic
is decidable in ExpTime.

Proof. From Lemma 13 and Lemma 14, deciding the history-determinism of a safety or
reachability TA T reduces to solving G1(T ) or G2(T ) respectively, both of which can be
done in ExpTime, from Lemma 15. ◀

As explained in the introduction, this also solves the good-enough synthesis problem of
deterministic safety and reachability TA.
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6 Synthesis, Games and Composition

In this section we consider several games played on (LTSs of) timed automata and how they
can be used to decide classical verification problems. We focus on turn-based games, although
our techniques can be generalised to concurrent ones. We first look at language inclusion,
then synthesis, and finally we consider good-for-games timed automata, that is, automata
that preserve the winner when composed with a game and show that good-for-gameness and
history-determinism coincide for both reachability and safety timed automata.

6.1 Language Inclusion and Fair Simulation Games
The connection between history-determinism and fair simulation, established in Theorem 4,
allows to transfer decidability results to history-deterministic TA. Let’s first recall that
simulation checking is decidable for timed automata using a region construction [28]. This
paper precedes the notion of fair simulation (restricting Player 1 to fair runs) and is thus only
applicable for safety conditions. However, the result holds for more general parity acceptance
(for which each state is assigned an integer priority and where a run is accepted if the highest
priority it sees infinitely often is even).

▶ Theorem 17. Fair simulation is decidable and ExpTime-complete for parity timed autom-
ata.

Proof. It suffices to observe that the simulation game can be presented as a timed parity
game, as studied in [11], played on the product of two copies of the automaton. These can be
solved in ExpTime. A matching lower bound holds even for safety or reachability acceptance
(see Lemma 24 in Appendix C for details).

◀

▶ Corollary 18. Timed language inclusion is decidable and ExpTime-complete for history-
deterministic TA. More precisely, given a TA S with initial state q and a history-deterministic
TA S′ with initial state q′, checking if q ⊆L q′ holds is ExpTime-complete.

Proof. As B is history-deterministic and by Theorem 4, we have q ⊆L q′ if, and only if,
q ⪯ q′. The result follows from Theorem 17. ◀

6.2 Synthesis Games
We show that as is the case in the regular [21], pushdown [25], cost function [12], and quant-
itative [9] settings, synthesis games with winning conditions given by history-deterministic
TA are no harder to solve than those with for winning condition given by deterministic TA.

▶ Definition 19 (Timed synthesis game). Given a timed language L ⊆ (ΣI × ΣO)ω
T , the

synthesis game for L proceeds as follows. At turn i:
Player I plays a delay di and a letter ai ∈ ΣI

Player II plays a letter bi ∈ ΣO.
Player II wins if d0

(
a0
b0

)
d1

(
a1
b1

)
... ∈ L or if time does not progress. If Player II has a winning

strategy in the synthesis game, we say that L is realisable.

▶ Theorem 20. Given a history-deterministic timed parity automaton T , the synthesis game
for L(T ) is decidable and ExpTime-complete.
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The proof (in Appendix C) follows a similar reduction to one in [25], in which the
nondeterminism of the automaton is moved into Player 2’s output alphabet, forcing her to
simultaneously build a word in the winning condition and an accepting run witnessing this.
Since accepting runs are recognised by deterministic automata, this reduces the problem to
the synthesis problem for deterministic timed automata. The lower bound follows from the
ExpTime-completeness of synthesis for deterministic TA [14].

The ExpTime decidability of universality for history-deterministic TA follows both from
the decidability of language inclusion in the previous section and from the decidability of
synthesis: the universality of T reduces to deciding the winner of the synthesis game over
{
(

w
w

)
| w ∈ L(T )}, recognised by a history-deterministic TA if T is history-deterministic.

6.3 Composition with Games
Implicitly, at the heart of these reductions is the notion of composition: the composition
of the game to solve with a history-deterministic automaton for the winning condition
yields an equivalent game with a simpler winning condition. We say that an automaton
is good-for-games if this composition operation preserves the winner of the game for all
games. While history-determinism always implies good-for-gameness, the converse is not
necessarily true. While the classes of history-deterministic and good-for-games automata
coincide for ω-regular automata [8], this is not the case for quantitative automata [9], which
can be good-for-games without being history-deterministic. We argue that for reachability
and safety timed automata, good-for-gameness and history-determinism coincide.

▶ Definition 21 (Timed Games). A timed game (roughly following [14]), consists of an arena
G = (Q, ι, C, ∆, Σ, L) and is similar to a TA except that Q, which need not be finite, is
partitioned into Q = Q1 ⊎ Q2, that is, positions Q1 belonging to Player 1 and positions Q2
belonging to Player 2, and L is a timed language, not an acceptance condition. Furthermore,
an a-transition produces the letter a, rather than reads it. Configurations are defined as for
TA and we assume every configuration to have at least one successor-configuration.

A timed game proceeds in the configuration space of G with Player 1 at each turn i

advancing time with a delay di ∈ R. Then, from the resulting configuration ci, the owner of
the state of ci chooses a transition in ∆ enabled in ci, leading to a transition ci+1 producing
a letter ai. An infinite play is winning for Player 2 if the word d0a0d1a1 . . . produced is in L.

▶ Definition 22 (Composition). Intuitively, the composition of a game G and an automaton
T consists of a game in which the two players play on G while Player 2 must also build,
letter by letter, a run of T on the outcome of the game in G. More formally, given a TA
T and a game G with winning condition L(T ), the composition T ◦ G consists of a game
played on the product of the configuration spaces of G and T , starting from the initial state
of both, in which, at each turn i, from a configuration (ci, c′

i), Player 1 plays a time delay
di ∈ R, the owner of the current G-state chooses a move in the configuration space of G to a
successor-configuration ci+1, producing a letter ai, and then Player 2 chooses a transition
over (di, ai) enabled at the current T -configuration c′

i, leading to a successor-configuration
c′

i+1. The game then proceeds from (ci+1, c′
i+1).

Player 2 wins infinite plays if the run built in T is accepting, and loses if it is rejecting
or if she cannot move in the G-component.

Observe that if Player 1 wins in G, then he also wins in T ◦ G with a strategy that produces
a word not in L(T ) in G, as then Player 2 can not produce an accepting run in T .

[9, Lemma 7] shows that for (quantitative) automata for which the letter-game is de-
termined, (threshold) history-determinism coincides with good-for-gameness. The lemma
is stated for quantitative automata, where thresholds are relevant; in the Boolean setting,
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it simply states that the determinacy of the letter game implies the equivalence of history-
determinism and good-for-gameness. In our timed setting, a similar argument, combined
with the determinacy of the letter game for safety and reachability TA, gives us the following.

▶ Theorem 23. Let T be a safety or reachability TA. The following are equivalent:
1. T is history-deterministic.
2. For all timed games G with winning condition L(T ), whenever Player 2 wins G, she also

wins T ◦ G.

Proof.

(1) =⇒ (2). If T is history-deterministic, the resolver can be used as a strategy in the
T component of T ◦ G. When combined with a winning strategy in G that guarantees that
the G-component produces a word in L(T ), the resolver guarantees that the T -component
produces an accepting run, thus giving the victory to Player 2.

(2) =⇒ (1). Towards a contradiction, assume T is not history-deterministic, that is, by
determinacy of the letter game from Remark 11, that Player 1 has a winning strategy σ in
the letter game. Now consider the game Gσ, without clocks or guards, in which positions,
all belonging to Player 1, consist of the prefixes of timed words played by σ, with moves
w

(t,a)−−−→ w(t, a). As σ is winning for Player 1, all maximal paths in Gσ are labelled by a timed
word in L(T ), so Gσ is winning for Player 2.

We now argue that Player 1 wins T ◦ Gσ by interpreting Player 2’s moves in the T
component as her moves in the letter game, and choosing moves in G mimicking the letter
dictated by σ. Then, if Player 2 could win against this strategy in T ◦ Gσ, she could also
win against σ in the letter game by interpreting Player 1’s choices of letters as moves in G,
and responding with the same transition as she plays in the T component of T ◦ Gσ. Such a
strategy is a valid strategy in the letter game on T , and while it might not be winning in
general, it is winning against σ, contradicting that σ is a winning strategy for Player 1. ◀

This proof fails for acceptance conditions beyond safety and reachability, as it isn’t
clear whether timed Büchi and coBüchi automata define Borel sets. If this was the case
then history-deterministic timed automata would be exactly those that preserve winners in
composition with games, as is the case in the ω-regular setting.

7 Conclusion

We introduced history-determinism for timed automata and showed that it suffices for solving
important problems that previously required full determinism, in particular, timed language
inclusion, universality and synthesis. We showed that for the important classes of timed
safety and timed reachability automata, history-determinism can be checked (and therefore
good-enough synthesis of deterministic reachability and safety automata can be solved) and
every history-deterministic timed safety automaton can be determinized.

We conjecture that determinizability does not hold for history-deterministic timed coBüchi
automata. Consider the timed coBüchi language “there is a real time t such that for every
nonnegative integer i, there is a letter a at time t + i.” This timed language is recognised by
a history-deterministic coBüchi automaton in which a nondeterministic transition guesses a
“witness time” t after which a occurs at every unit interval, and which allows for an unbounded
number of failed guesses (using the coBüchi condition). To see that this automaton is history-
deterministic, let the resolver repeatedly and deterministically pick the time with the most
previous occurences of a at unit-interval distances. If a timed input word is in the language,
then this resolver will eventually choose a correct witness time and produce an accepting run.
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We conjecture that the complement of this language cannot be defined by a (nondetermin-
istic) timed automaton. Informally, a timed automaton would require an unbounded number
of clocks to check that “for all occurrences of a there is a nonnegative integer distance i

such that a is not followed by another a after i time units.” If so, this timed language would
separate the classes of deterministic and history-deterministic timed languages.

Let us conclude with another conjecture. We showed that history-deterministic timed
automata are “good” for solving turn-based timed games, where in each turn of the game,
one of the two players chooses a time delay or an action. A more general, concurrent setting
for timed games is presented in [13]. In the concurrent version both players simultaneously
choose permissible pairs of time delays and actions, and the player who has picked the shorter
time delay gets to move. While concurrent games may not be determined, we conjecture
that these concurrent timed games can again be solved by composing the (timed) arena with
the (timed) winning condition, as long as the winning condition is history-deterministic.
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A Expressivity

▶ Lemma 7. Consider two region equivalent configurations (s, ν) ∼ (s′, ν′).
For every timed word u there is a timed word u′ so that the reduced run-tree on u from

(s, ν) is equivalent to the reduced run-tree on u′ from (s′, ν′).

Proof. It suffices to show that for some (not necessarily reduced) run-tree on u from (s, ν)
there exists some equivalent run-tree from (s′, ν′) as this implies the claim by collapsing all
consecutive delay steps and thus producing the reduced tree on both sides.

We proceed by stepwise uncovering the run-tree from (s, ν) for ever longer prefixes of u

and constructing a corresponding equivalent run-tree from (s′, ν′). The intermediate finite
trees we build have the property that all branches have the same duration. In each round we
extend all current leafs, in both trees, either by
1. all possible non-deterministic successors (for the letter prescribed by the word u), in case

the duration of the branch is already equal to the next time-stamp in u, or
2. one successor configuration due to a delay, which must be the same on all leafs.
For the second case, the delays used to extend the two trees need not be the same because
we only want to preserve region equivalence. Also, the delay chosen for the tree rooted in
(s, ν) need not follow the timestamps in u but can be shorter, meaning the run-tree may not
be reduced.. The difficulty lies in systematically choosing the delays to ensure that the two
trees remain equivalent and secondly, that in the limit this procedure generates a run-tree on
the whole word u from (s, ν). Together this implies the existence of a corresponding word u′

and a run-tree from (s′, ν′).

Invariant. To this end we propose a stronger invariant, namely that the relative orderings
of the fractional values in all leafs are the same on both sides. To be precise, let’s reinterpret
a clock valuation as a function ν : C × N → {⊥} ∪ [0, 1), that assigns to every clock and
possible integral value either a fractional value between 0 and 1, or ⊥ (indicating that the
given clock does not have the given integral value). This way for every clock x there is exactly
one n ∈ N with ν(x, n) ̸= ⊥ and the image ν(C × N) has at most |C| + 1 different elements.
For any ordered set F = {⊥ < f1 < f2 < · · · < fl} ⊇ ν(C × N) of fractional values, we can
thus represent ν as a function ν̂ : C × N → {⊥, 1, . . . l} that, instead of exact fractional clock
values only yields their index in F (and maps ⊥ 7→ ⊥).

Consider some run-tree with leafs (q1, ν1)(q2, ν2) · · · (qlνl) with combined fractional values
F =

⋃l
i=1 νi(C × N), and an equivalent run-tree with leafs (q′

1, ν′
1)(q′

2, ν′
2) · · · (q′

lν
′
l) with

combined fractional values F ′ =
⋃l

i=1 ν′
i(C ×N). The two trees are aligned if for all 1 ≤ i ≤ l,

ν̂i = ν̂′
i. Notice that this still allows the two trees to differ on their exact fractional values but

now they must agree on the relative order of all contained clocks on leafs, and in particular
which ones are maximal and therefore the closest to the next larger integer. We will always
select a delay of 1 − max{F} and 1 − max{F ′}, respectively, in step 2 above.
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To show the claim we produce the required run-trees starting in (s, ν) ∼ (s′ν′). These
are in particular two aligned run-trees on the empty word.

Assume two aligned trees as above, where leafs have fractional values F = {⊥ < f1 <

f2 < · · · < fm} and F ′ = {f ′
0 < f ′

1 < · · · < f ′
m}, respectively, and assume that the tree

rooted in (s, ν) reads a strict prefix (a0, t0), . . . (ai, ti) of u.
Case 1: the duration of all branches in the first tree equals ti+1, the timestamp of the

next symbol in u. Then we extend each leaf in both trees by all possible ai+1-successors.
This will produce two aligned trees because each leaf configuration in one must be region
equivalent to the corresponding configuration in the other, and therefore satisfies the same
guards, enabling the same ai+1-transitions leading to equivalent successors. Note also that
all branches in each tree still have the same duration, as no delay step was taken.

Case 2: the duration of all branches in the first tree is strictly less than ti+1. Then
we extend all leafs in the tree from (s, ν) by a delay of duration d = 1 − fm and all
leafs in the other tree by a delay of duration d′ = 1 − f ′

m. Naturally, this produces
exactly one successor for each former leaf. The sets of new fractional values on leafs are⋃m

i=1(µ + d)(C × N) = {⊥ < 0 < f1 + d < · · · < fm−1 + d} and for any former leaf (q, µ)
extended by a delay (q, µ) d−→ (q, µ + d), we have

µ̂(x, n − 1) = m ⇐⇒ ̂(µ + d)(x, n) = 0 (1)

and

µ̂(x, n) = i < m ⇐⇒ ̂(µ + d)(x, n) = i + 1 ≤ m (2)

Analogous equivalences hold for the corresponding step (q, µ′) d′

−→ (q, µ′ + d′) on the other
tree. Notice that the two cases above are exhaustive as again, for all x ∈ C there is exactly
one n ∈ N with µ(x, n) ̸= ⊥. We aim to show that ̂(µ + d) = ̂(µ′ + d′). Consider any x ∈ C

and n ∈ N. We have that

̂(µ + d)(x, n) = m
(1)⇐⇒ µ̂(x, n + 1) = 0

(IH)⇐⇒ µ̂′(x, n + 1) = 0
(1)⇐⇒ ̂(µ′ + d′)(x, n) = m

and

̂(µ + d)(x, n) = i < m
(2)⇐⇒ µ̂(x, n) = i + 1

(IH)⇐⇒ µ̂′(x, n) = i + 1
(2)⇐⇒ ̂(µ′ + d′)(x, n) = i < m

It follows that ̂(µ + d) = ̂(µ′ + d′) which means that the two trees are again aligned, as
required.

To see why this procedure produces a run-tree on u (and an equivalent run-tree on some
word u′), observe that there can be at most |F | + 1 many consecutive delay extensions
according to step 2) before all integral clock values are strictly increased. ◀

B Deciding History-determinism

▶ Lemma 12. Given an fair LTS S, if Player 2 wins G2(S) then she wins Gk(S) for all k.
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This is the generalisation of [6, Thm 14] (on ω-regular automata) to fair LTSs. The
proof is similar to [6], without requiring positional strategies, and identical to that of [10,
Theorem 4] (on quantitative automata), without the quantitative aspects. If Player 2 wins
G2(S) then she obviously wins G1(S), using her G2 strategy with respect to two copies of
Player 1’s single token in G1. We therefore consider below k > 2.

Let σ2 be a winning strategy for Player 2 in G2(S). We inductively show that Player 2
has a winning strategy σi in Gi(S) for each finite i. To do so, we assume a winning strategy
σi−1 in Gi−1(S). The strategy σi maintains some additional (not necessarily finite) memory
that maintains the position of one virtual token in S, a position in the (not necessarily finite)
memory structure of σi−1, and a position in the (not necessarily finite) memory structure of
σ2. The virtual token is initially at the initial state of S. Then, the strategy σi then plays as
follows: at each turn, after Player 1 has moved his i tokens and played a letter (or, at the
first turn, just played a letter), it first updates the σi−1 memory structure, by ignoring the
last of Player 1’s tokens, and, treating the position of the virtual token as Player 2’s token in
Gi−1(S), it updates the position of the virtual token according to the strategy σi−1; it then
updates the σ2 memory structure by treating Player 1’s last token and the virtual token as
Player 1’s 2 tokens in G2(S), and finally outputs the transition to be played according to σ2.

We now argue that this strategy is indeed winning in Gi(S). Since σi−1 is a winning
strategy in Gi−1(S), the virtual token traces an accepting run if any of the runs built by the
first i − 1 tokens of Player 1 is accepting. Since σ2 is also winning, the run built by Player 2’s
token is accepting if either the run built by the virtual token or by Player 1’s last token
is accepting. Hence, Player 2’s is accepting whenever one of Player 1’s runs is accepting,
making this a winning strategy in Gi(S).

▶ Lemma 13. Given a fair LTS S with a safety acceptance condition, Player 2 wins G1(S)
if and only if S is history-deterministic.

Proof. If S is history-deterministic then Player 2 wins G1(S) by using the resolver to choose
her transitions. This guarantees that for all words in L(S) played by Player 1, her run is
accepting, which makes her victorious regardless of Player 1’s run.

For the converse, if Player 2 wins G1(S), consider the following family of copycat strategies
for Player 1: at first, Player 1 plays σ and chooses the same transitions as Player 2; if,
eventually, Player 2 chooses a transition τ from a configuration c that is not language-maximal,
that is, moves to a configuration c′ that does no accept some word w that is accepted by
some other configuration c′′ reachable by some other transition τ ′ from c, we call such a
move non-cautious, and Player 1 stops copying Player 2 and instead chooses τ ′. From there,
Player 1 wins by playing w and an accepting run on w from c′′. Since Player 2 wins G1(S),
her winning strategy σ does not play any non-cautious moves against copycat strategies.

Then, she can use σ in the letter-game, by playing as σ would play in G1(S) if Player 1
copies her transitions. This guarantees that she never makes a non-cautious move, and, in
particular, never moves out of the safe region of the automaton unless the prefix played by
Player 1 has no continuations in L(S). This is a winning strategy in the letter-game, so S is
history-deterministic. ◀

C Synthesis, Games and Composition

▶ Theorem 20. Given a history-deterministic timed parity automaton T , the synthesis game
for L(T ) is decidable and ExpTime-complete.
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Proof. For the upper bound, we reduce the problem to solving synthesis games for determ-
inistic timed parity automata, which is in ExpTime [14].

Let T = (S, ι, C, ∆, Σ, Acc) be a timed automaton. Let T ′ be the deterministic timed
automaton (S, ι, C, ∆′, Σ × ∆, Acc) where:

∆′ = {(s, g, (σ, (s, g, σ, c, s′)), c, s′)|(s, g, σ, c, s′) ∈ ∆}

In other words, T ′ is a deterministic automaton with the state space of T , over the
alphabet Σ × ∆, where the transition in the input letter dictates the transition in the
automaton. The language of T ′ is the set of words (w, ρ) such that there is an accepting run
of T over w along the transitions of ρ.

We now claim that given a history-deterministic automaton T with resolver r, Player
II wins the synthesis game on T if and only if she wins it on T ′. First assume that Player
II wins the synthesis game for T with a strategy s. Then, to win the synthesis game for
T ′, at each turn i, after Player I plays di and ai, she needs to make two choices: she must
choose both a response letter bi and a transition in T over (ai, bi). Given Player I’s move
and the (first component of the) word built so far, she can use the strategy s to choose the
response letter bi; this guarantees that the first component of the play is a word accepted
by T . To choose the transition of T , she can use the resolver r: given the run ρ built from
the delays (including di) and transitions played so far, she plays r(ρ, (ai, bi)). Since r is a
resolver, this strategy guarantees that the resulting run is accepting, and hence that she wins
the synthesis game on T ′.

On the other hand, if Player I wins the synthesis game on T , he has a strategy s which
guarantees a play w ∈ (Σi × ΣO)T that is not in the language of T . He can use the same
strategy in the synthesis game of T ′ to guarantee a play (w, ρ) such that w is not in the
language of T , and by extension (w, ρ) is not in the language of T ′, as there are no accepting
runs over w in T .

The lower bound follows from the ExpTime-completeness of synthesis for deterministic
TA [14]. ◀

Below we demonstrate that fair simulation checking for TA is ExpTime-hard even for
very simple acceptance conditions.

▶ Lemma 24. Checking fair simulation between TA is ExpTime-hard already for reachability
or safety acceptance, or over finite words.

Proof. This can be shown by reduction from countdown games [22], which are two-player
games (Q, T, k) given by a finite set Q of control states, a finite set T ⊆ (Q × N>0 × Q) of
transitions, labelled by positive integers, and a target number k ∈ N. All numbers are given
in binary encoding. The game is played in rounds, each of which starts in a pair (p, n) where
p ∈ Q and n ≤ k, as follows. First Player 1 picks a number l ≤ k − n, so that at least one
(p, l, p′) ∈ T exists; Then Player 2 picks one such transition and the next round starts in
(p′, n + l). Player 1 wins iff she can reach a configuration (q, k) for some state q.

Determining the winner in a countdown game is ExpTime-complete [22] and can easily
encoded as a simulation game between two TAs A and B as follows. Let A be the TA with
no clocks and unrestricted (guards are True) self-loops for the two letters a and e; The idea
is that Player 1 proposes l by waiting that long and then makes a discrete a-labelled move.
Then Player 2, currently in some state p can update his configuration to mimic that of the
countdown game, and punish (by going to a winning sink) if Player 1 cheated or the game
should end. To implement this, B has two clocks: one to store n – the total time that passed
– and one to store the current l, which is reset in each round.



T. A. Henzinger, K. Lehtinen, and P. Totzke 14:21

Suppose Player 1 waits for l units of time and then proposes a. Player 2, currently in
some state p will have

a and e-labelled transitions to a winning state with a guard that verifies that there is no
transition (p, l, p′).
a-labelled transitions to a state p′, with a guard that verifies that a some (p, l, p′) ∈ T

exists, and which resets clock x2.
a, and e-labelled transitions to a winning state guarded by x1 > k. This enables Player 2
to win if the global time has exceeded the target k.

The only way that Player 1 can win is by following a winning strategy in the countdown
game and by playing the letter e once B is in a configuration (q, k). Player 2 will not be able
to respond. ◀
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Abstract
Weighted Timed Games (WTG for short) are the most widely used model to describe controller
synthesis problems involving real-time issues. Unfortunately, they are notoriously difficult, and
undecidable in general. As a consequence, one-clock WTG has attracted a lot of attention, especially
because they are known to be decidable when only non-negative weights are allowed. However, when
arbitrary weights are considered, despite several recent works, their decidability status was still
unknown. In this paper, we solve this problem positively and show that the value function can be
computed in exponential time (if weights are encoded in unary).
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1 Introduction

The task of designing programs is becoming more and more involved. Developing formal
methods to ensure their correctness is thus an important challenge. Programs sensitive to
real-time allow one to measure time elapsing in order to take decisions. The design of such
programs is a notoriously difficult problem because timing issues may be intricate, and a
posteriori debugging such issues is hard. The model of timed automata [2] has been widely
adopted as a natural and convenient setting to describe real-time systems. This model
extends finite-state automata with finitely many real-valued variables, called clocks, and
transitions can check clocks against lower/upper bounds and reset some clocks.

Model-checking aims at verifying whether a real-time system modelled as a timed auto-
maton satisfies some desirable property. Instead of verifying a system, one can try to
synthesise one automatically. A successful approach, widely studied during the last decade,
is one of the two-player games. In this context, a player represents the controller, and an
antagonistic player represents the environment. Being able to identify a winning strategy
of the controller, i.e. a recipe on how to react to uncontrollable actions of the environment,
consists in the synthesis of a system that is guaranteed to be correct by construction.

In the realm of real-time systems, timed automata have been extended to timed games [3]
by partitioning locations between the two players. In a turn-based fashion, the player that
must play proposes a delay and a transition. The controller aims at satisfying some ω-regular
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objective however the environment player behaves. Deciding the winner in such turn-based
timed games has been shown to be EXPTIME-complete [18], and a symbolic algorithm
allowing tool development has been proposed [4].

In numerous application domains, in addition to real-time, other quantitative aspects
have to be taken into account. For instance, one could aim at minimising the energy used
by the system. To address this quantitative generalisation, weighted (aka priced) timed
games (WTG for short) have been introduced [8, 5]. Locations and transitions are equipped
with integer weights, allowing one to define the accumulated weight associated with a play.
In this context, one focuses on a simple, yet natural, reachability objective: given some
target location, the controller, that we now call Min, aims at ensuring that it will be reached
while minimising the accumulated weight. The environment, that we now call Max, has the
opposite objective: avoid the target location or, if not possible, maximise the accumulated
weight. This allows one to define the value of the game as the minimal weight Min can
guarantee. The associated decision problem asks whether this value is less than or equal to
some given threshold.

In the earliest studies of this problem, [1, 8] proposed semi-decision procedures to
approximate this value for WTG with non-negative weights. In addition, [8] identifies
the subclass of strictly non-Zeno cost WTG for which their algorithm terminates. This
approximation is motivated by the undecidability of the problem, first shown in [11]. This
restriction has recently been lifted to WTG with arbitrary weights in [15].

An orthogonal research direction to recover decidability is to reduce the number of clocks
and more precisely to focus on one-clock WTG. Though restricted, a single clock is often
sufficient for modelling purposes. When only non-negative weights are considered, decidability
has been proven in [10] and later improved in [22, 17] to obtain exponential time algorithms.
Despite several recent works, the decidability status of one-clock WTG with arbitrary weights
is still open. In the present paper, we show the decidability of the value problem for this
class. More precisely, we prove that the value function can be computed in exponential time
(if weights are encoded in unary and not in binary).

Before exposing our approach, let us briefly recap the existing results. Positive results
obtained for one-clock WTG with non-negative weights are based on a reduction to so-called
simple WTG, where the underlying timed automata contain no guard, no reset, and the clock
value along with the execution exactly spans the [0, 1] interval. In simple WTG, it is possible
to compute (in exponential time) the whole value function starting at time 1 and going back
in time until 0 [10, 22]. Another technique, that we will not explore further in the present
work, consists in using the paradigm of strategy iteration [17], leading to an exponential-time
algorithm too. A PSPACE lower-bound is also known for related decision problems [16].

More recent works extend the positive results of simple WTG to arbitrary weights [12, 13],
yielding decidability of reset-acyclic one-clock WTG with arbitrary weights, with a pseudo-
polynomial time complexity (that is polynomial if weights are encoded in unary). It is also
explained how to extend the result to all WTG where no cyclic play containing a reset may
have a negative weight arbitrarily close to 0. Moreover, it is shown that Min needs memory
to play (almost-)optimally, in a very structured way: Min uses switching strategies, that
are composed of two memoryless strategies, the second one being triggered after a given
(pseudo-polynomial) number κ of steps.

The crucial ingredient to obtain decidability for non-negative weights or reset-acyclic
weighted timed games is to limit the number of reset transitions taken along a play. This is
no longer possible in presence of cycles of negative weights containing a reset. There, Min
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may need to iterate cycles for a number κ of times that depends on the desired precision ε

on the value (to play ε-optimally, Min needs to cycle O(1/ε) times, see Example 3). To rule
out these annoying behaviours, we rely on three main ingredients:

As there is a single clock, a cyclic path ending with a reset corresponds to a cycle of
configurations. We define the value of such a cycle, that allows us to identify which player
may benefit from iterating it.
Using the classical region graph construction, we prove stronger properties on the value
function (it is continuous on the closure of region intervals). This allows us to prove that
Max has an optimal memoryless strategy that avoids cycles whose value is negative.
We introduce a partial unfolding of the game, so as to obtain an acyclic WTG, for which
decidability is known. To do so, we rely on the existence of (almost-)optimal switching
strategies for Min, allowing us to limit the depth of exploration. Also we keep track of
cycles encountered and handle them according to their value. Using the previous result
on the existence of a “smart” optimal strategy for Max, we show that this unfolding has
the same value as the original WTG.

The paper is organized as follows: weighted timed games are presented in Section 2. We
then focus on cycles in Section 3. Our unfolding is presented in Section 4, with a sketch of
the main proof. Some of the technical proofs can be found in Appendix, and a long version
is available with all the proofs [21].

2 Weighted timed games

2.1 Definitions
We will consider weighted timed games with a single clock, denoted by x. The valuation of
this clock is a non-negative real number ν. On such a clock, transitions of the timed games
will be able to check some interval constraints on the clock, i.e. intervals I of real values with
closed or open bounds that are natural numbers (or +∞). For every interval I = (a, b) we
denote by Ī = [a, b] its closure.

▶ Definition 1. A weighted timed game is a tuple ⟨QMin, QMax, Qt, Qu, ∆, wt, wtt⟩ with
Q = QMin ⊎ QMax ⊎ Qt a finite set of locations split between players Min and Max (in
drawings, locations belonging to Min are depicted by circles and the ones belonging to Max
by squares) and a set of target locations;
Qu ⊆ QMin ⊎ QMax a set of urgent locations where time cannot be delayed;
∆ a finite set of transitions each of the form q

I,R,w−−−−→ q′, with q and q′ two locations (with
q /∈ Qt), I an interval, w ∈ Z being the weight of the transition, and R being either {x}
when the clock must be reset (depicted by x := 0), or ∅ when it does not;
wt : Q → Z a weight function associating an integer weight with each location: for
uniformisation of the notations, we extend this weight function to also associate with each
transition the weight it contains, i.e. wt

(
q

I,R,w−−−−→ q′) = w;
and wtt : Qt × R≥0 → R a function mapping each target configuration to a final weight,
where R = R ∪ {−∞, +∞}.

The addition of final weights in weighted timed games (WTG) is not standard, but we
use it in the process of solving those games: in any case, it is possible to simply map a
given target location to the weight 0, allowing us to recover the standard definitions of the
literature. The presence of urgent locations is also unusual: in a timed automaton with
several clocks, urgency can be modelled with an additional clock u that is reset just before
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entering the urgent location and with constraints u ∈ [0, 0] on outgoing transitions. However,
when limiting the number of clocks to one, we regain modelling capabilities by allowing for
such urgent locations. The weight of an urgent location is never used and will thus not be
given in drawings: instead, urgent locations will be displayed with a u inside.

The semantics of a WTG G is defined in terms of an infinite transition system JGK whose
vertices are configurations (q, ν) ∈ Q × R≥0. Configurations are split into players according
to the location q, and a configuration (q, ν) is a target if q ∈ Qt. Edges linking vertices will
be labelled by elements of R≥0 × ∆, to encode the delay that a player wants to spend in
the current location, before firing a certain transition. For every delay t ∈ R≥0, transition
δ = q

I,R,w−−−−→ q′ ∈ ∆ and valuation ν, we add a labelled edge (q, ν) t,δ−−→ (q′, ν′) if
ν + t ∈ I;
ν′ = 0 if R = {x}, and ν′ = ν + t otherwise;
and t = 0 if q ∈ Qu.

This edge is given a weight t×wt(q)+wt(δ) taking into account discrete and continuous weights.
As usual in related work [1, 8, 9], we will assume that the valuation of the clock x is

bounded by the greatest constant M to appear in guards, and we, therefore, restrict ourselves
to configurations of the form (q, ν) ∈ Q × [0, M ]. We also suppose the absence of deadlocks
except on target locations, i.e. for each location q ∈ Q\Qt and valuation ν ∈ [0, M ], there
exist t ∈ R≥0 and δ = q

I,R,w−−−−→ q′ ∈ ∆ such that (q, ν) t,δ−−→ (q′, ν′), and no transitions
start from Qt. This second restriction is without loss of generality by applying classical
techniques [6, Lemma 5].

We also assume that the final weight functions satisfy a sufficient property ensuring that
they can be encoded in finite space. First, we call regions1 of G the set

RegG = {(Mi, Mi+1) | 0 ≤ i ≤ k − 1} ∪ {{Mi} | 0 ≤ i ≤ k}

where M0 = 0 < M1 < · · · < Mk are all the endpoints of the intervals appearing in the
guards of G (to which we add 0 if needed). Then, we require final weight functions to be
piecewise affine with a finite number of pieces and continuous on each region. More precisely,
we assume that cutpoints and coefficients are rational and given in binary.

We let Wloc, Wtr and Wfin be the maximum absolute value of weights of locations,
transitions and final functions, i.e.

Wloc = max
q∈Q

|wt(q)| Wtr = max
δ∈∆

|wt(δ)| Wfin = sup
q∈Qt s.t. wtt(q,·)/∈{+∞,−∞}

sup
ν∈I

|wtt(q, ν)|

We also let W be the maximum of Wloc, Wtr, and Wfin.
We call path a finite or infinite sequence of consecutive transitions δ0, δ1, · · · of ∆, that

we sometimes denote by q0
δ0−→ q1

δ1−→ q2 · · · . We let FPaths be the set of all finite paths. We
let |π| be the number of transitions in the finite path π, that we call its length. For a given
transition δ, we let |π|δ denote the number of occurrences of δ in π.

We call play a finite or infinite sequence of edges in the semantics of the game that we
denote by (q0, ν0) t0,δ0−−−→ (q1, ν1) t1,δ1−−−→ (q2, ν2) · · · A play is said to follow a path if both use
the same sequence of transitions. We let |ρ| be the length of play, defined as the length
of the path it follows. We let |ρ|δ be the number of occurrences of the transition δ in the
finite play ρ. More generally, for all sets of transitions A, we let |ρ|A be the number of

1 This is inspired by a construction by Laroussinie, Markey, and Schnoebelen [19], which allows one to
reduce the number of regions with respect to the more usual one of [2] in the case of a single clock.
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Figure 1 On the left, a WTG with a cyclic path of weight [−1, 1] containing a reset. Missing
weights are 0. The target location is ,, whose final weight function is zero. Location q3 is urgent.
On the right, its closure restricted to locations q0, q1, q2 and ,.

occurrences of all transitions from A in the finite play ρ, i.e. |ρ|A =
∑

δ∈A |ρ|δ. We let FPlays
be the set of finite plays. For a finite path π or a finite play ρ, we let last(π) and last(ρ) be
the last location or configuration. We let FPathsMax (respectively, FPathsMin) and FPlaysMax
(respectively, FPlaysMin) be the subset of finite paths or plays whose last element belong to
player Max (respectively, Min).

A finite play ρ can be associated with a weight that consists in accumulating the weight
of the edges it traverses: if ρ = (q0, ν0) t0,δ0−−−→ (q1, ν1) · · · (qk, νk), we let

wtΣ(ρ) =
k−1∑
i=0

(
wt(ℓi) × ti + wt(δi)

)
.

A maximal play ρ (either infinite or trapped in a deadlock that is necessarily a target
configuration) is associated with a payoff P(ρ) as follows: the payoff of an infinite play
(meaning that it never visits a target location) is +∞, while the payoff of a finite play,
thus ending in a target configuration (q, ν), is wtΣ(ρ) + wtt(q, ν). The weight of a finite
path π consists of the set of the cumulated weight of all the finite plays that follow π:
wtΣ(π) = {wtΣ(ρ) | ρ following π}. By [5], the weight of a path is known to be an interval
of values. Moreover, when all the guards along the path are closed intervals, the weight of
the path is also a closed interval.

A cyclic path is a finite path that starts and ends in the same location. A cyclic play is a
finite play that starts and ends in the same configuration: it necessarily follows a cyclic path,
but the reverse might not be true since some non-cyclic plays can follow a cyclic path (if
they do not end in the same clock valuation as the one in which they start).

▶ Example 2. The cyclic path π = q0
δ1−→ q1

δ2−→ q0 depicted on the left in Figure 1
has a weight between −1 (with the play (q0, 0) 0,δ1−−→ (q1, 0) 1,δ2−−→ (q0, 0)) and 1 (with
the play (q0, 0) 1,δ1−−→ (q1, 1) 0,δ2−−→ (q0, 0)), so wtΣ(π) = [−1, 1]. Another cyclic path is
π′ = q0

δ6−→ q3
δ7−→ q0 which goes via an urgent location. All plays that follow this path are of

the form (q0, ν) t,δ6−−→ (q3, ν + t) 0,δ7−−→ (q0, ν + t) with ν and ν + t less than 1, that all have a
weight 1. Thus wtΣ(π′) = {1}.

A strategy aims at giving the recipe of each player. A strategy of Min is a function
σ : FPlaysMin → R≥0 × ∆ mapping each finite play ρ whose last configuration belongs to Min
to a pair (t, δ) of delay and transition, such that the play ρ can be extended by an edge
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labelled with (t, δ). A similar definition holds for strategies τ of Max. We let StratMin,G
(respectively, StratMax,G) be the set of strategies of Min (respectively, Max) in the game G, or
simply StratMin and StratMax if the game is clear from the context: we will always use letters
σ and τ to differentiate from strategies of Min and Max.

A strategy is said to be memoryless if it only depends on the last configuration of the
plays. More formally, Max’s strategy τ is memoryless if for all plays ρ and ρ′ such that
last(ρ) = last(ρ′), we have τ(ρ) = τ(ρ′).

A play ρ is said to be conforming to a strategy σ (respectively, τ) if the choice made
in ρ at each location of Min (respectively, Max) is the one prescribed by σ (respectively, τ).
Moreover, a finite path π is said to be conforming to a strategy σ (respectively, τ) if there
exists a finite play following π that is conforming to σ (respectively, τ).

After both players have chosen their strategies σ and τ , each initial configuration (q, ν)
gives rise to a unique maximal play that we denote by Play((q, ν), σ, τ). The value of the
configuration (q, ν) is then obtained by letting players choose their strategies as they want,
first Min and then Max, or vice versa since WTG is known to be determined [12]:

ValG(q, ν) = sup
τ

inf
σ

P(Play((q, ν), σ, τ)) = inf
σ

sup
τ

P(Play((q, ν), σ, τ)).

The value of a strategy σ of Min (symmetric definitions can be given for strategies τ

of Max) is defined as ValσG(q, ν) = supτ P(Play((q, ν), σ, τ)). Then, a strategy σ∗ of Min
is optimal if, for all initial configurations (q, ν), Valσ

∗

G (q, ν) ≤ ValG(q, ν). Because of the
infinite nature of the timed games, optimal strategies may not exist: for example, a player
may want to let time elapse as much as possible, but with a delay t < 1 because of a
strict guard, preventing them to obtain the optimal value. We will see in Example 12
that this situation can even happen when all guards contain only closed comparisons. We
naturally extend the definition to almost-optimal strategies, taking into account small possible
errors: we say that a strategy σ∗ of Min is ε-optimal if, for all initial configurations (q, ν),
Valσ

∗

G (q, ν) ≤ ValG(q, ν) + ε.

▶ Example 3. We have seen that in q0 (on the left in Figure 1), Min has no interest in
following the cycle q0

δ6−→ q3
δ7−→ q0 since it has weight {1}. Jumping directly to the target

location via δ3 leads to a weight of 1. But Min can do better: from valuation 0, by jumping
to q1 after a delay of t ≤ 1, it leaves a choice to Max to either jump to q2 and the target
leading to a total weight of 1 − t, or to loop back in q0 thus closing a cyclic play of weight
−2(1 − t) + 1 = 2t − 1. If t is chosen too close to 1, the value of the cycle is greater than 1,
and Max will benefit from it by increasing the total weight. If t is chosen as smaller than 1/2,
the weight of the cycle is negative, and Max will prefer to go to the target to obtain a weight
1 − t close to 1, not very beneficial to Min. Thus, Min prefers to play just above 1/2, let say
at 1/2 + ε. In this case, Max will choose to go to the target with a total weight of 1/2 + ε.
The value of the game, in configuration (q0, 0) is thus ValG(q0, 0) = 1/2. Not only Min does
not have an optimal strategy (but only ε-optimal ones, for every ε > 0), but needs memory
to play ε-optimally, since Min cannot play ad libitum transition δ2 with a delay 1/2 − ε: in
this case, Max would prefer staying in the cycle, thus avoiding the target. Thus, Min will
play the transition δ1 at least 1/4ε times so that the cumulated weight of all the cycles is
below −1/2, in which case Min can safely use transition δ1 still earning 1/2 in total.

2.2 Closure
We first recall more in details the method used to solve WTG in [12], starting with the
(slightly updated presentation of the) construction that consists in enhancing the locations
with regions and closing all guards while preserving the value of the game.
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▶ Definition 4. The closure of a WTG G is the WTG G = ⟨LMin, LMax, Lt, Lu, ∆, wt, wtt⟩
where:

L = LMin ⊎LMax ⊎Lt with LMin = QMin ×RegG , LMax = QMax ×RegG , Lt = Qt ×RegG , Lu =
Qu × RegG;
for all (q, I) ∈ L, (q, I) Ig∩I′′,R,w−−−−−−−→(q′, I ′) ∈ ∆ if and only if there exist a transition
q

Ig,R,w−−−−→ q′ ∈ ∆, and a region I ′′ such that Ig ∩ I ′′ ̸= ∅, the lower bound of I ′′ is at least
the one of I (to model time elapsing), and I ′ is equal to I ′′ if R = ∅ and to {0} otherwise:
Ig ∩ I ′′ stands for the topological closure of the non-empty interval Ig ∩ I ′′;
for all (q, I), we have wt(q, I) = wt(q);
for all (q, I) ∈ Lt, for ν ∈ I, wtt((q, I), ν) = wtt(q, ν) and extend ν 7→ wtt((q, I), ν) by
continuity on Ī, the closure of the interval I. We may also let wtt((q, I), ν) = +∞ for all
ν /∈ I, even though we will never use this in the following.

The following set of configurations is an invariant of the closure (i.e. starting from such
configuration fulfilling the invariant, we can only reach configurations fulfilling the invariant):

configurations ((q, {Mk}), Mk);
and configurations ((q, (Mk, Mk+1)), ν) with ν ∈ [Mk, Mk+1] (and not only in (Mk, Mk+1)
as one might expect).

▶ Example 5. Figure 1 depicts the closure (left) of the WTG (right) restricted to locations
q0, q1, q2, and , (we have seen that q3 is anyway useless).

The closure of the guards allows players to mimic a move in G “arbitrarily close” to Mk+1
in (Mk, Mk+1) to be simulated by jumping on Mk+1 still in the region (Mk, Mk+1).

▶ Lemma 6 ([12]). For all WTG G, (q, I) ∈ Q×RegG and ν ∈ I, ValG(q, ν) = ValG((q, I), ν).

It is also shown in [12] that we can transform an ε-optimal strategy of G into an ε′-
optimal strategy of G with ε′ < 2ε and vice-versa. Not only the closure construction adds
the capability for a player to play “arbitrarily close” to the border of a region as a new
move, but it also makes the value function more manageable for our purpose. Indeed, as
shown in [12], the mapping ν 7→ ValG(ℓ, ν) is continuous over all regions, but there might be
discontinuities at the borders of the regions. The closure construction clears this issue by
softening the borders of each region independently:

▶ Lemma 7. For all WTG G and (q, I) ∈ Q × RegG, the mapping ν 7→ ValG((q, I), ν) is
continuous over I.

In [12], it is also shown that the mapping ν 7→ ValG(ℓ, ν) is piecewise affine on each region
where it is not infinite, that the total number of pieces (and thus of cutpoints, in-between
two such affine pieces) is exponential, and that all cutpoints and the value associated to such
a cutpoint are rational numbers. In more recent developments in [13], authors improve the
exponential complexity into pseudo-polynomial (i.e. polynomial in the number of locations
and in the biggest weight W ), which we will use in the sequel. Thus, they obtain:

▶ Theorem 8 ([13]). If G is an acyclic WTG (i.e. that does not contain cyclic path), then for
all locations q, the piecewise affine mapping ν 7→ ValG(q, ν) is computable in time polynomial
in |Q| and W .

In [13], this result is slightly extended to take into account cyclic paths containing resets
when their weight is either non-negative, or not arbitrarily close to 0.

▶ Example 9. Notice that the game on the left in Figure 1 does not fulfil this hypothesis:
indeed the play (q0, 0) 1/2−ε,δ1−−−−−−→ (q1, 1/2 − ε) 1/2+ε,δ2−−−−−−→ (q0, 0) is a cyclic play of weight −2ε

negative and arbitrarily close to 0.
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15:8 Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

2.3 Contribution
In this work, we use a different technique to push the decidability frontier, and prove that
the value function is computable for all WTG (in particular the one of Figure 1):

▶ Theorem 10. For all WTG G and all locations qi, the mapping ν 7→ ValG(qi, ν) is
computable in time exponential in |Q| and Wtr, and polynomial in Wloc and Wfin.

▶ Remark 11. The complexities of Theorems 8 and 10 would be more traditionally considered
as exponential and doubly-exponential if weights of the WTG were encoded in binary as
usual. In this work, we thus count the complexities as if all weights were encoded in unary
and thus consider W to be the bound of interest. For Theorem 8, the obtained bound is
classically called pseudo-polynomial in the literature.

The rest of this article gives the proof of Theorem 10. We fix a WTG G and an initial
location qi. We let G = ⟨LMin, LMax, Lt, Lu, ∆, wt, wtt⟩ be its closure. We first use Lemma 6
which allows us to deduce the result by computing the value functions ν 7→ ValG((qi, I), ν),
for all regions I. Regions I over which ν 7→ ValG((qi, I), ν) is constantly equal to +∞ or −∞
are computable in polynomial-time, as explained in [12]. We, therefore, remove them from G
from now on. We now fix an initial region Ii and let ℓi = (qi, Ii).

As in the non-negative case [10], the objective is to limit the number of transitions with
a reset taken into the plays while not modifying the value of the game. When all weights are
non-negative, this is fairly easy to achieve since, intuitively speaking, Min has no interest in
using any cycles containing such a transition (since it has non-negative weight and is thus
non-beneficial for Min). The game can thus be transformed so that each transition with a
reset is taken at most once. To obtain a smaller game, it is even possible to simply count the
number of transitions with a reset taken so far in the play and stop the game (with a final
weight +∞) in case the counter goes above the number of such transitions in the game. The
transformed game has a polynomial number of locations with respect to the original game,
and is reset-acyclic, which allows one to solve it with a pseudo-polynomial time complexity
(instead of the exponential-time complexity originally achieved in [10, 22]).

The situation is much more intricate in the presence of negative weights since negative
cycles containing a transition with a reset can be beneficial for Min, as we have seen in
Example 3. Notice that this is still true in the closure of the game, as can be checked on the
right in Figure 1. Moreover, some cyclic paths may have an interval of possible weights with
both positive and negative values, making it difficult to determine whether it is beneficial to
Min or not. To overcome this situation, we will consider the point of view of Max, making a
profit from the determinacy of the WTG. We will show that, in a closed game G, Max can play
optimally with memoryless strategies while avoiding negative cyclic plays. This will simplify
our further study since, by following this strategy, Max ensures that only non-negative cyclic
plays will be encountered, which is not beneficial to Min. Therefore, as in [10], we will limit
the firing of transitions with a reset to at most once. However, we are not able to do it
without blowing up exponentially the number of locations of the games. Instead, along the
unfolding of the game, we need to record enough information in order to know, in case a
cyclic path ending with a reset is closed, whether this cyclic path has a potential negative
weight (in which case Max will indeed not follow it) or non-negative weight (in which case it
is not beneficial for Min to close the cycle). Determining in which case we are will be made
possible by introducing the notion of value of a cyclic path in Section 3. Then, Max has even
an optimal strategy to avoid closing cyclic paths with negative value (which is stronger than
only avoiding creating negative cyclic plays). The unfolding, denoted U , will be defined in
Section 4. In order to prove that it is a game equivalent to G, we will prove that Max can do
as well as in U from G and vice-versa.
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Figure 2 On the left, a WTG where Max needs memory to play ε-optimally. On the right, its
closure where we merged several transitions by removing unnecessary guards.

3 Controlling negative cycles

One of the main arguments of our proof is that, in the closed game G, Max can play optimally
with memoryless strategies while avoiding negative cyclic plays. As already noticed in [12],
this is not always true in non-closed games: Max may need memory to play ε-optimally
without the possibility to avoid some negative cyclic plays.

▶ Example 12. In the WTG G depicted on the left in Figure 2, we can see that Val(q1, 0) = 0,
but Max does not have an optimal strategy, needs memory to play ε-optimally, and cannot
avoid negative cyclic plays. Indeed, if at some point the strategy of Max chooses a delay less
than or equal to 1, then Min can always choose δ4, and the value of this strategy is −10.
Thus, an optimal strategy for Max always chooses a delay greater than 1. However, Max
must choose a delay closer and closer to 1. Otherwise, if there exists β > 0 such that all
delays chosen by the strategy are greater than 1 + β, Min has a family of strategies with
a value that will tend to −∞ by staying longer and longer in the cycle with a weight at
most −β. Thus, Max does not have an optimal strategy, and the ε-optimal strategy requires
infinite memory to play with delays closer and closer to 1 (for instance, after the nth round
in the cycle, Max delays ε/2n time units, to sum up, all weights to a value at most −ε).

Such convergence phenomena needed by Max do not exist in G since all guards are closed
(this is not sufficient alone though) and by the regularity of Val given by Lemma 7.

▶ Example 13. We consider the closed game depicted on the right in Figure 2. The ε-optimal
strategy (with memory) of Max in G translates into an optimal memoryless strategy in G:
in (q1, {0}), Max can delay 1 time unit and jump into the location (q0, (1, 2)). Then cyclic
plays that Min can create have a zero weight and are thus not profitable for either player.

To generalise this explanation, we start by defining the value of cyclic paths ending with
a reset in G. Intuitively, the value of this cyclic path is the weight that Min (or Max) can
guarantee regardless of the delays chosen by Max (or Min) during this one.

▶ Definition 14. We define by induction the value ValνG(π) of a finite path π in G from an
initial valuation ν of the clock: if π has length 0, we let ValνG(π) = 0, otherwise, π can be
written ℓ0

δ0−→π′ (with π′ starting in location ℓ1), and we let

ValνG(π) =
{

inft0

(
t0wt(ℓ0) + wt(δ0) + Valν

′

G (π′)
)

if ℓ0 ∈ LMin

supt0

(
t0wt(ℓ0) + wt(δ0) + Valν

′

G (π′)
)

if ℓ0 ∈ LMax

where t0 and ν′ are such that (ℓ0, ν) t0,δ0−−−→ (ℓ1, ν′) is an edge of JGK. Then, for a cyclic path
π of G ending by a transition with a reset, we let ValG(π) = Val0G(π).
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The value of a cyclic path belongs to the interval wtΣ(π) and corresponds to the weight
of a cyclic play that follows this path.

▶ Example 15. Let π = (q0, {0}) δ1−→ (q1, (0, 1)) δ2−→ (q0, {0}) be the cyclic path of the game
G depicted on the right in Figure 1, for which wtΣ(π) = [−1, 1]. To evaluate the value of π,
Min only needs to choose a delay t1 ∈ [0, 1] when firing δ1, while Max has no choice but to
play a delay 1 − t1 when firing δ2, generating a finite play ρ of weight wtΣ(ρ) = 2t1 − 1. We
deduce that ValG(π) = inft1(2t1 − 1) = −1 (when Min chooses t1 = 0).

A cyclic path with a negative value ensures that Min can guarantee a cyclic play with a
negative weight that follows it, but there may exist other cyclic plays with a non-negative
weight that follows it. It is exactly those cycles that are problematic for Max since Min can
benefit from them. We now show our key lemma: in the closed game, Max can play optimally
and avoid cyclic paths of negative value.

▶ Lemma 16. In G (where regions with infinite value had been remote), Max has a memoryless
optimal strategy τ∗ such that
1. all cyclic plays conforming to τ∗ have a non-negative weight;
2. all cyclic paths ending by a reset conforming to τ∗ have a non-negative value.

Sketch of proof. We build upon the fact [8, 7] that the value function ValG : L × R≥0 →
R is a fixed point (even the greatest one) of the operator F defined as follows: for all
configurations (ℓ, ν) and all mappings X : L × R≥0 → R, we let

F(X)(ℓ, ν) =


wtt(ℓ, ν) if ℓ ∈ Lt

inf
ℓ,ν

t,δ−−→ℓ′,ν′

(
wt(δ) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ ∈ LMin

sup
ℓ,ν

t,δ−−→ℓ′,ν′

(
wt(δ) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ ∈ LMax

We use this fact to define the memoryless strategy τ∗. Indeed, the identity ValG = F(ValG),
applied over configurations belonging to Max suggests a choice of transition and delay to
play almost optimally. As F computes a supremum on the set of possible (transitions and)
delays, this does not directly lead to a specific choice: in general, this would give rise to
ε-optimal strategies and not an optimal one. This is where we rely on the continuity of ValG
(Lemma 7) on each closure of region to deduce that this supremum is indeed a maximum.
More precisely, for ℓ ∈ LMax, we can write F(ValG)(ℓ, ν) as

max
δ∈∆

sup
t s.t. ℓ,ν

t,δ−−→ℓ′,ν′

(
wt(δ) + t wt(ℓ) + ValG(ℓ′, ν′)

)
.

The guard of transition δ is the closure I of a region I ∈ RegG , therefore, t is in a closed
interval J of values such that ν + t falls in I. Notice that ν′ is either 0 if δ contains a reset or
is ν + t: in both cases, this is a continuous function of t. Relying on the continuity of ValG ,
the mapping t ∈ J 7→ wt(δ) + t wt(ℓ) + ValG(ℓ′, ν′) is thus continuous over a compact set so
that its supremum is indeed a maximum. We thus let the memoryless strategy τ∗ be such
that, for all configurations (ℓ, ν), τ∗(ℓ, ν) is chosen arbitrarily in

argmax
δ∈∆

argmax
t s.t. ℓ,ν

t,δ−−→ℓ′,ν′

(
wt(δ) + t wt(ℓ) + ValG(ℓ′, ν′)

)
(1)

The strategy τ∗ is then extended to finite plays by considering only the last configuration of
the play. We can show that τ∗ is an optimal strategy that satisfies the two properties of the
lemma. ◀
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Figure 3 On the left, a WTG such that its closure on the right contains a cyclic path with a
weight [−1, 1] and a value 0. Moreover Max uses the cyclic path to play optimally.
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Figure 4 Scheme of the unfolding of a closed game.

Lemma 16 does not allow us to conclude on the decidability of the value problem since
we use the unknown value ValG to define the optimal strategy. However, it will help us in
the final step of the proof (see Appendix A).

As a side note, it is tempting to strengthen Lemma 16-2 so as to ensure that all cyclic
paths ending by a reset conforming to τ∗ have a non-negative weight (and not only the
value), i.e. an interval of weights entirely included in [0, +∞). Unfortunately, this does not
hold, as shown in the following example:

▶ Example 17. We consider the closed game depicted on the right in Figure 3. Let
π = (q0, {0}) δ1−→ (q1, {0}) δ2−→ (q0, {0}) be the cyclic path for which wtΣ(π) = [−1, 1]. To
evaluate the value of π, Min and Max need to choose delays t1, t2 ∈ [0, 1] when firing δ1 and
δ2. We obtain a set of finite plays ρ parametrised by t1 and t2 of weight wtΣ(ρ) = −t1 + t2.
We deduce that ValG(π) = inft1 supt2

(t2 − t1) = 0 (when Min and Max choose t1 = t2 = 1).
The optimal strategy of Max does not use the transition δ3 and is thus forced to play in
the previous cyclic path (with a non-negative value but with a negative weight): from the
configuration ((q0, {0}), 0), Min has thus no other choice than playing transition δ4 after a
delay of 1 unit of time, leading to a value of −1.

4 Unfolding

We now define the partial unfolding of the game G that we need in order to compute ValG ,
stopping the unfolding when too many transitions with a reset have been taken or when
the play is too long since the last reset. About the transitions with a reset, when such a
transition is taken for the first time, we go into anew copy of the game, from which, if this
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Figure 5 A WTG (left), and a portion of its closure (right) where δ′
2 belongs to a cyclic path of

non-negative value and another cyclic path of negative value.

transition happens to be chosen one more time, we stop the game by jumping into a new
target location. The final weight of this target location is determined by the value of the
cyclic path (ending with a reset) that would have just been closed. If the cyclic path has a
negative value, then we go in a leaf t<0 of final weight −∞ since this is a desirable cycle for
Min. Otherwise, we go in a leaf t≥0 of final weight big enough |L|(Wtr + M Wloc) + Wfin (for
technical reasons that will become clear later, we cannot simply put a final weight +∞) so
as it remains an undesirable behaviour for Min.

A single transition with a reset can be part of two distinct cyclic paths, one of negative
value and the other of non-negative value, as demonstrated in the following example:

▶ Example 18. In Figure 5, we have depicted a WTG (left) and a portion of its closure
(right), where δ′

2 is contained in a cyclic path of negative value

(q0, {0}) δ′
3−→ (q2, {0}) δ′′

4−→ (q0, {1}) δ′′
1−→ (q1, {0}) δ′

2−→ (q0, {0})

and another cyclic path of non-negative (zero) value

(q0, {0}) δ′
1−→ (q1, {0}) δ′

2−→ (q0, {0}).

Thus, knowing the last transition of the cycle is not enough to compute the value of the
cyclic path. Instead, we need to record the whole cyclic path: copying the game (as done
in the non-negative setting [10]) is not enough, our unfolding needs to remember the path
followed so far. Locations of the unfolding are thus finite paths of G.

In order to obtain an acyclic unfolding, we will rely on a property of reset-acyclic WTG,
i.e that do not contain cyclic paths with a transition with a reset. For such WTG, [13] shows
the existence of an ε-optimal strategy for Min with a particular shape. This strategy is also
called as switching strategy [14], as defined by the following:

▶ Definition 19. A switching strategy σ is described by two memoryless strategies σ1 and σ2,
as well as a switching threshold κ′. The strategy σ then consists in playing strategy σ1 until
either we reach a target location or the finite play has a length of at least κ′, in which case
we switch to strategy σ2.

Intuitively, σ1 aims at reaching a cyclic play with negative weight, while σ2 is an attractor
to the target. As a consequence, we can estimate the maximal number of steps needed
by σ2 to reach the target. Combining this with the switching threshold κ′ we can deduce a
threshold κ that upper bounds the number of steps under the switching strategy σ to reach
the target. We obtain the following result with an explicit bound κ given by the previous
work of [13]. From a combination of their Lemma 5 and Theorem 25, we know that the
switching threshold κ′ is in

O
(
|L| ×

[
Wloc + W 4

tr|L|9 × |L|Wtr + W 4
tr|L|9

])
= O

(
|L|11(Wloc + W 4

tr)
)
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Algorithm 1 Function Next that maps pairs (π, δ) ∈ FPathsG × ∆ to pairs (π′, δ′) composed of
a finite path π′ of G (or t≥0, or t<0, or t+∞) and a new transition δ′ of the unfolding U .

1: function Next(π, δ = ℓ1
I,R,w−−−−→ ℓ2): ▷ last(π) = ℓ1

2: if ℓ2 ∈ Lt then π′ := ℓ2
3: else if R = {x} then
4: if |π|δ = 0 then π′ := π · δ

5: else { let π = π1 · δ · π2
6: if ValG(π2 · δ) ≥ 0 then π′ := t≥0 else π′ := t<0}
7: else { let π = π1 · π2 where π2 contains no reset and |π2| is maximal
8: if |π2| = κ then π′ := t+∞ else π′ := π · δ }
9: δ′ := π

I,R,w−−−−→ π′ ▷ ∆proj(δ′) := δ

10: return (π′, δ′)

Then, we let κ′′ be the number of turns taken by σ2 to reach the target location, which is
polynomial in the number of locations of the underlying region automaton, thus polynomial
in the number of locations of the game (since there is only one-clock). Overall, this gives a
definition for κ as

κ = κ′ + κ′′ = O
(
|L|12(Wloc + W 4

tr)
)

that is polynomial in |Q| (as |L| is polynomial in |Q|) and in W .

▶ Lemma 20 ([13]). Let G be a reset-acyclic WTG. Min has an ε-optimal switching strategy σ

such that all plays conforming to σ reach the target within κ steps. Moreover, κ is polynomial
in |Q| and W .

As a consequence, assuming that Min plays almost optimally using a switching strategy,
we can bound the number of steps between two transitions with a reset by κ. This property
allows us to avoid incorporating cycles in the unfolding: we cut the unfolding when the play
becomes longer than κ since the last seen transition with a reset. In this case, we will jump
into a new target location t+∞ whose final weight is equal to +∞ since it is an undesirable
behaviour for Min.

The scheme of the unfolding is depicted in Figure 4 when the closed game G contains two
transitions with a reset, δ1 and δ2, each belonging to several cycles of different values (negative
and non-negative). Inside each grey component, transitions with no reset are unfolded for κ

steps by only keeping in the current location the path followed so far. In-between the
components are transitions with a reset. The second time they are visited, the value of the
cycle it closes is computed, and we jump in t<0 or t≥0 depending on the sign of the value.

▶ Definition 21. The unfolding of G from the initial location ℓi is the (a priori infinite)
WTG U = ⟨L′

Min, L′
Max, L′

t, L′
u, ∆′, wt′, wt′

t⟩ with L′
Min ⊆ FPathsMin, L′

Max ⊆ FPathsMax, L′
t ⊆

Lt ∪ {t≥0, t<0, t+∞} such that
L′ = L′

Min ⊎ L′
Max ⊎ L′

t and ∆′ are the smallest sets such that ℓi ∈ L′ and for all
π ∈ L′

Min ⊎ L′
Max and δ ∈ ∆, if Next(π, δ) = (π′, δ′) then π′ ∈ L′ and δ′ ∈ ∆′ (where

Next is defined in Algorithm 1);
L′

u = {π ∈ L′ | last(π) ∈ Lu};
for all π /∈ L′

t, wt′(π) = wt(last(π));
for all π ∈ L′

t, for all ν,

wt′
t(π, ν) = wtt(π, ν) if π ∈ Lt wt′

t(t≥0, ν) = |L|(Wtr + M Wloc) + Wfin

wt′
t(t<0, ν) = −∞ wt′

t(t+∞, ν) = +∞.

CONCUR 2022
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A target location is reached when the length between two resets is too long or when
a transition with a reset would appear two times. Moreover, the length of a path in the
location that is not a target, given by the application of Next, strictly increases. This allows
us to show that U is a finite and acyclic WTG as expected.

▶ Lemma 22. U is an acyclic WTG with a finite set of locations of cardinality exponential
in |Q| and Wtr.

Furthermore, in U , as we showed in G, in Lemma 16, Max can play optimally with a
memoryless strategy. Note that, unlike in G, there exist no cyclic paths in U : however,
we can check the positivity of the “cyclic plays” in-between two occurrences of the same
transition containing a reset when we jump in t≥0.

▶ Lemma 23. In U , Max has a memoryless optimal strategy τ∗ such that if ρ = ρ1
t1,δ′

1−−−→
ρ2

t2,δ′
2−−−→ (t≥0, 0) is conforming to τ∗ with ∆proj(δ′

1) = ∆proj(δ′
2) a transition with a reset

of x, then wtΣ(ρ2
t2,δ′

2−−−→ (t≥0, 0)) ≥ 0.

The property on the weight of plays that reach t≥0 is guaranteed by the structure of U .
Indeed, as U is acyclic, we know that the value of the path followed by a play ending in t≥0
is non-negative. That would no longer be the case if we would have defined U with grey
components containing cyclic paths without reset, since the value of cyclic path do not
compose, as demonstrated by the following example.

▶ Example 24. In the WTG G depicted in Figure 5, we can see that Val((q0, {0}) δ1−→
(q1, {0}) δ2−→ (q0, {0})) = 0: Min and Max must delay 1 in each location, and Val0((q0, {0}) δ3−→
(q2, {0}) δ4−→ (q0, {1})) = 0. However, when we composed these two cyclic path, we obtain
that Val((q0, {0}) δ3−→ (q2, {0}) δ4−→ (q0, {1}) δ1−→ (q1, {0}) δ2−→ (q0, {0})) = −1.

Now, as in Lemma 16, τ∗ is defined with argmax on transitions and delays. Thus, to
obtain a play ending in t≥0 with a non-negative weight, we constrain Max to play the value
of the cycle that reached t≥0 by assigning it a finite final weight.

Finally, the most difficult part of the proof is to show that the unfolding preserves the
value. Remember that we have fixed an initial location ℓi = (qi, Ii) to build U .

▶ Theorem 25. For all ν ∈ Ii, ValG(ℓi, ν) = ValU (ℓi, ν).

Before proving Theorem 25, we show how this helps prove our main result.

Proof of Theorem 10. Remember (by Lemma 6) that we only need to explain how to
compute ν 7→ ValG((qi, Ii), ν) over Ii. By Theorem 25, this is equivalent to computing
ν 7→ ValU ((qi, Ii), ν) over Ii. We now explain why this is doable.

First, the definition of U is effective: we can compute it entirely, making use of Lemma 22
showing that it is a finite WTG. The only non-trivial part is the determination of ValG(π2 · δ)
in Algorithm 1 to determine in which target location we jump. Since π2 · δ is a finite path,
we can apply Theorem 8 to compute the value of the corresponding game, which is exactly
the value ValG(π2 · δ). The complexity of computing the value of a path is polynomial in the
length of this path (that is exponential in |Q| and Wtr, by Lemma 22) and polynomial in |Q|
and W (notice that weights of G are the same as the ones in G): this is thus of complexity
exponential in |Q| and Wtr, and polynomial in Wloc and Wfin. Since U has an exponential
number of locations with respect to |Q| and Wtr, the total time required to compute U is
exponential with respect to |Q| and Wtr, and polynomial with respect to Wloc and Wfin.
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FPlaysG FPlays∗
UR≥0 × ∆ R≥0 × ∆′

Φ

τG
proj

τU

Id × ∆proj

Id × Next

Figure 6 Scheme showing the links between the different objects defined for the proof of
Theorem 25 where FPlays∗

U is the set of finite plays of U avoiding target locations t≥0 and t<0.

Lemma 22 ensures that U is acyclic, so we can apply Theorem 8 to compute the value
mapping ν 7→ ValU ((qi, Ii), ν) as a piecewise affine and continuous function. It requires a
complexity polynomial in the number of locations of U , and in Wloc, Wtr, and Wfin (since
weights of U all come from G). Knowing the previous bound on the number of locations of U ,
this complexity translates into an exponential time complexity with respect to |Q| and Wtr,
and polynomial with respect to Wloc and Wfin. ◀

The proof of Theorem 25 splits into two inequalities. We prove in Appendix A that
ValG(ℓi, ν) ≤ ValU (ℓi, ν), i.e. that Max can guarantee to always do at least as good in U as
in G. We thus show that for an optimal strategy τG in G (defined by Lemma 16), there
exists a strategy τU in U such that for all plays ρ conforming to τU , there exists a play
conforming to τG with a weight at most the weight of ρ. As it is depicted in Figure 6, the
strategy τU is defined via a projection of plays of U in G: we use the mapping Next to send
back transitions of ∆ to ∆′.

We then prove in Appendix B that ValG(ℓi, ν) ≥ ValU (ℓi, ν), i.e. Max can guarantee to
always do at least as good in G as in U . We thus show that for an optimal strategy τU
in U (defined by Lemma 23), there exists a strategy τG in G such that for the unique play ρ

conforming to τG and the switching strategy (see Definition 19), there exists a play conforming
to τU with a weight at most the weight of ρ. As depicted in Figure 6, the strategy τG is
defined via a function Φ that puts plays of G in U . Intuitively, this function removes all
cyclic plays ending with a reset from plays in G.

5 Conclusion

We solve one-clock WTG with arbitrary weights, an open problem for several years. We
strongly rely on the determinacy of the game, taking the point of view of Max, instead of
the one of Min as was done in previous work with only non-negative weights. We also use
technical ingredients such as the closure of a game, switching strategies for Min, and acyclic
unfoldings. Regarding the complexity, our algorithm runs in exponential time (with weights
encoded in unary), which does not match the known PSPACE lower bound with weights in
binary [16]. Observe that this lower bound only uses non-negative weights. This complexity
gap deserves further study. Our work also opens three research directions. First, as we unfold
the game into a finite tree, it would be interesting to develop a symbolic approach that shares
computation between subtrees in order to obtain a more efficient algorithm. Second, playing
stochastically in WTG with shortest path objectives has been recently studied in [20]. One
could study an extension of one-clock WTG with stochastic transitions. In this context, Min
aims at minimizing the expectation of the accumulated weight. Third, the analysis of cycles
that we have done in the setting of one-clock WTG can be an inspiration to identify new
decidable classes of WTG with arbitrarily many clocks.

CONCUR 2022
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A Proof of ValG(ℓi, ν) ≤ ValU(ℓi, ν)

We show this first inequality by rewriting it ValG(ℓi, ν) ≤ supτU
ValτU

U (ℓi, ν). Let τG be a
memoryless optimal strategy of Max in G satisfying the conditions of Lemma 16: in particular,
ValG(ℓi, ν) = ValτG

G
(ℓi, ν). To conclude, it is thus sufficient to build from τG a strategy τU in

U such that

▶ Proposition 26. ValτG

G
(ℓi, ν) ≤ ValτU

U (ℓi, ν)

Following Figure 6, we use a projection operator to do so. It projects finite plays of
U starting in ℓi (since these are the only ones we need to take care of) to finite plays of
G. For this reason, from now on, FPlaysU and FPlaysG denote the subsets of plays that
start in location ℓi. Moreover, we limit ourselves to projecting plays of U that do not reach
the targets t<0 and t≥0, since otherwise there is no canonical projection in G. Formally,
we thus let FPlays∗

U be all such finite plays of FPlaysU that do not end in t<0 or t≥0. The
projection function proj : FPlays∗

U → FPlaysG is defined inductively on finite plays ρ ∈ FPlays∗
U

by letting proj(ρ) be
(ℓi, ν) if ρ = (ℓi, ν) ∈ L′

proj(ρ′) t,∆proj(δ′)−−−−−−→ (last(π), ν) if ρ = ρ′ t,δ′

−−→ (π, ν)

proj(ρ′) t,∆proj(δ′)−−−−−−→ (ℓ′, ν) if ρ = ρ′ t,δ′

−−→ (t+∞, ν) and ∆proj(δ′) = ℓ
I,R−−→ ℓ′

where ∆proj(δ′) is defined on line 9 of the Next function (see Algorithm 1). It fulfils the
following properties:
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▶ Lemma 27. For all plays ρ ∈ FPlays∗
U such that ρ does not end in t+∞,

1. if last(ρ) = (π, ν) then last(proj(ρ)) = (last(π), ν);
2. wtΣ(ρ) = wtΣ(proj(ρ));
3. if last(ρ) = (π, ν) with π /∈ Lt, then proj(ρ) follows π.

Proof.
1. This is direct from a case analysis on the definition of proj.
2. We reason by induction on the length of ρ ∈ FPlays∗

U . If ρ = (ℓi, ν), then we have
proj(ρ) = ρ, so wtΣ(ρ) = 0 = wtΣ(proj(ρ)). Now, we suppose that ρ = ρ′ t,δ′

−−→ (π, ν), with
ρ′ ending in location π′. Then

wtΣ(ρ) = wtΣ(ρ′) + t wt′(π′) + wt′(δ′)

This is equal to

wtΣ(ρ′) + t wt(last(π′)) + wt(∆proj(δ′))

since wt′(π′) = wt(last(π′)), and wt′(δ′) = wt(∆proj(δ′)) by definition of U . By induction
hypothesis, this implies that wtΣ(ρ) is equal to

wtΣ(proj(ρ′)) + t wt(last(π′)) + wt(∆proj(δ′))

By the first item and by definition of proj(ρ), we conclude that wtΣ(ρ) = wtΣ(proj(ρ)).
3. We reason by induction on the length of ρ. If ρ = (ℓi, ν), the property is trivial. Now,

we suppose that ρ′ = ρ
t,δ′

−−→ (π′, ν′). We have proj(ρ′) = proj(ρ) t,δ−−→ (last(π′), ν′) with
δ = ∆proj(δ′). Since ρ is a prefix of ρ′ ∈ FPlays∗

U , ρ belongs to FPlays∗
U too and does

not end in Lt. Thus, letting last(ρ) = (π, ν), by induction hypothesis, proj(ρ) follows π.
Moreover, we have Next(π, δ) = (π′, δ′). By definition of Next, the value of π′ must be
obtained from π on lines 4, or 8, and thus π′ = π · δ. In particular, we can deduce that
proj(ρ′) follows π. ◀

Then, for all plays ρ ∈ FPlays∗
U (for plays not starting in ℓi or plays ending in the target,

the decision of ρ is irrelevant) such that last(ρ) = (π, ν) and π ∈ L′
Max, we define

τU (ρ) = (t, δ′) if τG(proj(ρ)) = (t, δ) and Next(π, δ) = (π′, δ′) (2)

This is a valid decision for Max. First, by Lemma 27-1, we have last(proj(ρ)) = (last(π), ν).
Moreover, delays chosen in τG and τU are the same, and the guards of δ and δ′ are identical.
Thus, whether or not the location π is urgent (i.e. last(π) is urgent), the decision (t, δ′) gives
rise to an edge in JUK.

Since the definition of τU relies on the projection, it is of no surprise that:

▶ Lemma 28. Let ρ ∈ FPlays∗
U be a play conforming to τU . Then proj(ρ) is conforming

to τG.

Proof. We reason by induction on the length of ρ. If ρ = (ℓi, ν), then proj(ρ) = (ℓi, ν) and
the property is trivial. Otherwise, let ρ = ρ1 t,δ′

−−→ (π, ν). Then, proj(ρ) = proj(ρ1) t,δ−−→
(last(π), ν) where δ = ∆proj(δ′). By induction hypothesis, proj(ρ1) is conforming to τG . Let
last(proj(ρ1)) = (ℓ1, ν1). If ℓ1 ∈ LMin, we directly conclude that proj(ρ) is conforming to τG
too. Otherwise, and since ρ is conforming to τU and the last location of ρ1 also belongs to
Max (by Lemma 27-1), we have τU (ρ1) = (t, δ′). In particular, by definition of τU (see (2)),
τG(proj(ρ1)) = (t, ∆proj(δ′)) = (t, δ). Thus ρG is conforming to τG . ◀
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Now, we prove Proposition 26. To do so, we show that for all plays ρU from (ℓi, ν)
conforming to τU , there exists a play ρG from (ℓi, ν) conforming to τG such that P(ρG) ≤ P(ρU ).
We cannot directly use the projection operator, since some plays ρU may end up in t<0 or
t≥0. We treat the ones ending in t≥0 by making use of the final weight function we have
chosen for t≥0 (bigger than any acyclic play of G). We show that there cannot be such plays
ρU ending in t<0, since they would contradict Lemma 16-2.

Proof of Proposition 26. Let ρU be a play conforming to τU . If ρU does not reach a target
location of U or reaches target t+∞, then P(ρU ) = +∞, and for all plays ρG conforming to
τG , we have P(ρG) ≤ +∞ = P(ρU ). Now, suppose that ρU reaches a target location different
from t+∞.

If the target location reached by ρU is not in {t≥0, t<0}, then ρU ∈ FPlays∗
U and we can

thus let ρG = proj(ρU ). Lemma 28 ensures that ρG is conforming to τG . Moreover,
Lemma 27-1 ensures that if last(ρU ) = (π, ν) then last(ρG) = (last(π), ν) so that
wt′

t(π, ν) = wtt(last(π), ν). Since proj preserves the weight (see Lemma 27-2), we obtain
P(ρG) = P(ρU ).

If the target location reached by ρU is t≥0, then we decompose ρU as ρU = ρ1
U

t,δ′

−−→ (t≥0, ν)
with ρ1

U ∈ FPlays∗
U . Let ρG = ρ1

Gρ2
G be a play such that ρ1

G = proj(ρ1
U ) t,δ−−→ (ℓ, ν) with

δ = ∆proj(δ′), and ρ2
G be the play from (ℓ, ν) conforming to τG and an attractor of Min to Lt.

We note that ρ2
G exists since the value in G is supposed finite, thus Min can always guarantee

to reach the target, moreover in at most |L| steps (since regions are already encoded in this
game). Letting (π′, ν′) = last(ρ1

U ), Lemma 27-1 ensures that (last(π′), ν′) = last(proj(ρ1
U )).

If π′ ∈ L′
Max, since τU (ρ1

U ) = (t, δ′) and Next(π′, δ) = (t<0, δ′), by construction of τU ,
this implies that τG(proj(ρ1

U )) = (t, δ). The last move of ρ1
U is thus conforming to τG .

By Lemma 28 and the choice of ρ2
G , ρG is thus entirely conforming to τG . Moreover,

wt(last(π′)) = wt′(π′) by definition of the unfolding. Thus, also using Lemma 27-2, we
obtain

wtΣ(ρ1
G) = wtΣ(proj(ρ1

U )) + t wt(last(π′)) + wt(δ)

= wtΣ(ρ1
U ) + t wt′(π′) + wt′(δ′)

= wtΣ(ρU )

Moreover, as ρ1
G is conforming to an attractor, its length is bounded by |L|. Each of

its edges has a weight bounded in absolute values by Wtr + M Wloc. By adding its final
weight, we obtain

P(ρ2
G) ≤ |L|(Wtr + M Wloc) + Wfin

To conclude, we remark that ρU reaches t≥0, and its weight is thus

P(ρU ) = wtΣ(ρU ) + |L|(Wtr + M Wloc) + Wfin

Therefore P(ρG) = wtΣ(ρ1
G) + P(ρ2

G) ≤ P(ρU ).

If the target location reached by ρU is t<0, as before we decompose ρU as ρU = ρ1
U

t,δ′

−−→
(t≥0, ν) with ρ1

U ∈ FPlays∗
U . Let ρ1

G = proj(ρ1
U ) t,δ−−→ (ℓ, ν) with δ = ∆proj(δ′). As in the

previous case, ρ1
G is conforming to τG . By definition of U , letting π the last location of

ρ1
U (not in L′

t), we have Next(π, δ) = (t<0, δ′) with |π|δ > 0: by letting π = π1δπ2 with
|π2|δ = 0, we have ValG(π2δ) < 0. By Lemma 27-3, we know that proj(ρ1

U ) follows π.
Thus, ρ1

G follows πδ, and as a consequence, finishes by a play that follows the cyclic path
π2δ of negative value. Since it is conforming to τG , it contradicts Lemma 16-2.

CONCUR 2022



15:20 Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

To conclude, we have shown that for all plays ρU from (ℓi, ν) conforming to τU , we can build
a play ρG from (ℓi, ν) conforming to τG such that P(ρG) ≤ P(ρU ). In particular,

Val
τG
G

(ℓi, ν) = inf
τG∈StratMin,G

P(Play((ℓi, ν), σG , τG)) ≤ inf
τU ∈StratMin,U

P(Play((ℓi, ν), σU , τU )) = ValτU
U (ℓi, ν)

◀

B Proof of ValG(ℓi, ν) ≥ ValU(ℓi, ν)

We show this second inequality slightly differently. First we rewrite it: ValG(ℓi, ν) ≥
supτU

ValτU
U (ℓi, ν). Considering for τU the memoryless optimal strategy of Max in U sat-

isfying the conditions of Lemma 23, we therefore show that

▶ Proposition 29. ValG(ℓi, ν) ≥ ValτU
U (ℓi, ν)

To do so, following Figure 6, we first define the function Φ, mapping plays of G in plays
of U . It needs to take care of the appearance of more than one occurrence of a transition
with a reset in plays of G. Formally, it is defined by induction on the length of the plays by
letting Φ(ℓi, ν) = (ℓi, ν), and for all plays ρ ∈ FPlaysG , letting ρ′ = ρ

t,δ−−→ (ℓ, ν),
1. if Φ(ρ) ends in t+∞, we let Φ(ρ′) = Φ(ρ);
2. else if δ contains a reset and Φ(ρ) = ρ1

t′,δ′

−−→ ρ2 with ∆proj(δ′) = δ, letting π the first
location of ρ2, we let Φ(ρ′) = ρ1

t′,δ′

−−→ (π, 0);
3. otherwise, Φ(ρ′) = Φ(ρ) t,δ′

−−→ (π′, ν) if Next(π, δ) = (π′, δ′) with π the last location of
Φ(ρ).

This function satisfies the following properties:

▶ Lemma 30. For all plays ρ ∈ FPlaysG, if last(Φ(ρ)) = (π, ν) with π /∈ t+∞, then we have
π /∈ {t<0, t≥0} and

last(ρ) =
{

(last(π), ν) if π /∈ Lt

(π, ν) otherwise

Proof. We show the property by induction on the length of ρ. If ρ = (ℓi, ν), then Φ(ρ) = ρ

and the property holds. Otherwise, we let ρ′ = ρ
t,δ−−→ (ℓ, ν), suppose that the property holds

for ρ (that does not end in L′
t) and follow the definition of Φ.

1. If Φ(ρ) ends in t+∞, we have Φ(ρ′) = Φ(ρ) and this case is thus not possible (since Φ(ρ′)
is supposed to not end in t+∞).

2. Else if δ contains a reset and Φ(ρ) = ρ1
t′,δ′

−−→ ρ2 with ∆proj(δ′) = δ, letting π′ the first
location of ρ2, we have Φ(ρ′) = ρ1

t′,δ′

−−→ (π′, 0). Letting π1 the last location of ρ1, we
have Next(π1, δ) = (π′, δ′). If δ goes to location ℓ ∈ Lt, then π′ = ℓ ∈ Lt, so that
last(ρ′) = (ℓ, 0) = (last(Φ(ρ′)), 0) as expected. Since ρ1 does not contain a transition
δ′

1 such that ∆proj(δ′
1) = δ (otherwise, in Φ(ρ), we would have already fired twice the

transition δ with a reset, before trying to fire it a third time), we have last(Φ(ρ)) = (π, 0)
with π /∈ {t<0, t≥0}. Thus π = π′ · δ (and thus π /∈ {t<0, t≥0}) so that last(π) = ℓ, and
we conclude.

3. Otherwise Φ(ρ′) = Φ(ρ) t,δ′

−−→ (π′, ν) if Next(π, δ) = (π′, δ′) with π the last location of
Φ(ρ). Once again, we are in a case where π′ = π · δ which allows us to conclude as
before. ◀



B. Monmege, J. Parreaux, and P.-A. Reynier 15:21

Then, we define τG such that its behaviour is the same as the one given by τU after the
application of Φ on the finite play, i.e. after the removal of all cyclic paths ending by a
transition with a reset. Formally, for all plays ρ ∈ FPlaysG , we let τG(ρ) be defined as any
valid move (t, δ) if Φ(ρ) ends in t+∞, and otherwise

τG(ρ) = (t, ∆proj(δ′)) if τU (Φ(ρ)) = (t, δ′) (3)

This is a valid decision for Max. First, by Lemma 30, last(ρ) = (last(π), ν) when last(Φ(ρ)) =
(π, ν). Moreover, delays chosen in τG and τU are the same, and the guards of δ′ and ∆proj(δ′)
are identical. Thus, whether or not the location π is urgent, the decision (t, ∆proj(δ′)) gives
rise to an edge in JGK.

Since the definition of τG relies on the operation Φ, it is again not surprising that:

▶ Lemma 31. Let ρ ∈ FPlaysG be a play conforming to τG. Then Φ(ρ) is conforming to τU .

Proof. We reason by induction on the length of ρ. If ρ = (ℓi, ν), then Φ(ρ) = (ℓi, ν) and the
property is trivial. Otherwise, we suppose that ρ′ = ρ

t,δ−−→ (ℓ, ν). By induction hypothesis,
Φ(ρ) conforms to τU .
1. If Φ(ρ) ends in t+∞, we have Φ(ρ′) = Φ(ρ) that conforms to τU .
2. If δ contains a reset and Φ(ρ) = ρ1

t′,δ′

−−→ ρ2 with ∆proj(δ′) = δ, letting π the first location
of ρ2, we have Φ(ρ′) = ρ1

t′,δ′

−−→ (π, 0). This is a prefix of Φ(ρ) that conforms to τU , so
Φ(ρ′) conforms to τU too.

3. Otherwise, Φ(ρ′) = Φ(ρ) t,δ′

−−→ (π′, ν) if Next(π, δ) = (π′, δ′) with π the last location
of Φ(ρ). If Φ(ρ) ends in a location of Min, since it is conforming to τU , so does Φ(ρ′).
Otherwise, τG(ρ) = (t, δ) which implies that τU (Φ(ρ)) = (t, δ′′) with ∆proj(δ′′) = δ,
meaning that Next(π, δ) = (π′, δ′′), i.e. δ′′ = δ′: in this case too, Φ(ρ′) is conforming to
τU . ◀

Now, we prove Proposition 29. Notice that contrary to Proposition 26, we do not aim at
comparing ValτU

U (ℓi, ν) with ValτG

G
(ℓi, ν) but instead directly with ValG(ℓi, ν). This is helpful

here, since we do not need to start with any play ρ conforming to τG . Instead, we pick a
special play, choosing well the strategy followed by Min. Indeed, let Min follow an ε-optimal
(switching) strategy σ in G, as given in [12, 13]. As we explained before Definition 21, in
WTG without resets, this ensures that in all plays ρG conforming to σ, the target is reached
fast enough (with a number of transitions bounded by κ). We can easily enrich the result
of [12, 13] to take into account resets. Indeed, as performed in [12, Theorem 10], to show
that all one-clock WTG have a (a priori non computable) value function that is piecewise
affine with a finite number of cutpoints, we can replace each transition with a reset with a
new transition jumping in a fresh target location of value given by the value function we
aim at computing. From a strategy perspective, this means that in each component of our
unfolding (in-between two transitions with a reset), Min follows a switching strategy. Notice
that such strategies are a priori not knowing to be computable (since we cannot perform the
transformation described above, using the value function), but we use only its existence in
this proof.

We finally obtain an ε-optimal strategy σ for Min in G such that that in all plays ρG
conforming to σ, in-between two transitions with a reset and after the last such transition,
the number of transitions is bounded by κ.

Proof of Proposition 29. We now consider the special play ρ from (ℓi, ν) conforming to σ

and τG . It reaches a target, since σ is ε-optimal and ValG(ℓi, ν) ̸= +∞. We show that

∃ρU ∈ FPlaysU conforming to τU P(ρU ) ≤ P(ρ) (⋆)
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As a consequence, we obtain

ValτU
U (ℓi, ν) = inf

σU ∈StratMin,U
P(Play((ℓi, ν), σU , τU )) ≤ P(ρU ) ≤ P(ρ) ≤ ValG(ℓi, ν) + ε

Since this holds for all ε > 0, we have ValτU
U (ℓi, ν) ≤ ValG(ℓi, ν) as expected.

To show (⋆), we proceed by induction on the prefixes ρ′ of ρ, proving that (⋆) holds, or
that Φ(ρ′) does not end in t+∞ and wtΣ(Φ(ρ′)) ≤ wtΣ(ρ′). At the end of the induction,
we therefore obtain (⋆) or that Φ(ρ) does not end in t+∞ and wtΣ(Φ(ρ)) ≤ wtΣ(ρ). We let
last(Φ(ρ)) = (π, ν). By Lemma 30, if π /∈ Lt, then last(ρ) = (last(π), ν), with last(π) /∈ Lt:
this contradicts the fact that ρ reaches the target. Thus, π ∈ Lt, and last(ρ) = (π, ν).
Therefore, P(Φ(ρ)) = wtΣ(Φ(ρ)) + wt′

t(π, ν) ≤ wtΣ(ρ) + wtt(π, ν) = P(ρ). Since Φ(ρ)
conforms to τU , we obtain (⋆) here too.

For ρ′ = (ℓi, ν), wtΣ(Φ(ρ′)) = 0 = wtΣ(ρ′). Suppose then that ρ′ = ρ′′ t,δ−−→ (ℓ, ν). By
induction on ρ′′, if (⋆) does not (already) hold, we know that Φ(ρ′′) does not end in t+∞
and wtΣ(Φ(ρ′′)) ≤ wtΣ(ρ′′). We follow the three cases of the definition of Φ(ρ′).
1. We cannot have Φ(ρ′′) ending in t+∞ by hypothesis.
2. Suppose now that δ contains a reset and Φ(ρ′′) = ρ1

t′,δ′

−−→ ρ2 with ∆proj(δ′) = δ. Letting
π the first location of ρ2, we have Φ(ρ′) = ρ1

t′,δ′

−−→ (π, 0). Thus

wtΣ(Φ(ρ′)) = wtΣ(Φ(ρ′′)) − wtΣ(ρ2) ≤ wtΣ(ρ′′) − wtΣ(ρ2) (4)

Let (π′, ν′) = last(ρ2), and ρU = Φ(ρ′′) t,δ′′

−−→ (π′′, 0), with Next(π′, δ) = (π′′, δ′′). It
contains twice a transition with a reset coming from the same transition δ of G, therefore
π′′ ∈ {t<0, t≥0}. Notice that ρU is conforming to τU , since Φ(ρ′′) does and if π′ belongs
to Max, this follows directly from the definition of τG from τU (since τG(ρ′′

G) = (t, δ) and
Φ(ρ′′) /∈ t+∞). Therefore, if π′′ = t<0, P(ρU ) = −∞ and (⋆) holds. If π′′ = t≥0, by
Lemma 23 applied on ρU , wtΣ(ρ2

t,δ′′

−−→ (t≥0, 0)) ≥ 0. Combined with (4), we obtain that

wtΣ(Φ(ρ′)) ≤ wtΣ(ρ′′) + wtΣ((π′, ν′) t,δ′′

−−→ (t≥0, 0))
= wtΣ(ρ′′) + twt′(π′) + wt′(δ′′)
= wtΣ(ρ′′) + twt(ℓ′) + wt(δ) = wtΣ(ρ′)

where we have set ℓ′ the last location of ρ′′, that is also the last location of π′.
3. Otherwise, Φ(ρ′) = Φ(ρ′′) t,δ′

−−→ (π′, ν) if Next(π, δ) = (π′, δ′) with π the last location of
Φ(ρ′′). In this case,

wtΣ(Φ(ρ′)) = wtΣ(Φ(ρ′′)) + twt′(π) + wt′(δ′) ≤ wtΣ(ρ′′) + twt(ℓ′) + wt(δ) = wtΣ(ρ′)

where we have written ℓ′ the last location of ρ′′.

This ends the proof by induction. ◀
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1 Introduction

Vector Addition Systems (VASes) together with almost equivalent Petri Nets and Vector
Addition Systems with States (VASSes) are one of the most fundamental computational
models with a lot of applications in practice for modelling concurrent behaviour. There
is also an active field of theoretical research on VASes, with a prominent example being
the reachability problem whose complexity was established recently to be Ackermann-
complete [23, 11] and [24]. An important type of questions that can be asked for any pair
of systems is whether they are equivalent in a certain sense. The problem of language
equivalence (acceptance by configuration) was already proven to be undecidable in 1975 by
Araki and Kasami [1] (Theorem 3). They also have shown that the language equivalence
(acceptance by configuration) for deterministic VASes is reducible to the reachability problem,
thus decidable, as the reachability problem was shown to be decidable by Mayr a few years
later in 1981 [25]. The equality of the reachability sets of two given VASes was also shown
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undecidable in the 70-ties by Hack [16]. Jančar has proven in 1995 that the most natural
behavioural equivalence, namely the bisimilarity equivalence is undecidable for VASSes [19].
His proof works for only two dimensions (improving the previous results [1]) and is applicable
also to language equivalence (this time as well for acceptance by states). A few years
later in 2001 Jančar has shown in [20] that any reasonable equivalence in-between language
equivalence (with acceptance by states) and bisimilarity is undecidable (Theorem 3) and
Ackermann-hard even for systems with finite reachability set (Theorem 4). For the language
equivalence problem the state-of-the-art was improved a few years ago. In [17] (Theorem 20)
it was shown that already for one-dimensional VASSes the language equivalence (and even the
trace equivalence, namely language equivalence with all the states accepting) is undecidable.

As the problem of language equivalence (and similar ones) is undecidable for general
VASSes (even in very small dimensions) it is natural to search for subclasses in which the
problem is decidable. Decidability of the problem for deterministic VASSes [1, 25] suggests
that restricting nondeterminism might be a good idea. Recently a lot of attention was drawn
to unambiguous systems [6], namely systems in which each word is accepted by at most one
accepting run, but can potentially have many non-accepting runs. Such systems are often
more expressive than the deterministic ones however they share some of their good properties,
for example [5]. In particular many problems are more tractable in the unambiguous case
than in the general nondeterministic case. This difference is already visible for finite automata.
The language universality and the language equivalence problems for unambiguous finite
automata are in NC2 [32] (so also in PTime) while they are in general PSpace-complete for
nondeterministic finite automata. Recently it was shown that for some infinite-state systems
the language universality, equivalence and inclusion problems are much more tractable in the
unambiguous case than in the general one. There was a line of research investigating the
problem for register automata [26, 2, 10] culminating in the work of Bojańczyk, Klin and
Moerman [3]. They have shown that for unambiguous register automata with guessing the
language equivalence problem is in ExpTime (and in PTime for a fixed number of registers).
This result is in a sheer contrast with the undecidability of the problem in the general case
even for two register automata without guessing [27] or one register automata with guessing
(the proof can be obtained following the lines of [12] as explained in [10]). Recently it was
also shown in [7] that the language universality problem for VASSes accepting with states
is ExpSpace-complete in the unambiguous case in contrast to Ackermann-hardness in the
nondeterministic case (even for one-dimensional VASSes) [18].

Our contribution. In this article we follow the line of [7] and consider problems of language
equivalence and inclusion for unambiguous VASSes and also for their generalisations k-
ambiguous VASSes (for k ∈ N) in which each word can have at most k accepting runs. The
acceptance condition is defined by some upward-closed set of configurations which generalises
a bit the acceptance by states considered in [7]. Notice that the equivalence problem can
be easily reduced to the inclusion problem, so we prove lower complexity bounds for the
equivalence problem and upper complexity bounds for the inclusion problem.

Our main lower bound result is the following one.

▶ Theorem 1. The language equivalence problem for deterministic VASSes is Ackermann-
hard.

Our first important upper bound result is the following one.

▶ Theorem 2. The inclusion problem of a nondeterministic VASS language in an unambigu-
ous VASS language is in Ackermann.
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The proof of Theorem 2 is quite simple, but it uses a novel technique. We add a regular
lookahead to a VASS and use results about regular-separability of VASSes from [9] to reduce
the problem, roughly speaking, to the deterministic case. This technique can be applied
to more general systems namely well-structures transition-systems [14]. We believe that it
might be interesting on its own and reveal some connection between separability problems
and the notion of unambiguity.

Our main technical result concerns VASSes with bounded ambiguity.

▶ Theorem 3. For each k ∈ N the language inclusion problem of a VASS in a k-ambiguous
VASS is in Ackermann.

Notice that Theorem 3 generalises Theorem 2. We however decided to present separately
the proof of Theorem 2 because it presents a different technique of independent interest,
which can be applied more generally. Additionally it is a good introduction to a more
technically challenging proof of Theorem 3. The proof of Theorem 3 proceeds in three steps.
First we show that the problem for k-ambiguous VASS can be reduced to the case when the
control automaton of the VASS is k-ambiguous. Next, we show that the control automaton
can be even made k-deterministic (roughly speaking for each word there are at most k runs).
Finally we show that the problem of inclusion of a VASS language in a k-deterministic VASS
can be reduced to the reachability problem for VASSes which is in Ackermann [24].

On a way to show Theorem 3 we also prove several other lemmas and theorems, which
we believe may be interesting on their own. Theorems 1 and 3 together easily imply the
following corollary.

▶ Corollary 4. The language equivalence problem is Ackermann-complete for:
deterministic VASSes
unambiguous VASSes
k-ambiguous VASSes for any k ∈ N

Organisation of the paper. In Section 2 we introduce the needed notions. Then in Section 3
we present results concerning deterministic VASSes. First we show Theorem 1. Next, we
prove that the inclusion problem of a VASS language in a language of a deterministic VASS,
a k-deterministic VASS or a VASS with holes (to be defined) is in Ackermann. This is
achieved by a reduction to the VASS reachability problem. In Section 4 we define adding
a regular lookahead to VASSes. Then we show that with a carefully chosen lookahead we
can reduce the inclusion problem of a VASS language in an unambiguous VASS language
into the inclusion problem of a VASS language in language of deterministic VASS with holes.
This latter one is in Ackermann due to Section 3 so the former one is also in Ackermann.
In Section 5 we present the proof of Theorem 3 which is our most technically involved
contribution. We also use the idea of a regular lookahead and the result proved in Section 3
about k-deterministic VASSes. Many of the technically involved proofs are moved to the
appendix.

2 Preliminaries

Basic notions. For a, b ∈ N we write [a, b] to denote the set {a, a + 1, . . . , b − 1, b}. For a
vector v ∈ Nd and i ∈ [1, d] we write v[i] to denote the i-th coordinate of vector v. By 0d we
denote the vector v ∈ Nd with all the coordinates equal to zero. For a word w = a1 · . . . · an

and 1 ≤ i ≤ j ≤ n we write w[i..j] = ai · . . . · aj for the infix of w starting at position i and
ending at position j. We also write w[i] = ai. For any 1 ≤ i ≤ d by ei ∈ Nd we denote the
vector with all coordinates equal zero except of the i-th coordinate, which is equal to one.
For a finite alphabet Σ we denote Σε = Σ ∪ {ε} the extension of Σ by the empty word ε.
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Upward and downward-closed sets. For two vectors u, v ∈ Nd we say that u ⪯ v if for all
i ∈ [1, d] we have u[i] ≤ v[i]. A set S ⊆ Nd is upward-closed if for each u, v ∈ Nd it holds
that u ∈ S and u ⪯ v implies v ∈ S. Similarly a set S ⊆ Nd is downward-closed if for each
u, v ∈ Nd it holds that u ∈ S and v ⪯ u implies v ∈ S. For u ∈ Nd we write u↑ = {v | u ⪯ v}
for the set of all vectors bigger than u w.r.t. ⪯ and u↓ = {v | v ⪯ u} for the set of all
vectors smaller than u w.r.t. ⪯. If an upward-closed set is of the form u↑ we call it an
up-atom. Notice that if a one-dimensional set S ⊆ N is downward-closed then either S = N
or S = [0, n] for some n ∈ N. In the first case we write S = ω↓ and in the second case
S = n↓. If a downward-closed set D ⊆ Nd is of a form D = D1 × . . . × Dd, where all Di

for i ∈ [1, d] are downward-closed one dimensional sets then we call D a down-atom. In the
literature sometimes up-atoms are called principal filters and down-atoms are called ideals.
If Di = (ni)↓ then we also write D = (n1, n2, . . . , nd)↓. In that sense each down-atom is of a
form u↓ for u ∈ (N ∪ {ω})d. Notice that a down-atom does not have to be of a form u↓ for
u ∈ Nd, for example D = Nd is not of this form, but D = (ω, . . . , ω)↓.

The following two propositions will be helpful in our considerations.

▶ Proposition 5 ([9] Lemma 17, [21], [13]). Each downward-closed set in Nd is a finite union
of down-atoms. Similarly, each upward-closed set in Nd is a finite union of up-atoms.

We represent upward-closed sets as finite unions of up-atoms and downward-closed sets
as finite unions of down-atoms, numbers are encoded in binary. The size of representation
of upward- or downward-closed set S is denoted ||S||. The following proposition helps to
control the blowup of the representations of upward- and downward-closed sets.

▶ Proposition 6. Let U ⊆ Nd be an upward-closed set and D ⊆ Nd be downward-closed set.
Then the size of representation of their complements U = Nd \ U and D = Nd \ D is at most
exponential wrt. the sizes ||U || and ||D||, respectively and can be computed in exponential
time.

We prove the Proposition 6 in the appendix. For a more general study (for arbitrary
well-quasi orders) see [15].

Vector Addition Systems with States. A d-dimensional Vector Addition System with
States (d-VASS or simply VASS) V consists of a finite alphabet Σ, a finite set of states Q, a
finite set of transitions T ⊆ Q × Σ ×Zd × Q, a distinguished initial configuration cI ∈ Q ×Nd,
and a set of distinguished final configurations F ⊆ Q × Nd. We write V = (Σ, Q, T, cI , F ).
Sometimes we ignore some of the components in a VASS if they are not relevant, for example
we write V = (Q, T ) if Σ, cI , and F do not matter. Configuration of a d-VASS is a pair
(q, v) ∈ Q × Nd, we often write it q(v) instead of (q, v). We write state(q(v)) = q. The set of
all the configurations is denoted Conf = Q×Nd. For a state q ∈ Q and a set U ⊆ Nd we write
q(U) = {q(u) | u ∈ U}. A transition t = (p, a, u, q) ∈ T can be fired in a configuration r(v) if
p = r and u + v ∈ Nd. We write then p(v) t−→ q(u + v). We say that the transition t ∈ T

is over the letter a ∈ Σ or the letter a labels the transition t. We write p(v) a−→ q(u + v)
slightly overloading the notation, when we want to emphasise that the transition is over the
letter a. The effect of a transition t = (p, a, u, q) is vector u, we write eff(t) = u. The size
of VASS V is the total number of bits needed to represent the tuple (Σ, Q, T, cI , F ), we do
not specify here how we represent F as it may depend a lot on the form of F . A sequence
ρ = (c1, t1, c′

1), (c2, t2, c′
2), . . . , (cn, tn, c′

n) ∈ Conf × T × Conf is a run of VASS V = (Q, T )
if for all i ∈ [1, n] we have ci

ti−→ c′
i and for all i ∈ [1, n − 1] we have c′

i = ci+1. We write
trans(ρ) = t1 · . . . · tn. We extend the notion of the labelling to runs, labelling of a run ρ is
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the concatenation of labels of its transitions. Such a run ρ is from the configuration c1 to
the configuration c′

n and configuration c′
n is reachable from configuration c1 by the run ρ.

We write then c1
ρ−→ c′

n, c1
w−→ c′

n if w labels ρ slightly overloading the notation or simply
c1 −→ c′

n if the run ρ is not relevant, we say that the run ρ is over the word w.

VASS languages. A run ρ is accepting if it is from the initial configuration to some final
configuration. For a VASS V = (Σ, Q, T, cI , F ) we define the language of V as the set of all
labellings of accepting runs, namely

L(V ) = {w ∈ Σ∗ | cI
w−→ cF for some cF ∈ F}.

For any configuration c of V we define the language of configuration c, denoted Lc(V ) to
be the language of VASS (Σ, Q, T, c, F ), namely the language of VASS V with the initial
configuration cI substituted by c. Sometimes we simply write L(c) instead of Lc(V ) if V

is clear from the context. Further, we say that the configuration c has the empty language
if L(c) = ∅. For a VASS V = (Σ, Q, T, cI , F ) its control automaton is intuitively VASS V

after ignoring its counters. Precisely speaking, the control automaton is (Σ, Q, T ′, qI , F ′)
where qI = state(cI), F ′ = {q ∈ Q | ∃v∈Nd q(v) ∈ F} and for each (q, a, v, q′) ∈ T we have
(q, a, q′) ∈ T ′.

Notice that a 0-VASS, namely a VASS with no counters is just a finite automaton, so
all the VASS terminology works also for finite automata. In particular, a configuration of a
0-VASS is simply an automaton state. In that special case for each state q ∈ Q we call the
L(q) the language of state q.

A VASS is deterministic if for each configuration c reachable from the initial configuration
cI and for each letter a ∈ Σ there is at most one configuration c′ such that c

a−→ c′. A VASS
is k-ambiguous for k ∈ N if for each word w ∈ Σ∗ there are at most k accepting runs over w.
If a VASS is 1-ambiguous we also call it unambiguous.

Note that, the set of languages accepted by unambiguous VASSes is a strict superset of the
languages accepted by deterministic VASSes. To see that unambiguous VASSes can indeed
accept more consider a language (a∗b)∗ancm where n ≥ m. On one hand, an unambiguous
VASS that accepts the language guesses where the last block of letter a starts, then it counts
the number of a’s in this last block, and finally, it counts down reading c’s. As there is
exactly one correct guess this VASS is indeed unambiguous. On the other hand, deterministic
system can not accept the language, as intuitively speaking it does not know whether the
last block of a’s has already started or not. To formulate the argument precisely one should
use rather easy pumping techniques.

The following two problems are the main focus of this paper, for different subclasses of
VASSes:

Inclusion problem for VASSes
Input Two VASSes V1 and V2.
Question Does L(V1) ⊆ L(V2)?

Equivalence problem for VASSes
Input Two VASSes V1 and V2.
Question Does L(V1) = L(V2)?

In the sequel, we are mostly interested in VASSes with the set of final configurations
F of some special form. We extend the order ⪯ on vectors from Nd to configurations from
Q × Nd in a natural way: we say that q1(v1) ⪯ q2(v2) if q1 = q2 and v1 ⪯ v2. We define the
notions of upward-closed, downward-closed, up-atom and down-atom the same as for vectors.
As Proposition 5 holds for any well quasi-order, it applies also to Q × Nd. Proposition 6
applies here as well, as the upper bound on the size can be shown separately for each state.
Let the set of final configurations of VASS V be F . If F is upward-closed then we call V

an upward-VASS. If F is downward-closed then we call V a downward-VASS. For two sets
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A ⊆ Na, B ⊆ Nb and a subset of coordinates J ⊆ [1, a + b] by A ×J B we denote the set
of vectors in Na+b which projected into coordinates in J belong to A and projected into
coordinates outside J belong to B. If F =

⋃
i∈[1,n] qi(Ui ×Ji

Di) where for all i ∈ [1, n] we
have Ji ⊆ [1, d], Ui ⊆ N|Ji| are up-atoms and Di ⊆ Nd−|Ji| are down-atoms then we call V

an updown-VASS. In the sequel we write simply × instead of ×J , as the set of coordinates
J is never relevant. If F = {cF } is a singleton then we call V a singleton-VASS. As in
this paper we mostly work with upward-VASSes we often say simply a VASS instead of an
upward-VASS. In other words, if not indicated otherwise we assume that the set of final
configurations F is upward-closed.

For the complexity analysis we assume that whenever F is upward- or downward-closed
then it is given as a union of atoms. If F =

⋃
i∈[1,n] qi(Ui × Di) then in the input we get a

sequence of qi and representations of atoms Ui, Di defining individual sets qi(Ui × Di).

Language emptiness problem for VASSes. The following emptiness problem is the central
problem for VASSes.

Emptiness problem for VASSes
Input A VASS V = (Σ, Q, T, cI , F )
Question Does cI −→ cF in V for some cF ∈ F?

Observe that the emptiness problem is not influenced in any way by labels of the
transitions, so sometimes we will not even specify transition labels when we work with the
emptiness problem. If we want to emphasise that labels of transitions do not matter for some
problem then we write V = (Q, T, cI , F ) ignoring the Σ component. In such cases we also
assume that transitions do not contain the Σ component, namely T ⊆ Q × Zd × Q.

Note also that the celebrated reachability problem and the coverability problem for
VASSes are special cases of the emptiness problem. The reachability problem is the case
when F is a singleton set {cF }, classically it is formulated as the question whether there is a
run from cI to cF . The coverability problem is the case when F is an up-atom cF , classically
it is formulated as the question whether there is a run from cI to any c such that cF ⪯ c.
Recall that the reachability problem, so the emptiness problem for singleton-VASSes is in
Ackermann [24] and actually Ackermann-complete [23, 11].

A special case of the emptiness problem is helpful for us in Section 3.

▶ Lemma 7. The emptiness problem for VASSes with the acceptance condition F = qF (U ×D)
where D is a down-atom and U is an up-atom is in Ackermann.

We prove Lemma 7 in the appendix. The following is a simple and useful corollary of
Lemma 7.

▶ Corollary 8. The emptiness problem for updown-VASSes is in Ackermann.

Proof. Recall that for updown-VASSes the acceptance condition is a finite union of q(U × D)
for some up-atom U ⊆ Nd1 and down-atom D ⊆ Nd2 where d1 and d2 sums to the dimension
of the VASS V . Thus emptiness of the updown-VASS can be reduced to finitely many
emptiness queries of the form q(U × D) which can be decided in Ackermann due to Lemma 7.
Notice that the number of queries is not bigger than the size of the representation of F thus
the emptiness problem for updown-VASSes is also in Ackermann. ◀

By Proposition 5 each downward-VASS is also an updown-VASS, thus Corollary 8 implies
the following one.

▶ Corollary 9. The emptiness problem for downward-VASSes is in Ackermann.
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Recall that the coverability problem in VASSes is in ExpSpace [29], and the coverability
problem is equivalent to the emptiness problem for the set of final configurations being an
up-atom. By Proposition 5 we have the following simple corollary which creates an elegant
duality for the emptiness problems in VASSes.

▶ Corollary 10. The emptiness problem for upward-VASSes is in ExpSpace.

Actually, even the following stronger fact is true and helpful for us in the remaining part
of the paper, it is shown in [22].

▶ Proposition 11. For each upward-VASS the representation of the downward-closed set of
configurations with the empty language can be computed in doubly-exponential time.

3 Deterministic VASSes

3.1 Lower bound
First we prove a lemma, which easily implies Theorem 1.

▶ Lemma 12. For each d-dimensional singleton-VASS V with final configuration being
cF = qF (0d) one can construct in polynomial time two deterministic (d + 1)-dimensional
upward-VASSes V1 and V2 such that

L(V1) = L(V2) ⇐⇒ L(V ) = ∅.

The sketch of the proof. To prove the lemma we take V and we add to it one transition
labelled with a new letter. In V1 the added transition can be performed if we have reached
a configuration bigger than or equal to cF . In V2 the added transition can be performed
only if we have reached a configuration strictly bigger than cF . Now it is easy to see that
L(V1) ̸= L(V2) if and only if cF can be reached. Detailed proof is in the appendix.

Notice that Lemma 12 shows that the emptiness problem for a singleton-VASS with the
final configuration having zero counter values can be reduced in polynomial time to the
language equivalence for deterministic VASSes. This proves Theorem 1 as the emptiness
problem, even with zero counter values of the final configuration is Ackermann-hard [23, 11].

3.2 Upper bounds
In this Section we prove three results of the form: if V1 is a VASS and V2 is a VASS of
some special type then deciding whether L(V1) ⊆ L(V2) is in Ackermann. Our approach
to these problems is the same, namely we first prove that complement of L(V2) for V2 of
the special type is also a language of some VASS V ′

2 . Then to decide the inclusion problem
it is enough to construct VASS V such that L(V ) = L(V1) ∩ L(V ′

2) = L(V1) \ L(V2) and
check it for emptiness. In the description above using the term VASS we do not specify the
form of its set of accepting configurations. Starting from now on we call upward-VASSes
simply VASSes and for VASSes with other acceptance conditions we use their full name
(like downward-VASSes or updown-VASSes) to distinguish them from upward-VASSes. The
following lemma is very useful in our strategy of deciding the inclusion problem for VASS
languages.

▶ Lemma 13. For a VASS V1 and a downward-VASS V2 one can construct in polynomial
time an updown-VASS V such that L(V ) = L(V1) ∩ L(V2).

The proof is in the appendix.
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Deterministic VASSes. We first show the following theorem that will be generalised by the
other results in this section. We aim to prove it independently in order to mildly introduce
our techniques.

▶ Theorem 14. For a deterministic VASS one can build in exponential time a downward-
VASS which recognises the complement of its language.

Sketch of the proof. A word may be in the complement of our VASS language for the
following reasons: (1) the run reaches a configuration that is not accepted, (2) the run does
not exist as one of the counters would drop below zero, (3) the run is not possible due to the
structure of the control automaton. For each case we separately design a part of a downward-
VASS accepting it. Cases (1) and (3) are simple. For the case (2) we nondeterministically
guess the moment when the run would go below zero and freeze the configuration at that
moment. Then at the end of the word we check if our guess was correct. Notice that the set
of configurations from which a step labelled with a letter a would take a counter below zero
is downward-closed, so we can check the correctness of our guess using a downward-closed
accepting condition. Detailed proof is in the appendix.

The following theorem is a simple corollary of Theorem 14, Lemma 13 and Corollary 8.

▶ Theorem 15. The inclusion problem of a VASS language in a deterministic VASS language
is in Ackermann.

Deterministic VASSes with holes. We define here VASSes with holes, which are a useful
tool to obtain our results about unambiguous VASSes in Section 4. A d-VASS with holes
(or shortly d-HVASS) V is defined exactly as a standard VASS, but with an additional
downward-closed set H ⊆ Q × Nd which affects the semantics of V . Namely the set of
configurations of V is Q × Nd \ H. Thus each configuration on a run of V needs not only
to have nonnegative counters, but in addition to that it can not be in the set of holes H.
Additionally in HVASSes we allow for transitions labelled by the empty word ε, in contrast
to the rest of our paper. Due to that fact in this paragraph we often work also with VASSes
having ε-labelled transitions, we call such VASSes the ε-VASSes. As an illustration of the
HVASS notion let us consider the zero-dimensional case. In that case the set of holes is just a
subset of states. Therefore HVASSes in dimension zero are exactly VASSes in dimension zero,
so finite automata. However, for higher dimensions the notions of HVASSes and VASSes
differ.

We present here a few results about languages for HVASSes. First notice that for
nondeterministic HVASSes it is easy to construct a language equivalent ε-VASS.

▶ Lemma 16. For each HVASS one can compute in exponential time a language equivalent
ε-VASS.

Sketch of the proof. First we observe that the complement of the set of holes is an
upward-closed set U . The idea behind the construction is that after every step we test if
the current configuration is in U . We nondeterministically guess a minimal element xi of U

above which the current configuration is, then we subtract xi and add it back. If our guess
was not correct then the run is blocked.

It is important to emphasise that the above construction applied to a deterministic
HVASS does not give us a deterministic VASS, so we cannot simply reuse Theorem 14. Thus
in order to prove the decidability of the inclusion problem for HVASSes we need to generalise
Theorem 14 to HVASSes.
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▶ Theorem 17. For a deterministic HVASS one can compute in exponential time a downward-
ε-VASS which recognises the complement of its language.

Sketch of the proof. The proof is very similar to the proof of Theorem 14. In the case (1)
we have to check if the accepting run stays above the holes, do perform it we use the trick
from Lemma 16. In the case (2) we freeze the counter when the run would have to drop
below zero or enter the hole. The case (3) is the same as in Theorem 14.

Now the following theorem is an easy consequence of the shown facts. We need only to
observe that proofs of Lemma 13 and Corollary 8 work as well for ε-VASSes.

▶ Theorem 18. The inclusion problem of an HVASS language in a deterministic HVASS
language is in Ackermann.

Boundedly-deterministic VASSes. We define here a generalisation of a deterministic VASS,
namely a k-deterministic VASS for k ∈ N. Such VASSes are later used as a tool for deriving
results about k-ambiguous VASSes in Section 5.

A VASS V = (Σ, Q, T, cI , F ) is k-deterministic if for each word w ∈ Σ∗ there are at most
k maximal runs over w. We call a run ρ a maximal run over w if either (1) it is a run over
w or (2) w = uav for u, v ∈ Σ∗, a ∈ Σ such that the run ρ is over the prefix u of w but
there is no possible way of extending ρ by any transition labelled with the letter a ∈ Σ. Let
us emphasise that here we count runs in a subtle way. We do not count only the maximal
number of active runs throughout the word but the total number of different runs which
have ever been started during the word. To illustrate the difference better let us consider an
example 0-VASS (a finite automaton) V over Σ = {a, b} with two states p, q and with three
transitions: (p, a, p), (p, a, q) and (q, b, q). Then V has n + 1 maximal runs over the word an

although only two of these runs actually survive till the end of the input word. So V is not
2-deterministic even though for each input word it has at most two runs.

▶ Theorem 19. For a k-deterministic d-VASS one can build in exponential time a (k · d)-
dimensional downward-VASS which recognises the complement of its language.

Sketch of the proof. In the construction (k · d)-dimensional downward-VASS V ′ simulates
k copies of V which take care of at most k different maximal runs of V . The accepting
condition F ′ of V ′ verifies whether in all the copies there is a reason that the simulated
maximal runs do not accept. The reasons why each individual copy do not accepts are the
same as in Theorem 14.

Theorem 19 together with Lemma 13 and Corollary 8 easily implies (analogously as in
the proof of Theorem 18) the following theorem.

▶ Theorem 20. The inclusion problem of a VASS language in a k-deterministic VASS
language is in Ackermann.

4 Unambiguous VASSes

In this section we aim to prove Theorem 2. However, possibly a more valuable contribution
of this section is a novel technique which we introduce in order to show Theorem 2. The
essence of this technique is to introduce a regular lookahead to words, namely to decorate
each letter of a word with a piece of information regarding some regular properties of the
suffix of this word. For technical reasons we realise it by the use of finite monoids.

The high level intuition behind the proof of Theorem 2 is the following. We first introduce
the notion of (M, h)-decoration of words, languages and VASSes, where M is a monoid
and h : Σ∗ → M is a homomorphism. Proposition 23 states that language inclusion of
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two VASSes can be reduced to language inclusion of its decorations. On the other hand
Theorem 26 shows that for appropriately chosen pair (M, h) the decorations of unambiguous
VASSes are deterministic HVASSes. Theorem 25 states that such an appropriate pair can
be computed quickly enough. Thus language inclusion of unambiguous VASSes reduces to
language inclusion of deterministic HVASSes, which is in Ackermann due to Theorem 18.

Recall that a monoid M together with a homomorphism h : Σ∗ → M and an accepting
subset F ⊆ M recognises a language L if L = h−1(F ). In other words L is exactly the set
of words w such that h(w) ∈ F . The following proposition is folklore, for details see [28]
(Proposition 3.12).

▶ Proposition 21. A language of finite words is regular if and only if it is recognised by
some finite monoid.

For that reason monoids are a good tool for working with regular languages. In particular
Proposition 21 implies that for each finite family of regular languages there is a monoid,
which recognises all of them, this fact is useful in Theorem 26. Let us fix a finite monoid
M and a homomorphism h : Σ∗ → M . For a word w = a1 · . . . · an ∈ Σ∗ we define its
(M, h)-decoration to be the following word over an alphabet Σε × M :

(ε, h(a1 · . . . · an)) · (a1, h(a2 · . . . · an)) · . . . · (an−1, h(an)) · (an, h(ε)).

In other words, the (M, h)-decoration of a word w of length n has length n + 1, where the
i-th letter has the form (ai−1, h(ai · . . . · an)). We denote the (M, h)-decoration of a word w

as w(M,h). If h(w) = m then we say that word w has type m ∈ M . The intuition behind the
(M, h)-decoration of w is that for each language L which is recognised by the pair (M, h)
the i-th letter of w is extended with an information whether the suffix of w after this letter
belongs to L or does not belong. This information can be extracted from the monoid element
h(ai+1 · . . . ·an) by which letter ai is extended. As an illustration consider words over alphabet
Σ = {a, b}, monoid M = Z2 counting modulo two and homomorphism h : Σ → M defined
as h(a) = 1, h(b) = 0. In that case for each w ∈ Σ∗ the element h(w) indicates whether
the number of letters a in the word w is odd or even. The decoration of w = aabab is then
w(M,h) = (ε, 1)(a, 0)(a, 1)(b, 1)(a, 0)(b, 0).

We say that a word u ∈ (Σε × M)∗ is well-formed if u = (ε, m0) · (a1, m1) · . . . · (an, mn)
such that all ai ∈ Σ, and for each i ∈ [0, n] the type of ai+1 · . . . · an is mi (in particular type
of ε is mn). We say that such a word u projects into word a1 · . . . · an. It is easy to observe
that w(M,h) is the only well-formed word that projects into w. The following proposition is
useful in Section 5, an appropriate finite automaton can be easily constructed.

▶ Proposition 22. The set of all well-formed words is regular.

A word is almost well-formed if it satisfies all the conditions of well-formedness, but the
first letter is not necessarily of the form (ε, m) for m ∈ M , it can as well belong to Σ × M .

The (M, h)-decoration of a language L, denoted L(M,h), is the set of all (M, h)-decorations
of all words in L, namely

L(M,h) = {w(M,h) | w ∈ L}.

As the (M, h)-decoration is a function from words over Σ to words over Σε × M we observe
that u = v iff u(M,h) = v(M,h) and clearly the following proposition holds.

▶ Proposition 23. For each finite alphabet Σ, two languages K, L ⊆ Σ∗, monoid M and
homomorphism h : Σ∗ → M we have

K ⊆ L ⇐⇒ K(M,h) ⊆ L(M,h).
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Recall now that HVASS (VASS with holes) is a VASS with some downward-closed set
H of prohibited configurations (see Section 3, paragraph Deterministic VASSes with holes).
For each d-VASS V = (Σ, Q, T, cI , F ), a monoid M and a homomorphism h : Σ∗ → M

we can define in a natural way a d-HVASS V(M,h) = (Σε × M, Q′, T ′, c′
I , F ′) accepting the

(M, h)-decoration of L(V ). The set of states Q′ equals Q × (M ∪ {⊥}). The intuition is
that V(M,h) is designed in such a way that for any state (q, m) ∈ Q × M and vector v ∈ Nd

if (q, m)(v) w′

−→ F ′ then w′ is almost well-formed and w′ projects into some w ∈ Σ∗ such
that h(w) = m. If cI = qI(vI) then configuration c′

I = (qI , ⊥)(vI) is the initial configuration
of V(M,h). The set of final configurations F ′ is defined as F ′ = {(q, h(ε))(v) | q(v) ∈ F}.
Finally we define the set of transitions T ′ of V ′ as follows. First, for each m ∈ M we add the
following transition ((qI , ⊥), (ε, m), 0d, (qI , m)) to T ′. Then for each transition (p, a, v, q) ∈ T

and for each m ∈ M we add to T ′ the transition (p′, a′, v, q′) where a′ = (a, m), q′ = (q, m)
and p′ = (p, h(a) · m). It is now easy to see that for any word w = a1 · . . . · an ∈ Σ∗ we have

qI(vI) a1−→ q1(v1) a2−→ . . .
an−1−→ qn−1(vn−1) an−→ qn(vn)

if and only if

(qI , ⊥)(vI) (ε,m1)−→ (qI , m1)(vI) (a1,m2)−→ (q1, m2)(v1) (a2,m3)−→ . . .

(an−1,mn)−→ (qn−1, mn)(vn−1) (an,mn+1)−→ (qn, mn+1)(vn),

where mi = h(w[i..n]) for all i ∈ [1, n + 1], in particular mn+1 = h(ε). Therefore indeed
L(V(M,h)) = L(V )(M,h). Till now the defined HVASS is actually a VASS, we have not defined
any holes. Our aim is now to remove configurations with the empty language, namely
(q, m)(v) for which there is no word w ∈ (Σε × M)∗ such that (q, m)(v) w−→ c′

F for some
c′

F ∈ F ′. Notice that as F ′ is upward-closed we know that the set of configurations with
the empty language is downward-closed. This is how we define the set of holes H, it is
exactly the set of configurations with the empty language. We can compute the set of holes
in doubly-exponential time by Proposition 11.

By Proposition 23 we know that for two VASSes U, V we have L(U) ⊆ L(V ) if and only
if L(U(M,h)) ⊆ L(V(M,h)). This equivalence is useful as we show in a moment that for an
unambiguous VASS V and suitably chosen (M, h) the HVASS V(M,h) is deterministic.

Regular separability. We use here the notion of regular separability. We say that two
languages K, L ⊆ Σ∗ are regular-separable if there exists a regular language S ⊆ Σ∗ such that
K ⊆ S and S ∩ L = ∅. We say than that S separates K and L and S is a separator of K

and L. We recall here a theorem about regular-separability of VASS languages (importantly
upward-VASS languages, not downward-VASS languages) from [9].

▶ Theorem 24 (Theorem 24 in [9]). For any two VASS languages L1, L2 ⊆ Σ∗ if L1 ∩ L2 = ∅
then L1 and L2 are regular-separable and one can compute the regular separator in elementary
time.
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Proof. Theorem 24 in [9] says that there exists a regular separator of L1 and L2 of size at
most triply-exponential. In order to compute it we can simply enumerate all the possible
separators of at most triply-exponential size and check them one by one. For a given regular
language and a given VASS language by Proposition 10 one can check in doubly-exponential
time whether they nonempty intersect. ◀

For our purposes we need a bit stronger version of this theorem. We say that a family of
regular languages F separates languages of a VASS V if for any two configurations c1, c2
such that languages L(c1) and L(c2) are disjoint there exists a language S ∈ F that separates
L(c1) and L(c2).

▶ Theorem 25. For any VASS one can compute in an elementary time a finite family of
regular languages which separates its languages.

Proof. Let us fix a d-VASS V = (Σ, Q, T, cI , F ). Let us define the set of pairs of configurations
of V with disjoint languages D = {(c1, c2) | L(c1) ∩ L(c2) = ∅} ⊆ Q × Nd × Q × Nd. One
can easily see that the set D is exactly the set of configurations with empty language in the
synchronised product of VASS V with itself. Thus by Proposition 11 we can compute in
doubly-exponential time its representation as a finite union of down-atoms D = A1 ∪ . . . ∪ An.
We show now that for each i ∈ [1, n] one can compute in elementary time a regular language
Si such that for all (c1, c2) ∈ Ai the language Si separates L(c1) and L(c2). This will
finish the proof showing that one of S1, . . . , Sn separates L(c1) and L(c2) whenever they are
disjoint.

Let A ⊆ Q × Nd × Q × Nd be a down-atom. Therefore A = D1 × D2 where D1 = p1(u1↓)
and D2 = p2(u2↓) for some u1, u2 ∈ (N ∪ {ω})d. Let L1 =

⋃
c∈D1

L(c) and L2 =
⋃

c∈D2
L(c).

Languages L1 and L2 are disjoint as w ∈ L1 ∩ L2 would imply w ∈ L(c1) ∩ L(c2) for some
c1 ∈ D1 and c2 ∈ D2. Now observe that L1 is not only an infinite union of VASS languages
but also a VASS language itself. Indeed, let V1 = (Σ, Q, T1, cI , F1) be the VASS V where all
coordinates i ∈ [1, d] such that u1[i] = ω are ignored. Concretely,

(p, a, v1, q) ∈ T1 if there exists (p, a, v, q) ∈ T such that for every i holds either v1[i] = v[i]
or v1[i] = 0 and u1[i] = ω,
(q, v1) ∈ F1 if there exists (q, v) ∈ F such that for every i holds either v1[i] = v[i] or
u1[i] = ω.

Then it is easy to observe that V1 accepts exactly the language L1. Similarly one can define
VASS V2 accepting the language L2. By Theorem 24 we can compute in elementary time
some regular separator S of L(V1) and L(V2). It is now easy to see that for any configurations
c1 ∈ D1 and c2 ∈ D2 languages L(c1) and L(c2) are separated by S. ◀

Now we are ready to use the notion of (M, h)-decoration of a VASS language. Let us recall
that a regular language L is recognised by a monoid M and homomorphism h : Σ∗ −→ M if
there is F ⊆ M such that L = h−1(F ).

▶ Theorem 26. Let V be an unambiguous VASS over Σ and F be a finite family of
regular languages separating languages of V . Suppose M is a monoid with homomorphism
h : Σ∗ → M recognising every language in F . Then the HVASS V(M,h) is deterministic.

Proof. Let V = (Σ, Q, T, cI , F ) and let cI = qI(vI). We aim to show that HVASS V(M,h) =
(Σ′, Q′, T ′, c′

I , F ′) is deterministic, where Σ′ = Σε × M and Q′ = Q × (M ∪ {⊥}). It is easy
to see from the definition of V(M,h) that for each (a, m) ∈ Σ′ and each q ∈ Q the state (q, ⊥)
has at most one outgoing transition over (a, m). Indeed, there is exactly one transition over
(ε, m) outgoing from (qI , ⊥) and no outgoing transitions in the other cases. Assume now
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towards a contradiction that V(M,h) is not deterministic. Then there is some configuration
c = (q, m)(v) with (q, m) ∈ Q × M such that cI

u−→ c for some word u over Σ′ and a letter
(a, m′) ∈ Σ′ such that a transition from c over (a, m′) leads to some two configurations
c1 = (q1, m′)(v1) and c2 = (q2, m′)(v2). Recall that a transition over (a, m′) has to lead to
some state with the second component equal m′. As configurations with empty language
are not present in V(M,h) we know that there exist words w1 ∈ L(c1) and w2 ∈ L(c2). Recall
that as c1 = (q1, m′)(v1) and c2 = (q2, m′)(v2) we have h(w1) = m′ = h(w2). We show now
that L(c1) and L(c2) are disjoint. Assume otherwise that there exists w ∈ L(c1) ∩ L(c2).
Then there are at least two accepting runs over the word u · (a, m′) · w in V(M,h). This means
however that there are at least two accepting runs over the projection of u · (a, m′) · w in
V , which contradicts unambiguity of V . Thus L(c1) and L(c2) are disjoint and therefore
separable by some language from F . Recall that all the languages in F are recognisable
by (M, h) thus words from L(c1) should be mapped by the homomorphism h to different
elements of M than words from L(c2). However h(w1) = m′ for w1 ∈ L(c1) and h(w2) = m′

for w2 ∈ L(c2) which leads to the contradiction. ◀

Now we are ready to prove Theorem 2. Let V1 be a VASS and V2 be an unambiguous
VASS, both with labels from Σ. We first compute a finite family F separating languages of
V2 which can be performed in elementary time by Theorem 25 and then we compute a finite
monoid M together with a homomorphism h : Σ∗ → M recognising all the languages from F .
By Proposition 23 we get that L(V1) ⊆ L(V2) if and only if L(M,h)(V1) ⊆ L(M,h)(V2). We
now compute HVASSes V ′

1 = V1(M,h) and V ′
2 = V2(M,h) . By Theorem 26 the HVASS V ′

2 is
deterministic. Thus it remains to check whether the language of a HVASS V ′

1 is included in
the language of a deterministic HVASS V ′

2 , which is in Ackermann due to Theorem 18.
▶ Remark 27. We remark that our technique can be applied not only to VASSes but also
in a more general setting of well-structured transition systems. In [9] it was shown that for
any well-structured transition systems fulfilling some mild conditions (finite branching is
enough) disjointness of two languages implies regular separability of these languages. We
claim that an analogue of our Theorem 25 can be obtained in that case as well. Assume
now that W1, W2 are two classes of finitely branching well-structured transition systems,
such that for any two systems V1 ∈ W1, V2 ∈ W2 where V2 is deterministic the language
inclusion problem is decidable. Then this problem is also likely to be decidable if we weaken
the condition of determinism to unambiguity. More concretely speaking this seems to be the
case if it is possible to perform the construction analogous to Theorem 14 in W2, namely if
one can compute the system recognising the complement of deterministic language without
leaving the class W2. We claim that an example of such a class W2 is the class of VASSes
with one reset. The emptiness problem for VASSes with one zero-test (and thus also for
VASSes with one reset) is decidable due to [30, 4]. Then following our techniques it seems
that one can show that inclusion of a VASS language in a language of an unambiguous VASS
with one reset is decidable.

5 Boundedly-ambiguous VASSes

In this section we aim to prove Theorem 3. It is an easy consequence of the following theorem.

▶ Theorem 28. For any k ∈ N and a k-ambiguous VASS one can build in elementary time
a downward-VASS which recognises the complement of its language.

Let us show how Theorem 28 implies Theorem 3. Let V1 be a VASS and V2 be a k-
ambiguous VASS. By Theorem 28 one can compute in elementary time a downward-VASS
V ′

2 such that L(V ′
2) = Σ∗ \ L(V2). By Lemma 13 one can construct in time polynomial wrt.
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the size of V1 and V ′
2 an updown-VASS V such that L(V ) = L(V1) ∩ L(V ′

2) = L(V1) \ L(V2).
By Corollary 8 emptiness of V is decidable in Ackermann which in consequence proves
Theorem 3.

Thus the rest of this section focuses on the proof of Theorem 28.

Proof of Theorem 28. We prove now Theorem 28 using Lemmas 29 and 30 stated below.
Then in Sections D and D in the appendix we prove the formulated lemmas. Let V be a
k-ambiguous VASS over an alphabet Σ. In the proof we construct a sequence of VASSes
V 1, V 2, . . . , V 6 related in various ways to V with the property that V 6 is a downward-VASS
and L(V 6) is exactly the complement of L(V ). More concretely L(V 1) equals L(V ), L(V 2)
is a decoration of L(V ), L(V 3) is the complement of L(V 2), while V 4, V 5 recognise more
sophisticated languages related to L(V 3).

First due to Lemma 29 proved in Section D we construct a VASS V 1 which is language
equivalent to V and additionally has the control automaton being k-ambiguous.

▶ Lemma 29. For each k-ambiguous VASS V one can construct in doubly-exponential time
a language equivalent VASS V ′ with the property that its control automaton is k-ambiguous.

Now our aim is to get a k-deterministic VASS V 2 which is language equivalent to V 1. We
are not able to achieve it literally, but using the notion of (M, h)-decoration from Section 4
we can compute a somehow connected k-deterministic VASS V 2. We use the following lemma
which is proved in Section D.

▶ Lemma 30. Let A = (Σ, Q, T, q, F ) be a k-ambiguous finite automaton for some k ∈ N. Let
M be a finite monoid and h : Σ∗ → M be a homomorphism recognising all the state languages
of the automaton A. Then the decoration A(M,h) is a k-deterministic finite automaton.

Now we consider the control automaton A of VASS V 1. We compute a monoid M

together with a homomorphism h : Σ∗ → M which recognises all the state languages of A.
Then we construct the automaton A(M,h). Note that the decoration of a VASS produces
an HVASS, but as we decorate an automaton i.e. 0-VASS we get a 0-HVASS which is
also a finite automaton. Based on A(M,h) we construct a VASS V 2. We add a vector to
every transition in A(M,h) to produce a VASS that recognises the (M, h)-decoration of the
language of VASS V 1. Precisely, if we have a transition ((p, m), (a, m′), (q, m′)) in A(M,h)
then it is created from the transition (p, a, q) in A, which originates from the transition
(p, a, v, q) in V 1. So in V 2 we label ((p, m), (a, m′), (q, m′)) with v i.e. we have the transition
((p, m), (a, m′), v, (q, m′)). Similarly, based on V 1, we define initial and final configurations
in V 2. It is easy to see that there is a bijection between accepting runs in V 1 and accepting
runs in V 2. By Lemma 30 A(M,h) is k-deterministic which immediately implies that V 2 is
k-deterministic as well.

Now by Theorem 19 we compute a downward-VASS V 3 which recognises the complement
of L(V 2). Notice that for each w ∈ Σ∗ there is exactly one well-formed word in Σε × M

which projects into w, namely the (M, h)-decoration of w. Therefore V 3 accepts all the not
well-formed words and all the well-formed words which project into the complement of L(V ).
By Proposition 22 the set of all well-formed words is recognised by some finite automaton B.
Computing a synchronised product of B and V 3 one can obtain a downward-VASS V 4 which
recognises the intersection of languages L(B) and L(V 3), namely all the well-formed words
which project into the complement of L(V ). It is easy now to compute a downward-ε-VASS
V 5 recognising the projection of L(V 4) into the first component of the alphabet Σε × M .
We obtain V 5 just by ignoring the second component of the alphabet. Thus V 5 recognises
exactly the complement of L(V ). However V 5 is not a downward-VASS as it contains a
few ε-labelled transitions leaving the initial state. We aim to eliminate these ε-labelled
transitions. Recall that in the construction of the (M, h)-decoration the (ε, m)-labelled
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transitions leaving the initial configuration have effect 0d. Thus it is easy to eliminate them
and obtain a downward-VASS V 6 which recognises exactly the complement of L(V ), which
finishes the proof of Theorem 28. Let us remark here that even ignoring the last step of
elimination and obtaining a downward-ε-VASS recognising the complement of L(V ) would
be enough to prove Theorem 3 along the same lines as it is proved now. ◀

6 Future research

VASSes accepting by configuration. In our work we prove Theorem 28 stating that for a
k-ambiguous upward-VASS one can compute a downward-VASS recognising the complement
of its language. This theorem implies all our upper bound results, namely decidability
of language inclusion of an upward-VASS in a k-ambiguous upward-VASS and language
equivalence of k-ambiguous upward-VASSes. The most natural question which can be
asked in this context is whether Theorem 28 or some of its consequences generalises to
singleton-VASSes (so VASSes accepting by a single configuration) or more generally to
downward-VASSes. Our results about complementing deterministic VASSes apply also to
downward-VASSes. However generalising our results for nondeterministic (but k-ambiguous
or unambiguous) VASSes encounter essential barriers. Techniques from Section 4 do not
work as the regular-separability result from [9] applies only to upward-VASSes. Techniques
from Section 5 break as the proof of Lemma 29 essentially uses the fact that the acceptance
condition is upward-closed. Thus it seems that one would need to develop novel techniques to
handle the language equivalence problem for unambiguous VASSes accepting by configuration.

Weighted models. Efficient decidability procedures for language equivalence were obtained
for finite automata and for register automata with the use of weighted models [31, 3]. For
many kinds of systems one can naturally define weighted models by adding weights and
computing value of a word in the field (Q, +, ·). Decidability of equivalence for weighted
models easily implies language equivalence for unambiguous models as accepted words always
have the output equal one while rejected words always have the output equal zero. Thus
one can pose a natural conjecture that decidability of language equivalence for unambiguous
models always comes as a byproduct of equivalence of the weighted model. Our results show
that this is however not always the case as VASSes are a counterexample to this conjecture.
In the case of upward-VASSes language equivalence for unambiguous models is decidable.
However equivalence for weighted VASSes is undecidable as it would imply decidability of
path equivalence (for each word both systems need to accept by the same number of accepting
runs) which is undecidable for VASSes [20].

Unambiguity and separability. Our result from Section 4 uses the notion of regular-
separability in order to obtain a result for unambiguous VASSes. This technique seems to
generalise for some other well-structured transition systems. It is natural to ask whether
there is some deeper connection between the notions of separability and unambiguity which
can be explored in future research.
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A Missing proofs from Section 2

We recall the statement of Proposition 6.

Proposition 6. Let U ⊆ Nd be an upward-closed set and D ⊆ Nd be downward-closed set.
Then the size of representation of their complements U = Nd \ U and D = Nd \ D is at most
exponential wrt. the sizes ||U || and ||D||, respectively and can be computed in exponential
time.

Proof of Proposition 6. Here we present only the proof for the complement of the upward-
closed set U as the case for downward-closed sets follows the same lines. Let U = u1↑ ∪ u2↑ ∪
. . . ∪ un↑. Then

U = Nd \ U = Nd \ (u1↑ ∪ u2↑ ∪ . . . ∪ un↑)
= (Nd \ u1↑) ∩ (Nd \ u2↑) ∩ . . . ∩ (Nd \ un↑).

Thus in order to show that ||U || is at most exponential wrt. ||U || we need to face two
challenges. The first one is to show that representation of (Nd \ u↑) for u ∈ Nd is not too big
wrt. size of u and the second one is to show that the intersection of sets (Nd \ u↑) does not
introduce too big blowup.

Let us first focus on the first challenge. Let |u| be the biggest value that appear in u i.e.
|u| = max{u[i] : i ∈ [1, d]}. We claim that if v ∈ Nd \ u↑ and v[i] > |u| for i ∈ [1, d] then
v + ei ∈ Nd \ u↑. Indeed, if v ∈ Nd \ u↑ then there is j ∈ [1, d] such that v[j] < u[j]. Of
course i ̸= j, so v + ei ̸⪰ u and thus v + ei ∈ Nd \ u↑. But this means that if v̂ ∈ (N ∪ {ω})d

such that v̂↓ ⊆ Nd \ u↑ and v̂ is maximal (namely its entries cannot be increased without
violating v̂↓ ⊆ Nd \ u↑) then v̂ ∈ ([0, |u|] ∪ {ω})d. Thus there are only exponentially many
possibilities for v̂ and the representation of Nd \ u↑ is at most exponentially bigger than the
representation of u.

Let us face now the second challenge. Let v̂1, v̂2 ∈ ([1, |u|] ∪ {ω})d. Observe that
v ∈ v̂1↓ ∩ v̂2↓ if and only if v[i] ≤ v̂1[i] and v[i] ≤ v̂2[i] for all i ∈ [1, d]. But this means
that if v̂ ∈ (N ∪ {ω})d and v̂↓ ⊆ v̂1↓ ∩ v̂2↓ is maximal then v̂ ∈ ([0, |u|] ∪ {ω})d. Thus the
representation of Nd \ U is also only at most exponentially bigger than the representation
of U .

In order to compute the representation of U one can simply check for all v̂ ∈ ([0, |u|]∪{ω})d

whether v̂↓ ⊆ Nd \ U . ◀
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We recall the statement of Lemma 7.

Lemma 7. The emptiness problem for VASSes with the acceptance condition F = qF (U ×D)
where D is a down-atom and U is an up-atom is in Ackermann.

Proof of Lemma 7. We provide a polynomial reduction of the problem to the emptiness
problem in singleton-VASSes which is in Ackermann. Let V = (Q, T, cI , qF (U × D)) be a
d-VASS with up-atom U ⊆ Nd1 and down-atom D ⊆ Nd2 such that d1 + d2 = d. Let U = u↑
for some u ∈ Nd1 and let D = v↓ for some v ∈ (N ∪ {ω})d2 . Let us assume wlog of generality
that d2 = dU + dB such that for i ∈ [1, dU ] we have v[i] = ω and for i ∈ [dU + 1, d2] we have
v[i] ∈ N. Let a d-VASS V ′ be the VASS V slightly modified in the following way. First we
add a new state q′

F and a transition (qF , 0d, q′
F ). Next, for each dimension i ∈ [1, d1] we add

a loop in state q′
F (transition from q′

F to q′
F ) with the effect −ei, namely the one decreasing

the dimension i, these are the dimensions corresponding to the up-atom U . Similarly for
each dimension i ∈ [d1 + 1, d1 + dU ] we add in q′

F a loop with the effect −ei, these are
the unbounded dimensions corresponding to the down-atom D. Finally for each dimension
i ∈ [d1 + dU + 1, d] we add in q′

F a loop with the effect ei (notice that this time we increase
the counter values), these are the bounded dimensions corresponding to the down-atom D.
Let the initial configuration of V ′ be cI (the same as in V) and the set of final configurations
F ′ of V ′ be the singleton set containing q′

F (u, (0dU , v[dU + 1], . . . , v[dU + dB ])). Clearly V ′ is
a singleton-VASS, so the emptiness problem for V ′ is in Ackermann. It is easy to see that
the emptiness problem in V and in V ′ are equivalent which finishes the proof. ◀

B Missing proofs from Section 3.1

We recall the statement of Lemma 12.

Lemma 12. For each d-dimensional singleton-VASS V with final configuration being cF =
qF (0d) one can construct in polynomial time two deterministic (d + 1)-dimensional upward-
VASSes V1 and V2 such that

L(V1) = L(V2) ⇐⇒ L(V ) = ∅.

Proof of Lemma 12. For a given V = (Q, T, cI , cF ) we construct V1 = (Σ = T ∪ {a}, Q ∪
{q′

F }, T ′ ∪ {t1}, c′
I , q′

F (0d+1↑)), and V2 = (Σ = T ∪ {a}, Q ∪ {q′
F }, T ′ ∪ {t2}, c′

I , q′
F (0d+1↑)).

Notice, V1 and V2 are pretty similar to each other and also to V . Both V1 and V2 have
the same states as V plus one additional state q′

F . Notice that the alphabet of labels of
V1 and V2 is the set of transitions T of V plus one additional letter a. For each transition
t = (p, v, q) ∈ T of V we create a transition (p, t, v′, q) ∈ T ′ where

for each i ∈ [1, d] we have v′[i] = v[i]; and
v′[d + 1] = v[1] + . . . + v[d],

so v′ is identical as v on the first d dimensions and on the last (d + 1)-th dimension it keeps
the sum of all the others. Notice that transitions in T ′ are used both in V1 and in V2.

We also add one additional transition t1 to V1 and one t2 to V2. To V1 we add a new
a-labelled transition from qF to q′

F with the effect equal 0d+1 for the additional letter a. To V2
we also add an a-labelled transition between qF and q′

F , but with an effect equal (0d, −1). This
−1 on the last coordinate is the only difference between V1 and V2. The starting configuration
in both V1 and V2 is c′

I = qI(x1, x2, . . . xd,
∑d

i=1 xi) where cI = qI(x1, x2, . . . xd). The set of
accepting configurations is the same in both V1 and V2, namely it is q′

F (0d+1↑) . Notice that
both V1 and V2 are deterministic upward-VASSes, as required in the lemma statement.
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Now we aim to show that L(V1) = L(V2) if and only if L(V ) = ∅. First observe that
L(V1) ⊇ L(V2). Clearly if w ∈ L(V2) then w = ua for some u ∈ T ∗, where T is the set of
transitions of V . For any word ua ∈ L(V2) we have

c′
I

u−→ qF (v) a−→ q′
F (v − ed+1)

in V2. But, then we have also

c′
I

u−→ qF (v) a−→ q′
F (v)

in V1. Thus ua ∈ L(V1).
Now we show that, if L(V ) ̸= ∅, so cI −→ qF (0d) in V then L(V1) ̸= L(V2). Let

the run ρ of V be such that cI
ρ−→ qF (0d) and let u = trans(ρ) ∈ T ∗. Then clearly

c′
I

u−→ qF (0d+1) a−→ q′
F (0d+1) and ua ∈ L(V1). However ua ̸∈ L(V2) as the last coordinate on

the run of V2 over ua corresponding to ρ would go below zero and this is the only possible
run of V2 over ua due to determinism of V2.

It remains to show that if L(V ) = ∅, so cI −̸→ qF (0d) in V , then L(V1) ⊆ L(V2). Let
w ∈ L(V1). Then w = ua for some u ∈ T ∗. Let c′

I

ρ−→ c in V1 such that trans(ρ) = u. As
ua ∈ L(V1) we know that c = qF (v). However as cI −̸→ qF (0d) in V we know that v ≠ 0d+1.
In particular v[d + 1] > 0. Therefore w = ua ∈ L(V2) as the last transition over a may
decrease the (d + 1)-th coordinate and reach an accepting configuration. This finishes the
proof. ◀

C Missing proofs from Section 3.2

We recall the statement of Lemma 13.

Lemma 13. For a VASS V1 and a downward-VASS V2 one can construct in polynomial
time an updown-VASS V such that L(V ) = L(V1) ∩ L(V2).

Proof of Lemma 13. We construct V as the standard synchronous product of V1 and V2.
The set of accepting configurations in V is also the product of accepting configurations in V1
and accepting configurations in V2, thus due to Proposition 5 a finite union of q(U × D) for
a state q of V , an up-atom U and a down-atom D. ◀

We recall the statement of Theorem 14.

Theorem 14. For a deterministic VASS one can build in exponential time a downward-VASS
which recognises the complement of its language.

Proof of Theorem 14. Let V = (Σ, Q, T, cI , F ) be a deterministic d-VASS. We aim at con-
structing a d-dimensional downward-VASS V ′ such that L(V ′) = L(V ). Before constructing
V ′ let us observe that there are three possible scenarios for a word w to be not in L(V ). The
first scenario (1) is that the only run over w in V finishes in a non-accepting configuration.
Another possibility is that there is even no run over w. Namely for some prefix va of w

where v ∈ Σ∗ and a ∈ Σ we have cI
v−→ c for some configuration c but there is no transition

from c over the letter a as either (2) a possible transition over a would decrease some of the
counters below zero, (3) there is no such transition possible in V in the state of c.

We are ready to describe VASS V ′ = (Σ, Q′, T ′, c′
I , F ′). Roughly speaking it consists of

|T | + |Σ| + 1 copies of V . Concretely the set of states Q′ is the set of pairs Q × (T ∪ Σ ∪ {−}).
Let cI = qI(vI). Then let q′

I ∈ Q′ be defined as q′
I = (qI , −) and we define the initial

CONCUR 2022
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configuration of V as c′
I = q′

I(vI). The set of accepting configurations F ′ = F1 ∪ F2 ∪ F3
is a union of three sets Fi, each set Fi for i ∈ {1, 2, 3} is responsible for accepting words
rejected by VASS V because of the scenario (i) described above. We successively describe
which transitions are added to T ′ and which configurations are added to F ′ in order to
appropriately handle various scenarios.

We first focus on words fulfilling the scenario (1). For states of a form (q, −) the VASS
V ′ is just as V . Namely for each transition (p, a, v, q) ∈ T we add (p′, a, v, q′) to T ′ where
p′ = (p, −) and q′ = (q, −). We also add to F ′ the following set F1 = {(q, −)(v) | q(v) ̸∈ F}.
It is easy to see that words that fulfil scenario (1) above are accepted in V ′ by the use of
the set F1. The size of the description of F1 is at most exponential wrt. the size of the
description of F by Proposition 6.

Now we describe the second part of V ′ which is responsible for words rejected by V

because of the scenario (2). The idea is that we guess when the run over w is finished. For
each transition t = (p, a, v, q) ∈ T we add (p′, a, 0d, q′) to T ′ where p′ = (p, −) and q′ = (q, t).
The idea is that the run reaches the configuration in which the transition t cannot be fired.
Now we have to check that our guess is correct. In the state (q, t) for t ∈ T no transition
changes the configuration. Namely for each q′ = (q, t) ∈ Q × T and each a ∈ Σ we add to T ′

transition (q′, a, 0d, q′). We add now to F ′ the set F2 = {(q, t)(v) | v + eff(t) ̸∈ Nd}. Notice
that F2 can be easily represented as a polynomial union of down-atoms. It is easy to see
that indeed V ′ accepts by F2 exactly words w such that there is a run of V over some prefix
v of w but reading the next letter would decrease one of the counters below zero.

The last part of V ′ is responsible for the words w rejected by V because of the scenario
(3), namely w has a prefix va such that there is a run over v ∈ Σ∗ in V but then in the
state of the reached configuration there is no transition over the letter a ∈ Σ. To accept
such words for each state p ∈ Q and letter a ∈ Σ such that there is no transition of a form
(p, a, v, q) ∈ T for any v ∈ Nd and q ∈ Q we add to T ′ transition ((p, −), a, 0d, (p, a)). In each
state p′ = (p, a) ∈ Q × Σ we have a transition (p′, b, 0d, p′) for each b ∈ Σ. We also add to F ′

the set F3 = {(p, a)(v) | v ∈ Nd and there is no (p, a, u, q) ∈ T for u ∈ Nd and q ∈ Q}. Size
of F3 is polynomial wrt. T .

Summarising V ′ with the accepting downward-closed set F = F1 ∪ F2 ∪ F3 indeed satisfies
L(V ′) = L(V ), which finishes the construction and the proof. ◀

We recall the statement of Lemma 16.

Lemma 16. For each HVASS one can compute in exponential time a language equivalent
ε-VASS.

Proof of Lemma 16. Let V = (Σ, Q, T, qI(vI), F, H) be a d-HVASS with the set of holes
H. We aim at constructing a d-VASS V ′ = (Σ, Q′, T ′, c′

I , F ′) such that L(V ) = L(V ′). By
Proposition 6 we can compute in exponential time an upward-closed set of configurations
U = (Q × Nd) \ H. In order to translate V into a d-VASS V ′ intuitively we need to check
that each configuration on the run is not in the set H. In order to do this we use the
representation of U as a finite union U =

⋃
i∈[1,k] qi(ui↑) for qi ∈ Q and ui ∈ Nd. Now for

each configuration c on the run of V the simulating VASS V ′ needs to check that c belongs
to qi(ui↑) for some i ∈ [1, k]. That is why in V ′ after every step simulating a transition of V

we go into a testing gadget and after performing the test we are ready to simulate the next
step. For that purpose we define Q′ = (Q × {0, 1}) ∪ {r1, . . . , rk}. The states in Q × {0}
are the ones before the test and the states in Q × {1} are the ones after the test. States
r1, . . . , rk are used to perform the test. The initial configuration c′

I is defined as (qI , 0)(vI)
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and set of final configurations is defined as F ′ = {(q, 1)(v) | q(v) ∈ F}. For each transition
(p, a, v, q) in T we add a corresponding transition ((p, 1), a, v, (q, 0)) to T ′. In each reachable
configuration (q, 0)(v) the VASS V ′ nondeterministically guesses for which i ∈ [1, k] holds
qi(ui) ⪯ q(v) (which guarantees that indeed q(v) ∈ U). In order to implement it for each
q ∈ Q and each i ∈ [1, k] such that q = state(ri) we add two transitions to T ′: the one from
(q, 0) to ri subtracting ui, namely ((q, 0), ε, −ui, ri) and the one coming back and restoring
the counter values, namely (ri, ε, ui, (q, 1)). It is easy to see that (q, 0)(v) ε−→ (q, 1)(v) if and
only if q(v) ∈ U , which finishes the proof. ◀

We recall the statement of Theorem 17.

Theorem 17. For a deterministic HVASS one can compute in exponential time a downward-
ε-VASS which recognises the complement of its language.

Proof of Theorem 17. The proof of Theorem 17 is very similar to the proof of Theorem 14
so we only sketch the key differences. Let V be a deterministic HVASS and let H ⊆ Q×Nd be
the set of its holes. Let U = (Q×Nd)\H , by Proposition 6 we know that U =

⋃
i∈[1,k] qi(ui↑)

for some states qi ∈ Q and vectors ui ∈ Nd, and additionally ||U || is at most exponential wrt.
the size ||H||.

The construction of V ′ recognising the complement of L(V ) is almost the same as in the
proof of Theorem 14, we need to introduce only small changes. The biggest changes are in
the part of V ′ recognising words rejected by V because of scenario (1). We need to check
that after each transition the current configuration is in U (so it is not in any hole from H).
We perform it here in the same way as in the proof of Lemma 16. Namely we guess to which
qi(ui↑) the current configuration belongs and check it by simple VASS modifications (for
details look to the proof of Lemma 16). The size of this part of V ′ can have a blowup of at
most size of U times, namely the size can be multiplied by some number, which is at most
exponential wrt. the size ||H||.

In the part recognising words rejected by V because of scenario (2), we need only to
adjust the accepting set F2. Indeed, we need to accept now if we are in a configuration
(p, t)(v) ∈ Q × T such that v + t ̸∈ Nd or v + t ∈ H (in contrast to only v + t ̸∈ Nd in the
proof of Theorem 14). This change does not introduce any new superlinear blowup.

Finally the part recognising words rejected by V because of scenario (3) does not need
adjusting at all. It is not hard to see that the presented construction indeed accepts the
complement of L(V ) as before. The constructed downward-VASS V ′ is of at most exponential
size wrt. the size V as explained above, which finishes the proof. ◀

We recall the statement of Theorem 18.

Theorem 18. The inclusion problem of an HVASS language in a deterministic HVASS
language is in Ackermann.

Proof of Theorem 18. Let V1 = (Σ, Q1, T1, c1
I , F1, H1) be a d1-HVASS with holes H1 ⊆

Q1 × Nd1 and let V2 = (Σ, Q2, T2, c2
I , F2, H2) be a deterministic d2-HVASS with holes

H2 ⊆ Q2 × Nd2 . By Lemma 16 an ε-VASS V ′
1 equivalent to V1 can be computed in

exponential time. By Theorem 17 a downward-ε-VASS V ′
2 can be computed in exponential

time such that L(V ′
2) = Σ∗ \ L(V2). It is enough to check now whether L(V ′

1) ∩ L(V ′
2) = ∅.

By Lemma 13 (extended to ε-VASSes) one can compute an updown-ε-VASS V such that
L(V ) = L(V ′

1) ∩ L(V ′
2). Finally by Corollary 8 (also extended to ε-VASSes) the emptiness

problem for updown-ε-VASSes is in Ackermann which finishes the proof. ◀
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We recall the statement of Theorem 19.

Theorem 19. For a k-deterministic d-VASS one can build in exponential time a (k · d)-
dimensional downward-VASS which recognises the complement of its language.

Proof of Theorem 19. Before starting the proof let us remark that it would seem natural
to first build a (k · d)-VASS equivalent to the input k-deterministic d-VASS and then apply
construction from the proof of Theorem 14 to recognise the its complement. However, it
is not clear how to construct a (k · d)-VASS equivalent to k-deterministic d-VASS, thus we
compute directly a VASS recognising the complement of the input VASS language.

Let V = (Σ, Q, T, cI , F ) be a k-deterministic d-VASS. We aim to construct (k · d)-
dimensional downward-VASS V ′ = (Σ, Q′, T ′, c′

I , F ′) such that L(V ′) = Σ∗ \ L(V ). Also in
this proof we strongly rely on the ideas introduced in the proof of Theorem 14. The idea
of the construction is that V ′ simulates k copies of V which take care of different maximal
runs of V . Then the accepting condition F ′ of V ′ verifies whether in all the copies there is a
reason that the simulated maximal runs do not accept.

Recall that for a run there are three scenarios in which it is not accepted: (1) it reaches
the end of the word, but the reached configuration is not accepted, (2) at some moment it
tries to decrease some counter below zero, and (3) at some moment there is no transition
available over the input letter. In the proof of Theorem 14 it was shown how a VASS can
handle all the three reasons. In short words: in case (1) it simulates the run till the end of
the word and then checks that the reached configuration is not accepting and in cases (2)
and (3) it guesses the moment in which there is no valid transition available and keeps this
configuration untouched till the end of the run when it checks by the accepting condition
that the guess was correct. We only sketch how the downward-VASS V ′ works without
stating explicitly its states and transitions. It starts in the configuration c′

I which consists
of k copies of cI . Then it simulates the run in all the copies in the same way till the first
moment when there is a choice of transition. Then we enforce that at least one copy follows
each choice, but we allow for more than one copy to follow the same choice. In the state
of V ′ we keep the information which copies are following the same maximal run and which
have already split. Each copy is exactly as in the proof of Theorem 14, it realises one of
the scenarios (1), (2) or (3). As we know that V is k-deterministic we are sure that all the
possible runs of V can be simulated by V ′ under the condition the V ′ correctly guesses which
copies should simulate which runs. If guesses of V ′ are wrong and at some point it cannot
send to each branch a copy then the run of V ′ rejects. At the end of the run over the input
word w VASS V ′ checks using the accepting condition F ′ that indeed all the copies have
simulated all the possible maximal runs and that all of them reject. It is easy to see that F ′

is a downward-closed set, as roughly speaking it is a product of k downward-closed accepting
conditions, which finishes the proof. ◀

D Missing proofs from Section 5

The proofs from this section are available only in the arxiv version of this paper because of
the space limitation. Please check https://arxiv.org/pdf/2202.08033.pdf.

https://arxiv.org/pdf/2202.08033.pdf
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1 Introduction

The π-calculus [21, 22] is a well-known formalism for describing concurrent message-passing
systems admitting unbounded process creation and mobility of agents. Intuitively speaking,
a configuration of such a system is a graph in which each vertex is a process labelled by
its current state and there is an edge between two processes if they share a channel using
which they can pass messages. The flexibility of π-calculus lies in the fact that processes
can transmit the names of channels using channels themselves, allowing reconfiguration of
channels using process definitions itself. Due to its immense expressive power, all interesting
verification problems quickly become undecidable for π-calculus processes.

Consequently, research on π-calculus has been focused on finding fragments for which
certain problems are decidable. The most expressive fragment of π-calculus for which some
verification problems still remain decidable is the class of depth-bounded processes [20].
Intuitively, depth-bounded processes are those in which the length of simple paths in the
set of reachable configurations is bounded by a constant. It is known that depth-bounded
processes can be viewed as well-structured transition systems (WSTS) [20]. This implies
that the coverability problem for such systems is decidable [20, 27]. Intuitively, coverability
consists of deciding if a given system can reach a configuration where some process is in an
error state.

However, despite the positive decidability results known regarding this problem, the
exact complexity of this problem has remained open so far. To the best of our knowledge,
only an EXPSPACE-hardness result is known for this problem [27]. In this paper, we

© A. R. Balasubramanian;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 17; pp. 17:1–17:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bala.ayikudi@tum.de
https://arbalan96.github.io/
https://orcid.org/0000-0002-7258-5445
https://doi.org/10.4230/LIPIcs.CONCUR.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Complexity of Coverability in Depth-Bounded Processes

provide complexity-theoretic completeness results for this problem. More specifically, we
prove that the coverability problem for depth-bounded processes is Fϵ0-complete, where
Fϵ0 is a complexity class in the fast-growing hierarchy of complexity classes [24]. This is a
hierarchy of complexity classes which allows for a finer classification of problems that do not
admit any elementary-time algorithms, i.e., problems which do not have algorithms whose
running times can be upper bounded by a fixed tower of exponentials in the input size. In
particular, our result proves that the coverability problem for depth-bounded processes is not
primitive-recursive and indeed is harder than even problems complete for the Ackermann
complexity class.

The complexity-theoretic classification of problems which are non-elementary has attracted
a lot of attention in the recent years, with various techniques developed for proving both
lower and upper bounds [13, 6, 25, 24, 1, 23, 8, 19, 7, 18]. While these results are obviously
negative from a tractability perspective, understanding the precise complexity of a problem
may help us to solve it in practice by reducing it to other well-studied problems for which
tools and heuristics have been developed, like the satisfiability problem for weak S1S or
the Petri net reachability problem [3, 12, 15, 4, 5, 16, 10]. The fast-growing hierarchy is of
great assistance in this task. Adding new complete problems for classes in this hierarchy can
help us prove hardness results for other problems in the future, without having to resort to
coming up with reductions from scratch, i.e., from Turing machines or counter machines.

Our result significantly improves upon the existing lower bound of EXPSPACE-hardness,
which is inherited from the coverability problem for Petri nets. Further, it settles a conjecture
raised by Hasse, Schmitz and Schnoebelen (Section 8.3 of [17]) and also addresses a question
raised by Wies, Zufferey and Henzinger (Section 5 of [27]).1 To prove the lower bound, we
introduce a new model of computation called nested counter systems with levels, which (in a
manner) simplifies the already existing model of nested counter systems [8], while preserving
the hardness of that model.

The techniques used in this paper are similar to the ones presented in [2], in order to prove
Fϵ0 -completeness for parameterized coverability of bounded-depth broadcast networks. While
some of the ideas between these two papers are similar, there are some differences between
the models considered in these two papers. First, as the name suggests, broadcast networks
allow for a process to broadcast to its set of neighbors, whereas processes in π-calculus
interact in a manner akin to rendez-vous communication. One might expect that there is a
drop in complexity when the communication mechanism goes from broadcast to rendez-vous.
For instance, as mentioned in [11], coverability for networks with (unrestricted) broadcast
communication is Ackermann-complete, while the same problem for rendez-vous networks
is (only) EXPSPACE-complete. Our result suggests that this drop in complexity need
not always be the case. Further, in broadcast networks, there is no process creation nor
dynamic reconfiguration of channels, whereas π-calculus has both. Finally, for the lower
bound construction in this paper, we also need to prove depth-boundedness of any reachable
configuration in the process constructed for the reduction, whereas no such property needs
to be proven for the lower bound construction for broadcast networks. We also believe that
the newly introduced model of nested counter systems with levels (whose hardness we prove
by using ideas from [2]), makes the proof of the lower bound for π-calculus cleaner when
compared with giving a direct reduction from nested counter systems as was done in [2].

1 The version of the problem that the authors of [27] consider does not assume that a bound on the depth
of the process is given as part of the input, whereas in our setting we take this to be the case, in order
to prove the upper bound. However, our lower bound result does not require this assumption.
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2 Preliminaries

We first present the syntax and the semantics of the version of π-calculus that we will use .
The definitions here are taken from the ones given in [27].

2.1 The π-calculus
We assume that there is a countable collection of names (denoted by x, y, . . . ) and a countable
collection of process identifiers (denoted by A, B, . . . ). Each name and identifier has an
associated arity in N. We use boldface letters like x, y to denote (possibly empty) vectors over
names and denote substitution of names by [x/y], i.e., if x = x1, . . . , xn and y = y1, . . . , yn,
then [x/y] denotes a mapping in which each yi is mapped to xi and every other name is
mapped to itself.

A process term (or simply a term) P is either the unit process 0, or a parameterized process
identifier A(x), or any term obtained by the standard operations of parallel composition
P1 | P2, external choice π1 · P1 + π2 · P2 and name restriction (νx)P1. Here P1 and P2 are
themselves terms and π1 and π2 are prefixes which can either be an input prefix x(y) or an
output prefix x̄(y) or the empty string. All parameter vectors occuring in a parameterized
process identifier or a prefix must respect the arity of the names and identifiers. A thread
is a term of the form A(x). We use Π and Σ to denote (indexed) parallel composition and
external choice. We further use (νx) to denote (νx1)(νx2) . . . (νxn) where x = x1, . . . , xn.
The application of a substitution of names σ to a term P , denoted by σ(P ), is defined in the
usual way.

An occurrence of a name x in a term P is called free if it is not below a (νx) or an input
prefix y(x). We let fn(P ) denote the set of free names of P . A bound name of P is a name
of P which is not free. We say that P is closed if fn(P ) = ∅. We use the usual structural
congruence relation P ≡ Q on process terms, i.e., P ≡ Q if P is syntactically equal to Q

upto renaming and reordering of bound names, associativity and commutativity of parallel
composition and external choice, elimination of units ((P | 0) ≡ P, (νx)0 ≡ 0) and scope
extrusion ((νx)(P | Q) ≡ (νx)P | Q if x /∈ fn(Q)).

A configuration is a closed term of the form (νx) (Πi∈IAi(xi)). A process P is a pair
(I, E) where I is an initial configuration and E is a set of parametric equations of the form
A(x) = P where A is an identifier and P is a term such that 1) every identifier in P is
defined by exactly one equation in E and 2) if A(x) = P is an equation, then fn(P ) ⊆ {x}.
We assume that all the equations are given in the following form:

A(x) =
∑
i∈I

πi.(νxi)

∏
j∈Ji

Aj(xj)


Operational semantics

Let P = (I, E) be a process. We define a transition relation on the set of configurations using
E as follows. Let P and Q be configurations. Then P −→ Q iff the following conditions are
satisfied:

P ≡ (νu)(A(v) | B(w) | P ′),
The defining equation of A in E is of the form A(x) = x(x′).(νx′′)(M) + M ′,
The defining equation of B in E is of the form B(y) = ȳ(y′).(νy′′)(N) + N ′,
σ = [v/x, w/y, w′/x′, zA/x′′, zB/y′′] where zA, zB are fresh names and w′ is the set of
names assigned to y′ under the mapping [w/y].
σ(x) = σ(y) and
Q ≡ (νu, zA, zB)(σ(M) | σ(N) | P ′)
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We denote such a step by P
A(v),σ(x),B(w)−−−−−−−−−−→ Q or simply by P −→ Q. We can then define

the reachability relation ∗−→ as the reflexive and transitive closure of −→. We say that a
configuration P is reachable in P iff I

∗−→ P . We further say that P is coverable if P ≡ (νx)P ′

and there exists Q ≡ (νx)(P ′ | R) such that I
∗−→ Q. The coverability problem is to decide if

a given configuration P is coverable in a given process P.

Depth-bounded processes

We now define the class of depth-bounded processes. The nesting of restrictions nest of a
term P is defined inductively as follows: nest(0) = nest(A(x)) = nest(π1 · P1 + π2 · P2) = 0,
nest((νx)P ) = 1 + nest(P ) and nest(P1 | P2) = max{nest(P1), nest(P2)}. The depth of a
term P is the minimal nesting of restrictions of terms in the congruence class of P :

depth(P ) := min{nest(Q) : Q ≡ P}

▶ Definition 1. A set of configurations C is called k-depth-bounded if the depth of all
configurations in C is at most k. C is called depth-bounded if there is some k such that it is
k-depth-bounded. A process P is called (k-)depth-bounded if its set of reachable configurations
is (k-)depth-bounded.

▶ Example 2. The following example intuitively demonstrates a system in which there is
one “level 0” thread which can spawn “level 1” threads by using a “New1” thread. Then,
each level 1 thread can itself spawn “level 2” threads by using their own “New2” threads.

Level0(x) = x̄().Level0(x) New1(x) = x().((νy)(New1(x) | Level1(x, y) | New2(y)))

Level1(x, y) = ȳ().Level1(x, y) New2(y) = y().((νz)(New2(y) | Level2(y, z) | New3(z)))

Level2(y, z) = z̄().Level2(y, z) New3(z) = z().New3(z)

Suppose we set I = (νx)(Level0(x) | New1(x)). Then the following is a valid run:

I −→ (νx)(Level0(x) | New1(x) | (νy)(Level1(x, y) | New2(y)))
−→ (νx)(Level0(x) | New1(x) | (νy)(Level1(x, y) | New2(y) | (νz)(Level2(y, z) | New3(z))))

We note that the depth of the last configuration in this run is 3. Indeed, we can show
that the depth of any reachable configuration from I is at most 3. Later on, we will see that
some of the ideas behind this example are relevant to our lower bound construction.

Our main theorem of the paper is that,

▶ Theorem 3. The coverability problem for depth-bounded processes is Fϵ0-complete.

Here, we assume that the input consists of a process P and a number k such that P
is k-depth-bounded. Further, Fϵ0 is a complexity class in the fast-growing hierarchy of
complexity classes [24]. Due to lack of space, we do not define it here. The lower bound
behind this theorem is accomplished by giving a log-space reduction from a Fϵ0 -hard problem.
The upper bound is obtained by using results on the length of controlled bad sequences over
a suitable well-quasi ordering.

We first explain the proof of the lower bound. To do this, we first introduce a model
called nested counter systems with levels (NCSL) and show that the coverability problem
for this model is Fϵ0-hard. We then give a reduction from this problem to the coverability
problem for depth-bounded processes, thereby proving the lower bound of Theorem 3.



A. R. Balasubramanian 17:5

3 Nested counter systems with levels (NCSL)

We now introduce a new model of computation called nested counter systems with levels
(NCSL) and prove Fϵ0-hardness of coverability for this model. NCSL are closely related to
the so-called nested counter systems (NCS) [8]. Indeed, in Section 4, we will recall NCS and
prove the hardness result for NCSL by giving a reduction from the coverability problem for
NCS.

Before describing NCSL in a formal manner, we give some intuition. A k-NCSL is
a generalisation of a usual counter system with higher-order counters. Intuitively, a 1-
dimensional counter is a usual counter which can add or subtract 1. A 2-dimensional counter
can add or subtract 1-dimensional counters, a 3-dimensional counter can add or subtract
2-dimensional counters and so on. A k-NCSL can produce up to k-dimensional counters
and then manipulate these counters using “local” rules, i.e., rules which update at most 2
counters at a time. Later on, we will consider the NCS model [8], which allows to update
mutliple counters in a single step.

Formally, a k-nested counter system with levels (k-NCSL) is a tuple N =
(Q, δ0, . . . , δk−1, δk) where Q is a finite set of states and each δl is a set of level-l rules
such that δl ⊆

⋃
1≤i≤j≤2(Qi × Qj). We further enforce that if l = k then δl ⊆ Q × Q. The

set CN of configurations of N is defined to be the set of all labelled rooted trees of height at
most k, with labels from the set Q.

The operational semantics of N is defined in terms of the following transition relation
→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δl be a level-l rule with

l ≤ k and 0 ≤ i ≤ j ≤ 1. We say that a configuration C can move to the configuration C ′

using the rule r (denoted by C
r−→ C ′) if there is a node v0 at depth l in C with label q0 and

the following holds.
Creation. Suppose r = ((q0), (q′

0, q′
1)). Then C ′ is obtained from C by changing the

label of v0 to q′
0, creating a new vertex v1 with label q′

1 and adding it as child to v0.
1-Preservation. Suppose r = ((q0), (q′

0)). Then C ′ is obtained from C by changing
the label of v0 to q′

0.
2-Preservation. Suppose r = ((q0, q1), (q′

0, q′
1)). Then there is a child v1 of v0 in C

with label q1 and C ′ is obtained from C by changing the labels of v0 and v1 to q′
0 and q′

1
respectively.

▶ Example 4. Let us consider the 2-NCSL N given by the states Q = {pi, p′
i, qi, q′

i : 0 ≤ i ≤ 4}
and consisting of the rules r0 ∈ δ0, r1 ∈ δ1, r2 ∈ δ2 where r0 = ((q0, q1), (q′

0, q′
1)), r1 =

((p1), (p′
1, p2)), r2 = ((p2), (p′

2)). In Figure 1, we illustrate the application of these rules to a
configuration of N .

q0

q1 p1

r0

q′
0

q′
1 p1

r1

q′
0

q′
1 p′

1

p2

r2

q′
0

q′
1 p′

1

p′
2

Figure 1 Application of the rules r0, r1 and r2 to a configuration of N , which is described in
Example 4.
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We say that C −→ C ′ if C
r−→ C ′ for some rule r. We can then define the reachability

relation ∗−→ in a standard manner. Given two states qin, qf ∈ Q, we say that qin can cover qf

if the (unique) configuration consisting of the single root vertex labelled with qin (also called
the initial configuration of N ) can reach some configuration where the root is labelled by qf .
The coverability problem for an NCSL is then the following: Given an NCSL N and two
states qin, qf , can qin cover qf ? We prove that

▶ Theorem 5. The coverability problem for NCSL is Fϵ0-hard, even when restricted to NCSL
which only have creation and 2-preservation rules.

The proof of Theorem 5 is deferred to Section 4. We shall assume this theorem and first
prove the main result of this paper (Theorem 3), i.e., that coverability for depth-bounded
π-calculus processes is Fϵ0 -hard.

3.1 Hardness of coverability for depth-bounded π-calculus processes
Throughout this subsection, we let N = (Q, δ0, . . . , δk−1, δk) be a fixed k-NCSL which only
has creation and 2-preservation rules. Note that since there are no 1-preservation rules, by
definition of a k-NCSL, δk is empty and so we will ignore δk everywhere in this section. Let
qin and qf be two fixed states of N . We will now construct a depth-bounded process P and
a configuration C of P such that C can be covered in P iff qf can be covered from qin in N .

Process identifiers, names and the initial configuration
To construct P , we have to define an initial configuration and a set of parametric equations.
We begin by specifying the set of names and the process identifiers that we shall use in
the equations. Based on these names and identifiers, we define the initial configuration
and also introduce an injective mapping B from the set of configurations of N to the set of
configurations of P. This map will be useful to prove the correctness of our reduction.

Process identifiers and names. For each 1 ≤ i ≤ k, we will have a process identifier start[i].
For each 0 ≤ i ≤ k and each state q of N , we will have an identifier q[i]. Notice that each
process identifier is of the form a[b] where a ∈ Q ∪ {start} and 0 ≤ b ≤ k. The first part “a”
will be called the base of the identifier and the second part “b” will be called the grade of the
identifier. The arities of the identifiers are as follows: The arity of each start[i] will be |δi−1|.
For every state q of N , the arity of q[0] will be |δ0|, the arity of q[k] will be |δk−1| and the
arity of every other q[i] will be |δi−1| + |δi|.

The set of names that we will be using in the equations will be the set of rules of N ,
i.e., δ0 ∪ δ1 ∪ · · · ∪ δk−1. For each δi, we let ni denote some fixed vector comprising all the
names from δi. We also assume that there is another countably infinite set of names needed
to describe the configurations of P. We note that this latter set is not part of the input.

A mapping. We now introduce an injective map from the set of configurations of N to
the set of configurations of P. Let C be a configuration of the NCSL N . To C, we assign
a unique configuration of P (denoted by B(C)) as follows: Let the set of vertices of C be
V and let the set of internal vertices of C (the root and the other non-leaf vertices) be IV .
B(C) is then defined as the configuration

(νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv))

where {z} = ∪v∈V {xv, yv} and for each v,
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{xv} ∩ {yv} = ∅,
If the label of v in C is q and v is at depth l, then Av = q[l] and Bv = start[l + 1],
If v is the root, then xv is the empty vector. If v is a leaf, then yv is the empty vector.
Otherwise, if v is at depth l, then xv is of size |δl−1| and yv is of size |δl|.
For any v′, if v′ is a child of v, then xv′ = yv and {yv′} ∩ {xv} = ∅; if v′ is a sibiling of v,
then xv′ = xv and {yv′} ∩ {yv} = ∅; otherwise, {xv, yv} ∩ {xv′ , yv′} = ∅.

To give an intuition behind this mapping, let us look at B(C) from the perspective of
graphs. We construct a graph where there is a vertex for each Av(xv, yv) and each Bv(yv)
and we connect two such vertices by an edge if they share at least one free name and the
corresponding identifiers have different grades. By the requirements given above, this would
imply that the graph that we get is a tree which has a “copy” of C as a subgraph, along
with a new leaf vertex added to every internal vertex of C. Ignoring the new leaf vertices for
now, this means that B(C) can be thought of as a “representation” of C in the process P.
The parametric equations that we shall construct will make sure that if B(C) can move to a
new configuration P , then P will be a representation of C ′ for some C ′ such that C −→ C ′ in
the NCSL N .

We now have the following lemma which proves depth-boundedness of any configuration
of the form B(C). The intuition behind this lemma is that the “graph” of B(C) contains a
copy of C as a subgraph along with some other additional leaf vertices. Hence, since the
depth of C is bounded by k, we can expect that the depth of B(C) is also bounded.

▶ Lemma 6 (Depth-boundedness). For any configuration C, the depth of B(C) is at most∑k−1
l=0 |δl|.

Proof. Let V and IV be the set of vertices and internal vertices of C respectively. For any
vertex n, let Cn be the (labelled) subtree of C rooted at n and let Vn and IVn be the set of
vertices and internal vertices of Cn respectively.

We know that B(C) is of the form (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)). Let B(Cn)
be the sub-process term of B(C) given by Πv∈VnAv(xv, yv) | Πv∈IVnBv(yv) and let {zn} =
∪v∈Vn{xv, yv}.

By induction on the height h of the vertex n in the tree C, we will now show that the
depth of (νzn) B(Cn) is at most

∑k−1
l=max{k−1−h,0} |δl|. For the base case, when n is a leaf

and Cn is a tree with a single node, we have that (νzn) B(Cn) ≡ (νxn) q[k](xn) for some q

and some vector xn of size |δk−1|. This shows that the claim is true for the base case.
For the induction step, let Ch(n) be the children of n. By the requirements

imposed upon B(C), we can use the scope extrusion rule to write (νzn) B(Cn) as
(νxn, yn) (An(xn, yn) | Bn(yn) |
Πv∈Ch(n)(ν(zv \ yn)) B(Cv)). By induction hypothesis, we have that the depth
of each (νzv) B(Cv)) is

∑k−1
l=k−h |δl|. This then implies that the depth of

(νxn, yn) (An(xn, yn) | Bn(yn) |
Πv∈Ch(n)(ν(zv \ yn)) B(Cv)) is at most

∑k−1
l=k−1−h |δl| if n is not the root. If n is the root,

then the depth becomes at most
∑k−1

l=0 |δl| because xn = ∅. Hence, the induction step is
complete.

Since B(C) ≡ (νzn) B(Cn) where n is the root, it follows that the depth of B(C) is at
most

∑k−1
l=0 |δl|. ◀

Initial configuration. Recall that for each i ∈ {0, . . . , k − 1}, we let ni denote some fixed
vector comprising all the names from δi. We then take the initial configuration of P to be
(νn0)(qin[0](n0) | start[1](n0)). Note that the initial configuration of P is the image of the
initial configuration of N under the B mapping.
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Parametric equations

Before we describe the parametric equations, we set up some notation. Let r =
((q0, . . . , qi), (q′

0,

. . . , q′
j)) be a rule of the NCSL N . By definition of creation and 2-preservation rules, it has

to be the case that i ≤ 1 and j = 1. In the sequel, for the sake of uniformity across all rules,
we adopt the following nomenclature: If i = 0, we let q1 = start. In this way, we can always
associate a (unique) tuple ((q0, q1), (q′

0, q′
1)) with any rule r.

Let r = ((p, q), (p′, q′)) be a rule of N . We say that the tuple (p, q) (resp. (p′, q′)) is the
precondition (resp. postcondition) of r and we let prer

fi := p, prer
se := q, postr

fi := p′ and
postr

se := q′.
We will set up the parametric equations in such a way so that C −→ C ′ is a step in N iff

B(C) −→ B(C ′). Intuitively this is accomplished by ensuring that if r = ((p, q), (p′, q′)) ∈ δl is
a rule of N , then a thread with identifier p[l] can output along a name and go to p′[l] and a
thread with identifier q[l + 1] can receive along the same name and go to q′[l + 1].

Equations for identifiers of grade 0. For any q ∈ Q, the equation for q[0] is,

q[0](n0) :=
∑

r∈δ0, prer
fi=q

r(). postr
fi[0](n0)

Intuitively, this equation corresponds to a thread with identifier q[0] trying to execute
some rule r ∈ δ0 for which q = prer

fi and then becoming postr
fi[0].

Equations for identifiers of grade 1 ≤ i ≤ k − 1. Recall that the arity of any such
identifier is |δi−1| + |δi|, except for identifiers with base start, for which it is |δi−1|.

For any q ∈ Q, we have

q[i](ni−1, ni) :=
∑

r∈δi, prer
fi=q

r(). postr
fi[i](ni−1, ni) +

∑
r∈δi−1, prer

se=q

r(). postr
se[i](ni−1, ni)

Intuitively, the first summand of the equation corresponds to to a thread with identifier
q[i] trying to execute some rule r ∈ δi for which q = prer

fi and then becoming postr
fi[i].

The second summand corresponds to a thread with identifier q[i] trying to execute some
rule r ∈ δi−1 for which q = prer

se and then becoming postr
se[i].

For the start base, we have

start[i](ni−1) :=
∑

r∈δi−1, prer
se=start

r().

(
(νni) start[i](ni−1) | postr

se[i](ni−1, ni) | start[i+1](ni)

)

Intuitively, this equation is responsible for spawning new threads of grade i with base
in Q, when an appropriate output action is taken by some thread of grade i − 1 with
base in Q. First, if a thread with identifier start[i] receives a message along some channel
corresponding to some rule r ∈ δi−1 with prer

se = start, then a fresh set of names (denoted
by ni) are created. After that, the thread retains its identifier and two new threads are
spawned, postr

se[i](ni−1, ni) and start[i + 1](ni). We note that these equations have a
similar flavor to that of the equations for New1 and New2 given in Example 2.



A. R. Balasubramanian 17:9

Equations for identifiers of grade k. Recall that the arity of any identifier with grade k is
|δk−1|.

For any q ∈ Q, we have

q[k](nk−1) :=
∑

r∈δk−1, prer
se=q

r(). postr
se[k](nk−1)

For the start base, we have

start[k](nk−1) :=
∑

r∈δk−1, prer
se=start

r(). (postr
se[k](nk−1) | start[k](nk−1))

The intuitions behind these equations are the same as the one for the previous case.

3.2 Proof of correctness
We now formally show the proof of correctness of our reduction. We begin with a lemma
which shows that the constructed process P can simulate the NCSL N .

▶ Lemma 7 (P simulates N ). Suppose C −→ C ′ is a step in N . Then B(C) −→ B(C ′).

Proof. Let r = ((p, q), (p′, q′)) ∈ δl for some 0 ≤ l ≤ k − 1 such that C
r−→ C ′. Let V be the

set of vertices of C and let IV be the set of internal vertices of C. This means that there is
a vertex n in C at depth l such that the label of n in C is p.

Let B(C) ≡ (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)). By definition of the map B, it has to
be the case that An = p[l]. We have two cases:

Suppose q ̸= start. Then there has to be a child n′ of n in C such that its label in C is q.
Hence, An′ = q[l + 1]. Further, yn = xn′ . By construction of the parametric equations,
this means that B(C) can reach P where

P ≡ (νz) (Πv∈V \{n,n′}Av(xv, yv) | p′[l](xn, yn) | q′[l + 1](xn′ , yn′) | Πv∈IV Bv(yv))

It is then easy to see that P ≡ B(C ′).
Suppose q = start. Then Bn(yn) = start[l + 1](yn). By construction of the parametric
equations, this means that B(C) can reach P given by

P ≡ (νz, z′) (Πv∈V \{n}Av(xv, yv) | p′[l](xn, yn) | Πv∈IV Bv(yv) | q′[l+1](yn, z′) | start[l+2](z′))

where the last term start[l + 2](z′) is not present if l = k − 1. It is then easy to see that
P ≡ B(C ′). ◀

Next we show that N can also simulate P.

▶ Lemma 8 (N simulates P). Suppose B(C) −→ P . Then there exists a configuration C ′ of
N such that C −→ C ′ and P ≡ B(C ′).

Proof. Let V be the vertices of C and let IV be the set of internal vertices of C. Let
B(C) ≡ (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)) and let B(C) Tv(wv),c,Tv′ (wv′ )−−−−−−−−−−−−→ P .

By construction of the parametric equations, it must be the case that Tv(wv) = An(xn, yn)
for some node n and c must belong to {yn}. Let An = p[l]. Since c ∈ {yn}, by definition
of B(C), c can only be shared among the free names of the threads in {An′(xn′ , yn′) :
n′ is a child of n} ∪ {Bn(yn)}. We now consider two cases:
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Suppose Tv′(wv′) = An′(xn′ , yn′) for some n′ which is a child of n. Let An′ = q[l + 1].
Since we have B(C) Tv(wv),c,Tv′ (wv′ )−−−−−−−−−−−−→ P , by construction of the equations it has to be the
case that there is a rule r ∈ δl of N such that prer

fi = p, prer
se = q and

P ≡ (νz) (Πv∈V \{n,n′}Av(xv, yv) | p′[l](xn, yn) | q′[l + 1](xn′ , yn′) | Πv∈IV Bv(yv))

where p′ = postr
fi and q′ = postr

se respectively. Since An = p[l] and An′ = q[l + 1], it
must be the case that the depth of n in C is l and the labels of n and n′ in C are p and q

respectively. It follows that there exists C ′ such that C
r−→ C ′. It is then easy to verify

that B(C ′) ≡ P .
Suppose Tv′(wv′) = Bn(yn). We know that Bn = start[l + 1]. Since it is the case that
B(C) Tv(wv),c,Tv′ (wv′ )−−−−−−−−−−−−→ P , by construction of the parametric equations it must be that
there is a rule r ∈ δl of N such that prer

fi = p, prer
se = start and

P ≡ (νz, z′) (Πv∈V \{n}Av(xv, yv) | p′[l](xn, yn) | Πv∈IV Bv(yv) | q′[l+1](yn, z′) | start[l+2](z′))

where the last term start[l + 2](z′) is not present if l = k − 1 and p′ = postr
fi, q′ = postr

se
respectively. Since An = p[l], it must be the case that the depth of n in C is l and the
label of n in C is p. It follows then that there exists C ′ such that C

r−→ C ′. It is then easy
to verify that B(C ′) ≡ P . ◀

Note that the initial configuration I of P is simply the image of the initial configuration
of N under the map B. Hence, using Lemmas 6 and 8, we can conclude that

▶ Corollary 9. The process P is K-depth-bounded where K =
∑k−1

l=0 |δl|.

We then get the following theorem, whose proof follows in a straightforward manner by
combining Lemmas 7 and 8.

▶ Theorem 10. C
∗−→ C ′ is a run in N iff B(C) ∗−→ B(C ′) is a run in the process P.

Consequently qin can cover qf in N iff (νn0) (qf [0](n0)) can be covered from the initial
configuration I of P.

Hence, we have

▶ Corollary 11. Coverability of depth-bounded processes is Fϵ0-hard.

4 Nested counter systems (NCS)

We now prove Theorem 5, by giving a reduction from the coverability problem for nested
counter systems (NCS) which is known to be Fϵ0 -hard. We first recall the definition of NCS,
which we present in a way that is akin to [2].

A k-nested counter system (k-NCS) is a tuple N = (Q, δ) where Q is a finite set of states
and δ ⊆

⋃
1≤i,j≤k+1(Qi × Qj) is a set of rules. The set CN of configurations of N is defined

to be the set of all labelled rooted trees of height atmost k, with labels from the set Q.
The operational semantics of N is defined in terms of the following transition relation

→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ be a rule with
i ≤ j ≤ k. We say that a configuration C can move to the configuration C ′ using the rule r

(denoted by C
r−→ C ′), if there is a path v0, v1 . . . , vi in C starting at the root such that for

every 0 ≤ l ≤ i, the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ i,
changing the label of each vl to q′

l and 2) for every i + 1 ≤ l ≤ j, creating a new vertex vl

with label q′
l and adding it as a child to vl−1.
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Similarly, suppose r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ is a rule with j < i ≤ k. Then
C

r−→ C ′ if there is a path v0, v1, . . . , vi in C starting at the root such that for every 0 ≤ l ≤ i,
the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ j, changing the label
of each vl to q′

l and 2) removing the subtree rooted at the node vj+1.

▶ Example 12 (Example from [2]). Let us consider the NCS N given by the states Q =
{pi, p′

i, qi, q′
i : 0 ≤ i ≤ 4} and consisting of the following rules: r0 = ((q0, q1), (q′

0, q′
1, q′

2)), r1 =
((q′

0, q3, q2), (p0)), r2 = ((p0), (p′
0)). In Figure 2, we illustrate the application of these rules to

a configuration of N .

q0

q1 q3

q2

q4

q2

r0

q′
0

q′
1

q′
2

q3

q2

q4

q2

r1

p0

q′
1

q′
2

r2

p′
0

q′
1

q′
2

Figure 2 Application of the rules r0, r1 and r2 to a configuration of N , which is described in
Example 12.

Similar to NCSL, we can define the notions of C −→ C ′, C
∗−→ C ′ and a state qin covering

another state qf . It is known that the coverability problem for NCS is Fϵ0 -hard (Theorem 7
of [8]).

We note that the rules of an NCS act “globally”, in the sense that it allows to update
the value of (potentially) k many counters in one step. This is in contrast to NCSL, where
we can update the value of at most two counters at a time. While it is not particularly
surprising that this “global” update can be replaced by a series of “local” updates (hence
giving a reduction from NCS to NCSL), the construction is not entirely trivial and requires
some intricate arguments in order to prove its correctness.

A special case of NCS

We make a small remark which will help us simplify our reduction later on. Let N = (Q, δ)
be a k-NCS and let qin, qf ∈ Q. From N , we construct a new k-NCS N ′ as follows: First we
add a new state end. Then, if r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ with j < i ≤ k, we replace

r with the rule r′ := ((q0, . . . , qi), (q′
0, . . . , q′

j , end, . . . , end︸ ︷︷ ︸
i−j times

)). Intuitively, we are replacing

all rules which destroy some counters with corresponding rules that simply convert those
counters to the state end. It can be easily verified that coverability of qf from qin is preserved
while doing this operation. Hence, from here on, we assume that whenever N = (Q, δ) is a
k-NCS and r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ then i ≤ j.

4.1 Hardness of coverability for NCSL
We shall prove Theorem 5 by giving a reduction from the coverability problem for NCS. Let
k ≥ 1 and let N = (Q, δ) be a k-NCS with two fixed states qin and qf . By the argument
given in the previous paragraph, we can assume that if r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ

CONCUR 2022
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then i ≤ j. We shall now construct a k-NCSL N ′ = (Q′, δ′
0, . . . , δ′

k−1) and two states q′
in

and q′
f of N ′ such that q′

in can cover q′
f in N ′ iff qin can cover qf in N . This will then prove

Theorem 5. We begin by describing the states of N ′.

States of N ′. For every state q of N , we will have two states q[⊤] and q[⊥]. Further, for
every rule r of N , we will have four states recr[⊤], recr[⊥], fwdr[⊤] and fwdr[⊥]. Notice
that each state of N ′ is of the form a[b] where a ∈ Q ∪ {recr, fwdr : r ∈ δ} and b ∈ {⊤, ⊥}.
If a node v in a configuration C has as its label a[b], then ‘a’ will be called its base. Further,
if b = ⊤ (resp. b = ⊥), then v will be called as a leader node (resp. follower node).

Good configurations of N ′. A configuration C is called good if the root of C is a leader,
all other nodes are followers and the base of all the nodes of C belong to Q. Notice that
there is a straightforward bijection between the set of all configurations of N and the set of
all good configurations of N ′. This bijection will be denoted by M.

Rules of N ′. Before we describe the rules of N ′, we will state two invariants that will always
be maintained by our construction. The first one is that, in any configuration reachable from
a good configuration, exactly one node will be a leader. The second invariant is that, every
rule of N ′ will have a leader state in its precondition. Combined with the first invariant,
this will intuitively ensure that the rules that can be fired from reachable configurations are
limited and will help us simplify the proof of correctness of our reduction.

We now describe the rules of N ′. Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)) be a rule of N .
Corresponding to rule r, we will have the following set of rules in N ′. (In the following, we
adopt the convention that if the name of a rule has a subscript 0 ≤ l ≤ j, then that rule
belongs to δ′

l).

startr
0 := ((q0[⊤]), (recr[⊤])).

For every 0 ≤ l ≤ i − 1, we have a rule beginr
l := ((recr[⊤], ql+1[⊥]), (fwdr[⊥], recr[⊤])).

For every i ≤ l ≤ j − 1, we have a rule beginr
l := ((recr[⊤]), (fwdr[⊥], recr[⊤])).

middler
j := ((recr[⊤]), (fwdr[⊤])).

For every 0 ≤ l ≤ j − 1, we have a rule endr
l := ((fwdr[⊥], fwdr[⊤]), (fwdr[⊤], q′

l+1[⊥])).
finishr

0 := ((fwdr[⊤]), q′
0[⊤]).

4.2 Proof of correctness
The intuitive idea behind the above gadget is given by the run demonstrated in the following
lemma.

▶ Lemma 13 (N ′ simulates N ). Suppose C
r−→ C ′ is a step in the NCS N . Then, there is a

run M(C) ∗−→ M(C ′) in the NCSL N ′.

Proof. Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)). Since C
r−→ C ′ is a step in N , it follows that there

is a path starting at the root of C labelled by q0, . . . , qi. It follows that in M(C) there is
a path P starting at the root labelled by q0[⊤], q1[⊥], q2[⊥], . . . , qi[⊥]. We now execute a
sequence of rules according to the gadget for r as follows:

First, using startr
0, we change the label of the root from q0[⊤] to recr[⊤].

Next, by firing beginr
0, . . . , beginr

i−1 in this order, we change the labels of the nodes in the
path P to fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

i times

, recr[⊤].
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Then, by firing beginr
i , . . . , beginr

j−1 in this order, we add j − i new nodes to the path P

and get a new path P ′ of length j + 1 whose labels are fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸
j times

, recr[⊤].

We use middler
j to change the label of the last node in P ′ from recr[⊤] to fwdr[⊤].

Then, by firing endr
j−1, . . . , endr

0 in this order, we change the labels of the nodes in the
path P ′ to fwdr[⊤], q′

1[⊥], . . . , q′
j [⊥].

Finally, we use finishr
0 to change the label of the root from fwdr[⊤] to q′

0[⊤].
It can be easily verified that the resulting configuration D is such that D = M(C ′). ◀

We now present a converse to the above lemma which shows that a simulation in the
other direction is also possible.

▶ Lemma 14 (N simulates N ′). Suppose C
∗−→ C ′ is a path of non-zero length in N ′ such

that 1) C is a good configuration and 2) in all the configurations between C and C ′, the base
of the root is not in Q. Then, C ′ is a good configuration and there is a rule r such that
M−1(C) r−→ M−1(C ′).

Proof sketch. Let P := C −→ γ0 −→ γ1 . . . −→ C ′. The essential idea behind this lemma is
that since C is a good configuration, the root node is a leader node and by the construction
of the rules it must be the case that the first step must be of the form C

startr
0−−−−→ γ0 for some

rule r. Then, by using the invariant that exactly one node is leader at all times and by using
the construction of the rules, we can essentially show that P must be a path of the same
form as the one given in the proof of Lemma 13. Having proved that, we can then show that
in the NCS N , M−1(C) r−→ M−1(C ′). ◀

Because of these two “simulation” lemmas, we then get

▶ Theorem 15. qin can cover qf in N iff qin[⊤] can cover qf [⊤] in N ′.

4.3 Wrapping up
The previous theorem implies that coverability for NCSL is Fϵ0 -hard. To prove Theorem 5,
we need to show the same for NCSL with only creation and 2-preservation rules. We now show
that 1-preservation rules can be replaced with creation rules in an NCSL while maintaining
coverability.

Given a k-NCSL N with two states qin, qf , we can remove all 1-preservation rules whilst
preserving coverability as follows: We first add a new state end. Then if r = ((q0), (q′

0)) is a
1-preservation rule in N , we replace r with r = ((q0), (q′

0, end)). It can be easily seen that
doing this procedure gives us a (k + 1)-NCSL N ′ such that qin can cover qf in N ′ iff qin can
cover qf in N . Hence Theorem 5 follows.

5 Upper bound for coverability of depth-bounded processes

We now prove the upper bound claim made in Theorem 3. Let P = (I, E) be a fixed
k-depth-bounded process. By introducing new identifiers and equations if necessary, we can
assume that at most one name or thread is created during a step between two configurations
of P . Let us consider the following order on the set of configurations: P ⪯ Q iff P ≡ (νx)P ′

and Q ≡ (νx)(P ′ | R) for some term R. It is known that this is a well-quasi order (wqo)
for the set of all k-depth-bounded configurations [20, 27]. Using this fact, we can show that
the set of k-depth-bounded configurations of P, forms a well-structured transition system
(WSTS) under the ⪯ ordering and then apply the generic backward exploration algorithm for

CONCUR 2022



17:14 Complexity of Coverability in Depth-Bounded Processes

WSTS [13, 25]. Using the standard and generic complexity arguments for WSTS [26, 13, 25],
an upper bound on the the running time of this procedure simply boils down to estimating
the length of controlled bad sequences of k-depth-bounded configurations under the ⪯ order.

Let the size of a configuration C be the number of names and threads that appear in C.
Let H : N → N be the successor function and let n ∈ N. For each i ∈ N, we let Hi denote
the i-fold application of H to itself i times, with H0 being the identity function.

▶ Definition 16. A sequence C0, C1, . . . , of configurations is called (H, n)-controlled bad if
the size of each Ci is at most Hi(n) and Ci ⪯̸ Cj for any i < j.

To estimate an upper bound on the length of controlled bad sequences of configurations,
we first recall the induced subgraph ordering on bounded-depth trees.

▶ Definition 17. Let T1 = (V1, E1, L1) and T2 = (V2, E2, L2) be two labelled trees with
labelling functions L1 : V1 → A and L2 : V2 → A for some finite set A. We say that T1 is
an induced subgraph of T2, if there is a label preserving injection h from V1 to V2 such that
(v, v′) ∈ E1 ⇐⇒ (h(v), h(v′)) ∈ E2.

It is known that for any K ≥ 1 and for any finite set A, the set of all labelled trees of
depth at most K is well-quasi ordered under the induced subgraph relation (Theorem 2.2
of [9]). Similar to configurations, we can also define controlled bad sequences of labelled
bounded-depth trees.

By the arguments given in [20], it follows that the length of controlled bad sequences
of k-depth-bounded configurations of P under the ⪯ order can be upper bounded by the
length of controlled bad sequences of K-bounded-depth trees with labels from a set A, for
some A and K whose sizes are primitive recursive in the size of P . By the known bounds for
controlled bad sequences for labelled bounded-depth trees [2, 17], it follows that

▶ Theorem 18. The length of (H, n)-controlled bad sequences for k-depth-bounded configura-
tions of P is upper bounded by the function Fϵ0(p(|P|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some primitive recursive function.
For our purposes, we do not need the actual definition of Fϵ0 , but we only need to know that
Fϵ0 consists of problems whose running time is upper bounded by the function Fϵ0 composed
with any primitive recursive function (See [24]). It follows that,

▶ Theorem 19. The coverability problem for depth-bounded processes is in Fϵ0and hence
Fϵ0-complete.

6 Conclusion

We have shown that the coverability problem for depth-bounded processes in π-calculus
is Fϵ0-complete. This settles the complexity of the problem and solves an open problem
raised in [17] and also in [27]. However, our proof does not give any results regarding the
parameterized complexity of this problem when the depth k is taken as a parameter, which
we plan to investigate as part of future work.
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Proof. Let P := C −→ γ0 −→ γ1 . . . −→ γm −→ C ′ be a path in N ′. We split the proof into
various steps.

Step 1. Since C is a good configuration, the only node which is a leader is the root, whose
base must belong to Q. By construction of the rules of N ′, this implies that the step C −→ γ0

must be of the form C
startr

0−−−−→ γ0 for some rule r of N . Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)).
This implies that the label of the root in C is q0[⊤] and its label in γ0 is recr[⊤].

Step 2. Now, for each 0 ≤ l ≤ i, we state two claims:
Claim Al: There is a path Pl := v0

l , . . . , vl
l starting at the root in C with labels

q0[⊤], q1[⊥], . . . , ql[⊥] such that γl is the same as C, except now the labels along Pl

are fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸
l times

, recr[⊤].

Claim Bl: If l ̸= 0, then γl−1
beginr

l−1−−−−−→ γl.

We have already shown that claim A0 is true in step 1. Now, for each 0 ≤ l ≤ i − 1,
assuming claim Al is true, we shall prove that claims Al+1 and Bl+1 are true.

Because of claim Al and because C is a good configuration, it follows that the only node
which is a leader in γl is vl

l . Further, the base of vl
l is recr. By construction of the rules

in N ′, this implies that the only rule that can be fired from γl is beginr
l . Hence, it must be

the case that γl
beginr

l−−−−→ γl+1, proving claim Bl+1. Further, since vl
l is the only node which is

a leader, firing this rule transforms the state of vl
l to fwdr[⊥] and transforms the state of

a child of vl
l (say v′) from ql+1[⊥] to recr[⊤]. Taking Pl+1 to be v0

l , . . . , vl
l , v′ proves claim

Al+1.
In particular claim Ai implies that there is a path path := v0, . . . , vi starting at the root

such that γi is the same as C, except that the labels of path in C and γi are q0[⊤], . . . , qi[⊥]
and fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

i times

, recr[⊤] respectively.

Step 3. For each i ≤ l ≤ j, we state two claims:
Claim Al: γl is the same as γi, except that path is extended to include l − i new nodes
and the labels along this extended path in γl is fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

l times

, recr[⊤].

Claim Bl: If i ̸= l, then γl−1
beginr

l−1−−−−−→ γl.

We have already shown that claim Ai is true in step 2. Similar to the arguments given in
step 2, we can prove that these new claims are also true.

Step 4. By claim Aj it follows that there is a path ext-path := n0, . . . , nj starting at the
root in γj such that the labels along ext-path is fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

j times

, recr[⊤]. Further, nj

is the only node which is a leader in γj . Hence, the only rule which can be fired from γj

is middler
j and so we have γj

middler
j−−−−−→ γj+1. Notice that the only change that has occurred

because of this step is that the label of nj has been changed to fwdr[⊤].
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Step 5. For each 1 ≤ l ≤ j, we state two claims:
Claim A′

l: γj+l is the same as γj , except that the labels along ext-path in γj+l is
fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

j−l+1 times

, fwdr[⊤], q′
j−l+2[⊥], . . . , q′

j [⊥].

Claim B′
l: γj+l

endr
j−l−−−−→ γj+l+1.

The proof of this is accomplished by similar arguments as given in step 2.

Step 6. By claim A′
j , it follows that γ2j is the same as γj , except that the labels along

ext-path is now fwdr[⊤], q′
1[⊥], . . . , q′

j [⊥]. It follows that the only rule which can be fired

from γ2j is finishr
0, and so it follows that γ2j

finishr
0−−−−→ γ2j+1, where the only difference between

γ2j+1 and γ2j is that the label of the root in γ2j+1 is q′
0[⊤]. Hence, by assumption of the

run P , it follows that γ2j+1 = C ′.
By combining the arguments given above, it follows then that γ2j+1 is a good configuration

and also that M−1(C) r−→ M−1(C ′). ◀

▶ Theorem 15. qin can cover qf in N iff qin[⊤] can cover qf [⊤] in N ′.

Proof. Suppose qin can cover qf in N . Let C0 −→ C1 −→ . . . −→ Cm be a run in N where
C0 is the initial configuration and the root of Cm is qf . By Lemma 13, it follows that
M(C0) ∗−→ M(C1) ∗−→ . . .

∗−→ M(Cm) and so qin[⊤] can cover qf [⊤] in N ′.
Suppose C

∗−→ C ′ is a run in N ′ such that C is the (unique good) configuration consisting
of the single root vertex labelled by qin[⊤] and C ′ is some configuration where the root is
labelled by qf [⊤]. We split the run into parts of the form C = C0

∗−→ C1
∗−→ C2 . . .

∗−→ Cm = C ′

such that for each 1 ≤ l ≤ m, Cl is the first configuration after Cl−1 where the base of the
root is in Q. By Lemma 14, it follows that each Cl is a good configuration and also that
M−1(C0) −→ M−1(C1) −→ . . . −→ M−1(Cm). Hence, it follows that qin can cover qf in N . ◀

A.2 Proofs for Section 5
We now give a proof of Theorem 19. We recall the backward exploration algorithm for
well-structured transition systems (WSTS) here, adapted to the coverability problem for
depth-bounded processes. Let P = (I, E) be a k-depth-bounded process and let P be some
k-depth-bounded configuration, which we want to check is coverable in P. Without loss of
generality, we can assume that at most one name or thread is created during a step between
two configurations of P. Let Ck be the set of all k-depth-bounded configurations.

Given a set S of Ck we let ↑ S := {γ′ : ∃γ ∈ S, γ ⪯ γ′}. A set S is called upward-closed if
S =↑ S. Because ⪯ is a wqo and because of the definition of the operational semantics of P ,
we have that:

If S is upward-closed, then there exists a finite set B such that ↑ B = S. Such a B will
be called the basis of S.
If S is upward-closed and if Pre(S) is the set of all configurations γ′ ∈ Ck such that
there is a configuration γ ∈ S with γ′ −→ γ, then S ∪ Pre(S) is upward-closed. Moreover,
given a basis B of S, we can compute a basis B′ of S ∪ Pre(S) such that the size of each
configuration in B′ is at most one more than the maximum size of any configuration of B.

Hence, by the generic backward exploration algorithm for WSTS [14], we get that the
following algorithm terminates and decides coverability: Construct a sequence of finite sets
B0, B1, . . . , such that each Bi ⊆ Ck, B0 is simply {P} and Bi+1 is a basis for ↑ Bi ∪Pre(↑ Bi).
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Then find the first m such that ↑ Bm =↑ Bm+1 and check if there is an initial configuration
in ↑ Bm. If it is true, then P is coverable; otherwise P is not coverable.

The running time complexity of the algorithm is mainly dominated by the length of the
sequence B0, B1, . . . , Bm. Since m is the first index such that ↑ Bm =↑ Bm+1, we can find a
minimal element γi ∈↑ Bi+1\ ↑ Bi for each i < m.

Consider the sequence γ0, . . . , γm−1. Notice that γi ̸⪯ γj for any j > i and further the
size of each γi is at most Hi(n), where H is the successor function and n is the size of P .
It follows that γ0, . . . , γm−1 is a (H, n)-controlled bad sequence. By the arguments given
in [20], it follows that the length of controlled bad sequences of Ck under the ⪯ order can be
upper bounded by the length of controlled bad sequences of K-bounded-depth trees with
labels from a set A, for some A and K whose sizes are primitive recursive in the size of P.
By the known bounds for controlled bad sequences for labelled bounded-depth trees [2, 17],
it follows that

▶ Theorem 18. The length of (H, n)-controlled bad sequences for k-depth-bounded configura-
tions of P is upper bounded by the function Fϵ0(p(|P|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some primitive recursive function.
For our purposes, we do not need the actual definition of Fϵ0 , but we only need to know that
Fϵ0 consists of problems whose running time is upper bounded by the function Fϵ0 composed
with any primitive recursive function (See [24]). Theorem 19 then follows.
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Abstract
One-Counter Nets (OCNs) are finite-state automata equipped with a counter that is not allowed
to become negative, but does not have zero tests. Their simplicity and close connection to various
other models (e.g., VASS, Counter Machines and Pushdown Automata) make them an attractive
model for studying the border of decidability for the classical decision problems.

The deterministic fragment of OCNs (DOCNs) typically admits more tractable decision problems,
and while these problems and the expressive power of DOCNs have been studied, the determinization
problem, namely deciding whether an OCN admits an equivalent DOCN, has not received attention.

We introduce four notions of OCN determinizability, which arise naturally due to intricacies
in the model, and specifically, the interpretation of the initial counter value. We show that in
general, determinizability is undecidable under most notions, but over a singleton alphabet (i.e., 1
dimensional VASS) one definition becomes decidable, and the rest become trivial, in that there is
always an equivalent DOCN.
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1 Introduction

One-Counter Nets (OCNs) are finite-state machines equipped with an integer counter that
cannot decrease below zero and cannot be explicitly tested for zero.

OCNs are closely related to several computational models: they are a test-free syntactic
restriction of One-Counter Automata – Minsky Machines with only one counter. If counter
updates are restricted to ±1, they are equivalent to Pushdown Automata with a single-letter
stack alphabet. In addition, over a singleton alphabet, they are the same as 1-dimensional
Vector Addition Systems with States.

An OCN A over alphabet Σ accepts a word w ∈ Σ∗ from initial counter value c ∈ N if
there is a run of A on w from an initial state to an accepting state in which the counter,
starting from value c, does not become negative. Thus, for every counter value c ∈ N the
OCN A defines a language L(A, c) ⊆ Σ∗.

OCNs are an attractive model for studying the border of decidability of classical decision
problems. Indeed – several problems for them lie delicately close to the decidability border.
For example, OCN universality is decidable [16], whereas parameterized-universality (in
which the initial counter is existentially quantified) is undecidable [2].

As is the case with many computational models, certain decision problems for deterministic
OCNs (OCNs that admit a single legal transition for each state q and letter σ), denoted
DOCNs, are computationally easier than for nondeterministic OCNs (e.g., inclusion is
undecidable for OCNs, but is in NL for DOCNs [16]. Universality is Ackermannian for
OCNs, but is in NC for DOCNs [2]). While decision problems for DOCNs have received some
attention, the determinization problem for OCNs, namely deciding whether an OCN admits
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an equivalent DOCN, has (to our knowledge) not been studied. Apart from the theoretical
interest of OCN determinization, which would yield a better understanding of the model, it
is also of practical interest: OCNs can be used to model properties of concurrent systems, so
when an OCN can be determinized, automatic reasoning about correctness becomes easier.

OCN Determinization

Recall that the language L(A, c) of an OCN A depends on the initial counter c, so A
essentially defines a family of languages. Thus, it is not clear what we mean by “equivalent
DOCN”. We argue that the definition of determinization depends on the role of the initial
counter c. To this end, we identify four notions of determinization for an OCN A, as follows.

In 0-Det, we ask whether there is a DOCN D such that L(A, 0) = L(D, 0).
In ∃-Det, we ask whether there exist c ∈ N and a DOCN D such that L(A, c) = L(D, 0).
In ∀-Det, we ask whether for every c ∈ N, there is a DOCN D such that L(A, c) = L(D, 0).
In Uniform-Det, we ask whether there is a DOCN D such that for every c ∈ N we have
L(A, c) = L(D, c).

The motivation for each of the problems depends, intuitively, on the interpretation of the
initial counter, and on the stage at which the equivalent DOCN is computed, as we now
demonstrate.

Consider an OCN modelling an access-control handler, where the counter corresponds to
the number of access requests in a queue. Since the controller is deployed with an empty
queue, an equivalent DOCN would need to be equivalent only on an initial 0 counter, so
we would want to solve 0-Det.
Consider an OCN modelling resource handler, where the counter corresponds to the
available resources. When searching for a deterministic controller, we may initialize it
with some fixed amount of resources to start with, hence ∃-Det is suitable.
Now consider the task of devising an OCN for the resource handler above, so that it can
be deployed in many different concrete settings as a DOCN, but where each setting has
its own amount of available initial resources. In order to design a single OCN that can
be determinized to appropriate DOCNs, we would want to solve ∀-Det.
Finally, Uniform-Det is of interest in any setting that is exactly modelled as an OCN,
but needs to be determinized, e.g., when the resource handler above needs to be deployed
but the initial resources depend on the system’s load.

Paper Organization and Contribution

In this paper, we study the decidability of the determinization problems derived from the
four notions. In Section 3 we examine the relation between the notions, and demonstrate that
no pair of them coincide. In Section 4 we show that 0-Det,∃-Det, and ∀-Det are generally
undecidable. For Uniform-Det, we are not able to resolve decidability, but we do show an
Ackermannian lower bound.

In order to recover some decidability, we turn to the fragment of OCNs over a singleton
alphabet (1-dimensional VASS). There, we show that 0-Det,∃-Det, and ∀-Det become trivial
(i.e., they always hold), whereas Uniform-Det becomes decidable. We conclude with a
discussion and future work in Section 6.

Technically, our undecidability results for general alphabets use reductions from two
different models – one from the model of Lossy Counter Machines [23, 27], and one from
a careful analysis of recent results about OCNs [2]. For the singleton-alphabet case, the
decidability of Uniform-Det requires some machinery from the theory of low-dimensional
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VASS and Presburger Arithmetic, as well as some basic linear algebra and number theory.
Our main contribution in this part is the introduction and analysis of the Minimal Counter
Relation (MCR) – a sequence characterizing the minimal counter needed to accept each
length of words. We characterize Uniform-Det using this sequence, and we suspect this
sequence may prove useful in other contexts.

Related Work

The determinization problem we consider in this work assumes that the deterministic target
model is also that of OCNs. An alternative approach to simplifying a nondeterministic
OCN is to find an equivalent deterministic finite automaton, if one exists. This amounts
to deciding whether the language of an OCN is regular. This problem was shown to be
undecidable for OCNs in [32]. Interestingly, the related problem of regular separability was
shown to be in PSPACE in [10]. A related result in [11] describes a determinization procedure
for “unambiguous blind counter automata” over infinite words, to a Muller counter machine.

From a different viewpoint, determinization is a central problem in quantitative models,
which can be thought of as counter automata where the counter value is the output, rather
than a Boolean language acceptor. The decidability of determinization for Tropical Weighted
Automata is famously open [9, 20] with only partial decidable fragments [20, 21]. A slightly
less related model is that of discounted-sum automata, whose determinization has intricate
connections to number theory [7].

Determinization of computational models is closely related to various notions of semantic
equivalence. The three main concepts scrutinized in this regard are, from most restrictive to
least restrictive: bisimulation, simulation and trace inclusion. Each of the three notions has
strong and weak variants. Strong bisimulation was shown to be PSPACE-complete both for
OCNs and OCAs [5, 6], while weak bisimulation was shown to be undecidable [23]. Conversely,
trace inclusion, both weak and strong, is undecidable both for OCNs and OCAs [15, 31].
Finally, simulation, both weak and strong, is undecidable for OCAs [17], but decidable for
OCNs [1, 18, 19, 28, 30].

2 Preliminaries

A one-counter net (OCN) is a finite automaton whose transitions are labelled both by letters
and by integer weights. Formally, an OCN is a tuple A = ⟨Σ, Q, s0, δ, F ⟩ where Σ is a finite
alphabet, Q is a finite set of states, s0 ∈ Q is the initial state, δ ⊆ Q× Σ × Z ×Q is the set
of transitions, and F ⊆ Q are the accepting states. We say that an OCN is deterministic if
for every s ∈ Q, σ ∈ Σ, there is at most one transition (s, σ, e, s′) for some e ∈ Z and s′ ∈ Q.

For a transition t = (s, σ, e, s′) ∈ δ we define eff(t) = e to be its (counter) effect.
A path in the OCN is a sequence π = (s1, σ1, e1, s2)(s2, σ2, e2, s3) . . . (sk, σk, ek, sk+1) ∈ δ∗.

Such a path π is a cycle if s1 = sk+1, and is a simple cycle if no other cycle is a proper
infix of it. We say that the path π reads the word σ1σ2 . . . σk ∈ Σ∗. The effect of π is
eff(π) =

∑k
i=1 ei, and its nadir, denoted nadir(π), is the minimal effect of any prefix of π

(note that the nadir is non-positive, since eff(ϵ) = 0).
A configuration of an OCN is a pair (s, v) ∈ Q×N comprising a state and a non-negative

integer. For a letter σ ∈ Σ and configurations (s, v), (s′, v′) we write (s, v) σ−→ (s′, v′) if there
exists d ∈ Z such that v′ = v + d and (s, σ, d, s′) ∈ δ.

A run of A from initial counter c on a word w = σ1 · · ·σk ∈ Σ∗ is a sequence of
configurations ρ = (q0, v0), (s1, v1), . . . , (sk, vk) such that v0 = c and for every 1 ≤ i ≤ k

it holds that (si−1, vi−1) σi−→ (si, vi). Since configurations may only have a non-negative
counter, this enforces that the counter does not become negative.
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Note that every run naturally induces a path in the OCN. For the converse, a path π

induces a run from initial counter c iff c ≥ −nadir(π) (indeed, the minimal initial counter
needed for traversing a path π is exactly −nadir(π)). We extend the definitions of effect and
nadir to runs, by associating them with the corresponding path.

The run ρ is accepting if sk ∈ F , and we say that A accepts w with initial counter c if
there exists an accepting run of A on w from initial counter c. We define L(A, c) = {w ∈ Σ∗ :
A accepts w with initial counter c}, and we define the complement of a language L(A, c) to
be L(A, c) = Σ∗ \ L(A, c). Observe that OCNs are monotonic – if A accepts w from counter
c, it also accepts it from every c′ ≥ c. Thus, L(A, c) ⊆ L(A, c′) for c′ ≥ c.

3 OCN Determinization

In this section we examine the relationship between the four determinization notions. For
brevity, we use the same term for the decision problems and the properties they represent,
e.g., we say “A is 0-Det” if A has an equivalent DOCN under 0-Det.

We first examine how the definitions compare in their strictness:

▶ Observation 1. Consider an OCN A. If A is Uniform-Det, then A is ∀-Det, if A is
∀-Det, then A is 0-Det, and if A is 0-Det, then A is ∃-Det.

Next, we prove that none of the definitions coincide. Following Observation 1, it suffices to
prove the following.

▶ Lemma 2. There exist OCNs A,B, C such that A is ∃-Det but not 0-Det, B is 0-Det but
not ∀-Det, and C is ∀-Det but not Uniform-Det.

Proof (sketch). The OCNs A,B, C are depicted in Figure 1. We demonstrate the intuition
on C, see Appendix A.1 for the complete proof. To show that C is ∀-Det, we observe that for
initial counter 0, we can omit the (#,−1) transition, thus obtaining an equivalent DOCN.
For initial counter c ≥ 1 we have that L(C, c) = # · {σ1, σ2}∗ is regular and thus has a DOCN.

We claim C is not Uniform-Det. An equivalent DOCN D with k states, starting from
initial counter 0, must accept the word #σk+1

1 σk+1
2 . It is easy to show that upon reading

σk+1
2 it must make a negative cycle. This, however, causes some word of the form #σk+1

1 σm
2

not to be accepted even with counter 1, which means L(D, 1) ̸= L(C, 1). ◀

N : σ1, 0

σ2, 1

σ3,−1

σ1, 1

σ2, 0

σ3,−1

(a) Gadget OCN N .

N
#,−5#, 0

σ1, 0

σ2, 0

σ3, 0

(b) ∃-Det but not 0-Det.

N
#,−1

(c) 0-Det but not ∀-Det.

#,−1#, 0
σ1, 0

σ2, 0

σ1, 1

σ2,−1

(d) ∀-Det but not Uniform-Det.

Figure 1 Examples separating the determinization notions.
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4 Lower Bounds for Determinization

In this section we prove lower bounds for the four determinization decision problems. We
show that 0-Det, ∀-Det, and ∃-Det are undecidable, while for Uniform-Det we show an
Ackermannian lower bound, and its decidability remains an open problem.

We start by introducing Lossy Counter Machines (LCMs) [23, 27], from which we will
obtain some undecidability results. Intuitively, an LCM is a Minsky counter machine, whose
semantics are such that counters may arbitrarily decrease at each step. Formally, an LCM is
M = ⟨Loc,Z,∆⟩ where Loc = {ℓ1, . . . , ℓm} is a finite set of locations, Z = (z1, . . . , zn) are n
counters, and ∆ ⊆ Loc × OP(Z) × Loc, where OP(Z) = Z × {++,−−,= 0?}.

A configuration of M is ⟨ℓ,a⟩ where ℓ ∈ Loc and a = (a1, . . . , an) ∈ NZ. There is a
transition ⟨ℓ,a⟩ → ⟨ℓ, b⟩ if there exists op ∈ OP and either:

op = ck++ and bk ≤ ak + 1 and bj ≤ aj for all j ̸= k, or
op = ck−− and bk ≤ ak − 1 and bj ≤ aj for all j ̸= k, or
op = ck= 0? and bk = ak = 0 and bj ≤ aj for all j ̸= k.

Since we only require ≤ on the counter updates, the counters nondeterministically decrease
at each step.

A run of M is a finite sequence ⟨ℓ1,a1⟩ → ⟨ℓ2,a2⟩ → . . . → ⟨ℓr,ar⟩. Given a config-
uration ⟨ℓ,a⟩, the reachability set of ⟨ℓ,a⟩ is the set of all configurations reachable from
⟨ℓ,a⟩ via runs of M. In [27], it is shown that the problem of deciding whether the reach-
ability set of a configuration is finite, is undecidable. A slight modification of this problem
(see Appendix A.2) yields the following.

▶ Lemma 3. The following problem, dubbed 0-Finite-Reach, is undecidable: Given an
LCM M and a location ℓ0, decide whether the reachability set of ⟨ℓ0, (0, . . . , 0)⟩ is finite.

4.1 Undecidability of 0-Det

We show that 0-Det is undecidable using a reduction from 0-Finite-Reach. Intuitively,
given an LCM M and a location ℓ0, we construct an OCN A that accepts, from initial
counter 0, all the words that do not represent runs of M from ⟨ℓ0, (0, . . . , 0)⟩.

In order for the OCN A to verify the illegality of a run, it guesses a violation in it. Control
violations, i.e., illegal transitions between locations, are easily checked. In order to capture
counter violations, A must find a counter whose value in the current configuration is smaller
than in the next iteration (up to ±1 for ++ and −− commands). This, however, cannot be
done by an OCN, since intuitively an OCN can only check that the later number is smaller,
by first incrementing the counter and then decrementing it. To overcome this, we encode
runs in reverse, as follows.

Consider an LCM M = ⟨Loc,Z,∆⟩ with Loc = {ℓ1, . . . , ℓm} and Z = (z1, . . . , zn). We
encode a configuration ⟨ℓ, (a1, . . . , an)⟩ over the alphabet Σ = Loc ∪ Z as ℓ · za1

1 · · · zan
n ∈ Σ∗.

We then encode a run by concatenating the encoding of its configurations.
For a word w = σ1 · · ·σk ∈ Σ∗, let wR = σk · · ·σ1 be its reverse, and for a language

L ⊆ Σ∗, define its reverse to be LR = {wR : w ∈ L}.
We now define LM,ℓ0 = {w ∈ Σ∗ : w encodes a run of M from ⟨ℓ0, (0, . . . , 0)⟩}.
We are now ready to describe the construction of A.

▶ Lemma 4. Given an LCM M and a location ℓ0, we can construct an OCN A such that
L(A, 0) = LR

M,ℓ0
.

Proof sketch: We construct A such that it accepts a word w iff wR does not describe a run
of M from ⟨ℓ0, (0, . . . , 0)⟩.
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As mentioned above, A reads w and guesses when a violation would occur, where control
violations are relatively simple to spot, by directly encoding the structure of M in A.

In order to spot counter violations, namely two consecutive configurations ⟨ℓ, (a1, . . . , an)⟩
and ⟨ℓ′, (a′

1, . . . , a
′
n)⟩ such that some a′

i is too large compared to its counterpart ai (how
much larger is “too large” depends on M’s transitions), A reads a configuration ℓ · za1

1 · · · zan
n

and increments its counter to count up to ai, if it guesses that zi is the counter that violates
the transition. Assume for simplicity that the command in the transition does not involve
counter zi, then upon reading the next configuration ℓ′ · zb1

1 · · · zbn
n , A decrements its counter

while reading zi, so that the counter value is ai − bi. Then, A takes another transition with
counter value −1. Since the configuration is reversed, if this is indeed a violation, then
ai > bi (since the counters are lossy), so ai − bi − 1 ≥ 0, and A accepts. Otherwise, ai ≤ bi,
so this run of A cannot proceed.

In Appendix A.3 we give the complete details of the construction. ◀

The correctness of the construction is proved in the following lemma.

▶ Lemma 5. Consider an LCM M and a location ℓ0, and let A be the OCN constructed in
Lemma 4. Then (M, ℓ0) is in 0-Finite-Reach iff A is 0-Det.

Proof sketch: Assume the reachability set of ⟨ℓ0, (0 . . . 0)⟩ is finite under M. Then there
exists an upper bound M ∈ N of all counter values in all legal runs of M from ⟨ℓ0, (0 . . . 0)⟩.
A’s behaviour can then be fully captured by a DFA D with the set of all states of the form
⟨ℓ, a1 . . . ak, b1 . . . bk⟩ such that ℓ is a state in M, k the number of counters, the values of
a1 . . . ak represent counter values of the “current” configuration already fully known, and
the values of b1 . . . bk represent counter values of the “previous” configuration, that D is
in the process of accumulating. In addition, all values of a1 . . . ak, b1 . . . bk are bounded by
M . by assigning the only accepting state of D as qf = ⟨ℓ0, 0 . . . 0, 0 . . . 0⟩, and addressing
several minor technical nuances, we can conclude L(D) = L(A, 0), therefore both L(A, 0)
and L(A, 0) are regular. Specifically, A is 0-Det.

As for the other direction, assume the reachability set of ⟨ℓ0, (0 . . . 0)⟩ under M is infinite,
and assume by way of contradiction that A has a deterministic equivalent D′. Note that for
every word u ∈ Σ∗, the run of D′ does not end due to the counter becoming negative, since
we can always concatenate some λ ∈ Σ∗ such that uλ does not correspond to a run, and is
hence accepted by D′, so the run on u must be able to continue reading λ.

Since the reachability set of ⟨ℓ0, (0 . . . 0)⟩ is infinite, there exists a counter of M, w.l.o.g
z1, that can take unbounded values (in different runs). Let w be a word corresponding to
a run of M that ends with the value of z1 being N for some large N . We can then write
w = a∗

k · · · aN
1 ℓa

∗
k · · · aN ′

1 ℓ′ρ, such that ρ represents the reverse of a legal prefix of a run of M.
D′ necessarily goes through a cycle β when reading aN

1 . We pump the cycle k times until
the word obtained, w′, represents an illegal run due to the difference between N + k · |β|
and N ′. w′ should then be accepted, but is in fact rejected, either due to the run ending
successfully in the same non accepting state as w, or halting ahead of time due to a counter
violation. Either way, that is a contradiction.

In Appendix A.4 we give the formal construction of D, and a detailed correctness proof. ◀

Combining Lemmas 4 and 5, we conclude the following.

▶ Theorem 6. 0-Det is undecidable for OCNs over a general alphabet.
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4.2 Undecidability of ∀-Det and of ∃-Det

The undecidability of ∀-Det follows from that of 0-Det.

▶ Theorem 7. ∀-Det is undecidable.

Proof. We show a reduction from 0-Det. Given an OCN A = ⟨Σ, Q, s0, δ, F ⟩, we con-
struct an OCN B = ⟨Σ′, Q′, q0, δ

′, F ′⟩ as illustrated in figure 2. Formally, the states of
B are Q′ = Q ∪ {q0, qAll}, the initial state is q0, its alphabet is Σ′ = Σ ∪ {#} such
that # /∈ Σ, its accepting states are F ′ = F ∪ {qAll}, and its transition relation is
∆′ = ∆ ∪ {(q0,#,−1, qAll), (q0,#, 0, s0)} ∪ {(qAll, σ, 0, qAll) : σ ∈ Σ′}.

We claim that A is 0-Det iff B is ∀-Det. For the first direction, assume A is 0-Det. Thus,
L(B, 0) = # · L(A, 0) has an equivalent DOCN. Since L(B, k) = #Σ′∗ (which has a DOCN)
for all k ≥ 1, B is ∀-Det.

Conversely, assume A is not 0-Det. Since the transition (q0,#,−1, qAll) cannot be taken
by B with initial counter value 0, L(B, 0) = {#w}w∈L(A,0), hence B is not 0-Det (since a
DOCN for L(B, 0) would easily imply a DOCN for L(A, 0)). Thus, B is not ∀-Det. ◀

q0 qAllA
#,−1#, 0

Σ ∪ {#}, 0

Figure 2 The OCN B in Theorem 7.

q1 q2

$,-1

%,0
#,1

Σ, 0

$,0

%,-1
#,1

Σ, 0

Figure 3 Gadget OCN G for Theorem 9.

Next, we show the undecidability of ∃-Det with a reduction from the halting problem
for two-counter (Minsky) machines (2CM). Technically, we rely on a construction from [2],
which reduces the latter problem to the “parameterized universality” problem for OCN. For
our purpose, the reader need not be familiar with Minsky Machines, as it suffices to know
that their halting problem is undecidable [24]. We start the reduction with the following
property.

▶ Theorem 8 ([2]). Given a 2CM M, we can construct an OCN B over alphabet Σ ∪ {#}
with # /∈ Σ such that the following holds:

If M halts, there exists c ∈ N such that L(B, c) = Σ∗,
If M does not halt, then for every c ∈ N there exists a word wc ∈ (Σ ∪ {#})∗ such that
every run of B on wc enters a state from which reading any word of the form #∗ does
not lead to an accepting state.

We can now proceed with the reduction to ∃-Det.

▶ Theorem 9. ∃-Det is undecidable.

Proof. We reduce the halting problem for 2CM to ∃-Det. Given a 2CM M, we start by
constructing the OCN B as per Theorem 8. We augment B to work over the alphabet
Σ′ = Σ ∪ {#, $,%}, where $,% /∈ Σ, by fixing the behaviour of $ and % to be identical to #.

Next, consider the gadget OCN G depicted in Figure 3. A similar argument to the proof
of Lemma 2 (specifically, Figure 1a), shows that G does not have an equivalent DOCN for
any initial counter c.

We now obtain a new OCN A by taking the union of B and G (i.e. placing them “side by
side”). We claim that M halts iff A is ∃-Det.

If M halts, by Theorem 8 there exists an initial counter c such that L(B, c) = {Σ ∪ {#}}∗.
Since in B the letters $ and % behave like #, we have that L(A, c) = Σ′∗, so A is ∃-Det.
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18:8 Determinization of One-Counter Nets

If M does not halt, then again by Theorem 8, for every c ∈ N there exists a word wc such
that wc /∈ L(B, c), and such every run of B on wc enters a state from which reading #∗ (and
hence any word from {#,% $}∗) does not lead to an accepting state. Now assume by way of
contradiction that A has a deterministic equivalent D with k states for initial counter c. A
accepts wc with the runs of G, since wc does not contain $ or %. Thus, D accepts wc with
initial counter 0. In addition, A, and therefore D, both accept w′

c = wc#k+1−j%k+1$k+1

where j is the number of occurrences of #’s in wc. Using the fact that G does not have an
equivalent DOCN, we can now reach a contradiction with similar arguments as the proof of
Lemma 2 (Figure 1a). ◀

4.3 A Lower Bound for Uniform-Det

Unfortunately, as of yet we are unable to resolve the decidability of Uniform-Det. In this
section, we show that Uniform-Det is Ackermann-hard, and in particular non primitive
recursive.

▶ Theorem 10. Uniform-Det is Ackermann-hard.

Proof. We show a reduction from the OCN universality problem with initial counter 0,
shown to be Ackermann-hard in [16].

Consider an OCN A = ⟨Σ, Q, s0, δ, F ⟩. We construct an OCN B = ⟨Σ′, Q′, q0, δ
′, F ′⟩ as

depicted in Figure 4 (for #, $ /∈ Σ).

q0 q1A

qAll

#, 0

#,−1

$, 0

#, 0

$, 0

Σ ∪ {#}, 0

Σ ∪ {$,#}, 0

Figure 4 The OCN B in the proof of Theorem 10.

We claim that L(A, 0) = Σ∗ iff B is Uniform-Det.
Assume L(A, 0) = Σ∗, then L(B, c) = {#w : w ∈ Σ′∗} for every counter value c. Indeed,

every word starting with # can be accepted by B with initial counter value 0 either through
A, if it does not contain $, or in qAll if it does. However, every word not starting with #
cannot be accepted by B for any initial counter value. Thus, B is Uniform-Det.

Conversely, if L(A, 0) ̸= Σ∗, let w /∈ L(A, 0). Assume by way of contradiction that there
exists a deterministic OCN D that is uniform-equivalent to B.

#w /∈ L(B, 0), so #w /∈ L(D, 0). Moreover, the run of D on #w cannot end in a non-
accepting state, since #w ∈ L(B, 1) = L(D, 1). Thus, the run of D on #w terminates due
to the counter becoming negative. However, this is a contradiction, since #w$ ∈ L(B, 0) =
L(D, 0). We conclude that B is not Uniform-Det. ◀

5 Singleton Alphabet

We now turn to study OCNs over a singleton alphabet denoted Σ = {σ} throughout.
We start by briefly introducing Presburger Arithmetic (PA) [13, 26]. We refer the reader

to [13] for a detailed survey. PA is the first-order theory of integers with addition and order
FO(Z, 0, 1,+, <), and it is a decidable logic.
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There is an important connection between PA and semilinear sets: for a basis vector
b ∈ Zd and a set of periods P = {p1 . . .pk} ⊆ Zd, we define the linear set Lin(b, P ) =
{b + λ1p1 + . . .+ λkpk : λi ∈ N for all 1 ≤ i ≤ k}. Then, a semilinear set is a finite union of
linear sets.

A fundamental theorem about PA [12] shows that that for every PA formula φ(x) with
free variables x, the set [[φ]] = {a : a |= φ(x)} is semilinear, and the converse also holds –
every semilinear set is PA-definable.

Consider an OCN A over Σ = {σ}. For every word σn, either σn is not accepted by A
for any counter value, or there exists a minimal counter value c such that σn ∈ L(A, c′) iff
c′ ≥ c. We can therefore fully characterize the language of A on any counter value using the
Minimal Counter Relation1 (MCR), defined as

MCR(A) =
{

(n, c) ⊆ N2, c is the minimal integer such that σn ∈ L(A, c)
}
.

We start by showing that MCR(A) is semilinear.

▶ Lemma 11. Consider an OCN A over Σ = {σ}, then MCR(A) is effectively semilinear.

Proof. We prove the claim using well-known and deep results about low-dimensional VASS.
A 2D-VASS is (for our purposes2) identical to an OCN over Σ = {σ}, but has two counters
(both need to be kept non-negative). Formally, a 2D VASS is V = ⟨Q, s0, δ, F ⟩, where
δ ⊆ Q× Z2 ×Q. The semantics are similar to OCNs, acting separately on the two counters,
as follows. A configuration of V is (q, (c1, c2)) where q ∈ Q and (c1, c2) ∈ N2 are the counter
values, and a run is a sequence of configurations (q1, (c1

1, c
1
2)), . . . , (qk, (ck

1 , c
k
2)) that follow

according to δ, i.e., for every 1 ≤ i < k we have that (qi, (ci+1
1 − ci

1, c
i+1
2 − ci

2), qi+1) ∈ δ. We
denote (q1, (c1

1, c
1
2)) V−→ (qk, (ck

1 , c
k
2)) if such a run exists.

In [22], it is proved that given a 2D-VASS, we can effectively compute a PA for-
mula ψReach(q, x1, x2, q

′, y1, y2) such that [[ψReach(q, x1, x2, q
′, y1, y2)]] = {(q, c1, c2, q

′, d1, d2) :
(q, c1, c2) V−→ (q′, d1, d2)} (the states q, q′ are encoded as variables taking values in
{1, . . . , |Q|}).

Observe that ψReach does not encode information about the length of the run, whereas
MCR does require it. On the other hand, ψReach works for 2D-VASS, whereas we only need
an OCN (i.e., 1D-VASS). We therefore proceed by first introducing the notion of Linear
Path Schemes [22, 4]. Consider the transitions of A as an alphabet (i.e., each transition
(q, σ, v, p) ∈ δ is a letter). A Linear Path Scheme is a regular expression of the form
ρ = α0β

∗
1α1 · · ·β∗

kαk where the αi and βi are words in δ∗, such that each αi represents a path
in A, and each βi represents a cycle. The length of ρ is defined as |α1|+ |β1|+ . . .+ |αk|+ |βk|,
i.e., the length of the underlying path, excluding repetitions of the βi.

The following result can be obtained from [4] by using 2D-VASS as a proxy, as we do
in Lemma 11, or directly from [2].

▶ Lemma 12. Let A be an OCN over singleton alphabet, then there exists a finite set S of
linear path schemes such that the following holds:
1. Every ρ ∈ S has length at most 2|Q|2.
2. For every two configurations (p, c1), (q, c2) ∈ Q× N and every n ∈ N, if there is a run of

A on σn from (p, c1) to (q, c2), then there is such a run of the form ρ ∈ S.

1 We remark that MCR(A) is in fact the graph of a partial function. For convenience of working with PA,
we stick with the relation notation.

2 Usually, OCNs are defined as 1D-VASS, not the other way around.
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18:10 Determinization of One-Counter Nets

As a consequence of Lemma 12, in order to decide if σn is accepted in A, it is enough to
consider runs that are linear path schemes of length at most 2|Q|2.

Consider a linear path scheme ρ = α0β
∗
1α1β

∗
2α2 · · ·α∗

k. We now construct a formula
φρ(n, c) which intuitively states that the word σn has a run of the form ρ starting with initial
counter value c. This is defined as follows.

φρ(n, c) :=∃e1 · · · ek, correct-lengthρ(n, e1 · · · ek) ∧ sufficient-counterρ(c, e1 · · · ek)

Intuitively, φρ(n, c) states that there exist numbers e1 · · · ek such that the concrete run
α0β

e1
1 α1β

e2
2 α2 · · ·αk takes exactly n transitions, and that starting the run with initial counter

c is sufficient to complete the run.
Formally, we define the sub-formulas as follows:
correct-lengthρ(n, e1 · · · ek) := |α0| + e1 · |β1| + |α1| + · · · + |αk| = n.

sufficient-counterρ(c, e1 · · · ek) :=
k∧

i=0

c + eff(α0) + e1 · eff(β1) + · · · + ei · eff(βi) ≥ nadir(αi)

∧
k∧

i=1

(c + eff(α0βe1
1 · · · αi−1) ≥ nadir(βi) ∧ c + eff(α0βe1

1 · · · αi−1) + (ei − 1)eff(βi) ≥ nadir(βei

i ))

The correctness of correct-lengthρ is obvious. The correctness of the formula
sufficient-counterρ(c, e1 · · · ek) is based on the observation that in order to traverse
the cycle β for e times, the counter c must be enough to traverse β once, and must be enough
so that c+ (e− 1)eff(β) ≥ nadir(β), so that the “last” time can be traversed 3. Indeed, if the
counter becomes negative during some iteration of the cycle, it will be even “more” negative
at the last iteration. See [4] for an analogous proof.

We can now readily obtain the formula θ(n, c) which captures MCR(A) as follows: define
P ⊆ S to be the set of linear path schemes that start in q0 and end in an accepting state,
then

θ(n, c) :=
∨

ρ∈P

φρ(n, c) ∧ ∀c′ < c,
∧

ρ∈P

¬φρ(n, c′).

Indeed, θ(n, c) is satisfied iff there exists some linear path scheme ρ ∈ P that can be traversed
with length n and counter value c, and there is no smaller counter for which this holds.

Note that we can obtain θ(n, c) from A in polynomial space, by generating all possible
linear path schemes of length 2|Q|2 and constructing the respective subformulas. In particular,
the length of θ(n, c) is single exponential in the description of A. Moreover, θ(n, c) has
two quantifier alternations – the disjunction is an existential formula, and the conjunction
of negations can be viewed as a universal formula. Since quantifier alternation counting
assumes starting with an existential quantifier, the universal formula is counted as two
alternations. ◀

3 This argument assumes strictly positive exponents. This assumption is safe, since we can define a set
S′ that contains all linear path schemes obtained by possibly omitting any number of cycles in any of
the linear path schemes in S. Every legal path in S can then be represented by a path in S′ whose
exponents are all strictly positive. By working with S′ we then circumvent this issue. Note that |S′| is
still single-exponential in |A|.



S. Almagor and A. Yeshurun 18:11

5.1 Decidability of Uniform-Det over Singleton Alphabet
In this subsection we prove that Uniform-Det is decidable for OCN over a singleton alphabet,
and we can construct an equivalent DOCN, if one exists. Our characterization of Uniform-Det
is based on its MCR, and specifically on two notions for subsets of N2 (applied to MCR).
Consider a set S ⊆ N2. We say that S is increasing if it is the graph of an increasing partial
function. That is, for every (n1, c1), (n2, c2) ∈ S, if n1 ≤ n2 then c1 ≤ c2, and if n1 = n2
then c1 = c2. Next, we say that S is (N, k, d)-Ultimately Periodic for N, k, d ∈ N if for every
n ≥ N, (n, x) ∈ S iff (n+ k, x+ d) ∈ S. We say that S is (effectively) ultimately periodic if
it is (N, k, d)-ultimately periodic for some (effectively computable) parameters N, k, d ∈ N.

The main technical result of this section is the following.

▶ Theorem 13. Consider an OCN A over Σ = {σ}, then the following are equivalent:
1. MCR(A) is increasing.
2. MCR(A) is increasing and effectively ultimately periodic.
3. A is Uniform-Det, and we can effectively compute an equivalent DOCN.
We prove Theorem 13 in the remainder of this section. We start with a technical lemma
concerning the implication 1 =⇒ 2.

▶ Lemma 14. Consider an effectively semilinear set S ⊆ N2. If S is increasing, then S is
effectively periodic.

Proof. Since S is effectively semilinear, then by [12] we can write S =
⋃M

i=1 Lin(bi, Pi) where
bi ∈ N2 and Pi ⊆ N2 for every 1 ≤ i ≤ M . Moreover, by [12, 13], we can assume that each
Pi is a linearly-independent set of vectors.

All periods are singletons. We show that since S is increasing, then |Pi| ≤ 1 for every
1 ≤ i ≤ M . Assume (n1, c1), (n2, c2) ∈ Pi, and denote bi = (a, b), then by the definition of a
linear set, for every λ1, λ2 ∈ N we have that (a, b)+λ1(n1, c1)+λ2(n2, c2) ∈ S. Setting λ1 = 0
and λ2 = n1, we have that (a+n1n2, b+n1c2) ∈ S, and setting λ1 = n2 and λ2 = 0, we have
that (a+ n2n1, b+ n2c1) ∈ S. Observe that a+ n1n2 = a+ n2n1, and since S is increasing,
this implies b+ n1c2 = b+ n2c1, that is n1c2 = n2c1. It follows that n2(n1, c1) = n1(n2, c2),
but Pi is linearly independent, so it must hold that (n1, c1) = (n2, c2), so |Pi| ≤ 1.

Thus, we can in fact write S =
⋃M

i=1 Lin(bi, {pi}) where bi,pi ∈ N2 (note that if Pi = ∅
we now take pi = (0, 0)). For every 1 ≤ i ≤ M , denote bi = (ai, bi) and pi = (pi, ri).

All Periods have the same first component. We now claim that we can restrict all
periods to have the same first component. That is, we can compute γ ∈ N and write
S =

⋃K
j=1 Lin((αj , βj), {(γ, ηj)}).

Indeed, take γ = lcm({pi}M
i=1), we now “spread” each linear component

Lin((ai, bi), {(pi, ri)}) by changing the period to (γ, γ
pi
ri), and compensating by adding

additional linear sets with the same period and offset basis, to capture the “skipped” ele-
ments. In Appendix A.5 we describe the construction in general, and illustrate with an
example.

All Periods are the same. Finally, we claim that we now have ηi = ηj for every 1 ≤ i, j ≤ K,
so that in fact all the periods are the same vector (γ, η). Indeed, Assume by way of
contradiction that ηj < ηi for some 1 ≤ i, j ≤ K. Now, let y ∈ N be large enough so that
αi ≤ αj +y ·γ, and let x ∈ N be large enough so that (given y): βi +x ·ηi > βj +y ·ηj +x ·ηj .
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We now have that (αi, βi) + x · (γ, ηi) ∈ S and (αj , βj) + (x + y) · (γ, ηj) ∈ S, which
contradicts S being increasing, since αi ≤ αj + y · γ and therefore αi +x · γ ≤ αj + (y+x) · γ,
but also βi + x · ηi > βj + (y + x) · βj .

Thus, we can now write S =
⋃K

j=1 Lin((αj , βj), {(γ, η)})

S is effectively ultimately periodic. Let αmax = max{αj}K
j=1, we claim that S is

(αmax, γ, η)-ultimately periodic. Let n ≥ αmax, then (n, c) ∈ S for some c ∈ N iff
(n, c) = (αi + γ · m,βi + η · m) for some 1 ≤ i ≤ K and m ∈ N. This happens iff
(n+ γ, c+ η) ∈ S, since (n+ γ, c+ η) = (αi + γ · (m+ 1), βi + η · (m+ 1)).

Finally, observe that all the constants in the proof are effectively computable. ◀

We now turn to the implication 2 =⇒ 3 of Theorem 13.

▶ Lemma 15. Consider an OCN A over Σ = {a}. If MCR(A) is increasing and ultimately
periodic, then A is Uniform-Det, and we can effectively compute it.

Proof. Assume MCR(A) is (N, k, d)-ultimately periodic. We start by completing MCR(A)
to a (full) function f : N → N as follows: set f(0) = 0, and for n > 0 inductively define
f(n) = c if (n, c) ∈ MCR(A), or f(n) = f(n− 1) otherwise. That is, f matches MCR(A) on
its domain, and remains fixed between defined values. Observe that there is no violation
in defining f(0) = 0, since if (0, c) ∈ MCR(A), then c = 0, as the empty word requires a
minimal counter of 0 to be accepted.

We now use f to obtain a DOCN D as depicted in Figure 5. Formally, we construct
D = ⟨{σ}, Q, q0, δ, F ⟩ as follows.

Q = {qi}N+k−1
i=1 .

δ = {(qi, a, f(i) − f(i+ 1), qi+1)}N+k−2
i=1 ∪ {(qN+k−1, a, f(N) + d− f(N + k − 1), qN )}.

F = {qi : (i, f(i)) ∈ MCR(A), 1 ≤ i ≤ N + k − 1}.

Observe that since f is increasing (as MCR(A) is increasing), the weight of all transitions
in D is non-positive.

We claim that for every c, L(A, c) = L(D, c). To show this, observe that for every n ∈ N
we have that the sum of weights along n consecutive transitions of D (ignoring the OCN
semantics) is exactly −f(n). In particular, if σn ∈ L(A, c), then (n, c′) ∈ MCR(A) for some
c′ ≤ c and f(n) = c′. Indeed, this is trivial for n ≤ N + k − 1, and for n > N + k − 1 this
follows immediately from (N, k, d)-ultimate periodicity.

q0 q1 · · · qN−1 qN

qN+1· · ·qN+k−2qN+k−1

f(0)−f(1) f(1)−f(2) f(N−2)−f(N−1) f(N−1)−f(N)

f(N)−f(N+1)

f(N+1)−f(N+2)f(N+k−3)−f(N+k−2)f(N+k−2)−f(N+k−1)

f(N+k−1)−f(N+k)

Figure 5 An illustration of the construction method for a uniform-deterministic-equivalent of an
OCN A, given f . Accepting states are not mentioned in the illustration.

Thus, if σn ∈ L(A, c) then there exists c′ ≤ c such that (n, c′) ∈ MCR(A) it follows that
with initial counter c, D can traverse n transitions. Moreover, the state reached is accepting,
since (n, c′) ∈ MCR(A), so σn ∈ L(D, c).

Conversely, if σn ∈ L(D, c) then c ≥ f(n) and (n, f(n)) ∈ MCR(A), thus, σn ∈ L(A, c).
Finally, observe that the construction is computable given the parameters of ultimate

periodicity. ◀



S. Almagor and A. Yeshurun 18:13

We now address the implication 3 =⇒ 1.

▶ Lemma 16. Consider an OCN A over Σ = {σ}. If A is Uniform-Det, then MCR(A) is
increasing.

Proof. Let D be a DOCN such that L(A, c) = L(D, c) for every c, and let (n1, c1), (n2, c2) ∈
MCR(A) with n1 ≤ n2. Assume by way of contradiction that c1 > c2, then σn2 ∈ L(D, c2),
but σn1 /∈ L(D, c2). It follows that the run of D on σn1 must end in a non-accepting state
starting from counter value c2 (i.e., the counter does not become negative). But then the
same run is taken from counter value c1, so σn1 /∈ L(D, c1), which is a contradiction. ◀

By Lemma 11, MCR(A) is semilinear. Thus, if MCR(A) is increasing, then by Lemma 14
it is also effectively ultimately periodic. This completes the implication 1 =⇒ 2, and the
implications 2 =⇒ 3 and 3 =⇒ 1 are immediate from Lemmas 15 and 16, respectively.
This completes the proof of Theorem 13.

Finally, we can show the decidability of Uniform-Det by combining the characterization
of Theorem 13 with the procedure of Lemma 11 and the decidability of PA [3].

▶ Theorem 17. For OCNs over singleton alphabet, Uniform-Det is decidable. Moreover, it
is in 3 − EXPSPACE.

Proof. We start by showing the decidability of Uniform-Det. Consider an OCN A. By The-
orem 13, it suffices to show that it is decidable whether MCR(A) is increasing. By Lemma 11,
we can compute a PA formula θ(n, c) such that [[θ]] = MCR(A). We now state the asser-
tion that MCR(A) is not increasing in PA as follows: χ = ∃n1, n2, c1, c2, n1 < n2 ∧ c1 >

c2 ∧ θ(n1, c1) ∧ θ(n2, c2). Since PA is decidable, we can decide whether this sentence holds.
It remains to analyze the complexity of Uniform-Det. To this end, observe that in the

proof of Lemma 11 we show that the length of θ(n, c) is single-exponential in |A| (and that
we can obtain θ(n, c) from A in polynomial space). Since PA is decidable in 2 − EXPSPACE [3],
we conclude that Uniform-Det is decidable in 3 − EXPSPACE. ◀

▶ Remark 18 (On the 3−EXPSPACE upper bound). It is easy to show that in fact θ(n, c) has at
most 3 quantifier alternations. Therefore, the upper bound can be somewhat lowered using
bounds for PA with fixed quantifier alternations [14]. However, applied to the exponential-
length formula, these bounds do not get us as low as the next “major” complexity classes
(e.g., 3 − NEXPTIME, or 2 − EXPSPACE), so Theorem 17 is stated with 3 − EXPSPACE.

While we suspect this upper bound can be lowered, deciding whether MCR(A) is increasing
seems to be a hard problem. Indeed, MCR(A) intuitively corresponds to the reachability
relation of the OCN with two additional constraints: the length of the path is fixed, and
the counter value is required to be minimal. The former constraint can be circumvented
using 2D-VASS, as we do in Lemma 11, but the latter introduces a flavour of universal
quantification. In particular, this poses a barrier to techniques attempting to reduce the
behaviour of MCR(A) to a reachability relation.

We proceed to give a lower bound on Uniform-Det (albeit far from the upper bound).

▶ Theorem 19. For OCNs over singleton alphabet, Uniform-Det is coNP-hard.

Proof. We show a reduction from the universality problem for NFAs over a singleton alphabet,
which is coNP-hard [29].

We start by describing a gadget OCN B as depicted in Figure 6. Note that B is not
Uniform-Det, since MCR(B) is not increasing. Indeed, σ is only accepted with counter 1,
whereas σσ is accepted with counter 0. Thus, (1, 1), (2, 0) ∈ MCR(B).

CONCUR 2022
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q1 q2 q3 q4 q5
σ,−1σ, 0 σ, 0

Figure 6 Gadget OCN B for the reduction in Theorem 19.

We now describe the reduction. Consider an NFA A = ⟨{σ}, Q, S0, δ, F ⟩. We assume that
A is complete, i.e. that A has a (not necessarily accepting) run on every word (if A is not
complete, we add a rejecting sink state as an initial state to A).

We start by obtaining a new NFA A′ = ⟨{σ}, Q′, S0, δ
′, F ⟩ by “stretching” A threefold: we

define Q′ =
⋃

q∈Q {q, q′, q′′} and the transition relation δ′ = {(q1, σ, q
′
1), (q′

1, σ, q
′′
1 ), (q′′

1 , σ, q2) :
(q1, σ, q2) ∈ δ}. We then connect every non-accepting state q originally in A to the initial
states of the gadget OCN B, and we connect every accepting state of A′ to a gadget NFA C
that accepts exactly {σ, σσ}.

We now obtain from A′ an OCN A′′ by assigning counter updates of 0 on all transitions
except those of B.

It remains to prove that L(A) = {σ}∗ iff A′′ is Uniform-Det.
Indeed, assume L(A) = {σ}∗, then for every n ∈ N, there is an accepting run of A′′ on

σ3n from counter 0. Since we have connected every accepting state in A to the gadget C that
accepts both σ and σσ, we have that σ3n+1 and σ3n+2 are accepted from counter 0 as well.
Therefore, A′′ is universal for initial counter 0, hence it is universal for all initial counter
values, and in particular A′′ is Uniform-Det.

Conversely, if A is not universal, then there exists a word w = σn such that all runs
of A on w end in non-accepting states (and at least one such run exists, by completeness).
We then have that all successful runs of A′′ on σ3n end in non-accepting states. The words
σ3n+1, σ3n+2 can therefore only be accepted through B. By the structure of B we then
have that (3n+ 1, 1), (3n+ 2, 0) ∈ MCR(A′′), so MCR(A′′) is not increasing, and A′′ is not
Uniform-Det. ◀

5.2 Uniform-Det– Properties and Fragments
The wide complexity gap between the bounds of Theorems 17 and 19 suggest that
Uniform-Det is an intricate problem. We now turn to present several results shed some light
on the behaviour of Uniform-Det.

We start by showing that the first witness to the fact that MCR(A) is non-increasing
may be exponential in |A|. This holds when A has weights encoded in unary, and if the
weights are encoded in binary this holds already for OCNs with 3 states.

▶ Example 20. Consider the OCN A depicted in Figure 7, where k is encoded in binary.
It is not hard to verify that for 0 ≤ n ≤ k it holds that (n,min(n, k − n+ 1)) ∈ MCR(A),
but (k + 1, 0) ∈ MCR(A), since σk+1 is accepted with counter value 0 in the left component.
Thus, already for 3-state OCNs, the minimal witness for decreasing MCR can be exponential.

q1 q2 q3
σ,−k

σ, 1 σ,−1

Figure 7 Binary encoded OCN A in Example 20.
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▶ Example 21. We now describe a unary-encoded OCN whose minimal witness for decreasing
MCR is exponential. Let p1, . . . , pm be the first m prime numbers. We construct an OCN
A as a disjoint union of m cycles of lengths p1, . . . , pm, where on each cycles all transitions
have counter update −1, and all states are accepting except the initial state on each cycle.
In addition, A has another initial and accepting self loop with counter update −2.

Let M =
∏m

i=1 pi, then for every 0 ≤ n < M we have that (n, n) ∈ MCR(A), since upon
reading σn at least one cycle of length pj does not divide n and is therefore not back at its
initial state. Similarly, (M + 1,M + 1) ∈ MCR(A). However, (M, 2M) ∈ MCR(A) since σM

is only accepted in the −2 self loop. Thus, the first witness for the non-increasing MCR is
M + 1, which is exponential in |A| = O(

∑n
i=1 pi).

The next property shows that when all states are accepting, Uniform-Det becomes trivial.

▶ Theorem 22. Consider an OCN A over a singleton alphabet such that all states in A are
accepting. Then A is Uniform-Det.

Proof. We show that MCR(A) is increasing, and therefore A is Uniform-Det. Let n1, c1 ∈ N
such that (n1, c1) ∈ MCR(A), then initial counter c1 is sufficient for A to read (and hence
accept) σn1 via some run ρ. Let n2 < n1, then A reads σn2 along a prefix of ρ with initial
counter value c1, and since all states are accepting, c1 is sufficient to accept σn2 . Thus, if
(n2, c2) ∈ MCR(A), we have c2 ≤ c1, so MCR(A) is increasing. ◀

Our final property concerns unambiguous OCNs. An OCN A over alphabet {σ} is
unambiguous if for every n ∈ N there exists at most one accepting run of A on σn, for any
counter value c. Technically, this means that the OCN is structurally unambiguous, in that
its underlying NFA is unambiguous.

▶ Theorem 23. For unambiguous OCNs over a singleton alphabet, deciding Uniform-Det is
in PSPACE.

Proof. Let A be an unambiguous OCNs over a singleton alphabet. In Appendix A.6 we
show that by careful analysis of the PA formula obtained as per Lemma 11, we can represent
the notion of MCR(A) being non-increasing using a PA formula ν that is a disjunction of
exponentially many existential formulas – each polynomial in the size of A. By traversing
these fragments in polynomial space, and since existential PA is decidable in NP [8], we
conclude the PSPACE bound. ◀

5.3 Triviality of 0-Det, ∀-Det, ∃-Det

We now turn to study the remaining notions of determinization for singleton alphabet.

▶ Theorem 24. Consider an OCN A over Σ = {σ}, then A is ∀-Det, 0-Det, and ∃-Det.

Proof. By Observation 1, it is enough to prove that A is ∀-Det. To this end, recall that
by Lemma 11, MCR(A) is PA definable by a formula φ(n, c).

For every initial counter value c, define φ≤c(n) =
∨c

i=0 φ(n, i), then [[φ≤c(n)]] = {n :
A accepts σn with initial counter c}. Then, we can write L(A, c) = {σm : m ∈ [[φ≤c(n)]]}.

It is folklore that a singleton-alphabet language whose set of lengths is semilinear, is
regular. We bring a short proof of this for completeness: Let S =

⋃k
i=1 Lin(ci, pi) ⊆ N be a

semilinear set (by assuming that the periods are linearly independent, it follows each has a
single number), and let LS = {σk : k ∈ S}. For every i, the language {ak|k ∈ Lin(ci, pi)}
can be defined by the regular expression ri = σci(σpi)∗. So LS is defined by the regular
expression r = r1 + · · · + rk.

Thus, for every c ∈ N, we have that L(A, c) is regular, and in particular is recognized by
a DOCN, so A is ∀-Det, and we are done. ◀
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6 Discussion and Future Work

In this work, we introduce and study notions of determinization for OCNs. We demonstrate
that the notions, while comparable in strictness, are distinct both from a conceptual perspect-
ive, having different motivations, as well as from a technical perspective: the mathematical
tools needed to analyze them vary.

The most pressing direction for future work is resolving the decidability status of
Uniform-Det. Note that Uniform-Det bears some similarities to the determinization problem
for tropical automata, in that both models essentially follow the (min,+) semantics. The
differences between the models are that (1) in OCNs we only care about Boolean acceptance,
whereas in weighted automata we need to match the function exactly, and (2) in OCNs we
have the restriction that the counter is nonnegative, unlike in weighted automata.

The determinization problem of weighted automata is famously open, and thus it could
well be that Uniform-Det is similarly difficult. It is worth noting that techniques for handling
the determinization of weighted automata in some fragments (namely unambiguous [25],
or polynomially ambiguous [20]) can be easily shown not carry over to determinization of
OCNs, meaning that besides the semantic differences, there are also technical differences in
reasoning about these models.

Another important direction of future work is tightening the complexity gap of
Uniform-Det over singleton alphabet. Our preliminary analysis in Lemma 11 suggests
that this may require a more ad-hoc technique than using Presburger Arithmetic.
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A Proofs

A.1 Proof of Lemma 2

A.1.1 A is ∃-Det, but not 0-Det

We define formally A = ⟨{a, b, c,#}, {q0, q
′, q′′, q5}, q0, δA, {q′, q′′, q5}⟩, for:

δA = ⟨(q0,#.− 5, q5), (q0,#.0, q′), (q0,#.0, q′′), (q′, a, 1, q′), (q′, b, 0, q′)⟩ ∪
{(q′, c,−1, q′), (q′′, a, 0, q′′), (q′′, b, 1, q′′), (q′′, c,−1, q′′), (q5, a, 0, q5), (q5, b, 0, q5), (q5, c, 0, q5)}.

A is ∃-Det, since L(A, k) = Σ∗ for k ≥ 5. Now, assume by way of contradiction that A is
0-Det, and let D be a deterministic OCN with n ∈ N states that satisifies L(A, 0) = L(D, 0).
We now define w = #cn+1an+1bn+1. throughout the run of D on w, D travels through a
cycle β1 when reading an+1, and a cycle β2 when reading bn+1. If the cumulative costs
of both β1 and β2 are non-negative, then D accepts w′ = #cn+1aNbN for arbitrarily large
N ∈ N, which contradicts L(A, 0) = L(D, 0). Otherwise, the cumulative cost of either β1 or
β2 is negative, w.l.o.g β1. In this case, w′′ = #cn+1aN is not accepted by D for sufficiently
large N ∈ N, which again contradicts L(A, 0) = L(D, 0). ◀

A.1.2 B is 0-Det, but not ∀-Det

We define formally B = ⟨{a, b, c,#}, {q0, q
′, q′′}, q0, δB, {q′, q′′}⟩, for:

δB = {(q0,#.− 1, q′), (q0,#.− 1, q′′), (q′, a, 1, q′), (q′, b, 0, q′), (q′, c,−1, q′)} ∪
{(q′′, a, 0, q′′), (q′′, b, 1, q′′), (q′′, c,−1, q′′)}.

Since L(B, 0) = ∅, B is 0-Det trivially. However, since with initial counter 0, both
(q0,#. − 1, q′) and (q0,#. − 1, q′′) cannot be traversed, we have that L(B, 1) = L(A, 0).
therefore, as can be shown by an identical analysis to the one presented in Appendix A.1.1,
there is no deterministic OCN D that satisfies L(B, 1) = L(D, 0), and B is not ∀-Det. ◀

A.1.3 C is ∀-Det, but not Uniform-Det

We define formally C = ⟨{a, b,#}, {q0, q1, q2}, q0, δC , {q1, q2}⟩, for:
δC = {(q0,#.0, q1), (q0,#.− 1, q2), (q1, a.1, q1), (q1, b,−1, q1)} ∪

{(q2, a, 0, q2), (q2, b, 0, q2)}.
For initial counter 0, the transition (q0,#. − 1, q2) cannot be traversed, therefore C is

0-Det, since D = ⟨{a, b,#}, {q0, q1}, q0, {(q0,#.0, q1), (q1, a.1, q1), (q1, b,−1, q1)} , {q1}⟩ satis-
fies L(D, 0) = L(C, 0). In addition, L(C, k) = #{a, b}∗ for all k ≥ 1. Hence C is ∀-Det.

Now assume by way of contradiction that C is Uniform-Det, and let D be a deterministic
OCN with n ∈ N states that satisfies L(D, k) = L(C, k) for all k ∈ N, and let w =
#an+1bn+1 ∈ L(D, k) for all k ∈ N. D travels through a cycle β when reading bn+1. If the
cumulative weight of β is non-negative, then w′ = #an+1bN ∈ L(D, 0) for arbitrarily large
N ∈ N, which contradicts L(D, 0) = L(C, 0). If, however, the cumulative weight of β is
negative, then w′ = #an+1bN /∈ L(D, 1) for large enough N ∈ N, which in turn contradicts
L(D, 1) = L(C, 1). ◀

A.2 Proof of Lemma 3
We prove undecidability of 0-Finite-Reach using a straightforward reduction from
Finite-Reach. Given an LCM M = (Loc, C,∆) and a configuration σ0 = ⟨q, (a1, a2 . . . an)⟩,
we define an LCM M′ with a new initial state q0 that leads to q with a single path that
increments z1 a1 times, z2 a2 times, etc.
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Formally, If ai = 0 for all 0 ≤ i ≤ n, we define M′ = M and the reduction is trivial.
Otherwise, we define M′ = (Loc′, C,∆′) such that:

Loc′ = Loc ∪ {q0} ∪
{

{qi}
Σn

j=1aj−1
i=1

}
. Note that if Σn

j=1aj = 1, the only new state added
is q0.
∆′ = ∆ ∪

{
(qΣn

j=1aj−1, (zy,++), q)
}

∪ {(qi, (zx,++), qi+1)} such that y is the largest
integer 0 ≤ y ≤ n for which ay ̸= 0, and the parameter x varies such that throughout the
Σn

j=1aj transitions, each counter zi is incremented exactly ai times.

The reachability set of σ0 = ⟨q, (a1, a2 . . . an)⟩ under M is finite iff the reachability sets
of all configurations σ′

0 = ⟨q, (a′
1, a

′
2 . . . a

′
n)⟩ such that a′

i ≤ ai for all i are finite, due to
monotonicity of LCMs. This, in turn, is satisfied iff the reachability set of ⟨q0, (0, 0 . . . 0)⟩
under M′ is finite. ◀

A.3 Proof of Lemma 4
We start by describing several gadgets used in the construction.

A.3.1 Gadgets
Let M = ⟨Loc,Z,∆⟩ be an LCM, let zi ∈ Z, and let (ℓ1, op, ℓ2) ∈ ∆. Our goal is to construct
an OCN A that reads two consecutive configuration encodings - an encoding that corresponds
to a visit in ℓ2 and then an encoding that corresponds to a visit in ℓ1, such that w ∈ L(A, 0)
iff w admits a violation for counter zi.

The structure of A depends on the value of op, which can any of the following:
1. zi++, i.e., increment zi,
2. zi−−, i.e., decrement zi,
3. zj++ or zj−− for j ̸= i, which does not affect zi,
4. zi= 0?, i.e., test zi for 0.
In addition, we have a special gadget to capture violations in the initial configuration, namely
if the counter values is not 0 (recall that the initial configuration is read last, since the
encoding is reversed).

Thus, A can be any of the gadgets presented in figure 8 (depending on op).
Formally, we define A = ⟨Σ, {q0, q1, q2}, q0, δ, {q2}⟩ such that:
Σ = Loc ∪

{
{ai}zi∈Z

}
.

δ = {(q0, aj , 0, q0)}j ̸=i ∪ {(q0, ai, 1, q0)} ∪ {(q0, ℓ2, ν, q1)} ∪ {(q1, aj , 0, q1)}j ̸=i ∪
{(q1, ai,−1, q1)} ∪ {(q1, ℓ1, 0, q2)} ∪ {(q2, σ, 0, q2)}σ∈Σ.

For the initial configuration checker, we define A = ⟨Σ, {q0, q1}, q0, δ, {q1}⟩ such that:
Σ = Loc ∪ {ai}zi∈Z.
δ = {(q0, aj , 1, q0)}zj∈Z ∪ {(q0, ℓ0,−1, q1)}.

Our last gadget captures ill-formed words, regardless of counter values.
Let M = ⟨Loc,Z,∆⟩ be an LCM. we say that a word w is well formed if the following

conditions are satisfied:
1. w is of the form w = a∗

n · · · a∗
1ℓiN · · · a∗

n · · · a∗
1ℓi0 for {ℓij ∈ Loc}0≤j≤N .

2. ℓi0 = ℓ0.
3. for every 0 ≤ j ≤ N − 1, there is at least one transition in M that leads from ℓij to ℓi,j+1.

It is easy to see that well formed words are a regular language, and in particular its
complement is the desired OCN.

CONCUR 2022
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q0 q1 q2

z1, 1

z 6=1, 0

z1,−1

z 6=1, 0 Σ, 0

ℓ2, X ℓ1, 0

(a) Gadgets for scenarios 1,2, and 3, by setting X
to be −2, 0, and −1, respectively.

q0 q1 q2

z1, 1

z 6=1, 0 zj , 0 Σ, 0

ℓ2,−1 ℓ1, 0

(b) Gadget for scenario 4.

q1 q2

zj , 1

ℓ0,−1

(c) Gadget for initial configuration
(last one in the reverse encoding).

Figure 8 The violation-check gadgets for z1. By z ̸=1 we mean zj for all j ≠ 1, and by zj we
mean every counter.

A.3.2 The Main Construction
Let M = ⟨Loc,Z,∆⟩. We wish to construct an OCN A such that L(A, 0) is the set of all
words that do not represent legal runs of M.

Intuitively, we construct A through the following process:
1. Construct a flow violation checker (with regards to M), which will be part of A as a

separate component.
2. for every location ℓ ∈ Loc, add a corresponding state ℓ′ in A. all such ℓ′’s are initial states

in A, and they all have self loops with weight 0 when reading all counter accumulators
{ai}zi∈Z. Intuitively, when A visits a state ℓ′, it means that A is currently in the process
of reading a configuration in which M is in location ℓ.

3. for every transition (ℓ1, op, ℓ2) ∈ ∆, add the transition (ℓ′
2, ℓ2, 0, ℓ′

1) to A. Intuitively,
traveling this transition means that A has finished reading a configuration of location ℓ2,
and is now starting to read a configuration of location ℓ1.

4. connect an initial configuration violation checker to ℓ′
0.

5. for every transition (ℓ1, op, ℓ2) ∈ ∆, add from ℓ′
2 transitions to all relevant violation

checkers for all counters {zi}1≤i≤n.

Now let us define the construction formally. Let V (ℓi → ℓj , zm) be the violation checker
that matches the transition (ℓi, op, ℓj) for counter zm, as detailed in Appendix A.3.1. Let
Q(ℓi → ℓj , zm) be its states, let F (ℓi → ℓj , zm) be its accepting states, let δ(ℓi → ℓj , zm)
be its transitions, and λ(ℓi → ℓj , zm) ⊆ δ(ℓi → ℓj , zm) be the transitions from its initial
state. In that spirit we also define, with regards to the flow control violation checker, and
the initial configuration violation checker: Q(initial), δ(initial), λ(initial), Q(flow), δ(flow),
λ(flow). Lastly, for convenience’ sake alone we define A as having multiple initial states. this
has been done for readability, and can easily be formally circumvented by defining a single
initial state α0, along with an outgoing transition (α0, σ, z, q) for each (s0, σ, z, q) ∈ δ.

We now define A = ⟨Σ, Q, S0, δ, F ⟩ such that:
Σ = Loc ∪ {ai}zi∈Z
Q = {ℓ′

i}ℓi∈Loc ∪Q(initial)∪Q(flow)∪{Q(ℓi → ℓj , zm)} for all ℓi, ℓj ∈ Loc such that there
is a transition from ℓi to ℓj in ∆, and for all 1 ≤ i ≤ m.
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S0 = {ℓ′
i}ℓi∈Loc ∪ {s0,flow} such that s0,flow is the initial state of the flow violation checker.

δ1 = {(ℓ′
i, aj , 0, ℓ′

i)} for all ℓi ∈ Loc and for all 1 ≤ j ≤ n.
δ2 =

{
(ℓ′

i, ℓi, 0, ℓ′
j)

}
for all ℓi, ℓj ∈ Loc such that there is a transition from ℓj to ℓi in ∆.

δ3 = {(ℓ′
i, σ, ν, q

′)} for all ℓi, ℓj ∈ Loc such there is a transition from ℓj to ℓi in ∆, and
(q, σ, ν, q′) ∈ λ(ℓj → ℓi, zm) for some 1 ≤ i ≤ m, or otherwise (q, σ, ν, q′) ∈ λ(initial).
δV =

⋃
all violations δ(violation).

δ = δ1 ∪ δ2 ∪ δ3 ∪ δV

F =
⋃

all violations F (violation).

We turn to prove the correctness of the construction. Consider a word w that represents
a legal run of M. Then, first of all, w is well formed, and therefore not accepted by the
flow violation checker. second, there is no transition from one configuration to the next
that involves a violation, and therefore w cannot be accepted through any of the violation
checkers in A. Since all accepting states of A are inside violation checkers, w /∈ L(A, 0).

Conversely, assume a word w does not represent a legal run of M. If w is not well formed,
then it is accepted through the flow violation checker. Otherwise - a transition from a state
ℓi ∈ Loc to a state ℓj ∈ Loc represents a violation for counter zm such that 1 ≤ m ≤ n.
A then accepts w by branching from ℓ′

j to V (ℓi → ℓj , zm) at the right moment. It is also
possible that the violation occurs in the first configuration (last one to be read), and in this
case w will be accepted through the initial configuration violation checker.

A.4 Details for the proof of Lemma 5
The following is a formal construction of DFA D = ⟨Σ, Q′, s′

0, δ
′, F ′⟩:

Q′ = {⟨ℓ, a1 . . . ak, b1 . . . bk⟩|ℓ ∈ Loc, 0 ≤ ai, bi ≤ m for all 1 ≤ i ≤ k} ∪
{⟨⊥,⊥ . . .⊥, b1 . . . bk⟩|0 ≤ bi ≤ m for all 1 ≤ i ≤ k}.
s′

0 = ⟨⊥,⊥ . . .⊥, 0 . . . 0⟩.
δ′(⟨ℓ, a1 . . . ak, b1 . . . bk⟩, ℓ′) = ⟨ℓ′, b1 . . . bk, 0 . . . 0⟩ if the configuration ⟨ℓ, a1 . . . ak⟩ can be
obtained from the configuration ⟨ℓ′, b1 . . . bk⟩ through a single transition in M.
δ′(⟨⊥,⊥ . . .⊥, b1 . . . bk⟩, ℓ) = ⟨ℓ, b1 . . . bk, 0 . . . 0⟩ for all ℓ ∈ Loc, 0 ≤ b1 . . . bk ≤ m.
δ′(⟨ℓ, a1 . . . ak, 0 . . . 0, bj . . . bk⟩, zj) = ⟨ℓ, a1 . . . ak, 0 . . . 0, bj + 1 . . . bk⟩ for all 0 ≤ j ≤ k,
bj < m.
δ′(⟨ℓ, a1 . . . ak, 0 . . . 0, bj . . . bk⟩, zj−x) = ⟨ℓ, a1 . . . ak, 0 . . . 1, 0 . . . bj . . . bk⟩ for all 1 ≤ j ≤ k,
1 ≤ x ≤ j.
F = {⟨ℓ0, 0 . . . 0, 0 . . . 0⟩}.

Correctness stems directly from the construction.
As for the other direction, assume the reachability set of ⟨ℓ0, (0 . . . 0)⟩ under M is infinite,

and assume by way of contradiction that A has a deterministic equivalent D with d states.
Observe that for every word u ∈ Σ∗, the run of D does not end due to the counter becoming
negative. Indeed, we can always concatenate some λ ∈ Σ∗ such that uλ does not correspond
to a run, and is hence accepted by D, so the run on u must be able to continue reading λ.
We call this property of D positivity.

Since the reachability set of ⟨ℓ0, (0 . . . 0)⟩ is infinite, there exists a counter of M, w.l.o.g
z1, that can take unbounded values (in different runs). Let w be a word corresponding to
a run of M that ends with the value of z1 being N for some N > d. We can then write
w = a∗

k · · · aN
1 ℓa

∗
k · · · aN ′

1 ℓ′ρ such that ρ represents the reverse of a legal prefix of a run of M,
and N ′ satisfies N ′ ≥ N − 1, since no single transition of M can increase a counter by more
than one (but N ′ can be arbitrarily large).
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Since w corresponds to a legal run of M, A (and therefore D) does not accept w. By the
positiviy of D, its run on w ends in a non-accepting state.

Since N > d, D goes through a cycle β when reading aN
1 . We pump the cycle β to

obtain a run of D on a word w′′ = a∗
k · · · aN+t

1 qa∗
k · · · aN ′

1 q′ρ for some t ∈ N that satisfies
N + t > N ′ + 1. Again, by the positivity of D, the run cannot end due to the counter
becoming negative, so it ends in the same non accepting state as the run on w. However, w′′

does not represent a legal run of M , since N + t > N ′ + 1, therefore w′′ ∈ L(A, 0), which
contradicts L(A, 0) = L(D, 0).

A.5 Details for the Proof of Lemma 14
We start by demonstrating our method, followed by the general construction. Consider,
for example, S = Lin((1, 0), (4, 8)) ∪ Lin((2, 1), (6, 12)). In this case γ = 12. We split
Lin((1, 0), (4, 8)) to Lin((1, 0), (12, 24)) ∪ Lin((5, 8), (12, 24)) ∪ Lin((9, 16), (12, 24)), the intu-
ition being that instead of a (4, 8) period, we have a (12, 24) period, and we add different basis
vectors to fill the gaps, so the new basis vectors are (5, 8) and (9, 16), where the next basis
vector (13, 24) is already captured by (1, 0) + (12, 24). Similarly, we split Lin((2, 1), (6, 12))
to Lin((2, 1), (12, 24)) ∪ Lin((8, 13), (12, 24)). Overall we get S =

⋃
v∈V Lin(v, (12, 24)) for

V = {(1, 0), (5, 8), (9, 16), (2, 1), (8, 13)}.
Generally, let γ = lcm({pi}M

i=1). We split each linear component Lin((ai, bi), {(pi, ri)})
to γ

pi
parts, by defining the γ-split of Lin((ai, bi), (pi, ri)) (defined only for pi|γ) to be⋃ γ

pi
−1

i=0 Lin((ai, bi) + i · (pi, ri), (γ, ri) · γ
ri

). each such split is semilinear by definition, and it
is straightforward to show that S =

⋃k
i=1 l-split(Lin((ai, bi), (pi, ri)).

A.6 Unambiguous OCNs
We now consider the case where A is unambiguous. Observe that in order to construct θ(n, c)
above, we explicitly placed the requirement that the counter is minimal. As we now show,
if A is unambiguous, we can modify the formula such that no universal quantification is
required.

Recall that in the construction of the formula φρ(n, c), we define the subformula
sufficient-counterρ(c, e1, . . . , ek), stating that the counter c is sufficient for travers-
ing the run α0β

e1
1 α1β

e2
2 α2 · · ·αk. The structure of sufficient-counterρ(c, e1, . . . , ek) can

be viewed as a conjunction of inequalities
∧

j τj ≥ 0 where each τj is a linear expression
containing c. We observe that c is a minimal counter that satisfies these equations iff one of
them is satisfied as an equality.

In addition, for unambiguous OCNs, if sufficient-counterρ(c, e1, . . . , ek) is satisfied,
then all alternative values e′

1, . . . , e
′
k for which this formula is satisfied represent the same run.

Therefore, if an initial counter value c is minimal for words of length n and certain e1, · · · ek,
then it is minimal for all alternative e′

1, . . . , e
′
k. We can then construct the following formula

ψρ(n, c) :=∃e1 · · · ek, correct-lengthρ(n, e1 · · · ek)
∧sufficient-counterρ(c, e1 · · · ek)
∧minimal-counterρ(c, e1 · · · ek)

where minimal-counterρ(c, e1 · · · ek) :=
∨

j τj = 0 where τj are the inequalities that appear
in sufficient-counterρ(c, e1 · · · ek).

By the above, we have that ψρ(n, c) is satisfied iff c is the minimal counter value such
that there exists a run of length n that is of the shape ρ starting from counter value c.
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Defining P ⊆ S to be the set of linear path schemes from the initial state to an accepting
state, as above, we can rewrite θ more compactly, as follows: θ(n, c) =

∨
ρ∈P φρ(n, c).

As for the bigger picture, we remind the reader that Uniform-Det can be decided using
ν = ∃n1, n2, c1, c2, n1 < n2 ∧ c1 > c2 ∧ θ(n1, c1) ∧ θ(n2, c2). In the unambiguous case, we
can rewrite ν as follows:

ν =
∨

ρ1,ρ2∈P

∃n1, c1, n2, c2, e11, · · · e1k1 , e21, · · · e2k2 , n1 < n2 ∧ c1 > c2∧

correct-lengthρ1(n1, e11 · · · e1k1) ∧ sufficient-counterρ1(c1, e11 · · · e1k1)
∧minimal-counterρ1(c1, e11 · · · e1k1) ∧ correct-lengthρ2(n2, e21 · · · e2k2)

∧sufficient-counterρ2(c2, e21 · · · e2k2) ∧ minimal-counterρ2(c2, e21 · · · e2k2).

This representation of ν is a disjunction of existential fragments, all of which are polynomial
in the size of A.
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Abstract
An energy game is played between two players, modeling a resource-bounded system and its
environment. The players take turns moving a token along a finite graph. Each edge of the graph is
labeled by an integer, describing an update to the energy level of the system that occurs whenever
the edge is traversed. The system wins the game if it never runs out of energy. Different applications
have led to extensions of the above basic setting. For example, addressing a combination of the
energy requirement with behavioral specifications, researchers have studied richer winning conditions,
and addressing systems with several bounded resources, researchers have studied games with multi-
dimensional energy updates. All extensions, however, assume that the environment has no bounded
resources.

We introduce and study both-bounded energy games (BBEGs), in which both the system and
the environment have multi-dimensional energy bounds. In BBEGs, each edge in the game graph
is labeled by two integer vectors, describing updates to the multi-dimensional energy levels of
the system and the environment. A system wins a BBEG if it never runs out of energy or if its
environment runs out of energy. We show that BBEGs are determined, and that the problem of
determining the winner in a given BBEG is decidable iff both the system and the environment
have energy vectors of dimension 1. We also study how restrictions on the memory of the system
and/or the environment as well as upper bounds on their energy levels influence the winner and the
complexity of the problem.
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1 Introduction

A reactive system interacts with its environment and should behave correctly in all
environments. Synthesis of a reactive system thus corresponds to finding a winning strategy
in a two-player game between the system and the environment. The game is played on a
graph whose vertices are partitioned between the players. Starting from some initial vertex,
the players move a token along the graph: whenever the token is in a vertex owned by
the system, the system decides to which successor to move the token, and similarly for
the environment. Together, the players generate a path in the graph. The choices of the
players correspond to actions that the system and the environment may take, and so the
generated path corresponds to a possible outcome of an interaction between the system and
its environment.

The winning condition in the game is induced by the correctness criteria for the system.
Early work on synthesis focuses on qualitative criteria, typically described by a temporal logic
formula that specifies the allowed interactions [26, 3]. There, the essence of the actions that
the system and the environment take is the way they modify the truth assignment to input
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and output signals. Accordingly, the edges of the graph are labeled by such assignments,
and the generated path is an infinite word over the alphabet of assignment. The system
wins if this word satisfies the specification. Recent work studies also games with quantitative
objectives. There, the essence of the actions that the system and the environment take is the
way they modify some quantitative measure, such as a budget or an energy level. Accordingly,
the edges of the graph are labeled by updates to the quantitative measure, and the winning
condition refers to properties like its limit sum or average [17].

Energy games belong to the second class of games: the two players model a resource-
bounded system and its environment. Accordingly, each edge of the game graph is labeled by
an integer, describing an update to the energy level of the system that occurs whenever the
edge is traversed. The system wins the game if it never runs out of energy. The term “energy”
may refer to a wide range of applications: an actual energy level, where actions involve
consumption or charging of energy; storage, where actions involve storing or freeing disc
space; money ones, where actions involve costs and rewards to a budget of some economic
entity, and more [11].

Different applications have led to extensions of the above basic setting. For example,
addressing a combination of the energy requirement with behavioral specifications, researchers
have studied energy parity games, whose winning conditions combine quantitative and
qualitative conditions [9, 2]. Then, addressing systems with several bounded resources,
researchers have studied generalized energy games, in which the system player has a multi-
dimensional energy level, the updates along the edges are vectors of integers, and the system
wins if it does not run out of energy in any of its resources.

Two main questions regarding energy games have been studied. The first, called the
unknown initial-credit problem, is the problem of deciding the existence of an initial energy
level that is sufficient for the system to win the game. The second, called the given initial-
credit problem, is the problem of deciding whether a given initial energy level is sufficient for
the system to win. It is shown in [6, 8] that memoryless strategies, namely strategies that
decide how to direct the token based on its current location, are sufficient to win energy
games, and that consequently, both the unknown and the given initial-credit problems are
decidable in NP∩coNP. For multi-dimensional energy games, the unknown initial-credit
problem is coNP-complete [10], whereas the given initial-credit problem (a.k.a. Z-reachability
VASS game) is 2EXPTIME-complete [7, 12, 19].

We introduce and study both-bounded energy games (BBEGs), in which both the system
and the environment have (multi-dimensional) energy bounds. In BBEGs, each edge in the
game graph is labeled by two integer vectors, describing updates to the multi-dimensional
energy levels of the system and the environment. A system wins a BBEG if it never runs out
of energy or if its environment runs out of energy.

Bounded environments are of interest in several paradigms in computer science. For
example, in cryptography, one studies the security of a given cryptosystem with respect to
attackers with bounded (typically polynomial) computational power [24]. In the analysis of
on-line algorithms, one sometimes cares for the competitive ratio of a given on-line algorithm
with respect to requests issued by a bounded adversary [5]. Likewise, studying bounded
rationality in games, bounds are placed on the power of the players. Closer to the work
here is the extension of bounded synthesis [27] to settings where both the system and the
environment have bounds on their size [21]. In addition to better modeling the studied setting,
the bounds are sometimes used in order to obtain decidability or better complexity, and they
can also serve in heuristics, as in SAT-based algorithms for bounded synthesis [13]. Finally,
a setting in which the system and the environment have similar properties (in particular,
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both are bounded) enjoys duality between the players. Adding budget constraints to the
environment makes the players in energy games dual up to the player that moves first and
the definition of who wins when the game continues forever. From a practical point of view,
in many of the scenarios modeled by energy games, the environment is another system, hence
with its own bounds. This includes, for example, a robot that interacts with another robot,
both having bounded batteries, or a consumer that interacts with a company, both having
bounded budgets.

We show that BBEGs are determined, and that the problem of determining the winner
in a given BBEG is decidable iff both the system and the environment have energy vectors
of dimension 1. This is both bad news, as traditional energy games are decidable for all
dimensions [7], and good news, as adding an (unbounded) energy level to the environment
causes even the setting with energy vectors of dimension 1 to include two unbounded
components, as in two-counter machines [25]. In order to show decidability, we relate the
energy level of the environment with the value of a counter in one-counter energy games [1],
which augment energy games with a counter. Once, however, the system or the environment
has an energy vector of dimension 2, we can use the energy level of the other player to store
the sum of the counters, which enable us to simulate a two-counter machine by a BBEG in
which the dimension of the energy vector of one of the players is strictly bigger than 1.

We continue and study how restrictions on the memory of the system and/or the
environment influence the winner and the complexity of the problem. We show that unlike
the case of energy games, where memoryless strategies suffice [6, 8], here the situation is
more complicated, and is also not symmetric: while infinite memory may be needed for
the system, finite-memory strategies are sufficient for the environment. Essentially, this
follows from the different winning criteria for the system and the environment, in particular
the fact that wins of the environment happen in finite prefixes of the interaction. The
memory required for the environment, however, cannot be a-priory bounded. We study the
problem of deciding a winner in BBEGs in which the players are restricted to memoryless or
finite-memory strategies. We show that such games are not determined, and that when both
players are restricted, the problem is ΣP

2 -complete. Also, when only the system is restricted,
the problem is strongly related to reachability problems in vector addition systems with states
(VASS) [18], is decidable, and is in PSPACE for BBEGs in which both the system and the
environment have energy vectors of dimension 1.

Finally, we consider settings in which there is an upper bound on the capacity of the
bounded resources. Such bounds exist in resources like batteries or disc space. In standard
energy games, researchers have extensively studied settings in which the energy level of the
system does not exceed a given maximum capacity [6, 15]. This includes both a semantics in
which an overflow leads to losing the game and a semantics in which an overflow is truncated.
We study this setting in BBEGs, in particular the problem of determining the winner in a
BBEG with energy bounds for one of the players. We show that the problem is reducible to
deciding standard multi-dimensional energy games, and is thus decidable.

Due to the lack of space, some proofs are omitted and can be found in the full version, in
the authors’ URLs.

2 Preliminaries

Both-bounded energy game. A both-bounded energy game (BBEG, for short) is a game
played by two players, Player 1 and Player 2, on a weighted game graph. Each of the players
has an energy vector, and the edges of the graph are labeled with updates to those vectors,
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applied when the edge is traversed. The vertices of the graph are partitioned into positions
that are owned by Player 1 and positions that are owned by Player 2. The game proceeds
as follows. A token is placed on the initial position of the game graph. The players move
the token along the graph in rounds. In each round, the player that owns the position the
token is placed on chooses an edge from this position, and moves the token along it. Each of
the players has an initial energy vector, which is updated according to the updates along
the edges. The goal of Player 1 is not to run out of energy. The goal of Player 2 is to make
Player 1 run out of energy, without running out of energy herself.

Formally, a BBEG is a tuple G = ⟨S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ⟩, where S1 and S2 are

disjoint finite sets of positions, owned by Player 1 and Player 2, respectively. We use S

to denote S1 ∪ S2. Position sinit ∈ S is the initial position; E ⊆ S × S is a set of edges;
for j ∈ {1, 2}, we have that dj ≥ 1 is the dimension of Player j and xj

0 ∈ Ndj is the initial
energy vector of Player j. Finally, τ : E → Zd1 × Zd2 is a cost function. Traversing an edge
e with τ(e) = (x1, x2), updates to the energy vectors of Player 1 and Player 2 by x1 and
x2, respectively. We use τ(e)[1] and τ(e)[2] to denote x1 and x2, respectively. We consider
non-blocking games, i.e., for every position s ∈ S, there is at least one edge leaving s, thus
⟨s, s′⟩ ∈ E, for some s′ ∈ S. We call a BBEG with dimensions d1 for Player 1 and d2 for
Player 2 a (d1, d2)-BBEG.

For an integer n ≥ 1, we denote by [n] the set {1, ..., n}. For a vector u in Zn and i ∈ [n],
we denote by u[i] the i-th component of u. We define the size of G to be the size required
for storing the cost function τ , that is |G| = |E| · (d1 + d2) · log(m), where m is the largest
integer appearing in some energy update vector. Note that since G is non-blocking, the
definition takes the position space into account. Note also the definition assumes that the
updates are given in binary.

Given a BBEG G, we define a run in G to be an infinite sequence r = s1, s2, ... ∈ Sω such
that s1 = sinit and ⟨si, si+1⟩ ∈ E for all i ≥ 1. For a run r = s1, s2... and n ≥ 0, we denote by
rn the prefix of r up to its n-th position. That is, rn = s1, s2, ...sn. We say that n is the length
of rn. For j ∈ {1, 2}, we say that a prefix rn belongs to Player j if sn ∈ Sj . We define the
energy level of Player j up to the n-th position in r to be ej(rn) = xj

0 +
∑n−1

i=0 τ(⟨si, si+1⟩)[j].
Note that ej(rn) is a vector in Zdj . For a vector u in Zn, We use u ≥ 0 to indicate that
u[i] ≥ 0 for all i ∈ [n], and, dually, use u < 0 to indicate that u[i] < 0 for some i ∈ [n].

We say that a sequence c ∈ S∗ + Sω is a computation in G if one of the following holds:
1. c is an infinite run in G, and for every n ≥ 1, we have that e1(cn) ≥ 0 and e2(cn) ≥ 0.
2. There is n ≥ 1 such that c is a finite prefix of length n of a run in G, e1(c) < 0 or

e2(c) < 0, and for every m < n, it holds that e1(cm) ≥ 0 and e2(cm) ≥ 0.
We denote by comp(G) the set of computations in G. For a finite computation c ∈ comp(G)
of length m ∈ N and 0 ≤ n ≤ m, we denote by cn the prefix of c up to its n-th position. We
denote by comp(G) the set of computations in G, by pref(G) the set of prefixes of comp(G),
and by prefj(G), for j ∈ {1, 2}, the set of prefixes that belong to Player j.

Strategies. A strategy for Player j is a function γj : pref j(G) → S, such that for all
p · s ∈ pref j(G) with p ∈ S∗ and s ∈ Sj , we have that ⟨s, γj(p · s)⟩ ∈ E. That is, a strategy
for Player j maps each prefix p · s with s ∈ Sj to a position that has an incoming edge from
s. We say that a computation c = s1, s2, ... ∈ comp(G) is consistent with a strategy γj for
Player j, if for every i ≥ 1 such that ci ∈ pref j(G), it holds that si+1 = γj(ci). Given two
strategies γ1 for Player 1 and γ2 for Player 2, we define the outcome of γ1 and γ2, denoted
outcome(γ1, γ2), to be the single computation that is consistent with both γ1 and γ2. Note
that indeed there is exactly one such computation. Note also that since the domain of a
strategy may be infinite, a general strategy may require infinite memory.
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Winning Conditions. A computation c is winning for Player 1 if one of the following holds:
1. Player 1 never runs out of energy. That is, c is infinite. Note that if c is infinite, then

for all n ≥ 1, we have that e1(cn) ≥ 0. Thus, Player 1 manages to keep her energy level
non-negative during the infinite computation c.

2. Player 2 runs out of energy before Player 1. That is, there is n ≥ 1 such that c =
s1, s2, ..., sn, it holds that e2(c) < 0, and either e1(c) ≥ 0 or sn−1 ∈ S2. We can think of
the energy updates along the edges as if traversing an edge leaving position in Sj , for
j ∈ {1, 2}, updates first the energy vector of Player j, and then updates the energy vector
of the other player. Thus, Player 2 runs out of energy before Player 1 if the energy level
of Player 2 becomes negative while the energy level of Player 1 is non-negative, or both
energy levels become negative together, but as a consequence of a move made by Player 2.

If none of the two conditions above hold, then c is winning for Player 2. In other words, c is
winning for Player 2 if Player 1 runs out of energy before Player 2. That is, there is n ≥ 1
such that c = s1, s2, ..., sn, e1(c) < 0, and either e2(c) ≥ 0 or sn−1 ∈ S1. Note that while a
computation winning for Player 2 is always finite, a computation winning for Player 1 may
be either finite or infinite.

A strategy γ1 is winning for Player 1 if for every strategy γ2 for Player 2, the computation
outcome(γ1, γ2) is winning for Player 1. Dually, a strategy γ2 is winning for Player 2 if for
every strategy γ1 for Player 1, the computation outcome(γ1, γ2) is winning for Player 2. For
j ∈ {1, 2}, we say that Player j wins in G if she has a winning strategy.

▶ Example 1. Consider the BBEG G in Figure 1. Drawing BBEGs, we describe positions in
S1 and S2 by circles and squares, respectively. The initial position is marked by an incoming
arrow from the initial energy vectors, and edges are labeled with the energy vectors assigned
by the cost function. For example, in G both players start with energy level 0, and the
transition from s2 to s3 does not change the energy level of Player 1, and decreases by 1 the
energy level of Player 2.

We show that Player 1 wins in G. Indeed, if Player 2 always takes the loop on s1, then
Player 1 wins, as the outcome is an infinite computation in which the energy level of Player 1
is always non-negative. Otherwise, Player 2 loops n times in s1, for some n ∈ N, and then
moves to s2. At this point, the energy level of both players is n. Player 1 can then take the
loop on s2 exactly n times, setting both energy levels back to 0. At this point, Player 1 can
take the transition to s3 and make Player 2 lose, since her energy level drops below 0. ◀

0, 0 s1

1, 1

s2 s3
0, 0 0,−1

−1,−1 −1, 0

Figure 1 The game graph G.

Determinacy. A game is determined if in all instances G of the game, either Player 1 wins
in G, or Player 2 wins in G. Since the set of computations that are winning for Player 1 is
closed, we have from [23] that BBEGs are determined. Indeed, if Player 2 does not have a
winning strategy, one can construct a strategy for Player 1 such that every finite-computation
consistent with it is not losing for Player 1. Since the set of winning computations for Player 1
is closed (in the topological sense), this strategy must be winning.
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▶ Remark 2 (Adding structural assumptions). For simplicity of describing computations and
strategies, we define BBEGs without parallel edges. For convenience, we sometimes describe
BBEGs with parallel edges (that is, the graph G may have several, yet finitely many, edges
between two positions, each with a different update). We sometimes also assume that each
transition in the BBEG updates the energy to one player only, or assume that the costs on
the transitions are all in {−1, 0, 1}. As explained in Appendix A.1, these assumptions do
not restrict the generality of our results. In particular, while a translation to BBEGs with
updates in {−1, 0, 1} may involve an exponential blow-up (this is since we define the costs to
be given in binary), we consider such BBEGs only in the context of decidability. ◀

3 Deciding BBEGs

In this section we study the problem of determining the winner in a given BBEG. We give a
clear border for their decidability: determining the winner in (1, 1)-BBEGs is decidable, yet
determining the winner in (d1, d2)-BBEGs is undecidable when d1 ≥ 1 and d2 ≥ 2 or when
d2 ≥ 1 and d1 ≥ 2.

▶ Theorem 3. The problem of determining the winner in (1, 1)-BBEGs is decidable.

Proof. We reduce (1, 1)-BBEGs to one-counter energy games of dimension 1.
A one-counter energy game of dimension 1 is A = ⟨Q1, Q2, δ, δ0⟩, where Q1 and Q2 are

distinct finite sets of positions owned by Player 1 and Player 2, respectively. We use Q to
denote Q1 ∪ Q2. The game A has two transition relations, δ ⊆ Q × {−1, 0, 1}2 × Q and
δ0 ⊆ Q× {−1, 0, 1} × {0, 1} ×Q. A configuration in A is a triple ⟨p, e, c⟩ ∈ Q×Z×N, which
describes a position, energy level, and a counter value. The transition relations δ and δ0
define a relation between successor configurations as follows. A configuration ⟨p′, e′, c′⟩ is
successor of configuration ⟨p, e, c⟩ iff one of the following holds:
1. c′ ≥ 0 and ⟨p, e′ − e, c′ − c, p′⟩ ∈ δ.
2. c = 0 and ⟨p, e′ − e, c′, p′⟩ ∈ δ0.
Note that δ0-transitions can be taken only when the value of the counter is 0, and they can
not decrease the value. Also, δ-transitions can be taken whenever they do not reduce the
value of the counter below 0.

The game proceeds as follows. At each round, the player who owns the current position
chooses a transition, and the new configuration is a successor of the current one. Note that
during the game, the value of the counter is always non-negative. The game terminates and
Player 2 wins if a configuration ⟨p, e, r⟩ with e < 0 is reached. Player 1 wins every infinite
game. It is shown in [1], that given an initial configuration c = ⟨p, e, r⟩, determining the
winner in A from c is decidable.

Given a (1, 1)-BBEG G, we construct a one-counter energy game A with dimension 1, such
that Player 1 wins in G iff Player 1 wins in A. Since determining the winner of one-counter
energy games with dimension 1 is decidable [1], we get decidability for (1, 1)-BBEGs.

Let G = ⟨S1, S2, sinit, E, 1, 1, x1
0, x

2
0, τ⟩. For simplicity, we assume that each transition

in G updates the energy level of only one player, and that the costs on the transitions are
numbers in {−1, 0, 1} (see Remark 2).

We define A = ⟨Q1, Q2, δ, δ0⟩ so that the energy level in A represents the energy of
Player 1 in G, and the counter value represents the energy level of Player 2 in G. For that,
we define Q1 = S1 ∪ {sink}, and Q2 = S2. Now, let Q′

1 = {s ∈ S1 : there is s′ ∈ S such that
⟨s, s′⟩ ∈ E and τ(⟨s, s′⟩) = (0,−1)}, and Q′

2 = {s ∈ S2 : for all s′ ∈ S such that ⟨s, s′⟩ ∈ E,
we have that τ(⟨s, s′⟩) = (0,−1)}. That is, Q′

1 is the set of positions from which Player 1
can decrease the energy level of Player 2, and Q′

2 is the set of positions from which Player 2
must decrease her own energy level.
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We define δ = {⟨s, τ(⟨s, s′⟩)[1], τ(⟨s, s′⟩)[2], s′⟩ : ⟨s, s′⟩ ∈ E} ∪ {⟨sink, 0, 0, sink⟩} and
δ0 = (Q′

1 ∪Q′
2) × {0}2 × {sink}. In Appendix A.2, we prove that Player 1 wins in A from

⟨sinit, x
1
0, x

2
0⟩ iff Player 1 wins in G. Essentially, this follows from the fact we let Player 1

reach a winning sink whenever she can make Player 2 lose her energy, and we force Player 2
to the sink whenever she runs out of energy. ◀

We now show that the positive result in Theorem 3 is tight.

▶ Theorem 4. The problem of determining the winner of BBEGs is undecidable.
Undecidability holds already for (1, 2)-BBEGs or (2, 1)-BBEGs, and when the weights on the
transitions are all vectors over {−1, 0, 1}.

Proof. We start with (1, 2)-BBEGs, and show a reduction from the halting problem of
two-counter machines to our problem. A two-counter machine is a sequence M = (l1, ..., ln)
of commands involving two counters x and y. We refer to {1, ..., n} as the locations of the
machine. The command ln is the halting command, and each command li, for i < n, is of
one of the following forms, where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations:

inc : c := c+ 1
goto : goto i
test-dec : if c = 0 then goto i else (c := c− 1; goto j)

For the test-dec command, we refer to i as the positive successor of the command, and
refer to j as the negative successor of the command. Since we always check whether c = 0
before decreasing it, the counters never have negative values. For a two-counter machine M ,
the question whether M halts is known to be undecidable [25].

Given a machine M , we construct a game G such that M halts iff Player 2 wins in G. The
reduction idea is as follows: the dimension of Player 1 is one, and the dimension of Player 2
is two. During a computation in G, the energy level of Player 1 is x + y, and the energy
level of Player 2 is (x, y), where x and y are the two counters of M . If M never halts, then
both energy levels remain non-negative during the infinite computation, and thus Player 1
wins. If M reaches the halting command, then we reach a losing position for Player 1, so
Player 2 wins. We now describe the reduction in detail. Given M = (l1, ..., ln), we construct
G = ⟨S1, S2, sinit, E, 1, 2, 0, 02, τ⟩, such that S2 = {1, ..., n}, and S1 = Ltd × {1, 2}, where
Ltd ⊆ {1, .., n} is the set of all locations of the test-dec commands in M . The initial energy
levels are 0 for Player 1 and (0, 0) for Player 2, reflecting the fact that the counters are
initiated to 0. Now, we introduce a gadget for each command li as follows.
1. if li is x := x+ 1, then G includes an edge e = ⟨i, i+ 1⟩ with τ(e) = (1, (1, 0)).
2. if li is y := y + 1, then G includes an edge e = ⟨i, i+ 1⟩ with τ(e) = (1, (0, 1)).
3. if li is goto j, then G includes an edge e = ⟨i, j⟩ with τ(e) = (0, (0, 0)).
4. if li is if x = 0 then goto j else (x := x− 1; goto k), then G includes the gadget described

in Figure 2 (left).
5. if li is if y = 0 then goto j else (y := y − 1; goto k), then G includes the gadget described

in Figure 2 (right).
6. for the halting command, ln, the game G includes an edge e = ⟨n, n⟩ with τ(e) =

(−1, (0, 0)).
These transitions are the only transitions G has. We also define sinit to be 1; that is, the
state corresponding to l1.
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i

(i, 1) (i, 2)k

j

−1, (−1, 0) 0, (0, 0)

0, (0, 0)

−1, (0,−1)

0, (0, 0)

i

(i, 1) (i, 2)k

j

−1, (0,−1) 0, (0, 0)

0, (0, 0)

−1, (−1, 0)

0, (0, 0)

1

Figure 2 The gadgets for x-test-dec (left) and y-test-dec (right) commands.

In Appendix A.3 we prove that the reduction is correct, thus M halts iff Player 2 wins
in G. For this, we first prove that if a player has a winning strategy, then she also has a
winning strategy that follows the instructions. That is, at every step of the computation, the
best move for the current player is the one that leads to the state corresponding to the next
command to be read according to M . Then, we show that the outcome of strategies that
follow the instruction, is such that the energy level of Player 1 stores x+ y, and the energy
level of Player 2 stores (x, y). Then, as the value of the counters is always non-negative and
the position that corresponds to the halting command is losing for Player 1, we get that M
halts iff Player 2 wins in G.

The challenging part in the construction and its proof is to construct the test-dec
gadgets so that a strategy that follows the instruction is indeed dominating, and that the
energy levels indeed maintain the values of the the counters and their sum. Note that
excluding positions induced by the test-dec gadgets, all positions in G belong to Player 2.
In order to understand the idea behind the gadget, consider for example the x-test-dec
gadget, associated with the command if x = 0 then goto j else (x := x− 1; goto k). As the
energy level of Player 2 is (x, y), taking the transition from position i to position k when
x = 0 is a losing action for Player 2, as it updates the x-component of her energy level to −1.
Thus, when x = 0, a dominating strategy for Player 2 takes the transition from position i to
position (i, 1). Then, as the energy level of Player 1 is x+ y, taking the transition from (i, 1)
to (i, 2) when x = 0 is a loosing action for Player 1. Indeed, after y traversals in the loop in
position (i, 2), the energy levels of the players become 0 and (0, 0), causing Player 1 to lose
in the next round. Thus, when x = 0, a dominating strategy for Player 1 takes the transition
from position (i, 1) to position j. In addition, the energy levels of the players does not change
when the token moves from position i to j. Similar considerations show that when x ̸= 0, a
dominating strategy for Player 2 takes the transition from position i to position k, which
involves an update to the energy levels that corresponds to the decrement of x by 1.

We continue and prove undecidability for (2, 1)-BBEGs. We show a similar reduction
from the halting problem of two-counter machines. Take G = ⟨S1, S2, sinit, E, 1, 2, 0, (0, 0), τ⟩
the BBEG used above, and consider the BBEG G′ = ⟨S2, S1, sinit, E, 2, 1, (0, 0), 0, τ ′⟩, where
τ ′(⟨s, s′⟩) = (τ(⟨s, s′⟩)[2], τ(⟨s, s′⟩)[1]) for all ⟨s, s′⟩ ∈ E, s ̸= n, and τ ′(n, n) = ((−1, 0), 0).
That is, G′ obtained from G by switching the dimensions of the players, their initial energy
vectors, the updates on the edges and the sets of positions. Consequently, also in G′, a
dominating strategy for the players is consistent with the commands, it implies that the
energy level of Player 1 is (x, y), the energy level of Player 2 is x+ y, and since the sink n is
losing for Player 1, we get that M halts if and only if Player 2 wins in G′. ◀

It is easy to extend Theorem 4 to bigger dimensions, by adding to the energy vectors
components whose energy values are not updated during the computation. Thus, by
Theorems 3 and 4, determining the winner of (d1, d2)-BBEGs is decidable iff d1 = d2 = 1.
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4 BBEGs with finite-memory strategies

In this section we study BBEGs in which the memory used in the strategies of the players is
bounded. Following [13], we consider two types of finite-memory strategies. The first type
bounds the number of states of a transducer that induces the strategy. The second type
is position-based, and bounds the number of memory states with which we can refine each
position of the BBEG. In particular, a memoryless strategy is a position-based strategy in
which no refinement is allowed. Below we describe the two types formally.

An I/O-transducer is a tuple M = ⟨I,O,Q, q0, δ, L⟩, for an input alphabet I, an output
alphabet O, a finite set of states Q, an initial state q0 ∈ Q, a transition function δ : Q×I → Q,
and a labelling function L : Q → O. We extend the transition function δ to words in I∗ in
the expected way, thus δ∗ : Q × I∗ → Q is such that for all q ∈ Q, p ∈ I∗, and i ∈ I, we
have that δ∗(q, ϵ) = q, and δ∗(q, p · i) = δ(δ∗(q, p), i). The transducer M induces a strategy
γM : I∗ → O, where for all p ∈ I∗, we have that γM(p) = L(δ∗(q0, p)).

Consider a BBEG G = ⟨S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ⟩. Let S = S1 ∪ S2. We say that a

strategy γj for Player j in G has finite-memory if it can be defined by an S/S-transducer
(or transducer, when S is clear from the context). The strategy corresponding to M is
defined by γj(p) = L(δ∗(q0, p)), for all p ∈ pref j(G). We say that an S/S-transducer
M = ⟨S, S,Q, q0, δ, L⟩ refines G, if the states of M refine the positions of G. Formally,
Q = S ×M for some finite set of memory states M , q0 = ⟨sinit,m0⟩ for some m0 ∈ M , and
for all s1, s2 ∈ S and m1 ∈ M , it holds that δ(⟨s1,m1⟩, s2) = ⟨s2,m2⟩ for some m2 ∈ M . We
say that a strategy for Player j is memoryless, if it is induced by a transducer that refines G
with |M | = 1, thus, Q = S. Note that one can refer to a memoryless strategy for Player j as
a function γj : Sj → S.

For m1,m2 ≥ 1, we say that Player 1 (m1,m2)-wins in G, if she has a strategy induced
by a transducer with m1 states, that is winning against all strategies for Player 2 that are
induced by a transducer with m2 states. The definition for Player 2 (m1,m2)-winning is
similar. All our results on (m1,m2)-winning apply also to transducers that refine G (see
Remark 15). Note that a general BBEG corresponds to m1 = m2 = ∞. Of special interest
are also settings in which only one of m1 or m2 is ∞, corresponding to BBEGs where only
one player has a memory bound.

4.1 Properties of BBEGs with finite-memory strategies
Recall that in energy games with no resource-bounds on the environment, it is sufficient
to consider memoryless strategies. We first show that the situation in BBEGs is more
complicated, and is also not symmetric: while infinite memory may be needed for Player 1,
finite-memory strategies are sufficient for Player 2. Essentially, this follows from the fact
that a win of Player 2 is a co-safety property: when Player 2 wins, she does so in a finite
computation.

▶ Theorem 5. There is a game G such that Player 1 (∞,∞)-wins G, but for all m1 ≥ 1,
Player 2 (m1,∞)-wins G. On the other hand, for every BBEG G, if Player 2 (∞,∞)-wins
G, then there is m2 ∈ N such that Player 2 (∞,m2)-wins G.

Proof. For the first claim, consider the game G described in Example 1. We saw that
Player 1 has a (general) winning strategy. On the other hand, for every strategy γ1 for
Player 1 that is based on a transducer with m1 states, the (finite-memory) strategy γ2 for
Player 2 that loops m1 + 1 times in s1 and then moves to s2 is winning for Player 2 (see
proof in the full version). We continue to the second claim. Intuitively, it follows from the
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fact that all the computations in which Player 2 wins are finite. Formally, let G be a BBEG
in which Player 2 wins, and let γ2 be a winning strategy. Consider the unfolding of the game
G in which Player 2 plays γ2. The unfolding is a tree T γ2

G in which each node is a prefix of a
computation that is consistent with γ2. Since Player 2 wins, every such a computation is
finite, thus every path in T γ2

G is finite. Since the degree of T γ2
G is bounded, we get that T γ2

G

is a finite tree, which induces a finite-memory winning strategy for Player 2. ◀

Since finite-memory strategies are sufficient for Player 2 to win, a natural question is
whether there is a “bounded-size property” for Player 2’s strategy, in particular whether she
can win with a memoryless strategies. Such properties exist in several other settings. For
example, in synthesis of an LTL formula ψ, we know that if there is an infinite system that
realizes ψ, then there is also a system with at most 22|ψ| states that does it, and the same for
the environment [21, 26, 14]. Thus, (∞,∞)-realizability coincides with (∞, 22|ψ|)-realizability,
(22|ψ|

,∞)-realizability, and (22|ψ|
, 22|ψ|)-realizability. As we now show, in the case of BBEGs,

no bounded-size property exists.

▶ Theorem 6. There is no computable function f : BBEGs → N such that for every BBEG
G, we have that Player 2 (∞,∞)-wins G iff Player 2 (∞, f(G))-wins G.

Proof. In Section 4.2, we are going to show that the problem of deciding whether Player 2
(∞,m2)-wins a BBEG G is decidable for all given BBEGs and bounds m2 ∈ N. Hence, the
existence of a computable function f would lead to decidability of BBEGs of all dimensions,
contradicting Theorem 4. ◀

Recall that BBEGs are determined. As finite-state and memoryless strategies need not be
sufficient to winning a BBEG, we now study determinancy of BBEGs when both players have
bounds on their memory. Formally. we say that a game is determined under finite-memory
strategies or determined under memoryless strategies, if in all instances G of the game, either
Player 1 wins in G, or Player 2 wins in G, when the strategies of both players are restricted to
finite-memory or memoryless strategies, respectively. Note that since the restriction applies
to both players, the two types of determinancy need not imply each other.

▶ Theorem 7. BBEGs are not determined under finite-memory or memoryless strategies.

Proof. We start with finite-memory strategies. Consider the game G described in Example 1.
In the full version, we show that when both players are restricted to finite-memory strategies,
there is no winning player in G.

We continue to memoryless strategies. Consider the (1, 1)-BBEG G described in Figure 3.
In Appendix A.4, we show that there is no winning strategy in G when both players are
restricted to play memoryless strategies. ◀

0, 0 s1 s2

s3

s4

0, 0

1, 1

−1,−1

0,−1 −1, 0

0,−1

1

Figure 3 No player has a memoryless winning strategy.
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4.2 Deciding BBEGs with finite-memory strategies
In this section we study the problem of deciding the winner in a given BBEG in which
at least one player is restricted to finite-memory strategies. We show that the problem is
decidable for BBEGs of all dimensions. We start with BBEGs with memoryless strategies
and show that deciding whether Player 1 has a memoryless strategy that is winning against
every memoryless strategy for Player 2 is ΣP

2 -complete. We first prove the following lemma,
about deciding the winner given strategies for the players. The proof, in the full version, is
based on the fact that outcome(γ1, γ2) is a simple lasso, and one can determine the winner
by analyzing the updates to the energy levels along the prefix and the cycle of the lasso.

▶ Lemma 8. Given a BBEG and memoryless strategies γ1 and γ2 for Player 1 and Player 2,
respectively, deciding the winner in outcome(γ1, γ2) can be done in polynomial time.

Lemma 8 suggests that deciding whether Player 1 has a memoryless strategy that
is winning against every memoryless strategy for Player 2 can proceed by guessing a
Player 1 strategy and challenging it against a guessed Player 2 strategy. Thus, the problem
can be solved by a nondeterministic polynomial-time Turing machine with an oracle to a
nondeterministic polynomial-time Turing machine. Below we formalize this intuition and
provide also a matching lower bound.

▶ Theorem 9. Deciding whether Player 1 has a memoryless strategy that is winning against
every memoryless strategy for Player 2 is ΣP

2 -complete.

Proof. The upper bound follows directly from Lemma 8 (see details in Appendix A.5).
For the lower bound, we describe a reduction from QBF2, the problem of determining
the truth of quantified Boolean formulas with two alternations of quantifiers, where the
external quantifier is “exists”. Let ψ be a Boolean propositional formula over the variables
x1, ..., xl, y1, ..., ym, and let θ = ∃x1, ..., xl∀y1, ..., ymψ. Also, let X = {x1, ..., xl}, Y =
{y1, ..., ym}, X̄ = {x1, ..., xl}, Ȳ = {y1, ..., ym}, and Z = X ∪ X̄ ∪ Y ∪ Ȳ . By [28], we may
assume that ψ is given in 3DNF. That is, ψ = (z1

1 ∧ z2
1 ∧ z3

1) ∨ ... ∨ (z1
n ∧ z2

n ∧ z3
n), where

for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ n, we have that zi
j ∈ Z. For 1 ≤ j ≤ n, we denote the clause

(z1
j ∧ z2

j ∧ z3
j ) by cj .

Given a formula θ = ∃x1, ..., xl∀y1, ..., ymψ, we construct a (1, 1)-BBEG G such
that θ is true iff Player 1 wins G with a memoryless strategy. In the game G, we
describe the energy levels of the players and updates to the energy levels by bit-vectors
in {−2,−1, 0, 1, 2, 3}n. Updates to the bit-vectors are done in a bit-wise manner, thus
⟨bn, bn−1, ..., b1⟩ + ⟨b′

n, b
′
n−1, ..., b

′
1⟩ = ⟨bn + b′

n, bn−1 + b′
n−1, ..., b1 + b′

1⟩. Our games are
defined so that all reachable energy levels are in {−2,−1, 0, 1, 2, 3}n. Each bit vector
v = ⟨bn, bn−1, ..., b1⟩ represents a single value in Z, namely

∑n
i=1 bi · (10)i−1. For example,

the value of ⟨1,−2, 0, 3⟩ is 3 · 1 + 0 · 10 + (−2) · 100 + 1 · 1000 = 803. We say that v is positive
(negative) iff the value it represents is positive (negative), respectively.

The idea behind the reduction is as follows. Each assignment g : X ∪Y → {T, F} induces
a bit-vector vg = ⟨bn, bn−1, ..., b1⟩ ∈ {0, 1, 2, 3}n, such that for all 1 ≤ i ≤ n, the bit bi

indicates how many literals in ci are satisfied by the assignment g. Note that this number
is indeed in {0, 1, 2, 3}. For example, take ψ = (x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1), with the
assignment g in which g(x1) = g(x2) = T , and g(y1) = F . Since g satisfies two literals in c1
and three literals in c2, we have that vg = ⟨3, 2⟩.

The game G consists of two parts: an assignment part, and a check part. In the assignment
part, Player 1 assigns values to the variables in X, and then Player 2 assigns values to the
variables in Y . Together, the players generate an assignment g : X ∪ Y → {T, F}, and the
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energy level of both players is updated in the same way, so that by the end of this part, it is
vg. Note that the assignment g satisfies ψ iff the vector vg contains the bit 3; thus there is
1 ≤ i ≤ n with bi = 3. At the check part, we let Player 2 win if vg does not contain such a
bit. We do this by allowing Player 2 to decrease each bit (in the energy level of both players)
by 0, 1 or 2. Accordingly, if no bit in vg is 3, then Player 2 has a strategy so that by the end
of this process, the energy level of the players is represented by the bit-vector 0n, in which
case Player 2 can force a win. On the other hand, if some bit in vg is 3, then for all strategies
of Player 2, at least one bit is not 0 at the end of this process. In this case, Player 2 loses.

In Appendix A.5, we describe the two parts in detail and prove the correctness of the
reduction. ◀

Note that since under memoryless strategies, BBEGs are not determined, ΠP
2 -completeness

for the dual problem does not follow from Theorem 9. In fact, as we show below, the dual
problem is also ΣP

2 -complete. The proof, in the full version, is similar to the proof of
Theorem 9. In particular, for the lower bound, the game we construct here is obtained from
the game constructed there by switching the ownership of positions, switching between the
cost functions of the players, and by changing the sink to be a winning position for Player 2.

▶ Theorem 10. Deciding whether Player 2 has a memoryless strategy that is winning against
every memoryless strategy for Player 1 is ΣP

2 -complete.

We now show that ΣP
2 -completeness holds also when both players are restricted to

finite-state strategies. Note that while the considerations are similar to these in the proof
of Theorem 9, the lower bound for the memoryless case implies only a lower bound for
the finite-memory case with transducers that refine the game G. There, we can use the
reduction from the proof of Theorem 9 as is, with m1 = |S1| and m2 = |S2|. For general
finite-state strategies, a transducer with |Sj | states, for j ∈ {1, 2}, does not necessarily
induce a memoryless strategy for Player j. In the proof of the theorem, in the full version,
we show that for the specific game G described in the reduction in Theorem 9, Player 1
(|S1|, |S2|)-wins G iff she wins with a memoryless strategy, and similarly for Player 2 and the
game described in the reduction in Theorem 10. Hence, the same reduction can be used.

▶ Theorem 11. Given a BBEG G and m1,m2 ∈ N (given in unary), the problems of
deciding whether Player 1 (m1,m2)-wins and deciding whether Player 2 (m1,m2)-wins in G

are ΣP
2 -complete.

Note that the reductions used in Theorems 9, 10, and 11 generate a (1, 1)-BBEG, thus
ΣP

2 -hardness holds already for them.
We continue and consider BBEGs in which only Player 1 has a memory bound. We show

that the setting is strongly related to vector addition systems with states (VASS), defined
below.

For d ≥ 1, a d-VASS is a finite Zd-labeled directed graph V = ⟨Q,T ⟩, where Q is a finite
set of states, and T ⊆ Q×Zd ×Q is a finite set of transitions. The set of configurations of V
is C = Q× Nd. For a pair of configurations ⟨p1, v1⟩, ⟨p2, v2⟩ ∈ C and t = ⟨p1, z, p2⟩ ∈ T such
that v2 = v1 + z, we write ⟨p1, v1⟩ →t ⟨p2, v2⟩. For c, c′ ∈ C we write c →∗ c′ if c = c′, or if
there is m ≥ 1 such that c0 →t1 c2 →t2 .... →tm cm, for some t1, ..., tm ∈ T and c0, ..., cm ∈ C,
with c0 = c and cm = c′. That is, c →∗ c′ indicates that there is a sequence of successive
configurations from c to c′ in V , and the vector is non-negative in all the configurations
along the sequence. The d-VASS reachability problem is to decide, given a d-VASS V and
configurations c, c′ ∈ C, whether c →∗ c′.
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We are going to reduce questions about (m1,∞)-winning in BBEGs to questions about
VASSs. The underlying idea is as follows. First, once we bound the memory of Player 1, we
can guess a transducer that generates her strategy. The product of the BBEG with such a
transducer results in a one-player BBEG, in which all positions belong to Player 2. As the
evolution of a one-player BBEG does not involve alternation between players, we can model
it by a VASS. Essentially, the configurations of the VASS correspond to positions in the
game along with energy vectors of the players. The winning condition in the BBEG induces
requirement on the VASS, as formalized in the following lemma (see proof in Appendix A.6).

▶ Lemma 12. Given a (d1, d2)-BBEG G in which all the positions are owned by Player 2,
the winner in G can be decided by solving at most d1 instances of (d2 + 1)-VASS reachability.

We now use Lemma 12 in order to decide whether Player 1 (m1,∞)-wins a given BBEG.

▶ Theorem 13. Given a BBEG G and m1 ∈ N, determining whether Player 1 (m1,∞)-wins
G is decidable.

Proof. Let G be a (d1, d2)-BBEG, for some d1, d2 ≥ 1, and consider a transducer T with
state space Q of size m1 that maintains a strategy for Player 1. Let S = S1 ∪S2 be the state
space of G. When Player 1 follows T , the possible outcomes of the game are embedded in the
product G× T . The product has state space S ×Q. Each positions in S1 ×Q has a single
successor: its S-component is determined by the output function of T and its Q-component
is determined by the transition function of T . Therefore, we can refer to the product G× T

as a BBEG all whose positions belong to Player 2. The updates on the edges of the product
BBEG are induced by these in G, and so it is a (d1, d2)-BBEG. By Lemma 12, determining
the winner in G× T can be reduced to solving d1 instances of (d2 + 1)-VASS-reachability,
which is decidable [22].

It follows that determining whether Player 1 (m1,∞)-wins G can be decided by going
over the finitely many candidates transducers T of size m1, and applying the above check to
each of them. ◀

▶ Remark 14 (Complexity). While Theorems 13 only refer to decidability, known complexity
results on VASS can be used in order to give complexity upper bounds in some cases.
Specifically, as 2-VASS reachability is PSPACE-complete [4], and the candidate transducers
T are polynomial in m1, we get that determining whether Player 1 (m1,∞)-wins G is
decidable in PSPACE for (1, 1)-BBEGs with m1 given in unary. ◀

We note that while similar considerations can be used in order to decide whether Player 2
(∞,m2)-wins a given BBEG, for m2 ∈ N (see proof in Appendix A.7), the latter does not
provide a solution to the problem of deciding whether Player 1 (∞,m2)-wins a given BBEG,
which we leave open. Indeed, BBEGs are not (∞,m2)-determined, in the sense that there is
a BBEG G and m2 ∈ N such that neither Player 1 (∞,m2)-wins nor Player 2 (∞,m2)-wins
G. For example, by switching the vertices owned by Player 1 and Player 2 in the BBEG
appearing in Figure 3, we get a BBEG such that Player 1 does not (∞,m2)-wins for all
m2 ∈ N, and Player 2 does not wins with a memoryless strategy, and in particular does not
(∞, 1)-wins.

Finally, we note that, unsurprisingly, even when we fix the size of the strategy of Player 2,
the size of the strategy required for Player 1 to win depends on both the number of positions
in the game and the updates in its transitions, inducing a strict hierarchy. Specifically, in
the full version, we show that for all m1 ∈ N, there is a BBEG Gm1 with 3 states as well as
a BBEG G′

m1
in which all updates are in {−1, 0, 1}, such that Player 1 (m1 + 2, 0)-wins Gm1

and G′
m1

, yet Player 2 (m1 + 1, 0)-wins Gm1 and G′
m1

. Similar results can be shown for the
size of the strategy for Player 2.
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▶ Remark 15 (From general to position-based strategies). Our positive decidability and
complexity results are based on going over candidate strategies for the players. By restricting
attention to strategies that refine the BBEG, these results apply also to position-based
finite-state strategies. In addition, our lower bounds apply already for memoryless strategies,
and so apply also for position-based finite-state strategies. ◀

5 BBEG with Bounded Energy Capacities

So far we studied BBEGs in which the players must keep their energy level non-negative, but
there is no upper bound on the energy they may accumulate. This corresponds to systems in
which there is no bound on the capacity of the energy resource. In many cases (c.f., battery,
disc space), such a bound exists. In this section we study the problem of determining the
winner in BBEGs in which one of the players has a bounded energy capacity. We consider
both a semantics in which an overflow leads to losing the game (losing semantics, for short)
and a semantics in which an overflow is truncated (truncated semantics, for short).

Formally, a one-player-bounded BBEG is G = ⟨S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ, j, b⟩, which

extends a BBEG by specifying a player j ∈ {1, 2} and a bound vector b ∈ Zdj . In the losing
semantics, the definition of a winning computation in a one-player-bounded BBEG is similar
to the definition in the case of a BBEG, except that the requirement for the energy to stay
non-negative is replaced, for Player j, by a requirement to stay both non-negative and below
the bound b. Formally, a computation c that is winning for Player j has to satisfy, in addition
to the winning condition of a BBEG, the requirement ej(cn)[i] ≤ b[i] for all n ≥ 1 and
i ∈ [dj ]. In the truncated semantics, the winning condition is as in the underlying BBEG,
yet the energy level of Player j up to the n-th position in a run r = s1, s2, ... is defined
inductively for all i ∈ [dj ] as follows: ej(rn)[i] = min{b[i], ej(rn−1)[i] + τ(⟨si, si+1⟩)[j][i]},
where ej(r0)[i] = xj

0[i].
In Theorem 16 below we show that the problem of deciding whether Player 1 wins a

one-player-bounded BBEG is decidable for BBEGs of all dimensions. Essentially, our solution
is based on expanding the position space of the game to maintain the energy level of Player j.
Consequently, the cost function in the transitions updates the energy level of the other player
only. When j = 2, thus the energy of Player 2 is bounded, we are left with updates to the
energy level of Player 1. Thus, we obtain a standard multi-dimensional energy game, except
that we add a sink that is winning for Player 1 and corresponds to positions in which the
energy level of Player 2 is negative or, in the losing semantics, is above the bound b.

When j = 1, thus the energy of Player 1 is bounded, we obtain a multi-dimensional energy
game in which transitions update the energy level Player 2 only. The game contains a sink,
which is losing for Player 1, and Player 2 wins the game if she can reach the sink without
her energy becoming negative. Thus, the setting is similar to that of multi-dimensional
reachability energy games. By [16], one-dimensional energy-reachability games can be
decided in NP∩coNP, and so our proof boils down to extending their algorithm to the
multi-dimensional case. The full details can be found in Appendix A.8.

▶ Theorem 16. The problem of determining whether Player 1 wins a one-player-bounded
BBEG is decidable.

▶ Remark 17 (Bounding only some of the energy components). In the multi-dimensional
setting, we can consider games in which each player has energy bounds for some of the
components in her energy vector. It is easy to see for for d1, d2 ≥ 1 determining the winner of
a (d1, d2)-BBEG is decidable iff each player has at most one unbounded component. Indeed,
one can extend the position space of a BBEG to remember the value of the (d− 1) + (d− 1)
bounded components, and then deciding (1, 1)-BBEG. ◀
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A Proofs

A.1 Proof of the assumptions in Remark 2

It is easy to see that every BBEG with parallel edges has an equivalent BBEG of linear size
without parallel edges. Indeed, let s, t ∈ S be two positions and let A be the set of edges
from s to t, with updates l1, ..., l|A|. We can add new positions s(s,t)

1 , ..., s
(s,t)
|A| , and edges

{(s, s(s,t)
i ) : 1 ≤ i ≤ |A|} ∪ {(s(s,t)

i , t) : 1 ≤ i ≤ |A|} instead of the parallel edges, with
updates τ(⟨s, s(s,t)

i ⟩) = li and τ(⟨s(s,t)
i , t⟩) = (0d1 , 0d2), for all 1 ≤ i ≤ |A|.

It is also easy to see that every BBEG with has an equivalent BBEG of linear size in
which each transition updates the energy to one player only. The only nontrivial issue in the
decomposition of a transition is that we should first update the energy of the player that
owns the source position. Thus, an edge leaving s ∈ S1, labeled with (x1, x2) and leading to
t ∈ S, can be replaced the two edges ⟨s, us,t⟩ with τ(⟨s, us,t⟩) = (x1, 0d2), and ⟨us,t, t⟩ with
τ(⟨us,t, t⟩) = (0d1 , x2), for a new position us,t. For the case s ∈ S2, the new edges update
first the energy of Player 2.

Finally, we can translate a BBEG to a BBEG in which the updates on the transitions are
all in {−1, 0, 1}. We describe the translation for (1, 1)-BBEGs. A similar translation works
for BBEGs of higher dimensions. Indeed, one can first convert a BBEG to one in which
every transition updates the energy to one player only, as described above, and then replace
an edge labeled with (x1, 0d2) with |x1| edges that update x1 to the energy of Player 1, while
not affecting the energy of Player 2. Similarly, we can handle edges labeled with (0d1 , x2).
Note, however, that since we define the size of a BBEG with the costs on the edges of given
in binary, the resulting BBEG is of size exponential in the size of the original BBEG. Since
we consider BBEGs with updates in {−1, 0, 1} only in the context of decidability, this does
not affect our results.
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A.2 Correctness of the upper-bound reduction in Theorem 3
We prove that Player 1 wins in A from ⟨sinit, x

1
0, x

2
0⟩ iff Player 1 wins in G. First, an infinite

computation in G induces an infinite game in A that never reaches the sink. Also, a finite
computation in G in which Player 1 runs out of energy before Player 2, induces a finite
game in A that is losing for Player 1. Finally, a finite computation in G that reaches a
configuration in which Player 1 can make Player 2 lose, or Player 2 has no choice but to lose
her energy, reaches a position in Q′

1 ∪ Q′
2 with the energy level of Player 2 being 0. The

corresponding game in A reaches Q′
1 ∪Q′

2 with the counter being 0. If the current position
is in Q′

1, Player 1 can use the δ0-transition to the sink and stay there forever. If the current
position is in Q′

2, Player 2 has no choice but to use the δ0-transition and reach the sink.
Thus, Player 1 wins in G iff Player 1 can force an infinite game in A.

A.3 Correctness of the lower-bound reduction in Theorem 4
We prove that the reduction is correct, i.e., the machine M halts iff Player 2 wins in G. We
describe a computation of M by an infinite sequence f = f0, f1, f2, ... ∈ ({1, ..., n} ×N×N)ω,
such that f0 = (1, 0, 0) and for all i ≥ 1, we have that fi[1] is the location of the i-th
command in the computation, and fi[2] and fi[3] are the values of the counters x and y,
respectively, after reading that command. If for some i ≥ 0 we have that fi[1] = n, then
fi+1 = fi. Consider a computation π ∈ comp(G), and let v = v0, v1, ... be the projection of
π on S2. We say that π is consistent if for all i ∈ N, we have that e1(vi) = fi[2] + fi[3] and
e2(vi) = (fi[2], fi[3]). That is, π is consistent if the energy level of Player 1 stores x+ y, and
the energy level of Player 2 stores ⟨x, y⟩.

First, we show that if a player has a winning strategy, then she also has a winning strategy
that follows the instructions. That is, at every step of the computation, the best move for the
current player is the one that leads to the state corresponding to the next command to be
read according to M . For c ∈ {x, y}, denote by Lc

td ⊆ Ltd the set of locations of test-dec
commands that examine counter c. Note that excluding positions induced by the test-dec
gadgets, all positions in G belong to Player 2, and that the position corresponding to the
halting command is losing for Player 1. Also note that all positions except some positions in
the test-dec gadgets are deterministic, that is, have a single transition leaving them.

Recall that for a consistent prefix p, the energy level e2(p) stores ⟨x, y⟩. Accordingly, for
c ∈ {x, y}, we use ec

2(p) to refer to e2(p)[1] when c = x, and to refer to e2(p)[2] when c = y.
Also, we use c̄ to refer to y when c = x, and to refer to x when c = y.

We say that a strategy γ1 for Player 1 is consistent if for every p ∈ pref 1(G) ending in
position (i, 1) for i ∈ Lc

td, if e1(p) > ec̄
2(p), then γ1(p) = (i, 2), and if e1(p) ≤ ec̄

2(p), then
γ1(p) = j, for j that is the positive successor of li. Similarily, we say that a strategy γ2 for
Player 2 is consistent if for every p ∈ pref 2(G) ending in position i ∈ Lc

td, if ec
2(p) = 0, then

γ2(p) = (i, 1), and if ec
2(p) > 0, then γ2(p) = k, for k that is the negative successor of li.

Note that every player has a unique consistent strategy. Let γ1 and γ2 be the consistent
strategies for Player 1 and Player 2, respectively. Let r = outcome(γ1, γ2). We argue that r
is consistent. Let v = v0, v1, ... be the projection of r on S2. We prove that for all i ∈ N, it
holds that e1(vi) = fi[2]+fi[3] and e2(vi) = (fi[2], fi[3]). The proof proceeds by an induction
on i. Initially, f0 = (1, 0, 0), and indeed for all runs in G, the initial position is 1 and the
initial energy levels are 0 for Player 1 and (0, 0) for Player 2.

Let m ≥ 1, and assume that the claim holds for all 0 ≤ i < m. If vm /∈ Ltd, then
Player 2 has a single successor, which corresponds to fm+1[1], and the energy levels are
updated correctly. We now consider the case vm ∈ Lx

td. Denote fm−1[1] = i, fm−1[2] = x,
and fm−1[2] = y. By the induction hypothesis, we have that e1(vm−1) = x + y and
e2(vm−1) = (x, y). We distinguish between two cases:
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1. If x = 0, then following γ2, Player 2 chooses to go to position (i, 1). This move does not
affect the energy level. Since x = 0, then x+ y = y, and following γ1, Player 1 chooses to
go to position j that is the positive successor of li. This transition does not affect the
energy levels either. So, we have that vm = j, e1(vm) = x+ y, and e2(vm) = (x, y), as
required.

2. If x > 0, then, following γ2, Player 2 chooses to go to position k that is the negative
successor of li. This transition decreases by one the the energy level of Player 1 and the
first component in the energy level of Player 2. So, vm = k, e1(vm) = x + y − 1, and
e2(vm) = (x− 1, y), as required.

The case where i ∈ Ly
td is similar.

Let γ1, γ2 be the consistent strategies for Player 1 and Player 2, respectively, and denote
r = outcome(γ1, γ2). We show that if Player 2 plays a strategy δ2 that is not consistent,
then she loses against the consistent strategy γ1 of Player 1.

Assume that Player 1 plays γ1 and Player 2 plays δ2, which is not consistent. Let m be
the minimal index in outcome(γ1, δ2) that deviates from r. That is, m is the minimal index t
such that δ2(rt) ̸= γ2(rt). Let i be the last position in rm. Since all positions in S2 \ Ltd are
deterministic, it must be that i ∈ Ltd. Assume that i ∈ Lx

td. Then, either e2(rm)[0] = 0 and
δ2(rm) = k, for k that is the negative successor of li, or e2(rm)[0] > 0 and δ2(rm) = (i, 1).
Since m is minimal and r is consistent, we get that e1(rm) = x+ y and e2(rm) = (x, y) for
some x, y ∈ N. If x = 0 and δ2(rm) = k, then the first component in the energy level of
Player 2 is decreased below 0, so she loses. If x > 0 and δ2(rm) = (i, 1), then according to
γ1, Player 1 chooses from (i, 1) to go to (i, 2). Since x + y > y, Player 1 wins at the sink
(i, 2). Hence, outcome(γ1, δ2) is winning for Player 1. The case where i ∈ Ly

td is similar.

Since δ2 is not winning for every δ2 ̸= γ2, we get that if Player 2 wins, her winning
strategy must be consistent.

Now, we show that if Player 1 wins, then she can win with γ1. Assume that Player 1
has a winning strategy δ1 ̸= γ1. We show that γ1 is winning for Player 1 too. We already
showed that outcome(γ1, δ2) is winning for Player 1 for every δ2 ̸= γ2. It is left to show that
outcome(γ1, γ2) is winning for Player 1. Let m be the minimal index t in outcome(δ1, γ2) such
that δ1(rt) ̸= γ1(rt). Since all positions in S1\(Ltd×{1}) are deterministic, it must be that rm

ends in position i ∈ Ltd×{1}. Assume that i ∈ Lx
td×{1}. Then, either e1(rm) > e2(rm)[2] and

δ1(rm) = j for j that is the positive successor of li, or e1(rm) ≤ e2(rm)[2] and δ1(rm) = (i, 2).
Since m is minimal and r is consistent, we get that e1(rm) = x + y and e2(rm) = (x, y)
for some x, y ∈ N. If it is the case that e1(rm) > e2(rm)[2], we have that δ1(rm) = j and
γ1(rm) = (i, 2). By going to (i, 2), since x+ y > y, we get that Player 2 loses at (i, 2). Hence,
outcome(γ1, γ2) is winning for Player 1. Also, it cannot be the case that e1(rm) ≤ e2(rm)[2]
and δ1(rm) = (i, 2): since x+ y ≤ y, we get that Player 1 loses at (i, 2), in contradiction to
the fact that δ1 is winning. The case where i ∈ Ly

td × {1} is similar.

By the above, if Player 2 has a winning strategy, it must be consistent, and if Player 1
wins, her consistent strategy is winning. Therefore, the question of determining the winner
in G is reduced to determining the winner of outcome(γ1, γ2). When both players play their
consistent strategies, we have that the energy levels are updated according to the values of
the counters in f . Since the value of every counter is non-negative during the run, so are the
energy levels of the players during the computation. Since the state corresponding to the
halt command is a rejecting sink for Player 1, we have that if M halts, then Player 2 wins in
G. Otherwise, the energy levels of both players, in particular Player 1, remain non-negative
during the infinite computation, and Player 1 wins.
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A.4 Proof of Theorem 7 – memoryless strategies
We prove that when both players are restricted to memoryless strategies, there is no winning
player in the BBEG G described in Figure 3.

First, we show that for every memoryless strategy γ1 for Player 1, there is a memoryless
strategy γ2 for Player 2 such that outcome(γ1, γ2) is winning for Player 2. Note that Player 1
has to choose an outgoing edge only from s2. Let us consider a memoryless strategy γ1 for
Player 1. If γ1(s2) = s3, then for the strategy γ2 for Player 2 that chooses to go from s1 to
s2 by the edge labeled (0, 0), it holds that outcome(γ1, γ2) is winning for Player 2: when
the computation reaches s2, the energy level of Player 1 is 0, so the transition to s3 makes
her lose. If γ1(s2) = s4, then the strategy γ2 for Player 2 that chooses to go from s1 to s2
by the edge labeled (1, 1) is such that outcome(γ1, γ2) is winning for Player 2: when the
computation reaches s4, the energy level of Player 2 is 1, so she can pay 1 to reach s5, which
is a rejecting sink for Player 1.

We continue and show that for every strategy γ2 for Player 2 (in particular a memoryless
strategy), there is a memoryless strategy γ1 for Player 1 such that outcome(γ1, γ2) is winning
for Player 1. Consider a strategy γ2 for Player 2. If by following γ2 Player 2 goes from s1 to
s2 by the edge labeled (0, 0), then a memoryless strategy γ1 for Player 1 with γ1(s2) = s4
is such that outcome(γ1, γ2) is winning for Player 1: the energy level of Player 2 becomes
negative at the transition to s4. If by following γ2 Player 2 goes from s1 to s2 by the edge
labeled (1, 1), then the strategy γ1 for Player 1 with γ1(s2) = s3 is such that outcome(γ1, γ2)
is also winning for Player 1: until the computation reaches s3, the energy level of Player 1
remains non-negative, and s3 is a winning sink for Player 1.

A.5 Missing details in the proof of Theorem 9
For the upper bound, consider a BBEG G = ⟨S1, S2, sinit, E, d1, d2, x

1
0, x

2
0, τ⟩. Memoryless

strategies for the players can be represented by polynomial-length strings. Then, given a
memoryless strategy γ1 for Player 1, the problem of checking whether there is a memoryless
strategy γ2 for Player 2 such that outcome(γ1, γ2) is winning for Player 2 is in NP. Indeed,
given a memoryless strategy γ1 for Player 1, we can decide by a non-deterministic Turing
Machine whether there is a memoryless strategy γ2 for Player 2 such that outcome(γ1, γ2) is
winning for Player 2, by guessing γ2 and applying Lemma 8. So, deciding whether there is a
memoryless strategy γ1 for Player 1 such that for every memoryless strategy γ2 for Player 2
it holds that outcome(γ1, γ2) is winning for Player 1, can be done by a nondeterministic
polynomial-time Turing machine with an oracle to a nondeterministic polynomial-time Turing
machine, and we are done.

We continue to the lower bound and describe the two parts of the BBEG in detail. For
convenience, we describe the BBEG with parallel edges (see Remark 2). Both players start
with the initial energy level 0, which is represented by the bit-vector 0n. The assignment
part is described in Figure 4.

sx1
sx2

....... sxl
sy1

sy2
....... sym check

0,0
bx1

bx1

bx2

bx2

bxl−1

bxl−1

bxl

bxl

by1

by1

by2

by2

bym−1

bym−1

0

1

Figure 4 The assignment part.
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For every literal z ∈ Z, let bz = ⟨bn
z , . . . , b

1
z⟩ ∈ {0, 1}n describe how the bit-vector

vg should be updated when z is assigned T . That is, for all 1 ≤ i ≤ n, if the literal z
appears in the clause ci, then bi

z = 1, and otherwise bi
z = 0. For our example formula

(x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1), we have bx1 = ⟨0, 0⟩ and by1 = ⟨0, 1⟩. Since in this part,
the energy levels of both players are updated in the same way, we label each transition in
the figure by a single update. As described in the figure, first Player 1 assigns values to
the variables in X and then Player 2 assigns values to the variable in Y . An assignment
is reflected in the energy levels of both players being updated according to the literal that
is chosen. In our example, if from sy1 Player 2 chooses the transition that corresponds to
assigning T to y1, then the energy level of both players is increased by ⟨0, 1⟩.

We continue to the check part, where all the positions belong to Player 2. The check part
is described in Figure 5. Here too, except for the transition to the sink, the updates to the
energy levels of Player 1 and Player 2 coincide, and we label the transitions in the figure by
a single update.

sn . . . s1 p sink

tn,0 t2,0

tn,−1 t2,−1

tn,−2 t2,−2 t1,−2

t1,0

t1,−1

t1,−1, 0

0, 0

1

Figure 5 The check part.

For every 1 ≤ i ≤ n and d ∈ {0,−1,−2}, let ti,d = 0i−1 · {d} · 0n−(i+1). That is, all the
bits in ti,d are 0, except for the i-th bit, which is d. As described in Figure 5, the check part
consists of a chain of positions si, for n ≥ i ≥ 1, where from si+1 Player 2 proceeds to si

while updating the energy levels by ti,0, ti,−1, or ti,−2. Then, from position p, there is a
single transition with updates t1,−1, 0 to the energy levels. Thus, the least significant bit of
the energy level of Player 1 is decreased by 1, and the energy level of Player 2 is not changed.

We now prove that θ is true iff Player 1 wins in G with a memoryless strategy.
Assume first that θ is true. Then, there is an assignment fX for X such that for every

assignment fY for Y , we have that ψ is true under fX ∪ fY . We show that there is a
memoryless strategy for Player 1 that is winning against every (not necessarily memoryless)
strategy for Player 2. An assignment fX for X induces a memoryless strategy γfX for Player 1
in which for every variable xi such that fX(xi) = T , Player 1 chooses from sxi the transition
labeled bxi , and for every variable xi such that fX(xi) = F , Player 1 chooses from sxi the
transition labeled bxi . We show that γfX is winning for Player 1. Let γ be a strategy for
Player 2, and let fY be the assignment for Y induced by γfX and γ. That is, fY (yi) = T

if γ proceeds from syi with the transition labeled byi in the computation in which Player 1
follows γfX , and fY (yi) = F if γ proceeds from syi with the transition labeled byi . When
the computation that is consistent with γfX and γ reaches the check part, the energy level of
both players is vfX∪fY . Since fX ∪ fY satisfies ψ, we have that there is 1 ≤ i ≤ n such that
the i-th bit of vfX∪fY is 3. Let vp be the bit-vector the players own when reaching p. It is
easy to verify that vp is not all-zero. Let j be the most significant bit in vp that is not 0.
We distinguish between two cases. If the j-th bit of vp is positive, then vp is positive. In this
case, vp + t1,−1 is not negative, and Player 1 can loop in the sink forever and win the game.
Otherwise, the j-th bit of vp is negative, so vp is negative. So, at some point at the check
part, the current bit-vector of the players becomes negative, as a consequence of step made
by Player 2. So Player 2 loses.
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For the second direction, assume that θ is false, and consider a strategy γ for Player 1.
Note that every strategy for Player 1 in G is memoryless. Let fX be the assignment for X
induced by γ. Then, there is an assignment fY for Y such that ψ is false under fX ∪ fY .
Let γfY be the following memoryless strategy for Player 2. First, at the assignment part,
the strategy γfY is consistent with fY . That is, as detailed above, for a position syi the
strategy γfY proceeds with the transition labeled with the update that corresponds to fY (yi).
Let v = ⟨bn, bn−1, ..., b1⟩ be the energy level of both players at the end of the assignment
part. Since ψ is false under fX ∪ fY , then bi ∈ {0, 1, 2} for all n ≥ i ≥ 1. Accordingly, in
the check part, the strategy γfY can choose from si a transition labeled ti,−bi , namely a
transition that decreases the i-th bit of the energy levels of both players to 0. Consequently,
the computation of G that is consistent with γ and γfY reaches the state p with energy level
0, and reaches the sink with a negative energy level for Player 1, which loses.

A.6 Proof of Lemma 12
Let G = ⟨∅, S2, sinit, E, d1, d2, x

1
0, x

2
0, τ⟩ be a BBEG. We construct a VASS V with

configurations that represent a position and energy vectors in G, with target configuration
that represents a position and energy vectors from which Player 2 can win in one move. The
idea is that Player 2 wins in G iff she can force the game to an edge in which the energy
level of Player 1 is low enough at some component to drop below 0, and her own energy level
is high enough to stay non-negative after taking this edge.

Formally, for all k ∈ [d1], we construct the (d2 + 1)-VASS Vk = ⟨Qk, Tk⟩ as follows.
Let Qk = S ∪ {ssink} for some ssink /∈ S, and T

′

k = {⟨u, z, v⟩ : ⟨u, v⟩ ∈ E, for all i ∈
[d2] we have that z[i] = τ(⟨u, v⟩)[2][i], and z[d2 + 1] = τ(⟨u, v⟩)[1][k]}. That is, the vectors
on the transitions in T

′

k represent the update to the energy vector of Player 2 in their first
d2 components, and the update of the k-th component of Player 1 in their last component.
We define the set of transitions T ′′

k = {⟨u, z, ssink⟩ : there is v ∈ S such that ⟨u, z, v⟩ ∈ T
′

k}.
That is, for every transition in T ′

k leaving a state u, there is a transition in T ′′

k leaving u with
the same update and entering ssink. For i ∈ [d2 + 1] and z ∈ Z, let bz

i to be the vector of
dimension d2 + 1 with z in the i-th component, and 0 in all other components. We define
the set of transitions T ′′′

k = {⟨ssink, b
−1
i , ssink⟩ : i ∈ [d2]} ∪ {⟨u, b1

d2+1, u⟩ : u ∈ V \ {ssink}}.
That is, ssink has self loops that can decrease the components that belong to Player 2. Also,
every state but the sink has a self loop that increases the component that belongs to Player 1.
We define the set of transitions of V to be Tk = T

′

k ∪ T
′′

k ∪ T
′′′

k ∪ {⟨ssink, 0d2+1, ssink⟩}. Let
vk

init ∈ Zd2+1 be the vector with vk
init[i] = x2

0[i] for all i ∈ [d2], and vk
init[d2 + 1] = x1

0[k] + 1.
That is, vk

init represents x2
0 in its first d2 components, and x1

0[k] + 1 in its last component.
Note that we added 1 to x1

0[k]. That is because in Vk we want to let the last component
reach 0, if in the corresponding computation in G it becomes negative.

In the full version, we prove that Player 2 wins G iff there is k ∈ [d1] such that
⟨sinit, v

k
init⟩ →∗ ⟨ssink, 0d2+1⟩ in Vk.

A.7 Deciding whther Player 2 (∞, m2)-wins
▶ Theorem 18. Given a BBEG G and m2 ∈ N, determining whether Player 2 (∞,m2)-wins
G is decidable.

Proof. Assume that G is a (d1, d2)-BBEG. As in (m1,∞)-winning for Player 1, we can
consider the product of G with a transducer T for Player 2 with m2 states. This product is a
BBEG all whose positions are owned by Player 1. It is easy to see that Player 1 wins in this
product iff it contains infinite computation in which her energy level is always non-negative,
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or a finite prefix of a computation that leads to a position in which the energy level of
Player 2 is negative in some component while the energy vector of Player 1 along this prefix
is always non-negative. Checking the second condition can be done by a reduction to VASS,
with a construction similar to the one in the proof of Lemma 12. Checking the first condition
can also be reduced to VASS, but is more complicated. So, for the sake of decidability, it is
sufficient to note that the first condition can also be solved by solving a d1-dimensional energy
game, in which we ignore the components that belong to Player 2. From [20, 7], the given
initial-credit problem of d1-dimensional energy game can be solved in (d1 − 1)−EXPTIME,
and is thus decidable.

It follows that for every transducer with m2 states for Player 2, we can check whether
Player 1 wins when Player 2 follows this transducer. Moreover, if Player 1 does not win,
Player 2 does, and so the transducer T induces a winning strategy for her. Thus, Player 2
(∞,m2)-wins G iff she wins with some transducer with m2 states, that is, iff she wins in at
least on of these products, which is decidable. ◀

A.8 Proof of Theorem 16
Let G = ⟨S1, S2, sinit, E, d1, d2, x

1
0, x

2
0, τ, j, b⟩ be a one-player-bounded BBEG. Assume first

that j = 2, thus b ∈ Zd2 is a bound vector for Player 2. We start with the losing semantics and
define the d1-dimensional energy game G′ = ⟨S′

1, S
′
2, ⟨sinit, x

2
0⟩, E′, τ ′⟩ as follows. Let V be

the set of all non-negative vectors in Zd2 that are bounded by b. That is, V = {v ∈ Zd2 : 0 ≤
v[i] ≤ b[i] for all i ∈ [d2]}. Let S′

1 = S1 ×V and S′
2 = S2 ×V . Also, let S = S′

1 ∪S′
2 ∪ {ssink},

for some ssink /∈ S1 ∪ S2. We now define a set of edges E′ ⊆ S′ × S′ and a cost function
τ ′ : E′ → Zd1 . For all e = ⟨s, s′⟩ ∈ E and v, v′ ∈ V such that v′ = v + τ(e)[2], we have
the edge e′ = ⟨⟨s, v⟩, ⟨s′, v′⟩⟩ in E′, with τ ′(e′) = τ(e)[1]. For all e = ⟨s, s′⟩ ∈ E and v ∈ V

such that v + τ(e)[2] /∈ V , we have the edge e′ = ⟨⟨s, v⟩, ssink⟩ in E′, with τ ′(e′) = τ(e)[1].
We also have an edge ⟨ssink, ssink⟩ in E′, with τ ′(⟨ssink, ssink⟩) = 0d1 . Note that the cost
function τ ′ defines the cost for Player 1 only, while S′ maintains the energy level of Player 2.

We claim Player 1 wins in G iff Player 1 wins in G′ with initial energy x1
0. Indeed, every

computation c in G induces a computation c′ in G′, such that the current energy level of
Player 2 in c′ is maintained at the second component of the current position in c′, and the
energy level of Player 1 in c is the same as in c′. Thus, if c is infinite, so is c′. Also, if at
some point during c, Player 2 exceeds her boundaries (by going below 0 or above b at some
component), then c′ reaches ssink, which is a winning position for Player 1. Finally, if at
some point during c, the energy level of Player 1 drops below 0, then so it does in c′. Hence,
in order to decide the winner in G, we can determine the winner in G′. Since the given
initial-credit problem for d1-dimensional energy game is decidable in (d1 − 1)−EXPTIME
[20, 7], we can decide the winner of a one-player-bounded BBEG with j = 2.

Now, in the truncated semantics, since there are finitely-many possible energy vectors for
Player 2, we can also expand the position space to maintain them. The only difference is
that when an overflow in the energy of Player 2 occurs in some components, the computation
stays in positions that correspond to the maximum bound of those components.

We continue to the case j = 1, thus b ∈ Zd1 is a bound vector for Player 1. We describe
the construction for the losing semantics. The extension to the truncated semantics is as in
the j = 2 case.

We define the d2-dimensional energy-reachability game G′ = ⟨S′
1, S

′
2, ⟨sinit, x0⟩, E′, τ ′⟩ as

follows. Let V be the set of all non-negative vectors in Zd1 that are bounded by b. That
is, V = {v ∈ Zd1 : 0 ≤ v[i] ≤ b[i] for all i ∈ [d1]}. Let S′

1 = S1 × V and S′
2 = S2 × V .
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Also, let S = S′
1 ∪ S′

2 ∪ {ssink}, for some ssink /∈ S1 ∪ S2. We now define a set of edges
E′ ⊆ S′ × S′ and a cost function τ ′ : E′ → Zd2 . For all e = ⟨s, s′⟩ ∈ E and v, v′ ∈ V such
that v′ = v+ τ(e)[1], we have the edge e′ = ⟨⟨s, v⟩, ⟨s′, v′⟩⟩ in E′ with τ ′(e′) = τ(e)[2]. For all
e = ⟨s, s′⟩ ∈ E and v ∈ V such that v+τ(e)[1] /∈ V , we have the edge e′ = ⟨⟨s, v⟩, ssink⟩ in E′

with τ ′(e′) = τ(e)[2]. We also have an edge ⟨ssink, ssink⟩ in E′ with τ ′(⟨ssink, ssink⟩) = 0d2 .
Note that the cost function τ ′ defines the cost for Player 2 only, while S′ maintains the
energy level of Player 1. In G′, Player 2 wins if she can reach ssink, while keeping her own
energy vector non-negative. Otherwise, Player 1 wins.

By [16], one-dimensional energy-reachability games can be decided in NP∩coNP. Since we
are interested in the multi-dimensional case, we give here a brief description of an algorithm
that determines the winner in multi-dimensional energy-reachability games: First, note that
without the energy constraints, thus in a plain reachability game played on the game graph
G′ with objective ssink, one can compute in polynomial time the set Attr of winning positions
for the reacher, namely for Player 2. From every position in Attr, Player 2 has a memoryless
winning strategy, called the attractor strategy. Since the strategy is winning a memoryless, it
includes no cycles, and so we can assume that every play that is consistent with this strategy
is a simple path in the graph. Now, adding the energy constraint to the picture, we get that
if Player 2 reaches a position in Attr with energy level that is sufficient for traversing a simple
path in G′ she can win by using her attractor strategy. Moreover, such a sufficient energy
level can be computed, for example |E| · |W |d2 , where |W | is the largest absolute value of an
update, is sufficient. Hence, we can extend the position-space of G′ to maintain the energy
level of Player 2 (with the bound of |E| · |W |d2), and then determine the winner of a plain
reachability game on this extended graph.
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Abstract
A central question in the theory of two-player games over graphs is to understand which objectives
are half-positional, that is, which are the objectives for which the protagonist does not need memory
to implement winning strategies. Objectives for which both players do not need memory have already
been characterized (both in finite and infinite graphs); however, less is known about half-positional
objectives. In particular, no characterization of half-positionality is known for the central class of
ω-regular objectives.

In this paper, we characterize objectives recognizable by deterministic Büchi automata (a class of
ω-regular objectives) that are half-positional, in both finite and infinite graphs. Our characterization
consists of three natural conditions linked to the language-theoretic notion of right congruence.
Furthermore, this characterization yields a polynomial-time algorithm to decide half-positionality of
an objective recognized by a given deterministic Büchi automaton.
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1 Introduction

Graph games and reactive synthesis. We study zero-sum turn-based games on graphs
confronting two players (a protagonist and its opponent). They interact by moving a pebble
in turns through the edges of a graph for an infinite amount of time. Each vertex belongs
to a player, and the player controlling the current vertex decides on the next state of the
game. Edges of the graph are labeled with colors, and the interaction of the two players
therefore produces an infinite sequence of them. The objective of the game is specified by
a subset of infinite sequences of colors, and the protagonist wins if the produced sequence
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belongs to this set. We are interested in finding a winning strategy for the protagonist, that
is, a function indicating how the protagonist should move in any situation, guaranteeing the
achievement of the objective.

This game-theoretic model is particularly fitted to study the reactive synthesis problem [7]:
a system (the protagonist) wants to satisfy a specification (the objective) while interacting
continuously with its environment (the opponent). The goal is to build a controller for the
system satisfying the specification, whenever possible. This comes down to finding a winning
strategy for the protagonist in the derived game.

Half-positionality. In order to obtain a controller for the system that is simple to implement,
we are interested in finding the simplest possible winning strategy. Here, we focus on the
amount of information that winning strategies have to remember. The simplest strategies
are then arguably positional (also called memoryless) strategies, which do not remember
anything about the past and base their decisions solely on the current state of the game. We
intend to understand for which objectives positional strategies suffice for the protagonist to
play optimally (i.e., to win whenever it is possible) – we call these objectives half-positional.
We distinguish half-positionality from bipositionality (or memoryless-determinacy), which
refers to objectives for which positional strategies suffice to play optimally for both players.

Many natural objectives have been shown to be bipositional over games on finite and
sometimes infinite graphs: e.g., discounted sum [53], mean-payoff [28], parity [29], total
payoff [31], energy [9], or average-energy games [11]. Bipositionality can be established using
general criteria and characterizations, over games on both finite [31, 32, 3] and infinite [26]
graphs. Yet, there exist many objectives and combinations thereof for which one player, but
not both, has positional optimal strategies (Rabin conditions [35, 34], mean-payoff parity [22],
energy parity [20], some window objectives [21, 14], energy mean-payoff [15]. . . ), and to
which these results do not apply.

Various attempts have been made to understand common underlying properties of half-
positional objectives and provide sufficient conditions [36, 37, 38, 6], but little more was
known until the recent work of Ohlmann [48] (discussed below). These conditions are
not general enough to prove half-positionality of some very simple objectives, even in the
well-studied class of ω-regular objectives [6, Lemma 13]. Furthermore, multiple questions
concerning half-positionality remain open. For instance, in [38], Kopczyński conjectured that
prefix-independent half-positional objectives are closed under finite union (this conjecture
was recently refuted for games on finite graphs [39], but is still unsolved for games on infinite
graphs). Also, Kopczyński showed that given a deterministic parity automaton recognizing a
prefix-independent objective W , we can decide if W is half-positional [37]. However, the time
complexity of his algorithm is O(nO(n2)), where n is the number of states of the automaton.
It is unknown whether this can be done in polynomial time, and no algorithm exists in the
non-prefix-independent case.

ω-regular objectives and deterministic Büchi automata. A central class of objectives,
whose half-positionality is not yet completely understood, is the class of ω-regular objectives.
There are multiple equivalent definitions for them: they are the objectives defined, e.g.,
by ω-regular expressions, by non-deterministic Büchi automata [45], and by deterministic
parity automata [46]. These objectives coincide with the class of objectives defined by
monadic second-order formulas [17], and they encompass linear-time temporal logic (LTL)
specifications [50]. Part of their interest is due to the landmark result that finite-state
machines are sufficient to implement optimal strategies in ω-regular games [16, 33], implying
the decidability of the monadic second-order theory of natural numbers with the successor
relation [17] and the decidability of the synthesis problem under LTL specifications [51].
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In this paper, we focus on the subclass of ω-regular objectives recognized by determin-
istic Büchi automata (DBA), that we call DBA-recognizable. DBA-recognizable objectives
correspond to the ω-regular objectives that can be written as a countable intersection of
open objectives (for the Cantor topology, that is, that are Gδ-sets of the Borel hierarchy); or
equivalently, that are the limit of a regular language of finite words [42, 49]. Deciding the
winner of a game with a DBA-recognizable objective is doable in polynomial time in the size
of the arena and the DBA (by solving a Büchi game on the product of the arena and the
DBA [7]).

We now discuss two technical tools at the core of our approach: universal graphs and
right congruences.

Universal graphs. One recent breakthrough in the study of half-positionality is the intro-
duction of well-monotonic universal graphs, combinatorial structures that can be used to
provide a witness of winning strategies in games with a half-positional objective. Recently,
Ohlmann [48] has shown that the existence of a well-monotonic universal graph for an
objective W exactly characterizes half-positionality (under minor technical assumptions
on W ). Moreover, under these assumptions, a wide class of algorithms, called value iteration
algorithms, can be applied to solve any game with a half-positional objective [24, 48].

Although it brings insight on the structure of half-positional objectives, showing half-
positionality through the use of universal graphs is not always straightforward, and has not
yet been applied in a systematic way to ω-regular objectives.

Right congruence. Given an objective W , the right congruence ∼W of W is an equivalence
relation on finite words: two finite words w1 and w2 are equivalent for ∼W if for all infinite
continuations w, w1w ∈ W if and only if w2w ∈ W . There is a natural automaton classifying
the equivalence classes of the right congruence, which we refer to as the prefix-classifier [54, 44].

In the case of languages of finite words, a straightforward adaptation of the right congru-
ence recovers the known Myhill-Nerode congruence. This equivalence relation characterizes
the regular languages (a language is regular if and only if its congruence has finitely many
equivalence classes), and the prefix-classifier is exactly the smallest deterministic finite
automaton recognizing a language – this is the celebrated Myhill-Nerode theorem [47].

Objectives are languages of infinite words, for which the situation is not so clear-cut. In
particular, an ω-regular objective may not always be recognized by its prefix-classifier along
with a natural acceptance condition (Büchi, coBüchi, parity, Muller. . . ) [44, 4].

Contributions. Our main contribution is a characterization of half-positionality for DBA-
recognizable objectives through a conjunction of three easy-to-check conditions (Theorem 10).
(1) The equivalence classes of the right congruence are totally ordered w.r.t. inclusion of

their winning continuations.
(2) Whenever the set of winning continuations of a finite word w1 is a proper subset of the

set of winning continuations of a concatenation w1w2, the word w1(w2)ω produced by
repeating infinitely often w2 is winning.

(3) The objective has to be recognizable by a DBA using the structure of its prefix-classifier.

A few examples of simple DBA-recognizable objectives that were not encompassed by
previous half-positionality criteria [36, 6] are, e.g., reaching a color twice [6, Lemma 13] and
weak parity [55]. We also refer to Example 7, which is half-positional but not bipositional,
and whose half-positionality is straightforward using our characterization.

Various corollaries with practical and theoretical interest follow from our characterization.
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We obtain a painless path to show (by checking each of the three conditions) that given
a deterministic Büchi automaton, the half-positionality of the objective it recognizes is
decidable in time O(k2 · n4), where k is the number of colors and n is the number of
states of the DBA (Section 3.3).
Prefix-independent DBA-recognizable half-positional objectives are exactly the very simple
Büchi conditions, which consist of all the infinite words seeing infinitely many times some
subset of the colors (Proposition 11). In particular, Kopczyński’s conjecture trivializes
for DBA-recognizable objectives (the union of Büchi conditions is a Büchi condition).
We obtain a finite-to-infinite and one-to-two-player lift result (Proposition 14): in order
to check that a DBA-recognizable objective is half-positional over arbitrary – possibly
two-player and infinite – graphs, it suffices to check the existence of positional optimal
strategies over finite graphs where all the vertices are controlled by the protagonist.

Other related works. We have discussed the relevant literature on half-positionality [36,
37, 6, 48] and bipositionality [31, 32, 26, 3]. A more general quest is to understand memory
requirements when positional strategies are not powerful enough: e.g., [43, 10, 12, 13].

Memory requirements have been precisely characterized for some classes of ω-regular
objectives (not encompassing the class of DBA-recognizable objectives), such as Muller
conditions [27, 57, 18, 19] and safety specifications, i.e., objectives that are closed for the
Cantor topology [25]. The latter also uses the order of the equivalence classes of the right
congruence as part of its characterization.

Recently, a link between the prefix-classifier, the memory requirements, and the rec-
ognizability of ω-regular objectives was established [13]. However, this result does not
provide optimal bounds on the strategy complexity, and is thereby insufficient to study
half-positionality.

Structure of the paper. Notations and definitions are introduced in Section 2. Our main
contributions are presented in Section 3: we introduce and discuss the three conditions used in
our results, then we state our main characterization (Theorem 10) and some corollaries, and
we end with an explanation on how to use the characterization to decide half-positionality of
DBA-recognizable objectives in polynomial time. Due to space constraints, we only provide
high-level details about proofs in this version of the article: a proof sketch for Theorem 10 is
provided in Section 4. Complete proofs, as well as additional details and examples, can be
found in the extended version of the article [8].

2 Preliminaries

In the whole article, letter C refers to a (finite or infinite) non-empty set of colors. Given
a set A, we write respectively A∗, A+, and Aω for the set of finite, non-empty finite, and
infinite sequences of elements of A. We denote by ε the empty word.

2.1 Games and positionality
Graphs. An (edge-colored) graph G = (V, E) is given by a non-empty set of vertices V

(of any cardinality) and a set of edges E ⊆ V × C × V . We write v
c−→ v′ if (v, c, v′) ∈ E.

We assume graphs to be non-blocking: for all v ∈ V , there exists (v′, c, v′′) ∈ E such that
v = v′. We allow graphs with infinite branching. For v ∈ V , an infinite path of G from v is
an infinite sequence of edges π = (v0, c1, v′

1)(v1, c2, v′
2) . . . ∈ Eω such that v0 = v and for all

i ≥ 1, v′
i = vi. A finite path of G from v is a finite prefix in E∗ of an infinite path of G from
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v. For convenience, we assume that there is a distinct empty path λv for every v ∈ V . If
γ = (v0, c1, v1) . . . (vn−1, cn, vn) is a non-empty finite path of G, we define last(γ) = vn. For an
empty path λv, we define last(λv) = v. An infinite (resp. finite) path (v0, c1, v1)(v1, c2, v2) . . .

is sometimes represented as v0
c1−→ v1

c2−→ . . .. A graph G = (V, E) is finite if both V and E

are finite. A graph is strongly connected if for every pair of vertices (v, v′) ∈ V × V there is a
path from v to v′. A strongly connected component of G is a maximal strongly connected
subgraph.

Arenas and strategies. We consider two players P1 and P2. An arena is a tuple A =
(V, V1, V2, E) such that (V, E) is a graph and V is the disjoint union of V1 and V2. Intuitively,
vertices in V1 are controlled by P1 and vertices in V2 are controlled by P2. An arena
A = (V, V1, V2, E) is a one-player arena of P1 (resp. of P2) if V2 = ∅ (resp. V1 = ∅). Finite
paths of (V, E) are called histories of A. For i ∈ {1, 2}, we denote by Histsi(A) the set of
histories γ of A such that last(γ) ∈ Vi.

Let i ∈ {1, 2}. A strategy of Pi on A is a function σi : Histsi(A) → E such that for all
γ ∈ Histsi(A), the first component of σi(γ) coincides with last(γ). Given a strategy σi of
Pi, we say that an infinite path π = e1e2 . . . is consistent with σi if for all finite prefixes
γ = e1 . . . ei of π such that last(γ) ∈ Vi, σi(γ) = ei+1. A strategy σi is positional (also called
memoryless in the literature) if its outputs only depend on the current vertex and not on
the whole history, i.e., if there exists a function f : Vi → E such that for γ ∈ Histsi(A),
σi(γ) = f(last(γ)).

Objectives. An objective is a set W ⊆ Cω (subsets of Cω are sometimes also called languages
of infinite words, ω-languages, or winning conditions in the literature). When an objective
W is clear in the context, we say that an infinite word w ∈ Cω is winning if w ∈ W , and
losing if w /∈ W . We write W for the complement Cω \ W of an objective W . An objective
W is prefix-independent if for all w ∈ C∗ and w′ ∈ Cω, w′ ∈ W if and only if ww′ ∈ W . An
objective that we will often consider is the Büchi condition: given a subset F ⊆ C, we denote
by Büchi(F ) the set of infinite words seeing infinitely many times a color in F . Such an
objective is prefix-independent. A game is a tuple (A, W ) of an arena A and an objective W .

Optimality and half-positionality. Let A = (V, V1, V2, E) be an arena, (A, W ) be a game,
and v ∈ V . We say that a strategy σ1 of P1 is winning from v if for all infinite paths
v0

c1−→ v1
c2−→ . . . from v consistent with σ1, c1c2 . . . ∈ W .

A strategy of P1 is optimal for P1 in (A, W ) if it is winning from all the vertices from
which P1 has a winning strategy. We often write optimal for P1 in A if the objective W is
clear from the context. We stress that this notion of optimality requires a single strategy to
be winning from all the winning vertices (a property sometimes called uniformity).

An objective W is half-positional if for all arenas A, there exists a positional strategy of
P1 on A that is optimal for P1 in A. We sometimes only consider half-positionality on a
restricted set of arenas (typically, finite and/or one-player arenas). For a class of arenas X ,
an objective W is half-positional over X if for all arenas A ∈ X , there exists a positional
strategy of P1 on A that is optimal for P1 in A.

2.2 Büchi automata
Automaton structures and Büchi automata. A non-deterministic automaton structure (on
C) is a tuple S = (Q, C, Qinit, ∆) such that Q is a finite set of states, Qinit ⊆ Q is a non-empty
set of initial states and ∆ ⊆ Q × C × Q is a set of transitions. We assume that all states of
automaton structures are reachable from an initial state in Qinit by taking transitions in ∆.
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A (transition-based) non-deterministic Büchi automaton (NBA) is an automaton structure
S together with a set of transitions α ⊆ ∆. The transitions in α are called Büchi transitions.

Given an NBA B = (Q, C, Qinit, ∆, α), a (finite or infinite) run of B on a (finite or
infinite) word w = c1c2 . . . ∈ C∗ ∪ Cω is a sequence (q0, c1, q1)(q1, c2, q2) . . . ∈ ∆∗ ∪ ∆ω such
that q0 ∈ Qinit. An infinite run (q0, c1, q1)(q1, c2, q2) . . . ∈ ∆ω of B is accepting if for infinitely
many i ≥ 0, (qi, ci+1, qi+1) ∈ α. A word w ∈ Cω is accepted by B if there exists an accepting
run of B on w – if not, it is rejected. We denote the set of infinite words accepted by B
by L(B), and we then say that L(B) is the objective recognized by B. Here, we take the
definition of an ω-regular objective as an objective that can be recognized by an NBA. Given
an automaton structure S = (Q, C, Qinit, ∆), we say that an NBA B is built on top of S if
there exists α ⊆ ∆ such that B = (Q, C, Qinit, ∆, α).

Deterministic automata. An automaton structure S = (Q, C, Qinit, ∆) is deterministic if
|Qinit| = 1 and, for each q ∈ Q and c ∈ C, there is exactly one q′ ∈ Q such that (q, c, q′) ∈ ∆
(we remark that in this paper deterministic automata are complete). A deterministic Büchi
automaton (DBA) is an NBA whose underlying automaton structure is deterministic. For a
DBA B = (Q, C, {qinit}, ∆, α), we denote by qinit the unique initial state (and we will drop the
braces around qinit in the tuple), and by δ : Q × C → Q the update function that associates to
(q, c) ∈ Q × C the only q′ ∈ Q such that (q, c, q′) ∈ ∆. We denote by δ∗ the natural extension
of δ to finite words. As transitions are uniquely determined by their first two components,
we also assume for brevity that α ⊆ Q × C.

For a DBA B, a state q ∈ Q and a word w = c1c2 . . . ∈ C∗ ∪ Cω, we denote by
B(q, w) = (q, c1, q1)(q1, c2, q2) . . . ∈ ∆∗ ∪ ∆ω the only run on w starting from q.

An objective W is DBA-recognizable if there exists a DBA B such that W = L(B).
For F ⊆ C, notice that Büchi(F ) is DBA-recognizable: it is recognized by the DBA
({qinit}, C, qinit, ∆, α) with a single state such that (qinit, c) ∈ α if and only if c ∈ F .

▶ Remark 1. The fact that a single state suffices for recognizing Büchi(F ) relies on the
assumption that our DBA are transition-based and not state-based (α is a set of transitions,
not of states). Indeed, apart from the trivial cases F = ∅ and F = C, a state-based DBA
recognizing Büchi(F ) requires two states. The third condition of our upcoming characteriza-
tion (Theorem 10) would therefore not apply to this simple example if we only considered
state-based DBA. ⌟

▶ Remark 2. DBA recognize a proper subset of the ω-regular objectives [56]. ⌟

Let B = (Q, C, qinit, ∆, α) be a DBA. We say that a finite run ϱ ∈ ∆∗ of B is α-free if it
does not contain any transition from α. For q ∈ Q, we define

α-FreeB(q) = {w ∈ C∗ | B(q, w) is α-free},

α-FreeCyclesB(q) = {w ∈ C∗ | w ∈ α-FreeB(q) and δ∗(q, w) = q}.

We call the words in the first set the α-free words from q, and the words in the second set
the α-free cycles from q.

Right congruence. Let W ⊆ Cω be an objective. For a finite word w ∈ C∗, we write
w−1W = {w′ ∈ Cω | ww′ ∈ W} for the set of winning continuations of w. We define the
right congruence ∼W ⊆ C∗ × C∗ of W as w1 ∼W w2 if w−1

1 W = w−1
2 W . Relation ∼W is an

equivalence relation. When W is clear from the context, we write ∼ for ∼W . For w ∈ C∗,
we denote by [w] ⊆ C∗ its equivalence class for ∼.
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When ∼ has finitely many equivalence classes, we can associate a natural deterministic
automaton structure S∼ = (Q∼, C, q̃init, ∆∼) to ∼ such that Q∼ is the set of equivalence
classes of ∼, q̃init = [ε], and δ∼([w], c) = [wc] [54, 44]. The transition function δ∼ is well-
defined since if w1 ∼ w2, then for all c ∈ C, w1c ∼ w2c. We call the automaton structure S∼
the prefix-classifier of W .

▶ Remark 3. Equivalence relation ∼W has only one equivalence class if and only if W is
prefix-independent. In particular, an objective has a prefix-classifier with a single state if
and only if it is prefix-independent. ⌟

We define the prefix preorder ⪯W of W : for w1, w2 ∈ C∗, we write w1 ⪯W w2 if
w−1

1 W ⊆ w−1
2 W (meaning that any continuation that is winning after w1 is also winning

after w2). Intuitively, w1 ⪯W w2 means that a game starting with w2 is always preferable to
a game starting with w1 for P1, as there are more ways to win after w2. When W is clear
from the context, we write ⪯ for ⪯W . Relation ⪯ ⊆ C∗ × C∗ is a preorder. Notice that ∼ is
equal to ⪯ ∩ ⪰. We also define the strict preorder ≺ = ⪯ \ ∼.

Given a DBA B = (Q, C, qinit, ∆, α) recognizing the objective W , observe that for w, w′ ∈
C∗ such that δ∗(qinit, w) = δ∗(qinit, w′), we have w ∼ w′. In this case, equivalence relation ∼
has at most |Q| equivalence classes. For q ∈ Q, we write abusively q−1W for the objective
recognized by the DBA (Q, C, q, ∆, α). Objective q−1W equals w−1W for any word w ∈ C∗

such that δ∗(qinit, w) = q. We extend the equivalence relation ∼ and preorder ⪯ to elements
of Q (we sometimes write ∼B and ⪯B to avoid any ambiguity).

3 Half-positionality characterization for DBA-recognizable objectives

In this section, we present our main contribution in Theorem 10, by giving three conditions
that exactly characterize half-positional DBA-recognizable objectives. These conditions are
presented in Section 3.1. Theorem 10 and several consequences of it are stated in Section 3.2.
In Section 3.3, we use this characterization to show that we can decide the half-positionality
of a DBA in polynomial time. Missing proofs for this section are in [8, Section 3], except for
the proof of Theorem 10, which is in [8, Sections 4 & 5].

3.1 Three conditions for half-positionality
We define the three conditions on objectives at the core of our characterization.

▶ Condition 1 (Total prefix preorder). We say that an objective W ⊆ Cω has a total prefix
preorder if for all w1, w2 ∈ C∗, w1 ⪯W w2 or w2 ⪯W w1.

An objective W recognized by a DBA B has a total prefix preorder if and only if the
(reachable) states of B are totally ordered for ⪯B.

▶ Example 4 (Not total prefix preorder). Let C = {a, b}. We consider the objective W

recognized by the DBA B depicted in Figure 1 (left). It consists of the infinite words starting
with aa or bb. This objective does not have a total prefix preorder: words a and b are
incomparable for ⪯W . Indeed, aω is winning after a but not after b, and bω is winning after
b but not after a. In terms of automaton states, we have that qa and qb are incomparable for
⪯B. This objective is not half-positional, as witnessed by the arena on the right of Figure 1.
In this arena, P1 is able to win when the game starts in v1 by playing a in v3, and when the
game starts in v2 by playing b. However, no positional strategy wins from both v1 and v2. ⌟

▶ Remark 5. The prefix preorder of an objective W is total if and only if the prefix preorder
of its complement W is total. ⌟
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qinit

qa

qb

qwin

qlose

a

b

a

b

a

b

a, b•

a, b

v1

v2

v3

a

b

a

b

Figure 1 DBA B recognizing objective W = (aa + bb)Cω (left), and an arena in which positional
strategies do not suffice for P1 to play optimally for this objective (right). Transitions labeled with
a • symbol are the Büchi transitions. In figures, diamonds represent automaton states and circles
represent arena vertices controlled by P1.

▶ Remark 6. Having a total prefix preorder is equivalent to the strong monotony notion [6] in
general, and equivalent to monotony [32] for ω-regular objectives. We discuss in more depth
the relation between the conditions appearing in the characterization and other properties
from the literature studying half-positionality in [8, Appendix A]. ⌟

▶ Condition 2 (Progress-consistency). We say that an objective W is progress-consistent if
for all w1 ∈ C∗ and w2 ∈ C+ such that w1 ≺ w1w2, we have w1(w2)ω ∈ W .

Intuitively, this means that whenever a word w2 can be used to make progress after seeing
a word w1 (in the sense of getting to a position in which more continuations are winning),
then repeating this word has to be winning.

▶ Example 7 (Progress-consistent objective). We consider the DBA in Figure 2. This DBA
recognizes the objective W = Büchi({a}) ∪ C∗aaCω: W contains the words seeing a infinitely
often, or that see a twice in a row at some point. The equivalence classes for ∼W are
q−1

initW = W , q−1
a W = aCω ∪ W and q−1

aa W = Cω. This objective is progress-consistent: any
word reaching qaa is straightforwardly accepted when repeated infinitely often, and any word
w such that δ∗(qinit, w) = qa necessarily contains at least one a, and thus is accepted when
repeated infinitely often. Objective W is half-positional, which will be readily shown with
our upcoming characterization (Theorem 10).

Here, notice that the complement W of W is not progress-consistent. Indeed, a ≺W a(bab),
but a(bab)ω /∈ W . Unlike having a total prefix preorder, progress-consistency can hold for an
objective but not its complement.

Note that half-positionality of W cannot be shown using existing half-positionality
criteria [36, 6] (it is neither prefix-independent nor concave) nor bipositionality criteria, as it
is simply not bipositional. ⌟

qinit qa qaa

a•

b
•

a•b a, b•

Figure 2 A DBA recognizing the set of words seeing a infinitely many times, or aa at some point.

▶ Condition 3 (Recognizability by the prefix-classifier). Being recognized by a Büchi au-
tomaton built on top of the prefix-classifier is our third condition. In other words, for a
DBA-recognizable objective W ⊆ Cω and its prefix-classifier S∼ = (Q∼, C, q̃init, ∆∼), this
condition requires that there exists α∼ ⊆ Q∼ × C such that W is recognized by DBA
(Q∼, C, q̃init, ∆∼, α∼).
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We show an example of a DBA-recognizable objective that satisfies the first two conditions
(having a total prefix preorder and progress-consistency), but not this third condition, and
which is not half-positional.

▶ Example 8 (Not recognizable by the prefix-classifier). Let C = {a, b}. We consider the
objective W = Büchi({a}) ∩ Büchi({b}) recognized by the DBA in Figure 3. This objective
is prefix-independent: as such (Remark 3), there is only one equivalence class for ∼. This
implies that the prefix preorder is total, and that W is progress-consistent (the premise of
the progress-consistency property can never be true). This objective is not half-positional, as
witnessed by the arena in Figure 3 (right): P1 has a winning strategy from v, but it needs to
take infinitely often both a and b.

Any DBA recognizing this objective has at least two states, but all their (reachable)
states are equivalent for ∼ – no matter the state we choose as an initial state, the recognized
objective is the same (by prefix-independence). As it is prefix-independent, its prefix-classifier
S∼ has only one state. ⌟

qinit q2

b•

a
•

a b va b

Figure 3 DBA recognizing the objective Büchi({a}) ∩ Büchi({b}) (left), and an arena in which
positional strategies do not suffice for P1 to play optimally for this objective (right).

As will be shown formally, being recognized by a DBA built on top of the prefix-classifier
is necessary for half-positionality of DBA-recognizable objectives over finite one-player arenas.
The first two conditions are actually necessary for half-positionality of general objectives,
but this third condition is not, even for objectives recognized by other standard classes of
ω-automata.

▶ Example 9. We consider the complement W of the objective W = Büchi({a}) ∩ Büchi({b})
of Example 8, which consists of the words ending with aω or bω. Objective W is not
DBA-recognizable (a close proof can be found in [5, Theorem 4.50]). Still, it is recognizable
by a deterministic coBüchi automaton similar to the automaton in Figure 3, but which
accepts infinite words that visit transitions labeled by • only finitely often. This objective is
half-positional, which can be shown using [27, Theorem 6]. However, its prefix-classifier has
just one state, and there is no way to recognize W by building a coBüchi (or even parity)
automaton on top of it. ⌟

3.2 Characterization and corollaries
We have now defined the three conditions required for our characterization.

▶ Theorem 10. Let W ⊆ Cω be a DBA-recognizable objective. Objective W is half-positional
(over all arenas) if and only if

its prefix preorder ⪯ is total,
it is progress-consistent, and
it can be recognized by a Büchi automaton built on top of its prefix-classifier S∼.

High-level details about the proof of this theorem are provided in Section 4. The complete
proof of the necessity of the three conditions can be found in [8, Section 4]; the proof of the
sufficiency of the conjunction of the three conditions can be found in [8, Section 5].

CONCUR 2022



20:10 Half-Positional Objectives Recognized by Deterministic Büchi Automata

This characterization is valuable to prove (and disprove) half-positionality of DBA-
recognizable objectives. Examples 4 and 8 are not half-positional, and they falsify respectively
the first and the third condition from the statement. On the other hand, Example 7 is half-
positional. We have already discussed its progress-consistency, but it is also straightforward
to verify that its prefix preorder is total and that it is recognizable by its prefix-classifier: the
right congruence has three totally ordered equivalence classes corresponding to the states of
the automaton of Figure 2.

We state two notable consequences of Theorem 10 and of its proof technique. The first
one is the specialization of Theorem 10 to objectives that are prefix-independent, a frequent
assumption in the literature [36, 26, 30, 24] – under this assumption, half-positionality of
DBA-recognizable objectives is very easy to understand and characterize.

▶ Proposition 11. Let W ⊆ Cω be a prefix-independent, DBA-recognizable objective. Objec-
tive W is half-positional if and only if there exists F ⊆ C such that W = Büchi(F ).

▶ Remark 12. A corollary of this result is that when W is prefix-independent, DBA-
recognizable and half-positional, we also have that W is half-positional. Indeed, the comple-
ment of objective W = Büchi(F ) is a so-called coBüchi objective, which is also known to be
half-positional (it is a special case of a parity objective [29]). This statement does not hold
in general when W is not prefix-independent, as was shown in Example 7. Moreover, the
reciprocal of the statement also does not hold, as was shown in Example 9. ⌟

▶ Remark 13. A second corollary is that prefix-independent DBA-recognizable half-positional
objectives are closed under finite union (since a finite union of Büchi conditions is a Büchi
condition). This settles Kopczyński’s conjecture for DBA-recognizable objectives. ⌟

A second consequence of Theorem 10 and its proof technique shows that half-positionality
of DBA-recognizable objectives can be reduced to half-positionality over the restricted class
of finite, one-player arenas. Results reducing strategy complexity in two-player arenas
to the easier question of strategy complexity in one-player arenas are sometimes called
one-to-two-player lifts and appear in multiple places in the literature [32, 10, 40, 13].

▶ Proposition 14 (One-to-two-player and finite-to-infinite lift). Let W ⊆ Cω be a DBA-
recognizable objective. If objective W is half-positional over finite one-player arenas, then it
is half-positional over all arenas (of any cardinality).

One-to-two-player lifts from the literature all require an assumption on the strategy
complexity of both players, and are either stated solely over finite arenas, or solely over
infinite arenas. Proposition 14, albeit set in the more restricted context of DBA-recognizable
objectives, therefore displays stronger properties than the known one-to-two-player lifts.

3.3 Deciding half-positionality in polynomial time
In this section, we assume that C is finite. We show that the problem of deciding, given
a DBA B = (Q, C, qinit, ∆, α) as an input, whether L(B) is half-positional can be solved in
polynomial time, and more precisely in time O(|C|2 · |Q|4).

We investigate how to verify each property used in the characterization of Theorem 10.
Let B = (Q, C, qinit, ∆, α) be a DBA (we assume w.l.o.g. that all states in Q are reachable
from qinit) and W = L(B) be the objective it recognizes. Our algorithm first verifies that the
prefix preorder is total and recognizability by S∼, and then, under these first two assumptions,
progress-consistency. For each condition, we sketch an algorithm to decide it, and we discuss
the time complexity of this algorithm.
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Total prefix preorder. To check that W has a total prefix preorder, it suffices to check
that the states of B are totally preordered by ⪯B. We start by computing, for each pair
of states q, q′ ∈ Q, whether q ⪯B q′, q′ ⪯B q, or none of these. This can be rephrased
as an inclusion problem for two DBA-recognizable objectives: if Bq = (Q, C, q, ∆, α) and
Bq′ = (Q, C, q′, ∆, α), we have that q ⪯B q′ if and only if L(Bq) ⊆ L(Bq′). Such a problem can
be solved in time O(|C|2 ·|Q|2) [23]. We can therefore know for all |Q|2 pairs q, q′ ∈ Q whether
q ⪯B q′, q′ ⪯B q, q′ ∼B q (as ∼B = ⪯B ∩⪰B), or none of these in time O(|Q|2 · (|C|2 · |Q|2)) =
O(|C|2 · |Q|4). In particular, the prefix preorder is total if and only if for all q, q′ ∈ Q, we
have q ⪯B q′ or q′ ⪯B q.

Recognizability by the prefix-classifier. After all the relations ⪯B and ∼B between pairs of
states are computed in the previous step, we can compute the states and transitions of the
prefix-classifier S∼ = (Q∼, C, q̃init, ∆∼) by merging all the equivalence classes for ∼B. We
assume for simplicity that Q∼ = Q

/
∼B .

We now wonder whether it is possible to recognize W by carefully selecting a set α∼ of
Büchi transitions in S∼. After a simple transformation of B (called saturation [8, Section 2]),
it actually suffices to try with the specific, easy-to-compute set of transitions of the prefix-
classifier such that all corresponding transitions in the original DBA were Büchi:

α∼ = {([q], c) ∈ Q∼ × C | ∀q′ ∈ [q], (q′, c) ∈ α}.

We then simply check whether W = L((Q∼, C, q̃init, ∆∼, α∼)), an equivalence query which,
as discussed above, can be performed in time O(|C|2 · |Q|2).

Progress-consistency. We assume that we have already checked that W is recognizable by
a Büchi automaton built on top of S∼, and that we know the (total) ordering of the states.
We show that checking progress-consistency, under these two hypotheses, can be done in
polynomial time. We state a lemma reducing the search for words witnessing that W is not
progress-consistent to a known problem on regular languages.

▶ Lemma 15. We assume that B is built on top of the prefix-classifier S∼ and that the prefix
preorder of W is total. Then, W is progress-consistent if and only if for all q, q′ ∈ Q with
q ≺B q′, {w ∈ C+ | δ∗(q, w) = q′} ∩ α-FreeCyclesB(q′) = ∅.

Notice that for each pair of states q, q′ ∈ Q, the sets {w ∈ C+ | δ(q, w) = q′} and
α-FreeCyclesB(q′) are both regular languages recognized by deterministic finite automata
with at most |Q| states. The emptiness of their intersection can be decided in time O(|C|2 ·
|Q|2) [52]. By Lemma 15, we can therefore decide whether B is progress-consistent in time
O(|Q|2 · (|C|2 · |Q|2)) = O(|C|2 · |Q|4): for all |Q|2 pairs of states q, q′ ∈ Q, if q ≺ q′, we test
the emptiness of the intersection of these two regular languages.

4 Technical sketch

We discuss each direction of the proof of Theorem 10 (necessity and sufficiency of the
conditions), for which complete arguments can be found in [8, Sections 4 & 5].

4.1 Necessity of the three conditions
The necessity of the first two conditions (total prefix preorder and progress-consistency) is
relatively straightforward: by contrapositive, we can use the words witnessing that these
properties are not satisfied to build finite one-player arenas in which positional strategies do
not suffice to play optimally.
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For the third condition, we need to show the following statement.

▶ Proposition 16. Let W ⊆ Cω be a DBA-recognizable objective that is half-positional over
finite one-player arenas. Then, W is recognized by a Büchi automaton built on top of S∼.

The proof of Proposition 16 makes extensive use of a “normal form” of Büchi automata
verifying that any α-free path can be extended to an α-free cycle [8, Section 2]. Such a
normal form can be produced by saturating a given DBA B with Büchi transitions [41, 1, 2].
To do so, we add to α all transitions that do not appear in an α-free cycle of B. This can
be done by decomposing into strongly connected components the structure obtained by
removing the Büchi transitions from B.

In Figure 4, we show an intuitive example of the saturation process.

qinit qa qaa

a•

b

a
b a, b• qinit qa qaa

a•

b
•

a•b a, b•

Figure 4 A DBA (left) and its unique saturation (right).

The proof of Proposition 16 is split in two steps: we first give a proof for prefix-independent
objectives, and then build on it for the general case.

▶ Lemma 17. Let W ⊆ Cω be a prefix-independent DBA-recognizable objective that is half-
positional over finite one-player arenas. Then, there exists F ⊆ C such that W = Büchi(F ).

Proof sketch of Lemma 17. We assume that the objective W is recognized by a DBA
B = (Q, C, qinit, ∆, α) (which has been saturated) and is prefix-independent, so all the states
of B are equivalent for ∼. The goal is to find a suitable definition for F , so that W = Büchi(F ).
To do so, we exhibit a state qmax of B that is “the most rejecting state of the automaton”: it
satisfies that the set of α-free words from qmax contains the α-free words from all the other
states (qmax is then called an α-free-maximum) and that the set of α-free cycles on qmax
contains the α-free cycles on all the other states (it is also an α-free-cycle-maximum). We
define F as the set of colors c such that (qmax, c) ∈ α.

We first show that if an α-free-maximum exists, we can assume w.l.o.g. that it is unique.
Then, we show the existence of an α-free-cycle-maximum. This part of the proof relies on
the half-positionality over finite one-player arenas of W , as well as on the saturation of B.
Finally, defining F using qmax as explained above, we prove that W = Büchi(F ). ◀

We show how to reduce the general case to the prefix-independent case.

Proof sketch of Proposition 16. We now relax the prefix-independence assumption on W .
If B has exactly one state per equivalence class of ∼, it means that it is built on top of S∼,
and we are done. If not, let q∼ ∈ Q be a state such that |[q∼]| ≥ 2. Our proof shows how
to modify B by “merging” all states in equivalence class [q∼] into a single state, while still
recognizing the same objective W . The main technical argument is to build a variant W[q∼] of
objective W on a new set of colors C[q∼], that turns out to also be half-positional over finite
one-player arenas and DBA-recognizable, but which is prefix-independent. We can therefore
use the prefix-independent case and find F[q∼] ⊆ C[q∼] such that W[q∼] = Büchi(F[q∼]). Then,
we exhibit a state qmax ∈ [q∼] whose α-free words are tightly linked to the elements of F[q∼].
Finally, we show that it is still possible to recognize W while keeping only state qmax in [q∼].
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Once we know how to merge the equivalence class [q∼] into a single state, we can simply
repeat the operation for each equivalence class with multiple states, until we obtain a DBA
built on top of S∼. ◀

4.2 Sufficiency of the conditions
We now focus on the other direction of the proof of Theorem 10. We want to show the
following statement.

▶ Proposition 18. Let W ⊆ Cω be an objective that has a total prefix preorder, is progress-
consistent, and is recognizable by a DBA built on top of S∼. Then, W is half-positional.

The main technical tool to prove Proposition 18 is the notion of well-monotonic universal
graph for an objective W , whose existence is sufficient to prove the half-positionality of W [48].
We will show how to build such a graph in our case.

Well-monotonic universal graphs. Let G = (V, E) be a graph and W ⊆ Cω be an objective.
A vertex v of G satisfies W if for all infinite paths v0

c1−→ v1
c2−→ . . . from v, we have

c1c2 . . . ∈ W .
Given two graphs G = (V, E) and G′ = (V ′, E′), a (graph) morphism from G to G′ is a

function ϕ : V → V ′ such that (v1, c, v2) ∈ E implies (ϕ(v1), c, ϕ(v2)) ∈ E′. A morphism ϕ

from G to G′ is W -preserving if for all v ∈ V , v satisfies W implies that ϕ(v) satisfies W .
Notice that if ϕ(v) satisfies W , then v satisfies W , as any path v

c1−→ v1
c2−→ . . . of G implies

the existence of a path ϕ(v) c1−→ ϕ(v1) c2−→ . . . of G′ – there are “more paths” in G′.
A graph U is (κ, W )-universal if for all graphs G of cardinality ≤ κ, there is a W -preserving

morphism from G to U .
We consider a graph G = (V, E) along with a total order ≤ on its vertex set V . We say

that G is monotonic if for all v, v′, v′′ ∈ V , for all c ∈ C,
(v c−→ v′ and v′ ≥ v′′) =⇒ v

c−→ v′′, and
(v ≥ v′ and v′ c−→ v′′) =⇒ v

c−→ v′′.
This means that (i) whenever there is an edge v

c−→ v′, there is also an edge with color c from
v to all states smaller than v′ for ≤, and (ii) whenever v ≥ v′, then v has at least the same
outgoing edges as v′. Graph G is well-monotonic if it is monotonic and the total order ≤ is a
well-order (i.e., any set of vertices has a minimum). Graph G is completely well-monotonic if
it is well-monotonic and there exists a vertex ⊤ ∈ V maximum for ≤ such that for all v ∈ V ,
c ∈ C, ⊤ c−→ v.

▶ Theorem 19 (Consequence of [48, Theorem 1.1]). Let W ⊆ Cω be an objective. If for
all cardinals κ, there exists a completely well-monotonic (κ, W )-universal graph, then W is
half-positional (over all arenas).

The exact result [48, Theorem 1.1] can actually be instantiated on more precise classes of
arenas. However, we use it to prove here half-positionality of a family of objectives over all
arenas, so the above result turns out to be sufficient.

Universal graphs for Büchi automata. We show that for a DBA-recognizable objective W ,
the three conditions from Theorem 10 imply half-positionality of W by providing a completely
well-monotonic (κ, W )-universal graph for any κ.

Let W ⊆ Cω be an objective with a total prefix preorder, that is progress-consistent, and
that is recognized by a B = (Q, C, qinit, ∆, α) built on top of S∼. We assume w.l.o.g. that B
is saturated, as in Section 4.1. For θ an ordinal, we build a graph UB,θ as follows.
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We set the vertices as UB,θ = {(q, λ) | q ∈ Q, λ < θ} ∪ {⊤}.
For every transition δ(q, c) = q′ of B,

if (q, c) ∈ α, then for all ordinals λ, λ′, we define an edge (q, λ) c−→ (q′, λ′);
if (q, c) /∈ α, then for all ordinals λ, λ′ s.t. λ′ < λ, we define an edge (q, λ) c−→ (q′, λ′).
for q′′ ≺ q′, then for all ordinals λ, λ′′, we define an edge (q, λ) c−→ (q′′, λ′′).

For all c ∈ C, v ∈ UB,θ, we define an edge ⊤ c−→ v.

We order the vertices lexicographically: (q, λ) ≤ (q′, λ′) if q ≺ q′ or (q = q′ and λ ≤ λ′), and
we define ⊤ as the maximum for ≤ ((q, λ) < ⊤ for all q ∈ Q, λ < θ).

Graph UB,θ is built such that on the one hand, it is sufficiently large and has sufficiently
many edges so that there is a morphism from any graph G (of cardinality smaller than some
function of |θ|) to UB,θ. On the other hand, for the morphism to be W -preserving, at least
some vertices of UB,θ need to satisfy W , which imposes a restriction on the infinite paths
from vertices. Graph UB,θ is actually built so that for any automaton state q ∈ Q and
ordinal λ < θ, the vertex (q, λ) satisfies q−1W [8, Section 5]. The intuitive idea is that for
a non-Büchi transition (q, c) /∈ α of the automaton such that δ(q, c) = q′, a c-colored edge
from a vertex (q, λ) in the graph either (i) reaches a vertex with first component q′, in which
case the ordinal must decrease on the second component, or (ii) reaches a vertex with first
component q′′ ≺ q′, with no restriction on the second component, but therefore with fewer
winning continuations. Using progress-consistency and the fact that there is no infinitely
decreasing sequence of ordinals, we can show that this implies that no infinite path in UB,θ

corresponds to an infinite run in the automaton visiting only non-Büchi transitions.
We give an example of this construction.

▶ Example 20. We consider again the DBA B from Example 7, recognizing the words seeing
a infinitely many times, or a twice in a row at some point. We represent the graph UB,θ,
with θ = ω in Figure 5. ⌟

0 1 · · ·qinit 0 1 · · ·qa 0 1 · · ·qaa ⊤

aa a a
a, b a, b

b

a

b

a, b

a, b

a, b

a, b

Figure 5 The graph UB,ω, where B is the automaton from Example 7 (L(B) = Büchi({a}) ∪
C∗aaCω). The dashed edge with color b indicates that (qinit, λ) b−→ (qinit, λ′) if and only if λ′ < λ

(it corresponds to the only non-Büchi transition in B). Elsewhere, an edge between two rectangles
labeled q, q′ with color c means that for all ordinals λ, λ′, (q, λ) c−→ (q, λ′). Thick edges correspond
to the original transitions of B. There are edges from ⊤ to all vertices of the graph with colors a

and b. Vertices are totally ordered from left to right.

We show that the graph UB,θ is completely well-monotonic (Lemma 21) and, for any
cardinal κ, it is (κ, W )-universal for sufficiently large θ (Proposition 22) [8, Section 5].

▶ Lemma 21. Graph UB,θ is completely well-monotonic.

▶ Proposition 22. Let κ be a cardinal, and θ′ be an ordinal such that κ < |θ′|. Let θ = |Q| ·θ′.
Graph UB,θ is (κ, W )-universal.

Thanks to these two results, we can show Proposition 18 using Theorem 19.
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Abstract
We consider two-player zero-sum games with winning objectives beyond regular languages, expressed
as a parity condition in conjunction with a Boolean combination of boundedness conditions on
a finite set of counters which can be incremented, reset to 0, but not tested. A boundedness
condition requires that a given counter is bounded along the play. Such games are decidable, though
with non-optimal complexity, by an encoding into the logic WMSO with the unbounded and path
quantifiers, which is known to be decidable over infinite trees. Our objective is to give tight or tighter
complexity results for particular classes of counter games with boundedness conditions, and study
their strategy complexity. In particular, counter games with conjunction of boundedness conditions
are easily seen to be equivalent to Streett games, so, they are CoNP-c. Moreover, finite-memory
strategies suffice for Eve and memoryless strategies suffice for Adam. For counter games with a
disjunction of boundedness conditions, we prove that they are in solvable in NP∩CoNP, and in
PTime if the parity condition is fixed. In that case memoryless strategies suffice for Eve while
infinite memory strategies might be necessary for Adam. Finally, we consider an extension of those
games with a max operation. In that case, the complexity increases: for conjunctions of boundedness
conditions, counter games are EXPTIME-c.
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1 Introduction

Games on graphs are a popular mathematical framework to reason on reactive synthesis
problems [2, 9]: the system to synthesize is seen as a protagonist which must enforce a given
specification (its winning objective) against any adversarial behaviour of its environment. In
this framework, executions of reactive systems are modelled as infinite sequences alternating
between actions of the systems and actions of its environment. In the ω-regular setting,
the set of correct executions of reactive systems is modelled as an automaton, for example,
a non-deterministic Büchi automaton, then determinized into a parity automaton. The
synthesis problem then boils down to solving a game played on the graph of the parity
automaton, where the goal of the protagonist (Eve) is to satisfy, in the long run, the parity
condition whatever her opponent (Adam) does. Motivated by the synthesis of more complex
systems, the literature is rich in extensions of this basic two-player zero-sum ω-regular setting:
multiple players, imperfect information, quantitative objectives, infinite graphs ... (see [2, 9]
for some references). In this paper, we follow this line of work and consider an extension of
two-player games beyond ω-regularity: counter games with boundedness conditions.
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Counter games. In this paper, a two-player counter game with boundedness objectives,
only called counter game hereafter, is given by a finite arena, called counter arena, whose
vertices are labelled by counter operations over a finite set of counters C. Those operations
can: increment a counter, reset it, or skip it (i.e. leave its value unchanged). We consider
objectives given as Boolean combinations of counter boundedness conditions. For c ∈ C, the
condition B(c) is satisfied by all infinite paths π = v0v1 . . . , called plays, such that for some
N ∈ N, the value of c along π is bounded by N . Note that the bound N is not uniform, in
the sense that it depends on π, and as a consequence, the set of plays satisfying B(c) is not
ω-regular in general. In this paper, we consider particular classes of Boolean combinations of
boundedness conditions. Since they do not necessarily capture all ω-regular objectives, we
also, by default, equip counter games with a parity condition.

Given an objective W , as a Boolean formula Φ over atoms B(c) for all c ∈ C, the goal of
the protagonist, Eve, is to enforce plays which satisfy W and the parity condition, whatever
the adversary, Adam, does. If she has a strategy to meet this objective, she is said to win
the game. Counter games are zero-sum, meaning that the goal of Adam is to enforce the
complementary objective. The goal of this paper is to build a fine understanding of counter
games, by studying the problem of deciding the winner for important classes of counter
games.

Motivations. On infinite words, classes of counter automata with boundedness conditions
have appeared in various papers, e.g. in [6, 15, 3, 8]. The most relevant models in the
context of counter games are the ωBS-automata of [6] and the max-automata of [8]. They
are equipped with the same counter operations as the counter games of this paper, plus
a max operation in the case of max-automata, and some boundedness conditions. As a
consequence, winning objectives in counter games can naturally be expressed with these
automata. However, while they are known to have decidable emptiness problem, not much is
known when they are used to define objectives in two-player games. A motivation for this
paper is to investigate this question, for games where the winning conditions is not given by
such an automaton but where counter operations are explicitly given in the arena.

In the same line of works, max-automata, which are deterministic, are known by [3] to
correspond to the logic WMSO+U, which extends weak MSO on infinite words with the
unbounded quantifier UX. A formula UX.ϕ(X) holds if there are arbitrarily large sets X
satisfying ϕ. An important and strong result by Bojańczyk states that the extension of
WMSO+U to infinite binary trees and with a path quantifier which allows to quantify over
infinite paths, has decidable satisfiability problem [7]. Since strategies are definable, modulo
a tree encoding, in this latter logic, a direct consequence of this result is that two-player
games with objectives given by max-automata are decidable (see also Example 2 of [7]).
As a consequence, counter games with boundedness conditions are decidable, though with
non-elementary complexity. We aim here at providing conceptually simpler arguments and
insights to prove decidability (with tighter complexity results), for particular instances of
boundedness conditions, instead of using the general result of [7].

Contributions. Our contributions are summarized in Fig. 1. We consider objectives given
as a conjunction of a parity condition and a formula over atoms B(c) in the following classes:
conjunctions, disjunctions, disjunctions of conjunctions, and negation-free formulas. We also
consider the extension of counter games with a max operator which can assign a counter with
the maximal value of several counters. The table also mentions the strategy complexity. For
conditions in

∧
B, counter games are easily proved to be interreducible in polynomial time
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to Streett games, yielding CoNP-completeness [22]. More interestingly, we prove that when
the number of counters is fixed, then, they are interreducible to parity games in polynomial
time, using another reduction (Thm 5).

We then prove, in it is our main contribution, that for conditions in
∨

B, counter games
are solvable in NP∩CoNP and in polynomial time when the index of the parity function
is fixed. To prove this result, we introduce the notion of finitely switching strategies which
are, to the best of our knowledge new, and we believe, interesting on their own. This notion
is specifically designed for disjunctions of prefix-independent objectives (which is the case
of counter boundedness conditions): in a finitely switching strategy, Eve announces which
objective from the disjunction she aims to satisfy, and she can change her mind along the
play, but only a finite number of times. Eventually, she is bound to satisfy one the objectives.
We give general conditions to decide whether Eve has a finitely switching strategy in a
two-player game with a disjunction of prefix-independent objectives, and prove that such
strategies are sufficient for Eve to win objectives in

∨
B and more generally in

∨∧
B.

Related works. Two-player games with boundedness conditions have been studied in the
literature, first as finitary parity and Streett games [12], then generalized to cost-parity and
cost-Streett games [20]. Finitary parity- and Streett-games are request-response games [13],
with the additional constraint that the delay (number of edges) between a request and its
response is bounded (by a bound which depends on the play). For cost-parity and cost-Streett,
instead of the number of edges, costs (including 0) label edges and the delay is defined as
the sum of the costs. Cost-parity and cost-Streett games can be encoded as counter games
with conditions in

∧
B, though with an exponential blowup. The difference between those

counter games and finitary- and cost-games can be seen in their complexity: counter games
with conditions in

∧
B are CoNP-c, finitary parity games are in PTime, cost-parity in

NP∩CoNP, and finitary Streett and cost-Streett are ExpTime-c.
Delay games with objectives given by a max-automaton have been proved to be decidable

in [26]. This result is orthogonal to ours: first, those games allow for some delay, here in
the sense that Eve has some look-ahead on Adam’s future actions. Second, the decision
procedure is non-elementary and rely on an encoding into WMSO+UP on infinite trees, some
argument we avoid here, but for less expressive boundedness objectives.

Infinite-state games with boundedness conditions have been considered in [11], over
pushdown arenas. Finitary games over these arenas are shown to be decidable, as well as
(pushdown) counter games with conditions in

∧
B, without complexity results. Interestingly,

it is shown that those games are equivalent to games where the objective of Eve is to uniformly
bound all counters, for a bound which only depends on her strategy, and not on the plays.
For counter games in

∧
B over a finite arena, this result can easily be seen as a consequence

that finite-memory strategies suffice for Eve.
Last but not least, counter boundedness games have appeared implicitly in some existing

works on synthesis [1, 19], though the classes considered in these papers are less general
and solved using specific techniques. In [19], the authors consider a synthesis problems
over infinite alphabets of data. In particular, they study the problem of synthesising Mealy
machines with registers satisfying specifications given as deterministic register automata over
(N, <, 0). It is shown that this problem is decidable in 2ExpTime, and, even though the
decidability proof is not based on counter games, it is proved that the synthesis problem
reduces to a game with winning conditions given as a (deterministic) max-automaton whose
acceptance is a disjunction of a parity condition and a disjunction of conditions of the form
“counter c is unbounded”. Although the main technical difficulty in [19] is to prove this
reduction, based on it, our results on counter games with max operation yields an alternative
procedure to decide the former synthesis problem (with same complexity).

CONCUR 2022



21:4 Two-Player Boundedness Counter Games

Winning objective Complexity Memory of Memory of Theorem
parity∧ Eve Adam∧

B coNP-c Finite none Th 3∨
B NP ∩CoNP Parity Index Infinite Th 12

PTime for fixed index∨∧
B coNP-c Finite Infinite Th 13

Bool+(B) PSPACE,CoNP-h Finite Infinite Th 14∧
B +max EXPTIME-c Finite Finite Th 15

Bool(B) +max Decidable Infinite Infinite from [5]

Figure 1 Complexity of deciding whether Eve has a winning strategy in a counter game for
various winning objectives, always taken in conjunction with a parity objective. Bool+(B) means
any negation-free Boolean combination of objectives of the form B(c). Hardness results hold for any
parity function of fixed constant index. The notation +max indicates that counter games are also
equipped with a max operation. Since counter games with boundedness objectives are determined,
this yields the complexity of deciding whether Eve wins for the complementary objectives: for
example, it is NP-c for objectives parity ∨

∨
U and memoryless strategies are sufficient for Eve, and

in PTIME for parity ∨
∧

U but infinite memory might be necessary for Eve.

The work of [1] considers a parameterized synthesis problem called the population control
problem. In this problem, an arbitrary number of processes execute the same NFA, with the
goal of reaching an accepting state. The controller picks an action (a letter) common to all
of them, while the adversary resolves non-determinism for each of them individually. The
problem is to decide whether “controller wins for any number of processes”. It is shown that
this problem reduces to a finite graph game with a condition of the form “if the play has
bounded capacity – where this bound depends on the play –, then the play satisfies some
reachability condition” (see Sec 3.2 and Lemma 9 of [1]). Though the authors show that this
condition can be equivalently replaced by an ω-regular one, it could also be directly encoded
as a counter boundedness condition (with max operation). Our results combined with this
reduction would however not provide the optimal complexity found in [1].

While our results on counter games do not provide new decidability results (nor better
complexities) with respect to the two applications mentioned before, these two applications
show that counter games with boundedness conditions arise naturally in synthesis problems,
motivating our general study.

2 Preliminaries

For any set Σ, we denote by Σ∗ (Σω) the finite (infinite) sequences of elements of Σ.

Two-player arenas. A two-player arena is a tuple A = (V,E, V∃, V∀, v0), where V is finite
set, E ⊆ V × V , and V∃ and V∀ are two subsets of V such that {V∃, V∀} is a partition of
V , and v0 is an initial vertex. In this paper, we assume that arenas are deadlock-free, i.e.
that for any v ∈ V , there exists v′ ∈ V such that (v, v′) ∈ E. Given v ∈ V , we denote
A[v] = (V,E, V∃, V∀, v) the arena A where v0 has been substituted by v. A play ρ of A is a
mapping from N to V such that (ρ(i), ρ(i+ 1)) ∈ E, for all integers i ∈ N. The set of plays is
denoted by Plays(A). Any play can also be seen as an element of V ω, and we call a history
any finite prefix of a play, and denote by Hist(A) the set of histories of A.
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Strategies and finite-memory. A strategy for Eve (resp. Adam) is a function σ from
Hist(A) to V defined for all histories h = h0 · · ·hn with hn ∈ V∃ (resp. hn ∈ V∀), and
such that (hn, σ(h)) ∈ E. A play ρ is consistent with a strategy for Eve (resp. Adam) if,
for any integer n such that ρ(n) ∈ V∃ (resp. ρ(n) ∈ V∀), σ is defined on ρ(0) · · · ρ(n), and
ρ(n+ 1) = σ(ρ(0) · · · ρ(n)). We let Plays(A, σ) (or just Plays(σ) when A is clear from the
context) the set of plays consistent with σ.

A strategy σ of Eve (resp. Adam) is said to be finite-memory if there exists a finite set
M , an element mI ∈ M , a mapping δ from V ×M to V , and a mapping g from V ×M
to M such that the following is true. When h = v0v1 · · · vl is a prefix of a play consistent
with σ such that vl ∈ V∃ (resp. vl ∈ V∀), and the sequence m0,m1, ...,ml is determined by
m0 = mI and mi+1 = g(vi,mi), then σ(w) = δ(vl,ml). In that case, we say that (δ, g) is a
memory mapping pair of σ, and that ml is the memory state of g at move l. We also say
that σ is of memory |M |, and memoryless if it is of memory 1. Note that a memoryless
strategy can just be identified with a mapping from V to V .

Two-player games. A winning condition for A is a subset W ⊆ V ω. A strategy σ of Eve or
Adam is said to be winning for objective W if Plays(σ) ⊆W . A two-player game is a pair
G = (A,W ) where A is an arena and W is a winning condition. We say that a strategy (of
Eve or Adam) is winning in G if it is winning for W . A game G = (A,W ) is determined if
either Eve wins G or Adam wins (A, V ω\W ).

In this paper, we consider the problem of deciding, given a game G with a finitely
represented winning condition, whether Eve wins G. For a complexity class C and a class of
games G, we say that games in G are in C (resp. C-hard, C-complete) if the latter problem
for games G ∈ G is in C (resp. C-hard, C-complete).

We also consider the complexity of strategies sufficient or necessary for Eve and Adam to
win a game. We say that finite-memory strategies are sufficient for Eve (resp. Adam) to win
G if for all G ∈ G, whenever Eve (resp. Adam) wins G, she has (resp. he has) a finite-memory
winning strategy in G. We say that finite-memory is necessary for Eve (resp. Adam) to win
G if memoryless strategies do not suffice for Eve (resp. Adam) to win G. Finally, we say that
infinite-memory is necessary for Eve (resp. Adam) to win G if finite-memory strategies do
not suffice for Eve (resp. Adam) to win G.

Parity games. Let A be an arena with set of vertices V . Let Q ⊆ N be a finite set of
elements called colours and κ : V → Q a mapping from vertices to colours called parity
function or priority function. The size |Q| of Q is called the index of κ. The mapping κ
defines a winning condition denoted Parity(κ), called a parity condition, as follows: Parity(κ)
is the set of all infinite words w = w0w1 · · · ∈ V ω such that the greatest colour occurring an
infinitely often in κ(w0)κ(w1) · · · is even. A parity game is a game whose winning condition is
a parity condition. We refer to A′ = (A, Q, κ) as a coloured arena, and also denote Parity(κ)
as Parity(A′) to avoid an explicit mention of the colouring κ. Note that a coloured arena
A′ = (A, Q, κ) uniquely defines a parity game G = (A,Parity(A′)). It is well-known that
parity games are in NP ∩CoNP [17], and even solvable in quasi-polynomial time [10].

Counter operations. Our goal is now to define counter games. First, we introduce counter
operations and their semantics. In the rest of the paper, we fix a countable set C whose
elements are called counters. A counter operation is a mapping from a finite subset C of
C to {i, r, skip}. We let Op(C) denote the set of counter operations over C ⊆ C. A counter
valuation is a mapping ν from C to N. For any infinite word w ∈ Op(C)ω, we define λ(w)
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as the infinite sequence of counter valuations ν0, ν1, ν2, . . . such that for any counter c ∈ C,
ν0(c) = 0 and for any non-negative integer n, νn+1(c) = νn(c) + 1 if wn(c) = i, νn+1(c) = 0
if wn(c) = r and νn+1(c) = νn(c) if wn(c) = skip. We define λ(w) for w ∈ Op(C)∗. To ease
notations, we write λ(w, c)i instead of λ(w)i(c). We say that λ is the evaluation of w.

Counter games with boundedness objectives. Let A′ be an arena with set of vertices
V , C ⊆ C a finite set of counters, and ζ : V → Op(C) a mapping from vertices to counter
operations, called vertex labeling. Let Q be a set of colours and κ : V → Q be a colouring of
V . To avoid cumbersome notations, for any vertex v ∈ V and counter c ∈ C, we let ζc(v)
denote (ζ(v))(c). We refer to A = (A′, C, ζ,Q, κ) as a counter arena, to A′ as its underlying
arena and to (A, Q, κ) as its underlying coloured arena. We let Parity(A) = Parity(κ).

We consider a particular type of winning objective for counter games, called boundedness
conditions, always together with a parity condition. Let c ∈ C. We let B(c) be an atomic
formula which intuitively requires that counter c is bounded along a play, by some constant.
Formally, B(c) is interpreted in A by the set of plays ρ of A, denoted Plays (A,B(c)), such
that the sequence λ(ζ(ρ), c) is bounded, i.e.

Plays (A,B(c)) = {ρ ∈ Plays(A) | ∃N ∈ N, ∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

The set Plays (A,B(c)) is called a boundedness condition. To ease readability, we may just
write B(c) to denote Plays (A,B(c)) when A is clear from the context. We let U(c) as
a shortcut for ¬B(c). A counter condition for A is a Boolean formula ϕ over the set of
propositions {B(c) | c ∈ C}. Its interpretation Plays (A, ϕ) ⊆ Plays(A) over A is defined
naturally.

Given a counter condition ϕ, the pair G = (A, ϕ) is called a counter game. The game
induced by G = (A, ϕ) is the game Gϕ = (A′, P lays (A, ϕ) ∩ Parity(A)), where A′ is the
underlying arena of A. Note that in a counter game, both the counter condition and the
parity condition must be satisfied. The notion of strategies and winning strategies carry over
to counter games by considering the games they induce. In particular, Eve wins G if she
wins Gϕ, i.e., she has a strategy winning for the objective Plays (A, ϕ) ∩ Parity(A).

In this paper, we consider several classes of counter conditions. The class of counter
conditions of the form

∧
c∈C B(c) for some finite set C ⊆ C is denoted

∧
B. Similarly, we

denote by
∨
B,
∨∧

B and Bool+(B) the classes of counter conditions which are respectively,
disjunctions of atoms B(c), disjunction of conjunctions of atoms B(c) (DNF), any negation-free
Boolean formula.

▶ Example 1. First, Fig. 2 illustrates an example (left) with a disjunction of boundedness
objectives (see the caption for details). Our second example is given by the 2-counter arena
at the right of Fig. 2, where Adam controls all states. Adam has a strategy to win the
objective

∧
i=1,2 U(ci). Indeed, he can alternate between q1 and q2 by cycling longer and

longer in one before cycling to the other. Notice that this strategy requires infinite memory.

▶ Lemma 2. Counter games (with Boolean combinations of boundedness objectives) are
determined and decidable.

Proof. Given a counter arena A and a counter c of A, the set Plays (A,B(c)) is a Borel set.
Indeed, it is equal to the countable union for all N ≥ 0 of the sets

PlaysN (A,B(c)) = {ρ ∈ Plays(A) | ∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

which are ω-regular. Indeed, a Büchi automaton needs |V | × N × |C| states to recognize
PlaysN (A,B(c)). Since ω-regular sets are Borel, so is Plays (A,B(c)), as well as any Boolean
combination of the latter. By Martin’s determinacy theorem [24], the result follows.
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q3

(skip, i)

q4

(skip, i)

q1

(i, skip)

q2

(i, skip)

q1

(i, r)
q2

(r, i)

Figure 2 (Left) Counter arena A = (V, E, V∃, V∀, v) with V∃ = {q1, q3} and V∀ = {q2, q4}, v = 1.
There are two counters (c, d) whose updates are represented on the figure as pairs. We assume no
parity condition and a counter condition B(c) ∨ B(d). From vertex 3, Eve has a memoryless winning
strategy σ: always move to 4. Furthermore, she does not have a strategy from 1 to bound counter
c, neither does she have a strategy from 1 to bound d. However, she has a memoryless strategy
β winning for B(c) ∨ B(d): from 1, she moves to 2, and from 3 she moves to 4. If the play stays
in {1, 2}, then d is bounded, and if the play eventually moves to 3, then c is bounded. (Right) A
2-counter arena with all states controlled by Adam and no parity condition.

To prove decidability, it suffices to notice that winning strategies in counter games are
infinite trees such that all of their branches are accepted by a deterministic max-automaton as
defined in [3]. Deterministic max-automata corresponds exactly to the logic WMSO+U over
infinite words (weak MSO with the unbounding quantifier). WMSO+U has been extended to
WMSO+UP on infinite trees with an additional quantifier over infinite paths (P). Therefore,
winning strategies of two-player games with winning conditions definable in WMSO+U
over infinite words are definable in WMSO+UP (see Ex. 2 of [5]). The result follows since
WMSO+UP has decidable satisfiability problem [5]. ◀

3 Counter games with conjunctions of boundedness conditions

In this section, we study games with counter conditions in the class
∧

B. Such games are
easily shown to be decidable using known results. Indeed, we prove that they are equivalent
in polynomial time to Streett games, known to be CoNP-complete [18], and in PTIME for
a fixed number of Streett pairs [25]. This allows us to prove the following theorem:

▶ Theorem 3. Counter games with winning conditions in
∧
B are coNP-complete, and

in PTIME if both the index of the priority function and the number of counters are fixed
constants. Finite memory suffices for Eve and memoryless strategies suffice for Adam.
coNP-hardness holds even if the index of the parity function is any fixed constant.

Sketch of proof. First, we define Streett games. Given an arena A with set of vertices V ,
and a set of k pairs S = {(Ei, Fi) | 1 ≤ i ≤ k,Ei, Fi ⊆ V }, we let Streett(S) be the set of
words w ∈ V ω such that for all i = 1, . . . , k, if w contains infinitely many occurrences of
some e ∈ Ei, then it must contain infinitely many occurrences of some f ∈ Fi. A Streett
game is a pair G = (A,W ) where W is given as set of k Streett pairs S, i.e., W = Streett(S).
We prove that

∧
B-counter games are interreducible to Streett games in polynomial time.

From any counter game G, we construct a Streett game Ψ(G) with the same arena and
for each counter c a pair (Ec, Fc) such that Ec is the set of vertices where c is incremented
while Fc is the set of vertices where c is reset. The parity function of the counter game can
also be split up into Streett pairs. If Eve wins G, it is obvious that Eve wins Ψ(G) with
the same winning strategy. For the converse, we use the fact that finite-memory strategies
suffice to win Streett games (and memoryless strategies suffice for Adam) as shown in [25].
Any finite-memory Eve’s strategy σ winning for Ψ(G) is also winning for G. Indeed, if σ
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has some play with some unbounded counter c, then c is necessarily incremented and reset
infinitely often. Adam could then find a cycle (both on the arena and the memory structure
of σ) containing at least one increment of c and no reset, iterate this cycle ad infinitum, and
make Eve lose the Streett game if she plays σ. This contradicts that σ is winning. As a
consequence, Eve wins G iff she wins Ψ(G). To get the CoNP lower bound, we use the fact
that Ψ is actually reversible, in polynomial time. ◀

Theorem 3 does not cover the case where only the number of counters is fixed. We prove
that in this case, the complexity is at most NP ∩ coNP. Any Streett pair can be seen as
a parity condition over colors {0, 1, 2}. Therefore, if in the latter transformation Ψ we use
{0, 1, 2}-parity conditions instead of Streett pairs and keep exactly the parity condition of
G, we obtain that any

∧
B-counter game with a fixed number ℓ of counters, is equivalent

(in the sense that it preserves the winner) to a game with a winning condition which is a
conjunction of a fixed number ℓ of {0, 1, 2}-parity conditions and a single arbitrary parity
condition. We prove that such games are in turn reducible in polynomial time to parity
games for ℓ = 1 in the following lemma, later on applied recursively to show the result the
result for any fixed ℓ (Theorem 5).

▶ Lemma 4. Games of the form G = (A,W ) where W = Parity(κ) ∩ Parity(κ3) for κ an
arbitrary colouring of index k and κ3 a colouring in {0, 1, 2}, reduce in polynomial time to
parity games of index 2k + 1. Moreover, finite-memory strategies of memory size equal to k

are sufficient for Eve to win G.

Note that Lemma 4 entails that games with a conjunction of a parity condition of index
k and a fixed number N of parity conditions over colors {0, 1, 2} are solvable in NP∩CoNP.
Indeed, by iterating Lemma 4 N times, the latter games reduce to parity games of index
2N (k + 1)− 1 (and number of states exponential in N). Games with Boolean combinations
of parity objectives have been studied in [14]. However, the former complexity result is not
covered by [14]. As explained before, Lemma 4 implies the following theorem:

▶ Theorem 5. For any fixed positive integer N , counter games of parity index k (which is
not supposed to be fixed) with winning conditions in

∧
B and at most N counters, are in

NP ∩CoNP (and parity-hard). Finite memory strategies with memory size 2N−1(k + 1)− 1
suffice for Eve and Adam.

4 Finitely switching strategies for games with disjunction of
prefix-independent objectives

Let A be an arena, let V be its set of vertices, and let W be a finite set of prefix-independent1

winning conditions for A, i.e., W ⊆ 2V ω . We let
∨
W =

⋃
{W | W ∈ W}. In this section,

we consider a class of strategies for Eve, called finitely switching, whose existence entail that
she wins (A,

∨
W). We characterize the existence of finitely switching strategies via a least

fixpoint and, for some particular classes of winning objectives
∨
W of interest in this paper,

prove that such strategies suffice for Eve to win (A,
∨
W). The complexity of computing the

fixpoint for those particular classes of objectives is deferred to Section 5.
Let us first give intuition on the notion of finitely switching strategies. In such a strategy,

Eve announces an initial goal W ∈ W she wants to satisfy, but she may change her mind
during the play, i.e., announce another goal W ′ ∈ W, depending on what Adam does. She

1 A winning condition W is prefix-independent if, for all (w, u) ∈ (V ω, V ⋆), w ∈ W iff uw ∈ W .
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can do this only a finite number of times and eventually keep the same goal forever and
satisfy it. Formally, for k ≥ 0, a k-switching strategy for Eve is a strategy σ such that there
exists a mapping goal from finite histories of σ toW such that for all π = v1v2 · · · ∈ Plays(σ),
there exists W1, . . . ,Wk+1 ∈ W such that π ∈Wk+1 and

goal(v0)goal(v0v1)goal(v0v1v2) · · · ∈W ∗
1W

∗
2 . . .W

∗
kW

ω
k+1

The goal Wk+1 is called the ultimate goal of π. We say that σ is finitely switching if it is
k-switching for some k ≥ 0.

▶ Example 6. Consider the example of Fig. 2. The described strategy β is 1-switching for
W = {B(c),B(d)}: initially, her goal is B(d). If Adam ever tries to make it so that counter d
gets unbounded, by going to vertex 3 from vertex 2, Eve can now set her new goal to B(c).

Consider now the 2-state arena of Example 1 in which Eve wants to satisfy
∨

c=1,2 U(c).
She has no finitely switching strategy: whenever she announces she wants to satisfy U(ci) for
some i, Adam loops on state q3−i until Eve changes her mind. If her ultimate goal is U(ci)
for some i, then Adam will loop forever on q3−i and ci will be bounded, so that Eve does
not meet the ultimate goal she announced. By seeing operations on c1 and c2 as priority
functions, this example also shows that finitely switching strategies are not sufficient to win
disjunctions of parity objectives in general. More precisely, for i = 1, 2, we can define the
priority functions pi which colors qi by 0 and q3−i by 1. If she ultimately announces her goal
is to satisfy priority pi, then Adam takes transition q3−i forever and pi sees infinitely many
times color 1.

Since in a finitely switching strategy, any play consistent with that strategy must satisfy
its ultimate goal, the following result is immediate:

▶ Lemma 7 (Soundness). Any finitely switching strategy for Eve in A is winning for (A,
∨
W).

We will see later on that the converse holds for some particular classes of boundedness
objectives, but for now, let us characterize the existence of finitely switching strategies
via some least fixpoint. For a set X ⊆ V , we denote the objective of reaching X by
Reach(X) = V ∗XV ω. We let f be the function which associates any X ⊆ V to the set of
vertices u from which Eve can win the objective W ∪ Reach(X) for some W ∈ W . Formally,
f(X) = {u ∈ V | ∃W ∈ W , Eve wins (A[u],W ∪ Reach(X))}. Note that X ⊆ f(X) for
all X ⊆ V . Indeed, if u ∈ X, then Eve has a trivial strategy from u to reach X, and so
u ∈ f(X). Since (2V ,⊆) is a complete lattice, by Knaster–Tarski theorem, f has a unique
least fixpoint denoted SW . To compute SW , it suffices to compute the following sequence of
sets until it stabilizes:

SW
0 = ∅,

for i ≥ 0, SW
i+1 = {u ∈ V | ∃W ∈ W , Eve wins (A[u],W ∪ Reach(SW

i ))}.
For all i ≥ 1 and u ∈ SW

i (if it exists), we denote by σu,i a strategy for Eve winning in the
game (A[u],W ∪ Reach(SW

i−1)) for some W ∈ W . It exists by definition of SW
i .

We now prove the following characterization.

▶ Lemma 8 (Fixpoint characterization of finitely switching strategies). Let A be an arena with
set of vertices V and W a finite set of prefix-independent winning conditions for A. For all
u ∈ V , the following are equivalent:
1. Eve has a finitely switching strategy from u

2. Eve has a |V |-switching strategy from u

3. u ∈ SW
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Proof. Clearly 2⇒ 1. We first prove 1⇒ 3 and then 3⇒ 2.
Let σ be a k-switching strategy for some k ≥ 0. By induction on k, we prove that

u ∈ SW
k+1. This implies the claim as SW

k+1 ⊆ SW .
If k = 0, then Eve never changes her mind and therefore all plays of Plays(σ) are in

goal(u) (the history with only the vertex u), so, u ∈ SW
1 . Suppose that k > 0. We take

W = goal(u). Let π ∈ Playsσ. We prove that π ∈W ∪ Reach(SW
k ). If Eve never changes her

mind during π, then π ∈W . Otherwise, let h the smallest prefix of π such that goal(h) ̸= W .
Let v be the last vertex of h. Note that the strategy2 σ|h is a (k− 1)-switching strategy from
v. By IH, v ∈ Reach(SW

k ), which means that π ∈ Reach(SW
k ) and we are done.

We now prove 3⇒ 2. Let u ∈ SW . Let i be smallest index such that u ∈ SW
i . Note that

i ≤ |V |. We prove by induction on i that Eve has an (i− 1)-switching strategy βu,i witnessed
by a goal function goalu,i. If u ∈ SW

1 , then σu,1 wins (A[u],W ) for some W ∈ W and so we
let goalu,1(h) = W for any history h of σu,1.

Suppose that i > 1 and u ∈ SW
i . Remind that the strategy σu,i wins (A[u],W ∪

Reach(SW
i−1)). We modify σu,i into a strategy βu,i as follows: βu,i is the same as σu,i as long

as SW
i−1 has not been reached. If eventually SW

i−1 is reached, say at a vertex v, then βu,i plays
according to βv,i−1 (which exists by IH).

We prove that βu,i is (i− 1)-switching. We let goalu,i(h) = W for any history h which
does not visit SW

i−1. For any history h = h1vh2 such that |h1| is minimal and v ∈ SW
i−1, we

let goalu,i(h) = goalv,i−1(vh2). Let π ∈ Plays(βu,i). If π = v0v1 . . . never visits SW
i−1, then

goal(v0)goal(v0v1) · · · ∈ Wω, and π ∈ Wω. If there exists j minimal such that vj ∈ SW
i−1,

then, by HI, there exists W1, . . . ,Wi ∈ W such that goalvj ,i−1(vj)goalvj ,i−1(vjvj+1) · · · ∈
W ∗

1 . . .W
∗
i−1W

ω
i . By definition of goalu,i, we obtain that goalu,i(v0)goalu,i(v0v1) · · · ∈

W ∗W ∗
1 . . .W

∗
i−1W

ω
i . Finally, it remains to prove that π ∈Wi: by IH, its suffix vjvj+1 . . . is

in Wi, and since Wi is prefix-independent, so is π, concluding the proof. ◀

According to Lemma 8, when Eve has a finitely switching strategy, then she has a
|V |-switching strategy. Interestingly, observe that the number of times she possibly needs to
change her mind does not depend on the number of winning objectives in W.

The proof of Lemma 8 constructs, for all 1 ≤ i ≤ |V | and u ∈ SW
i , a finitely switching

strategy βu,i, which either mimics σu,i or switch to a strategy βv,i−1. So, Eve needs to
remember the current vertex u and index i, in order to know whether she must play according
to σu,i or to switch to a strategy βv,i−1. So, even if for some N , all the strategies σu,i are
finite-memory of size at most N , βu,i needs memory O(N.|V |2) in general. We now prove
that Eve can do better.

▶ Lemma 9 (Memory transfer). Let A be a counter arena, V be its set of vertices, and W a
finite set of prefix-independent winning conditions for A. Let N ∈ N and suppose that for
all X ⊆ V , u ∈ V and W ∈ W, strategies of memory size at most N suffice for Eve to win
(A[u],W ∪ Reach(X)). Then for all u ∈ SW , Eve wins (A[u],

∨
W) with memory at most N .

The converse of Lemma 7 does not hold in general, as illustrated in Example 1 for
disjunction of unboundedness objectives. However, we show here that it holds for disjunctions
of conjunctions of boundedness objectives.

▶ Lemma 10 (Completeness for boundedness conditions in DNF). Let A be a counter arena
and C its set of counters. Let W be a finite subset of counter conditions for A in

∧
B. If Eve

wins the counter game (A,
∨
W), then she has a finitely switching strategy from the initial

vertex v0.

2 The restriction σ|h is defined by σ|h(h′) = σ(hh′) for all h′.
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Proof. Let C1, . . . , Cp be subsets of C such that W is the set of all counter conditions∧
c∈Ci

B(c), for i ∈ {1, . . . , p}. Suppose that Eve does not have a finitely switching strategy
from the initial vertex v0. This means, by Lemma 8, that v0 ̸∈ SW . We construct a strategy for
Adam winning the complementary objective Comp =

⋂
i∈{1,...,p}

(⋃
c∈Ci

U(c) ∪ Parity(A)
)
.

By definition of SW , f(SW) = SW . Therefore, by definition of f , for any v ∈ V \SW and
i ∈ {1, . . . , p}, Eve does not win the game (A[v], (Parity(A[v]) ∩

⋂
c∈Ci

B(c)) ∪ Reach(SW)).
Moreover, notice that since Parity(A[v]) ∩

⋂
c∈Ci

B(c) is a Borel set, so is (Parity(A[v]) ∩⋂
c∈Ci

B(c)) ∪ Reach(SW). Thus, by Martin’s theorem, Adam has a winning strategy σv,i

in A[v] for the complementary objective (
⋃

c∈Ci
U(c) ∪ Parity(A[v])) ∩ Reach(SW), for all

i ∈ {1, . . . , p}. Let us now explain how intuitively we build a strategy for Adam winning for
Comp. It is defined by breaking it down into the following steps:

Adam begins by step (1, 1): he follows strategy σv0,1 until the play of the game reaches a
vertex where the value of a counter of C1 is 1. If that is never the case, then Adam follows
σv0,1 ad. infinitum. Notice that, if the value of every counter of C1 is bounded by a
certain integer, Adam wins, since the play does not belong to Parity(A[v0]) = Parity(A).
After completing step (i, j) in a vertex v, two cases arise:

If j < p, then Adam carries out step (i, j + 1) by following σv,j+1 until the play of
the game reaches a vertex where the value of a counter of Cj+1 is i. If that is never
the case, Adam follows σv,j+1 ad. infinitum, and he wins since the play then satisfies
Parity(A[v]) starting from v, and thus Parity(A) globally.
If j = p, then Adam carries out step (i+ 1, 1) by following σv,1 until the play of the
game reaches a vertex where the value of a counter of C1 is i+ 1. If that is never the
case, Adam follows σv,1 ad. infinitum. ◀

5 Complexity of games with disjunctions of boundedness conditions

The next result gives sufficient conditions on a class of games G, to guarantee decidability of
the problem of deciding if Eve has a finitely switching strategy for a disjunction of objectives
in the class. In this result, we assume that the winning objectives of G are finitely represented
in some way. This is the case of all classes to which we apply this lemma in the paper.

▶ Lemma 11. Let C ∈ {PTIME,NP,coNP,EXPTIME}. Let G be a class of games with
prefix-independent objectives, such that deciding whether, given (A,W ) ∈ G, a vertex v of A,
and a subset X of vertices of A, Eve wins (A[v],W∪Reach(X)), is in C. Then, deciding, given
an arena A and a finite subset of winning conditions W such that {(A,W ) |W ∈ W} ⊆ G,
whether Eve has a winning finitely switching strategy for (A,

∨
W), is in C.

Proof. Suppose first that C = PTIME. From Lemma 8, Eve has a winning finitely switching
strategy for (A,

∨
W) if and only if the initial vertex v0 of A is in SW . Thus, we can decide

whether Eve has a finitely switching strategy by recursively computing the SW
i , one after

the other, until SW
i = SW

i+1 = SW . In order to compute SW
i+1 from SW

i , we check for every
vertex v of A whether Eve wins the game (A[v],W ∪ Reach(SW

i )). Thus, since SW
|V | = SW ,

in order to compute SW , we only need to check, in ptime, whether Eve wins a game of the
form (A[v],W ∪Reach(X)) at most |V | × |V | × |W| times. As a consequence, the problem of
deciding whether Eve has a winning finitely switching strategy for (A,

∨
W) is in PTIME.

We present this generic fixpoint algorithm in Algorihtm 1, as it is useful to treat the other
complexity cases. In that figure, slv is an algorithm that terminates in polynomial time, and
such that slv(A, v,W,H) returns true if and only if Eve wins (A[v],W ∪ Reach(H)). The
case where C = EXPTIME is similar to the case where C = PTIME.
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Algorithm 1 Generic algorithm to check v ∈ SW .

SOLVE(A,W)
//v0 is the initial vertex of A
//V = {v1, . . . , vn}
//W = {W1, . . . ,Wp}
1. N ← n2 × p
2. α← 0
3. H0, H1, . . . ,HN ← ∅
4. While α < n

5. For i = 1, . . . , n
6. For j = 1, . . . , p
7. If slv(A, vi,Wj , Hα)
8. Hα+1 ← {vi} ∪Hα+1
9. α← α+ 1

10. Return (v0 ∈ Hα)

In the case where C = NP, we transform the algorithm SOLVE into an ptime algorithm
VERIF, which is defined as the algorithm SOLVE, except that line 7 is replaced by a call to
a ptime verifier that Eve wins (A[vi],Wj ∪ Reach(Hα)) given a certificate. Notice that the
algorithm given is directly written as an algorithm in NP, i.e. an algorithm that verifies if
Eve wins given a certificate, and not as an algorithm in P with oracle NP. All the certificates
needed for each call at line 7 are taken as input of the algorithm VERIF. This approach works
because the algorithm VERIF returns True if and only if the answers to some well-chosen
questions of the type “Does Eve win (A[v],W ∪ Reach(X))?” are true. The case where
C = CoNP is done in a similar way, but this time by guessing the complement of SW . ◀

We are now ready to prove complexity results for solving counter games with disjunction
of boundedness objectives. We start with the case of

∨
B.

▶ Theorem 12. Counter games with counter conditions in
∨

B are in NP ∩ coNP, and are
in PTIME if the index of the colouring is fixed. A memory of size equal to the index of the
colouring suffices for Eve, and infinite memory is required for Adam.

Proof. Let G be a game over counter arena A with set of counters C, initial vertex v0 and
objective

∨
W where W = {Parity(A) ∩ B(c) | c ∈ C ′} for some C ′ ⊆ C. It should be

clear that those conditions are prefix-independent, therefore, by Lemma 8 and Lemma 10,
Eve wins G iff she has a finitely switching strategy iff v0 ∈ SW . So, to check whether Eve
wins G, it suffices to compute the fixpoint SW . We prove that each step of the fixpoint
computation (line 7 in algorithm SOLVE) is done in NP ∩ coNP, and in PTIME if the
index of the colouring is fixed. By Lemma 11, the complexity statement of the theorem
follows. It remains to show that for all subset X ⊆ V , any vertex u ∈ V and any counter
c ∈ C ′, it is decidable in NP ∩ coNP (and in ptime for fixed parity) whether Eve wins the
game (A[u], (Parity(A) ∩ B(c)) ∪ Reach(X)). First, we evacuate the reachability condition,
i.e., reduce in ptime the latter problem to solving a game (A′,Parity(A′) ∩ B(c)). This is
easily done by adding a sink state to A reached whenever X is visited, with operation skip
on c and priority 0. This reduction works for more general boundedness conditions. Finally,
the game (A′,Parity(A′) ∩ B(c)) is solvable in NP ∩ coNP by Theorem 5, and in ptime for
fixed parity, which is the case of A′ when the index of A is fixed, because they have the same
colours.
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For Adam, infinite memory might be necessary to enforce the complementary objective,
as illustrated by Example 1. For Eve, Theorem 5 states that a memory of size the index
of the parity function is sufficient to solve the “local” games (A′,Parity(A′) ∩ B(c)), which
can be translated back to strategies of same size in (A[u], (Parity(A) ∩ B(c)) ∪ Reach(X)).
Therefore, the memory transfer lemma (Lemma 9) yields the result. ◀

We now turn to games on arenas A with conditions in
∨∧

B, i.e., whereW = {Parity(A)∧∧
c∈Ci

B(c) | i = 1, . . . , n} for C1, . . . , Cn finite subsets of counters. The same reasoning as in
the proof of Theorem 12 applies. The only difference here is that, to solve the “local” games
of the fixpoint computation (line 7 of algorithm SOLVE), we rely on Theorem 3.

▶ Theorem 13. Counter games with winning conditions in
∨∧

B are coNP-complete.
Finite memory suffices for Eve, and infinite memory is required for Adam.

We conclude this section by the case of Boolean combination of boundedness objectives.

▶ Theorem 14. Counter games with winning conditions in Bool+(B) are in PSPACE and
CoNP-hard. Finite memory suffices for Eve, and infinite memory is required for Adam.

Proof. Any counter condition which is a positive boolean combination ϕ ∈ Bool+(B) can be
written in disjunctive normal form ψ =

∨
i∈{1,...,p}

∧
c∈Ci

B(c), where the Ci are subsets of C.
Let W = {Parity(A) ∧

∧
c∈Ci

B(c) | i = 1, . . . , n}. A direct application of Theorem 13 yields
a CoNExpTime, because p might be exponential. Instead, we do not construct ψ explicitely.
Recall that, from Theorem 3, counter games with counter conditions in

∧
B are in coNP,

and thus in PSPACE. Thus, since it is well-known that, even if p may be exponential in the
size of ϕ, we can enumerateW in polynomial space, we can use this enumeration algorithm at
line 6 of algorithm SOLVE in Algorithm 1 to compute the fixpoint SW in polynomial space.
As a consequence, the problem of deciding whether Eve has a winning finitely switching
strategy for counter games with winning conditions in Bool+(B) is in PSPACE. Hence, the
result follows because, as for Theorem 13, these strategies suffice for Eve. ◀

6 Extensions of counter games with max operation

In this section, we consider counter games where the players can, in addition, put into a
counter the maximum value of a subset of counters. In other words, max-counter games are
defined in the same exact way as counter games, the only difference being counter operations
are now mappings from a finite subset C of C to {i, r, skip} ∪ {max

c∈S
(c) | S ⊆ C}.

▶ Theorem 15. Let G be the class of counter games G with counter condition
∧

c∈C B(c),
where C is the set of counters of G. Given a game G in G, the problem of deciding whether
Eve wins G is EXPTIME-c. Finite memory is sufficient for Eve and Adam.

Proof. For hardness, we reduce the emptiness problem of the intersection of n deterministic
top-down tree automata, which is known to be EXPTIME-hard [16]. We first show PSPACE-
hardness in the case of arenas where Adam plays no role, i.e., V∀ = ∅. The proof is by
reduction from the emptiness problem of the intersection of n DFA. The latter reduction
is inspired from the proof that deterministic min-automata have PSPACE-c emptiness
problem [8]. Using the fact that strategies are trees, we lift the latter reduction to tree
automata. It is non-trivial but standard. The detailed proof is in Appendix, in Lemma 16.

It remains to show that solving a game in G can be done in exponential time. The
difficulty for solving a game G of G comes from the fact that counters interact with each
other, since the value of counters can “flow” from one to another via the max operation.

CONCUR 2022



21:14 Two-Player Boundedness Counter Games

That was not case for
∧
B-counter games without max, which are CoNP-c, and we could

track each counter separately, replacing each boundedness condition by a condition of the
form “if c is incremented infinitely often, then it is reset infinitely often”. Here, we need to
track sequences of counters that flow one into another, called traces. We rather solve games
with the complementary objective, which is correct since max-counter games are determined
(see Lemma 19 in Appendix). To formalize this idea, we use the notion of U-automata, i.e.
automata with counters accepting some positive boolean combination of unboundedness
conditions, that is a notion very close to the notion of S-automata described in [6]. We define
a (non-deterministic) U-automaton B with a single counter d and acceptance condition U(d)
that guesses either a new trace, or a valid continuation to the current trace, at every move of
a play of G. Every operation on the counters of the trace are mimicked on d, and it accepts
a play iff there exists a run such that d is unbounded. That same idea is already used in
the proof of Theorem 1 of [4], from which this proof is inspired. So, solving G boils down to
solving a game on the same arena but with objective given by the language L(B).

We show that the class of games G with an objective given by a non-deterministic
U-automaton with an acceptance condition of the form

∨
U is in EXPTIME. To that end,

we convert B into a non-deterministic parity automaton T , which does not preserve the
language, but preserves the existence of winning strategy for Eve: when playing on the arena
of G, Eve wins the objective L(B) if and only if she wins the objective L(T ). Correctness
is ensured by a pumping-like argument based on the fact that finite-memory strategies are
sufficient to win ω-regular games. The automata B and T are constructed in ptime from G.
Then we determinize T in exponential time, take its product with G, and obtain a classical
parity game of exponential size and linear index. We can conclude since parity games with
m edges, n vertices and index k can be solved in O(mnk) (see e.g. [14]). The detailed proof
is in the Appendix, in Lemma 15. ◀

7 Future work

In this paper, we have proved new complexity results for important classes of counter games,
with the aim of finely understanding why they are decidable. We observe that they are
mainly two types of boundedness conditions, which require different techniques: conjunc-
tions of boundedness conditions, which are equivalent to Streett games, and disjunction
of boundedness conditions (for which we introduce the notion of finitely switching strate-
gies). To emphasize this dichotomy, we note that even for a parity function of fixed index,
counters games with conjunctions of boundedness conditions are CoNP-c, while they are
in PTime for disjunctions. By determinacy, those results also yield complexity bounds for
the complementary classes of unboundedness objectives. For example, we get that games
with conjunctions of objectives of the form U(c) can be solved in NP∩CoNP and that
infinite memory is required. However, note that our counter games are always taken in
conjunction with a parity condition. Therefore, in the complementary objectives, this parity
condition is now taken in disjunction. We leave conjunction of parity and unboundedness
objectives as future work. Another important direction is to consider classes of conditions
that mix boundedness and unboundedness objectives. Since the techniques used to solve
them individually are different, this would require new techniques. More generally, the
only known upper bound for any Boolean combination (not necessarily negation-free) of
boundedness objective is non-elementary. We believe there is space for improvement.
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A Detailed proofs of Section 6

In this section, we prove the following theorem:

▶ Theorem 15. Let G be the class of counter games G with counter condition
∧

c∈C B(c),
where C is the set of counters of G. Given a game G in G, the problem of deciding whether
Eve wins G is EXPTIME-c. Finite memory is sufficient for Eve and Adam.

The proof of Theorem 15 is split into two parts, each covered by a different lemma.
Lemma 16 gives the EXPTIME-hardness, and Lemma 22 gives the EXPTIME-easyness.

▶ Lemma 16. Max-counter games with a single winning condition B(c) for some counter c,
and no parity condition, are EXPTIME-hard.
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Proof of Lemma 16. We prove EXPTIME-hardness of max-counter games with no parity
condition and a conjunction of boundedness conditions

∧
c∈C B(c). This entails the result

because one can always add a counter cm which takes the maximal value of all other counters
c ∈ C at each step, so that

∧
c∈C B(c) is satisfied iff B(cm) is satisfied.

To prove the theorem for conjunctions of boundedness conditions, we reduce the problem,
called

⋂
n DTOP , of deciding if the intersection of n languages recognized by deterministic

top-down tree automata (DTOP) is empty, which is known to be EXPTIME-c [23]. Before
giving the EXPTIME-hardness proof, we first prove PSPACE-hardness for the particular
class of counter games where V∀ = ∅, i.e., where Adam plays no role. We reduce the problem
of deciding if the intersection of n languages recognized by deterministic finite-automata
(DFA) is empty. We call the latter problem

⋂
n DFA. The proof is inspired by a PSPACE-

hardness proof of deciding non-emptiness of the language recognized by a deterministic
min-automaton [8]. Then we lift the reduction from

⋂
n DFA to the problem

⋂
n DTOP ,

i.e., to trees, by using the branching nature of counter games induced by Adam.
Consider an alphabet Σ and n complete DFA Di = (Σ, Qi, q

i
0, Fi, δi) such that all Qi are

pairwise disjoint. We construct a counter arena A[D1, . . . , Dn] with V∀ = ∅ and a set C of
n+ 1 counters, and no parity condition, such that Eve has a strategy to satisfy objective∧

c∈C B(c) iff
⋂

i L(Di) ̸= ∅. This construction is similar to that of [8], which is a reduction
from the universality problem for NFA. We assume that Σ contains a symbol # ∈ Σ and
for all i, L(Di) ⊆ (Σ−#)∗#. The counter arena A[D1, . . . , Dn] is defined by V∃ = Σ and
V∀ = ∅, and the set of transitions is E = V∃×V∃. The vertex # is initial. The set of counters
is C = {c0} ∪ {cq | q ∈ Qi, i = 1, . . . , n}, and they are updated as follows for i = 1, . . . , n,
where max(∅) = 0:

on vertex f ̸= #: for all q ∈ Qi, cq := max{cq′ +1 | ∃q′ ∈ Qi, δ(q′, f) = q} and c0 := c0 +1
on vertex #: cqi

O
:= max{cq | q ∈ Qi′ for some i′ and δi′(q,#) ̸∈ Fi′}, and the counters

cq for all q ∈ Qi \ {qi
0} are reset, as well as c0.

Note that for f ̸= #, two operations are performed at once: increment counters cq′ and take
the max. This is done to simplify the presentation and can be simulated by doubling the
number of vertices of the arena.

Now, observe that Plays(A[D1, . . . , Dn]) = #Σω and a strategy for Eve is nothing but
an infinite word w in #Σω. We prove the following claims:

▷ Claim 17. For all non-empty finite set X ⊆
⋂n

i=1 L(Di), any play in #.Xω satisfies∧
c∈C B(c).

▷ Claim 18. No play in #.(
⋃n

i=1((Σ−#)∗#)\L(Di))ω satisfies
∧

c∈C B(c).

Proof of Claim 17. Let m = max{|u| | u ∈ X}. Let w = #u1u2 . . . such that for all j ≥ 1,
uj ∈ X. We prove that w, which is a play of A[D1, . . . , Dn]) satisfies that all the counters
are bounded by 2m. First, note that each uj is of the form vj#, because uj ∈

⋂
i L(Di) and

the DFA Di are assumed to accept words where # is an endmarker. First, consider counter
c0: it is reset every time # is read, so, its maximal value is bounded by m. Now, for all j ≥ 1
and q ∈

⋃
i Qi, we let inj,q be the value of counter cq after prefix #u1 . . . uj−1 and outj,q is

value after prefix #u1 . . . uj−1vj . By definition of the counter updates, we have:
1. inj,q = 0 for all j ≥ 1 and q not initial
2. inj,qi

0
= max{outj−1,q | q ∈ Qi′ for some i′ and δi′(q,#) ̸∈ Fi′} for all j ≥ 1

3. outj,q = inj,qi
0

+ |vj | if q ∈ Qi for some i and there exists a run of Di from qi
0 to q on vj

4. otherwise, outj,q = |r| where r is a run of maximal length on a prefix of vj , ending in q.

CONCUR 2022
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Let q ∈ Qi for some i such that δi(q,#) ̸∈ Fi. For all j ≥ 1, there is no run from qi
0 to q

on vj , since uj = vj# ∈ L(Di). So, we are in case 4 above and we have outj,q ≤ |vj | ≤ m.
From the latter fact and 2, we get that inj,qi

0
≤ m for all i, j. From that and 3, we get that

outj,q ≤ m + |vj | ≤ 2m for all j. So, all the counter have value at most 2m after each vj ,
which concludes the proof that they are bounded. ◁

Proof of Claim 18. Let w be a play of A[D1, . . . , Dn] in #.(
⋃n

i=1((Σ−#)∗#)\L(Di))ω. Then,
w = #w1#w2#w3# . . . such that wj ∈ (Σ−#)∗ for all j ≥ 1. Moreover, for all j ≥ 1, there
exists ij ∈ {1, . . . , n} such that wj# ̸∈ L(Dij

) and there exists a run of Dij
on wj from q

ij

0
to some non-accepting state qij . Denote by in(ij) the value of counter c0

qij
before reading

wj#wj+1 . . . in w, and by out(ij) the value of counter cqij
before reading #wj+1#wj+1 . . . in

w. By definition of the counter updates, we have out(i1) ≥ in(i1) + |u|, out(i2) ≥ in(i2) + |u|,
and so on. Moreover, in(i2) ≥ out(i1), in(i3) ≥ out(i2), and so on, since the states qij are
non-accepting. This yields that the sequence (in(ij))j is unbounded, concluding the proof.

◁

As a side note, observe that the two claims imply the following:
⋂n

i=1 L(Di) ̸= ∅ iff there
exists a word w ∈ #Σω which satisfies

∧
c∈C B(c). Indeed, if there exists u ∈

⋂n
i=1 L(Di),

then it suffices to apply Claim 1 to X = {u}. Conversely, if
⋂n

i=1 L(Di) = ∅, then
(
⋃n

i=1(Σ∗\L(Di)))ω = Σω and Claim 2 implies that no word of Σω satisfy
∧

c∈C B(c).
We now lift the latter reduction to (binary) trees. We let Σ be a finite alphabet containing

a symbol # called a constant symbol, and all other symbols are called binary symbols. We
let Σ2 = Σ−# be the set of binary symbols. A Σ-tree is defined as a term where terms t
are inductively defined by t, t1, t2 ::= # | f(t1, t2), f ∈ Σ2. The set of branches of a Σ-tree t
is inductively defined as br(#) = {#}, and br(f(t1, t2)) = {(f, d).b | d ∈ {1, 2}, b ∈ br(td)}.

A deterministic top-down tree automaton is a tuple T = (Q, q0, F, δ) where Q is a finite set
of states, q0 ∈ Q the initial state, F ⊆ Q the final states, and δ : Q×({#}∪(Σ2×{1, 2}))→ Q

is a (total) transition function. We see T as a DFA DFA(T ) recognizing a language
in (Σ2 × {1, 2})∗# naturally as follows: DFA(T ) = (Q, q0, F, δ

′) where for all q ∈ Q,
for all (f, d) ∈ Σ2 × {1, 2}, δ′(q, f) = projd(δ(q, f)), with projd the dth projection, and
δ′(q,#) = δ(q,#), and we denote by Lbr(T ) the language recognized by this DFA. The
language of Σ-trees accepted by T is the set

L(T ) = {t ∈ TreesΣ | br(t) ⊆ Lbr(T )}

Deciding3, given n DTOP T1, . . . , Tn, whether
⋂n

i=1 L(Ti) = ∅ is EXPTIME-c [16].
Given T1, . . . , Tn such that Ti = (Qi, q

i
0, Fi, δi) for all i, we construct a max-counter game

G winnable by Eve iff
⋂n

i=1 L(Ti) ̸= ∅. The main idea of the proof is construct a game where
Adam picks a direction d ∈ {1, 2} (1 means left and 2 right), while Eve picks the labels in Σ.
The arena A[T1, . . . , Tn] of G (without the counters) is depicted on Fig. 3.

We now define counter conditions which make sure that if Eve has a strategy to keep
all the counters bounded iff there exists t ∈

⋂
i L(Ti). For all i, let Ti = (Qi, q

i
0, Fi, δi).

The set of counters is C = {cq | q ∈
⋃

i Qi} ∪ {c0} (we assume wlog that all the sets Qi

are pairwise disjoint). Let us define counter updates. They are defined as for the arena
A[DFA(T1), . . . , DFA(Tn)]. To simplify the presentation (and in particular the structure
of the arena), we perform several operations at once. Let us define the updates, for all
1 ≤ i ≤ n:

3 In [16], the definition of DTOP is slightly different, but less general: there are no accepting states but
the transition function can be partial. A tree is accepted if there is a run on it which traverses the
whole tree (it is not in an inner node). Those automata can easily be encoded into (our) DTOP by
completing the transition function into a sink state qs, declaring all states to be final but qs.
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Figure 3 Arena for the proof of Theorem 16, where Σ = {#, f1, . . . , fm}. Transitions in bold are
in both directions. Square vertices are controlled by Adam, and the initial vertex is #. When Adam
picks a direction d ∈ {1, 2}, then Eve is forced to pick a vertex in Σ2 × {d}, or #.

on vertex (f, j) ∈ Σ2 ×{1, 2}: for all qj ∈ Qi, cqj := max{cq + 1 | ∃q, q3−j ∈ Qi, δ(q, f) =
(q1, q2)} and c0 := c0 + 1
on vertex #: cqi

O
:= max{cq | q ∈ Qi′ for some i′ and δi′(q, λ) ̸∈ Fi′}, and the counters

cq for all q ∈ Qi \ {qi
0} are reset, as well as c0.

on vertices i ∈ {1, 2}: counters are unchanged.

There is no parity condition and the counter condition is that the counters in C must
be bounded. Let G be the constructed max-counter game. Before showing correctness, let
us introduce some useful notation. Note that the histories and plays of G are elements of
{#} ∪ Σ2 × {1, 2} alternating with directions in {1, 2}. The following function removes the
intermediate directions. Given w = λ1d1λ2d2 . . . λndn such that for all i, λi ∈ {#}∪Σ2×{1, 2}
and di ∈ {1, 2}, we let lab(w) = λ1λ2 . . . λn.

We now show correctness of the reduction. Suppose that there exists some t ∈
⋂

i L(Ti).
We first define a strategy σt for Eve and then show it is winning in G. The strategy σt just
mimics t: it plays as t dictates when a leaf of t is reached, its behaviour is reset to the root
of t. Formally, the construction of σt satisfies the following invariant: all histories ending
with an Eve vertex are words of the form h = #h1h2 . . . hkpd where:

all hi are such that lab(hi) ∈ br(t),
lab(p) is a prefix of a branch of t
d ∈ {1, 2}

Given such a history h, we consider two cases: if lab(p) ∈ br(t), then σt is reset to the root of t,
which means that σt(h) = (f, d) such that f is the label of the root of t. Otherwise, σt(h) = #
if lab(p)# ∈ br(t), and σt(h) = (f, d) if lab(p)(f, d) ∈ br(t). Let us show that σt is winning.
Let π ∈ Plays(σt). First, we observe that lab(π) is a play of A[DFA(T1), . . . , DFA(Tn)].
Let C ′ be the set of counters of the latter arena. By definition of σt, lab(π) is of the form
#b1#b2# . . . with infinitely many # such that for all j ≥ 1, bj# is a branch of t. Since
t ∈

⋂
i L(Ti), we also get that bj# ∈

⋂
i L(DFA(Ti)). The set X = {bj# | j ≥ 1} is

finite since its elements correspond to branches of t. Therefore, by Claim 1, π satisfies∧
c∈C′ B(c). We conclude by observing that C = C ′, that A[T1, . . . , Tn] has the same vertices

as A[DFA(T1), . . . , DFA(Tn)] plus the two vertices 1 and 2, with the same counter updates
for their common vertices and no update on 1 and 2. Therefore, π satisfies

∧
c∈C B(c) in

A[T1, . . . , Tn].
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Conversely, suppose that
⋂

i L(Ti) = ∅. Take an arbitrary strategy σ of Eve. We show
it is not winning. Intuitively, σ can be seen as an infinite tree. If there is a branch of the
tree which visits # finitely many times, then σ is not winning because by following the
directions corresponding to that branch, Adam can guarantee that counter c0 is unbounded.
So, we can assume that σ is such that all plays consistent with it sees infinitely many #. We
construct a play π of the form #h1#h2# . . . such that for all j ≥ 1, there exists i such that
lab(hj)# ̸∈ L(DFA(Ti)), and we conclude by Claim 2.

Consider the set of histories H1 of σ which contains a # symbol only at their end.
Clearly, H1 can be identified with a Σ-tree t1. Since t1 ̸∈

⋂
i L(Ti), there exists i such

that t1 ̸∈ L(Ti) and therefore, a history h1# ∈ H1 such that lab(h1)# ̸∈ L(DFA(Ti)). To
construct h2, h3, . . . , we proceed similarly. Let us explain how to construct h2. We let H2 be
the set of histories of the form h1#g2# such that h1#g2# is a history of σ such that g2 does
not contain #. The set (h1#)−1H2 can be identified with a Σ-tree t2. Now, it suffices to
take h2# ∈ (h1#)−1H2 such that lab(h2#) ̸∈ L(DFA(Ti)) for some i = 1, . . . , n. It exists
since t2 ̸∈

⋂
i L(Ti). This concludes the proof. ◀

In order to prove Lemma 22, we first prove the following, in a very similar way to the
proof of Lemma 2.

▶ Lemma 19. Max-counter games (with Boolean combinations of boundedness objectives)
are determined.

Proof. Given a counter arena A and a counter c of A, the set Plays (A,B(c)) is a Borel set.
Indeed, it is equal to the countable union for all N ≥ 0 of the sets

PlaysN (A,B(c)) = {ρ ∈ Plays(A) | ∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

which are ω-regular. Indeed, a Büchi automaton that stores, in every state, the maxi-
mums between N and the value of each counter of C needs |V | ×N |C| states to recognize
PlaysN (A,B(c)). Since ω-regular sets are Borel, so is Plays (A,B(c)), as well as any Boolean
combination of the latter. By Martin’s determinacy theorem [24], the result follows. ◀

Furthermore, to make the proof of Lemma 22 clearer, we now define two models of
automata: non-deterministic U-automata, and Parity-Rabin automata.

A (non-deterministic) U-automaton B is a nine-tuple (Σ, S, si,∆, Q, κ, C, ζ, C1), where
Σ is an alphabet, S is a finite set of states, si ∈ S is the initial state, ∆ ∈ S × S × Σ is a
transition function, Q is finite set of colors, κ is an alphabet colouring from Σ to Q, C is
a finite set of counters, ζ is a state labeling from S to Op(C), and C1 is a subset of C. A
run in B is an infinite word π = y0y1 · · · ∈ ∆ω such that y0 = si, and such that the second
element of each yi is the first element of yi+1 for any non-negative integer i. We let States(π)
denote the word v0v1 · · · , where each vi is the first element of yi, and we let Input(π) denote
the word z0z1 · · · , where each zi is the third element of yi (i.e. the label of the edge yi). A
word w is accepted by B if either w ∈ Parity(κ) (i.e. if the greatest color seen infinitely often
in w is even), or if there exists a run π of B such that Input(π) = w and such that States(π)
satisfies

∨
c∈C1

U(c). The language accepted by B is the set of accepted words.
A (non-deterministic) Parity-Rabin automaton D is a variant of a Rabin automaton, and

is defined as a seven-tuple (Σ, S, qi,∆, Q, κ, {κi}i∈{1,...,ℓ}) where Σ, S, qi, ∆, Q and κ are
defined in the same way as in the the case of U-automata, where and {κi}i∈{1,...,ℓ} is a finite
set of colourings from S to {1, 2, 3}. Furthermore, a word w is accepted by D if and only
if either w is in Parity(κ), or there exists an integer i ∈ {1, . . . , ℓ} and a run ρ of D such
that Input(ρ) = w and such that States(ρ) is in Parity(κi). The language recognized by D,
denoted L(D), is the set of words accepted by D.
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▶ Lemma 20. The language recognized by a non-deterministic Parity-Rabin automaton is
ω-regular. Furthermore, games with an objective given by a non-deterministic Parity-Rabin
automaton are solvable in EXPTIME.

Proof. A Parity-Rabin automaton D can be converted into a non-deterministic automaton
D1, with ℓ+ 1 colours whose domains are the set of states, by copying each state for every
transition that goes to it, and transferring the colour κ to the states depending on which
incoming transition the copy represents. The acceptation condition of D1 is expressed by the
union of the parity conditions induced by its colourings. The automaton D1 can be further
converted into a non-deterministic parity automaton D2 with a single colouring, by copying
it for every colouring it has, colouring the first copy with the first colouring, the second copy
with the second colouring, etc. Thus, there exists a parity automaton D2 that recognizes the
same language as D, with a size polynomial in the size of D. One of the consequences of that
statement is that L(D) is thus an ω-regular language. Furthermore, it is well-known that
we can determinize D2 into a deterministic parity automaton D3 with exponential size and
linear index, in exponential time. In addition, if G′ is the game obtained from the product
of a game G and the deterministic parity automaton D3, G′ is a parity game of exponential
size in the size of G and D, and index linear in the number of colours of D, such that Eve
wins G′ if and only if Eve wins G. Thus, since parity games with m edges, n vertices and
index k can be solved in O(mnk) (see e.g. [14]), the class of games with an objective given
by a non-deterministic Parity-Rabin automaton is in EXPTIME. ◀

We now show that the class of counter games with a counter condition given by a non-
deterministic U-automaton with an acceptance condition of the form

∨
U is also decidable in

EXPTIME, by converting them into Parity-Rabin automata.

▶ Lemma 21. Let B be a non-deterministic U-automaton with acceptance condition of the
form

∨
c∈C1

U(c), and A be a two-player arena. We can decide if Eve wins (A,L(B)) in
EXPTIME.

Proof. Let B = (S,∆, i, ζ,
∨

c∈C1
U(c), κ). We construct in polynomial time a Parity-Rabin

automaton D such that Eve wins (A,L(B)) if and only if Eve wins (A,L(D)). The idea is
to keep the same automata structure as B, the same parity function, and to replace each
atom U(c) by a parity function which is satisfied iff there is infinitely many increase of c and
finitely many reset of c. So, for each counter c we introduce the parity function κc defined
by:

κc(x) =


1 if ζc(x) = skip
2 if ζc(x) = i
3 if ζc(x) = r

We show that Eve wins (A,L(B)) if and only if Eve wins (A,L(D)). If Eve wins (A,L(D)),
then she wins (A,L(B)) with the same winning strategy, as L(D) ⊆ L(B). Suppose now
that σ is a winning strategy of Eve for (A,L(B)), and that Eve does not win (A,L(D)).
However, by Lemma 20, L(D) is ω-regular and (A,L(D)) is thus determined. Therefore,
Adam has a finite memory winning strategy τ for (A,L(D)). We exhibit a contradiction. Let
ρ be a play of A consistent with σ and τ . Then ρ satisfies both of the following properties:
1. ρ /∈ Parity(κ), and for any run π of D over ρ, for any counter c, if π sees infinitely many

increase of c, then it sees infinitely many reset of c (because τ is winning)
2. either ρ ∈ Parity(κ), or there exists a counter c0 ∈ C1, and there exists a run π of B over

ρ such that States(π) satisfies U(c) (it is because σ is winning)
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Now, since ρ /∈ Parity(κ) from property 1, along ρ, c0 is unbounded from property 2, so it
sees infinitely many increase, and by property 1 it must see infinitely many reset. Intuitively,
it implies that they are longer and longer segments in between two consecutive resets with
more and more increase of c0. Since τ is finite-memory, Eve can find a cycle (both cycling
on the arena, the memory-structure of the strategy and the automaton B) which contains at
least one increase of c0 and no reset. By iterating this cycle ad infinitum, she creates a play
which is consistent with τ and a run of D over that new play, which sees infinitely many
increase of c0 but finitely many reset, contradicting Property 1.

Since D can be computed in polynomial time from B, and since the class of games with
an objective given by a non-deterministic Parity-Rabin automaton is in EXPTIME, we can
decide if Eve wins (A,L(B)) in EXPTIME. ◀

▶ Lemma 22. Given a game in G, the problem of deciding whether Eve wins G is in
EXPTIME. Finite memory is sufficient for Eve and Adam.

Proof. We show that counter games G with counter condition of the form

Plays

(
A,
∨

c∈C

U(c)
)
∪ Parity(A),

where C is the set of counters of G, and A its underlying two-player arena, can be solved in
EXPTIME, which implies the lemma by Lemma 19.

We construct, from a max-counter game G, a game G′ whose acceptance condition is
U-automaton D of size polynomial in the size of G.

Let G be a counter game with underlying two-player arena A = (V,E, V∃, V∀, v), vertex
labeling ζ, set of colors Q, colouring κ, and winning condition Plays

(
A,
∨

c∈C U(c)
)
∪

Parity(A). We construct a U-automaton B, of size polynomial in |C|, with a single counter
denoted d (we assume d ̸∈ C), that recognizes the language of all words w ∈ V ω such that
either w ∈ Parity(κ), or ζ(w) satisfies the condition

∨
c∈C U(c). To make the construction

more easily understood, we first introduce the notion of trace. A trace of a word w =
z0z1 · · · ∈ Op(C)ω is a mapping θ from {i, . . . , j} to C, where i ≤ j are two integers, such
that, for any l ∈ {i, . . . , j − 1},

either θ(l) = θ(l + 1) and zl(θ(l)) ∈ {i, r, skip},
or θ(l + 1) ̸= θ(l) and zl(θ(l + 1)) = max

c∈S
(c) with S ⊆ C and θ(l) ∈ S.

The value of θ at move t ∈ {i, . . . , j} is defined inductively as 0 if t = i, one plus the value at
move t− 1 if zt−1(θ(t− 1)) = i, 0 if zt−1(θ(t− 1)) = r, and the value at move t− 1 otherwise.
If a counter c reaches a value N ≥ 1 at some point in w, then it is always possible to “track
back”, with a trace of w, the sequence of counter operations which led to c having that value,
by choosing, every time we go back to a previous counter operation of the type c′ = max

d∈S
(d)

with S ⊆ C, the good counter d of S (the one with the maximum value), until reaching a
counter whose value is 0. Thus, there exists a counter c ∈ C and two integers t and N such
that λ(w, c)t = N if and only if there exists a trace θ of w, such θ(t) = c, and such that
the value of θ at move t is N . As a consequence, there exists counter c such that λ(w, c) is
unbounded if and only if the values of the traces of w are unbounded.

This result allows us to define B in the following way. The U-automaton B works, on
input w, by guessing all the possible traces of ζ(w), by using non-determinism. The value of
a trace is stored inside the counter d. More precisely, every time B reads a letter, it either
guesses a new trace, or guesses the next counter c′ of C of the trace it is following, while
applying, if c′ is equal to the current counter c of the trace, the operation over c induced by
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the letter read, to counter d. Thus, the U-automaton B is constructed so that the value of d is
unbounded if and only if there are traces of its input of arbitrarily large values. Moreover, we
set the colouring of B as κ. Thus, B recognizes the language of all words w ∈ V ω such that
either w ∈ Parity(κ), or ζ(w) satisfies the condition

∨
c∈C

U(c), i.e. the language recognized

by B is the winning condition of the game G. The precise definition of B is given below.
We let V1 = C × {i, r, skip}, and v1 = (c, r) where c is any counter in C. Furthermore, we

let ζ1 denote the mapping from V1 to Op({d}) such that (ζ1(c, α))(d) = α, and E1 denote
the the smallest subset of V1 × V1 × V such that, for any α ∈ {i, r, skip} and any v ∈ V , we
have

for any c, c′ ∈ C, ((c, α), (c′, r), v) ∈ E1 (this comes from the fact that B should be able
to guess a new trace at any time),
for any c ∈ C, if ζc(v) ∈ {i, skip}, ((c, α), (c, ζc(v)), v) ∈ E1 (the trace follows the increment
or skip operation of a counter while updating d),
for any c ∈ C, if ζc(v) = max

c′∈S
(c), then ((c′, α), (c, skip), v)) ∈ E1, for any c′ ∈ S (the trace

changes counters on a max operation while leaving d unchanged).
The U-automaton B is the U-automaton (V, V1, v1, E1, Q, κ, {d}, ζ1, {d}). By Lemma 21 and
Lemma 20, since B can be computed in a polynomial time from G, and since Eve wins G if
and only if Eve wins (A,L(B)), we can decide if Eve wins G in EXPTIME. ◀

CONCUR 2022





Different Strokes in Randomised Strategies:
Revisiting Kuhn’s Theorem Under Finite-Memory
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Abstract
Two-player (antagonistic) games on (possibly stochastic) graphs are a prevalent model in theoretical
computer science, notably as a framework for reactive synthesis.

Optimal strategies may require randomisation when dealing with inherently probabilistic goals,
balancing multiple objectives, or in contexts of partial information. There is no unique way to define
randomised strategies. For instance, one can use so-called mixed strategies or behavioural ones. In
the most general settings, these two classes do not share the same expressiveness. A seminal result
in game theory – Kuhn’s theorem – asserts their equivalence in games of perfect recall.

This result crucially relies on the possibility for strategies to use infinite memory, i.e., unlimited
knowledge of all past observations. However, computer systems are finite in practice. Hence it is
pertinent to restrict our attention to finite-memory strategies, defined as automata with outputs.
Randomisation can be implemented in these in different ways: the initialisation, outputs or transitions
can be randomised or deterministic respectively. Depending on which aspects are randomised, the
expressiveness of the corresponding class of finite-memory strategies differs.

In this work, we study two-player turn-based stochastic games and provide a complete taxonomy
of the classes of finite-memory strategies obtained by varying which of the three aforementioned com-
ponents are randomised. Our taxonomy holds both in settings of perfect and imperfect information,
and in games with more than two players.
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1 Introduction

Games on graphs. Games on (possibly stochastic) graphs have been studied for decades,
both for their own interest (e.g., [25, 20, 27]) and for their value as a framework for
reactive synthesis (e.g., [28, 35, 9, 3]). The core problem is almost always to find optimal
strategies for the players: strategies that guarantee winning for Boolean winning conditions
(e.g., [26, 39, 12, 10]), or strategies that achieve the best possible payoff in quantitative
contexts (e.g., [25, 5, 13]). In multi-objective settings, one is interested in Pareto-optimal
strategies (e.g., [19, 38, 36, 23]), but the bottom line is the same: players are looking for
strategies that guarantee the best possible results.
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In reactive synthesis, we model the interaction between a system and its uncontrollable
environment as a two-player antagonistic game, and we represent the specification to ensure
as a winning objective. An optimal strategy for the system in this game then constitutes a
formal blueprint for a controller to implement in the real world [3].

Randomness in strategies. In essence, a pure strategy is simply a function mapping histories
(i.e., the past and present of a play) to an action deterministically.

Optimal strategies may require randomisation when dealing with inherently probabilistic
goals, balancing multiple objectives, or in contexts of partial information: see, e.g., [15, 36, 2,
23]. There are different ways of randomising strategies. For instance, a mixed strategy is
essentially a probability distribution over a set of pure strategies. That is, the player randomly
selects a pure strategy at the beginning of the game and then follows it for the entirety of
the play without resorting to randomness ever again. By contrast, a behavioural strategy
randomly selects an action at each step: it thus maps histories to probability distributions
over actions.

Kuhn’s theorem. In full generality, these two definitions yield different classes of strategies
(e.g., [21], [34, Chapter 11]). Nonetheless, Kuhn’s theorem [1] proves their equivalence under
a mild hypothesis: in games of perfect recall, for any mixed strategy there is an equivalent
behavioural strategy and vice-versa. A game is said to be of perfect recall for a given player
if said player never forgets their previous knowledge and the actions they have played (i.e.,
they can observe their own actions). Let us note that perfect recall and perfect information
are two different notions: perfect information is not required to have perfect recall.

Let us highlight that Kuhn’s theorem crucially relies on two elements. First, mixed
strategies can be distributions over an infinite set of pure strategies. Second, strategies can
use infinite memory, i.e., they are able to remember the past completely, however long it
might be. Indeed, consider a game in which a player can choose one of two actions in each
round. One could define a (memoryless) behavioural strategy that selects one of the two
actions by flipping a coin each round. This strategy generates infinitely many sequences
of actions, therefore any equivalent mixed strategy needs the ability to randomise between
infinitely many different sequences, and thus, infinitely many pure strategies. Moreover,
infinitely many of these sequences require infinite memory to be generated (due to their
non-regularity).

Finite-memory strategies. From the point of view of reactive synthesis, infinite-memory
strategies, along with randomised ones relying on infinite supports, are undesirable for
implementation. This is why a plethora of recent advances has focused on finite-memory
strategies, usually represented as (a variation on) Mealy machines, i.e., finite automata
with outputs. See, e.g., [27, 19, 11, 23, 4, 6]. Randomisation can be implemented in these
finite-memory strategies in different ways: the initialisation, outputs or transitions can be
randomised or deterministic respectively.

Depending on which aspects are randomised, the expressiveness of the corresponding class
of finite-memory strategies differs: in a nutshell, Kuhn’s theorem crumbles when restricting
ourselves to finite memory. For instance, we show that some finite-memory strategies with
only randomised outputs (i.e., the natural equivalent of behavioural strategies) cannot be
emulated by finite-memory strategies with only randomised initialisation (i.e., the natural
equivalent of mixed strategies) – see Lemma 7. Similarly, it is known that some finite-memory
strategies that are encoded by Mealy machines using randomisation in all three components
admit no equivalent using randomisation only in outputs [22, 21].
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DRR = RRR = RDR
(Thm. 4, 6)

RRD

DDR

DRD (behavioural)

RDD (mixed)

DDD (pure)

Lem. 9
(strictness)

Lem. 10
(strictness)

Lem. 8
(strictness)

Thm. 2, Lem. 7
Direct

Direct

Figure 1.1 Lattice of strategy classes in terms of expressible probability distributions over plays
against all strategies of the other player. In the three-letter acronyms, the letters, in order, refer
to the initialisation, outputs and updates of the Mealy machines: D and R respectively denote
deterministic and randomised components.

Our contributions. We consider two-player zero-sum stochastic games (e.g., [37, 20, 32, 6]),
encompassing two-player (deterministic) games and Markov decision processes as particular
subcases. We establish a Kuhn-like taxonomy of the classes of finite-memory strategies
obtained by varying which of the three aforementioned components are randomised: we
illustrate it in Figure 1.1, and describe it fully in Section 3.

Let us highlight a few elements. Naturally, the least expressive model corresponds to
pure strategies. In contrast to what happens with infinite memory, and as noted in the
previous paragraph, we see that mixed strategies are strictly less expressive than behavioural
ones. We also observe that allowing randomness both in initialisation and in outputs (RRD
strategies) yields an even more expressive class – and incomparable to what is obtained by
allowing randomness in updates only. Finally, the most expressive class is obviously obtained
when allowing randomness in all components; yet it may be dropped in initialisation or in
outputs without reducing the expressiveness – but not in both simultaneously.

To compare the expressiveness of strategy classes, we consider outcome-equivalence, as
defined in Section 2. Intuitively, two strategies are outcome-equivalent if, against any strategy
of the opponent, they yield identical probability distributions (i.e., they induce identical
Markov chains). Hence we are agnostic with regard to the objective, winning condition,
payoff function, or preference relation of the game, and with regard to how they are defined
(e.g., colours on actions, states, transitions, etc).

Finally, let us note that in our setting of two-player stochastic games, the perfect
recall hypothesis holds. Most importantly, we assume that actions are visible. Lifting this
hypothesis drastically changes the relationships between the different models. While our
main presentation considers two-player perfect-information games for the sake of simplicity,
we argue in Section 6 that our results hold in games of imperfect information too, assuming
visible actions, and that our results hold in games with more than two players.

Related work. There are three main axes of research related to our work.
The first one deals with the various types of randomness one can inject in strategies

and their consequences. Obviously, Kuhn’s theorem [1] is a major inspiration, as well as
the examples of differences between strategy models presented in [21]. On a different but
related note, [16] studies when randomness is not helpful in games nor strategies (as it can
be simulated by other means).
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The second direction focuses on trying to characterise the power of finite-memory strategies,
with or without randomness. One can notably cite [27] for memoryless strategies, and [30,
4, 6], and [7] for finite-memory ones in deterministic, stochastic, and infinite-arena games
respectively.

The third axis concentrates on the use of randomness as a means to simplify strategies
and/or reduce their memory requirements. Examples of this endeavour can be found
in [14, 17, 29, 19, 33]. These are further motivations to understand randomised strategies
even in contexts where randomness is not needed a priori to play optimally.

Outline. Due to space constraints, we only provide an overview of our work. All technical
details and proofs can be found in the full version of this paper [31]. Section 2 summarises
all preliminary notions. In Section 3, we present the taxonomy illustrated in Figure 1.1 and
comment on it. We divide its proofs into two sections: Section 4 establishes the inclusions,
and Section 5 proves their strictness. Finally, we discuss extensions of our results to games
with imperfect information and multi-player games in Section 6.

2 Preliminaries

Probability. Given any finite or countable set A, we write D(A) for the set of probability
distributions over A, i.e., the set of functions p : A → [0, 1] such that

∑
a∈A p(a) = 1.

Similarly, given some set A and some σ-algebra F over A, we denote by D(A, F) the set of
probability distributions over the measurable space (A, F).

Games. We consider two-player stochastic games of perfect information played on graphs.
We denote the two players by P1 and P2. In such a game, the set of states is partitioned
between the two players. At the start of a play, a pebble is placed on some initial state and
each round, the owner of the current state selects an action available in said state and the
next state is chosen randomly following a distribution depending on the current state and
chosen action. The game proceeds for an infinite number of rounds, yielding an infinite play.

Formally, a (two-player) stochastic game (of perfect information) is defined as a tuple
G = (S1, S2, A, δ) where S = S1 ⊎ S2 is a non-empty finite set of states partitioned into a set
S1 of states of P1 and a set S2 of states of P2, A is a finite set of actions and δ : S ×A → D(S)
is a (partial) probabilistic transition function. For any state s ∈ S, we write A(s) for the set
of actions available in s, which are the actions a ∈ A such that δ(s, a) is defined. We assume
that for all s ∈ S, A(s) is non-empty, i.e., there are no deadlocks in the game.

A play of G is a sequence s0a0s1 . . . ∈ (SA)ω such that for all k ∈ N, δ(sk, ak)(sk+1) > 0.
A history is a finite prefix of a play ending in a state. Given a play π = s0a0s1a1 . . . and
k ∈ N, we write π|k for the history s0a0 . . . ak−1sk. For any history h = s0a0 . . . ak−1sk, we
let last(h) = sk. We write Plays(G) to denote the set of plays of G, Hist(G) to denote the set
of histories of G and Histi(G) = Hist(G) ∩ (SA)∗Si for the set of histories ending in states
controlled by Pi. Given some initial state sinit ∈ S, we write Plays(G, sinit) and Hist(G, sinit)
for the set of plays and histories starting in state sinit respectively.

An interesting class of stochastic games which has been extensively studied is that of
deterministic games; a game G = (S1, S2, A, δ) is a deterministic game if for all s ∈ S

and a ∈ A(s), δ(s, a) is a Dirac distribution. Another interesting class of games is that of
one-player games. A game G = (S1, S2, A, δ) is a one-player game of Pi if S3−i is empty,
i.e., all states belong to Pi. These one-player games are the equivalent of Markov decision
processes in our context, and will be referred to as such.
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Strategies and outcomes. A strategy is a function that describes how a player should act
based on a history. Players need not act in a deterministic fashion: they can use randomisation
to select an action. Formally, a strategy of Pi is a function σi : Histi(G) → D(A) such that
for all histories h and all actions a ∈ A, σi(h)(a) > 0 implies a ∈ A(last(h)). In other words,
a strategy assigns to any history ending in a state controlled by Pi a distribution over the
actions available in this state.

When both players fix a strategy and an initial state is decided, the game becomes a
purely stochastic process (a Markov chain). Let us recall the relevant σ-algebra for the
definition of probabilities over plays. For any history h, we define Cyl(h) = {π ∈ Plays(G) |
h is a prefix of π}, the cylinder of h, consisting of plays that extend h. Let us denote by FG
the σ-algebra generated by all cylinder sets.

Let σ1 and σ2 be strategies of P1 and P2 respectively and sinit ∈ S be an initial state.
We define the probability measure (over (Plays(G), FG)) induced by playing σ1 and σ2 from
sinit in G, written Pσ1,σ2

sinit
, in the following way: for any history h = s0a0 . . . sn ∈ Hist(G, sinit),

the probability assigned to Cyl(h) is given by the product

Pσ1,σ2
sinit

(Cyl(h)) =
n−1∏
k=0

τk(s0a0 . . . sk)(ak) · δ(sk, ak, sk+1),

where τk = σ1 if sk ∈ S1 and τk = σ2 otherwise. For any history h ∈ Hist(G) \ Hist(G, sinit),
we set Pσ1,σ2

sinit
(Cyl(h)) = 0. By Carathéodory’s extension theorem [24, Theorem A.1.3], the

measure described above can be extended in a unique fashion to (Plays(G), FG).
Let σ1 be a strategy of P1. A play or prefix of play s0a0s1 . . . is said to be consistent

with σ1 if for all indices k, sk ∈ S1 implies σ1(s0a0 . . . sk)(ak) > 0.1 Consistency with respect
to strategies of P2 is defined analogously.

Outcome-equivalence of strategies. In the next sections, we study the expressiveness
of finite-memory strategy models depending on the type of randomisation allowed. Two
strategies may yield the same outcomes despite being different: the actions suggested by a
strategy in an inconsistent history can be changed without affecting the outcome. Therefore,
instead of using the equality of strategies as a measure of equivalence, we consider some
weaker notion of equivalence, referred to as outcome-equivalence.

We say that two strategies σ1 and τ1 of P1 are outcome-equivalent if for any strategy σ2
of P2 and for any initial state sinit, the probability distributions Pσ1,σ2

sinit
and Pτ1,σ2

sinit
coincide.

Outcome-equivalence of strategies can also be established without invoking induced probability
distributions; two strategies are outcome-equivalent if and only if they coincide over the set
of histories consistent with (one of) them. This can be shown by exploiting the definition of
the probability of cylinder sets.

▶ Lemma 1. Let σ1 and τ1 be two strategies of P1. These two strategies are outcome-
equivalent if and only if for all histories h ∈ Hist1(G), h consistent with σ1 implies σ1(h) =
τ1(h).

Proof. Let us assume that σ1 and τ1 are outcome-equivalent. Let h ∈ Hist1(G) be a history
that is consistent with σ1. Let sinit denote the first state of h and let σ2 be a strategy of P2
consistent with h. It follows from the definition of the probability distribution of cylinders
that for any a ∈ A(last(h)) and any s ∈ supp(δ(last(h), a)), we have

1 We use the terminology of consistency not only for plays and histories, but also for prefixes of plays
that end with an action.
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σ1(h)(a) =
Pσ1,σ2

sinit
(Cyl(has))

Pσ1,σ2
sinit (Cyl(h)) · δ(last(h), a)(s) =

Pτ1,σ2
sinit

(Cyl(has))
Pτ1,σ2

sinit (Cyl(h)) · δ(last(h), a)(s) = τ1(h)(a),

which shows that σ1(h) = τ1(h). This ends the proof of the first direction.
Let us now assume that σ1 and τ1 coincide over histories consistent with σ1. Let σ2

be a strategy of P2 and sinit ∈ S be an initial state. It suffices to study the probability of
cylinder sets. Let h ∈ Hist(G) be a history starting in sinit. If h is consistent with σ1, then
all prefixes of h also are, therefore the definition of the probability of a cylinder ensures that
Pσ1,σ2

sinit
(h) = Pτ1,σ2

sinit
(h). Otherwise, if h is not consistent with σ1, then h is necessarily of the

form h′ah′′ with h′ consistent with σ1 and σ1(h′)(a) = 0. It follows that τ1(h′)(a) = 0, thus
Pσ1,σ2

sinit
(h) = Pτ1,σ2

sinit
(h) = 0. This shows that σ1 and σ2 are outcome-equivalent, ending the

proof. ◀

Subclasses of strategies. A strategy is called pure if it does not use randomisation; a pure
strategy can be viewed as a function Histi(G) → A. A strategy that only uses information
on the current state of the play is called memoryless: a strategy σi of Pi is memoryless if for
all histories h, h′ ∈ Histi(G), last(h) = last(h′) implies σi(h) = σi(h′). Memoryless strategies
can be viewed as functions Si → D(A). Strategies that are both memoryless and pure can
be viewed as functions Si → A.

A strategy σ is said to be finite-memory (FM) if it can be encoded by a Mealy machine,
i.e., an automaton with outputs along its edges. We can include randomisation in the
initialisation, outputs and updates (i.e., transitions) of the Mealy machine. Formally, a
stochastic Mealy machine of Pi is a tuple M = (M, µinit, αnext, αup), where M is a finite
set of memory states, µinit ∈ D(M) is an initial distribution, αnext : M × Si → D(A) is the
(stochastic) next-move function and αup : M × S × A → D(M) is the (stochastic) update
function.

Before we explain how to define the strategy induced by a Mealy machine, let us first
describe how these machines work. Fix a Mealy machine M = (M, µinit, αnext, αup). Let
s0 ∈ S. At the start of a play, an initial memory state m0 is selected randomly following
µinit. Then, at each step of the play such that sk ∈ Si, an action ak is chosen following the
distribution αnext(mk, sk), and otherwise an action is chosen following the other player’s
strategy. The memory state mk+1 is then randomly selected following the distribution
αup(mk, sk, ak) and the game state sk+1 is chosen following the distribution δ(sk, ak), both
choices being made independently.

Let us now explain how a strategy can be derived from a Mealy machine. As explained
previously, when in a certain memory state m ∈ M and game state s ∈ Si, the probability
of an action a ∈ A(s) being chosen is given by αnext(m, s)(a). Therefore, the probability of
choosing the action a ∈ A after some history h = ws (where w ∈ (SA)∗ and s = last(h)) is
given by the sum, for each memory state m ∈ M , of the probability that m was reached
after M processes w, multiplied by αnext(m, s)(a).

To provide a formal definition of the strategy induced by M, we must first describe the
distribution over memory states after M processes elements of (SA)∗. We formally define
this distribution inductively. Details on how to derive the formulae for the update of these
distributions, which use conditional probabilities, are presented in the full paper [31].

The distribution µε over memory states after reading the empty word ε is by definition
µinit. Assume inductively we know the distribution µw for w = s0a0 . . . sk−1ak−1 and let us
explain how one derives µwskak

from µw for any state sk ∈ supp(δ(sk−1, ak−1)) and for any
action ak ∈ A(sk).
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If sk ∈ S3−i, i.e., sk is not controlled by the owner of the strategy, the action ak does not
introduce any conditions on the current memory state. Therefore, we set, for any memory
state m ∈ M ,

µwskak
(m) =

∑
m′∈M

µw(m′) · αup(m′, sk, ak)(m),

which consists in checking for each predecessor state m′, what the probability of moving to
memory state m is and weighing the sum by the probability of being in m′.

If sk ∈ Si, i.e., sk is controlled by the owner of the strategy, then the choice of an action
conditions what the predecessor memory states could be. If we have, for all memory states
m′ ∈ M such that µw(m′) > 0, that αnext(m′, sk)(ak) = 0, then the action ak is actually
never chosen. In this case, to ensure a complete definition, we perform an update as in the
previous case. Otherwise, we condition updates on the likelihood of being in a memory state
knowing that the action ak was chosen. We define, for any memory state m ∈ M ,

µwskak
(m) =

∑
m′∈M µw(m′) · αup(m′, sk, ak)(m) · αnext(m′, sk)(ak)∑

m′∈M µw(m′) · αnext(m′, sk)(ak) .

This quotient is not well-defined whenever for all m′ ∈ supp(µw), αnext(m′, sk)(ak) = 0,
justifying the distinction above.

Using these distributions, we formally define the strategy σM
i induced by the Mealy

machine M = (M, µinit, αnext, αup) as the strategy σM
i : Histi(G) → D(A) such that for all

histories h = ws, for all actions a ∈ A(s), σM
i (h)(a) =

∑
m∈M µw(m) · αnext(m, s)(a).

Classifying finite-memory strategies. In the sequel, we investigate the relationships between
different classes of finite-memory strategies with respect to expressive power. We classify
finite-memory strategies following the type of stochastic Mealy machines that can induce
them. We introduce a concise notation for each class: we use three-letter acronyms of the
form XXX with X ∈ {D,R}, where the letters, in order, refer to the initialisation, outputs
and updates of the Mealy machines, with D and R respectively denoting deterministic and
randomised components. For instance, we will write RRD to denote the class of Mealy
machines that have randomised initialisation and outputs, but deterministic updates. We
also apply this terminology to FM strategies: we will say that an FM strategy is in the class
XXX – i.e., it is an XXX strategy – if it is induced by an XXX Mealy machine.

Moreover, in the remainder of the paper, we will abusively identify Mealy machines and
their induced FM strategies. For instance, we will say that M is an XXX strategy to mean
that M is an XXX Mealy machine (thus inducing an XXX strategy). As a by-product of
this identification, we apply the terminology introduced previously for strategies to Mealy
machines, without explicitly referring to the strategy they induce. For instance, we may
say a history is consistent with some Mealy machine, or that two Mealy machines are
outcome-equivalent. Let us note however that we will not use a Mealy machine in lieu of its
induced strategy whenever we are interested in the strategy itself as a function. This choice
lightens notations; the strategy induced by a Mealy machine need not be introduced unless
it is required as a function.

We close this section by commenting on some of the classes, and discuss previous
appearances in the literature, under different names. Pure strategies use no randomisation:
hence, the class DDD corresponds to pure FM strategies, which can be represented by Mealy
machines that do not rely on randomisation.
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Strategies in the class DRD have been referred to as behavioural FM strategies in [21].
The name comes from the randomised outputs, reminiscent of behavioural strategies that
output a distribution over actions after a history. We note that stochastic Mealy machines
that induce DRD strategies are such that their distributions over memory states are Dirac
due to the deterministic initialisation and updates.

Similarly, RDD strategies have been referred to as mixed FM strategies [21]. The general
definition of a mixed strategy is a distribution over pure strategies: under a mixed strategy,
a player randomly selects a pure strategy at the start of a play and plays according to it for
the whole play. RDD strategies are similar in the way that the random initialisation can be
viewed as randomly selecting some DDD strategy (i.e., a pure FM strategy) among a finite
selection of such strategies.

The elements of RRR, the broadest class of FM strategies, have been referred to as
general FM strategies [21] and stochastic-update FM strategies [8, 18]. The latter name
highlights the random nature of updates and insists on the difference with models that rely
on deterministic updates, more common in the literature.

3 Taxonomy of finite-memory strategies

In this section, we comment on the relationships between the classes of finite-memory
strategies in terms of expressiveness. We say that a class C1 of FM strategies is no less
expressive than a class C2 if for all games G, for all FM strategies M ∈ C2 in G, one can find
some FM strategy M′ ∈ C1 of G such that M and M′ are outcome-equivalent strategies.
For the sake of brevity, we will say that C2 is included in C1, and write C2 ⊆ C1.

Figure 1.1 summarises our results. In terms of set inclusion, each line in the figure
indicates that the class below is strictly included in the class above. Each line is decorated
with a reference to the relevant results. The strictness results hold in one-player deterministic
games. In particular, there are no collapses in the diagram in either two-player deterministic
games and in Markov decision processes.

Some inclusions follow purely from syntactic arguments. For instance, the inclusion
DRD ⊆ RRD follows from the fact that RRD Mealy machines have more randomisation
power than DRD ones. The inclusions RDD ⊆ DRD, RRR ⊆ DRR and RRR ⊆ RDR, which
do not follow from such arguments, are covered in Section 4.

Pure strategies are strictly less expressive than any other class of FM strategies; pure
strategies cannot induce any non-Dirac distributions on plays in deterministic one-player
games. The strictness of the other inclusions is presented in Section 5.

We close this section by comparing our results with Kuhn’s theorem, which asserts that
the classes of behavioural strategies and mixed strategies in games of perfect recall share
the same expressiveness. Games of perfect recall have two traits: players never forget the
sequence of histories controlled by them that have taken place and they can see their own
actions. In particular, stochastic games of perfect information are a special case of games
of perfect recall. Recall that mixed strategies are distributions over pure strategies. We
comment briefly on the techniques used in the proof of Kuhn’s theorem, and compare them
with the finite-memory setting. Let us fix a game G = (S1, S2, A, δ).

On the one hand, the emulation of mixed strategies with behavioural strategies is
performed as follows. Let pi be a mixed strategy of Pi, i.e., a distribution over pure strategies
of G. An outcome-equivalent behavioural strategy σi is constructed such that, for all histories
h ∈ Histi(G) and actions a ∈ A(last(h)),

σi(h)(a) = pi({τi pure strategy | τi consistent with h and τi(h) = a})
pi({τi pure strategy | τi consistent with h}) .
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In the finite-memory case, similar ideas can be used to show that RDD ⊆ DRD. In the proof
of Theorem 2, from some RDD strategy (i.e., a so-called mixed FM strategy), we construct
a DRD strategy (i.e., a so-called behavioural FM strategy) that keeps track of the finitely
many pure FM strategies that the RDD strategy mixes and that are consistent with the
current history. An adaption of the quotient above is used in the next-move function of the
DRD strategy.

On the other hand, the emulation of behavioural strategies by mixed strategies exploits
the fact that mixed strategies may randomise over infinite sets. In a finite-memory setting,
the same techniques cannot be applied. As a consequence, the class of RDD strategies is
strictly included in the class of DRD strategies. In a certain sense, one could say that Kuhn’s
theorem only partially holds in the case of FM strategies.

4 Non-trivial inclusions

This section covers the non-trivial inclusions that are asserted in the lattice of Figure 1.1.
The structure of this section is as follows. Section 4.1 covers the inclusion RDD ⊆ DRD.
The inclusion RRR ⊆ DRR is presented in Section 4.2. Finally, we close this section with the
inclusion RRR ⊆ RDR in Section 4.3. Full proofs and details of this section are presented in
the full paper [31].

4.1 Simulating RDD strategies with DRD ones
We argue that for all RDD strategies in any game, one can find some outcome-equivalent
DRD strategy (Theorem 2). The converse inclusion is not true; this discussion is relegated
to Section 5.1. The outlined construction yields a DRD strategy that has a state space of
size exponential in the size of the state space of the original RDD strategy; we complement
Theorem 2 by proving that there are some RDD strategies for which this exponential blow-up
in the number of states is necessary for any outcome-equivalent DRD strategy (Lemma 3).
We argue that this blow-up is unavoidable in both deterministic two-player games and Markov
decision processes.

Let G = (S1, S2, A, δ) be a game. Fix an RDD strategy M = (M, µinit, αnext, αup) of Pi. Let
us sketch how to emulate M with a DRD strategy B = (B, binit, βnext, βup) built with a subset
construction-like approach. The memory states of B are functions f : supp(µinit) → M ∪ {⊥}.
A memory state f is interpreted as follows. For all initial memory states m0 ∈ supp(µinit),
we have f(m0) = ⊥ if the history seen up to now is not consistent with the pure FM strategy
(M, m0, αnext, αup), and otherwise f(m0) is the memory state reached in the same pure FM
strategy after processing the current history. Updates are naturally derived from these
semantics.

Using this state space and update scheme, we can compute the likelihood of each memory
state of the mixed FM strategy M after some sequence w ∈ (SA)∗ has taken place. Indeed,
we keep track of each initial memory state from which it was possible to be consistent
with w, and, for each such initial memory state m0, the memory state reached after w was
processed starting in m0. Therefore, this likelihood can be inferred from µinit; the probability
of M being in m ∈ M after w has been processed is given by the (normalised) sum of the
probability of each initial memory state m0 ∈ supp(µinit) such that f(m0) = m.

The definition of the next-move function of B is directly based on the distribution over
states of M described in the previous paragraph, and ensures that the two strategies select
actions with the same probabilities at any given state. For any action a ∈ A(s), the probability
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of a being chosen in game state s and in memory state f is determined by the probability
of M being in some memory state m such that αnext(m, s) = a, where this probability is
inferred from f . It follows from Lemma 1 that M and B are outcome-equivalent.

Intuitively, we postpone the initial randomisation and instead randomise at each step in
an attempt of replicating the initial distribution in the long run.

▶ Theorem 2. Let G = (S1, S2, A, δ) be a game. Let M = (M, µinit, αnext, αup) be an RDD
strategy of Pi. There exists a DRD strategy B = (B, binit, βnext, βup) such that B and M are
outcome-equivalent.

The DRD strategy outlined prior to Theorem 2 leads to an exponential blow-up of the
memory state space. For an RDD strategy M = (M, µinit, αnext, αup), we have described an
outcome-equivalent DRD strategy with a state space consisting of functions supp(µinit) →
M ∪ {⊥}, therefore with a state space of size (|M | + 1)|supp(µinit)|.

An exponential blow-up in the number of initial memory states cannot be avoided in
general. Intuitively, due to the other player’s actions (or stochastic transitions in Markov
decision processes), it may be the case that for each subset of the initial states, there
are histories ending in some fixed state s that are consistent with the pure FM strategies
starting in these initial states. If these pure strategies each prescribe a different action in s,
then there must be at least one memory state per non-empty subset of initial states in an
outcome-equivalent DRD Mealy machine; this can be deduced by counting the number of
necessary next-move functions αnext(·, s). We obtain the following result.

▶ Lemma 3. For all n ∈ N, there exists a two-player deterministic game (respectively a
Markov decision process) Gn with n + 2 states, 4n + 2 transitions, n + 1 actions, and an RDD
strategy Mn of P1 with n states such that any outcome-equivalent DRD strategy must have
at least 2n − 1 states.

4.2 Simulating RRR strategies with DRR ones
We establish that DRR strategies are as expressive as RRR strategies, i.e., randomness in
the initialisation can be removed. We outline the ideas behind the construction of a DRR
strategy that is outcome-equivalent to a given RRR strategy. The rough idea behind the
construction is to simulate the behaviour of the RRR strategy at the start of the play using
a new initial memory state and then move back into the RRR strategy we simulate.

We substitute the random selection of an initial memory element in two stages. To ensure
the first action is selected in the same way under both the supplied strategy and the strategy
we construct, we rely on the randomised outputs. The probability of selecting an action a in
a given state s of the game in our new initial memory state is given as the sum of selecting
action a in state s in each memory state m weighed by the initial probability of m.

We then leverage the stochastic updates to behave as though we had been using the
supplied FM strategy from the start. If the first game state was controlled by the player who
does not own the strategy, the probability of moving into a memory state m is also described
by a weighted sum similar in spirit to the case of the first action (albeit by considering the
update function in place of the next-move function). Whenever the owner of the strategy
controls the first state of the game, the chosen action conditions which possible initial memory
states we could have found ourselves in. The reasoning in this case is similar to the one
for the update of the distribution over memory states (denoted by µw in Section 2) after
processing some sequence in (SA)∗. In light of the above and Lemma 1, we obtain the
following expressiveness result.
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▶ Theorem 4. Let G = (S1, S2, A, δ) be a game. Let M = (M, µinit, αnext, αup) be an RRR
strategy owned by Pi. There exists a DRR strategy B = (B, binit, βnext, βup) such that B and
M are outcome-equivalent, and such that |B| = |M | + 1.

4.3 Simulating RRR strategies with RDR ones
We are concerned with the simulation of RRR strategies by RDR strategies, i.e., with
substituting randomised outputs with deterministic outputs. The idea behind the removal
of randomisation in outputs is to simulate said randomisation by means of both stochastic
initialisation and updates. These are used to preemptively perform the random selection of
an action, simultaneously with the selection of an initial or successor memory state.

Let G = (S1, S2, A, δ) be a stochastic game and let M = (M, µinit, αnext, αup) be an RRR
strategy of Pi. We construct an RDR strategy B = (B, βinit, βnext, βup) that is outcome-
equivalent to M and such that |B| ≤ |M | · |S| · |A|. The state space of B consists of pairs
(m, σi) where m ∈ M and σi is a pure memoryless strategy of Pi. To achieve our bound
on the size of B, we cannot take all pure memoryless strategies of Pi. To illustrate how we
perform the selection of these pure memoryless strategies, we provide a simple example of
the construction on a DRD strategy (which is a special case of RRR strategies) with a single
memory state (i.e., a memoryless randomised strategy).

▶ Example 5. We consider a game G = (S1, S2, A, δ) where S1 = {s1, s2, s3}, S2 = ∅,
A = {a1, a2, a3} and all actions are enabled in all states. We need not specify δ exactly for
our purposes. For our construction, we fix an order on the actions of G: a1 < a2 < a3.

Let M = ({m}, m, αnext, αup) be the DRD strategy such that αnext(m, s1) and αnext(m, s2)
are uniform distributions over {a1, a2} and A respectively and αnext(m, s3) is defined by
αnext(m, s3)(a1) = 1

3 , αnext(m, s3)(a2) = 1
6 and αnext(m, s3)(a3) = 1

2 .
Figure 4.1 illustrates the probability of each action being chosen in each state as the

length of a segment. Let us write 0 = x1 < x2 < x3 < x4 < x5 = 1 for all of the endpoints
of the segments appearing in the illustration. For each index k ∈ {1, . . . , 4}, we define a
pure memoryless strategy σk that assigns to each state the action lying in the segment
above it in the figure. For instance, σ2 is such that σ2(s1) = a1 and σ2(s2) = σ2(s3) = a2.
Furthermore, for all k ∈ {1, . . . , 4}, the length xk+1 − xk of its corresponding interval denotes
the probability of the strategy being chosen during stochastic updates.

s1 a1 a2

s2 a1 a2 a3

s3 a1 a2 a3

σk σ1 σ2 σ3 σ4

x1 = 0 x2 = 1
3 x3 = 1

2 x4 = 2
3 x5 = 1

Figure 4.1 Representation of cumulative probability of actions under strategy M and derived
memoryless strategies.

We construct an RDR strategy B = (B, βinit, βnext, βup) that is outcome-equivalent to M
in the following way. We let B = {m} × {σ1, σ2, σ3, σ4}. The initial distribution is given
by βinit(m, σk) = xk+1 − xk, i.e., the probability of σk in the illustration. We set, for any
j, k ∈ {1, . . . , 4}, s ∈ S and a ∈ A, βup((m, σk), s, a)((m, σj)) = xj+1 − xj . Finally, we let
βnext((m, σk), s) = σk(s) for all k ∈ {1, . . . , 4} and s ∈ S.
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sa b

Figure 5.1 A (one-player) game with a single state and two actions.

The argument for the outcome-equivalence of B and M is the following; for any state
s ∈ S1, the probability of moving into a memory state (m, σk) such that σk(s) = a is by
construction the probability αnext(m, s). ◀

In the previous example, we had a unique memory state m and we defined some memoryless
strategies from the next-move function partially evaluated in this state (i.e., from αnext(m, ·)).
In general, each memory state may have a different partially evaluated next-move function,
and therefore we must define some memoryless strategies for each individual memory state.
For each memory state, we can bound the number of derived memoryless strategies by
|Si| · |A|; we look at cumulative probabilities over actions (of which there are at most |A|)
for each state of Pi. This explains our announced bound on |B|.

Furthermore, in general, the memory update function is not trivial. Generalising the
construction above can be done in a straightforward manner to handle updates. Intuitively,
the probability to move to some memory state of the form (m, σ) is defined by the probability
of moving into m multiplied by the probability of σ (in the sense of Figure 4.1).

We now formally state our result in the general setting.

▶ Theorem 6. Let G = (S1, S2, A, δ) be a game. Let M = (M, µinit, αnext, αup) be an RRR
strategy owned by Pi. There exists an RDR strategy B = (B, βinit, βnext, βup) such that B and
M are outcome-equivalent, and such that |B| ≤ |M | · |Si| · |A|.

5 Strictness of inclusions

We now discuss the strictness of inclusions in the lattice of Figure 1.1. Section 5.1 complements
the previous Section 4.1 and presents a DRD strategy that has no outcome-equivalent RDD
counterpart. The strict inclusion of the class DRD in the class of RRD strategies is covered
in Section 5.2. Finally, we provide the necessary results to establish that the class DDR is
incomparable to the classes of RDD, DRD and RRD strategies in Section 5.3. Technical
details are presented in the full paper [31].

All strictness results hold in one-player deterministic games with a single state and two
actions. This is one of the simplest possible settings to show that strategy classes are distinct.
Indeed, in a game with a single state and a single action, the only strategy is to always play
the unique action, and therefore all strategy classes collapse into one. For the entirety of this
section, we let G denote the game depicted in Figure 5.1, and only consider strategies of G in
the upcoming statements.

We illustrate FM strategies witnessing the strictness of inclusions asserted in the lattice
of Figure 1.1 in Figures 5.2 and 5.3. The Mealy machines are interpreted as follows. Edges
that exit memory states read a game state (omitted in these figures due to s being the sole
involved game state) and split into edges labelled by an action and a probability of this
action being played, e.g., for c ∈ {a, b} and p ∈ [0, 1], the notation c | p indicates that the
probability of playing action c in the current memory state is p. In Figure 5.3, the edges are
further split after the choice of an action for randomised updates. The edge labels following
this second split represent the probabilities of stochastic updates. This second split is omitted
whenever an update is deterministic.
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m

a | 1
2b | 1

2

(a) RDD ⊊ DRD.

m1

1
2

m2

1
2

a | 1
2b | 1

2 b | 1

(b) DRD ⊊ RRD.

Figure 5.2 Depictions of Mealy machines witnessing the strictness of two inclusions asserted in
Figure 1.1. For the sake of readability, we do not label transitions by s as it is the sole state the
Mealy machines can read in G.

5.1 RDD strategies are strictly less expressive than DRD ones
We argue that there exists a DRD strategy that cannot be emulated by any RDD strategy.
Let us first explain some intuition behind this statement. Intuitively, an RDD strategy can
only randomise once at the start between a finite number of pure FM (DDD) strategies.
After this initial randomisation, the sequence of actions prescribed by the RDD strategy is
fixed relative to the play in progress. Any DRD strategy that chooses an action randomly
at each step, such as the strategy depicted in Figure 5.2a, i.e., the strategy playing actions
a and b with uniform probability at each step in G, cannot be reproduced by an RDD
strategy. Indeed, this randomisation generates an infinite number of patterns of actions.
These patterns cannot all be captured by an RDD strategy due to the fact that its initial
randomisation is over a finite set.

▶ Lemma 7. There exists a DRD strategy of P1 such that there is no outcome-equivalent
RDD strategy.

5.2 DRD strategies are strictly less expressive than RRD ones
We argue that there exists an RRD strategy that has no outcome-equivalent DRD strategy.
The example we provide is based on results of [21, 22]; the authors of [21] illustrate that
some behaviour proven to not be achievable by DRD strategies in concurrent reachability
games by [22] can be achieved using RRD strategies.

Consider the Mealy machine depicted in Figure 5.2b. The main idea underlying its
induced strategy is the following. This strategy attempts the action a at all steps with a
positive probability due to memory state m1. It also has a positive probability of never
playing a due to memory state m2.

This behaviour cannot be achieved with a DRD strategy. The distribution over memory
states of a DRD strategy following a history is a Dirac distribution due to the deterministic
initialisation and deterministic updates. It follows that DRD strategies suggest actions
with probabilities given directly by the next-move function. In particular, if an action is
attempted at each round by a DRD strategy, then there exists a positive lower bound on the
probability of the action being chosen (as there are finitely many memory states), therefore
the action is eventually selected almost-surely. It follows that there is no DRD strategy that
is outcome-equivalent to the strategy depicted in Figure 5.2b.

▶ Lemma 8. There exists an RRD strategy of P1 such that there is no outcome-equivalent
DRD strategy.

CONCUR 2022
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m1(m2, a)

(m2, b) m3
b

1
4

1
4

1
2

b

a

1
2

1
2

b

(a) A DDR strategy witnessing DDR ⊈ RRD.

m1

m2 m3
b | 1

1
2

1
2

a | 1
2

b | 1
2

b | 1

(b) An outcome-equivalent RRR strategy
with fewer states.

Figure 5.3 Outcome-equivalent strategies witnessing the non-inclusion DDR ⊈ RRD. For the
sake of readability, we do not label transitions by s as it is the sole state the Mealy machines can
read in G. We omit the probability of actions in Figure 5.3a as outputs are deterministic.

5.3 RRD and DDR strategies are incomparable
We argue that the classes RRD and DDR of finite-memory strategies are incomparable.
While we have shown that RDR and DRR strategies are as powerful as RRR strategies,
DDR strategies are not because they lack the ability to provide a random output at the
first step of a game. Due to this trait, one can even construct some RDD strategy that
cannot be emulated by any DDR strategy; any strategy that randomises between two pure
FM strategies prescribing action a and action b respectively at the first turn in G has no
outcome-equivalent DDR strategy. The following result follows immediately.

▶ Lemma 9. There exists an RDD strategy of P1 such that there is no outcome-equivalent
DDR strategy.

On the other hand, one can construct a DDR strategy that has no outcome-equivalent
RRD strategy. For instance, the DDR strategy that is depicted in Figure 5.3a has no
outcome-equivalent RRD strategy. For ease of analysis, we illustrate in Figure 5.3b a DRR
strategy with fewer states that is outcome-equivalent to the Mealy machine depicted in
Figure 5.3a. Note that the DDR strategy of Figure 5.3a can be obtained by applying the
construction of Theorem 6 to Figure 5.3b.

Intuitively, these strategies have a non-zero probability of never using action a after any
history, while they have a positive probability of using action a at any time besides the
first round and right after a use of the action a. The behaviour described above cannot be
reproduced by an RRD strategy. There are two reasons to this.

First, along any play consistent with an RRD strategy, the support of the distribution
over memory states cannot increase in size. Because of deterministic updates, the probability
carried by a memory state m can only be transferred to at most one other state, and may be
lost if the used action cannot be used while in m. This is not the case for strategies that
have stochastic updates, such as those of Figure 5.3.

Second, one can force situations in which the size of the support of the distribution over
memory states of an RRD strategy must decrease. If after a given history h, the action a has
a positive probability of never being used despite being assigned a positive probability at each
round after h, then at some point there must be some memory state of the RRD strategy
that has positive probability and that assigns (via the next-move function) probability zero
to action a. For instance, this is the case from the start with the RRD strategy depicted in
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Figure 5.2b. Intuitively, in general, if at all times all memory states in the support of the
distribution over memory states after the current history assign a positive probability to
action a, the probability of using a at each round after h would be bounded from below by
the smallest positive probability assigned to a by the next-move function. Therefore a would
eventually be played almost-surely assuming h has taken place, contradicting the fact that
there was a positive probability of never using action a after h. By using action a at a point
in which some memory state in the support of the distribution over memory states assigns
probability zero to a, the size of the support of the strategy decreases.

By design of our DDR strategy, if one assumes the existence of an outcome-equivalent
RRD strategy, then it is possible to construct a play along which the size of the support of
the distribution over memory states of the RRD strategy decreases between two consecutive
steps infinitely often. Because this size cannot increase along a play, this is not possible, i.e.,
there is no such RRD strategy. We obtain the following lemma.

▶ Lemma 10. There exists a DDR strategy of P1 such that there is no outcome-equivalent
RRD strategy.

6 Extensions

In the following, we discuss settings beyond two-player games with perfect information to
which our results carry over.

Multi-player games. In this work, we have considered two-player games. Our result also
extend to games with more than two players. The definition of outcome-equivalence naturally
extends to multi-player games; instead of quantifying universally over strategies of the other
player as is done in the two-player setting, one quantifies universally over strategy profiles of
all other players when defining outcome-equivalence with more players.

In practice, when studying the outcome-equivalence of strategies of some given player
Pi, there being more than one other player is no different than having a fictitious single
other player obtained as a coalition of all players besides Pi. Therefore, all of our results
carry over to the multi-player setting directly. Furthermore, due to outcome-equivalence
being a criterion that depends solely on the studied player, as highlighted by the equivalent
formulation given in Lemma 1, the way players are arranged in coalitions does not affect our
taxonomy in multi-player games with coalitions.

Imperfect information. Our presentation assumes perfect information; the players are fully
informed of the sequence of witnessed states and used actions. Our results also hold in a
context of partial observation with observable actions. A formalisation of the following is
provided in the full paper [31].

First, it is not necessary to have full knowledge of the states; an observation suffices. Intu-
itively, the Mealy machines are formally agnostic to the nature of the inputs, therefore states
can be substituted with observations while preserving correctness of all of our constructions.

Second, we need not be capable to observe the actions of the other player for our
constructions. However, it is required to observe the actions of the player we consider; we
exploit this in the memory update functions in the constructions relevant to Theorems 2
and 4. In addition to the visibility of actions, these constructions need also the capability of
distinguishing from a sequence of observations whose turn it was at each step; this can be
achieved either by requiring that the two players have disjoint action sets or by encoding in
the state observations to whom the states belong.
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Abstract
Regular model checking is a technique for the verification of infinite-state systems whose configurations
can be represented as finite words over a suitable alphabet. It applies to systems whose set of
initial configurations is regular, and whose transition relation is captured by a length-preserving
transducer. To verify safety properties, regular model checking iteratively computes automata
recognizing increasingly larger regular sets of reachable configurations, and checks if they contain
unsafe configurations. Since this procedure often does not terminate, acceleration, abstraction,
and widening techniques have been developed to compute a regular superset of the reachable
configurations.

In this paper we develop a complementary procedure. Instead of approaching the set of reachable
configurations from below, we start with the set of all configurations and approach it from above. We
use that the set of reachable configurations is equal to the intersection of all inductive invariants of the
system. Since this intersection is non-regular in general, we introduce b-bounded invariants, defined
as those representable by CNF-formulas with at most b clauses. We prove that, for every b ≥ 0,
the intersection of all b-bounded inductive invariants is regular, and we construct an automaton
recognizing it. We show that whether this automaton accepts some unsafe configuration is in
EXPSPACE for every b ≥ 0, and PSPACE-complete for b = 1. Finally, we study how large must b

be to prove safety properties of a number of benchmarks.
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1 Introduction

Regular model checking (RMC) is a framework for the verification of different classes of
infinite-state systems (see, e.g., the surveys [5, 1, 6, 2]). In its canonical version, RMC
is applied to systems satisfying the following conditions: configurations can be encoded
as words, the set of initial configurations is recognized by a finite automaton AI , and the
transition relation is recognized by a length-preserving transducer AT . RMC algorithms

© Javier Esparza, Mikhail Raskin, and Christoph Welzel;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esparza@in.tum.de
https://orcid.org/0000-0001-9862-4919
mailto:raskin@in.tum.de
https://orcid.org/0000-0002-6660-5673
mailto:welzel@in.tum.de
https://orcid.org/0000-0001-5583-0640
https://doi.org/10.4230/LIPIcs.CONCUR.2022.23
https://arxiv.org/abs/2205.03060
https://doi.org/10.5281/zenodo.6483615
https://doi.org/10.5281/zenodo.6483615
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Regular Model Checking Upside-Down: An Invariant-Based Approach

address the problem of, given a regular set of unsafe configurations, deciding if its intersection
with the set of reachable configurations is empty or not. In the present paper we do not
consider generalisations to non-length-preserving transitions.

The fundamental building block of current RMC algorithms is an automata-theoretic
construction that, given a non-deterministic automaton (NFA) A recognizing a regular set
of configurations, produces another NFA recognizing the set of immediate successors (or
predecessors) of L(A) with respect to the transition relation represented by AT . Therefore,
if some unsafe configuration is reachable, one can find a witness by, starting with the set
of initial configurations, repeatedly adding the set of immediate successors. However, this
approach never terminates when all reachable configurations are safe. Research on RMC
has produced many acceleration, abstraction, and widening techniques to make the iterative
computation “jump over the fixpoint” in finite time, and produce an invariant of the system
not satisfied by any unsafe configuration (see, e.g., [10, 22, 15, 4, 7, 9, 11, 8, 23, 14]).

In this paper we develop a complementary approach that, starting with the set of
all configurations, computes increasingly smaller regular inductive invariants, i.e., sets of
configurations closed under the reachability relation and containing all initial configurations.
Our main contribution is the definition of a sequence of regular inductive invariants that
converges (in the limit) to the set of reachable configurations, and for which automata can
be directly constructed from AI and AT .

Our starting point is the fact that the set of reachable configurations is equal to the
intersection of all inductive invariants. Since this intersection is non-regular in general,
we introduce b-bounded invariants. An invariant is b-bounded if, for every ℓ ≥ 0, the
configurations of length ℓ satisfying the invariant are those satisfying a Boolean formula in
conjunctive normal form with at most b clauses. For example, assume that the configurations
of some system are words over the alphabet {a, b, c, d}, and that the configurations of length
five where the second letter is an a or the fourth letter is a b, and the second letter is a b

or the third is a c, constitute an inductive invariant. Then this set of configurations is a
2-bounded invariant, represented by the formula (a2:5 ∨ b4:5)∧ (b2:5 ∨d3:5). We prove that, for
every bound b ≥ 0, the intersection of all b-bounded inductive invariants, denoted IndInvb, is
regular, and recognized by a DFA of double exponential size in AI and AT . As a corollary,
we obtain that, for every b ≥ 0, deciding if IndInvb contains some unsafe configuration is in
EXPSPACE.

In the second part of the paper, we study the special case b = 1 in more detail. We
exploit that 1-bounded inductive invariants are closed under union (a special feature of
the b = 1 case) to prove that deciding if IndInv1 contains some unsafe configuration is
PSPACE-complete. The proof also shows that IndInvb can be recognized by a NFA of single
exponential size in AI and AT .

The index b of a bounded invariant can be seen as a measure of how difficult it is for a
human to understand the invariant. So one is interested in the smallest b such that IndInvb

is strong enough to prove a given property. In the third and final part of the paper, we
experimentally show that for a large number of systems IndInv1 is strong enough to prove
useful safety properties.

Related work. The work closest to ours is [3], which directly computes an overapproxi-
mation of the set of reachable configurations of a parameterized system. Contrary to our
approach, the paper computes one single approximation, instead of a converging sequence of
overapproximations. Further, the method is designed for a model of parameterized systems
with existential or universal guarded commands, while our technique can be applied to any
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model analyzable by RMC. Our work is also related to [14], which computes an overapproxi-
mation using a learning approach, which terminates if the set of reachably configurations
is regular; our paper shows that a natural class of invariants is regular, and that automata
for them can be constructed explicitly from the syntactic description of the system. This
paper generalizes the work of [12, 19, 13, 20] on trap invariants for parameterized Petri
nets. Trap invariants are a special class of 1-bounded invariants, and the parameterized
Petri nets studied in these papers can be modeled in the RMC framework. An alternative
to regular model checking are logical based approaches. The invisible invariant method
synthesizes candidate invariants from examples, which are then checked for inductiveness
[26]. Our approach does not produce candidates, it generates invariants by construction.
Modern tools like Ivy [25, 24] have verified more complex protocols than the ones in Section
5 using a combination of automation and human interaction. The best way of achieving this
interaction is beyond the scope of this paper, which focuses on the foundations of regular
model checking.

Structure of the paper. Section 2 introduces basic definitions of the RMC framework.
Section 3 introduces b-bound invariants and proves regularity of IndInvb. Section 4 proves
the PSPACE-completeness result. Sections 5 and 6 contain some experimental results and
conclusions.

Full version. All missing proofs can be found in the full version of this paper [21].

2 Preliminaries

Automata and transducers. Given n, m ∈ N, we let [n, m] denote the set {i ∈ N : n ≤ i ≤
m}. Given a a word w of length ℓ, we let w[i] denote the i-th letter of w, i.e., w = w[1] · · · w[ℓ].

A nondeterministic finite automaton (NFA) is a tuple A = ⟨Q, Σ, ∆, Q0, F ⟩, where Q is a
non-empty finite set of states, Σ is an alphabet, ∆: Q × Σ → 2Q is a transition function, and
Q0, F ⊆ Q are sets of initial and final states, respectively. A run of A on a word w ∈ Σℓ is a
sequence q0 q1 . . . qℓ of states such that q0 ∈ Q0 and qi ∈ ∆(qi−1, w[i]) for every i ∈ [1, ℓ]. A
run on w is accepting if qℓ ∈ F , and A accepts w if there exists an accepting run of A on w.
The language recognized by A, denoted L(A) or LA, is the set of words accepted by A. We
let |A| denote the number of states of A. A NFA A is deterministic (DFA) if |Q0| = 1 and
|∆(q, a)| = 1 for every q ∈ Q and a ∈ Σ.

The function δA : 2Q × Σ∗ → 2Q is defined inductively as follows: δA(P, ε) = P and
δA(P, aw) = δA(

⋃
p∈P ∆(p, a), w). Observe that A accepts w iff δA(Q0, w) ∩ F ̸= ∅.

A (length-preserving) transducer over Σ × Γ is a NFA over an alphabet Σ × Γ. We denote

elements of Σ × Γ as ⟨a, b⟩ or
[
a

b

]
, where a ∈ Σ and b ∈ Γ. Given two words w ∈ Σℓ, u ∈ Γℓ

of the same length ℓ and a transducer A, we say that A accepts ⟨w, u⟩, or transduces w into
u, if it accepts the word ⟨w[1], u[1]⟩ · · · ⟨w[ℓ], u[ℓ]⟩ ∈ (Σ × Γ)ℓ.

Regular model checking. Regular model checking (RMC) is a framework for the verification
of systems with infinitely many configurations. Each configuration is represented as a finite
word over a fixed alphabet Σ. Systems are modeled as regular transition systems (RTS).

▶ Definition 1 (Regular transition systems). A RTS is a triple R = ⟨Σ, AI , AT ⟩, where Σ is
an alphabet, AI is a NFA over Σ, and AT is a transducer over Σ × Σ.
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Words over Σ are called configurations. Configurations accepted by AI are called initial,
and pairs of configurations accepted by AT are called transitions. We write w ⇝ u to denote
that ⟨w, u⟩ is a transition. Observe that w ⇝ u implies |w| = |u|. Given two configurations
w, u, we say that u is reachable from w if w ⇝∗ u, where ⇝∗ denotes the reflexive and
transitive closure of ⇝. The set of reachable configurations of R, denoted Reach(R), or
just Reach when there is no confusion, is the set of configurations reachable from the initial
configurations. In the following, we use |R| to refer to |AI | + |AT |.

▶ Example 2 (Dining philosophers). We model a very simple version of the dining philosophers
as a RTS, for use as running example. Philosophers sit at a round table with forks between
them. Philosophers can be thinking (t) or eating (e). Forks can be free (f) or busy (b). A
thinking philosopher whose left and right forks are free can simultaneously grab both forks –
the forks become busy – and start eating. After eating, the philosopher puts both forks to
the table and returns to thinking. The model includes two corner cases: a table with one
philosopher and one fork, which is then both the left and the right fork (unusable as it would
need to be grabbed twice in a single transition), and the empty table with no philosophers
or forks.

We model the system as a RTS over the alphabet Σ = {t, e, f, b}. A configuration of a
table with n philosophers and n forks is represented as a word over Σ of length 2n. Letters
at odd and even positions model the current states of philosophers and forks (positions start
at 1). For example, tftf models a table with two thinking philosophers and two free forks.
The language of initial configurations is LI = (tf)∗, and the language of transitions is

LT =
[

t

e

] [
f

b

] [
x

x

]∗ [
f

b

]
|
[
e

t

] [
b

f

] [
x

x

]∗ [
b

f

]
|
[
x

x

]∗ ([
f

b

] [
t

e

] [
f

b

]
|
[

b

f

] [
e

t

] [
b

f

]) [
x

x

]∗

where
[
x

x

]
stands for the regular expression

([
t

t

]
|
[
e

e

]
|
[
f

f

]
|
[
b

b

])
. The first two terms of

LT describe the actions of the first philosopher, and the second the actions of the others.
It is not difficult to show that Reach = (t(f | beb))∗ | ebt((f | beb)t)∗. (These are the
configurations where no two philosophers are using the same fork, and fork states match
their adjacent philosopher states.)

Safety verification problem for RTSs. The safety verification problem for RTSs is defined
as follows: Given a RTS R and a NFA U recognizing a set of unsafe configurations, decide
whether Reach(R) ∩ LU = ∅ holds. The problem is known to be undecidable.

3 Bounded inductive invariants of a RTS

We present an invariant-based approach to the safety verification problem for RTSs. Fix a
RTS R = ⟨Σ, AI , AT ⟩. We introduce an infinite sequence

Σ∗ = IndInv0 ⊇ IndInv1 ⊇ IndInv2 . . . ⊇ Reach

of effectively regular inductive invariants of R that converges to Reach , i.e., IndInvk is
effectively regular for every k ≥ 1, and Reach =

⋂∞
k=0 IndInvk. Section 3.1 recalls basic

notions about invariants, Section 3.2 defines the inductive invariant IndInvb for every b ≥ 0,
and Section 3.3 shows that IndInvb is regular.
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3.1 Invariants
Let S ⊆ Σ∗ be a set of configurations. S is an invariant for length ℓ if Reach ∩ Σℓ ⊆ S ∩ Σℓ,
and an invariant if Reach ⊆ S. Observe that, since AT is a length-preserving transducer, S

is an invariant iff it is an invariant for every length. A set S (invariant or not) is inductive if
it is closed under reachability, i.e. w ∈ S and w ⇝ u implies u ∈ S. Given two invariants
I1, I2, we say that I1 is stronger than I2 if I1 ⊂ I2. Observe that inductive invariants are
closed under union and intersection, and so there exists a unique strongest inductive invariant
of R. Since Reach is an inductive set, the strongest inductive invariant is Reach .

▶ Example 3. The set I0 = ((t | e)(f | b))∗ is an inductive invariant of the dining philosophers.
Other inductive invariants are

I1 = Σ∗efΣ∗ I2 = Σ∗fe Σ∗ I3 = e Σ∗f I4 = Σ∗t b tΣ∗ I5 = t Σ∗t b

Taking into account that the table is round, these are the sets of configurations without any
occurrence of ef (I1), fe (I2 and I3), and t b t (I4 and I5).

3.2 Bounded invariants
Given a length ℓ ≥ 0, we represent certain sets of configurations as Boolean formulas over a
set APℓ of atomic propositions. More precisely, a Boolean formula over APℓ describes a set
containing some configurations of length ℓ, and all configurations of other lengths.

The set APℓ contains an atomic proposition qj:ℓ for every q ∈ Σ and for j ∈ [1, ℓ]. A
formula φ over APℓ is a positive Boolean combination of atomic propositions of APℓ and the
constants true and false. Formulas are interpreted on configurations. Intuitively, an atomic
proposition qj:ℓ states that either the configuration does not have length ℓ, or it has length ℓ

and its j-th letter is q. Formally, w ∈ Σ∗ satisfies φ, denoted w |= φ, if φ = qj:ℓ and |w| ̸= ℓ or
|w| = ℓ and w[j] = q; for the other cases, i.e., for φ = true, ¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, satisfaction
is defined as usual. The language L(φ) ⊆ Σ∗ of a formula is the set of configurations that
satisfy φ. We also say that φ denotes the set L(φ). A formula is inductive if it denotes an
inductive set.

▶ Example 4. In the dining philosophers, let φ = (e1:4 ∧ b4:4) ∨ f2:4. We have

L(φ) = ϵ | Σ | Σ2 | Σ3 | (e Σ Σ b | Σ f Σ Σ) | Σ5Σ∗ .

Observe that an expression like (q1:1 ∧ r1:2) is not a formula, because it combines atomic
propositions of two different lengths, which is not allowed. Notice also that ¬qj:ℓ is equivalent
to

∨
r∈Σ\{q} rj:ℓ. Therefore, if we allowed negative conditions, we would still have the same

class of expressible predicates on words of a given length (and we would not obtain formulas
for the same predicates with fewer clauses.) Abusing language, if φ is a formula over APℓ and
L(φ) is an (inductive) invariant, then we also say that φ an (inductive) invariant. Observe
that (inductive) invariants are closed under conjunction and disjunction.

Convention: From now on, “formula” means “positive formula in CNF”.

▶ Definition 5. Let b ≥ 0. A b-formula is a formula with at most b clauses (with the
convention that true is the only formula with 0 clauses). A set S ⊆ Σ∗ of configurations is
b-bounded if for every length ℓ there exists a b-formula φℓ over APℓ such that S ∩Σℓ = L(φℓ).

Observe that, since one can always add tautological clauses to a formula without changing
its language, a set S is b-bounded iff for every length ℓ there is a formula φℓ with exactly b

clauses.
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▶ Example 6. In the dining philosophers, the 1-formulas (t2i−1:ℓ ∨ e2i−1:ℓ) and (f2i:ℓ ∨ b2i:ℓ)
are inductive 1-invariants for every even ℓ ≥ 1 and every i ∈ [1, ℓ/2]. It follows that the
set I0 of Example 3 is an intersection of (infinitely many) inductive 1-invariants. The same
happens for I1, . . . , I5. For example, I1 is the intersection of all inductive 1-invariants of the
form (ti:ℓ ∨ bi+1:ℓ), for all ℓ ≥ 1 and all i ∈ [1, ℓ − 1]; inductivity is shown by an easy case
distinction.

We are now ready to define the sequence of inductive invariants we study in the paper:

▶ Definition 7. Let R be a RTS. For every b ≥ 0, we define IndInvb as the intersection of
all inductive b-invariants of R.

▶ Proposition 8. Let R be a RTS. For every b ≥ 0, IndInvb ⊇ Reach and IndInvb ⊇
IndInvb+1. Further, Reach =

⋂∞
b=0 IndInvb.

Proof. IndInvb ⊇ Reach follows from the fact that, since inductive invariants are closed under
intersection, IndInvb is an inductive invariant, and Reach is the strongest inductive invariant.
IndInvb ⊇ IndInvb+1 follows from the fact that, by definition, every b-invariant is also a b + 1-
invariant. For the last part, observe that for every ℓ ≥ 0, the set Reach ∩ Σℓ is an inductive
invariant for length ℓ. Let φℓ be a formula over APℓ such that L(φℓ) ∩ Σℓ = Reach ∩ Σℓ,
and let bℓ be its number of clauses. (Notice that φℓ always exists, because every subset of Σℓ

can be expressed as a formula, and every formula can be put in conjunctive normal form.)
Then φℓ is a bℓ-bounded invariant, and so L(φℓ) ⊇ IndInvbℓ

for every ℓ ≥ 0. So we have
Reach =

⋂∞
ℓ=0 L(φℓ) ⊇

⋂∞
b=0 IndInvb = Reach , and we are done. ◀

Observe that, while IndInvb is always an inductive invariant, it is not necessarily b-
bounded. The reason is that b-invariants are not closed under intersection. Indeed, the
conjunction of two formulas with b clauses is not always equivalent to a formula with b

clauses, one can only guarantee equivalence to a formula with 2b clauses.

▶ Example 9. The deadlocked configurations of the dining philosophers are

Dead = Σ∗f t f Σ∗ ∩ Σ∗b e b Σ∗ .

We prove IndInv1 ∩ Dead = ∅, which implies that the dining philosophers are deadlock-free.
Let C be the set of configurations of ((t | e)(f | b))∗ containing no occurrence of ef , fe,
or t b t as a cyclic word. In Example 6 we showed that C is an intersection of 1-invariants,
which implies IndInv1 ⊆ C. We prove C ∩ Dead = ∅, which implies IndInv1 ∩ Dead = ∅. Let
w ∈ C. If |w| ≤ 3 the proof is an easy case distinction. Assume |w| ≥ 4. We show that w

contains an occurrence of f t f or b e b, and so it is not a deadlock. If all philosophers are
thinking at w, then, since w contains no occurrence of t b t, it contains an occurrence of ftf .
If at least one philosopher is eating at w, then, since w contains no occurrence of e b or b e, it
contains an occurrence of b e b.

Further, for the dining philosophers we have Reach = IndInv3. Apart from some corner
cases (e.g. an unsatisfiable invariant for every odd length), the reason is that the 3-formula

(ti:ℓ ∨ bi+1:ℓ) ∧ (bi+1:ℓ ∨ ti+2:ℓ) ∧ (ti:ℓ ∨ fi+1:ℓ ∨ ti+2:ℓ)

is an inductive 3 invariant for every ℓ ≥ 3 and every i ∈ [1, ℓ − 2]. The configurations
satisfying this invariant and the inductive 1-invariants I0, . . . , I5 of Example 6 are the
reachable configurations Reach = (t(f | beb))∗ | ebt((f | beb)t)∗b.

It is not difficult to construct an (artificial) family Rb of RTSs such that IndInvb ⊂
Reach(Rk) = IndInvb+1.
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▶ Example 10. Fix some b > 0. Consider a RTS with Σ = {0, 1} and LT given by

⟨0, 0⟩k1 ⟨1, 0⟩ ⟨0, 0⟩k2 (⟨0, 0⟩ + ⟨0, 1⟩ + ⟨1, 0⟩ + ⟨1, 1⟩)∗

for every k1, k2 ∈ N such that k1 + k2 = b − 1. Then every transition of the RTS is of the
form u · v ⇝ u′ · v′, where |u| = b = |u′|, the word u contains exactly one 1, and the word
u′ contains only 0s. If we choose 0∗ as set of initial configurations, then no transition is
applicable to any initial configuration, and so Reach = 0∗. It is easy to check (see Appendix A
of [21]) that IndInvb ⊃ IndInvb+1 = 0∗ = Reach . Also, one can easily check that if we set
LT to

⟨0, 0⟩∗ ⟨1, 0⟩ ⟨0, 0⟩∗ (⟨0, 0⟩ + ⟨0, 1⟩ + ⟨1, 0⟩ + ⟨1, 1⟩)

then IndInvb ⊃ 0∗ = Reach for every b > 0.

Finally, we show in the next section that IndInvb is regular for every b ≥ 0, which implies
that any RTS R such that Reach is not regular satisfies Reach ̸= IndInvb for every b ≥ 0.

3.3 IndInvb is regular for every b ≥ 1
We prove that IndInvb is regular for every b ≥ 1. For this, we first show how to encode
b-formulas as words over the alphabet (2Σ)b, and then we prove the following two results:
1. The language of all b-formulas φ such that L(φ) is an inductive invariant is regular.
2. Given a regular language of b-formulas, the set of configurations that satisfy every formula

in the language is regular.
Since IndInvb contains the configurations that satisfy all the inductive b-invariants of R,
these two results imply that IndInvb is regular.

Observe that a b-formula is an inductive invariant if it is satisfied by all initial configura-
tions and is inductive. So we prove the second result in two steps. We first show that the
set of b-formulas satisfied by all initial configurations is regular, and then that the set of all
b-inductive formulas is regular.

Encoding b-formulas as b-powerwords. We introduce an encoding of b-formulas. We start
with some examples. Assume R is a RTS with Σ = {a, b, c}. We consider formulas over AP3,
i.e., over the atomic propositions {a1:3, a2:3, a3:3, b1:3, b2:3, b3:3, c1:3, c2:3, c3:3}.

We encode the 1-formula (a1:3 ∨ a2:3) as the word {a} {a} ∅ of length three over the
alphabet 2Σ. Intuitively, {a} {a} ∅ stands for the words of length 3 that have an a in their
first or second position. Similarly, we encode (a1:3 ∨ b1:3 ∨ b3:3) as {a, b} ∅ {b}. Intuitively,
{a, b} ∅ {b} stands for the set of words of length 3 that have a or b as first letter, or b as third
letter. Since 2Σ is the powerset of Σ, we call words over 2Σ powerwords.

Consider now the 2-formula (a1:3 ∨b1:3 ∨a2:3)∧ (b1:3 ∨b3:3 ∨c3:3). We put the encodings of
its clauses “on top of each other”. Since the encodings of (a1:3∨b1:3∨a2:3) and (b1:3∨b3:3∨c3:3)
are {a, b} {a} ∅ and {b} ∅ {b, c}, respectively, we encode the formula as the word[

{a, b}
{b}

] [
{a}
∅

] [
∅

{b, c}

]
of length three over the alphabet 2Σ × 2Σ = (2Σ)2. We call such a word a 2-powerword.
Similarly, we encode a b-formula by a b-powerword of length three over the alphabet (2Σ)b.

In the following we overload φ to denote both a formula and its encoding as a b-powerword,
and for example write
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φ =

X11
· · ·
Xb1

 · · ·

X1ℓ

· · ·
Xbℓ

 instead of φ =
b∧

i=1

ℓ∨
j=1

∨
a∈Xij

ai:ℓ

where Xij ⊆ Σ. Intuitively, each row Xi1 · · · Xiℓ encodes one clause of φ. We also write
φ = φ[1] · · · φ[ℓ], where φ[i] ∈ (2Σ)b denotes the i-th letter of the b-powerword encoding φ.
The satisfaction relation w |= φ translates into a purely set-theoretical property:

▶ Fact 11. Let w = w[1] · · · w[ℓ] be a configuration over Σ, and let φ = φ[1] . . . φ[ℓ] be a

b-formula, i.e., a b-powerword over (2Σ)b, where φ[j] =

X1j

· · ·
Xbj

. We have w |= φ iff for every

i ∈ [1, b] there exists j ∈ [1, ℓ] such that w[j] ∈ Xij .

A DFA for the b-formulas satisfied by all initial configurations. Given a RTS R and a
bound b ≥ 0, we let Initb denote the set of all b-formulas satisfied by all initial configurations
of R. Recall that b-formulas are encoded as b-powerwords, and so Initb is a language over
the alphabet (2Σ)b. We show that Initb is effectively regular:

▶ Proposition 12. Let R = ⟨Σ, AI , AT ⟩ be a RTS, and let nI be the number of states of AI .
For every b ≥ 1, the language Initb is recognized by a NFA with at most nIb states, and so
Initb is recognized by a DFA with at most 2bnI states.

Proof. Initb contains the set of all b-formulas φ such that w ̸|= φ for some w ∈ LI . Let
AI = (QI , Σ, δI , Q0I , FI). We consider only the case b = 1, the general case is handled in
Appendix B of [21]. Let B = (QI , 2Σ, δB , Q0, FI) be the NFA with the same states, initial
and final states as A, and transition relation δB defined as follows for every q ∈ QI and
X ∈ 2Σ:

q′ ∈ δB(q, X) iff there exists a ∈ Σ \ X such that q′ ∈ δI(q, a).

We show that B recognizes Init1, i.e., that for every length ℓ ≥ 0, B accepts a 1-formula φ iff
there exists a configuration w such that w ∈ LI and w ̸|= φ. By Fact 11, this is the case iff
there exists an accepting run q0

w[1]−−→ q1 · · · qℓ−1
w[ℓ]−−→ qℓ of AI such that w[j] /∈ φ[j] for every

j ∈ [1, ℓ]. By the definition of B, this is the case iff q0
φ[1]−−→ q1 · · · qℓ−1

φ[ℓ]−−→ qℓ is an accepting
run of B. ◀

A DFA for the inductive b-formulas. For every b ≥ 0, let Indb be the set of inductive
b-formulas. We show that Indb is effectively regular:

▶ Proposition 13. Let R = ⟨Σ, AI , AT ⟩ be an RTS, and let nT be the number of states of
AT . Indb is recognized by a NFA with at most nT b2b states, and so Indb is recognized by a
DFA with at most 2nT b2b states.

Proof. Let AT = (QT , Σ, δT , Q0T , FT ). We consider only the case b = 1, for the general case
see Appendix B of [21].

Let C = (QC , 2Σ × Σ, δC , Q0C , FC) be a transducer accepting the words ⟨φ, w⟩ such that
φ ∈ (2Σ)∗ is a 1-formula and w |= φ, i.e., w[j] ∈ φ[j] for at least one j ∈ [1, ℓ] (Fact 11). It is
trivial to construct a transducer for this language with two states.

We define the NFA B = (QC × QT , 2Σ, δB , Q0C × Q0T , FC × FT ) over 2Σ with transition
relation δB as follows:
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(q′, r′) ∈ δB((q, r), X) iff ∃a1 ∈ Σ, a2 ∈ Σ \ X : q′ ∈ δC (q, ⟨X, a1⟩) ∧ r′ ∈ δT (r, ⟨a1, a2⟩).

We show that B recognizes Ind1. A 1-formula φ is not inductive iff there exist configurations
w, u satisfying three conditions: w |= φ, i.e., w[j] ∈ φ[j] for some j ∈ [1, ℓ]; ⟨w, u⟩ ∈ L(At);
and u ̸|= φ, i.e., u[j] /∈ φ[j] for every j ∈ [1, ℓ] (Fact 11). By the definition of C, this is the
case iff there are accepting runs

q0
⟨φ[1],w[1]⟩−−−−−−−→ q1 · · · qℓ−1

⟨φ[ℓ],w[ℓ]⟩−−−−−−→ qℓ and r0
⟨w[1],u[1]⟩−−−−−−→ r1 · · · rℓ−1

⟨w[ℓ],u[ℓ]⟩−−−−−−→ rℓ

of C and AT , respectively. By the definition of B, this the case iff

(q0, r0) φ[1]−−→ (q1, r1) · · · (qℓ−1, rℓ−1) φ[ℓ]−−→ (qℓ, rℓ)

is an accepting run of B. ◀

A DFA for the set of configurations satisfying a regular set of b-formulas. Given a NFA
A over the alphabet (2Σ)b, i.e., a NFA recognizing a language of b-formulas, let Sat(A) be
the set of configurations satisfying all b-formulas of L(A).

▶ Proposition 14. Let R be a RTS over Σ, and let A be a NFA over (2Σ)b with m states.
Sat(A) is recognized by a NFA with at most mb states, and so Sat(A) is recognized by a DFA
with at most 2mb states.

Proof. Let A = (Q, 2Σ, δA, Q0, F ). We consider only the case b = 1, for the general case
see Appendix B of [21]. Let φ be a 1-formula of length ℓ. By Fact 11 we have w |= φ iff∨ℓ

j=1 w[j] ∈ φ[j]
Consider the NFA B = (Q, Σ, δB , Q0, F ) over Σ with the same states, initial and final

states as A, and transition relation defined as follows:

q′ ∈ δB(q, a) iff there exists X ∈ 2Σ such that q′ ∈ δA(q, X) and a /∈ X.

We show that B recognizes Sat(A). More precisely, we show that w /∈ Sat(A) iff w ∈ L(B)
holds for every configuration w. Let ℓ ≥ 0, and let w be an arbitrary configuration of
length ℓ. We have w /∈ Sat(A) iff there is an accepting run q0

φ[1]−−→ q1 · · · qℓ−1
φ[ℓ]−−→ qℓ of

A such that w[j] /∈ φ[j] for every j ∈ [1, ℓ]. By the definition of B, this is the case iff
q0

φ[1]−−→ q1 · · · qℓ−1
φ[ℓ]−−→ qℓ is an accepting run of B. ◀

Putting everything together. We combine the previous results to show that, given a RTS
R, the complement of IndInvb is recognized by a NFA whose number of states is exponential
in R and double exponential in b.

▶ Theorem 15. Let R = ⟨Σ, AI , AT ⟩ be a RTS. Let nI and nT be the number of states
of AI and AT , respectively, and let K = nIb + nT 2b. For every b ≥ 0, the set IndInvb is
recognized by a NFA with at most 2Kb states, and so IndInvb is recognized by a DFA with at
most 2b2K states.

Proof. Recall that IndInvb contains the configurations satisfying all b-formulas that are
inductive invariants of R. A b-formula is an inductive invariant iff it is inductive and it is
satisfied by all initial configurations of R. So Initb ∩ Indb is the language of all b-formulas
(equivalently, all b-powerwords) that are inductive invariants. By Propositions 12 and 13, this
language is recognized by a DFA A with at most 2nI b · 2nT 2b = 2K states. A configuration w

belongs to IndInvb iff it satisfies every formula of Initb ∩ Indb, i.e., IndInvb = Sat(A). By
Proposition 14, IndInvb is recognized by a NFA with 2Kb states. ◀
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4 Deciding IndInv1 ∩ U = ∅ is PSPACE-complete

Given an instance R, U of the safety verification problem and b ≥ 0, if the set IndInvb satisfies
IndInvb ∩ L(U) = ∅, then R is safe. By Theorem 15, deciding whether IndInvb ∩ L(U) = ∅
holds is in EXSPACE for every fixed b. Indeed, the theorem and its proof show that there
is a NFA recognizing IndInvb ∩ L(U) such that one can guess an accepting path of it, state
by state, using exponential space. We do not know if there is a b such that the problem is
EXSPACE-complete for every b′ ≥ b. In this section we show that for b = 1 the problem is
actually PSPACE-complete.

4.1 Deciding IndInv1 ∩ L(U) = ∅ is in PSPACE
We give a non-deterministic polynomial space algorithm that decides IndInv1 ∩ L(U) = ∅. As
a byproduct, we show that IndInv1 is recognized by a NFA with a single exponential number
of states. (Notice that we proved this for IndInv1 in Proposition 13, but not for IndInv1.)
All missing proofs and full versions of proof sketches can be found in the appendices of [21].

1-formulas have a special property: since the disjunction of two clauses is again a clause,
the disjunction of two 1-formulas is again a 1-formula. This allows us to define the separator
of a configuration w.

▶ Definition 16. The separator of a configuration w, denoted Sepw, is the union of all
inductive 1-sets not containing w.

We characterize membership of w in IndInv1 in terms of its separator:

▶ Lemma 17. For every configuration w, its separator Sepw is an inductive 1-set. Further
w ∈ IndInv1 iff Sepw is not an invariant.

Proof. Since inductive sets are closed under union, Sepw is inductive. Since the disjunction
of two clauses is again a clause, the union of two 1-sets of configurations is also a 1-set, and
so Sepw is an inductive 1-set. For the last part, we prove that w /∈ IndInv1 iff Sepw is an
invariant. Assume first w /∈ IndInv1. Then some inductive 1-invariant does not contain w.
Since, by definition, Sepw contains this invariant, Sepw is also an invariant. Assume now
that Sepw is an invariant. Then Sepw is an inductive 1-invariant, and so Sepw ⊇ IndInv1.
Since w /∈ Sepw, we get w /∈ IndInv1. ◀

Our plan for the rest of the section is as follows:
We introduce the notion of a separation table for a configuration. (Definition 18)
We show that, given a configuration w and a separation table τ for w, we can construct a
1-formula φSepτ

w
such that L(φSepτ

w
) = Sepw. (Lemma 19)

We use this result to define a transducer Tsep over Σ × 2Σ that accepts a word ⟨w, φ⟩ iff
φ = φSepτ

w
. (Proposition 21)

We use Tsep and Proposition 12 to define a NFA over Σ that accepts a configuration w iff
Sepw is not an invariant, and so, by Lemma 17, iff w ∈ IndInv1. (Theorem 22)

We present a characterization of Sepw in terms of tables. Given a transition s⇝ t, we
call s and t the source and target of the transition, respectively. A table of length ℓ is a
sequence τ = s1 ⇝ t1, . . . , sn ⇝ tn of transitions of R (not necessarily distinct), all of length
ℓ.1 We define the separation tables of a configuration w.

1 We call it table because we visualize s1, t1, . . . , sn, tn as a matrix with 2n rows and ℓ columns.
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▶ Definition 18. Let w be a configuration and let τ = s1 ⇝ t1, . . . , sn ⇝ tn be a table, both
of length ℓ. For every j ∈ [1, ℓ], let In(w, τ)[j] = {w[j], s1[j], . . . , sn[j]} be the set of letters
at position j of w and of the source configurations of the table.

τ is consistent with w if for every i ∈ [1, n], j ∈ [1, ℓ], either ti[j] = w[j] or ti[j] = si′ [j]
for some i′ < i.
(Intuitively: τ is consistent with w if for every position, the letter of the target is either
the letter of w, or the letter of some earlier source.)
τ is complete for w if every table τ (s⇝ t) consistent with w satisfies s[j] ∈ In(w, τ ) for
every j ∈ [1, ℓ].
(Intuitively: τ is complete for w if it cannot be extended by a transition that maintains
consistency and introduces a new letter.)

A table is a separation table of w if it is consistent with and complete for w.

Observe that every configuration w has at least one separation table. If there are no
transitions with target w, then the empty table with no transitions is a separation table.
Otherwise, starting with any transition s⇝ w, we repeatedly add a transition, maintaining
consistency and introducing at least one new letter, until no such transition exists. This
procedure terminates – there are only finitely many transitions between configurations of a
fixed length – and yields a separation table.

The next lemma shows how to compute a 1-formula φSepτ
w

such that L(φSepτ
w

) = Sepw

from any separation table τ of w.

▶ Lemma 19. Let τ be any separation table for a configuration w of length ℓ. Then Sepw

is the set of all configurations z ∈ Σℓ such that z[j] /∈ In(w, τ)[j] for some j ∈ [1, ℓ]. In
particular, Sepw is the language of the 1-formula

φSepτ
w

:=
ℓ∨

j=1

 ∨
a/∈In(w,τ)[j]

aj:ℓ


or, in the powerword encoding, of the formula

φSepτ
w

= In(w, τ)[1] · · · In(w, τ)[ℓ] .

Proof. It follows easily from the definitions that φSepτ
w

denotes an inductive 1-set not
containing w. To prove that it is the largest such set it suffices to show that for every
j ∈ [1, ℓ] and every letter x ∈ In(w, τ)[j], the configuration w belongs to every inductive
1-set specified by a powerword containing x at position j. For this, we consider the tables
τ0, τ1, . . . , τn = τ , where τi is the prefix of τ of length i, and prove by induction on k that
the property holds for every τk. ◀

We construct a transducer over the alphabet Σ × 2Σ that transduces a configuration w

into the formula φSepτ
w

of a table τ consistent with and complete for w. For this we need the
consistency and completeness summaries of a table.

▶ Definition 20. Let τ = s1 ⇝ t1, . . . , sn ⇝ tn be a separation table for a configuration w.
The consistency summary is the result of applying the following procedure to τ :

Replace each row si ⇝ vi by the sequence of states of an accepting run of AT on it.
(This produces a table with i rows and ℓ + 1 columns, whose entries are states of AT .)
In each column, keep the first occurrence of each state, removing the rest.
(The result is a sequence of columns of possibly different lengths.)
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The completeness summary is the sequence (Q0, Q′
0), (Q1, Q′

1) . . . (Qℓ, Q′
ℓ) of pairs of sets of

states of AT , defined inductively as follows for every j ∈ [0, ℓ]:
Q0 is the set of initial states and Q′

0 is empty.
Qj+1 is the set of states reachable from Qj by means of letters [a, b] such that b ∈ In(w, τ ).
Q′

j+1 is the set of states reachable from Q′
j by means of letters [a, b] such that b ∈ In(w, τ ),

or reachable from Qj by means of letters [a, b] such that a /∈ In(w, τ) and b ∈ In(w, τ).

Observe that the consistency summary is a sequence α = α[1] . . . α[ℓ], where α[i] is a
sequence of distinct states of AT , i.e., an element of QnT

T , and the completeness summary is
a sequence β = β[1] . . . β[ℓ], where β[i] is a pair of sets of states of AT , i.e, an element of
2QT × 2QT . We prove in Appendix C of [21]:

▶ Proposition 21. There exists a transducer Tsep over the alphabet Σ × 2Σ satisfying the
following properties:

The states of Tsep are elements of (QT ∪ {□})nT × (2QT × 2QT ), where nT is the number
of states of AT .
There is a polynomial time algorithm that, given two states q, q′ of Tsep and a letter
⟨a, X⟩ ∈ Σ × 2Σ decides whether the triple (q, ⟨a, X⟩ , q′) is a transition of Tsep.
Tsep recognizes a word ⟨w, φ⟩ over Σ × 2Σ iff φ = φSepτ

w
.

We can now use Theorem 12 to obtain our main result:

▶ Theorem 22. Let R = ⟨Σ, AI , AT ⟩ be a RTS. There exists a NFA A1 over Σ satisfying
the following properties:

The states of A1 are elements of QnT

T × (2QT × 2QT ) × QI .
There is a polynomial time algorithm that, given two states q, q′ of A1 and a letter a ∈ Σ
decides whether the triple (q, a, q′) is a transition of Tsep.
L(A1) = IndInv1

Proof. Let Tsep be the transducer over the alphabet Σ×2Σ of Proposition 21. Let Ainit be a
NFA recognizing Init1, i.e, the language of all 1-formulas satisfied by all initial configurations,
or, in other words, all 1-formulas that are invariants. By Lemma 17, w ∈ IndInv1 iff there
exists a 1-formula φ such that ⟨w, φ⟩ ∈ L(Tsep) and φ ∈ L(Ainit). So there exists a NFA A1
for IndInv1 whose states are the pairs ⟨q, r⟩ such that q is a state of Tsep and r a state of
Ainit. Since, by Proposition 12, Ainit has the same states as AI , the result follows. ◀

Observe that a state of A1 can be stored using space linear in AI and AT .

▶ Corollary 23. Deciding IndInv1 ∩ L(U) = ∅ is in PSPACE.

Proof. Guess a configuration w and an accepting run of A1 and U on w, step by step.
By Proposition 21, this can be done in polynomial space. Apply then NPSPACE =
PSPACE. ◀

4.2 Deciding IndInv1 ∩ L(U) = ∅ is PSPACE-hard
Given a linearly bounded Turing machine, we construct a sequence Rn of RTSs such that the
instance of Rn for some length Θ(t × n) simulates the Turing machine on inputs of length n

up to t steps. Moreover, we show that, for this RTS, IndInv1 = Reach(Rn) holds. Therefore,
we can reduce acceptance of the Turing machine to our problem (see Appendix C.1 of [21]).

▶ Lemma 24. Deciding IndInv1 ∩ L(U) = ∅ is PSPACE-hard.
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System |LI | |LT | |IndInv1| Properties time (ms)

Bakery 5 9 8 deadlock ✓
mutual exclusion ✓

< 1

Burns 5 9 6 deadlock ✓
mutual exclusion ✓

< 1

Dijkstra 6 24 22 deadlock ✓
mutual exclusion ✓

1920

Dijkstra (ring) 6 17 17 deadlock ✓
mutual exclusion × 2

D. cryptographers 6 69 11 one cryptographer paid ✓
no cryptographer paid ✓

5

Herman, linear 6 7 6 deadlock ×
at least one token ✓

< 1

Herman, ring 6 7 7 deadlock ✓
at least one token ✓

< 1

Israeli-Jafon 6 21 7 deadlock ✓
at least one token ✓

< 1

Token passing 6 7 7 at most one token ✓ < 1
Lehmann-Rabin 5 15 13 deadlock ✓ 1
LR phils. 6 14 15 deadlock × 2
LR phils.(with bℓ and br) 5 14 9 deadlock ✓ 1
Atomic D. phil. 5 12 20 deadlock ✓ 5

Mux array 6 7 8 deadlock ✓
mutual exclusion × < 1

Res. allocator 5 9 8 deadlock ✓
mutual exclusion × < 1

Berkeley 5 19 9 deadlock ✓
custom properties 2/3

1

Dragon 5 26 11 deadlock ✓
custom properties 6/7

3

Firefly 5 18 7 deadlock ✓
custom properties 0/4

1

Illinois 5 25 14 deadlock ✓
custom properties 0/2

1

MESI 5 13 7 deadlock ✓
custom properties 2/2

< 1

MOESI 5 13 10 deadlock ✓
custom properties 7/7

1

Synapse 5 16 7 deadlock ✓
custom properties 2/2

1

Figure 1 Experimental results of using IndInv1 as abstraction of the set of reachable configurations.

5 How large must the bound b be?

The index b needed to prove a property (i.e., the least b such that IndInvb implies the
property) can be seen as a measure of how difficult it is for a human to understand the
proof. We use the experimental setup of [12, 19, 13, 20], where systems are encoded as
WS1S formulas and MONA [17] is used as computation engine, to show that b = 1 is enough
for a substantial number of benchmarks used in the RMC literature. Note that our goal is
to evaluate the complexity of invariants needed for systems from diverse domains, not to
present a tool ready to verify complex systems.

Our set of benchmarks consists of problems studied in [14, 3, 12, 19, 13, 20]. In a first
step, we use MONA to construct a minimal DFA for IndInv1. For this, we write a WS1S
formula Ψ1(w) expressing that, for every 1-formula φ, if φ is an inductive invariant, then
w satisfies φ. MONA yields a minimal DFA for the configurations w satisfying Ψ1, which is
precisely IndInv1. We then construct the formula Ψ1(w) ∧ Unsafe(w), and use MONA to
check if it is satisfiable2. All files containing the MONA formulas and the results are provided
in [18]. The results are shown in Figure 1. The first column gives the name of the example.

2 The second formula Ψ1(w) ∧ Unsafe(w) being unsatisfiable suffices for verification purposes, but we use
Ψ1(w) to obtain information on the size of the minimal DFA.
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In the second and third column we give the number of states of the minimal DFA for LI and
LT , which we also compute via MONA. In the next column we give the size of the minimal DFA
for IndInv1. The fifth column reports whether a property is implies by IndInv1 (indicated
by ✓) or not (indicated by ×). For the cache coherence protocols we replace ✓ with k/m to
state that k of m custom safety properties can be established. The last column gives the
total time3. As we can see, IndInv1 is strong enough to satisfy 46 out of 57 properties.

In a second step, we have studied some of the cases in which IndInv1 is not strong enough.
Direct computation of the automaton for IndInv2 from a formula Ψ2(w) using MONA fails.
(A direct computation based on the automata construction of Section 3 might yield better
results, and will be part of our future work.) Using a combination of the automatic invariant
computation method of [12, 19, 13, 20] and manual inspection of the returned invariants, we
can report some results for some examples.

Examples for IndInvb with b > 1. Table 1 contains two versions of the dining philosophers
in which philosophers take one fork at a time. All philosophers but one are right-handed,
i.e., take their right fork first, and the remaining philosopher is left handed. If the forks
“know” which philosopher has taken them (i.e., if they have states bℓ and br indicating that
the left or the right philosopher has the fork), then deadlock-freedom can be proved using
IndInv1. If the states of the forks are just “free” and “busy”, then proving deadlock-freedom
requires IndInv3, and in fact Reach = IndInv3 holds. We show how to establish this using
the technique of [20] and some additional reasoning in Appendix A of [21].

The Berkeley and Dragon cache coherence protocols are considered as parameterized
system in [16]. For both examples IndInv1 is too coarse to establish all desired consistency
assertions. In Appendix B we describe the formalization of both examples and show that
IndInv2 suffices to obtain the missing assertions.

6 Conclusion

We have introduced a regular model checking paradigm that approaches the set of reachable
configurations from above. As already observed in [3, 14], such an approach does not require
widening or acceleration techniques, as is the case when approaching from below. The main
novelty with respect to [3, 14] is the discovery of a natural sequence of regular invariants
converging to the set of reachable configurations.

Our new paradigm raises several questions. The first one is the exact computational
complexity of checking emptiness of the intersection IndInvb and the unsafe configurations.
We have shown PSPACE-completeness for b = 1, and we conjecture that the problem is
already EXPSPACE-complete for all b ≥ 2. We also think that the CEGAR techniques
used in [20, 19] can be extended to the RMC setting, allowing one to compute intermediate
regular invariants between IndInvb and IndInvb+1. Another interesting research venue is
the combination with acceleration or widening techniques, and the application of learning
algorithms, like the one of [14]. Currently these techniques try to compute some inductive
regular invariant, or perhaps one described by small automata, which may lead to invariants
difficult to interpret by humans. A better approach might be to stratify the search, looking
first for invariants for small values of b.

3 As reported by MONA.
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A Dining philosophers with one left-handed philosopher

We sketch the formalization of the case in which the states of the forks are only “free” and
“busy”. Consider a RTS with Σ = {f, b, t, h, e}. The state h represents a philosophers who
already grabbed the first fork and waits for the second one. All other states are used as
before. The philosopher at index 1 takes first the fork at index 2 and then the fork at index
n, while any other philosopher i > 1 first takes the fork at index i − 1 and then the fork at
index i + 1.

In [20] the absence of deadlocks in this example is shown via only a few inductive assertions.
These assertions can be equivalently expressed as 3-invariants. Moreover, these assertions
are actually enough to completely characterize Reach in this example. To this end, observe
that, analogously to Example 2, Reach is completely characterized by the absence of a few
invalid patterns. These patterns separate into three cases: First, a philosopher should use
some fork, but this fork is still considered free. Second, two philosophers are in states that
require the same fork. Third, no adjacent philosopher currently uses some fork, yet this fork
is busy. More formally, we get

Σ (Σ Σ)∗
f (h | e) Σ (Σ Σ)∗, (Σ Σ)+

e f (Σ Σ)∗, (e | h) f (Σ Σ)∗, e (Σ Σ)∗
f ,

(Σ Σ)+
e Σ (h | e) Σ (Σ Σ)∗, (e | h) Σ (e | h) Σ (Σ Σ)∗, e Σ (Σ Σ)∗

e Σ,
t b t Σ (Σ Σ)∗, (t | h) Σ (Σ Σ)∗ (t | h) b, (Σ Σ)+ (t | h) b t Σ (Σ Σ)∗,

The absence of these patterns can be established with the following languages of inductive
1-invariants and inductive 3-invariants:

[
{e}

] [
∅
] ([

∅
] [

∅
])∗ [

{e}
] [

{f}
] {t, h}

{t, h}
∅

 ∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

∗  ∅
{t, h}
{t, h}

 {b}
∅

{b}


[
{e, h}

] [
{f}

] [
{e, h}

] [
∅
] ([

∅
] [

∅
])∗

{t}
{t}
∅

 {b}
∅

{b}

  ∅
{t}
{t}

 ∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

∗

[
∅
] [

∅
] ([

∅
] [

∅
])∗ [

{e}
] [

{f}
] [

{e, h}
] [

∅
] ([

∅
] [

∅
])∗

∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

∗ {t, h}
{t, h}

∅

  ∅
{b}
{b}

 {t}
∅

{t}

 ∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

∗

Consequently, IndInv3 and Reach coincide for this example. This immediately implies that
IndInv3 proves deadlock-freedom since the system actually is deadlock-free.

However, IndInv2 is insufficient to prove deadlock-freedom: assume there exists some
inductive 2-invariant I that invalidates that D = h b t f e b can be reached. Then, I must
separate all elements from Reach and all configurations D′ with D′ ⇝∗ D because it is
inductive. In particular, D′ = t b e b e b and the reachable configuration t b h b e b. Hence,
one clause of I contains h3:6. Consider the following pair of configurations: D′′ = t f h f t f
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and C = t b h f t f . I must separate D′′ from C since D′′ ⇝∗ D while C ∈ Reach. Since
D′′ |= h3:6 this separation is based on the second clause of I which must contain b2:6. This
means t b h f e b |= I. Since I is inductive and t b h f e b ⇝ t b e b e b ⇝ t f t f e b ⇝
h b t f e b = D the assumption that I exists is folly. Consequently, D cannot be excluded
via inductive 2-invariants.

B IndInv2 for cache coherence protocols Berkeley and Dragon

For both protocols we follow the specification of [16].

Berkeley

In the Berkeley cache coherence protocol, each cell is in one of four different states: invalid
(i), unowned (u), exclusive (e), and shared (s). Initially, all cells are invalid. Consequently,
the language of initial configurations is i∗. For the transitions we consider a few different
events. The first one is that the memory is read and the corresponding cell does provide
some value of it; i.e., the cell is not in the state i. In this case nothing changes:([

i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

])∗ ([
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

]) ([
i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

])∗

If, on the other hand, a value is read from some cell that is in state i, then this memory
cell fetches the information without claiming ownership; i.e., moves into the state u. Every
other memory cell observes this process. Thus, cells that previously were in e move to s to
account for the fact that another memory cell holds the same information.([

i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

s

] ∣∣∣∣ [
s

s

])∗ ([
i

u

] ) ([
i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

s

] ∣∣∣∣ [
s

s

])∗

If a value is written to a cell that was invalid before, then this cell claims exclusive
ownership; that is, all other cells are invalidated.([

i

i

] ∣∣∣∣ [
u

i

] ∣∣∣∣ [
e

i

] ∣∣∣∣ [
s

i

])∗ ([
i

e

] ) ([
i

i

] ∣∣∣∣ [
u

i

] ∣∣∣∣ [
e

i

] ∣∣∣∣ [
s

i

])∗

If a cell already has exclusive ownership of this information there is nothing to be done.
If the cell has only shared ownership of the value, all other cells that claim shared ownership
are invalidated.([

i

i

] ∣∣∣∣ [
u

i

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

i

])∗ ([
u

e

] ∣∣∣∣ [
s

e

] ) ([
i

i

] ∣∣∣∣ [
u

i

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

i

])∗

Finally, the cache can decide to drop data at any moment in time. Thus, any cell might
move into the state i.([

i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

])∗ ([
u

i

] ∣∣∣∣ [
e

i

] ∣∣∣∣ [
s

i

]) ([
i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

])∗

We pose now the question whether a configuration can be reached where two different cells
claiming exclusive access to some data. The corresponding set U corresponds to Σ∗ e Σ∗ e Σ∗.
As shown in Table 1, IndInv1 does not prove this property. Let us see why. Assume there is
an inductive 1-invariant I which invalidates the bad word b = e e; that is, b ̸|= I. Observe
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now that we can reach b in one step from b′ = u e, and b′′ = e u. Consequently, I cannot
be satisfied by b′ or b′′ either. Otherwise, since I is inductive, we already get b |= I. This
means, I must not contain e1:2, e2:2, u1:2, or u2:2. This, however, makes I unsatisfiable for
the actually reachable configuration u u.

Using an adapted version of the semi-automatic approach of [20] and some additional
reasoning led us to the following language of inductive 2-invariants which exclude all configu-
rations from U :[

∅
∅

]∗ [
{i, s, u}

{i}

] [
∅
∅

]∗ [
{i}

{i, s, u}

] [
∅
∅

]∗

.

Since IndInv2 is the strongest inductive 2-invariant, this shows that IndInv2 is strong enough
to prove the property.

Dragon

The Dragon protocol distinguishes five states. As before, we have states for invalid cells
(i), cells that maintain an exclusive copy of the data (e) and cells that have a (potentially)
shared copy of the data (s). In contrast to before, the Dragon protocol does not invalidate
other copies of some data when it is updated. Instead we introduce two new states which
mirror e and s but, additionally, indicate that the data might have changed. We refer to
these states as ê and ŝ respectively. Regardless, we initialize all cells as invalid; i.e., we have
the initial language i∗.

Assume a read from a “valid” cell; that is, some cell that is not in state i. In that case,
nothing changes:([

i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗ ([
e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

]) ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗

.

If a read occurs from an invalid cell – while all cells are invalid – the accessed cell becomes
an exclusive reference:[

i

i

]∗ [
i

e

] [
i

i

]∗

.

If not all cells are invalid but a read occurs for an invalid cell then this cell obtains a
shared copy to the data. Moreover, all exclusive references; i.e., cells in states e or ê, move
to their shared counterparts (s and ŝ respectively).([

i

i

]∣∣∣∣[e

s

]∣∣∣∣[s

s

]∣∣∣∣[ê

ŝ

]∣∣∣∣[ŝ

ŝ

])∗ [
i

s

] ([
i

i

]∣∣∣∣[e

s

]∣∣∣∣[s

s

]∣∣∣∣[ê

ŝ

]∣∣∣∣[ŝ

ŝ

])∗

.

Writing a cell in state ê does not change anything. On the other hand, writing a cell in
state e moves that cell into the state ê:([

i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗ [
ê

ê

] ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗

and([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗ [
e

ê

] ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗

.
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A write-operation on a cell that is the only one in state s or ŝ results in a change to ê. If
there are other cells in either state, one moves two ŝ while all others move to s.([

i

i

]∣∣∣∣[e

e

]∣∣∣∣[ê

ê

])∗ [
ŝ

ê

] ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[ê

ê

])∗

,

([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[ê

ê

])∗ [
s

ê

] ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[ê

ê

])∗

and([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
s
s

]∣∣∣[ŝ
s

]) ([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
s
ŝ

]∣∣∣[ŝ
ŝ

]) ([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗

|
([

i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
s
ŝ

]∣∣∣[ŝ
ŝ

]) ([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
s
s

]∣∣∣[ŝ
s

]) ([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗
.

If a value is written to a previously invalid cell, then either this cell moves to ê (assuming
all other cells are i as well), while the occurrence of another cell with this value causes the
written cell to become ŝ and all other cells to move to state s.[

i

i

]∗ [
i

ê

] [
i

i

]∗

and([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ [
i
ŝ

] ([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

]∣∣∣[e
s

]) ([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗

|
([

i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

]∣∣∣[e
s

]) ([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ [
i
ŝ

] ([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗
.

Finally, any cell might drop its content at any point.([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗ ([
e

i

]∣∣∣∣[ê

i

]∣∣∣∣[ŝ

i

]∣∣∣∣[s

i

]) ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗

We are interested now to establish that the language Σ∗ ê Σ∗ ê Σ∗ cannot be reached.
The proof that IndInv1 is insufficient to exclude all configurations of Σ∗ ê Σ∗ ê Σ∗ is
straightforward: Observe that both s ê and ê s can reach ê ê in one step. In consequence,
analogously to the argument used for the Berkeley protocol, any inductive 1-invariant cannot
distinguish between the reachable s s and the unreachable ê ê.

On the other hand, the language[
∅
∅

]∗ [
{ŝ, i, s}

{i}

] [
∅
∅

]∗ [
{i}

{ŝ, i, s}

] [
∅
∅

]∗

of inductive 2-invariants induces an abstraction disjoint from Σ∗ ê Σ∗ ê Σ∗. Consequently,
IndInv2 does as well.
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Abstract
We consider concurrent systems consisting of replicated finite-state processes that synchronize
via joint interactions in a network with user-defined topology. The system is specified using a
resource logic with a multiplicative connective and inductively defined predicates, reminiscent of
Separation Logic [19]. The problem we consider is if a given formula in this logic defines an invariant,
namely whether any model of the formula, following an arbitrary firing sequence of interactions,
is transformed into another model of the same formula. This property, called havoc invariance, is
quintessential in proving the correctness of reconfiguration programs that change the structure of
the network at runtime. We show that the havoc invariance problem is many-one reducible to the
entailment problem ϕ |= ψ, asking if any model of ϕ is also a model of ψ. Although, in general,
havoc invariance is found to be undecidable, this reduction allows to prove that havoc invariance is
in 2EXP, for a general fragment of the logic, with a 2EXP entailment problem.
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1 Introduction

The parameterized verification problem asks to decide whether a system consisting of an
arbitrary number of finite-state processes that communicate via synchronized (joint) actions
satisfies a specification, such as deadlock freedom, mutual exclusion or a temporal logic
property e.g., every request is eventually answered. The literature in this area has a wealth
of decidability and complexity results (see [3] for a survey) classified according to the
communication type (e.g., rendez-vous, broadcast) and the network topology e.g., rings where
every process interacts with its left/right neighbours, cliques where each two process may
interact, stars with a controller interacting with unboundedly many workers, etc.

As modern computing systems are dynamically adaptive, recent effort has been put into
designing reconfigurable systems, whose network topologies change at runtime (see [12] for a
survey) in order to address maintenance (e.g., replacement of faulty and obsolete components
by new ones, firmware updates, etc.) and internal traffic issues (e.g., re-routing to avoid
congestion in a datacenter [18]). Unfortunately the verification of dynamic reconfigurable
systems (i.e., proving the absence of design errors) remains largely unexplored. Consequently,
such systems are prone to bugs that may result in e.g., denial of services or data corruption1.

1 Google reports on a cascading cloud failure due to reconfiguration: https://status.cloud.google.
com/incident/appengine/19007.
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Proving correctness of parameterized reconfigurable networks is tackled in [1], where
a Hoare-style program logic is proposed to write proofs of reconfiguration programs i.e.,
programs that dynamically add and remove processes and interactions from the network
during runtime. The assertion language used by these proofs is a logic that describes sets of
configurations defining the network topology and the local states of the processes. The logic
views processes and interactions as resources that can be joined via a separating conjunction,
in the spirit of Separation Logic [19]. The separating conjunction supports local reasoning,
which is the ability of describing reconfigurations only with respect to those components and
interactions that are involved in the mutation, while disregarding the rest of the system’s
configuration. Moreover, the separating conjunction allows to concisely describe networks of
unbounded size, that share a similar architectural style (e.g., pipelines, rings, stars, trees) by
means of inductively defined predicates.

Due to the interleaving of reconfigurations and interactions between components, the
annotations of the reconfiguration program form a valid proof under so-called havoc invariance
assumptions, stating global properties about the configurations, that remain, moreover,
unchanged under the ongoing interactions in the system. These assumptions are needed
to apply the sequential composition rule that infers a Hoare triple {ϕ} P; Q {ψ} from two
premisses {ϕ} P {θ} and {θ} Q {ψ}, where P and Q are reconfiguration actions that add
and/or remove processes and communication channels. Essentially, because the states of the
processes described by the intermediate assertion θ might change between the end of P and
the beginning of Q, this rule is sound provided that θ is a havoc invariant formula.

This paper contributes to the automated generation of reconfiguration proofs, by a giving
a procedure that discharges the havoc invariance side conditions. The challenge is that a
formula of the configuration logic (that contains inductively defined predicates) describes an
infinite set of configurations of arbitrary sizes. The main result is that the havoc invariance
problem is effectively many-one reducible to the entailment problem ϕ |= ψ, that asks if
every model of a formula ϕ is a model of another formula ψ. Here ψ is the formula whose
havoc invariance is being checked and ϕ defines the set of configurations γ′ obtained from a
model γ of ψ, by executing one interaction from γ. The reduction is polynomial if certain
parameters are bounded by a constant (i.e., the arity of the predicates, the size of interactions
and the number of predicate atoms is an inductive rule), providing a 2EXP upper bound
for a fragment of the logic with a decidable (2EXP) entailment problem [4, §6]. Having a
polynomial reduction motivates, moreover, future work on the definition of fragments of lower
(e.g., polynomial) entailment complexity (see e.g., [9] for a fragment of Separation Logic with
a polynomial entailment problem), that are likely to yield efficient decision procedures for
the havoc invariance problem as well. In addition, we provide a 2EXP-hard lower bound
for the havoc invariance problem in this fragment of the logic (i.e., assuming predicates of
unbounded arity) and show that havoc invariance is undecidable, when unrestricted formulæ
are considered as input.

Related Work. Specifying parameterized concurrent systems by inductive definitions is
reminiscent of network grammars [20, 16, 13], that use inductive rules to describe systems
with linear (pipeline, token-ring) architectures obtained by composition of an unbounded
number of processes. In contrast, we use predicates of unrestricted arities to describe network
topologies that can be, in general, more complex than trees. Moreover, we write inductive
definitions using a resource logic, suitable also for writing Hoare logic proofs of reconfiguration
programs, based on local reasoning [8].



M. Bozga, L. Bueri, and R. Iosif 24:3

Verification of network grammars against safety properties (unreachability of error config-
urations) requires the synthesis of network invariants [21], computed by rather costly fixpoint
iterations [17] or by abstracting (forgetting the particular values of indices in) the composition
of a small bounded number of instances [14]. In previous work, we have developped an
invariant synthesis method based on structural invariants, that are synthesized with little
computational effort and prove to be efficient in many practical examples [5, 6].

The havoc invariance problem considered in this paper is, however, different from safety
checking and has not been addressed before, to the best of our knowledge. An explanation is
that verification of reconfigurable systems has received fairly scant attention, relying mostly
on runtime verification [7, 10, 15, 11], instead of deductive verification, reported in [1]. In [1]
we addressed havoc invariance with a set of inference rules used to write proofs manually,
whereas the goal of this paper is to discharge such conditions automatically.

1.1 A Motivating Example
Consider, for instance, a system consisting of a finite but unbounded number of processes,
called components in the following. The components execute the same machine with states
T and H, denoting whether the component has a token (T) or a hole (H). The components
are placed in a ring, each component having exactly one left and one right neighbour, as in
Fig. 1 (a). A component without a token may receive one, by executing a transition H in−→ T,
simultaneously with its left neighbour, that executes the transition T out−−→ H, as in Fig. 1 (a).
Note that there can be more than one token, moving independently in the system, such that
no token overtakes another token. The configurations of the token ring system are described
by the following inductive rules:

ringh,t()← ∃x∃y . ⟨x.out, y.in⟩ ∗ chainh,t(y, x)
chainh,t(x, y)← ∃z. [x]@q ∗ ⟨x.out, z.in⟩ ∗ chainh′,t′(z, y), for both q ∈ {H,T}
chain0,1(x, x)← [x]@T chain1,0(x, x)← [x]@H chain0,0(x, x)← [x]

where h′ def=
{

max(h− 1, 0) , if q = H
h , if q = T and t′

def=
{

max(t− 1, 0) , if q = T
t , if q = H

The predicate ringh,t() describes a ring with at least h (resp. t) components in state H (resp.
T). The ring consists of an interaction between the ports out and in of two components x
and y, respectively, described by ⟨x.out, y.in⟩ and a separate chain of components between
x and y, described by chainh,t(y, x). Inductively, a chain consists of a component [x]@q in
state q ∈ {H,T}, an interaction ⟨x.out, z.in⟩ and a separate chainh′,t′(z, y), where h′ and t′

are the least numbers of components in state H and T, respectively, after the removal of the
component x. Fig. 1 (b) depicts the unfolding of the inductive definition of ringh,t() with
the existentially quantified variables z from the above rules α-renamed to z1, z2, etc.

A reconfiguration action is an atomic creation or deletion of a component or interaction.
A reconfiguration sequence is a finite sequence of reconfiguration actions that takes as input a
mapping of program variables to components and executes the actions from the sequence, in
interleaving with the interactions in the system. For instance, the reconfiguration sequence
from Fig. 1 (c) takes as input the mapping of x and y to two adjacent components in the token
ring, removes the interaction ⟨x.out, y.in⟩ by executing disconnect(x.out, y.in) and creates
a new component in state H (by executing new(x,H)) that is connected in between x and y
via two new interactions created by executing connect(z.out, y.in) and connect(x.out, z.in),
respectively. Fig. 1 (c) shows a proof (with annotations in curly braces) of the fact that
the outcome of the reconfiguration of a ring of components is a ring whose least number of
components in state H is increased from one to two. This proof is split into several subgoals:
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(b)

H

T

H H H

[x]@H [z1]@T

c1

⟨y.out, x.in⟩

⟨x.out, z1.in⟩ ⟨z1.out, z2.in⟩

out out

{ring1,1()}
{⟨x.out, y.in⟩ ∗ chain1,1(y, x)}
disconnect (x.out, y.in);
{chain1,1(y, x)} (‡)
new(H,z);
{z@H ∗ chain1,1(y, x)} (‡)
connect (z.out,y.in);
{z@H ∗ ⟨z.out, y.in⟩ ∗ chain1,1(y, x)}
{chain2,1(z, x)} (‡)
connect (x.out,z.in)
{chain2,1(z, x) ∗ ⟨x.out, z.in⟩}
{ring2,1()}

(c)

Figure 1 Inductive Specification and Reconfiguration of a Token Ring.

1. Entailments required to apply the consequence rule of Hoare logic e.g., ring1,1() |=
∃x∃y . ⟨x.out, y.in⟩ ∗ chain1,1(y, x). The entailment problem has been addressed in [4,
§6], with the definition of a general fragment of the configuration logic, for which the
entailment problem is decidable in double exponential time.

2. Hoare triples that describe the effect of the atomic reconfiguration actions e.g.,
{⟨x.out, y.in⟩∗chain1,1(y, x)}disconnect(x.out, y.in){chain1,1(y, x)}. These are obtained
by applying the frame rule to the local2 specifications of the atomic actions. The local
specification of reconfiguration actions and the frame rule for local actions are described
in [1, §4.2].

3. Havoc invariance proofs for the annotations marked with (‡) in Fig. 1 (c). For instance, the
formula chain1,1(y, x) is havoc invariant because the interactions in a chain of components
will only move tokens to the right without creating more or losing any, hence there will
be the same number of components in state H (T) no matter which interactions are fired.

2 Definitions

We denote by N the set of positive integers, including zero. For a set A, we denote A1 def= A,
Ai+1 def= Ai × A, for all i ≥ 0, where × denotes the Cartesian product, and A+ def=

⋃
i≥1 A

i.
The cardinality of a finite set A is denoted by ||A||. By writing A ⊆fin B we mean that A is a
finite subset of B. Given integers i and j, we write [i, j] for the set {i, i+ 1, . . . , j}, assumed
to be empty if i > j. For a function f : A→ B, we denote by f [ai ← bi]i∈[1,n] the function
that maps ai into bi for each i ∈ [1, n] and agrees with f everywhere else.

2.1 Configurations
We model a parallel system as a hypergraph, whose vertices are components (i.e., the nodes
of the network) and hyperedges are interactions (i.e., describing the way the components
communicate with each other). The components are taken from a countably infinite set C,
called the universe. We consider that each component executes its own copy of the same
behavior, represented as a finite-state machine B = (P,Q,−→), where P is a finite set of

2 A Hoare triple {ϕ} P {ψ} is local if it mentions only those components and interactions added or
deleted by P. Local specifications are plugged into a global context by the frame rule that infers
{ϕ ∗ F} P {ψ ∗ F} from {ϕ} P {ψ} if the variables modified by P are not free in F .
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ports, Q is a finite set of states and −→⊆ Q×P ×Q is a transition relation. Intuitively, each
transition q p−→ q′ of the behavior B is triggerred by a visible event, represented by the port p.
The universe C and the behavior B = (P,Q,−→) are considered to be fixed in the following.

A configuration is a snapshot of the system, describing the topology of the network
(i.e., the set of present components and interactions) together with the local state of each
component, formally defined below (see also [4]):

▶ Definition 1. A configuration is a tuple γ = (C, I, ϱ), where:
C ⊆fin C is a finite set of components, that are present in the configuration,
I ⊆fin (C × P)+ is a finite set of interactions, where each interaction is a sequence
(ci, pi)i∈[1,n] ∈ (C× P)n that binds together the ports p1, . . . , pn of the pairwise distinct
components c1, . . . , cn, respectively. The ordered sequence of ports (p1, . . . , pn) is called
an interaction type and we denote by P+ the set of interaction types.
ϱ : C → Q is a state map associating each (possibly absent) component, a state of the
behavior B, such that the set {c ∈ C | ϱ(c) = q} is infinite, for each q ∈ Q.

We denote by Γ the set of configurations.

The last condition requires that there is an infinite pool of components in each state q ∈ Q;
since C is infinite and Q is finite, this condition is feasible.

▶ Example 2. The configurations of the system from Fig. 1 (a) are ({c1, . . . , cn}, {(ci, out,
c(i mod n)+1, in) | i ∈ [1, n]}, ϱ), where ϱ : C→ {H,T} is a state map. The ring topology is
given by components {c1, . . . , cn} and interactions {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}. ⌟

Note that Def. 1 allows configurations with interactions that involve absent components
i.e., not from the set C of present components in the given configuration. The following
definition distinguishes such configurations:

▶ Definition 3. A configuration γ = (C, I, ϱ) is said to be tight if and only if for any
interaction (ci, pi)i∈[1,n] ∈ I we have {ci | i ∈ [1, n]} ⊆ C and loose otherwise.

For instance, every configuration of the system from Fig. 1 (a) is tight and becomes loose if
a component is deleted.

2.2 Configuration Logic
Let V and A be countably infinite sets of variables and predicates, respectively. For each
predicate A ∈ A, we denote its arity by #A. The formulæ of the Configuration Logic (CL)
are described inductively by the following syntax:

ϕ := emp | [x] | ⟨x1.p1 , . . . , xn.pn⟩ | x@q | x = y | x ̸= y | A(x1, . . . , x#A) | ϕ ∗ ϕ | ∃x . ϕ

where x, y, x1, . . . ∈ V, q ∈ Q and A ∈ A. A formula [x], ⟨x1.p1 , . . . , xn.pn⟩, x@q and
A(x1, . . . , x#A) is called a component, interaction, state and predicate atom, respectively. We
use the shorthand [x]@q def= [x] ∗ x@q. Intuitively, a formula [x]@q ∗ [y]@q′ ∗ ⟨x.out, y.in⟩ ∗
⟨x.in, y.out⟩ describes a configuration consisting of two distinct components, denoted by the
values of x and y, in states q and q′, respectively, and two interactions binding the out port
of one to the in port of the other component.

A formula with no occurrences of predicate atoms (resp. existential quantifiers) is called
predicate-free (resp. quantifier-free). A qpf formula is both predicate- and quantifier-free. A
variable is free if it does not occur in the scope of a quantifier and fv(ϕ) is the set of free
variables of ϕ. A substitution ϕ[xi/yi]i∈[1,n] replaces simultaneously every free occurrence of
xi by yi in ϕ, for all i ∈ [1, n]. The size of a formula ϕ is the total number of occurrences of
symbols needed to write it down, denoted by size(ϕ).
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The only connective of the logic is the separating conjunction ∗. Intuitively, ϕ1 ∗ ϕ2
means that ϕ1 and ϕ2 hold separately, on disjoint parts of the same configuration. Its formal
meaning is coined by the following definition of composition of configurations:

▶ Definition 4. The composition of two configurations γi = (Ci, Ii, ϱ), for i = 1, 2, such that
C1 ∩ C2 = ∅ and I1 ∩ I2 = ∅, is defined as γ1 • γ2

def= (C1 ∪ C2, I1 ∪ I2, ϱ). The composition
γ1 • γ2 is undefined if C1 ∩ C2 ̸= ∅ or I1 ∩ I2 ̸= ∅.

▶ Example 5. Let γi = ({ci}, {(ci, out, c3−i, in)}, ϱ) be configurations, for i = 1, 2. Then
γ1 • γ2 = ({c1, c2}, {(c1, out, c2, in), (c2, out, c1, in)}, ϱ). ⌟

The meaning of the predicates is given by a set of inductive definitions:

▶ Definition 6. A set of inductive definitions (SID) ∆ consists of rules of the form
A(x1, . . . , x#A) ← ϕ, where x1, . . . , x#A are pairwise distinct variables, called paramet-
ers, such that fv(ϕ) ⊆ {x1, . . . , x#A}. We say that the rule A(x1, . . . , x#A)← ϕ defines A and
denote by def∆(A) the set of rules from ∆ that define A and by Def(∆) def= {A | def∆(A) ̸= ∅}
the set of predicates defined by ∆.

Note that having distinct parameters in a rule is without loss of generality, as e.g., a rule
A(x1, x1) ← ϕ can be equivalently written as A(x1, x2) ← x1 = x2 ∗ ϕ. As a convention,
we shall always use the names x1, . . . , x#A for the parameters of a rule that defines A. An
example of a SID is given in §1.1.

The size of a SID is size(∆) def=
∑

A(x1,...,x#A)←ϕ∈∆ size(ϕ) + #A + 1. Other parameters,
relevant for complexity evaluation, are the maximal
(1) arity #(∆) def= max{#A | A(x1, . . . , x#A)← ϕ ∈ ∆} of a defined predicate,
(2) size of an interaction type N(∆) def= max{n | ⟨y1.p1 , . . . , yn.pn⟩ occurs in ∆}, and
(3) number of predicate atoms H(∆) def= max{h | A(x1, . . . , x#A) ← ∃y1 . . . ∃ym . ϕ ∗
∗ h

ℓ=1Bℓ(zℓ), ϕ is a qpf formula}.

The semantics of CL formulæ is defined by a satisfaction relation γ |=ν
∆ ϕ between

configurations and formulæ. This relation is parameterized by a store ν : V→ C mapping
the free variables of a formula into components from the universe (possibly absent from γ)
and an SID ∆. The definition of the satisfaction relation is by induction on the structure of
formulæ, where γ = (C, I, ϱ) is a configuration (Def. 1):

γ |=ν
∆ emp ⇐⇒ C = ∅ and I = ∅

γ |=ν
∆ [x] ⇐⇒ C = {ν(x)} and I = ∅

γ |=ν
∆ ⟨x1.p1 , . . . , xn.pn⟩ ⇐⇒ C = ∅ and I = {(ν(x1), p1, . . . , ν(xn), pn)}

γ |=ν
∆ x@q ⇐⇒ γ |=ν

∆ emp and ϱ(ν(x)) = q

γ |=ν
∆ x ∼ y ⇐⇒ γ |=ν

∆ emp and ν(x) ∼ ν(y), for all ∼∈ {=, ̸=}
γ |=ν

∆ A(y1, . . . , y#A) ⇐⇒ γ |=ν
∆ ϕ[x1/y1, . . . , x#A/y#A], for some rule

A(x1, . . . , x#A)← ϕ from ∆
γ |=ν

∆ ϕ1 ∗ ϕ2 ⇐⇒ there exist γ1 and γ2, such that γ = γ1 • γ2 and
γi |=ν

∆ ϕi, for all i = 1, 2
γ |=ν

∆ ∃x . ϕ ⇐⇒ γ |=ν[x←c]
∆ ϕ, for some c ∈ C

If γ |=ν
∆ ϕ, we say that the pair (γ, ν) is a ∆-model of ϕ. If ϕ is a predicate-free formula, the

satisfaction relation does not depend on the SID, written γ |=ν ϕ. A formula ϕ is satisfiable
if and only if it has a model. A formula ϕ ∆-entails a formula ψ, written ϕ |=∆ ψ, if and only
if any ∆-model of ϕ is a ∆-model of ψ. Two formulæ are ∆-equivalent, written ϕ ≡∆ ψ if and
only if ϕ |=∆ ψ and ψ |=∆ ϕ. A formula ϕ is ∆-tight if γ is tight (Def. 3), for any ∆-model
(γ, ν) of ϕ. We omit mentioning ∆ whenever it is clear from the context or not needed.
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2.3 The Havoc Invariance Problem
This paper is concerned with the havoc invariance problem i.e., the problem of deciding
whether the set of models of a given CL formula is closed under the execution of a sequence
of interactions. The execution of an interaction (ci, pi)i∈[1,n] synchronizes transitions labeled
by the ports p1, . . . , pn from the behaviors (i.e., replicas of the state machine B) of c1, . . . , cn,
respectively. This joint execution of several transitions in different components of the system
is formally described by the step relation below:

▶ Definition 7. The step relation =⇒ ⊆ Γ× (C× P)+ × Γ is defined as:

(C, I, ϱ)
(ci,pi)i∈[1,n]========⇒ (C, I, ϱ′) if and only if (ci, pi)i∈[1,n] ∈ I and ϱ′ = ϱ[ci ← q′i]i∈[1,n]

where ϱ(ci) = qi and qi
pi−→ q′i is a transition of B, for all i ∈ [1, n]

The havoc relation⇝∗ is the reflexive and transitive closure of the relation⇝⊆ Γ2: (C, I, ϱ)⇝

(C, I, ϱ′) if and only if (C, I, ϱ)
(ci,pi)i∈[1,n]========⇒ (C, I, ϱ′), for some interaction (ci, pi)i∈[1,n] ∈ I.

▶ Example 8. Let γi = ({c1, c2, c3}, {(ci, out, ci mod 3+1, in) | i ∈ [1, 3]}, ϱi), for i ∈ [1, 3] be
configurations, where ϱ1(c1) = ϱ1(c2) = H, ϱ1(c3) = T, ϱ2(c1) = T, ϱ2(c2) = ϱ2(c3) = H,
ϱ3(c1) = ϱ3(c3) = H, ϱ3(c2) = T. Then we have γi ⇝∗ γj , for all i, j ∈ [1, 3]. ⌟

Two interactions (c1, p1, . . . , cn, pn) and (ci1 , pi1 , . . . , cin
, pin

) such that {i1, . . . , in} =
[1, n], are equivalent from the point of view of the step relation, since the set of executed
transitions is the same; nevertheless, we chose to distinguish them in the following, for reasons
of simplicity. Note, moreover, that the havoc relation does not change the component or the
interaction set of a configuration, only its state map.

▶ Definition 9. Given an SID ∆ and a predicate A, the problem HavocInv[∆,A] asks whether
for all γ, γ′ ∈ Γ and each store ν, such that γ |=ν

∆ A(x1, . . . , x#A) and γ ⇝∗ γ′, it is the case
that γ′ |=ν

∆ A(x1, . . . , x#A)?

▶ Example 10. Consider a model γ = ({c1, . . . , cn}, {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}, ϱ)
of the formula ring1,1() i.e., having the property that ϱ(ci) = H and ϱ(cj) = T for at least
two indices i ̸= j ∈ [1, n], where the SID that defines ring1,1() is given in §1.1. Similar to
Example 8, in any configuration γ′ = ({c1, . . . , cn}, {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}, ϱ′)
such that γ ⇝∗ γ′, we have ϱ′(ck) = H and ϱ′(cℓ) = T, for some k ̸= ℓ ∈ [1, n], hence γ′ is a
model of ring1,1(), meaning that ring1,1() is havoc invariant. Examples of formulæ that are
not havoc invariant include e.g., [x]@T ∗ ⟨x.out, y.in⟩ ∗ [y]@H. ⌟

Without loss of generality, we consider the havoc invariance problem only for single
predicate atoms. This is because, for any formula ϕ, such that fv(ϕ) = {x1, . . . , xn}, one may
consider a fresh predicate symbol (i.e., not in the SID) Aϕ and add the rule Aϕ(x1, . . . , xn)← ϕ

to the SID. Then ϕ is havoc invariant if and only if Aϕ(x1, . . . , xn) is havoc invariant.

3 From Havoc Invariance to Entailment

We describe a many-one reduction of the havoc invariance (Def. 9) to the entailment problem,
following three steps. Given an instace HavocInv[∆,A] of the havoc invariance problem, the
SID ∆ is first translated into a tree automaton recognizing trees labeled with predicate-free
formulæ, that symbolically encode the set of ∆-models of the predicate atom A(x1, . . . , x#A).
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Second, we define a structure-preserving tree transducer that simulates the effect of executing
exactly one interaction from such a model. Third, we compute the image of the language
recognized by the first tree automaton via the transducer, as a second tree automaton, which
is translated back into another SID ∆ defining one or more predicates A1, . . . ,Ap, among
other. Finally, we prove that HavocInv[∆,A] has a positive answer if and only if each of the
entailments {Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A)}p

i=1 produced by the reduction, holds.
For the sake of self-containment, we recall below the definitions of trees, tree automata

and (structure-preserving) tree transducers. Let (Σ,#) be a ranked alphabet, where each
symbol α ∈ Σ has an associated arity #α ≥ 0. A tree over Σ is a finite partial function
t : N∗ ⇀fin Σ, whose domain dom(t) ⊆fin N∗ is both prefix-closed i.e., u ∈ dom(t), for all
u, v ∈ N∗, such that u · v ∈ dom(t), and complete i.e., {n ∈ N | u · n ∈ dom(t)} = [1,#t(u)],
for all u ∈ dom(t). Given u ∈ dom(t), the subtree of t rooted at u is the tree t|u, such that
dom(t|u) def= {w | u · w ∈ dom(t)} and t|u(w) def= t(u · w). We denote by T(Σ) the set of trees
over a ranked alphabet Σ.

A tree automaton (TA) is a tuple A = (Σ,S,F , δ), where Σ is a ranked alphabet,
S is a finite set of states, F ⊆ S is a set of final states and δ is a set of transitions
α(s1, . . . , s#a) −→ s; when #α = 0, we write α −→ s instead of α() −→ s. A run of A over
a tree t is a function π : dom(t) → S, such that, for all u ∈ dom(t), we have π(u) = s if
(t(u))(π(u · 1), . . . , π(u ·#t(u))) −→ s ∈ δ. Given a state q ∈ S, a run π of A is q-accepting if
and only if π(ϵ) = q, in which case A is said to q-accept t. We denote by Lq(A) the set of
trees q-accepted by A and let L(A) def=

⋃
q∈F Lq(A). A language L is recognizable if and only

if there exists a TA A, such that L = L(A).
A tree transducer (TT) is a tree automaton over an alphabet of pairs T = (Σ2,S,F , δ),

such that #α = #β = n, for each transition (α, β)(s1, . . . , sn) −→ s ∈ δ. Intuitively, a
transition of the transducer reads a symbol α from the input tree and writes another symbol
β to the output tree, at the same position. Cleary, any tree t : N∗ ⇀fin Σ2 with labels from
the set of pairs {(α, β) ∈ Σ2 | #α = #β} can be viewed as a pair of trees (t1, t2) over Σ, such
that dom(t1) = dom(t2) = dom(t). In order to define the image of a tree language via a
transducer, we define

(i) projection L↓i
def= {ti | (t1, t2) ∈ L}, for all i = 1, 2, where L ⊆ T(Σ2), and

(ii) cylindrification L↑i def= {(t1, t2) | ti ∈ L}, for all i = 1, 2, where L ⊆ T(Σ).
The image of a language L ⊆ T(Σ) via a transducer T is the language T (L) def=

(
L↑1 ∩ L(T )

)
↓2.

It is manifest that T (L) is recognizable whenever L is recognizable.

3.1 From SID to Tree Automata and Back

We define a two-way connection between SIDs and TAs, as follows:
1. Given a finite SID ∆ we define a TA A∆, whose states qA are named after the predicates

A that occur in ∆ and whose alphabet consists of the predicate-free formulæ from the
rules of ∆, with variables mapped to canonical names, together with a tuple of arities,
needed for later bookkeeping. Each tree t ∈ LqA(A∆) defines a unique predicate-free
formula Φ(t), such that the ∆-models of a predicate atom A(x1, . . . , x#A) are exactly the
models of some Φ(t), for t ∈ LqA(A∆).

2. Conversely, given a TA A over an alphabet of formulæ annotated with arities, the tuple of
arities associated with each alphabet symbol allows to define a SID ∆A, whose predicates
Aq are named after the states q of the TA, such that the models of the formulæ Φ(t),
such that t ∈ Lq(A) are exactly the ∆A-models of the predicate atom Aq(x1, . . . , x#Aq

).
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[x̃1]@q0

∃n1∃r1∃n2∃ℓ2 . [x̃1] ∗ ⟨x̃1.req, x̃2.reply, x̃3.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩
z̃

(1)
1 = n1 ∗ z̃

(1)
2 = x̃2 ∗ z̃

(1)
3 = r1 ∗ z̃

(2)
1 = n2 ∗ z̃

(2)
2 = ℓ2 ∗ z̃

(2)
3 = x̃3

∃n1∃r1∃n2∃ℓ2 . [x̃1] ∗ ⟨x̃1.req, x̃2.reply, x̃3.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩

z̃
(1)
1 = n1 ∗ z̃

(1)
2 = x̃2 ∗ z̃

(1)
3 = r1 ∗ z̃

(2)
1 = n2 ∗ z̃

(2)
2 = ℓ2 ∗ z̃

(2)
3 = x̃3

∃n1∃r1∃n2∃ℓ2 . [x̃1] ∗ ⟨x̃1.req, x̃2.reply, x̃3.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩

z̃
(1)
1 = n1 ∗ z̃

(1)
2 = x̃2 ∗ z̃

(1)
3 = r1 ∗ z̃

(2)
1 = n2 ∗ z̃

(2)
2 = ℓ2 ∗ z̃

(2)
3 = x̃3

β β

[x̃1]@q0 [x̃1]@q0[x̃1]@q0

β β

[x̃1]@q1 [x̃1]@q0[x̃1]@q0 [x̃1]@q0

∃n∃ℓ∃r . ⟨r.out, ℓ.inp⟩ ∗ z̃
(1)
1 = n ∗ z̃

(1)
2 = ℓ ∗ z̃

(1)
3 = r

Figure 2 Tree Labeled with Formulæ Encoding a System from Example 12.

Let us fix a countably infinite set of variables Ṽar def= {x̃i | i ≥ 1} ∪ {z̃(ℓ)
i | i, ℓ ≥ 1}, with the

understanding that x̃i are canonical names for the variables from the left-hand side and
z̃

(ℓ)
i are canonical names for the variables occurring in the ℓ-th predicate atom from the

right-hand side of a rule. An alphabet symbol α = ⟨ψ, a0, . . . , ah⟩ consists of a predicate-free
formula ψ and a tuple of positive integers a0, . . . , ah ∈ N, such that fv(ψ) = {x̃i | i ∈ [1, a0]}∪
{z̃(ℓ)

i | ℓ ∈ [1, h], i ∈ [1, aℓ]}. We take the arity of such a symbol to be #α def= h and denote
by Σ̃ the (infinite) set of alphabet symbols. Trees labeled with symbols from Σ̃ define
predicate-free characteristic formulæ, as follows:

▶ Definition 11. Given a tree t ∈ T(Σ̃), where t(ϵ) = ⟨∃y1 . . . ∃ym . ϕ, a0, . . . , ah⟩ with ϕ a
qpf formula, and a node u ∈ N∗, we define the qpf characteristic formula:

Ψu(t) def= ϕ[x̃j/x
u
j ]

j∈[1,a0][z̃
(ℓ)
j /xu·ℓ

j ]
ℓ∈[1,h],j∈[1,aℓ][yj/y

u
j ]

j∈[1,m] ∗ ∗ℓ∈[1,h] Ψu·ℓ(t|ℓ)

Assuming that t(v) = ⟨∃y1 . . . ∃ymv . ϕv, av
0, . . . , a

v
h⟩, for all v ∈ dom(t), we consider also the

predicate-free formula Φu(t) = (∃xu·v
j )v∈dom(t)\{ϵ}, j∈[1,av

0 ](∃yu·v
j )v∈dom(t), j∈[1,mv ] . Ψu(t).

▶ Example 12. We consider a system whose components form a tree, in which each parent
sends a request (req) to and receives replies (reply) from both its children. In addition, the
leaves of the tree form a ring, with the out port of each leaf connected to the in port of its
right neighbour. The system is described by the following inductive definitions:

Root()←∃n∃ℓ∃r . ⟨r.out, ℓ.in⟩ ∗ Node(n, ℓ, r) (1)
Node(n, ℓ, r)←∃n1∃r1∃n2∃ℓ2 . [n] ∗ ⟨n.req, n1.reply, n2.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩ ∗

Node(n1, ℓ, r1) ∗Node(n2, ℓ2, r) (2)
Node(n, ℓ, r)←[n]@q0 Node(n, ℓ, r)← [n]@q1 (3)

Fig. 2 shows a tree t ∈ T(Σ̃) describing an instance of the system, where Σ̃ = {α, β, γ0, γ1}:

α
def=⟨∃n∃ℓ∃r . ⟨r.out, ℓ.in⟩ ∗ z̃(1)

1 = n ∗ z̃(1)
2 = ℓ ∗ z̃(1)

3 = r, 0, 3⟩

β
def=⟨∃n1∃r1∃n2∃ℓ2 . [n] ∗ ⟨n.req, ℓ.reply, r.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩ ∗

z̃
(1)
1 = n1 ∗ z̃(1)

2 = ℓ ∗ z̃(1)
3 = r1 ∗ z̃(2)

1 = n2 ∗ z̃(2)
2 = ℓ ∗ z̃(2)

3 = r, 3, 3, 3⟩

γ0
def=⟨[x̃1]@q0, 3⟩ γ1

def= ⟨[x̃1]@q1, 3⟩

For simplicity, Fig. 2 shows only the formulæ, not the arity lists of the alphabet symbols. ⌟
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The models of the characteristic formula Ψϵ(t) of a tree t ∈ T(Σ̃) define walks in the
tree that correspond to chains of equalities between variables. Formally, a walk in t is a
sequence of nodes u1, . . . , un ∈ dom(t), such that ui is either the parent or a child of ui+1,
for all i ∈ [1, n− 1]. Note that a walk can visit the same node of the tree several times. In
particular, if the characteristic formula Ψϵ(t) is tight (i.e., has only tight models in the sense
of Def. 3) there exist equality walks between the node containing an interaction atom and
the nodes where these variables are instantiated by component atoms. For instance, walks
between the root containing ⟨r.out, ℓ.in⟩ and the left- and right-most leafs, labeled with
component atoms that associate elements of C to the variables ℓ and r are shown in Fig. 2.

▶ Lemma 13. Let t ∈ T(Σ̃) be a tree, such that Ψϵ(t) is tight, (γ, ν) be a model of Ψϵ(t)
and yv, zw be two variables that occur in a component and interaction atom of Ψϵ(t),
respectively. Then ν(yv) = ν(zw) if and only if there exists a walk u1, . . . , un in t and
variables yv = xu1

i1
, . . . , xun

in
= zw, such that either xuj

ij
and xuj+1

ij+1
are the same variable, or

the equality atom x
uj

ij
= x

uj+1
ij+1

occurs in Ψϵ(t), for all j ∈ [1, n− 1].

Let ∆ be a fixed and finite SID in the following. We build a TA A∆ that recognizes the
∆-models of each predicate atom defined by ∆, in the sense of Lemma 16 below.

▶ Definition 14. We associate each rule r : A(x1, . . . , x#A) ← ∃y1 . . . ∃ym . ϕ ∗
∗ ℓ∈[1,h] Bℓ(zℓ

1, . . . , z
ℓ
#Bℓ

) ∈ ∆, where ϕ is a qpf formula, with the alphabet symbol:

αr
def=

〈
∃y1 . . . ∃ym .

(
ϕ ∗∗ ℓ∈[1,h], i∈[1,#Bℓ] z̃

(ℓ)
i = zℓ

i

)
[xj/x̃j ]j∈[1,#A],#A,#B1, . . . ,#Bh

〉
Let A∆

def= (Σ∆,S∆, δ∆) be a TA, where Σ∆
def= {αr | r ∈ ∆}, S∆

def= {qA | A ∈ Def(∆)} and
δ∆

def= {αr(qB1 , . . . , qBh
)→ qA | r ∈ ∆}.

▶ Example 15 (contd. from Example 12). The TA corresponding to the SID in Ex-
ample 12 is A∆ = (Σ̃,S∆, δ∆), where Σ̃ = {α, β, γ0, γ1}, S∆ = {qRoot , qNode} and
δ∆ = {α(qNode)→ qRoot , β(qNode, qNode)→ qNode, γ0 → qNode, γ1 → qNode}. ⌟

The following lemma proves that the predicate-free formulæ corresponding (in the sense
of Def. 11) to the trees recognized by A∆ in a state qA define the ∆-models of the predicate
atom A(x1, . . . , x#A):

▶ Lemma 16. For any predicate A ∈ Def(∆), configuration γ, store ν and node u ∈ N∗, we
have γ |=ν

∆ A(xu
1 , . . . , x

u
#A) if and only if γ |=ν Φu(t), for some tree t ∈ LqA(A∆).

Conversely, given a tree automaton A = (Σ,S, δ), we construct a SID ∆A that defines
the models of the predicate-free formulæ corresponding (Def. 11) to the trees recognized
by A (Lemma 19). We assume that the alphabet Σ consists of symbols ⟨ψ, a0, . . . , ah⟩ of
arity h, where ψ is a predicate-free formula with free variables fv(ψ) = {x̃i | i ∈ [1, a0]} ∪
{z̃(ℓ)

i | ℓ ∈ [1, h], i ∈ [1, aℓ]} and that the transitions of the TA meet the requirement:

▶ Definition 17. A TA A is SID-compatible iff for any transitions
⟨ψ, a0, . . . , ah⟩(q1, . . . , qh) −→ q0 and ⟨ψ′, a′0, . . . , a′h⟩(q′1, . . . , q′h) −→ q′0 of A, we have
qi = q′i only if ai = a′i, for all i ∈ [0, h].

Let us fix a SID-compatible TA A = (Σ,S, δ) for the rest of this section.

▶ Definition 18. The SID ∆A has a rule:
Aq0 (x1, . . . , xa0 )←∃y1

1 . . . ∃yh
ah

. ϕ[x̃i/xi]i∈[1,a0][z̃
(ℓ)
i /yℓ

i ]ℓ∈[1,h], i∈[1,aℓ] ∗ ∗ ℓ∈[1,h]Aqℓ (yℓ
1, . . . , y

ℓ
aℓ

)

for each transition ⟨ϕ, a0, . . . , ah⟩(q1, . . . , qh) −→ q0 of A and those rules only.
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The following lemma states that ∆A defines the set of models of the characteristic formulæ
(Def. 11) of the trees recognized by A.

▶ Lemma 19. For any state q ∈ S, configuration γ, store ν and node u ∈ N∗, we have
γ |=ν

∆A
Aq(xu

1 , . . . , x
u
#Aq

) if and only if γ |=ν Φu(t), for some tree t ∈ Lq(A).

3.2 Encoding Havoc Steps by Tree Transducers
The purpose of this section is the definition of a transducer that simulates one havoc step.
Before giving its definition, we note that the havoc invariance problem can be equivalently
defined by considering the transformation induced by a single havoc step, instead of an
arbitrary sequence of steps. The following lemma can be taken as an equivalent definition:

▶ Lemma 20. HavocInv[∆,A] has a positive answer if and only if, for all γ, γ′ ∈ Γ and each
store ν, such that γ |=ν

∆ A(x1, . . . , x#A) and γ ⇝ γ′, it is the case that γ′ |=ν
∆ A(x1, . . . , x#A).

We fix a SID ∆ for the rest of this section and recall the existence of a fixed finite-state
behavior B = (P,Q,−→) with ports P, states Q and transitions q p−→ q′ ∈ Q × P ×Q. We
define a transducer Tτ parameterized by a given interaction type τ = (p1, . . . , pn) ∈ P+. The
havoc step transducer is the automata-theoretic union of the typed transducers over the set
of interaction types that occurs in ∆.

Given a tree t ∈ T(Σ̃), an interaction-typed transducer Tτ

(1) guesses an interaction atom ⟨z1.p1 , . . . , zn.pn⟩ that occurs in some label of t,
(2) tracks the equality walks (Lemma 13) between each variable zi and the component atom

[xi]@qi that defines the store value of zi and its current state, and
(3) replaces each state component atom [xi]@qi by [xi]@q′i, where qi

pi−→ q′i is a transition
from B, for each i ∈ [1, n].

The output of the transducer is a tree t′ ∈ T(Σ̃), that symbolically encodes the effect of
executing some interaction of type τ over t. The main challenge in defining Tτ is that the
equality walks between an interaction atom ⟨z1.p1 , . . . , zn.pn⟩ and the component atoms
instantiating the variables z1, . . . , zn may visit a tree node more than once. To capture
this, the transducer will guess at once the equalities summarizing the different fragments of
the walk that lie in the currently processed subtree of t. Accordingly, the states of Tτ are
conjunctions of equalities, with special variables b̃i (resp. ẽi) indicating whether a component
(resp. interaction) atom has already been encountered in the current subtree, intuitively
marking the beginning (resp. end) of the walk.

For an interaction type τ = (p1, . . . , pn), let T̃Varτ
def= {x̃i | i ∈ [1,#(∆)]} ∪

{b̃i, ẽi | i ∈ [1, n]} and let Eq(T̃Varτ ) be the set of separating conjunctions of equality atoms
i.e., φ def= ∗i∈I xi = yi, such that fv(φ) ⊆ T̃Varτ . Note that ∃x . φ, for φ ∈ Eq(T̃Varτ ), is
equivalent to a formula from Eq(T̃Varτ ) obtained by eliminating the quantifier: either x
occurs in an atom x = y for a variable y distinct from x then (∃x . φ) ≡ φ[x/y], or x ̸∈ fv(φ),
in which case (∃x . φ) ≡ φ.

▶ Definition 21. The transducer Tτ
def= (Σ2

∆,Sτ ,Fτ , δτ ), where τ = (p1, . . . , pn), is as follows:
Sτ = {φ ∈ Eq(T̃Varτ ) | φ ̸|= (b̃i = b̃j), φ ̸|= (ẽi = ẽj), φ ̸|= (b̃i = ẽj), for any i ̸= j},
Fτ = {φ ∈ Sτ | φ |=∗ i∈[1,n](b̃i = ẽi)}, and
δτ contains transitions of the form (α, α′)(φ1, . . . , φh) −→T φ where:
α = (∃y1 . . . ∃ym . ψ, a0, . . . , ah) and α′ = (∃y1 . . . ∃ym . ψ′, a0, . . . , ah), where ψ and
ψ′ are qpf formulæ such that fv(ψ) = fv(ψ′) ⊆ T̃Varτ ∪ {y1, . . . , ym},
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(β, β)

emp(γ0, γ0) emp(γ0, γ0) emp(γ0, γ0) emp(γ0, γ0) b̃1 = x̃1(γ0, γ1)

b̃2 = x̃2 emp

b̃2 = x̃2

b̃2 = x̃2 ∗ b̃1 = x̃3

b̃2 = ẽ2 ∗ b̃1 = ẽ1

emp b̃1 = x̃3

b̃1 = x̃3

emp(γ0, γ0)b̃2 = x̃1(γ1, γ0) emp(γ0, γ0)

(β, β) (β, β)

(β, β)

(β, β)

(α, α)

(β, β) (β, β)

Figure 3 Tree Transducer for the Interactions of Type (out, in) in the System from Fig. 2.

there exists a set I = {i1, . . . , ir} ⊆ [1, n], variables ξ1, . . . , ξr ∈ fv(ψ) and transitions
q1

pi1−−→ q′1, . . . , qr
pir−−→ q′r in B, such that ψ = (∗ k∈[1,r][ξk]@qk) ∗ η and ψ′ =

(∗ k∈[1,r][ξk]@q′k) ∗ η, for some qpf formula η,
there exists a set J ∈ {∅, [1, n]}, such that ψ contains an interaction atom
⟨ζ1.p1 , . . . , ζn.pn⟩ if J = [1, n],
the sets I and {i ∈ [1, n] | b̃i ∈ fv(φℓ)}ℓ∈[1,h] are pairwise disjoint,
at most one of the sets J , {i ∈ [1, n] | ẽi ∈ fv(φℓ)}ℓ∈[1,h] is not empty,
φ is the result of eliminating the quantifiers from the separating conjunction of equalities:

∃z̃(1)
1 . . . ∃z̃(h)

ah
∃y1 . . . ∃ym . ∗ℓ∈[1,h]φℓ[x̃j/z̃

(ℓ)
j ]j∈[1,aℓ] ∗ ∗ k∈[1,r]b̃ik = ξk ∗ ∗ ℓ∈J ẽℓ = ζℓ ∗ ψeq

where ψeq is the separating conjunction of the equality atoms from ψ.

▶ Example 22. (contd. from Examples 12 and 15) Fig. 3 shows a run of the transducer
T(out,in), that describes the symbolic execution of the interaction corresponding to the
⟨r.out, ℓ.in⟩ interaction atom from the root of the tree in Fig. 2. The states of the transducer
are separating conjunctions of equality atoms, enclosed within square boxes. The transducer
replaces the component atoms γ1 = ⟨[x̃1]@q1, 3⟩ with γ0 = ⟨[x̃1]@q0, 3⟩ (resp. γ0 with γ1) in
the left-most (resp. right-most) leaf of the tree. ⌟

Let L ⊆ T(Σ̃) be an arbitrary language. The following lemmas prove that the transducer
Tτ from Def. 21 correctly simulates a havoc step produced by an interaction of type τ .

▶ Lemma 23. For each tree t ∈ L, such that Φϵ(t) is tight, configurations γ = (C, I, ϱ), γ′ ∈ Γ

and store ν, such that γ |=ν Φϵ(t) and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some c1, . . . , cn ∈ C and

(ci, pi)i∈[1,n] ∈ I, there exists a tree t′ ∈ T(p1,...,pn)(L), such that γ′ |=ν Φϵ(t′).

Note that the condition of Φϵ(t) having only tight models is necessary to avoid in-
teractions (ci, pi)i∈[1,n] that fire by “accident” i.e., when the interaction is created by
an atom ⟨ζ1.p1 , . . . , ζn.pn⟩, with the components c1, . . . , cn created by component atoms
[ξ1]@q1, . . . , [ξn]@qn, such that the equality ξi = ζi is not the consequence of Φϵ(t), for some
i ∈ [1, n]. The effect of such interactions is not captured by the transducer introduced by Def.
21. Tightness is, moreover, a necessary condition of Lemma 13, that ensures the existence
of equality walks between the variables occurring in an interaction atom and those of the
atoms creating the components to which these variables are mapped, in a model of Φϵ(t).

▶ Lemma 24. For each tree t′ ∈ T(p1,...,pn)(L), configuration γ′ ∈ Γ and store ν, such that
γ′ |=ν Φϵ(t′), there exists a configuration γ = (C, I, ϱ) and a tree t ∈ L, such that γ |=ν Φϵ(t)

and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some c1, . . . , cn ∈ C and (ci, pi)i∈[1,n] ∈ I.
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3.3 The Main Result
We establish the main result of this section, which is a many-one reduction of the havoc
invariance to the entailment problem. The result is sharpened by proving that the reduction

(i) preserves the class of the SID (see Def. 25 below), and
(ii) is polynomial when several parameters of the SID are bounded by constants and simply

exponential otherwise.
In particular, a class-preserving polynomial reduction ensures that the decidability and
complexity upper bounds of the entailment problem carry over to the havoc invariance
problem.

▶ Definition 25. For two predicate-free formulæ ϕ and ψ, we write ϕ ≃ ψ if and only if
they become equivalent when dropping the state atoms from both. For an arity-preserving
equivalence relation ∼ ⊆ A × A (i.e., #A = #B, for all A ∼ B), for any two rules r1 and
r2, we write r1 ≈ r2 if and only if r1 = A(x1, . . . , x#A) ← ∃y1 . . . ∃ym . ϕ ∗ ∗ ℓ∈[1,h]Bℓ(zℓ),
r2 = A′(x1, . . . , x#A′) ← ∃y′1 . . . ∃y′p . ψ ∗ ∗ ℓ∈[1,h]B′ℓ(uℓ), ∃y1 . . . ∃ym . ϕ ≃ ∃y′1 . . . ∃y′p . ψ,
A ∼ A′ and Bℓ ∼ B′ℓ, for all ℓ ∈ [1, h]. For two SIDs ∆1 and ∆2, we write ∆1 ⪯ ∆2 if and
only if for each rule r1 ∈ ∆1 there exists a rule r2 ∈ ∆2, such that r1 ≈ r2. We denote by
∆1 ≈ ∆2 the conjunction of ∆1 ⪯ ∆2 and ∆2 ⪯ ∆1.

If A1 ∼ A2 and ∆1 ≈ ∆2 then ∆1-models of A1(x1, . . . , x#A1) differ from the ∆2-models
of A2(x1, . . . , x#A1) only by a renaming of the states occurring within state atoms. This is
because any derivation of the satisfaction relation γ |=ν

∆1
A1(x1, . . . , x#A1) can be mimicked

(modulo the state atoms that may change) by a derivation of γ |=ν
∆2

A2(x1, . . . , x#A2), and
viceversa. We are now in the position of stating the main result of this section:

▶ Theorem 26. Assuming that A(x1, . . . , x#A) is a ∆-tight formula, each instance
HavocInv[∆,A] of the havoc invariance problem can be reduced to a set {Ai(x1, . . . , x#A) |=∆∪∆
A(x1, . . . , x#A)}p

i=1 of entailments, where ∆ ≈ ∆, for an arity-preserving equivalence relation
∼ ⊆ A× A, such that Ai ∼ A, for all i ∈ [1, p]. The reduction is polynomial, if #(∆), N(∆)
and H(∆) are bounded by constants and simply exponential, otherwise.

4 Decidability and Complexity

We prove the undecidability of the havoc invariance problem (Def. 9) using a reduction from
the universality of context-free languages, a textbook undecidable problem [2].

▶ Theorem 27. The HavocInv[∆,A] problem is undecidable.

The undecidability proof for the havoc invariance problem uses an argument similar to
the one used to prove undecidability of the entailment problem [4, Theorem 4]. We leverage
further from this similarity and carve a fragment of CL with a decidable havoc invariance
problem, based on the reduction from Theorem 26. For self-containment reasons, we recall
the definition of a CL fragment for which the entailment problem is decidable (see [4, §6]
for more details and proofs). This definition relies on three, easily checkable, syntactic
restrictions on the rules of the SID and a decidable semantic restriction on the models of a
predicate atom defined by the SID. The syntactic restrictions use the notion of profile:

▶ Definition 28. The profile of a SID ∆ is the pointwise greatest function λ∆ : A→ pow(N),
mapping each predicate A into a subset of [1,#A], such that, for each rule A(x1, . . . , x#A)← ϕ

from ∆, each atom B(y1, . . . , y#B) from ϕ and each i ∈ λ∆(B), there exists j ∈ λ∆(A), such
that xj and yi are the same variable.
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The profile identifies the parameters of a predicate that are always replaced by a variable
x1, . . . , x#A in each unfolding of A(x1, . . . , x#A), according to the rules in ∆; it is computed
by a greatest fixpoint iteration, in polynomial time.

▶ Definition 29. A rule A(x1, . . . , x#A)← ∃y1 . . . ∃ym . ϕ ∗ ∗ h
ℓ=1Bℓ(zℓ

1, . . . , z
ℓ
#Bℓ

), where ϕ
is a qpf formula, is said to be:
1. progressing (P) if and only if ϕ = [x1]∗ψ, where ψ consists of interaction atoms involving

x1 and (dis-)equalities, such that
⋃h

ℓ=1{zℓ
1, . . . , z

ℓ
#Bℓ
} = {x2, . . . , x#A} ∪ {y1, . . . , ym},

2. connected (C) if and only if, for each ℓ ∈ [1, h] there exists an interaction atom in ψ that
contains both zℓ

1 and a variable from {x1} ∪ {xi | i ∈ λ∆(A)},
3. equationally-restricted (e-restricted or R) if and only if, for every disequality x ̸= y from

ϕ, we have {x, y} ∩ {xi | i ∈ λ∆(A)} ̸= ∅.
A SID ∆ is progressing (P), connected (C) and e-restricted (R) if and only if each rule in ∆
is progressing, connected and e-restricted, respectively.

▶ Example 30. For example, the rules for the chainh,t(x1, x2) predicates from the SID in
§1.1 are PCR, but not the rules for ringh,t() predicates, that are neither progressing nor
connected. The latter can be replaced with the following PCR rules:

ringh,t(x)← ∃y∃z . [x]@q ∗ ⟨x.out, z.in⟩ ∗ chainh′,t′(z, y) ∗ ⟨y.out, x.in⟩, for all h, t ∈ N

Similarly, rule (2) for the Node predicate is PCR, but not rules (1) and (3), from Example 12.
In order to obtain a SID that is PCR, these rules can be replaced with, respectively:

Root(n)←∃n1∃ℓ1∃r1∃n2∃ℓ2∃r2 . [n] ∗ ⟨n.req, n1.reply, n2.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩ ∗
Node(n1, ℓ1, r1) ∗ Node(n2, ℓ2, r2)

Node(n, ℓ, r)←[n] ∗ ⟨n.req, ℓ.reply, r.reply⟩ ∗ ⟨ℓ.in, r.out⟩ ∗ Leaf (ℓ) ∗ Leaf (r) Leaf (n)← [n] ⌟

A first property is that PCR SIDs define only tight configurations (Def. 3), a prerequisite
for the reduction from Theorem 26:

▶ Lemma 31. Let ∆ be a PCR SID and let A ∈ Def(∆) be a predicate. Then, for any
∆-model (γ, ν) of A(x1, . . . , x#A), the configuration γ is tight.

The last restriction for the decidability of entailments relates to the degree of the models
of a predicate atom. The degree of a configuration is defined in analogy with the degree of a
graph as the maximum number of interactions involving a component:

▶Definition 32. The degree of a configuration γ = (C, I, ϱ) is defined as δ(γ) def= maxc∈C δc(γ),
where δc(γ) def= ||{(c1, p1, . . . , cn, pn) ∈ I | c = ci, i ∈ [1, n]}||.

For instance, the configuration of the system from Fig. 1 (a) has degree two. The degree
boundedness problem DegreeBound[∆,A] asks, given a predicate A and a SID ∆, if the set
{δ(γ) | γ |=∆ ∃x1 . . . ∃x#A . A(x1, . . . , x#A)} is finite. This problem is decidable [4, Theorem
3]. The entailment problem A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B) is known
to be decidable for PCR SIDs ∆, provided, moreover, that DegreeBound[∆,A] holds:

▶ Theorem 33 ([4]). The entailment problem

A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B),

where ∆ is PCR and DegreeBound[∆,A] has a positive answer, is in 2EXP, if #(∆) and N(∆)
are bounded by constants and in 4EXP, otherwise.
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Back to the havoc invariance problem, we give first a lower bound using a reduction from
the entailment problem A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B), where ∆ is a
PCR SID and HavocInv[∆,A] has a positive answer. To the best of our efforts, we could not
prove that the entailment problem is 2EXP-hard under the further assumption that #(∆) is
bounded by a constant, which leaves the question of a matching lower bound for the havoc
invariance problem open, in this case.

▶ Lemma 34. The HavocInv[∆,A] problem for PCR SIDs ∆, such that DegreeBound[∆,A]
has a positive answer, is 2EXP-hard.

The main result of this section is a consequence of Theorems 26 and 33. In the absence
of a constant bound on the parameters #(∆), N(∆) and H(∆), the entailment resulting
from the reduction (Theorem 26) is of simply exponential size in the input and the time
complexity of solving the entailments is 4EXP(Theorem 33), yielding a 5EXP upper bound:

▶ Theorem 35. The HavocInv[∆,A] problem, for PCR SIDs such that DegreeBound[∆,A]
has a positive answer is in 2EXP, if #(∆), N(∆) and H(∆) are bounded by constants and in
5EXP, otherwise.

5 Conclusions

We have considered a logic for describing sets of configurations of parameterized concurrent
systems, with user-defined network topology. The havoc invariance problem asks whether
a given formula in the logic is invariant under the execution of the system starting from
each configuration that is a model of a formula. An algorithm for this problem uses a
many-one reduction to the entailment problem, thus leveraging from earlier results on the
latter problem. We study the decidability and complexity of the havoc invariance problem
and show that a doubly-exponential algorithm exists for a fairly general fragment of the logic,
that encompasses all our examples. This result is relevant for automating the generation of
correctness proofs for reconfigurable systems, that change the network topology at runtime.
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Abstract
In this paper, we develop a novel verification technique to reason about programs featuring con-
currency, pointers and randomization. While the integration of concurrency and pointers is well
studied, little is known about the combination of all three paradigms. To close this gap, we combine
two kinds of separation logic – Quantitative Separation Logic and Concurrent Separation Logic –
into a new separation logic that enables reasoning about lower bounds of the probability to realise a
postcondition by executing such a program.
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1 Introduction and Related Work

In this paper, we aim to provide support for formal reasoning about concurrent imperative
programs that are extended by two important features: dynamic data structures and
randomisation. In other words, it deals with the analysis and verification of concurrent
probabilistic pointer programs. This problem is of practical interest as many concurrent
algorithms operating on data structures use randomisation to reduce the level of interaction
between threads. For example, probabilistic skip lists [48] work well in the concurrent
setting [17] because threads can independently manipulate nodes in the list without much
synchronisation. In contrast, scalability of traditional balanced tree structures is difficult to
achieve, since re-balancing operations may require locking access to large parts of the data
structure. Bloom filters are another example of a probabilistic data structure supporting
parallel access [8]. A further aspect is that stochastic modelling naturally arises when
analysing faulty behaviour of (concurrent) software systems, as we later demonstrate in
Section 5.

However, the combination of these features poses severe challenges when it comes to
implementing and reasoning about concurrent randomised algorithms that operate on dynamic
data structures. To give a systematic overview of related approaches, we mention that a
number of program logics for reasoning about concurrent software have been developed
[13, 14, 18, 30, 32, 43]. Next, we will address the programming-language extensions in
isolation and then consider their integration. An overview is shown in Figure 1.

Pointers. Pointers constitute an essential concept in modern programming languages,
and are used for implementing dynamic data structures like lists, trees etc. However, many
software bugs can be traced back to the erroneous use of pointers by e.g. dereferencing
null pointers or accidentally pointing to wrong parts of the heap, creating the need for
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Concurrency

Pointers
SL [26, 50]

Randomisation
Expectations [39]

Prob. rel.-guar.
calc. [40]

CSL [45]

QSL [5]

Polaris [51]
CQSL

Figure 1 Overview of programming language features and formal approaches (CQSL denotes our
concurrent extension of QSL).

computer-aided verification methods. The most popular formalism for reasoning about
such programs is Separation Logic (SL) [26, 50], which supports Hoare-style verification of
imperative, heap-manipulating and, possibly, concurrent programs. Its assertion language
extends first-order logic with connectives that enable concise specifications of how program
memory, or other resources, can be split-up and combined. In this way, SL supports local
reasoning about the resources employed by programs. Consequently, program parts can be
verified by considering only those resources they actually access – a crucial property for
building scalable tools including automated verifiers [7, 28, 42, 47], static analysers [6, 10, 20],
and interactive theorem provers [31].

The notion of resources, and in particular their controlled access, becomes even more
important in a concurrent setting. Therefore, SL has been extended to Concurrent Separation
Logic (CSL) [45] to enable reasoning about resource ownership, where the resource typically
is dynamically allocated memory (i.e., the heap). The popularity of CSL is evident by the
number of its extensions [9]. Of particular importance to our work is [53], which presents a
soundness result for CSL that is formulated in an inductive manner, matching the “small-step”
operational style of semantics. Here, we will employ a similar technique that also takes
quantitative aspects (probabilities) into account.

Randomisation. Probabilistic programs (i.e., programs with the ability to sample from
probability distributions) are increasingly popular for implementing efficient randomised
algorithms [41] and describing uncertainty in systems [11, 19], among other similar tasks. In
such applications, the purely qualitative (true vs. false) approach of classical logic is obviously
not sufficient. The method advocated by us is based on weakest precondition reasoning as
established in a classical setting by Dijkstra [12]. It has been extended to provide semantic
foundations for probabilistic programs by Kozen [34, 35] and McIver & Morgan [39]. The
latter also coined the term “weakest preexpectation” for random variables that take over the
role of logical formulae when doing quantitative reasoning about probabilistic programs –
the quantitative analogue of weakest preconditions. Their relation to operational models is
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studied in [21]. Moreover, weakest preexpectation reasoning has been shown to be useful for
obtaining bounds on the expected resource consumption [44] and, especially, the expected
run-time [33] of probabilistic programs.

However, verification techniques that support reasoning about both randomisation and
dynamic data structures are rare – a surprising situation given that randomised algorithms
typically rely on such data structures. One notable exception is the extension of SL to
Quantitative Separation Logic (QSL) [4, 5], which marries SL and weakest preexpectations.
QSL has successfully been applied to the verification of randomised algorithms, and QSL
expectations have been formalised in Isabelle/HOL [24]. The present work builds on these
results by additionally taking concurrency into account.

A prior program logic designed for reasoning about programs that are both concurrent and
randomised but do not maintain dynamic data structures is the probabilistic rely-guarantee
calculus developed by McIver et al. [40], which extends Jones’s original rely-guarantee
logic [30] by probabilistic constructs.

Later, Tassarotti & Harper [51] address the full setting of concurrent probabilistic pointer
programs by combining CSL with probabilistic relational Hoare logic [3] to obtain Polaris, a
Concurrent Separation Logic with support for probabilistic reasoning. Verification is thus
understood as establishing a relation between a program to be analysed and a program which
is known to be well-behaved. Programs which do not almost surely terminate, however, are
outside the scope of their approach. In contrast, the goal of our method is to directly measure
quantitative program properties on source-code level using weakest liberal preexpectations
defined by a set of proof rules, including possibly non-almost surely terminating programs.
Since the weakest liberal preexpectation includes non-termination probability, we can use
invariants to bound the weakest liberal preexpectation of loops from below.

The main contributions of this paper are:
the definition of a concurrent heap-manipulating probabilistic guarded command language
(chpGCL) and its operational semantics in terms of Markov Decision Processes (MDP);
a formal framework for reasoning about quantitative properties of chpGCL programs,
which is obtained by extending classical weakest liberal preexpectations by resource
invariants;
a sound proof system that supports backward reasoning about such preexpectations; and
the demonstration of our verification method on a (probabilistic) producer-consumer
example.

The remainder of this paper is organised as follows. Section 2 introduces QSL as
an assertion language for quantitative reasoning about (both sequential and concurrent)
probabilistic pointer programs. In Section 3, we present the associated programming language
(chpGCL) together with an operational semantics. Next, in Section 4 we develop a calculus for
reasoning about lower bounds of weakest liberal preexpectations. Its usage is demonstrated
in Section 5, and in Section 6 we conclude and explain further research directions. The
paper is accompanied by an extended version providing elaborated proofs and an appendix
providing additional details about the examples.

2 Quantitative Separation Logic

To reason about probability distributions over states of a program, we use Quantitative
Separation Logic (QSL) [5, 37]. QSL is an extension of classical (or qualitative) Separation
Logic in the sense that instead of mapping stack/heap pairs to booleans in order to gain a
set characterization of states, we assign probabilities to stack/heap pairs.

CONCUR 2022
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▶ Definition 2.1 (Stack). Let Vars be a fixed set of variables. A stack s : Vars → Z is a
mapping from variable symbols to values. We denote the set of all stacks by Stacks.

When evaluating an (arithmetic or boolean) expression e with respect to a stack s, we write
e(s). In this sense, expressions are mappings from stacks to values. The stack that agrees
with a stack s except for the value of x, which is mapped to v, is denoted as s [x := v].

▶ Definition 2.2 (Heaps). A heap h : L → Z is a mapping from a finite subset of locations
L ⊂ N>0 to values. We denote the set of all heaps by Heaps.
We furthermore write dom (h) for the domain of h, h1 ⊥ h2 if and only if dom (h1)∩dom (h2) =
∅, and for disjoint heaps h1 ⊥ h2 we define the disjoint union of heaps h1 and h2 as

(h1 ⋆ h2)(ℓ) =


h1(ℓ) if ℓ ∈ dom (h1)
h2(ℓ) if ℓ ∈ dom (h2)
undef else .

A pair of a stack and a heap is a state of the program. The stack is used to describe the
variables of the program. The heap describes the addressable memory of the program.

▶ Definition 2.3 (Program States). A program state σ ∈ Stacks × Heaps is a pair consisting
of a stack and a heap. The set of all states is denoted by States.

Expectations are random variables that map states to non-negative reals. In this paper, we
only consider one-bounded expectations. These do not map states to arbitrary non-negative
reals, but only to reals between 0 and 1. The nomenclature of calling these expectations
rather than random variables is due to the weakest preexpectation calculus being used to
derive expectations.

▶ Definition 2.4 (Expectations). A (one-bounded) expectation X : States → [0, 1] is a mapping
from program states to probabilities. We write E≤1 for the set of all (one-bounded) expectations.
We call an expectation φ qualitative if for all (s, h) ∈ States we have that φ(s, h) ∈ {0, 1}.
We define the partial order (E≤1,≤) as the pointwise application of less than or equal, i.e.,
X ≤ Y if and only if ∀(s, h) ∈ States X(s, h) ≤ Y (s, h).

We use capital letters for regular (one-bounded) expectations and Greek letters for qualitative
expectations. As in [5], we choose to not give a specific syntax for QSL since the weakest liberal
preexpectation of a given postexpectation – for which we provide more detail in Section 3
– may not be expressible in a given syntax. Instead, we prefer to interpret expectations
as extensional objects that can be combined via various connectives. These connectives
include (but are not limited to) the pointwise-applied connectives of addition, multiplication,
exponentiation, maximum and minimum. As it is common in quantitative logics, the
maximum/minimum is the quantitative extension of disjunction/conjunction, respectively.
However, multiplication can be chosen as the quantitative extension of conjunction as well.
We denote the substitution of a variable x by the expression e in the expectation X as
X [x := e] and define it as X [x := e] (s, h) = X(s [x := e(s)] , h). When dealing with state
predicates, we use Iverson brackets [27] to cast boolean values into integers:

[b] (s, h) =
{

1 if (s, h) ∈ b

0 else

Note that we could also define predicates as mappings from states to 0 or 1. We refrain from
this, since (1) usage of Iverson brackets is standard in weakest preexpectation reasoning and
(2) we may use QSL inside of Iverson brackets.
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For a state (s, h), the empty heap predicate emp holds if and only if dom (h) = ∅, the
points-to predicate e 7→ e0, . . . , en holds if and only if dom (h) = {e(s) + 0, . . . , e(s) + n}
and ∀i ∈ {0, . . . , n} h(e(s) + i) = ei(s), the allocated predicate e 7→ − holds if and only if
dom (h) = {e(s)}, and the equality predicate e = e′ holds if and only if e(s) = e′(s).

We also use quantitative extensions of two separation connectives – the separating
conjunction and the magic wand. The quantitative extension of the separating conjunction,
which we call separating multiplication, maximises the value of the product of its arguments
applied to separated heaps:

(X ⋆ Y )(s, h) = sup {X(s, h1) · Y (s, h2) | h1 ⋆ h2 = h }

The definition of separating multiplication is similar to the classical separating conjunction:
the existential quantifier is replaced by a supremum and the conjunction by a multiplication.
Note that the set over which the supremum ranges is never empty.

The (guarded) quantitative magic wand is defined for a qualitative first argument and a
quantitative second argument. We minimise the value of the second argument applied to the
original heap joined with a heap that evaluates the first argument to 1, i.e., for qualitative
expectation φ and expectation Y we have:

(φ−−⋆ Y )(s, h) = inf {Y (s, h′′) | φ(s, h′) = 1, h′′ = h ⋆ h′ }

If the set is empty, the infimum evaluates to the greatest element of all probabilities, which
is 1. Although it is also possible to allow expectations in both arguments (cf. [5]), we restrict
ourselves to the guarded version of the magic wand. This restriction allows us to exploit the
superdistributivity of multiplication, i.e., φ−−⋆ (X · Y ) ≥ (φ−−⋆ X) · (φ−−⋆ Y ).

▶ Example 2.5. To illustrate separating operations and lower bounding in QSL, we consider
X = [x 7→ − ] ⋆ ([x 7→ y] −−⋆ (0.5 · [x 7→ − ])), Y = 0.5 · [x 7→ − ] and Z = 0.5 · [x 7→ y]. Let
us consider the semantics of X in more detail. X is non-zero only for states that allocate
exactly x. In this case, after changing the value pointed to by x to y, 0.5 is returned if x is
still allocated (which obviously holds). Thus, the combination of separating multiplication
and magic wand realises a change of value: First a pointer is removed from the heap by using
separating multiplication, and afterwards we add it back with a different value using the
magic wand. Note that [x 7→ y] is qualitative, which is required for our version of the magic
wand. Then we have X = Y and Z ≤ X.

3 Programming Language and Operational Semantics

Our programming language is a concurrent extension of the heap-manipulating and prob-
abilistic guarded command language [5]. Our language features both deterministic and
probabilistic control flow, atomic regions, concurrent threads operating on shared memory,
variable-based assignments, and heap manipulations. Although our language allows arbitrary
shared memory, we will later only be able to reason about shared memory in the heap.
Conditional choice without an else branch is considered syntactic sugar. Atomic regions
consist of programs without memory allocation or concurrency. However, probabilistic choice
is admitted. Programs that satisfy this restriction are called tame.

The reason to restrict the program fragment within atomic regions is that non-tame
statements introduce non-determinism (as addresses to be allocated and schedulings of
concurrent programs are chosen non-deterministically), which would increase the semantics’
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complexity while providing only little benefit (we refer to [1] regarding the handling of
non-tame probabilistic programs in atomic regions). If an atomic region loops with a certain
probability p, we instead transition to a non-terminating program with probability p.

▶ Definition 3.1 (Concurrent Heap-Manipulating Probabilistic Guarded Command Language).
The concurrent heap-manipulating probabilistic guarded command language chpGCL is gener-
ated by the grammar

C −→ ↓ (terminated program)
| diverge (non-terminating program)
| x := e (assignment)
| {C } [ ep ] {C } (prob. choice)
| C ; C (seq. composition)
| atomic {C } (atomic region)
| if ( b ) {C } else {C } (conditional choice)
| while ( b ) {C } (loop)
| C ∥ C (concurrency)
| x := new (e0, . . . , en) (allocation)
| free(e), (disposal)
| x := < e > (lookup)
| < e > := e′ (mutation)

where x is a variable, e, e′, ei : Stacks → Z are arithmetic expressions, ep : Stacks → [0, 1] is
a probabilistic arithmetic expression and b ⊆ Stacks is a guard.

▶ Example 3.2. We consider as running example a little program with two threads synchro-
nizing over a randomised value:

< r > := −1 ;

{ < r > := 0 } [ 0.5 ] { < r > := 1 }

∥∥∥∥∥ y := < r > ;
while ( y = −1 ) { y := < r > } ;

We first initialise our resource r with some integer that stands for an undefined value (here
−1). The first thread now either assigns 0 or 1 with probability 0.5 to r. As soon as r has a
new value, the second thread receives this value and terminates as r is not −1 any more.

We define the operational semantics of our programming language chpGCL in the form of a
Markov Decision Process (MDP for short). An MDP allows the use of both non-determinism,
which we need for interleaving multiple threads, and probabilities, which are used for encoding
probabilistic program commands. A transition between states is thus always annotated with
two parameters: (1) an action that is taken non-deterministically and (2) a probability to
transition to a state given the aforementioned action.

▶ Definition 3.3 (Markov Decision Process). A Markov Decision Process M = (U,Act,P)
consists of a countable set of states U , a mapping from states to enabled actions Act : U → 2A

for a countable set of actions A, and a transition probability function P : (U×A) → U → [0, 1]
where for all σ ∈ U and a ∈ Act(σ) we require

∑
σ′∈U P(σ, a)(σ′) = 1. We also use the

shorthand notation σ
p−→
a

σ′ for P(σ, a)(σ′) = p in case p > 0.
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ASSIGN
x := e, (s, h) 1−−−−→

assign
↓ , (s [x := e(s)] , h)

e(s) ∈ dom (h)
LOOKUP

x := < e >, (s, h) 1−−−−→
lookup

↓ , (s [x := h(e(s))] , h)

e(s) ̸∈ dom (h)
LOOKUP-ABT

x := < e >, (s, h) 1−−−−−−−→
lookup-abt

abort

e(s) ∈ dom (h)
MUT

< e > := e′, (s, h) 1−−−−−−→
mutation

↓ , (s, h [e(s) := e′(s)])

e(s) ̸∈ dom (h)
MUT-ABT

< e > := e′, (s, h) 1−−−−−−−−→
mutation-abt

abort

e(s) ∈ dom (h) h′ = h \ {e(s) 7→ h(e(s))}
FREE

free(e), (s, h) 1−−→
free

↓ , (s, h′)

e(s) ̸∈ dom (h)
FREE-ABT

free(e), (s, h) 1−−−−−→
free-abt

abort

ℓ + 0, . . . ℓ + n ∈ N>0 \ dom (h) e0(s) = v0, . . . , en(s) = vn h′ = h ⋆ {ℓ + 0 7→ v1} ⋆ · · · ⋆ {ℓ + n 7→ vn}
ALLOC

x := new (e0, . . . , en) , (s, h) 1−−−−→
alloc-ℓ

↓ , (s [x := ℓ] , h′)

Figure 2 Operational semantics of basic commands in chpGCL.

C1, (s, h) p−→
a

C ′
1, (s′, h′)

SEQ
C1 ; C2, (s, h) p−→

a
C ′

1 ; C2, (s′, h′)

C2, (s, h) p−→
a

C ′
2, (s′, h′)

SEQ-END
↓ ; C2, (s, h) p−→

a
C ′

2, (s′, h′)

C1, (s, h) p−→
a

abort
SEQ-ABT

C1 ; C2, (s, h) p−→
a

abort

C2, (s, h) p−→
a

abort
SEQ-END-ABT

↓ ; C2, (s, h) p−→
a

abort

s ∈ b IF-T
if ( b ) {C1 } else {C2 } , (s, h) 1−−→

if-t
C1, (s, h)

s ̸∈ b
IF-F

if ( b ) {C1 } else {C2 } , (s, h) 1−−→
if-f

C2, (s, h)

s ∈ b WHILE-T
while ( b ) {C1 } , (s, h) 1−−−−→

loop-t
C1 ; while ( b ) {C1 }, (s, h)

s ̸∈ b
WHILE-F

while ( b ) {C1 } , (s, h) 1−−−→
loop-f

↓ , (s, h) DIV
diverge, (s, h) 1−−→

div
diverge, (s, h)

ep(s) = p
PROB-L

{C1 } [ ep ] {C2 } , (s, h) p−−−→
prob

C1, (s, h)

ep(s) = p
PROB-R

{C1 } [ ep ] {C2 } , (s, h) 1−p−−−→
prob

C2, (s, h)

Figure 3 Operational semantics of non-concurrent control-flow operations in chpGCL.

We define the operational semantics of chpGCL as an MDP. A state in this MDP consists
of a chpGCL program to be executed and a program state (s, h). The meaning of basic
commands, i.e., assignments, heap mutations, heap lookups, memory allocation and disposal,
is defined by the inference rules shown in Figure 2. An action is enabled if and only if an
inference rule for this action exists. We use an abort keyword to indicate that a memory
access error happened and terminate at this state. We consider aborted runs as undesired
runs. The condition

∑
σ′∈U P(σ, a)(σ′) = 1 holds for all states in a chpGCL program. States

with program ↓ or abort have no enabled actions, thus the condition holds trivially for all
enabled actions a; non-probabilistic programs only have actions with trivial distributions;
states with probabilistic choice only have a single action with a biased coin-flip distribution;
and other programs are composed of these.

Control-flow statements include while loops, conditional choice, sequential composition
and probabilistic choice, and we define their operational semantics in Figure 3. For the sake
of brevity, we do not include a command to sample from a distribution.

The remaining control-flow statements handle concurrency, i.e., the concurrent execution
of two threads and the atomic execution of regions. An atomic region may only terminate
with a certain probability. The notation C, (s, h) p−→∗ . . . denotes that program C does
not terminate on state (s, h) with probability p. As mentioned before, we will only allow
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C, (s, h) p−→∗ ↓ , (s′, h′) C is tame
ATOM-END

atomic {C } , (s, h) p−−−−→
atomic

↓ , (s′, h′)
C, (s, h) p−→∗ abort C is tame

ATOM-ABT
atomic {C } , (s, h) p−−−−→

atomic
abort

C, (s, h) p−→∗ . . . C is tame
ATOM-LOOP

atomic {C } , (s, h) p−−−−→
atomic

diverge, (s, h)

C1, (s, h) p−→
a

C ′
1, (s′, h′)

CON-L
C1 ∥ C2 , (s, h) p−−−→

C1,a
C ′

1
∥∥ C2 , (s′, h′)

C2, (s, h) p−→
a

C ′
2, (s′, h′)

CON-R
C1 ∥ C2 , (s, h) p−−−→

C2,a
C1
∥∥ C ′

2 , (s′, h′)

C1, (s, h) p−→
a

abort
CON-L-ABT

C1 ∥ C2 , (s, h) p−−−→
C1,a

abort

C2, (s, h) p−→
a

abort
CON-R-ABT

C1 ∥ C2 , (s, h) p−−−→
C2,a

abort

CON-END
↓ ∥ ↓ , (s, h) 1−−−−−→

con-end
↓ , (s, h)

Figure 4 Operational semantics of concurrent control-flow operations in chpGCL.

tame programs inside atomic regions. A tame program does not require any (scheduling)
actions since its Markov model is fully probabilistic. To formally define the syntax used in
the inference rules for atomic regions, we first need to introduce schedulers, which are used
to resolve non-determinism in an MDP. There are various classes of schedulers, and indeed
we will later allow the use of different classes. However, we do require that all schedulers are
deterministic and may have a history. This especially rules out any randomised scheduler,
which would be an interesting topic, but is out of scope for the results presented here. Our
schedulers use finite sequences of MDP states as histories.

▶ Definition 3.4 (Scheduler). A scheduler is a mapping s : U+ → A from histories of states
to enabled actions, i.e., s(σ1 . . . σn) ∈ Act(σn). We denote the set of all schedulers by S.

For final states σ′ (i.e., with program ↓ or abort) and an MDP (U,Act,P), we define

reach(n, σ1, s, σ
′) =

∑[m−1∏
i=1

P(σi, s(σ1 . . . σi))(σi+1)∣∣∣∣ σ1 . . . σm ∈ Um, σm = σ′,m ≤ n

]
, (1)

σ
p−→
s

∗ σ′ iff p = lim
n→∞

reach(n, σ, s, σ′) , (2)

σ
1−p−−→
s

∗ . . . iff p =
∑

σ′ final
lim

n→∞
reach(n, σ, s, σ′) . (3)

For a function f and a predicate b, we write [f(x) | x ∈ b] for the bag consisting of the
values f(x) with x ∈ b. We use notation (1) to calculate the probability to reach the final
state σ′ from σ1 in at most n steps w.r.t s. We unroll the MDP here into the Markov
Chain induced by s after at most n steps (cf. [2, Definition 10.92]). With notation (2),
we define the reachability probability of a final state and with notation (3), we define the
probability of non-termination. We avoid reasoning about uncountable sets of paths in case of
non-termination by taking the probability to not reach a final state, i.e., a state with program
↓ or abort. A scheduler s is unique if for every state σ ∈ U there is at most one enabled
action s can map to, i.e., |Act(σ)| ≤ 1. In that case, we usually omit the corresponding
transition label.

To reason about the operational semantics using QSL, we use weakest liberal preexpecta-
tions [5, 38], which take the greatest lower bound of the expected value with respect to a
postexpectation together with the probability of non-termination for all schedulers that we
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want to consider. We allow subsets of schedulers S ⊆ S in order to apply fairness conditions.
Later, we only consider the complete set of schedulers. In that case, we omit the superscript
from the function wlp, which is defined in the following.

▶ Definition 3.5 (Weakest Liberal Preexpectation). For a program C and an expectation X,
we define the weakest liberal preexpectation with respect to a set of schedulers ∅ ̸= S ⊆ S as

wlpSJCK (X) (s, h) = inf
{∑[

p ·X(s′, h′) | C, (s, h) p−→
s

∗ ↓ , (s′, h′)
]

+ pdiv∣∣∣∣ s ∈ S and C, (s, h) pdiv−−−→
s

∗ . . .

}
.

▶ Example 3.6. For program C in Example 3.2, we evaluate (without proof)
wlpJCK ([y = 0]) = wlpSJCK ([y = 0]) = 0.5 ⋆ [r 7→ − ]. That is, if r is allocated, then the
likelihood of C terminating without aborting in a state in which y equals 0 is 0.5, and zero
otherwise. We will prove that this is a lower bound in Example 4.2.

4 Weakest Safe Liberal Preexpectations

For sequential probabilistic programs, a backwards expectation transformer can be defined
to compute wlp [5]. This is not feasible for concurrent programs due to the non-locality
of shared memory. Instead, we drop exact computation in our approach and reason about
lower bounds of wlp by using inference rules similar to Hoare triples. To support shared
memory, we furthermore introduce a modified version of wlp – the weakest resource-safe
liberal preexpectation. The general idea as inspired by [53] is to prove that the shared memory
is invariant with respect to a qualitative expectation, which we call a resource invariant. In
other words, the shared memory is proven to be safe with respect to the resource invariant.
We archive this by enforcing that at every point in the program’s execution (except for
executions in atom regions), some part of the heap is satisfied by the resource invariant.
In Example 4.2 we use the resource invariant max { [r 7→ 0], [r 7→ −1] } to prove the lower
bound from Example 3.6. We enforce that the program states do not include the shared
memory any more, the transitions however are taken with any possible shared memory.

▶ Definition 4.1 (Weakest Resource-Safe Liberal Preexpectation). We first consider the
expectation after one step with respect to a mapping from programs to expectations, that is,
for a program C and a mapping t : chpGCL → E≤1, we define

stepJCK (t) (s, h) = inf
{∑[

p · t(C ′)(s′, h′) | C, (s, h) p−→
a

C ′, (s′, h′)
]

∣∣∣∣ a ∈ Act(C, (s, h))
}
.

We define the weakest resource-safe liberal preexpectation after n steps for a program C, a
postexpectation X and a (qualitative) resource invariant ξ as

wrlpnJCK (X | ξ) =


1 if n = 0
X if n ̸= 0 and C = ↓
ξ −−⋆ stepJCK

(
λC ′. wrlpn−1JC

′K (X | ξ) ⋆ ξ
)

otherwise1.

1 We use λC′. X for the function which, when applied to the argument C, reduces to X in which every
occurrence of C′ in X is replaced by C.
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Finally, we define the weakest resource-safe liberal preexpectation for arbitrarily many steps as

wrlpJCK (X | ξ) = lim
n→∞

wrlpnJCK (X | ξ) .

An important observation is that for the special resource invariant [emp], wlp and wrlp
coincide (cf. [16]). This enables us to reason about lower bounds for probabilities of qualitative
preconditions (and in general lower bounds for the expected value of one-bounded random
variables). When reasoning about such probabilities, we first express a property for which
we aim to prove a lower bound on wlp, afterwards we can transform it into wrlp with the
resource invariant [emp] and use special rules to enrich the resource invariant with more
information. The resource invariant should always cover all possible states that the shared
memory may be in at any time during the program’s execution. It is fine if the resource
invariant is violated during executions of atomic regions, since we only care about safeness
during executions with inferences between threads.

We mention that wrlp is heavily inspired by [53]. We formalise the connection between
Vafeiadis’ Concurrent Separation Logic and our weakest resource-safe liberal preexpectation
below. In [53] a judgement is defined by a safe predicate that is similar to how we defined
wrlp.

▶ Definition 4.1 (Safe Judgements [53]). The predicate safen(C, s, h, ξ, φ) holds for qualitative
φ and ξ and non-probabilistic program C if and only if
1. if n = 0, then it holds always; and
2. if n > 0 and C = ↓ , then φ(s, h) = 1; and
3. if n > 0 and for all hξ and hF with ξ(s, hξ) = 1 and h ⊥ hξ ⊥ hF , then for all enabled

actions a ∈ Act(C, (s, h ⋆ hξ ⋆ hF )) we do not have C, (s, h ⋆ hξ ⋆ hF ) 1−→
a

abort; and
4. if n > 0 and for all hξ, hF , C

′, s and h, with ξ(s, hξ) = 1, and h ⊥ hξ ⊥ hF , and
C, (s, h ⋆ hξ ⋆ hF ) 1−→

a
C ′, (s′, h′), then there exists h′′ and h′

ξ such that h′ = h′′ ⋆ h′
ξ ⋆ hF

and ξ(s′, h′
ξ) = 1 and safen−1(C ′, s′, h′′, ξ, φ).

For qualitative φ, ψ and ξ, we say that ξ |= {ψ} C {φ} holds if and only if for all stack/heap
pairs s, h the statement ψ(s, h) = 1 ⇒ ∀n ∈ N. safen(C, s, h, ξ, φ) holds.

A program C is framing enabled2 if we can always extend the heap without changing the
behaviour of C.

▶ Definition 4.2 (Framing Enabledness). A non-probabilistic program C is framing enabled
if for all heaps hF with h ⊥ hF and all enabled actions a ∈ Act(C, (s, h ⋆ hF )), it holds: if
C, (s, h) 1−→

a
C ′, (s′, h′), then also C, (s, h ⋆ hF ) 1−→

a
C ′, (s′, h′ ⋆ hF ).

The next theorem states that wrlp is a conservative extension of safe.

▶ Theorem 4.1 (Conservative Extension of Concurrent Separation Logic). For a framing-enabled
non-probabilistic program C and qualitative expectations φ, ψ and ξ, we have

φ ≤ wrlpJCK (ψ | ξ) iff ξ |= {φ} C {ψ} .

Proof. See [16]. ◀

2 Indeed every non-probabilistic chpGCL program is framing enabled (cf. [16]).
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term
X ≤ wrlpJ ↓ K (X | ξ)

Y ≤ supv∈Z [e 7→ v] ⋆ ([e 7→ v] −−⋆ X [x := v])
look

Y ≤ wrlpJx := < e >K (X | ξ)

Y ≤ infv∈Z [v 7→ e1, . . . , en] −−⋆ X [x := v]
alloc

Y ≤ wrlpJx := new (e1, . . . , en)K (X | ξ)

Y ≤ X [x := e] assign
Y ≤ wrlpJx := eK (X | ξ)

Y ≤ [e 7→ − ] ⋆ (
[
e 7→ e′]−−⋆ X)

mut
Y ≤ wrlpJ< e > := e′K (X | ξ)

Y ≤ X ⋆ [x 7→ − ]
disp

Y ≤ wrlpJfree(x)K (X | ξ)

Figure 5 Proof rules for wrlp for basic commands.

X ≤ wrlpJC1K (Y | ξ) Y ≤ wrlpJC2K (Z | ξ) seq
X ≤ wrlpJC1 ; C2K (Z | ξ)

X1 ≤ wrlpJC1K (Y | ξ) X2 ≤ wrlpJC2K (Y | ξ)
if[b] · X1 + [¬b] · X2 ≤ wrlpJif ( b ) { C1 } else { C2 }K (Y | ξ)

I ≤ [b] · X + [¬b] · Y X ≤ wrlpJCK (I | ξ)
while

I ≤ wrlpJwhile ( b ) { C }K (Y | ξ)
div

X ≤ wrlpJdivergeK (Y | ξ)

X1 ≤ wrlpJC1K (Y | ξ) X2 ≤ wrlpJC2K (Y | ξ)
p-choice

ep · X1 + (1 − ep) · X2 ≤ wrlpJ{ C1 } [ ep ] { C2 }K (Y | ξ)
X ≤ wrlpJCK (Y ⋆ ξ | [emp])

atomic
X ≤ wrlpJatomic { C }K (Y | ξ)

X ≤ wrlpJCK (Y | ξ ⋆ π)
share

X ⋆ π ≤ wrlpJCK (Y ⋆ π | ξ)

X1 ≤ wrlpJC1K (Y1 | ξ) X2 ≤ wrlpJC2K (Y2 | ξ) ∀i ∈ {1, 2} Write(Ci) ∩ Vars (C3−i, Y3−i, ξ) = ∅
concur

X1 ⋆ X2 ≤ wrlpJC1 ∥ C2 K (Y1 ⋆ Y2 | ξ)

Figure 6 Proof rules for wrlp for control-flow commands.

We define wrlp inductively by means of a number of inference rules. We do not use classic
Hoare triples due to difficulties arising when interpreting a wrlp statement forward. These
difficulties are due to Jones’s counterexample [29, p. 135]: Given the constant preexpectation
0.5 and the program C : {x := 0 } [ 0.5 ] {x := 1 }, what is the postexpectation? Two possible
answers are 0.5 = wlpJCK ([x = 0]) and 0.5 = wlpJCK ([x = 1]), but a combination of both is
not possible. For this reason, we highlight the backwards interpretation of our judgements
by writing them as X ≤ wrlpJCK (Y | ξ), where X is a (lower bound for the weakest liberal)
preexpectation, C is the program, Y is the postexpectation and ξ is the resource invariant.

For basic commands, as shown in Figure 5, we can just re-use the QSL proof rules for
weakest liberal preexpectations (wlp) of non-concurrent programs, as given in [5]. However,
for wrlp these proof rules only allow lower bounding the preexpectation since we do not want
to reason about the resource invariant if not necessary.

For commands handling control flow, as shown in Figure 6, we use mostly standard rules.
Atomic regions regain access to the resource invariant. The share rule allows us to enrich the
resource invariant. The rule for concurrency enforces that only local variables or read-only
variables are used in each thread. One could as well allow shared variables that are owned
by the resource invariant. However, for the sake of brevity we do not include this here.

We also introduce several proof rules that make reasoning easier, see Figure 7. A program
is almost surely terminating with respect to a set of schedulers if the program terminates
with probability one for every initial state and every scheduler in this set. Even though there
is a plethora of work on almost-sure termination for (sequential) probabilistic programs (cf.
[25] for an overview), techniques for checking almost-sure termination in a concurrent setting
are sparse [22, 23, 36, 52]. Here, interpreting probabilistic choice as non-determinism and
proving sure termination instead using techniques such as [15, 49] is an alternative.
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X ′ ≤ wlpSJCK (X) Y ′ ≤ wlpSJCK (Y ) C is AST w.r.t. S a ∈ R≥0 superlin
a ·X ′ + Y ′ ≤ wlpSJCK (a ·X + Y )

X ≤ wrlpJCK (Y | [emp])
wlp-wrlp

X ≤ wlpSJCK (Y )
X ≤ wrlpJCK (Y | ξ) Write(C) ∩ Vars (Z) = ∅

frame
X ⋆ Z ≤ wrlpJCK (Y ⋆ Z | ξ)

X ⋆ ξ ≤ wrlpJCK (Y ⋆ ξ | [emp]) C is a terminating atom
atom

X ≤ wrlpJCK (Y | ξ)

X ≤ X ′ X ′ ≤ wrlpJCK
(
Y ′ | ξ

)
Y ′ ≤ Y

monotonic
X ≤ wrlpJCK (Y | ξ)

X ≤ wrlpJCK (Y | ξ) X ′ ≤ wrlpJCK
(
Y ′ | ξ

)
max

max
{
X, X ′ } ≤ wrlpJCK

(
max

{
Y, Y ′ } | ξ

)
X ≤ wrlpJCK (Y | ξ) X ′ ≤ wrlpJCK

(
Y ′ | ξ

)
ξ precise

min
min

{
X, X ′ } ≤ wrlpJCK

(
min

{
Y, Y ′ } | ξ

)
X ≤ wrlpJCK (Y | ξ) X ′ ≤ wrlpJCK

(
Y ′ | ξ

)
ξ precise Write(C) ∩ Vars (e) = ∅

convex
e ·X + (1 − e) ·X ′ ≤ wrlpJCK

(
e · Y + (1 − E) · Y ′ | ξ

)
Figure 7 Auxiliary proof rules for wrlp.

The first rule in Figure 7 uses superlinearity to split a given postexpectation into a sum
of postexpectations, for which proving a lower bound on the preexpectation might be easier.
We only allow the use of superlinearity for wlp (and not for wrlp) because we need a restricted
set of schedulers to enforce fairness conditions. Fairness conditions are required to reason
about termination for concurrent programs with some sort of blocking behaviour. We are
then able to transform wlp into wrlp by using the wlp-wrlp rule. Whether wrlp can also be
defined with fairness conditions in mind and thus applying superlinearity directly on wrlp, is
an open question. The frame rule is of central importance to the Separation Logic approach,
as it supports local reasoning about only the relevant part of the heap [46]. The atom rule
can be used similarly to the rule for atomic regions. Monotonicity is the quantitative version
of the rule of consequence and is used to reduce and increase the post- and preexpectation
respectively. The max, min and convex rules eliminate max, min and convex sum operations,
respectively. The min and convex rule require preciseness of the resource invariant – similarly
to how [53] required preciseness for the conjunction rule. An expectation is precise if for any
stack there is at most one heap for which the expectation is not zero. For the min rule, this
is not surprising as the minimum behaves like conjunction in case of qualitative expectations.
Requiring preciseness also for the convex rule is due to the missing superlinearity of the
separating multiplication for non-precise expectations.

▶ Theorem 4.2 (Soundness of proof rules). For every proof rule in Figures 5–7 it holds that
if their premises hold, the conclusion holds as well.

Proof. See [16]. ◀

▶ Example 4.2. We are now able to establish the lower bound computed in Example 3.6 using
the proof rules. Instead of constructing a proof tree by composing inference rules, we annotate
program locations with their respective pre- and postexpectations. The interpretation is
standard; for preexpectation X, postexpectation Y , resource invariant ξ and program C:

( X | ξ

C

( Y | ξ

iff X ≤ wrlpJCK (Y | ξ)
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Proofs in this style should only be read backwards from bottom to top. They will not
include applications of the proof rules for atomic programs and of the share rule as this
may lead to incorrect interpretations. For our example, we use the resource invariant
ξ = max { [r 7→ 0], [r 7→ −1] }, which we guessed by collecting all possible values stored in
location r during executions yielding our postexpectation. We assume that the memory
of the initial heap h only contains a single location r with value −1. This assumption is
reflected by the resource invariant and will only allow us to reason about executions with
such an initial heap. The other possible value for the location r is 0, since the left program
may mutate the heap. Indeed, there are also executions where the value of location r is 1.
For these, the program only terminates in states violating the postexpectation [y = 0]. We
can further show:

( 0.5 ⋆ 1 | ξ

( 0.5 | ξ

{ < r > := 0 } [ 0.5 ] { < r > := 1 }
( 1 | ξ

∥∥∥∥∥∥∥∥∥∥∥∥

( 1 | ξ

y := < r > ;
( max { [y = 0], [y = −1] } | ξ

while ( y = −1 ) { y := < r > } ;
( [y = 0] | ξ

( 1 ⋆ [y = 0] | ξ

To handle concurrency, we separate our postexpectation into the expectation 1 for the left
program and the expectation [y = 0] for the right program. The left program includes a
probabilistic choice, for which we use the atom rule to infer that the preexpectation is 1 in
the left branch of the probabilistic choice, as the resource invariant allows mutating the value
of location r to 1 and the resource invariant can be re-established since we can lower bound
all possible values for the location r that are not −1 or 0 to zero. Moreover, we lower bound
the right branch of the probabilistic choice by zero, because zero is a lower bound of any
expectation. The right program iterates until the value of location r has been mutated. Our
resource invariant contains all possible values that the program can expect here. For the
loop invariant, we connect all possible values of y using a disjunction over 0 and −1, as we
disregard executions where y = 1. Lastly, we can apply the loop invariant to the lookup of r
and since this matches our resource invariant, the resulting preexpectation is one.

Thus, we have established that 0.5 ≤ wrlpJCK ([y = 0] | ξ). Using the share rule we
can further infer that 0.5 ⋆ ξ ≤ wrlpJCK ([y = 0] ⋆ ξ | [emp]). Lastly, we can clean up the
statement using monotonicity and the wlp-wrlp rule to obtain 0.5 ⋆ ξ ≤ wlpJCK ([y = 0]). For
details on the probabilistic choice and the loop invariant, we refer to Appendix A.1.

5 Example: A Producer, a Consumer and a Lossy Channel

A producer-consumer system is often used when presenting verification techniques for
concurrent programs. We continue this tradition, extending this example by probabilistic
elements, see Figure 8. Video and audio streaming is an example for such a system, where
data losses are acceptable if they do not exceed a certain limit. Moreover, by enriching the
resource invariant with a predicate defining an appropriate data structure, this example can
be used as a template to reason about systems communicating using a shared data structure.
We consider a producer that randomly generates data (1 or 2) and stores it in an array of
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l := 0 ;
y1, y2, y3 := k ;

while ( y1 ≥ 0 ) {
{ x1 := 1 } [ 0.5 ] { x1 := 2 } ;
< z1 + y1 > := x1 ;
y1 := y1 − 1

}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while ( y2 ≥ 0 ) {
x2 := < z1 + y2 > ;
if ( x2 ̸= 0 ) {

{< z2 + y2 > := x2}
[ p ]

{< z2 + y2 > := −1} ;
y2 := y2 − 1

}
}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while ( y3 ≥ 0 ) {
x3 := < z2 + y3 > ;
if ( x3 ̸= 0 ) {

if ( x3 ̸= −1 ) {l := l + 1} ;
y3 := y3 − 1

}
}

Figure 8 A program consisting of the tree threads: a producer (left), a consumer (right) and
lossy channel (middle) for communication between the prior threads.

size k indexed by z1. The data has to be transferred to a consumer. However, the consumer
does not have direct access to the array maintained by the producer. Instead a third party,
the lossy channel, transfers data from the array maintained by the producer to a different
k-sized array that is indexed by z2, and that can be accessed by the consumer. However,
the channel is not reliable. With a probability of 1 − p, it loses a value and instead stores
invalid data (encoded as −1) at the respective array position. The consumer discards invalid
data and counts in l how many valid elements it received until all array elements have been
attempted to be transmitted once. For the sake of brevity, we leave out the allocation of the
array index z1 and z2. Instead, we assume already allocated arrays as input.

We are interested in the probability that the data of a certain set of locations has
been successfully transmitted. If we additionally prove that the program is almost surely
terminating for some reasonable set of fair schedulers, we can use superlinearity to prove
lower bounds of probabilities for even more complex postconditions, e.g. the probability
that at least half of the data have been transmitted successfully. Indeed, the program is
almost surely terminating under a fairness condition. We denote the set of locations that we
want to be successfully transmitted as J . For the resource invariant, we use a big separating
multiplication. Its semantics is as expected: for a stack s, we connect all choices for the
index variable with regular separating multiplications. The resource invariant describes
the values we want to tolerate for every entry in both arrays. We join the tolerated values
by a disjunction (which is the maximum in our case). We now use the resource invariant,
parametrised on the set J as

ξJ =
(

⋆
i∈{0,...,k}

max { [z1 + i 7→ 0] , [z1 + i 7→ 1] , [z1 + i 7→ 2] }

)

⋆

(
⋆

i∈{0,...,k}∩J

max { [z2 + i 7→ 0] , [z2 + i 7→ 1] , [z2 + i 7→ 2] }

)

⋆

(
⋆

i∈{0,...,k}\J

max { [z2 + i 7→ 0] , [z2 + i 7→ −1] }

)
.

Next, we can use the resource invariant to prove an invariant for each of the three
concurrent programs. The corresponding calculations can be found in Appendix A.2. Let
C1 be the producer, C2 the channel and C3 the consumer. For the producer program C1
we can prove the invariant I1 = 1 with respect to the postexpectation 1, for the channel
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C2 we can prove the invariant I2 = [0 ≤ y2 ≤ k] · p|{0,...,y2}∩J| · (1 − p)|{0,...,y2}\J| + [y2 < 0]
with respect to the postexpectation 1, and for the consumer program C3 we can prove the
invariant I3 = [0 ≤ y3 ≤ k] · [l = |J ∩ {0, . . . , y3}|] + [y3 < 0] · [l = |J |] with respect to the
postexpectation [l = |J |]. Using all three invariants, we can now lower bound the probability
that l = |J | holds after the execution of the whole program C in Figure 8:

( [0 ≤ k] · p|{0,...,k}∩J| · (1 − p)|{0,...,k}\J| | ξJ

l := 0 ;
y1, y2, y3 := k ;
( I1 ⋆ I2 ⋆ I3 | ξJ

C1 ∥ C2 ∥ C3

( 1 ⋆ 1 ⋆ [l = |J |] | ξJ

Here, we first use the concurrency rule to place the postexpectation [l = |J |] into a separating
context, thus covering all three programs. The resulting preexpectation is indeed the
separating multiplication of the respective invariants. By applying the assignment rules to
the first two rows, we finally get the result for a lower bound of the weakest resource-safe
preexpectation with respect to resource invariant ξJ . Thus, the lower bound ([0 ≤ k] ·
p|{0,...,k}∩J| · (1 − p)|{0,...,k}\J|) ⋆ ξJ ≤ wlpSJCK ([l = |J |] ⋆ ξJ) also holds. We also show
in Appendix A.2 how to prove the lower bound of more difficult postexpectations using
superlinearity.

6 Conclusion and Future Work

Using resource invariants from Concurrent Separation Logic [53] together with quantitative
reasoning from Quantitative Separation Logic [5] allows us to reason about lower-bound
probabilities of realizing a postcondition. In our technique, probability mass is local to
the thread. This insight gave rise to only allow qualitative expectations in the model of
the environment. By this, the resource invariant only describes shared memory and lacks
semantics for global probability mass.

However, we may favour a probabilistic model of the environment – for example, if the
environment is a black box and only statistic information about its possible behaviours is
available. More research is required for logics allowing probabilistic specifications in the
environment description, especially logics allowing quantitative resource invariants. Moreover,
we are only able to verify lower bounds due to the concurrent rule. We conjecture that a
logic for upper bounds requires different, unknown separation connectives.
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A Details on Examples

A.1 Additional Details on the Running Example
To recap, we are given the resource invariant ξ = max { [r 7→ 0], [r 7→ −1] } and have already
proven:

( 0.5 ⋆ 1 | ξ

( 0.5 | ξ

{ < r > := 0 } [ 0.5 ] { < r > := 1 }
( 1 | ξ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

( 1 | ξ

( 1 ⋆ ξ
y := < r > ;
( max { [y = 0], [y = −1] } ⋆ ξ
( max { [y = 0], [y = −1] } | ξ

while ( y = −1 ) { y := < r > } ;
( [y = 0] | ξ

( 1 ⋆ [y = 0] | ξ

The mutation < r > := −1 together with the atom rule gives us the inequality

0.5 ⋆ [r 7→ − ] ≤ [r 7→ − ] ⋆ ([r 7→ −1] −−⋆ 0.5 ⋆max { [r 7→ 0], [r 7→ −1] }) .

However, it is easy to verify that ([r 7→ −1] −−⋆ 0.5 ⋆max { [r 7→ 0], [r 7→ −1] }) simplifies to
0.5, which results in the given lower bound.

For the probabilistic choice we have:

( 0.5 | ξ

( 0.5 · 1 + 0.5 · 0 | ξ
( 1 | ξ

< r > := 0
( 1 | ξ

 [ 0.5 ]


( 0 | ξ

< r > := 1
( 1 | ξ


( 1 | ξ

The right part is rather simple, as we can always lower bound anything by zero. The
left part holds since with [r 7→ 0] the mutation is satisfied, however the value before mu-
tating r is unknown. We can lower bound the resulting preexpectation 1 ⋆ [r 7→ − ] by
1 ⋆ max { [r 7→ −1], [r 7→ 0] } and thus realise the resource invariant again. For the loop
invariant max { [y = 0], [y = −1] } we have:

( max { [y = 0], [y = −1] } | ξ

y := < r >

( max { [y = 0], [y = −1] } | ξ

The lookup operation here results in both [y = 0] and [y = 1] to be evaluated to 1 if [r 7→ 0]
and [r 7→ −1], respectively. Our resource invariant guarantees this, thus we obtain the
expectation 1 and lower bound it by max { [y = 0], [y = −1] }. Lastly we check that it is
indeed a loop invariant:

[y = −1] · max { [y = 0], [y = −1] } + [y ̸= −1] · [y = 0]
= [y = −1] + [y = 0]
= max { [y = 0], [y = −1] }
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A.2 Example: A Producer, a Consumer and a lossy Channel

Here we have the following program C:

l := 0 ;
y1, y2, y3 := k ;

while ( y1 ≥ 0 ) {
{ x1 := 1 } [ 0.5 ] { x1 := 2 } ;
< z1 + y1 > := x1 ;
y1 := y1 − 1

}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while ( y2 ≥ 0 ) {
x2 := < z1 + y2 > ;
if ( x2 ̸= 0 ) {

{< z2 + y2 > := x2}
[ p ]

{< z2 + y2 > := −1} ;
y2 := y2 − 1

}
}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while ( y3 ≥ 0 ) {
x3 := < z2 + y2 > ;
if ( x3 ̸= 0 ) {

if ( x3 ̸= −1 ) {l := l + 1} ;
y3 := y3 − 1

}
}

We use the resource invariant ξJ for a set J . The set J encodes which locations in the array
starting from z2 will have an error value of −1 or a valid value of 1 or 2 after the channel inserts
data into it. We use a big separating multiplication to connect all the possible instantiations
using separating multiplication. That is, ⋆{X} = X and ⋆({X} ∪ A) = X ⋆⋆A for a
non-empty and countable set A. ξJ declares that all locations between z1 and z1 + k have
either value 0, 1 or 2 and all locations between z2 and z2 + k have values 0, 1 or 2 if the offset
is in J and 0 or −1 if the offset is not in J . The value 0 is always possible for all locations
between zi and zi + k since we assume 0 to be the initial value. We connect the predicates
declaring possible values for the location zj + i using a maximum, which acts as a qualitative
disjunction here.

ξJ =
(

⋆
i∈{0,...,k}

max { [z1 + i 7→ 0] , [z1 + i 7→ 1] , [z1 + i 7→ 2] }

)

⋆

(
⋆

i∈{0,...,k}∩J

max { [z2 + i 7→ 0] , [z2 + i 7→ 1] , [z2 + i 7→ 2] }

)

⋆

(
⋆

i∈{0,...,k}\J

max { [z2 + i 7→ 0] , [z2 + i 7→ −1] }

)
.

We will leave out computations of inequalities X ≤ Y for the sake of brevity and give an
explanation instead. Since our representation of expectations may grow in size, we use a
curly bracket after the ( symbol to denote expectations which are too long for one line. Our
goal is to prove a lower bound on the probability that l = |J | is realised after termination.
If J contains numbers outside the range between 0 and k, we may as well replace |J | with
|J ∩ {0, . . . , k}|. We now prove an invariant for each of the three subprograms.
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For the producer C1, we prove the invariant I1 = 1 with respect to the postexpectation 1
and resource invariant ξJ . This shows indeed that the probability of safe execution of the
loop is one and that our resource invariant ξJ almost always holds.

( 1 | ξJ
( 1 | ξJ

( [1 ∈ {0, . . . , 2}] | ξJ

x1 := 1
( [x1 ∈ {0, . . . , 2}] | ξJ

 [ 0.5 ]


( 1 | ξJ

( [2 ∈ {0, . . . , 2}] | ξJ

x1 := 2
( [x1 ∈ {0, . . . , 2}] | ξJ

 ;

( [x1 ∈ {0, . . . , 2}] | ξJ

< z1 + y1 > := x1 ;
( 1 | ξJ

y1 := y1 − 1
( 1 | ξJ

The inequality

[x1 ∈ {0, . . . , 2}] ⋆ ξJ ≤ [z1 + y1 7→ − ] ⋆ ([z1 + y1 7→ x1] −−⋆ (1 ⋆ ξJ))

resulting from the mutation < z1 + y2 > := x1 together with the atom rule holds because
for [z1 + y1 7→ x1] −−⋆ (1 ⋆ ξJ) to be non-zero, x1 must coincide with ξJ – thus x1 has to
be either 0, 1 or 2. Furthermore, we have that [z1 + y1 7→ i] ≤ [z1 + y1 7→ − ] holds for
every i, and obtain by this that i ∈ {0, . . . , 2}, with which we re-establish ξJ . We have
[y1 ≥ 0] · 1 + [y1 < 0] · 1 = 1 and therefore 1 is a loop invariant.

For the channel C2, we use the shorthand notation P (y) to denote cumulated probability
mass and define it as

P (y) = p|{0,...,y}∩J| · (1 − p)|{0,...,y}\J| .

This shorthand notation gives us the probability that all data with offset 0 up to y are
transferred according to J . That is, if an element should have been transferred successfully,
we multiply with p and if not with 1 − p for every location up to y2. We prove for the
invariant I2 = [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0] with respect to the postexpectation 1 and
resource invariant ξJ :

( [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0] | ξJ

(

{
[x2 ̸= 0] · [0 ≤ y2 ≤ k] · P (y2)
+ [x2 = 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0]) | ξJ

x2 := < z1 + y2 > ;

(


[x2 ̸= 0] · [0 ≤ y2 ≤ k] · P (y2 − 1) · (p · [y2 ∈ J ] · [x2 ∈ {1, . . . , 2}]

+ (1 − p) · [y2 ̸∈ J ])
+ [x2 = 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0])

| ξJ

if (x2 ̸= 0 ) {
( [0 ≤ y2 ≤ k] · P (y2 − 1) · (p · [y2 ∈ J ] · [x2 ∈ {0, . . . , 2}] + (1 − p) · [y2 ̸∈ J ]) | ξJ

{
( ([0 ≤ y2 ≤ k] · P (y2 − 1)) · [y2 ∈ J ] · [x2 ∈ {0, . . . , 2}] | ξJ
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( ([1 ≤ y2 ≤ k] · P (y2 − 1) + [y2 = 0]) · [y2 ∈ J ] · [x2 ∈ {0, . . . , 2}] | ξJ

< z2 + y2 > := x2

( [1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1] | ξJ

}
[ p ]

{
( ([0 ≤ y2 ≤ k] · P (y2 − 1)) · [y2 ̸∈ J ] | ξJ

( ([1 ≤ y2 ≤ k] · P (y2 − 1) + [y2 = 0]) · [y2 ̸∈ J ] | ξJ

< z2 + y2 > := −1 ;
( [1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1] | ξJ

}
( [1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1] | ξJ

( [0 ≤ y2 − 1 ≤ k] · P (y2 − 1) + [y2 − 1 < 0] | ξJ

y2 := y2 − 1
( [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0] | ξJ

}
( [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0] | ξJ

We explain some of the difficult inequalities in the previous proof. We start with the inequality

(([1 ≤ y2 ≤ k] · P (y2 − 1) + [y2 = 0]) · [y2 ̸∈ J ]) ⋆ ξJ

≤ [z2 + y2 7→ − ] ⋆ ([z2 + y2 7→ −1] −−⋆ ([1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1]) ⋆ ξJ

resulting from the mutation < z2 + y2 > := −1 together with the atom rule. This inequality
holds since for the part [z2 + y2 7→ −1] −−⋆ . . . to be non-zero, we require y2 ̸∈ J due to ξJ .
We lower bound all evaluations where y2 < 0 by 0 as we can not infer any information about
these locations from ξJ . Afterwards, we can lower bound [z2 + y2 7→ − ] by [z2 + y2 7→ i] for
every i and thus re-establish ξJ .

Next we have the inequality

(([1 ≤ y2 ≤ k] · P (y2 − 1) + [y2 = 0]) · [y2 ∈ J ] · [x2 ∈ {0, . . . , 2}]) ⋆ ξJ

≤ [z2 + y2 7→ − ] ⋆ ([z2 + y2 7→ x2] −−⋆ ([1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1]) ⋆ ξJ

resulting from the mutation < z2 + y2 > := x2 together with the atom rule. Here we assume
that the location y2 is in J and obtain that x2 ∈ {0, . . . , 2}. We lower bound any outcome of
y2 not in J by 0 because we already know that we will eventually set the term to 0 due to
the previous lookup. Next we establish ξJ back from lower bounding [z2 + y2 7→ − ].

We have the inequality

[x2 ̸= 0] · [0 ≤ y2 ≤ k] · P (y2) + [x2 = 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0]) ⋆ ξ
≤ sup

v∈Z
[z1 + y2 7→ v] ⋆ ([z1 + y2 7→ v] −−⋆

([v ̸= 0] · [0 ≤ y2 ≤ k] · P (y2 − 1) · (p · [y2 ∈ J ] · [v ∈ {1, . . . , 2}] + (1 − p) · [y2 ̸∈ J ])
+ [v = 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0])) ⋆ ξ)
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resulting from the lookup x2 := < z1 + y2 > together with the atom rule. We will consider
both cases separately. Let us assume that v is not 0. Then either y2 is in J and v is either 1
or 2 to make p · [y2 ∈ J ] · [v ∈ {1, . . . , 2}] not zero, or y2 is not in J . Then, however, v needs
to be −1, because else ξJ will evaluate to zero. Both cases can then be used to turn P (y2 − 1)
into P (y2). In both cases, we can also use [z1 + y2 7→ v] to re-establish the resource invariant
ξJ . If, on the other side, v is 0, we do not get any new information, but also do not need to
update P (y2), and directly re-establish the resource invariant ξJ .

Due to

[y2 ≥ 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0]) + [y2 < 0] · 1
= [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0]

we establish the loop invariant with respect to postexpectation 1.
For the consumer C3 we require a loop invariant that checks if l indeed matches the size

of the set J . We prove the loop invariant I3 = [0 ≤ y3 ≤ k] · [y3 + l = |J ∩ {0, . . . , y3}|] with
respect to the postexpectation [l = |J |] and the resource invariant ξJ :

( [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] | ξJ

x3 := < z2 + y3 > ;

(



[x3 = −1] · [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|]
+ [x3 = −1] · [y3 < 1] · [l = |J |]
+ [x3 ̸= 0] · [x3 ̸= −1] · [1 ≤ y3 ≤ k + 1] · [l + 1 = |J ∩ {y3, . . . , k}|])
+ [x3 ̸= 0] · [x3 ̸= −1] · [y3 < 1] · [l + 1 = |J |]
+ [x3 = 0] · [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|]
+ [x3 = 0] · [y3 < 0] · [l = |J |]

| ξJ

if (x3 ̸= 0 ) {

(


[x3 = −1] · [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|]

+ [x3 = −1] · [y3 < 1] · [l = |J |]
+ [x3 ̸= −1] · [1 ≤ y3 ≤ k + 1] · [l + 1 = |J ∩ {y3, . . . , k}|]
+ [x3 ̸= −1] · [y3 < 1] · [l + 1 = |J |]

| ξJ

if (x3 ̸= −1 ) {
( [1 ≤ y3 ≤ k + 1] · [l + 1 = |J ∩ {y3, . . . , k}|] + [y3 < 1] · [l + 1 = |J |] | ξJ

l := l + 1
( [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|] + [y3 < 1] · [l = |J |] | ξJ

} ;
( [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|] + [y3 < 1] · [l = |J |] | ξJ

( [0 ≤ y3 − 1 ≤ k] · [l = |J ∩ {y3, . . . , k}|] + [y3 − 1 < 0] · [l = |J |] | ξJ

y3 := y3 − 1
( [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 < 0] · [l = |J |] | ξJ

}
( [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 < 0] · [l = |J |] | ξJ
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Here we will take a closer look at the inequality

([1 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 = 0] · [l = |J ∩ {1, . . . , k}|]) ⋆ ξJ

≤ sup
v∈Z

[z2 + y2 7→ v] ⋆ ([z2 + y2 7→ v] −−⋆

([v = −1] · [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|]
+ [v = −1] · [y3 < 1] · [l = |J |]
+ [v ̸= 0] · [v ̸= −1] · [1 ≤ y3 ≤ k + 1] · [l + 1 = |J ∩ {y3, . . . , k}|])
+ [v ̸= 0] · [v ̸= −1] · [y3 < 1] · [l + 1 = |J |]
+ [v = 0] · [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|]
+ [v = 0] · [y3 < 0] · [l = |J |]) ⋆ ξJ)

due to the lookup x3 := < z2 + y2 > together with the atom rule. We consider all cases
separately.

First, let v be −1
If moreover y3 is between 1 and k + 1, then we can directly lower bound the case
that y3 is k + 1 by zero as ξJ does not have carry information for this location.
Because v is −1, we know that y3 is not in J due to ξJ . Thus, we also have that
|J ∩ {y3 + 1, . . . , k}| = |J ∩ {y3, . . . , k}|.
If y3 is below 1, the same reasoning holds, with the difference that we lower bound the
expectation for every value of y3 below 0 as zero and consider only the case where y3
is 0.

In the case that v is neither 0 nor −1, we first observe that only 1 and 2 are valid values,
because ξJ does not allow any other value for y3 between 0 and k.
In the cases where v is either k + 1 or below 0, we just lower bound the formula by zero.
However, for the latter cases we have |J ∩ {y3 + 1, . . . , k}| + 1 = |J ∩ {y3, . . . , k}|.
Lastly, in the case that v is 0, the expression already matches the target lower bound,
but again, we lower bound the formula by zero if y3 has a value below 0.

Moreover, we have

[y3 ≥ 0] · ([0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 < 0] · [l = |J |])
= [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k|}] + [y3 < 0] · [l = |J |]

and thus established a loop invariant with respect to postexpectation [l = |J |].
Now we can combine all three results

( P (k) · [0 ≤ k] | ξJ

( [0 ≤ k] · P (k) + [k < 0] · [0 = |J |] | ξJ

l := 0 ;
( [0 ≤ k] · [l = 0] · P (k) + [k < 0] · [l = |J |] | ξJ

(


1

⋆ ([0 ≤ k] · P (k) + [k < 0])
⋆ ([0 ≤ k] · [l = |J ∩ {k + 1, . . . , k}|] + [k < 0] · [l = |J |])

| ξJ

y1, y2, y3 := k ;

(


1

⋆ ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0])
⋆ ([0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 < 0] · [l = |J |])

| ξJ
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C1 ∥ C2 ∥ C3

( 1 ⋆ 1 ⋆ [l = |J |] | ξJ

and we have for the whole program C and a set of schedulers S ⊆ S:

(P (k) · [0 ≤ k]) ≤ wrlpJCK ([l = |J |] | ξJ)
implies (P (k) · [0 ≤ k]) ⋆ ξJ ≤ wrlpJCK ([l = |J |] ⋆ ξJ | [emp]) (share)
implies (P (k) · [0 ≤ k]) ⋆ ξJ ≤ wlpSJCK ([l = |J |] ⋆ ξJ) (wlp-wrlp)

We can use this to prove the lower bound of probabilities for even more elaborated post-
conditions if we have a set of schedulers S ⊆ S such that C is almost surely terminating
with respect to S. One of these is the probability that at least half of the messages are sent
successfully, i.e., the probability of the postexpectation

[
k + 1 ≥ l ≥ k+1

2
]

– or equivalently∑
k+1

2 ≤j≤k+1 [l = j]. For this, we use the resource invariant ξj = maxJ⊆{0,...,k},|J|=j ξJ where
ξJ is defined as previous. Although we call ξj a resource invariant, we never prove that it is
a resource invariant. We only prove that ξJ is a resource invariant. We can now compute:

wlpSJCK ([l = |J |] ⋆ ξJ) ≥ (P (k) · [0 ≤ k]) ⋆ ξJ

implies wlpSJCK
(

max
J⊆{0,...,k},|J|=j

[l = |J |] ⋆ ξJ

)
≥ max

J⊆{0,...,k},|J|=j
(P (k) · [0 ≤ k]) ⋆ ξJ

(max)
implies wlpSJCK ([l = j] ⋆ ξj) ≥ (pj · (1 − p)k−j+1 · [0 ≤ k]) ⋆ ξj (Definition of ξj)

implies wlpSJCK

 ∑
k+1

2 ≤j≤k+1

[l = j] ⋆ ξj

 ≥
∑

k+1
2 ≤j≤k+1

(pj · (1 − p)k−j+1 · [0 ≤ k]) ⋆ ξj

(Superlinearity)

implies wlpSJCK
([
k + 1 ≥ l ≥ k + 1

2

]
⋆ ξj

)

≥

 ∑
k+1

2 ≤j≤k+1

pj · (1 − p)k−j+1 · [0 ≤ k]

 ⋆ ξj

(ξj is precise and
[
k + 1 ≥ l ≥ k+1

2
]

as above)

We could drop the resource invariant ξj inside wlpS due to monotonicity of wlpS , for which
we do not provide a proof. However, this shows that we can use superlinearity to partition a
big problem in smaller problems and afterwards reason about these smaller problems with
the help of easier resource invariants, as it is standard in probability theory.
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1 Introduction

The axiomatic treatment of regular expressions and languages was developed extensively
by Conway [9], after earlier work of Kleene [16]. He raised there a difficult question: how
to axiomatise the equations between regular expressions that hold under their standard
interpretation as formal languages? Redko had proved that every purely equational axio-
matisation must be infinite [32]. Conway proposed such an infinite axiomatisation, which
Krob proved to be complete twenty years later [24]. Conway had also proposed finite quasi-
equational axiomatisations, one of which Kozen proved to be complete the same year [21]
– this axiomatisation is now commonly called Kleene algebra. By an additional remark of
Boffa [5], this latter completeness result can also be obtained as a consequence of Krob’s
completeness result. In the end, all finite quasi-equational axiomatisations proposed by
Conway, as well as a few other ones, are actually complete [24, 6].

In symbols, writing [e] for the language of a regular expression e and KA ⊢ e = f when
the equation e = f is derivable in any of the aforementioned axiomatisations, we have that
for all regular expressions e, f ,

KA ⊢ e = f ⇐⇒ [e] = [f ]
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The above equivalence extends with two more clauses. When an equation is derivable, it
must hold in all models of the chosen axiomatisation. These include in particular language
models (LANG) and relational models (REL), for which we actually have an equivalence:
writing X |= e = f when the equation e = f holds in all members of a class of models X , we
actually have:

KA ⊢ e = f ⇐⇒ REL |= e = f ⇐⇒ LANG |= e = f ⇐⇒ [e] = [f ]

Completeness w.r.t. LANG is immediate given the previous equivalence: the language
interpretation of a regular expression lies in LANG. This is less obvious for REL: completeness
comes from a nice trick due to Pratt showing that every member of LANG embeds into a
member of REL [31, third page].

As an immediate consequence of the above equivalence, the equational theory of REL (or
LANG) is decidable – more precisely, PSpace-complete. This has important applications in
program verification: Kleene algebras and their extension to Kleene algebras with tests [17]
make it possible to represent and reason about the big-step semantics of while programs,
algebraically. This was used for instance to analyse compiler optimisations [19]. The
decidability result was also implemented in proof assistants such as Coq and Isabelle/HOL,
in order to automate some reasoning steps about binary relations and Hoare logic on while
programs [28, 23].

The above-mentioned results apply to the regular operations and constants: composition,
union, Kleene star, identity, emptiness. A natural question is whether they extend to other
operations or constants, such as intersection, converse, fullness. The case of converse was
dealt with by Ésik et al.: the equational theories of REL and LANG differ in the presence of
converse but both can be axiomatised [4, 13], and they remain PSpace-complete [8]. The
case of intersection (with or without converse or the various constants) is significantly more
difficult, and remains partly open, see [2, 7, 26, 12]. In this paper we focus on the addition
of a constant ⊤, interpreted as the full language in LANG and as the full relation in REL.

The usefulness of adding such a constant was demonstrated recently in the context of
Kleene algebras with tests (KAT), to model incorrectness logic [33]. Indeed, while KAT
alone makes it possible to model Hoare triples for partial correctness [18], the addition
of a full element makes it possible to compare the (co)domains of relations, and thus to
encode incorrectness triples [27, Section 5.3]. KAT with a top element was also used earlier,
as an intermediate structure to characterise a semantics for abnormal termination [25,
Definition 12].

As expected, one should consider an axiom expressing that ⊤ is a greatest element:

x ≤ ⊤ (T)

(Where x ≤ y is a shorthand for x + y = y.) Together with the Kleene algebra axioms,
axiom (T) yields a complete axiomatisation w.r.t. language models: we sketched a proof
in [30, Example 3.4], which we make fully explicit here in Section 3 (Theorem 3.5). This
proof gives us as a byproduct that the equational theory of Kleene algebras with a greatest
element remains PSpace-complete.

Unfortunately, the previous axiom is not enough to deal with relational models. In fact,
in the presence of ⊤, the equational theories of LANG and REL differ. Indeed, there are laws
such as ⊤x⊤y⊤ = ⊤y⊤x⊤ [29, page 13], or ⊤x⊤x = ⊤x [33, page 14], which are valid in
REL, but not in LANG.
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In the present paper, we show that it suffices to further add the following axiom in order
to obtain a complete axiomatisation for REL (Theorem 4.16):

x ≤ x · ⊤ · x (F)

This inequation is mentioned in [33, page 14]; it holds in relational models, but not in
language ones. Thanks to (T), axiom (F) may be seen as a consequence of Ésik et al.’s axiom
x ≤ x · x◦ · x for dealing with converse (·◦) in relational models [13, 4]. How to use axiom (F)
in an equational proof is not so intuitive: it does not give rise to a natural notion of normal
form, and it must often be used in conjunction with (T) in order to compensate the fact that
it duplicates subterms. For instance here is how we can prove the first of the aforementioned
laws:

⊤x⊤y⊤ ≤ ⊤x⊤y⊤ ⊤ ⊤x⊤y⊤ (by (F))
≤ ⊤x⊤y⊤⊤⊤x⊤ (by (T))
≤ ⊤x⊤y⊤x⊤ (by (T))
≤ ⊤y⊤x⊤ (by (T))

(We wrote compositions by juxtaposition, skipped the associativity steps, and underlined the
subterms to be simplified by axiom (T) – the converse inequation is derived symmetrically.)
Our completeness proof actually goes via a factorisation property (Proposition 4.7) intuitively
asserting that one can always proceed in this way to reason about star-free expressions:
expand the expressions using (F) a number of times, then remove spurious subterms using (T).
Combining such a technique together with Kleene algebra reasoning for star is the second
challenge we address in the present work. To get a grasp on the difficulties, the reader may
try to find a proof of the following valid law of REL, using KA and axiom (F):

a+ ≤ o(a + ⊤o)⊤a+ (⋆)

There, o and a+ are shorthands for (aa)∗a and a∗a; we give a solution in Examples 4.13-4.15.
Finally, we show that the difference between the equational theories of language and

relational models can be blurred if we slightly generalise the notion of relational model,
allowing ⊤ to be any greatest relation rather than the full one1 (Corollary 5.2).

We prove our two main theorems using the concept of closed language model for Kleene
algebra with hypotheses [11], and the reduction technique made explicit in [30, 15]2. Intuit-
ively, we establish reductions from KA with (T) and KA with (T, F) to plain KA, so that
we can deduce completeness and decidability of the former theories from completeness and
decidability of the latter one.

While the first reduction is relatively straightforward – this is a syntactical linear reduction,
the second one is not. We exploit the aforementioned factorisation result (Proposition 4.7) and
Kleene’s theorem in order to show that regular languages are preserved by a certain closure
operation, and that this preservation property can be justified algebraically (Proposition 4.14).
Moreover, in order to establish the correspondence between the closed languages used there
and relational models, we resort to a graph theoretical characterisation of the equational
theory of REL [7, Theorem 6] (whose main ingredient dates back to the works of Freyd and
Scedrov [14, page 208] and Andréka and Bredikhin [3, Theorem 1]).

1 considering subalgebras where only certain relations are kept, since otherwise the only greatest relation
is the full one.

2 Such a technique is somehow implicit in Kozen and Smith’s completeness proof for KAT [20] and Ésik
et al.’s completeness proof for Kleene algebra with converse [4, 13].
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Related work

Zhang et al. give a completeness result for KAT together with axiom (T), in terms of guarded
string languages [33, Theorem 9]. They observe that this axiomatisation is incomplete for
REL, that it does not suffice to properly express incorrectness triples, and they leave the
existence of a complete axiomatisation for relational models open. Our Theorem 4.16 gives
a positive answer to this question, in the more primitive setting of plain Kleene algebra,
without tests. We believe that a similar answer holds also for KAT; if this is the case, then we
would obtain a system where we can reason purely equationally about incorrectness triples,
as envisioned by Zhang et al.

For the weaker theory of KAT with (T), the main completeness results of Zhang et al. [33,
Theorems 7 and 9] are wrong: the model of guarded strings they designed equates too many
expressions (namely, Σ∗ and ⊤ – see Remark 3.6). Our Theorem 3.5 uses a different language
model, and we believe our simple (and linear) reduction from KA with (T) to KA is also a
reduction from KAT with (T) to KAT, so that, e.g., [33, Theorem 10] about the complexity
of KAT with (T) remains true.

Zhang et al. also give a completeness result w.r.t. generalised relational models [33,
Theorem 8]. Their proof is problematic because it relies on their Theorem 7, but the key
idea remains valid: adapting Pratt’s trick to embed language models into relational ones.
We use the very same technique to obtain Corollary 5.2.

Outline

We setup and recall basic notation for regular expressions, formal languages and universal
algebra in Section 2. Then we deal with language models in Section 3, and relational models
in Section 4. While the language case was already sketched in [30, Example 3.4], we find
it useful to treat it explicitly here, before dealing with the more involved case of relations:
it illustrates the reduction method in a simpler setting, and we build on the reduction for
languages to establish the reduction for relations. We finally prove completeness with respect
to generalised relational models in Section 5.

2 Preliminaries

Given a set X, we write X∗ for the set of words over X: finite sequences of elements of X.
We let u, v range over words, we write ϵ for the empty word, and uv for the concatenation of
two words u, v. A language is a set of words. We let e, f range over regular expressions over
X, generated by the following grammar:

e, f ::= e + f | e · f | e∗ | 0 | 1 | x ∈ X

We sometimes omit the dots in regular expressions, writing, e.g., ab∗ for a · b∗. As usual,
we associate a language [e] to every regular expression e, the language of e. A language is
regular if it is the language of a regular expression.

We fix a finite set Σ of letters, ranged over using a, b. We write Σ⊤ for the set Σ extended
with a new element ⊤. We call the regular expressions over Σ⊤ regular expressions with top
(or often just expressions, since we are mostly concerned with these). We shall sometimes
see words over Σ⊤ as regular expressions with top. E.g., the word a⊤ can be seen as the
expression a · ⊤.

We consider signatures S ≜ {+2, ·2, ·∗1, 00, 10} and S⊤ ≜ S ∪ {⊤0}. Given an S-algebra
A and a valuation σ : Σ → A, we write σ̂ for the unique homomorphism extending σ to
regular expressions over Σ. Similarly, given an S⊤-algebra A and a valuation σ : Σ → A, we
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write σ̂ for the unique homomorphism extending σ to regular expressions with top. (Note in
that case that the domain of the valuation is only Σ, and that σ̂(⊤) = ⊤A by definition: ⊤ is
a constant, not a variable.)

Given a class X of S-algebras and two regular expressions e, f over Σ, we write X |= e = f

if for all members A of X and all valuations σ : Σ → A, we have σ̂(e) = σ̂(f). We use similar
notations for classes of S⊤-algebras and regular expressions with top.

An equation is a pair of regular expressions e, f , written e = f . We write e ≤ f , an
inequation, as a shorthand for the equation e + f = f . An axiomatisation is a set of equations
(or implications between equations). Given such a set E , we write E ⊢ e = f when the
equation e = f is derivable from E using the rules of equational reasoning (where letters
from Σ appearing in the equations of E can be substituted by arbitrary terms).

We let KA stand for any axiomatisation over plain regular expressions which is sound and
complete w.r.t. the regular language interpretation, i.e., such that for all regular expressions
e, f (without top), we have3

KA ⊢ e = f ⇐⇒ [e] = [f ] (†)

As explained in the introduction, valid candidates for KA include Conway’s infinite but purely
equational axiomatisation [9, page 116] (proved complete by Krob [24]), Kozen’s Kleene
algebras [21], left-handed Kleene algebras [22, 10], and Boffa’s algebras [6].

Also note that the above requirement is equivalent to the following one, since L ⊆ K iff
L ∪ K = K for all languages L, K:

KA ⊢ e ≤ f ⇐⇒ [e] ⊆ [f ] (‡)

3 Languages

We let L, K range over languages on some alphabet X, and P (X∗) denotes the set of all
such languages. Languages on X form a S⊤-algebra with the operations defined as follows:

L + K ≜ L ∪ K

L · K ≜ {uv | u ∈ L ∧ v ∈ K}
L∗ ≜ {u0 . . . un−1 | ∃n ∈ N, ∀i < n, ui ∈ L}

0 ≜ ∅
1 ≜ {ϵ}
⊤ ≜ X∗

(That is, + is set-theoretic union, · is language concatenation, ·∗ is Kleene star, 0 and ⊤ are
the empty and full languages, respectively, and 1 is the singleton language that contains the
empty word.) We write LANG for the class of all S⊤-algebras of the above shape.

Let KAT , Kleene Algebra with a Top element, denote the union of the axioms from KA
and axiom (T). We prove in this section that KAT is sound and complete for LANG.

Following the strategy from [11, 30], the first step consists of defining the closure operation
below, according to the axiom (T) we add to Kleene algebra:

3 Actually, we require slightly more if the axiomatisation contains implications: those implications should
be valid in the models of languages and binary relations.
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▶ Definition 3.1 (Language closure CT ). Given two words u, v over Σ⊤, we write u ⇝T v if
u is obtained from v by replacing an occurrence of ⊤ with an arbitrary word w ∈ Σ⊤

∗. Given
a language L over Σ⊤, we call T -closure of L the following language

CT (L) ≜ {u | u ⇝∗T v for some v ∈ L}

CT is indeed a closure operator, and CT (L) may alternatively be described as the set of
words obtained by replacing occurrences of ⊤ in a word of L with arbitrary words over Σ⊤.

▶ Lemma 3.2. CT is an S⊤-algebra homomorphism.

Proof. By a routine verification; the case for composition follows from the fact that we
replace single letters. ◀

▶ Definition 3.3 (Expression closure r). Let r be the unique S-algebra homomorphism on
expressions with top such that r(a) = a for all letters a ∈ Σ, and r(⊤) = Σ∗

⊤ (where Σ∗
⊤ is a

regular expression with top for the full language – e.g., (a + b + · · · + ⊤)∗).

▶ Proposition 3.4. For all expressions e, we have
(i) [r(e)] = CT [e], and
(ii) KAT ⊢ e = r(e).

Proof.
(i) [r(·)] and CT [·] are S-algebra homomorphisms, and they agree on Σ⊤.
(ii) We proceed by induction on e; the only interesting case is when e = ⊤, for which we

have KAT ⊢ r(⊤) ≤ ⊤ by axiom (T), and KAT ⊢ ⊤ ≤ r(⊤) by completeness of KA (‡),
since [⊤] = {⊤} ⊆ Σ⊤

∗ = [r(⊤)]. ◀

▶ Theorem 3.5. For all regular expressions with top e, f , we have

LANG |= e = f ⇐⇒ CT [e] = CT [f ] ⇐⇒ KAT ⊢ e = f

Proof. We have

LANG |= e = f

⇒ CT [e] = CT [f ] (CT [·] is an interpetation into a member of LANG, by Lemma 3.2)
⇔ [r(e)] = [r(f)] (Proposition 3.4(i))
⇔ KA ⊢ r(e) = r(f) (completeness of KA (†))
⇒ KAT ⊢ e = f (transitivity and Proposition 3.4(ii))
⇒ LANG |= e = f (soundness of KAT axioms w.r.t. LANG)

(In the last step, soundness w.r.t. LANG comes from our assumption about KA, and a trivial
verification for axiom (T).) ◀

Note that the first equivalence in the above theorem can be obtained in a more direct
way, without resorting to completeness of some axiomatisation; moreover the right-to-left
implication of the second equivalence is an instance of a general property of closed language
models [11, Theorem 2]. The reduction r is used only for the left-to-right implication of this
second equivalence.

According to the above proof, we could complete the statement with “. . . ⇐⇒ [r(e)] =
[r(f)]”. Doing so gives us a PSpace algorithm: compute the regular expressions r(e) and
r(f), and compare them for language equivalence.
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▶ Remark 3.6. Note that it is crucial that r(⊤) be defined as a regular expression Σ∗
⊤ for the

full language on Σ⊤ rather than an expression Σ∗ for the full language on just Σ: otherwise
we would equate Σ∗ and ⊤, while those are different in LANG (e.g., for a counterexample
when Σ = {a, b}, interpret both a and b as the empty language on some non-empty alphabet).

4 Relations

Given a set X, a relation on X is a set of pairs of elements from X. We let R, S range over
such relations, whose set is written P (X×X), and we write x R y for ⟨x, y⟩ ∈ R. Relations
on X form an S⊤-algebra with the operations defined as follows:

R + S ≜ R ∪ S

R · S ≜ {⟨x, z⟩ | ∃y ∈ X, x R y ∧ y S z}
R∗ ≜ {⟨x0, xn⟩ | ∃n ∈ N, x1, . . . , xn−1, ∀i < n, xi R xi+1}

0 ≜ ∅
1 ≜ {⟨x, x⟩ | x ∈ X}
⊤ ≜ X × X

(+ is set-theoretic union, · is relational composition, ·∗ is reflexive transitive closure, 0, 1 and
⊤ are the empty, identity and full relations, respectively.) We write REL for the class of all
S⊤-algebras of the above shape.

Let KAF , Kleene Algebra with a Full element, denote the union of the axioms from KAT

and axiom (F). Let us emphasise that despite the abbreviation, KAF extends KAT and thus
contains axiom (T). We prove in this section that KAF is sound and complete for REL. The
proof consists of two parts. First we characterise the equational theory of REL in terms of
closed languages (Section 4.1, Proposition 4.8), then we use reductions to show completeness
of KAF w.r.t. this closed language interpretation and obtain our main result (Section 4.2,
Theorem 4.16).

4.1 Characterisation via closed languages
We start by extending the previous closure function (Definition 3.1), in order to take into
account the new axiom (F):

▶ Definition 4.1 (Language closure CF ). Given two words u, v over Σ⊤, we write u ⇝F v if
either u ⇝T v, or u is obtained by replacing a subword of the shape w⊤w in v, with w (for
some word w ∈ Σ⊤

∗). Given a language L over Σ⊤, we call F -closure of L the language

CF (L) ≜ {u | u ⇝∗F v for some v ∈ L}

CF is a closure operator, but unlike CT in the previous section, CF is not a homomorphism –
e.g., CF ({a} · {⊤a}) contains the word a while CF ({a}) · CF ({⊤a}) does not. Moreover, an
elementary description of CF requires more work than for CT in the previous section.

Let E be the following function on languages over Σ⊤, where for a word u and a natural
number n, we write un for the word obtained by concatenating n copies of u:

E(L) ≜ {w | ∃n, w(⊤w)n ∈ L}

We shall prove that CF = E ◦ CT , and that CF can be characterised in terms of certain
graph homomorphisms (Proposition 4.7 below). Before doing so, we need to define the type
of graphs we will use in what follows.

CONCUR 2022
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▶ Definition 4.2 (Graph, graph homomorphism). A graph is a tuple ⟨V, E, ι, o⟩, where V is a
set of vertices, E ⊆ V × Σ × V is a set of labelled edges, and ι, o ∈ V are two distinguished
vertices, respectively called input and output.

A graph homomorphism from the graph G to the graph H is a function from vertices of
G to vertices of H that preserves labelled edges, input, and output. We write H ◁G when
there exists a homomorphism from G to H.

The relation ◁ on graphs is a preorder. We depict graphs as usual, using an unlabelled
ingoing (resp. outgoing) arrow to indicate the input (resp. output); we use dotted red arrows
to depict graph homomorphisms. For instance, we depict two finite connected graphs below,
and a homomorphism between them:

a
a

b

c

a b

c

▶ Definition 4.3 (Graph of a word). We associate to each word u ∈ Σ⊤
∗ the graph g(u)

defined as follows:
the vertices are the natural numbers smaller or equal to the length n of u;
for a ∈ Σ there is an a-labelled edge from i to i + 1 if the i-th letter of u is a;
the input is 0 and the output is n.

Graphs of words are rather simple: graphs as depicted above do not arise as graphs of
words. For words not containing ⊤, they are just directed paths from the input to the output.
For words containing ⊤, they are collections of (possibly empty) directed paths where the
input is the starting-point of some path and the output is the end-point of some path. For
example, the graphs of abc and d⊤de⊤ are depicted below:

a b c d d e

Nevertheless, homomorphisms between graphs of words may be non-trivial. For instance, we
have g(ab)◁ g(a⊤ab⊤b) and g(⊤a⊤b⊤)◁ g(⊤b⊤a⊤), as witnessed below:

a a b b

a b

b a

a b

In the sequel, we shall represent homomorphisms between graphs of words in a slightly more
compact way, starting directly from the natural writing of the words, and using horizontal
lines and shaded parallelograms to emphasise distinguished subwords and mappings between
them. For instance, the above homomorphisms can be generalised to g(uv) ◁ g(u⊤uv⊤v)
and g(⊤u⊤v⊤)◁ g(⊤v⊤u⊤) for arbitrary words u, v, which we can represent as follows:

⊤ ⊤u u v v

u v

⊤ ⊤ ⊤v u

⊤ ⊤ ⊤u v
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Our main interest in graphs and homomorphisms comes from the following characterisation
of the equational theory of REL. This characterisation appeared first in [7, Theorem 6], for
the syntax of Kleene allegories. Its (trivial) extension to Kleene allegories with top then
appeared in [29, Theorem 16].

▶ Theorem 4.4 ([7, Theorem 6]). For all regular expressions with top e, f , we have:

REL |= e ≤ f ⇐⇒ ∀u ∈ [e], ∃v ∈ [f ], g(u)◁ g(v)

Proof. Cf. the above references. That we need the theorem only in a small fragment here
(without intersection and converse) does not seem to enable substantial simplifications. In
particular, we still need to consider arbitrary graphs, and a variant of [3, Lemma 3] with top.
We give a proof in Appendix A for the sake of completeness. ◀

▶ Remark 4.5. For words u, v without top, we have g(u) ◁ g(v) iff u = v. Therefore, for
regular expressions e, f without top (whose languages only contain words without top), the
above theorem reduces to REL |= e ≤ f ⇐⇒ [e] ⊆ [f ], a standard variant of one of the
equivalences recalled in the introduction.

Thanks to Theorem 4.4, it suffices to relate homomorphisms between graphs of words to
the notion of CF -closure. We do so in the following lemma.

▶ Lemma 4.6. For all words u, v ∈ Σ⊤
∗, the following are equivalent:

(i) u ⇝∗F v,
(ii) g(u)◁ g(v),
(iii) u ∈ E(CT {v}).

Proof. We show (i) ⇒ (ii) ⇒ (iii) ⇒ (i). For the first implication, since ◁ is a preorder, it
suffices to show that u ⇝F v entails g(u)◁ g(v). There are two cases to consider.

either the rewriting rule associated to axiom (T) was used, i.e., u = lwr and v = l⊤r for
some words l, w, r ∈ Σ⊤

∗. In that case we have the following homomorphism from the
graph of v to the graph of u:

⊤l r

l w r

or the rewriting rule associated to axiom (F) was used, i.e., u = lwr and v = lw⊤wr for
some words l, w, r ∈ Σ⊤

∗. In that case we have the following homomorphism from the
graph of v to the graph of u:

⊤l w w r

l w r

For the second implication, assume g(u)◁ g(v). Let n be the number of occurrences of ⊤ in
v, and let v0, . . . , vn be top-free words such that v = v0⊤v1⊤ · · · ⊤vn. Since they are top-free,
those subwords must be mapped linearly to u, and thus be subwords of u. For instance,
when n = 3, the homomorphism may look as follows:

⊤ ⊤ ⊤v0 v1 v2 v3

u

CONCUR 2022



26:10 Completeness Theorems for Kleene Algebra with Top

For all 0 ≤ i ≤ n, let li, ri be the words such that u = liviri. We have that l0 and rn must
be the empty word since inputs and outputs must be preserved by homomorphisms. We
have u(⊤u)n ⇝nT v: we can obtain u(⊤u)n from v by replacing the ith occurrence of ⊤ in v

with the word ri−1⊤li, for 0 < i ≤ n. This suffices to conclude that u ∈ E(CT {v}): we have
proven (ii) ⇒ (iii). As an example, when n = 3, the situation may be depicted as follows:

⊤ ⊤ ⊤v0 v1 v2 v3

r0 ⊤ l1 r1 ⊤ l2 r2 ⊤ l3v0 v1 v2 v3

v

⊤ ⊤ ⊤u u u u

u

For the last implication, assume that u ∈ E(CT {v}). There exists n such that u(⊤u)n ⇝∗T v,
an thus in particular u(⊤u)n ⇝∗F v. Finally observe that u ⇝∗F u(⊤u)n using n rewriting
steps using (F), so that we can conclude by transitivity: u ⇝∗F u(⊤u)n ⇝∗F v. ◀

The above lemma has two important immediate consequences. First we have the an-
nounced factorisation of the closure CF , and second, combined with Theorem 4.4, we obtain
a characterisation of the equational theory of REL in terms of closed languages:

▶ Proposition 4.7. We have CF = E ◦ CT .

▶ Proposition 4.8. For all regular expressions with top e, f , we have:

REL |= e = f ⇐⇒ CF [e] = CF [f ]

Proof. For all e, f , we have:

REL |= e ≤ f ⇐⇒ ∀u ∈ [e], ∃v ∈ [f ], g(u)◁ g(v) (by Theorem 4.4)
⇐⇒ [e] ⊆ CF [f ] (by Lemma 4.6)

The initial statement follows by antisymmetry and the fact that CF is a closure (so that for
all languages L, K, L ⊆ CF (K) iff CF (L) ⊆ CF (K)). ◀

4.2 Completeness w.r.t. closed languages
It remains to show that KAF is complete w.r.t. the previous closed language interpretation.
We use reductions in order to do so: we find a counterpart to the function r from Section 3
(Definition 3.3), for the F -closure rather than the T -closure. By Proposition 4.7, and since
we already have the function r for T -closure, it actually suffices to find a function s that
corresponds to the function E, i.e., such that for all expressions e, s(e) is an expression whose
language is E[e].

To this end, we use Kleene’s theorem stating that a language is regular if and only if it is
recognisable by a finite automaton, and the fact that regular languages are closed under union
and intersections. Using those tools, we show that the language E(L) is regular whenever L

is a regular language, by forming unions and intersections of regular languages extracted
from some finite automaton for L.

We first recall standard notions from finite automata theory.
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▶ Definition 4.9 (Non-deterministic finite automaton). Let X be a finite set. A non-
deterministic finite automaton (NFA) over the alphabet X is a tuple A = ⟨Q, i, ∆, F ⟩
where:

Q is a finite set of states;
i ∈ Q is an initial state;
∆ : X → P (Q×Q) is the transition relation, associating to each letter of X a relation
on states;
F ⊆ Q is a subset of accepting states.

We extend the transition relation ∆ into a function ∆′ on words as follows (where as before,
1 is the identity relation on Q and · is relation composition):{

∆′(ϵ) ≜ 1
∆′(xu) ≜ ∆(x) · ∆′(u) for x ∈ X and u ∈ X∗

The language of A from states p to q, written LA(p, q) or just L(p, q) when A is clear from
the context, is defined as follows:

LA(p, q) ≜ {u ∈ X∗ | ⟨p, q⟩ ∈ ∆′(u)}

The language of A, written LA is finally obtained as
⋃

f∈F LA(i, f).

Intuitively, the language from p to q consists of those words that label a path from p to q in
the automaton, and the language of the automaton consists of those words labelling a path
from the initial state to some accepting state.

We will also need a function which is intuitive in the end, but cumbersome to define. Let
us use the standard notations for lists: [] for the empty list, x :: q for the insertion of an
element x in front of a list q, and [x; y; . . . ; z] for concrete lists. Given a set Q, two elements
p, q ∈ Q, and a list l ∈ (Q × Q)∗ of pairs elements of Q, we write pr(p, l, q) for the list of
pairs of elements of Q defined as follows, by recursion on l:{

pr(p, [], q) ≜ {⟨p, q⟩}
pr(p, ⟨r, s⟩ :: k, q) ≜ ⟨p, r⟩ :: pr(s, k, q) for r, s ∈ Q, and k ∈ (Q × Q)∗

Intuitively, pr(p, l, q) shifts the pairs found in l, integrating p at the beginning and q at the
end. For instance, we have pr(p, [⟨q, r⟩; ⟨s, t⟩], u) = [⟨p, q⟩; ⟨r, s⟩; ⟨t, u⟩].

▶ Example 4.10. The function pr is useful for the following reason. Consider an automaton
with initial state i, a single final state f , ∆(a) = {⟨r, s⟩}, and ∆(b) = {⟨t, u⟩}. Suppose we
want to characterise the set of words w such that wawbw is accepted. Those are precisely
those words in the intersection L(i, r) ∩ L(s, t) ∩ L(u, f). The terms from this intersection
are easily described using pr: we have pr(i, [⟨r, s⟩; ⟨t, u⟩], f) = [⟨i, r⟩; ⟨s, t⟩; ⟨u, f⟩]. ◀

We finally write X⃝∗ for the set of duplicate-free finite sequences over X (i.e., such that
every element of X appears at most once). When X is finite, so is X⃝∗ .

We now have all that we need to characterise the image of E on regular languages:

▶ Proposition 4.11. Let A = ⟨Q, i, ∆, F ⟩ be a NFA over Σ⊤ with language L. We have

E(L) =
⋃ { ⋂

{L(p, q) | ⟨p, q⟩ ∈ pr(i, l, f)}
∣∣ l ∈ ∆(⊤)⃝∗ , f ∈ F

}
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Proof. We prove the two inclusions separately.
To prove the inclusion from left to right, assume w ∈ E(L). Let m be the length of w,

and let n be the least natural number such that w(⊤w)n ∈ L. By definition, there is some
f ∈ F and a path from i to f labelled with w(⊤w)n in A. Call a ⊤-transition a pair ⟨p, q⟩
belonging to ∆(⊤). Let l be the sequence of ⊤-transitions used in this path at positions
m + 1, 2m + 1, . . . , nm + 1. This sequence is duplicate-free by minimality of n: if the same
⊤-transition was appearing twice, we would find a smaller witness for the membership of w

in E(L). We check easily that for all pairs ⟨p, q⟩ ∈ pr(i, l, f), we have w ∈ L(p, q). Therefore,
w belongs to the right-hand side expression.

To prove the inclusion from right to left, let w, l, f such that for all ⟨p, q⟩ ∈ pr(i, l, f), we
have w ∈ L(p, q). Let n be the length of l. We can construct a path from i to f labelled by
w(⊤w)n in A. Therefore we have w(⊤w)n ∈ L, whence w ∈ E(L). ◀

The above formula expresses E(L) as a finite union of finite intersections of languages
of the form L(p, q), which are all regular by Kleene’s theorem. Since regular languages are
closed under unions and intersections, we deduce that E(L) is regular. In other words, the
function E preserves regularity of languages over Σ⊤.

▶ Definition 4.12 (Expression closure s). Given a regular expression with top e, we define
the regular expression with top s(e) as follows:
1. construct a NFA ⟨Q, i, ∆, F ⟩ whose language is [e];
2. for all l ∈ ∆(⊤)⃝∗ and all f ∈ F , compute a regular expression with top gl,f for the regular

language
⋂

{L(p, q) | ⟨p, q⟩ ∈ pr(i, l, f)};
3. set s(e) ≜

∑
l,f gl,f .

▶ Example 4.13. Call e the expression o(a + ⊤o)⊤a+ from the introduction (⋆), where
o ≜ (aa)∗a is an expression for the set of words of as of odd length, and a+ ≜ a∗a is an
expression for the set of non-empty words of as. Let us compute s(e) using the following
automaton for [e], where i is the initial state, and f is the only final state.

i

·

p q

·

r s f
a ⊤ a ⊤ a

a

a a a a
a

We can easily describe various languages of interest in this automaton:

x y L(x, y)
i p [o]
q r [o]
s f [a+]

x y L(x, y)
i r [o(a + ⊤o)]
q f [o⊤a+]
s p ∅

There are exactly two ⊤-transitions, so that we have five lists in ∆(⊤)⃝∗ to consider for s(e):
1. the empty list, contributing L(i, f) = [e] to E[e];
2. [⟨p, q⟩], not contributing since L(i, p) ∩ L(q, f) = [o] ∩ [o⊤a+] = ∅;
3. [⟨r, s⟩], contributing L(i, r) ∩ L(s, f) = [o(a + ⊤o)] ∩ [a+] = [oa];
4. [⟨p, q⟩; ⟨r, s⟩], contributing L(i, p) ∩ L(q, r) ∩ L(s, f) = [o] ∩ [o] ∩ [a+] = [o];
5. [⟨r, s⟩; ⟨p, q⟩], not contributing since L(i, r) ∩ L(s, p) ∩ L(q, f) = ∅;
So in the end, s(e) can simply be taken to be e + oa + o. ◀
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▶ Proposition 4.14. For all expressions e, we have
(i) [s(e)] = E[e], and
(ii) KAF ⊢ e = s(e).

Proof. The first item holds by definition of s and Proposition 4.11. We prove two inequations
for the second item. Taking n = 0 in the definition of E, we have [e] ⊆ E[e] = [s(e)], so that
KA ⊢ e ≤ s(e) by completeness of KA (‡). For the converse implication, it suffices to prove
that for all l ∈ ∆(⊤)⃝∗ and all f ∈ F , the expression gl,f from Definition 4.12 is provably
smaller than e in KAF . Let us abbreviate gl,f as g, let n be the length of l, and let ⟨pj , qj⟩j≤n

be the successive elements of pr(i, l, f) (so that p0 = i and qn = f). We have

[g(⊤g)n]
= [g] · {⊤} · [g] · . . . · {⊤} · [g] ([·] is a homomorphism)
⊆ L(p0, q0) · {⊤} · L(p1, q1) · . . . · {⊤} · L(pn, qn)

(by definition of g, [g] is contained in each L(pj , qj))
⊆ L(p0, q0) · L(q0, p1) · L(p1, q1) · . . . · L(qn−1, pn) · L(pn, qn)

(since l ∈ ∆(⊤)⃝∗ , we have ⟨qj , pj+1⟩ ∈ ∆(⊤), and thus ⊤ ∈ L(qj , pj+1))
⊆ L(i, f) ⊆ [e] (p0 = i, qn = f , and definition of L)

We deduce KA ⊢ g(⊤g)n ≤ e by completeness of KA (‡), and we conclude by prepending n

applications of axiom (F): KAF ⊢ g ≤ g(⊤g)n ≤ e . ◀

▶ Example 4.15. Continuing Example 4.13, we check that both oa ≤ oa⊤oa ≤ e and
o ≤ o⊤o⊤o ≤ e are derivable in KAF , in both cases using axiom (F) for the the first
inequation (once or twice), and KA completeness for the second one. Also observe that
[a+] = [oa+o], so that KA ⊢ a+ = oa+o once again by KA completeness. Putting everything
together, we obtain a derivation of the following shape for the law (⋆) from the introduction.

KAF ⊢ a+ = oa + o ≤ oa⊤oa + o⊤o⊤o ≤ e ◀

More generally, we can combine all the above results to obtain our main theorem:

▶ Theorem 4.16. For all regular expressions with top e, f , we have

REL |= e = f ⇐⇒ CF [e] = CF [f ] ⇐⇒ KAF ⊢ e = f

Proof. We have

REL |= e = f

⇔ CF [e] = CF [f ] (Proposition 4.8)
⇔ E(CT [e]) = E(CT [f ]) (by Proposition 4.7)
⇔ [s(r(e))] = [s(r(f))] (by Propositions 3.4(i) and 4.14(i))
⇔ KA ⊢ s(r(e)) = s(r(f)) (by completeness of KA (†))
⇒ KAF ⊢ e = f (by transitivity and Propositions 3.4(ii) and 4.14(ii))
⇒ REL |= e = f (soundness of KAF axioms w.r.t. REL)

◀

The above proof follows the same strategy as the one for Theorem 3.5. Like there, the
right-to-left implication of the second equivalence is an instance of [11, Theorem 2], and we
use reductions only for the left-to-right part of this equivalence.
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Like for Theorem 3.5, we could complete the statement of Theorem 4.16 with “. . . ⇐⇒
[s(r(e))] = [s(r(f))]”. This gives decidability since the function s is computable, but this does
not give a reasonable algorithm: given an expression e, the size of s(e) (or of an automaton
for it) might be very big. We leave open the question of whether there is a better algorithm,
hopefully in PSpace.

5 Relations with a greatest element

A generalised S⊤-algebra of relations is an S-subalgebra A of an algebra of relations such
that A has a greatest element, seen as an S⊤-algebra by using this greatest element for the
constant ⊤. We write REL′ for the class of all generalised S⊤-algebras of relations.

Intuitively, REL′ consists of models of binary relations where ⊤ is not necessarily the
full relation, only a greatest element. As an example, consider relations R over the natural
numbers such that i ≤ j whenever i R j. Those form an S-algebra with greatest element the
order relation ≤ itself, which is not the full relation.

In the literature, REL′ is sometimes preferred over REL because it is closed under taking
subalgebras and products, and actually forms a quasivariety [1]. (In contrast, it is not clear
whether REL is closed under products: the two obvious ways of embedding a pair of relations
into a new relation fail to preserve either union or top – REL as defined here is not closed
under taking subalgebras either, but defining it in such a way would not change the results
from the present paper.)

The equational theory of REL′ differs from that of REL. For instance, the previous
example of ordered relations shows that REL′ ̸|= x ≤ x ·⊤ ·x. Indeed, for x = {⟨0, 1⟩}, x ·⊤ ·x
is empty since ⊤ does not relate 1 to 0.

We show below that the equational theory of REL′ actually coincides with that of LANG,
and can thus be axiomatised by KAT .

▶ Proposition 5.1. Every member of LANG embeds into a member of REL′.

Proof. We adapt the technique used by Pratt for Kleene algebras (without top) [31, third
page] and later reused by Kozen and Smith for Kleene algebras with tests [20, Lemma 5].
For a set X, let M(X) be the set of relations R on X∗ such that for all words u, v, u is a
prefix of v whenever u R v. The S-operations on relations restrict to M(X), so that M(X)
is an S-algebra, and setting ⊤ ≜ {⟨u, uv⟩ | u, v ∈ X∗} turns it into a member of REL′. We
embed a member P (X∗) of LANG into M(X) as follows:

ι : P (X∗) → M(X)
L 7→ {⟨u, uv⟩ | u ∈ X∗, v ∈ L}

The function ι is easily shown to be an S⊤-algebra homomorphism, and it is injective (since,
e.g., L = {u | ⟨ϵ, u⟩ ∈ ι(L)}). ◀

Note that it is crucial that we consider REL′ rather than REL here: the above construction
would not give an S⊤-algebra homomorphism if we were not restricting to relations of a
certain shape: ⊤ would not be preserved.

▶ Corollary 5.2. For all regular expressions with top, we have

LANG |= e = f ⇐⇒ REL′ |= e = f ⇐⇒ KAT ⊢ e = f



D. Pous and J. Wagemaker 26:15

Proof. That REL′ |= e = f entails LANG |= e = f is a direct consequence of Proposition 5.1.
That KAT ⊢ e = f entails REL′ |= e = f follows from the soundness of KAT axioms w.r.t.
REL′. We conclude by Theorem 3.5. ◀

Similarly to REL′, we can define a class LANG′ of S⊤-algebras which is closed under taking
subalgebras and where ⊤ is not necessarily the full language. However, unlike with REL′ and
REL, the equational theory of LANG′ coincides with that of LANG (and REL′). Indeed the
axioms of KAT remain sound for LANG′.
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▶ Definition A.1 (Graph of a valuation). Let σ : Σ → P (X×X) be a valuation of Σ into
relations on some set X. For all elements i, j ∈ X, we define the graph ⟨σ, i, j⟩ ≜ ⟨X, F, i, j⟩
where F ≜ {⟨x, a, y⟩ | a ∈ Σ, ⟨x, y⟩ ∈ σ(a)}.

The first key lemma characterises evaluation of expressions not using 0, +, ·∗ in a relational
model, in terms of graph homomorphisms. In our case, expressions not using 0, +, ·∗ can be
represented by words with top. Such a lemma appeared first in [3, Lemma 3] for a signature
including intersection and converse, but not top. Under its original formulation, its extension
to cover top is trivial once we realise that the graph of ⊤ should simply be a graph without
edges and exactly two vertices (the input and the output).

▶ Lemma A.2. Let σ : Σ → P (X×X) be a valuation of Σ into a member of REL. For all
words u ∈ Σ⊤

∗, we have

⟨i, j⟩ ∈ σ̂(u) ⇐⇒ ⟨σ, i, j⟩◁ g(u)

Proof. By induction on u.
if u is empty, then both sides reduce to the condition i = j;
if u is a letter a, then both sides reduce to the condition ⟨i, j⟩ ∈ σ(a);
if u is ⊤, then both sides hold independently of i, j;
if u = vw for two smaller words v, w then we have

⟨i, j⟩ ∈ σ̂(vw)
⇔ ∃k, ⟨i, k⟩ ∈ σ̂(v) ∧ ⟨k, j⟩ ∈ σ̂(w) (by definition)
⇔ ∃k, ⟨σ, i, k⟩◁ g(v) ∧ ⟨σ, k, j⟩◁ g(w) (by induction hypothesis on v and w)
⇔ ⟨σ, i, j⟩◁ g(vw)

(The last equivalence comes from a simple analysis of the homomorphisms whose source
is a sequential composition of two graphs – see, e.g., [3, Lemma 2(ii)].) ◀

The second key lemma characterises the evaluation of an arbitrary expression in terms of
(the evaluations of) the words in the language of that expression. Variants of such a lemma
often appear in the literature for star-continuous models, rather than just relational ones
(e.g., [20, Lemma 4]).

▶ Lemma A.3. Let σ : Σ → P (X×X) be a valuation of Σ into a member of REL. For all
regular expressions with top e, we have

σ̂(e) =
⋃

u∈[e]

σ̂(u)

Proof. By an easy induction on e, using distributivity of · over arbitrary unions in REL. ◀

Equipped with those two lemmas, we obtain the announced theorem.

▶ Theorem A.4. For all regular expressions with top e, f , we have:

REL |= e ≤ f ⇐⇒ ∀u ∈ [e], ∃v ∈ [f ], g(u)◁ g(v)

Proof. For the forward implication, assume REL |= e ≤ f and let u ∈ [e]. Let n be the length
of u and consider relations on [0; n], a member of REL. Define σ : Σ → P ([0; n]×[0; n]) by
⟨i, j⟩ ∈ σ(a) if the i-th letter of u is a and j = i+1. The graph g(u) is nothing but ⟨σ, 0, n⟩, so
that we have ⟨0, n⟩ ∈ σ̂(u) by Lemma A.2, using the identity graph homomorphism. Thus we
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consecutively get ⟨0, n⟩ ∈ σ̂(e) by Lemma A.3, ⟨0, n⟩ ∈ σ̂(f) by assumption, and ⟨0, n⟩ ∈ σ̂(v)
for some v ∈ [f ] by Lemma A.3 again. Lemma A.2 finally gives g(u) = ⟨σ, 0, n⟩◁ g(v), as
required.

For the backward implication, assume the right-hand side and let σ : Σ → P (X×X) be
a valuation into a member of REL. For all i, j ∈ X, we have

⟨i, j⟩ ∈ σ̂(e)
⇔ ⟨i, j⟩ ∈ σ̂(u) for some u ∈ [e] (by Lemma A.3)
⇔ ⟨σ, i, j⟩◁ g(u) for some u ∈ [e] (by Lemma A.2)
⇒ ⟨σ, i, j⟩◁ g(u) for some u, v s.t. v ∈ [f ] and g(u)◁ g(v) (by assumption)
⇒ ⟨σ, i, j⟩◁ g(v) for some v ∈ [f ] (by transitivity of ◁)
⇔ ⟨i, j⟩ ∈ σ̂(v) for some v ∈ [f ] (by Lemma A.2)
⇔ ⟨i, j⟩ ∈ σ̂(f) (by Lemma A.3)

Whence σ̂(e) ⊆ σ̂(f), and thus REL |= e ≤ f as required. ◀
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namely Context HyperLTL (HyperLTLC), we establish a characterization of the singleton models in
terms of the extension of standard FO[<] over traces with addition. This last result generalizes
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1 Introduction

Hyperproperties. In the last decade, a novel specification paradigm has been introduced
that generalizes traditional trace properties by properties of sets of traces, the so called
hyperproperties [9]. Hyperproperties relate execution traces of a reactive system and are
useful in many settings. In the area of information flow control, hyperproperties can formalize
security policies (like noninterference [18, 26] and observational determinism [32]) which
compare observations made by an external low-security agent along traces resulting from
different values of not directly observable inputs. These security requirements go, in general,
beyond regular properties and cannot be expressed in classical regular temporal logics such
as LTL [27], CTL, and CTL∗ [12]. Hyperproperties also have applications in other settings,
such as the symmetric access to critical resources in distributed protocols [15], consistency
models in concurrent computing [4], and distributed synthesis [14].
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In the context of model checking of finite-state reactive systems, many temporal logics
for hyperproperties have been proposed [11, 8, 5, 28, 13, 10, 21] for which model checking is
decidable, including HyperLTL [8], HyperCTL∗ [8], HyperQPTL [28, 10], and HyperPDL-∆ [21]
which extend LTL, CTL∗, QPTL [29], and PDL [17], respectively, by explicit first-order
quantification over traces and trace variables to refer to multiple traces at the same time.
The semantics of all these logics is synchronous and the temporal modalities are evaluated
by a lockstepwise traversal of all the traces assigned to the quantified trace variables.

A different approach for the formalization of synchronous hyper logics is based on hyper
variants of monadic second-order logic over traces or trees [10]. For the linear-time setting,
we recall the logic S1S[E] [10] (and its first-order fragment FO[<,E] [16]) which syntactically
extends monadic second-order logic of one successor S1S with the equal-level predicate E,
which relate the same time points on different traces. Another class of hyperlogics is obtained
by adopting a team semantics for standard temporal logics, in particular, LTL [24, 25, 31, 19].

Asynchronous extensions of Hyper logics. Many application domains require asynchronous
properties that relate traces at distinct time points which can be arbitrarily far from each
other. For example, asynchronous specifications are needed to reason about a multithreaded
environment in which threads are not scheduled in lockstep, and traces associated with
distinct threads progress at different speed. Asynchronous hyperproperties are also useful
in information-flow security where an observer is not time-sensitive, so the observer cannot
distinguish consecutive time points along an execution having the same observation. This
again requires asynchronously matching sequences of observations along distinct execution
traces. A first systematic study of asynchronous hyperproperties is done in [22], where two
powerful and expressively equivalent linear-time asynchronous formalisms are introduced: the
temporal fixpoint calculus Hµ and an automata-theoretic formalism where the quantifier-free
part of a specification is expressed by the class of parity multi-tape Alternating Asynchronous
Word Automata (AAWA) [22]. While the expressive power of the quantifier-part of HyperLTL
is just that of LTL over tuples of traces of fixed arity (multi-traces), AAWA allow to specify very
expressive non-regular multi-trace properties. Model checking against Hµ or its AAWA-based
counterpart is undecidable even for the quantifier alternation-free fragment. In [22], two
decidable subclasses of parity AAWA are identified which express only multi-trace ω-regular
properties and lead to two Hµ fragments with decidable model checking. More recently,
other temporal logics [2, 6] which syntactically extend HyperLTL have been introduced
for expressing asynchronous hyperproperties. Asynchronous HyperLTL (A-HyperLTL) [2],
useful for asynchronous security analysis, models asynchronicity by means of an additional
quantification layer over the so called trajectories. Intuitively, a trajectory controls the relative
speed at which traces progress by choosing at each instant which traces move and which
traces stutter. The general logic also has an undecidable model-checking problem, but [2]
identifies practical decidable fragments, and reports an empirical evaluation. Stuttering
HyperLTL (HyperLTLS) and Context HyperLTL (HyperLTLC) are introduced in [6] as more
expressive asynchronous extensions of HyperLTL. HyperLTLS uses relativized versions of the
temporal modalities with respect to finite sets Γ of LTL formulas. Intuitively, these modalities
are evaluated by a lockstepwise traversal of the sub-traces of the given traces which are
obtained by removing “redundant” positions with respect to the pointwise evaluation of the
LTL formulas in Γ. HyperLTLC extends HyperLTL by unary modalities ⟨C⟩ parameterized by
a non-empty subset C of trace variables – called the context – which restrict the evaluation
of the temporal modalities to the traces associated with the variables in C. Both HyperLTLS
and HyperLTLC are subsumed by Hµ and still have an undecidable model-checking problem,
and fragments of the two logics with a decidable model-checking have been investigated [6].
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Figure 1 Expressiveness comparisons between linear-time hyper logics.

Our contribution. In this paper, we study expressiveness and decidability of asynchronous
extensions of HyperLTL [22, 2, 6]. Our main goal is to compare the expressive power
of these logics together with the known logics for linear-time hyperproperties based on
the equal-level predicate whose most powerful representative is S1S[E]. The first-order
fragment FO[<,E] of S1S[E] is already strictly more expressive than HyperLTL [16] and,
unlike S1S[E], its model-checking problem is decidable [10]. We obtain an almost complete
expressiveness picture, summarized in Figure 1, where novel results are annotated in red. In
particular, for A-HyperLTL, we show that although HyperLTL and A-HyperLTL are expressively
incomparable, HyperLTL can be embedded into A-HyperLTL using a natural encoding. We
also establish that A-HyperLTL is strictly less expressive than Hµ and its AAWA counterpart.
For the relative expressiveness of A-HyperLTL, HyperLTLS , and HyperLTLC , we prove that
A-HyperLTL and HyperLTLS are expressively incomparable, and that HyperLTLC is not
subsumed by A-HyperLTL or by HyperLTLS . The question of whether A-HyperLTL and
HyperLTLS are subsumed or not by HyperLTLC remains open. Additionally, we show that
each of these logics is not subsumed by S1S[E]. This last result solves a recent open
question [22, 2].

Since hyperproperties are a generalization of trace properties, we also investigate the
expressive power of the considered asynchronous extensions of HyperLTL when interpreted
on singleton sets of traces. For HyperLTL and its more expressive extension HyperLTLS ,
singleton models are just the ones whose traces are LTL-definable and checking the existence
of such a model (single-trace satisfiability) is decidable and Pspace-complete. On the
other hand, we show that for both A-HyperLTL and HyperLTLC , single-trace satisfiability is
highly undecidable being Σ1

1-hard. Moreover, for HyperLTLC extended with past temporal
modalities, we provide a nice characterization of the singleton models which generalizes the
well-known equivalence of LTL and first-order logic FO[<] over traces established by Kamp’s
theorem. We show that over singleton models, HyperLTLC with past corresponds to the
extension FO[<, +] of FO[<] with addition over variables.

Finally, we investigate the decidability frontier for model-checking HyperLTLC by enforcing
the undecidability result of [6] and by identifying a maximal fragment of HyperLTLC for
which model checking is decidable. This fragment subsumes HyperLTL and can be translated
into FO[<,E]. Due to lack of space, many proofs are omitted and included in the longer
version of this paper [7].

2 Preliminaries

Let N be the set of natural numbers. For all i, j ∈ N, [i, j] denotes the set of natural numbers
h such that i ≤ h ≤ j. Given a word w over some alphabet Σ, |w| is the length of w (|w| =∞
if w is infinite). For each 0 ≤ i < |w|, w(i) is the (i+ 1)th symbol of w, and wi is the suffix
of w from position i, i.e., the word w(i)w(i+ 1) . . ..
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We fix a finite set AP of atomic propositions. A trace is an infinite word over 2AP. A
pointed trace is a pair (π, i) consisting of a trace π and a position i ∈ N. Two traces π and
π′ are stuttering equivalent if there are two infinite sequences of positions 0 = i0 < i1 . . . and
0 = i′0 < i′1 . . . s.t. for all k ≥ 0 and for all ℓ ∈ [ik, ik+1−1] and ℓ′ ∈ [i′k, i′k+1−1], π(ℓ) = π′(ℓ′).
The trace π′ is a stuttering expansion of the trace π if there is an infinite sequence of positions
0 = i0 < i1 . . . such that for all k ≥ 0 and for all ℓ ∈ [ik, ik+1 − 1], π′(ℓ) = π(k).

Kripke structures. A Kripke structure (over AP) is a tuple K = ⟨S, S0, E, V ⟩, where S is a
finite set of states, S0 ⊆ S is the set of initial states, E ⊆ S × S is a transition relation and
V : S → 2AP is an AP-valuation of the set of states. A path of K is an infinite sequence of
states t0, t1, . . . such that t0 ∈ S0 and (ti, ti+1) ∈ E for all i ≥ 0. The Kripke structure K
induces the set L(K) of traces of the form V (t0), V (t1), . . . such that t0, t1, . . . is a path of K.

Relative Expressiveness. In Sections 3-4, we compare the expressiveness of various logics
for linear-time hyperproperties. Let M be a set of models (in our case, a model is a set of
traces), and L and L′ be two logical languages interpreted over models in M. Given two
formulas φ ∈ L and φ′ ∈ L′, we say that φ and φ′ are equivalent if for each model M ∈M,
M satisfies φ iff M satisfies φ′. The language L is subsumed by L′, denoted L ≤ L′, if each
formula in L has an equivalent formula in L′. The language L is strictly less expressive than
L (written L < L′) if L ≤ L′ and there is a L′-formula which has no equivalent in L. Finally,
two logics L and L′ are expressively incomparable if both L ̸≤ L′ and L′ ̸≤ L.

Linear-time hyper specifications. We consider an abstract notion of linear-time hyper
specifications which are interpreted over sets of traces. We fix a finite set VAR of trace
variables. A pointed-trace assignment Π is a partial mapping over VAR assigning to each
trace variable x in its domain Dom(Π) a pointed trace. The assignment Π is initial if for
each x ∈ Dom(Π), Π(x) is of the form (π, 0) for some trace π. For a variable x ∈ VAR and a
pointed trace (π, i), we denote by Π[x 7→ (π, i)] the pointed-trace assignment having domain
Dom(Π) ∪ {x} defined as: Π[x 7→ (π, i)](x) = (π, i) and Π[x 7→ (π, i)](y) = Π(y) if y ̸= x.

A multi-trace specification S(x1, . . . , xn) is a specification (in some formalism) param-
eterized by a subset {x1, . . . , xn} of VAR whose semantics is given by a set Υ of initial
pointed-trace assignments with domain {x1, . . . , xn}: we write Π |= S(x1, . . . , xn) for the
trace assignments Π in Υ. Given a class C of multi-trace specifications, linear-time hyper ex-
pressions ξ over C are defined as: ξ def= ∃x.ξ | ∀x.ξ | S(x1, . . . , xn), where x, x1, . . . , xn ∈ VAR,
S(x1, . . . , xn) ∈ C, and ∃x (resp., ∀x) is the hyper existential (resp., universal) trace quantifier
for variable x. An expression ξ is a sentence if every variable xi in the multi-trace specification
S(x1, . . . , xn) of ξ is not free (i.e., xi is in the scope of a quantifier for variable xi). The
quantifier alternation depth of ξ is the number of switches between ∃ and ∀ quantifiers in the
quantifier prefix of ξ. For a set L of traces and an initial pointed-trace assignment Π such
that Dom(Π) contains the free variables of ξ and the traces referenced by Π are in L, the
satisfaction relation (L,Π) |= ξ is inductively defined as follows:

(L,Π) |= ∃x.ξ ⇔ for some trace π ∈ L : (L,Π[x 7→ (π, 0)]) |= ξ

(L,Π) |= ∀x.ξ ⇔ for each trace π ∈ L : (L,Π[x 7→ (π, 0)]) |= ξ

(L,Π) |= S(x1, . . . , xn) ⇔ Π |= S(x1, . . . , xn)

For a sentence ξ, we write L |= ξ to mean that (L,Π∅) |= ξ, where Π∅ is the empty assignment.
If L |= ξ we say that L is a model of ξ. If, additionally, L is a singleton we call it a single-trace
model. By restricting our attention to the single-trace models, a linear-time hyper sentence
ξ denotes a trace property consisting of the traces π such that {π} |= ξ. For a class C of
multi-trace specifications, we consider the following decision problems:
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the satisfiability (resp., single-trace satisfiability) problem is checking for a linear-time
hyper sentence ξ over C, whether ξ has a model (resp., a single-trace model), and
the model checking problem is checking for a Kripke structure K and a linear-time hyper
sentence ξ over C, whether L(K) |= ξ.

For instance, HyperLTL formulas are linear-time hyper sentences over the class of multi-
trace specifications, called HyperLTL quantifier-free formulas, obtained by standard LTL
formulas [27] by replacing atomic propositions p with relativized versions p[x], where x ∈ VAR.
Intuitively, p[x] asserts that p holds at the current position of the trace assigned to x. Given
an HyperLTL quantifier-free formula ψ(x1, . . . , xn), an initial pointed trace assignment Π
such that Dom(Π) ⊇ {x1, . . . , xn}, and a position i ≥ 0, the satisfaction relation (Π, i) |= ψ

is defined as a natural extension of the satisfaction relation (π, i) |= θ for LTL formulas θ and
traces π. In particular,

(Π, i) |= p[xk] if Π(xk) = (π, 0) and p ∈ π(i),
(Π, i) |= Xψ if (Π, i+ 1) |= ψ, and
(Π, i) |= ψ1Uψ2 if there is j ≥ i such that (Π, j) |= ψ2 and (Π, k) |= ψ1 for all k ∈ [i, j−1].

Asynchronous Word Automata and the Fixpoint Calculus Hµ. We shortly recall the
framework of parity alternating asynchronous word automata (parity AAWA) [22], a class of
finite-state automata for the asynchronous traversal of multiple infinite words. Intuitively,
given n ≥ 1, an AAWA with n tapes (nAAWA) has access to n infinite words over the input
alphabet Σ and at each step, activates multiple copies where for each of them, there is exactly
one input word whose current input symbol is consumed (i.e., the reading head of such word
moves one position to the right). In particular, the target of a move of A is encoded by a
pair (q, i), where q indicates the target state while the direction i ∈ [1, n] indicates on which
input word to progress. Details on the syntax and semantics of AAWA are given in [22, 7].
We denote by Hyper AAWA the class of linear-time hyper sentences over the multi-trace
specifications given by parity AAWA. We also consider the fixpoint calculus Hµ introduced
in [22] that provides a logical characterization of Hyper AAWA.

3 Advances in Asynchronous Extensions of HyperLTL

In this section, we investigate expressiveness and decidability issues on known asynchronous
extensions of HyperLTL, namely, Asynchronous HyperLTL [2], Stuttering HyperLTL [6], and
Context HyperLTL [6].

3.1 Results for Asynchronous HyperLTL (A-HyperLTL)
We first recall A-HyperLTL [2], a syntactical extension of HyperLTL which allows to express
pure asynchronous hyperproperties. Then, we show that although A-HyperLTL does not
subsume HyperLTL, HyperLTL can be embedded into A-HyperLTL by means of an additional
proposition. Second, we establish that A-HyperLTL is subsumed by Hyper AAWA and the
fixpoint calculus Hµ. Finally, we show that unlike HyperLTL, single-trace satisfiability of
A-HyperLTL is undecidable.
The logic A-HyperLTL models the asynchronous passage of time between computation traces
using the notion of a trajectory. Given a non-empty subset V ⊆ VAR, a trajectory over V
is an infinite sequence t of non-empty subsets of V . Intuitively, the positions i ≥ 0 along t
model the global time flow and for each position i ≥ 0, t(i) determines the trace variables in
V whose associated traces make progress at time i. The trajectory t is fair if for each x ∈ V ,
there are infinitely many positions i such that x ∈ t(i).
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A-HyperLTL formulas are linear-time hyper sentences over multi-trace specifications ψ,
called A-HyperLTL quantifier-free formulas, where ψ is of the form Eθ or Aθ and θ is a
HyperLTL quantifier-free formula: E is the existential trajectory modality and A is the
universal trajectory modality. Given a pointed trace assignment Π and a trajectory t over
Dom(Π), the successor of (Π, t), denoted by (Π, t) + 1, is defined as (Π′, t′), where: (1) t′ is
the trajectory t1 (the suffix of t from position 1), and (2) Dom(Π′) = Dom(Π) and for each
x ∈ Dom(Π) with Π(x) = (π, i), Π′(x) = (π, i+ 1) if x ∈ t(0), and Π′(x) = Π(x) otherwise.

For each k ≥ 1, we write (Π, t)+k for denoting the pair (Π′′, t′′) obtained by k-applications
of the successor function starting from (Π, t). Given a HyperLTL quantifier-free formula θ such
that Dom(Π) contains the variables occurring in θ, the satisfaction relations Π |= Eθ, Π |= Aθ,
and (Π, t) |= θ are defined as follows (we omit the semantics of the Boolean connectives):

Π |= Eθ ⇔ for some fair trajectory t over Dom(Π), (Π, t) |= θ

Π |= Aθ ⇔ for all fair trajectories t over Dom(Π), (Π, t) |= θ

(Π, t) |= p[x] ⇔ Π(x) = (π, i) and p ∈ π(i)
(Π, t) |= Xθ ⇔ (Π, t) + 1 |= θ

(Π, t) |= θ1Uθ2 ⇔ for some i ≥ 0 : (Π, t) + i |= θ2 and (Π, t) + k |= θ1 for all 0 ≤ k < i

We also exploit an alternative characterization of the semantics of quantifier-free A-HyperLTL
formulas which easily follows from the definition of trajectories.

▶ Proposition 1. Let θ be a quantifier-free HyperLTL formula over trace variables x1, . . . , xk,
and let π1, . . . , πk be k traces. Then:
{x1 ← (π1, 0), . . . , xk ← (πk, 0)} |= Eθ iff for all i ∈ [1, k], there is a stuttering expansion
π′
i of πi such that {x1 ← (π′

1, 0), . . . , xk ← (π′
k, 0)} |= θ.

{x1 ← (π1, 0), . . . , xk ← (πk, 0)} |= Aθ iff for all i ∈ [1, k] and for all stuttering expansions
π′
i of πi, it holds that {x1 ← (π′

1, 0), . . . , xk ← (π′
k, 0)} |= θ.

A-HyperLTL versus HyperLTL. We now show that, unlike other temporal logics for asyn-
chronous hyperproperties (see Sections 3.2 and 3.3), A-HyperLTL does not subsume HyperLTL.
Given an atomic proposition p, we consider the following linear-time hyperproperty.

p-synchronicity: a set L of traces satisfies the p-synchronicity hyperproperty if for all
traces π, π′ ∈ L and positions i ≥ 0, p ∈ π(i) iff p ∈ π′(i).

This hyperproperty can be expressed in HyperLTL as follows: ∀x1. ∀x2.G(p[x1]↔ p[x2]).
However, it cannot be expressed in A-HyperLTL (for details, see [7]).

▶ Theorem 2. A-HyperLTL cannot express p-synchronicity. Hence, A-HyperLTL does not
subsume HyperLTL.

Though A-HyperLTL does not subsume HyperLTL, we can embed HyperLTL into A-HyperLTL
by using an additional proposition # /∈ AP as follows. We can ensure that along a trajectory,
traces progress at each global instant by requiring that proposition # holds exactly at the
even positions. Formally, given a trace π over AP, we denote by enc#(π) the trace over
AP ∪ {#} defined as: enc#(π)(2i) = π(2i) ∪ {#} and enc#(π)(2i + 1) = π(2i + 1) for all
i ≥ 0. We extend the encoding enc# to sets of traces L and assignments Π over AP in
the obvious way. For each x ∈ VAR, let θ#(x) be the following one-variable quantifier-free
HyperLTL formula: #[x] ∧ G(#[x] ↔ ¬X#[x]). It is easy to see that for a trace ρ over
AP ∪ {#}, a stuttering expansion ρ′ of ρ satisfies θ#(x) with x bound to ρ′ iff ρ′ = ρ and
ρ is the #-encoding of some trace over AP. It follows that satisfiability of an HyperLTL
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formula φ can be reduced in linear-time to the satisfiability of the A-HyperLTL formula φ#
obtained from φ by replacing the quantifier-free part ψ(x1, . . . , xk) of φ with the quantifier-
free A-HyperLTL formula E. (ψ(x1, . . . , xk) ∧

∧
i∈[1,k] θ#(xi)). For model checking, given a

Kripke structure K = ⟨S, S0, E, V ⟩, we construct in linear-time a Kripke structure K# over
AP ∪ {#} such that L(K#) = enc#(L(K)). Formally, K# = ⟨S × {0, 1}, S0 × {1}, E′, V ′⟩
where E′ = {((s, b), (s′, 1 − b)) | (s, s′) ∈ E and b = 0, 1}, V ′((s, 1)) = V (s) ∪ {#} and
V ′((s, 0)) = V (s) for all s ∈ S. Thus, we obtain the following result.

▶ Theorem 3. Satisfiability (resp., model checking) of HyperLTL can be reduced in linear-time
to satisfiability (resp., model checking) of A-HyperLTL.

A-HyperLTL versus Hyper AAWA and Hµ. We show that A-HyperLTL is subsumed by
Hyper AAWA and Hµ. To this purpose, we exhibit an exponential-time translation of
quantifier-free A-HyperLTL formulas into equivalent parity AAWA.

▶ Theorem 4. Given an A-HyperLTL quantifier-free formula ψ with trace variables x1, . . . , xn,
one can build in singly exponential time a parity nAAWA Aψ over 2AP accepting the set of
n-tuples (π1, . . . , πn) of traces such that ({x1 ← (π1, 0), . . . , xn ← (πn, 0)}) |= ψ.

Proof sketch. We first assume that ψ is of the form Eθ for some HyperLTL quantifier-free
formula θ. By an adaptation of the standard automata theoretic approach for LTL [30], we
construct a nondeterministic nAAWA (nNAWA) AEθ equipped with standard generalized
Büchi acceptance conditions which accepts a n-tuple (π1, . . . , πn) of traces iff there is a fair
trajectory t such that ({x1 ← (π1, 0), . . . , xn ← (πn, 0)}), t |= θ. By standard arguments,
a generalized Büchi nNAWA can be converted in quadratic time into an equivalent parity
nNAWA. The behaviour of the automaton is subdivided into phases where each phase
intuitively corresponds to a global timestamp. During a phase, AEθ keeps tracks in its state
of the guessed set of subformulas of θ that hold at the current global instant and guesses
which traces progress at the next global instant by moving along a non-empty guessed
set of directions in {1, . . . , n} in turns. In particular, after a movement along direction i,
the automaton keeps track in its state of the previous chosen direction i and either moves
to the next phase, or remains in the current phase by choosing a direction j > i. The
transition function in moving from the end of a phase to the beginning of the next phase
captures the semantics of the next modalities and the “local” fixpoint characterization of
the until modalities. Moreover, the generalized Büchi acceptance condition is used for
ensuring the fulfillment of the liveness requirements θ2 in the until sub-formulas θ1Uθ2, and
for guaranteeing that the guessed trajectory is fair (i.e., for each direction i ∈ [1, n], the
automaton moves along i infinitely often). Details of the construction are given in [7].

Now, let us consider a quantifier-free A-HyperLTL formula of the form Aθ with trace
variables x1, . . . , xn, and let AE¬θ be the parity nAAWA associated with the formula E¬θ.
By [22], one can construct in linear-time (in the size of AE¬θ), a parity nAAWA AAθ accepting
the complement of the language of n-tuples of traces accepted by AE¬θ. ◀

Thus, being Hµ and Hyper AAWA expressively equivalent, we obtain the following result.

▶ Corollary 5. Hyper AAWA subsumes A-HyperLTL. Hµ also subsumes A-HyperLTL.

Undecidability of single-trace satisfiability for A-HyperLTL. It is easy to see that for
HyperLTL, single-trace satisfiability corresponds to LTL satisfiability (hence, it is Pspace-
complete). We show now that for A-HyperLTL, the problem is highly undecidable being at
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least Σ1
1-hard. The crucial observation is that we can enforce alignment requirements on

distinct stuttering expansions of the same trace which allow to encode recurrent computations
of non-deterministic 2-counter machines [23]. Recall that such a machine is a tuple M =
⟨Q,∆, δinit, δrec⟩, where Q is a finite set of (control) locations, ∆ ⊆ Q× L×Q is a transition
relation over the instruction set L = {inc, dec, if_zero} × {1, 2}, and δinit ∈ ∆ and δrec ∈ ∆
are two designated transitions, the initial and the recurrent one.

An M -configuration is a pair (δ, ν) consisting of a transition δ ∈ ∆ and a counter valuation
ν : {1, 2} → N. A computation of M is an infinite sequence of configurations of the form
((q0, (op0, c0), q1), ν0), ((q1, (op1, c1), q2), ν1), . . . such that for each i ≥ 0:

νi+1(3− ci) = νi(3− ci) ;
νi+1(ci) = νi(ci) + 1 if opi = inc, and νi+1(ci) = νi(ci)− 1 if opi = dec;
νi+1(ci) = νi(ci) = 0 if opi = if_zero.

The recurrence problem is to decide whether for a given machine M , there is a computation
starting at the initial configuration (δinit, ν0), where ν0(c) = 0 for each c ∈ {1, 2}, which
visits δrec infinitely often. This problem is known to be Σ1

1-complete [23].

▶ Theorem 6. The single-trace satisfiability problem of A-HyperLTL is Σ1
1-hard.

Proof sketch. Let M = ⟨Q,∆, δinit, δrec⟩ be a counter machine. We construct a two-variable
A-HyperLTL formula φM such that M is a positive instance of the recurrence problem
if and only if φM has a single-trace model. The set of atomic propositions is AP def=
∆ ∪ {c1, c2,#, beg, pad}. Intuitively, propositions c1 and c2 are used to encode the values of
the two counters in M and # is used to ensure that the values of the counters are not modified
in the stuttering expansions of a trace encoding a computation of M . Proposition beg marks
the beginning of a configuration code, and proposition pad is exploited for encoding a padding
word at the end of a configuration code: formula φM will ensure that only these words can
be “expanded” in the stuttering expansions of a trace. Formally, an M -configuration (δ, ν) is
encoded by the finite words over 2AP (called segments) of the form {beg, δ}P1 . . . Pm{pad}k,
where k ≥ 1, m = max(ν(1), ν(2)), and for all i ∈ [1,m],
∅ ̸= Pi ⊆ {#, c1, c2},
# ∈ Pi iff i is odd, and
for all ℓ ∈ {1, 2}, cℓ ∈ Pi iff i ≤ ν(ℓ).

A computation ρ of M is then encoded by the traces obtained by concatenating the codes of
the configurations along ρ starting from the first one. The A-HyperLTL formula φM is given
by ∃x1∃x2.Eψ, where the quantifier-free HyperLTL formula ψ guarantees that for the two
stuttering expansions π1 and π2 of the given trace π, the following holds:

both π1 and π2 are infinite concatenations of segments;
the first segment of π1 encodes the initial configuration (δinit, ν0) of M and the second
segment of π1 encodes a configuration which is a successor of (δinit, ν0) in M ;
δrec occurs infinitely often along π1;
for each i ≥ 2, the (i+1)th segment s2 of π2 starts at the same position as the ith segment
s1 of π1. Moreover, s1 and s2 have the same length and the configuration encoded by s2
is a successor in M of the configuration encoded by s1.

Now, since π1 and π2 are stuttering expansions of the same trace π, the alternation requirement
for proposition # in the encoding of an M -configurations ensures that π1 and π2 encode the
same infinite sequence of M -configurations. Hence, φM has a single-trace model if and only
if M is a positive instance of the recurrence problem. Details appear in [7]. ◀
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3.2 Results for Stuttering HyperLTL (HyperLTLS)
Stuttering HyperLTL (HyperLTLS) [6] is an asynchronous extension of HyperLTL obtained by
using stutter-relativized versions of the temporal modalities w.r.t. finite sets Γ of LTL formulas.
In this section, we show that A-HyperLTL and HyperLTLS are expressively incomparable.

In HyperLTLS , the notion of successor of a position i along a trace π is relativized using a
finite set Γ of LTL formulas. If in the interval [i,∞[, the truth value of each formula in Γ does
not change along π (i.e., for each j ≥ i and for each θ ∈ Γ, (π, i) |= θ iff (π, j) |= θ), then the
Γ-successor of i in π coincides with the local successor i+ 1. Otherwise, the Γ-successor of i
in π is the smallest position j > i such that the truth value of some formula θ in Γ changes
in moving from i to j (i.e., for some θ ∈ Γ, (π, i) |= θ iff (π, j) ̸|= θ). The Γ-successor induces
a trace, called Γ-stutter trace of π and denoted by stfrΓ(π), obtained from π by repeatedly
applying the Γ-successor starting from position 0, i.e. stfrΓ(π) def= π(i0)π(i1) . . ., where
i0 = 0 and ik+1 is the Γ-successor of ik in π for all k ≥ 0. Note that stfrΓ(π) = π if Γ = ∅.
Given a pointed-trace assignment Π, the Γ-successor succΓ(Π) of Π is the pointed trace-
assignment with domain Dom(Π) defined as follows for each x ∈ Dom(Π): if Π(x) = (π, i),
then succΓ(Π)(x) = (π, ℓ) where ℓ is the Γ-successor of i in π. For each j ∈ N, we use succ jΓ
for the function obtained by j applications of the function succΓ.

HyperLTLS formulas are linear-time hyper sentences over multi-trace specifications ψ,
called HyperLTLS quantifier-free formulas, where the syntax of ψ is as follows:

ψ ::= ⊤ | p[x] | ¬ψ | ψ ∧ ψ | XΓψ | ψUΓψ

where p ∈ AP, x ∈ VAR, Γ is a finite set of LTL formulas over AP, and XΓ and UΓ are
the stutter-relativized versions of the LTL temporal modalities. Informally, the relativized
temporal modalities XΓ and UΓ are evaluated by a lockstepwise traversal of the Γ-stutter
traces associated with the currently quantified traces. Standard HyperLTL corresponds to the
fragment of HyperLTLS where the subscript of each temporal modality is the empty set ∅.

Given a HyperLTLS quantifier-free formula ψ and a pointed trace assignment Π such
that Dom(Π) contains the trace variables occurring in ψ, the satisfaction relation Π |= ψ is
inductively defined as follows (we omit the semantics of the Boolean connectives):

Π |= p[x] ⇔ Π(x) = (π, i) and p ∈ π(i)
Π |= XΓψ ⇔ succΓ(Π) |= ψ

Π |= ψ1UΓψ2 ⇔ for some i ≥ 0 : succ iΓ(Π) |= ψ2 and succ kΓ (Π) |= ψ1 for all 0 ≤ k < i

Stuttering LTL formulas, corresponding to one-variable HyperLTLS quantifier-free formulas,
can be translated in polynomial time into equivalent LTL formulas (see [6]). Thus, since LTL
satisfiability is Pspace-complete, the following result holds.

▶ Proposition 7. The trace properties definable by HyperLTLS formulas are LTL definable,
and single-trace satisfiability of HyperLTLS is Pspace-complete.

HyperLTLS versus A-HyperLTL. We show that HyperLTLS and A-HyperLTL are expres-
sively incomparable even over singleton sets of atomic propositions. By Theorem 2, unlike
HyperLTLS , A-HyperLTL does not subsume HyperLTL even when |AP| = 1. Hence, HyperLTLS
is not subsumed by A-HyperLTL even when |AP| = 1. We show now that the converse holds
as well. Intuitively, A-HyperLTL can encode counting mechanisms which cannot be expressed
in HyperLTLS . Let AP = {p}. We exhibit two families {Ln}n≥1 and {L′

n}n≥1 of trace sets
and an A-HyperLTL formula φA such that

φA can distinguish the traces set Ln and L′
n for each n ≥ 1, but

for each HyperLTLS formula ψ, there is n such that ψ does not distinguish Ln and L′
n.
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For each n ≥ 1, let πn, ρn, and ρ′
n be the traces defined as:

πn
def= (∅ · p)n · ∅ω ρn

def= (∅ · p)2n · ∅ω ρ′
n

def= (∅ · p)2n+1 · ∅ω

For each n ≥ 1, define Ln
def= {πn, ρn} and L′

n
def= {πn, ρ′

n}. Let ψ1(x) and ψ2(x) be two
one-variable quantifier-free HyperLTL formulas capturing the following requirements:

ψ1(x) captures traces of the form (∅ · p)k · ∅ω for some k ≥ 1,
ψ2(x) captures traces of the form (∅2 · p2)k · ∅ω for some k ≥ 1.

Let ψ(x, y) be the two-variable quantifier-free HyperLTL formula defined as follows:

ψ(x, y) def= F(p[x] ∧ p[y] ∧ XG(¬p[x] ∧ ¬p[y]))

Intuitively, if x is bound to a trace ν1 satisfying ψ1 and y is bound to a trace ν2 satisfying
ψ2, then ψ(x, y) holds iff ν1 is of the form (∅ · p)2k and ν2 is of the form (∅2 · p2)k for some
k ≥ 1. The A-HyperLTL formula φA is then defined as follows:

φA
def= ∀x1.∀x2.E

(
[ψ(x1, x2)∧ψ1(x1)∧ψ1(x2)] ∨ [ψ(x1, x2)∧

∨
i∈{1,2}

(ψ1(xi)∧ψ2(x3−i))]
)

Let π a trace of the form π = (∅ · p)k · ∅ω for some k ≥ 1. We observe that the unique
stuttering expansion ν1 of π such that ν1 satisfies ψ1(x) is π itself. Similarly, there is a
unique stuttering expansion ν2 of π such that ν2 satisfies ψ2(x), and such a trace ν2 is given
by (∅2 · p2)k · ∅ω. Fix n ≥ 1. Let us consider the trace set Ln = {πn, ρn}. By construction, if
both variables x1 and x2 in the definition of φA are bound to the same trace π in Ln, then
the first disjunct in the definition of φA is fulfilled by taking π itself as an expansion of π.
On the other hand, assume that variable x1 (resp., x2) is bound to trace πn and variable x2
(resp., x1) is bound to trace ρn. In this case, by taking as stuttering expansion of πn the
trace (∅2 · p2)n · ∅ω and as stuttering expansion of ρn = (∅ · p)2n · ∅ω the trace ρn itself, the
second disjunct in the definition of φA is fulfilled. Hence, Ln is a model of φA.

Now, we show that L′
n = {πn, ρ′

n} does not satisfy φA. Let us consider the mapping
assigning to variable x1 the trace πn and to variable x2 the trace ρ′

n. With this mapping, the
quantifier-free part of φA cannot be fulfilled. This because the unique stuttering expansion
of πn = (∅ · p)n · ∅ω (resp., ρ′

n = (∅ · p)2n+1 · ∅ω) satisfying ψ1 is πn (resp., ρ′
n) itself.

Moreover, the unique stuttering expansion of πn (resp., ρ′
n) satisfying ψ2 is (∅2 · p2)n · ∅ω

(resp., (∅2 · p2)2n+1 · ∅ω). Hence, for all n ≥ 1, Ln |= φA and L′
n ̸|= φA. On the other hand,

one can show that the following holds (for details, see [7]).

▶ Proposition 8. For each HyperLTLS formula ψ, there is n ≥ 1 s.t. Ln |= ψ iff L′
n |= ψ.

Thus, since A-HyperLTL does not subsume HyperLTLS , we obtain the following result.

▶ Corollary 9. A-HyperLTL and HyperLTLS are expressively incomparable.

3.3 Results for Context HyperLTL (HyperLTLC)
Context HyperLTL (HyperLTLC) [6] extends HyperLTL by unary modalities ⟨C⟩ parameterized
by a non-empty subset C of trace variables – called the context – which restrict the evaluation
of the temporal modalities to the traces associated with the variables in C. We show that
HyperLTLC is not subsumed by A-HyperLTL or HyperLTLS , and single-trace satisfiability
of HyperLTLC is undecidable. Moreover, we provide a characterization of the finite trace
properties denoted by HyperLTLC formulas in terms of the extension FOf [<, +] of standard
first-order logic FOf [<] over finite words with addition. We also establish that the variant of
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FOf [<, +] over infinite words characterizes the trace properties expressible in the extension
of HyperLTLC with past temporal modalities. Finally, we identify a fragment of HyperLTLC
which subsumes HyperLTL and for which model checking is decidable.

HyperLTLC formulas are linear-time hyper sentences over multi-trace specifications ψ,
called HyperLTLC quantifier-free formulas, where the syntax of ψ is as follows:

ψ ::= ⊤ | p[x] | ¬ψ | ψ ∧ ψ | Xψ | ψUψ | ⟨C⟩ψ

where p ∈ AP, x ∈ VAR, and ⟨C⟩ is the context modality with ∅ ̸= C ⊆ VAR. A context C
is global for a formula φ if C contains all the trace variables occurring in φ. Let Π be a
pointed-trace assignment. Given a context C and an offset i ≥ 0, we denote by Π +C i the
pointed-trace assignment with domain Dom(Π) defined as follows. For each x ∈ Dom(Π),
where Π(x) = (π, h): [Π +C i](x) = (π, h + i) if x ∈ C, and [Π +C i](x) = Π(x) otherwise.
Intuitively, the positions of the pointed traces associated with the variables in C advance
of the offset i, while the positions of the other pointed traces remain unchanged. Let ψ be
a HyperLTLC quantifier-free formula such that Dom(Π) contains the variables occurring in
ψ. The satisfaction relation (Π, C) |= ψ is defined as follows (we omit the semantics of the
Boolean connectives):

(Π, C) |= p[x] ⇔ Π(x) = (π, i) and p ∈ π(i)
(Π, C) |= Xψ ⇔ (Π +C 1, C) |= ψ

(Π, C) |= ψ1Uψ2 ⇔ for some i ≥ 0 : (Π +C i, C) |= ψ2 and (Π +C k, C) |= ψ1 for all k < i

(Π, C) |= ⟨C′⟩ψ ⇔ (Π, C′) |= ψ

We write Π |= ψ to mean that (Π,VAR) |= ψ.

HyperLTLC versus A-HyperLTL and HyperLTLS. We show that HyperLTLC is able to
capture powerful non-regular trace properties which cannot be expressed in A-HyperLTL or
in HyperLTLS . In particular, we consider the following trace property over AP = {p}:

Suffix Property: a trace π satisfies the suffix property if π has a proper suffix πi for some
i > 0 such that πi = π.

This property can be expressed in HyperLTLC by the following formula
φsuff

def= ∀x1. ∀x2.
∧
p∈AP G(p[x1]↔ p[x2]) ∧ {x2}FX{x1, x2}

∧
p∈AP G(p[x1]↔ p[x2])

We show that no A-HyperLTL and no HyperLTLS formula is equivalent to φsuff.

▶ Theorem 10. A-HyperLTL and HyperLTLS cannot express the suffix property. Hence,
HyperLTLC is not subsumed by A-HyperLTL or by HyperLTLS.

Proof sketch. By Proposition 7, the set of single-trace models of a HyperLTLS formula is
regular. Thus, since the suffix trace property is not regular, the result for HyperLTLS follows.

Consider now A-HyperLTL. For each n ≥ 1, let πn
def= (pn ·∅)ω and π′

n
def= pn+1 ·∅·(pn ·∅)ω.

By construction πn satisfies the suffix property but π′
n not. Hence, for each n ≥ 1, the

HyperLTLC formula φsuff distinguishes the singleton sets {πn} and {π′
n}. On the other hand,

we can show the following result, hence, Theorem 10 directly follows (a proof of the following
claim is given in [7]).

▷ Claim. For each A-HyperLTL formula ψ, there is n ≥ 1 such that {πn} |= ψ iff {π′
n} |=

ψ. ◀

CONCUR 2022
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Single-trace satisfiability and characterization of HyperLTLC finite-trace properties. Like
A-HyperLTL, and unlike HyperLTL and HyperLTLS , single-trace satisfiability of HyperLTLC
turns out to be undecidable. In particular, by a straightforward adaptation of the undecid-
ability proof in [6] for model checking HyperLTLC , one can reduce the recurrence problem in
Minsky counter machines [23] to single-trace satisfiability of HyperLTLC .

▶ Theorem 11. The single-trace satisfiability problem for A-HyperLTL is Σ1
1-hard.

A finite trace (over AP) is a finite non-empty word over 2AP. By adding a fresh proposition
# /∈ AP, a finite trace can be encoded by the trace enc(w) over AP ∪ {#} given by
w · {#}ω. Given a HyperLTLC formula φ over AP ∪ {#}, the finite-trace property denoted
by φ is the language Lf (φ) of finite traces w over AP such that the single-trace model
{enc(w)} satisfies φ. We provide now a characterization of the finite-trace properties denoted
by HyperLTLC formulas over AP ∪ {#} in terms of the extension FOf [<, +] of standard
first-order logic FOf [<] over finite words on 2AP with addition. Formally, FOf [<, +] is
a first-order logic with equality over the signature {<,+} ∪ {Pa | a ∈ AP}, where the
atomic formulas ψ have the following syntax with x, y and z being first-order variables:
ψ

def= x = y | x < y | z = y + x | Pa(x). A FOf [<, +] sentence (i.e., a FOf [<, +] formula
with no free variables) is interpreted over finite traces w, where: (i) variables ranges over the
set {0, . . . , |w| − 1} of positions of w, (ii) the binary predicate < is the natural ordering on
{0, . . . , |w| − 1}, and (iii) the predicates z = y + x and Pa(x) are interpreted in the obvious
way. We establish the following result.

▶ Theorem 12. Given a FOf [<, +] sentence φ over AP, one can construct in polynomial
time a HyperLTLC formula ψ over AP ∪ {#} such that Lf (ψ) is the set of models of φ. Vice
versa, given a HyperLTLC formula ψ over AP ∪ {#}, one can construct in single exponential
time a FOf [<, +] sentence φ whose set of models is Lf (ψ).

Intuitively, when a HyperLTLC formula ψ over AP ∪ {#} is interpreted over singleton
models {enc(w)} for a given finite trace w, the trace variables in the quantifier-free part of
ψ and the temporal modalities evaluated in different contexts can simulate quantification
over positions in w and the atomic formulas of FOf [<, +]. In particular, the addition
predicate z = x+ y can be simulated by requiring that two segments of w whose endpoints
are referenced by trace variables have the same length: this is done by shifting with the
eventually modality in a suitable context the left segment of a non-negative offset, and by
checking that the endpoints of the resulting segments coincide. Note that for trace variables
x and y which refer to positions i and j of w, one can require that i and j coincide by
the HyperLTLC formula {x, y}F(¬#[x] ∧ ¬#[y] ∧ X(#[x] ∧#[y])). Similarly, if we consider
the extension of HyperLTLC with the past counterparts of the temporal modalities, then
the trace properties denoted by past HyperLTLC formulas correspond to the ones denoted
by sentences in the variant FO[<, +] of FOf [<, +] over infinite words on 2AP (traces). For
arbitrary traces, past temporal modalities are crucial for enforcing that two variables refer to
the same position (for details see [7]).

▶ Theorem 13. Past HyperLTLC and FO[<, +] capture the same class of trace properties.

Results about model checking HyperLTLC . Model checking HyperLTLC is known to be
undecidable even for formulas where the unique temporal modality occurring in the scope of
a non-global context is F. For the fragment where the unique temporal modality occurring
in a non-global context is X, then the problem is decidable. This fragment has the same
expressiveness as HyperLTL but it is exponentially more succinct than HyperLTL [6]. We
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provide now new insights on model checking HyperLTLC . On the negative side, we show that
model checking is undecidable even for the fragment U consisting of two-variable quantifier
alternation-free formulas of the form ∃x1.∃x2. ψ0 ∧ {x2}F{x1, x2}ψ, where ψ0 and ψ are
quantifier-free HyperLTL formulas. A proof of Theorem 14 appears in [7].

▶ Theorem 14. Model-checking against the fragment U of HyperLTLC is Σ1
0-hard.

By Theorem 14, HyperLTLC model checking becomes undecidable whenever in a formula
a non-singleton context C occurs within a distinct context C ′ ≠ C. Thus, we consider the
fragment of HyperLTLC , called simple HyperLTLC , where each context C which occurs in the
scope of a distinct context C ′ ̸= C is a singleton. Note that simple HyperLTLC subsumes
HyperLTL.

▶ Theorem 15. The model checking problem of simple HyperLTLC is decidable.

Theorem 15 is proven by a polynomial time translation of simple HyperLTLC formulas
into equivalent sentences of first-order logic FO[<,E] with the equal-level predicate E (see
[16]) whose model checking problem is known to be decidable [10]. This logic is interpreted
over sets L of traces, and first-order variables refer to pointed traces over L. In simple
HyperLTLC , the evaluation of temporal modalities is subdivided in two phases. In the first
phase, modalities are evaluated by a synchronous traversal of the traces bound to the variables
in a non-singleton context. In the second phase, the temporal modalities are evaluated along
a single trace and singleton contexts allows to switch from a trace to another one by enforcing
a weak form of mutual temporal relation. This behaviour can be encoded in FO[<,E] (for
details, see [7]).

3.4 Hµ versus A-HyperLTL, HyperLTLS, and HyperLTLC

Both HyperLTLS and HyperLTLC are subsumed by Hµ and Hyper AAWA [6]. In particular,
quantifier-free formulas of HyperLTLS and HyperLTLC can be translated in polynomial time
into equivalent Büchi AAWA. Corollary 5 shows that A-HyperLTL is subsumed by Hµ as well.
Thus, since A-HyperLTL and HyperLTLS are expressively incomparable (by Corollary 9), there
is an Hµ formula which cannot be expressed in A-HyperLTL (resp., HyperLTLS). Therefore,
we obtain the following corollary.

▶ Corollary 16. Hµ is strictly more expressive than A-HyperLTL and HyperLTLS, and sub-
sumes HyperLTLC .

4 Asynchronous vs Synchronous Extensions of HyperLTL

We compare now the expressiveness of the asynchronous extensions of HyperLTL against
S1S[E] [10]. S1S[E] is a monadic second-order logic with equality over the signature {<,
E} ∪ {Pa | a ∈ AP} which syntactically extends the monadic second-order logic of one
successor S1S with the equal-level binary predicate E. While S1S is interpreted over traces,
S1S[E] is interpreted over sets of traces. A set L of traces induces the relational structure
with domain L × N (i.e., the set of pointed traces associated with L), where

the binary predicate < is interpreted as the set of pairs of pointed traces in L × N of the
form ((π, i1), (π, i2)) such that i1 < i2, and
the equal-level predicate E is interpreted as the set of pairs of pointed traces in L × N of
the form ((π1, i), (π2, i)).

CONCUR 2022
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Hence, < allows to compare distinct timestamps along the same trace, while the equal-level
predicate allows to compare distinct traces at the same timestamp. For a formal definition
of the syntax and semantics of S1S[E], see [7].

We show that the considered asynchronous extensions of HyperLTL are not subsumed
by S1S[E]. Intuitively, for some k ≥ 1, the logic A-HyperLTL (resp., HyperLTLS , resp.,
HyperLTLC) can express hyperproperties whose set of models having cardinality k (k-models)
can be encoded by a non-regular set of traces. On the other hand, we show that the encoding
of the k-models of a S1S[E] formula always leads to a regular language.

Let k ≥ 1. We consider the set of atomic propositions given by AP× [1, k] for encoding
sets L of traces (over AP) having cardinality k by traces over AP× [1, k].

A trace ν over AP× [1, k] is well-formed if for all ℓ, ℓ′ ∈ [1, k] with ℓ ̸= ℓ′, there is i ∈ N and
p ∈ AP so that (p, ℓ) ∈ ν(i) iff (p, ℓ′) /∈ ν(i). A well-formed trace ν over AP× [1, k] encodes
the set L(ν) of the traces π (over AP) such that there is ℓ ∈ [1, k] where π corresponds to
the projection of ν over AP× {ℓ}, i.e. for each i ≥ 0, π(i) = {p ∈ AP | (p, ℓ) ∈ ν(i)}. Since ν
is well–formed, |L(ν)| = k and we say that ν is a k-code of L(ν). Note that for a set L of
traces (over AP) of cardinality k, each ordering of the traces in L induces a distinct k-code.

Given an hyperproperty specification ξ over AP, a k-model of ξ is a set of traces satisfying
ξ having cardinality k. The k-language of ξ is the set of k-codes associated with the k-models
of ξ. The specification ξ is k-regular if its k-language is a regular language over AP× [1, k].

We first show that for each k ≥ 1, S1S[E] sentences are k-regular.

▶ Lemma 17. Let k ≥ 1 and φ be a S1S[E] sentence over AP. Then, one can construct a
S1S sentence φ′ over AP× [1, k] whose set of models is the k-language of φ.

A proof of Lemma 17 appears in [7]. Since S1S sentences capture only regular languages
of traces, by Lemma 17, we obtain the following result.

▶ Proposition 18. Let k ≥ 1 and φ be a S1S[E] sentence over AP. Then, φ is k-regular.

We now show that given one of the considered asynchronous extensions L of HyperLTL,
there is k ≥ 1 and a L formula φ such that φ is not k-regular.

▶ Proposition 19. There is a HyperLTLC formula over {p} which is not 1-regular, and there
are A-HyperLTL and HyperLTLS formulas over {p} which are not 2-regular.

Proof. Let AP = {p}. The HyperLTLC formula φsuff defined in Section 3.3 whose models
consist of the singletons {π} such that π satisfies the suffix property is not 1-regular.

Consider now A-HyperLTL and HyperLTLS . For all k, n ≥ 1, let πk,n
def= ∅k · ({p} · ∅)n · ∅ω

and Lk,n
def= {π1,n, πk,n}. We denote by L2 the set of traces over AP × [1, 2] which are

2-codes of the sets Lk,n for k > 1 and n ≥ 1. Clearly, L2 is not regular. Let θ(x) be a
one-variable quantifier-free HyperLTL formula capturing the traces πk,n for k, n ≥ 1. We
define a HyperLTLS formula ψS and an A-HyperLTL formula ψA whose 2-language is L2:

ψS
def= ∃x1. ∀x2.Xp[x1] ∧ θ(x1) ∧ θ(x2) ∧ G{p}(p[x1]↔ p[x2]);

ψA
def= ∃x1. ∀x2. ∀x3.E.Xp[x1] ∧ θ(x2) ∧ θ(x3) ∧ G(p[x2]↔ p[x3]). ◀

By Propositions 18 and 19, and since A-HyperLTL, HyperLTLS , and HyperLTLC are subsumed
by Hµ (Corollary 16), we obtain the following result.

▶ Corollary 20. A-HyperLTL, HyperLTLS, HyperLTLC , and Hµ are not subsumed by S1S[E].
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5 Conclusions

Two interesting questions are left open. The first concerns the expressiveness of HyperLTLC
versus A-HyperLTL and HyperLTLS . We have shown that HyperLTLC is not subsumed by
A-HyperLTL or HyperLTLS . We conjecture that the converse holds too. The intuition is
that (unlike HyperLTLC) A-HyperLTL and HyperLTLS implicitly allow a restricted form of
monadic second-order quantification. In particular, we conjecture that the hyperproperty
characterizing the sets consisting of stuttering-equivalent traces, which can be easily expressed
both in A-HyperLTL and HyperLTLS , cannot be captured by HyperLTLC .

The second question is whether S1S[E] is subsumed or not by Hµ. It is known that
contrary to S1S[E] and FO[<,E], HyperLTL cannot express requirements which relate at
some point an unbounded number of traces [5]. The main reason is that – differently from
S1S[E] and FO[<,E] – quantifiers in HyperLTL only refer to the initial positions of the traces.
Since in Hµ the semantics of quantifiers is the same as HyperLTL, we conjecture that the
inexpressiveness result for HyperLTL in [5] can be extended to Hµ as well. This would imply
together with the results of Corollary 20 that S1S[E] and Hµ are expressively incomparable
and that so are FO[<,E] and Hµ.

Future work also includes an expressive comparison with Hypertrace Logic [1], a logical
framework recently introduced which extends FO[<] with quantification over traces to express
sequential information flow-properties. Also, we plan to study other extensions of temporal
logic for asynchronous hyperproperties, in particular for recursive programs [20] and for
multi-agent systems [3].
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Abstract
One of the main motivations for this work is to obtain a distributed Krohn-Rhodes theorem for
Mazurkiewicz traces. Concretely, we focus on the recently introduced operation of local cascade
product of asynchronous automata and ask if every regular trace language can be accepted by a
local cascade product of “simple” asynchronous automata.

Our approach crucially relies on the development of a local and past-oriented propositional
dynamic logic (LocPastPDL) over traces which is shown to be expressively complete with respect
to all regular trace languages. An event-formula of LocPastPDL allows to reason about the causal
past of an event and a path-formula of LocPastPDL, localized at a process, allows to march along
the sequence of past-events in which that process participates, checking for local regular patterns
interspersed with local tests of other event-formulas. We also use additional constant formulas to
compare the leading process events from the causal past. The new logic LocPastPDL is of independent
interest, and the proof of its expressive completeness is rather subtle.

Finally, we provide a translation of LocPastPDL formulas into local cascade products. More
precisely, we show that every LocPastPDL formula can be computed by a restricted local cascade
product of the gossip automaton and localized 2-state asynchronous reset automata and localized
asynchronous permutation automata.
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1 Introduction

Mazurkiewicz traces form a well-established model of concurrency [11], allowing in particular
to describe distributed processes synchronising via shared actions. The concept of recog-
nizability captures important properties of Mazurkiewicz trace languages and it is natural
to ask whether recognizable (or regular) trace languages can always be decomposed as a
product of simpler languages – in an appropriate formalism.

This is done in the case of regular languages of finite words by the Krohn-Rhodes
theorem [16], which states that every regular language is recognized by a cascade product of
simple automata, namely reset and permutation automata. The Krohn-Rhodes theorem has
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wide-ranging applications, in particular it offers a path to the proof of certain properties of
regular languages or of logical fragments by induction on the length of the cascade product [20].
One of the two main results of this paper is a distributed version of this theorem.

Earlier work by the authors [1, 2] established a similar result, but only for first-order
definable trace languages. The main ingredient of that proof was the study of a fragment of
local temporal logic on traces. As temporal logic specifies only first-order definable languages,
it could not be used to cover all regular trace languages and new ideas had to be introduced:
we define here a local and past-oriented propositional dynamic logic (LocPastPDL) over traces
and our second main result is that this logic is expressively complete with respect to all
regular trace languages, which is of independent interest.

Before we say more about our results, let us point out the general philosophy of our work:
the remarkable development of the theory of regular languages of finite words has used a
triple approach: automata-theoretic, logical and algebraic. An example of this approach is
the characterization of star-free languages by counter-free automata, by the aperiodicity of
their syntactic monoid, by first-order (FO) definability, or by definability in linear temporal
logic. See [10] for a survey on first-order definable word languages.

Our work is situated in an effort to apply the same philosophy to the study of regular
trace languages. Many results of this sort already exist. In particular, regular trace
languages are characterized by Zielonka’s asynchronous automata [24] (see Section 5), and
by MSO (monadic second-order) definability (Thomas [22]). Star-freeness is equivalent to
FO-definability (Ebinger, Muscholl [12]) and to definability in several global or local temporal
logics (Thiagarajan, Walukiewicz [21], Diekert, Gastin [8, 9]). Star-free trace languages
are also characterized by the aperiodicity of their syntactic monoids (Guaiana, Restivo,
Salemi [15]), and Kufleitner [17] gave algebraic and combinatorial characterizations of certain
fragments of local linear temporal logic. A discussion of these developments, and of why
there are not more algebraic characterizations of significant classes of regular trace languages
can be found in [1, 2].

In this paper, traces are viewed as implemented over a distributed architecture: each
action (each letter of the alphabet) is located over a non-empty subset of processes from a
finite set P, and this location determines which pairs of letters are independent. This view of
traces is what informs the definition of asynchronous automata [24]. As in [19, 1, 2], we use
asynchronous automata not just as acceptors, using accepting states, but also as machines
locally computing relabeling functions for input traces (similar in spirit to the sequential
letter-to-letter transducers on words). The composition of these relabeling functions is
captured by our notion of a local cascade product.

The precise statement of our Krohn-Rhodes theorem for trace languages uses also the
notion of a restricted local cascade product with the gossip automaton. The latter is an
asynchronous automaton introduced by Mukund and Sohoni [19], which is entirely determined
by the distributed architecture under consideration. The information contributed by the
gossip automaton in a restricted local cascade product is limited to the event-level and the
trace-level comparisons of the order that may exist within the trace of the latest views of the
different processes.

As indicated above, (local) temporal logic is not suitable to discuss trace languages that
are not FO-definable and we turn to propositional dynamic logic (PDL). This logic was
introduced by Fischer and Ladner [13] as a way to reason about programs. Over finite words,
an appropriate version called LDL was shown to be expressively complete with respect to MSO
by Giacomo and Vardi [7], see also [23]. PDL has been applied in different forms to various
structures, e.g., Kripke structures [14], message-sequence charts (MSC) and message-passing
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systems [6, 18]. Recently, Bollig, Fortin and Gastin [4] introduced a star-free version of PDL
interpreted on MSC, and showed its expressively completeness with respect to first-order
logic. There are however not many results using PDL on traces (see [5, Chapter 5]).

More specifically we introduce a past-oriented fragment of PDL, called PastPDL, and a
local fragment of it, called LocPastPDL. An event-formula of LocPastPDL allows to reason
about the causal past of an event and a path-formula of LocPastPDL, localized at a process,
allows to march along the sequence of past-events in which that process participates, checking
for local regular patterns interspersed with local tests of other event-formulas. We also use
additional constant formulas to compare the leading events for each process, in the strict
causal past of a given event. The proof of the expressive completeness of PastPDL and
LocPastPDL is rather subtle and the result is of independent interest.

The paper is organized as follows. Section 2 lays down the basic notion and terminology
for traces over distributed architecture and the PDL fragments PastPDL and LocPastPDL
are introduced in Section 3.

The precise statement on the expressive completeness of PastPDL and LocPastPDL,
Theorem 3, is proved in Section 4. The proof is by induction on the number of processes
in the distributed architecture. The case of a single process corresponds to the expressive
completeness of linear dynamic logic [7]. Generalizing this to several processes is highly
non-trivial. It crucially depends on a lifting lemma which constructs a formula liftP (φ) from
a formula φ in PastPDL so that φ holds on a suffix s of a (prime) trace t = rs if and only if
liftP (φ) holds on t – where the suffix s is determined by a subset P of processes.

In Section 5, we briefly describe asynchronous automata, and the important notion
of asynchronous labeling functions computed by such automata, introduced in [1, 2]. As
mentioned above, the latter notion generalizes sequential transducers, and is very close to
the locally computable functions of Mukund and Sohoni [19]. In the same section, we explain
how the composition of asynchronous labeling functions corresponds to the local cascade
product operation on asynchronous automata, and we define the notion of the restricted
local cascade products of the gossip automaton and an arbitrary asynchronous automaton.

Our main decomposition theorem, Theorem 16, is proved in Section 6. It shows how
any LocPastPDL event formula is computed by a restricted local cascade product of a copy
of the gossip automaton, followed by a cascade product of localized reset and permutation
automata. A Krohn-Rhodes-like statement, Corollary 17, follows immediately.

2 Mazurkiewicz traces

We consider (Mazurkiewicz) traces as implemented over a distributed architecture. More
precisely, we fix a finite set P of processes. A distributed alphabet over P is a pair (Σ, loc)
where the location function loc : Σ→ 2P \{∅} assigns to each letter a ∈ Σ the set of processes
which participate in a. For i ∈ P, we let Σi = {a ∈ Σ | i ∈ loc(a)}. The location function
induces an independence relation over Σ: letters a and b are independent if loc(a)∩ loc(b) = ∅,
and they are dependent otherwise.

When dealing with posets, and in particular with traces, we use the following notation.
If (E,≤) is a poset and e ∈ E, we let ↓e (the past of e) be the set {f ∈ E | f ≤ e}, and we
let ⇓e = ↓e \ {e} (the strict past of e). If X ⊆ E, we let ↓X =

⋃
e∈X ↓e.

A trace over (Σ, loc) is a triple t = (E,≤, λ) where (E,≤) is a finite poset and λ : E → Σ
is a labeling function, such that

if e, e′ ∈ E and e′ is an immediate successor of e (that is, e < e′ and e ≤ e′′ ≤ e′ implies
e′′ = e or e′′ = e′), then λ(e) and λ(e′) are dependent;
if e, e′ ∈ E and λ(e) and λ(e′) are dependent, then e ≤ e′ or e′ ≤ e.

CONCUR 2022



28:4 PDL and Cascade Decompositions for Traces

The elements of E are traditionally called events. Further, if i ∈ P, Ei denotes the set of
i-events (i.e., events in which process i participates), namely Ei = {e ∈ E | i ∈ loc(λ(e))}. It
is clear that Ei is totally ordered by ≤.

We let Tr(Σ, loc) denote the set of all traces over (Σ, loc). We write simply Tr(Σ) if loc is
clear from the context. The empty trace (where E = ∅) is written ε.

Tr(Σ) is a monoid for the following concatenation operation on traces. Let t = (E,≤, λ)
and t′ = (E′,≤′, λ′) be elements of Tr(Σ). Without loss of generality, we can assume E and
E′ to be disjoint. We define tt′ to be the trace (E ∪ E′,≤′′, λ′′) where
≤′′ is the transitive closure of ≤∪≤′ ∪{(e, e′) ∈ E×E′ | λ(e) and λ′(e′) are dependent},
λ′′ : E′′ → Σ where λ′′(e) = λ(e) if e ∈ E; otherwise, λ′′(e) = λ′(e).

This operation is associative, with the empty trace ε as unit. Hence, Tr(Σ) is a monoid.
A trace t′ is said to be a prefix (resp. suffix) of a trace t if there exists t′′ such that t = t′t′′

(resp. t = t′′t′). Prefixes of t coincide with restrictions of t to downward-closed subsets of
events. Prefixes of the form ↓e or ⇓e (e ∈ E) are important examples.

A trace language over Σ is a subset of Tr(Σ). Regular trace languages are characterized
by different classical mechanisms: MSO logic, saturation of regular languages of words,
asynchronous automata. In this paper, we say that a trace language L is regular if it is
recognized by a morphism η : Tr(Σ)→M to a finite monoid: that is, if L = η−1(η(L)).

3 A propositional dynamic logic for traces

Past propositional dynamic logic. Inspired by the definition of PDL [13] and its version
meant to be interpreted on finite words (LDL [7]), we introduce PastPDL, past propositional
dynamic logic, to reason about Mazurkiewicz traces. The syntax of PastPDL is the following.

Φ ::= EMφ | Li ≤ Lj | Li,j ≤ Lk | Φ ∨ Φ | ¬Φ
φ ::= a | Yi ≤ Yj | Yi,j ≤ Yk | φ ∨ φ | ¬φ | ⟨π⟩
π ::=←i | φ? | π + π | π · π | π∗

Calling this logic past is justified by the fact that we allow only backward ←i edges and
past-oriented constant formulas Li ≤ Lj , Li,j ≤ Lk, Yi ≤ Yj , Yi,j ≤ Yk, (semantics below).

Formulas of the form Φ, φ and π are called, respectively, trace formulas or sentences, event
formulas and path formulas. A trace formula is evaluated on a trace (and hence it defines a
trace language), an event formula is evaluated at an event of a trace, and a path formula is
evaluated at a pair of events. The semantics of PastPDL is as follows. Let t = (E,≤, λ) be a
trace. For each process i ∈ P, let Ei denote the set of i-events of t. We let

t |= EMφ if t, e |= φ for some maximal event e in t,
t |= Li ≤ Lj if Ei ̸= ∅, Ej ̸= ∅ and max(Ei) ≤ max(Ej),
t |= Li,j ≤ Lk if Ei ̸= ∅, Ej ∩ ↓Ei ̸= ∅, Ek ̸= ∅ and max(Ej ∩ ↓Ei) ≤ max(Ek).

In other words, a trace satisfies Li ≤ Lj if the last event on process i is below the last event
on process j, and it satisfies Li,j ≤ Lk when the maximal event on process j which is below
some event on process i is below the last event on process k.

Note also that t |= EMφ implies in particular that the trace t is nonempty, so the sentence
¬EM⊤ defines the empty trace. Also, Li ≤ Li simply means that Ei ̸= ∅, i.e., the trace
contains some i-event.
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We now turn to event and path formulas. Recall that if t = (E,≤, λ) is a trace and e ∈ E
is an event, then ⇓e denotes the strict past of e in t. For a process i ∈ P, we denote by ei
the unique maximal event of ⇓e ∩ Ei, if it exists, i.e., if ⇓e ∩ Ei ≠ ∅. If j ∈ P, we write ei,j
for (ei)j , that is, for the maximal event of ⇓ei ∩ Ej if ei exists and ⇓ei ∩ Ej ̸= ∅. If e, f are
events of t, we let

t, e |= a if λ(e) = a

t, e |= Yi ≤ Yj if ei, ej exist and ei ≤ ej
t, e |= Yi,j ≤ Yk if ei,j , ek exist and ei,j ≤ ek
t, e |= ⟨π⟩ if there exists an event f ∈ E such that t, e, f |= π

t, e, f |=←i if f is the immediate predecessor of e on process i
t, e, f |= φ? if e = f and t, e |= φ

t, e, f |= π1 + π2 if t, e, f |= π1 or t, e, f |= π2

t, e, f |= π1 · π2 if there is an event g, such that t, e, g |= π1 and t, g, f |= π2

t, e, f |= π∗ if there are events e = e0, e1, . . . , en = f with n ≥ 0
and t, ei, ei+1 |= π for all 0 ≤ i < n

We sometime use ⟨π⟩φ as a macro for ⟨π · φ?⟩. For instance, we may easily express a strict
since modality restricted to events on a specified process. More precisely, if i ∈ P is a
process and φ,ψ are event formulas, then the event formula ⟨(←i · φ?)∗ · ←iψ?⟩, denoted
φ Si ψ, holds at some event e of a trace t when there is a sequence fn, fn−1, . . . , f1, f0 = e of
consecutive i-events (n > 0) with t, fn |= ψ and t, fj |= φ for all 0 < j < n.

PastPDL is no more expressive than MSO logic.

▶ Proposition 1. For all PastPDL sentences Φ, event formulas φ and path formulas π, we
can construct MSO sentences Φ, and formulas φ(x), π(x, y) with respectively one or two free
first-order variables such that, for all traces t and events e, f in t, we have

t |= Φ if and only if t |= Φ
t, e |= φ if and only if t, x 7→ e |= φ(x)

t, e, f |= π if and only if t, x 7→ e, y 7→ f |= π(x, y)

The proof technique is folklore and is an easy structural induction. For the base case(s), we
note that the constant formulas Li ≤ Lj , Li,j ≤ Lk, Yi ≤ Yj and Yi,j ≤ Yk all have first-order
definitions. For the Kleene star π⋆, the induction step relies on the well-known fact that
transitive closure of an MSO-definable relation can be expressed in MSO.

It will be convenient in the sequel to use automata instead of regular expressions to
specify path formulas. Define a path automaton to be a tuple of the form A = (Q,∆, I, F ),
where Q is a finite, non-empty set of states, I, F ⊆ Q are, respectively, the sets of initial and
final states, and ∆ is a finite set of transitions of the form (q, α, q′) with q, q′ ∈ Q and

either α = φ? for some event formula φ (a test transition),
or α ∈ {←i | i ∈ P} (a move transition).

A path automaton specifies a path formula with the expected semantics: for a trace
t = (E,≤, λ) and two events e, f ∈ E, we have t, e, f |= A if there exists an accepting run
q0

α1−→ q1 · · · qn−1
αn−−→ qn and a sequence of events e = e0, e1, . . . , en−1, en = f such that for

all 0 ≤ m < n we have t, em, em+1 |= αm. Notice that if n = 0 the condition is simply e = f .
If A is a path automaton, then ⟨A⟩ is an event formula where t, e |= ⟨A⟩ if there exists

an event f ∈ E such that t, e, f |= A.

CONCUR 2022
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▶ Proposition 2. Path formulas and path automata are equally expressive:
1. For each path formula π, we can construct a path automaton Aπ such that for all traces t

and events e, f we have t, e, f |= π if and only if t, e, f |= Aπ.
2. For each path automaton A, we can construct a path formula πA such that for all traces

t and events e, f we have t, e, f |= A if and only if t, e, f |= πA.

This is a direct consequence of the equivalence between regular expressions and finite
state automata. Indeed, a path formula π can be seen as a regular expression over the
alphabet Γπ consisting of the moves ←i (i ∈ P) and the tests φ? which occur at the top level
of π. If Aπ is an automaton accepting the language of Γπ specified by π, then Aπ is a path
automaton which is equivalent to the path formula π. The converse is similarly justified.

Local past propositional dynamic logic. Proposition 2 shows that we may replace ⟨π⟩ with
⟨A⟩ in the syntax of PastPDL event formulas without changing the expressivity of the logic.
Adopting the syntax using path automata allows us to state the definition of LocPastPDL,
the local fragment of PastPDL. More precisely, say that a path automaton A is i-local for
some process i ∈ P, if all its move transitions are labeled with ←i. The automaton A is local
if it is i-local for some i ∈ P. The syntax of LocPastPDL is as follows:

Φ ::= EMφ | Li ≤ Lj | Li,j ≤ Lk | Φ ∨ Φ | ¬Φ
φ ::= a | Yi ≤ Yj | Yi,j ≤ Yk | φ ∨ φ | ¬φ | ⟨A⟩ .

where i, j, k ∈ P, a ∈ Σ and A ranges over local path automata.
The semantics of LocPastPDL is inherited from PastPDL. We show in Section 4 that both

logics are expressively complete with respect to regular trace languages.

4 Expressivity

The main result in this section is the following.

▶ Theorem 3. PastPDL and LocPastPDL are expressively complete, that is: a trace language
is regular if and only if it can be defined by a PastPDL (resp. LocPastPDL) sentence.

One direction of Theorem 3 is easily taken care of: we saw in Proposition 1 that PastPDL
sentences define regular trace languages. Conversely, let L be a regular language, and let η be
a morphism from Tr(Σ) to a finite monoid M , recognizing L. Since sentences of LocPastPDL
are closed under disjunction, it is enough to show that every trace language of the form
η−1(m) (m ∈M) is LocPastPDL-definable.

This is established in two steps. We first deal with prime traces. Recall that a trace
t = (E,≤, λ) is prime if E has a single maximal event, which we then denote by max(t). In
Theorem 4, we show how to construct a LocPastPDL event formula φ(m) such that, if t is a
prime trace, then η(t) = m if and only if t,max(t) |= φ(m).

Leveraging this partial result to handle all traces – and not just prime traces –, is done
in Theorem 7.

4.1 Expressivity of event formulas in LocPastPDL
As announced, we first show that event formulas in LocPastPDL are expressive enough to
describe regular sets of prime traces.
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▶ Theorem 4. Let η : Tr(Σ)→M be a morphism to a finite monoid. For each m ∈M , we
can construct a LocPastPDL event formula φ(m) such that, if t ∈ Tr(Σ) is a prime trace, then
η(t) = m if and only if t,max(t) |= φ(m).

The proof of Theorem 4, to be completed at the end of Section 4.1, is by induction on the
number of processes. We start with a high-level description of this proof. Let t be a prime
trace, let e = max(t) and let k be a process such that e ∈ Ek. Let f1 < f2 < · · · < fℓ = e

be the sequence of events on process k. Then t is equal to the product t1t2 · · · tℓ with
ti = ↓fi \ ↓fi−1 (↓f0 = ∅). Note that ti is prime, with max(ti) = fi, and that ti has no event
on process k apart from fi: this property of ti with respect to k opens the door to the usage
of the induction hypothesis.

More precisely, we use induction to construct for each m ∈ M an event formula φ(m)

such that, for all prime traces s = ↓g such that g is the only event on process k (and each ti
is of this form), we have η(s) = m if and only if s, g |= φ(m).

The next task is to “lift” the formula φ(m), meant to be interpreted on the factors ti, to
a formula liftk(φ(m)) to be interpreted on the full trace t. This is done in Lemma 6, in such
a way that ti, fi |= φ(m) if and only if t, fi |= liftk(φ(m)). The difference is subtle: in one
case, past modalities are evaluated on a scope contained in ti, whereas in the other, their
scope may span the full past of fi in t, i.e., t1 · · · ti. The lifted formula has to ensure that
one never goes below fi−1.

The particular properties of the ti which make this possible are abstracted out, and
generalized, by what we call residues. Somewhat informally, if P is a set of processes and
g is an event, we let resP (g) (the residue of the event g with respect to P ) be the largest
suffix of ↓g which does not contain any event on the processes in P except, perhaps, g itself.
Notice that ti = res{k}(fi). Lemma 6 proves, by structural induction, that event formulas in
PastPDL can be lifted with respect to residues.

Lemma 5, which plays a crucial role in the inductive proof of Lemma 6, shows how the
set P of processes may increase to some set P ′ when one moves from an event g to some
previous event g′. The determination of this set P ′ is possible thanks to the event formulas
Yi ≤ Yj and Yi,j ≤ Yk (primary and secondary comparisons).

The last step of the proof of Theorem 4 uses a k-local path automaton to visit the
sequence of events f1 < f2 < · · · < fℓ = e backward, checking along the path the values of
the η(ti) with event formulas of the form liftk(φ(mi)) and storing in its state the value of the
product η(ti) · · · η(tℓ): when the automaton has reached f1, the first event on process k, it
has computed η(t1)η(t2) · · · η(tℓ) = η(t).

The precise definition of residuation is as follows. For an event e of a trace t = (E,≤, λ)
and a process i ∈ P, recall that ei = max(⇓e∩Ei), if it exists, where Ei is the set of i-events
in E. By convention, we let ↓ei = ∅ when ei does not exist, i.e., when ⇓e ∩ Ei = ∅.

If P ⊆ P is a set of processes, the residue of e by P is the trace resP (e) = ↓e \
⋃
i∈P ↓ei.

In particular, resP (e) is a suffix of the trace ↓e, itself a prefix of t. We will use the following
technical result, which makes essential use of the primary and secondary comparison formulas
Yi ≤ Yj and Yi,j ≤ Yk.

▶ Lemma 5. Let t be a trace, i ∈ P a process and P ⊆ P a set of processes. Let e be an
event in t such that ei exists. Then we have

↓ei ∩ resP (e) =
{
ε if t, e |=

∨
k∈P Yi ≤ Yk,

resP ′(ei) otherwise,

where P ′ = P ∪ {j ∈ P | t, e |= Yi,j ≤ Yk for some k ∈ P}.
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Proof. By definition, we have ↓ei ∩ resP (e) = ↓ei \
⋃
k∈P ↓ek. This is the empty trace if and

only if ei is in one of the ↓ek (k ∈ P ), that is, if and only if t, e |=
∨
k∈P Yi ≤ Yk.

Let us now assume that t, e ̸|=
∨
k∈P Yi ≤ Yk. Note that resP ′(ei) = ↓ei \

⋃
k∈P ′ ↓ei,k.

Let f ∈
⋃
k∈P ′ ↓ei,k. We have f ≤ ei,k for some k ∈ P ′. If k ∈ P , then ei,k ≤ ek. If

k ̸∈ P , then ei,k ≤ ej for some j ∈ P . In both cases we have f ∈
⋃
k∈P ↓ek. Therefore⋃

k∈P ′ ↓ei,k ⊆
⋃
k∈P ↓ek and hence

↓ei ∩ resP (e) = ↓ei \
⋃
k∈P

↓ek ⊆ ↓ei \
⋃
k∈P ′

↓ei,k = resP ′(ei).

Conversely, let f ∈ resP ′(ei). In particular, f ∈ ↓ei. Assume that f ≤ ek for some
k ∈ P . Since t, e ̸|= Yi ≤ Yk, we know that ei ̸≤ ek. If ek < ei, then ei,k = ek and we get
f ∈

⋃
j∈P ′ ↓ei,j , a contradiction.

It follows that the events ei and ek are concurrent: ei∥ek. Let g be a maximal event in
↑f ∩ ↓ei ∩ ↓ek (this set is not empty since it contains f). Then there exists ℓ ∈ loc(g) such
that g = ei,ℓ. This implies that ℓ ∈ P ′ and again f ∈

⋃
j∈P ′ ↓ei,j , a contradiction.

This concludes the proof that resP ′(ei) is contained in ↓ei \
⋃
k∈P ↓ek = ↓ei ∩ resP (e). ◀

We now establish the technical core of the proof of Theorem 4, namely the following
lifting lemma, which turns an event formula satisfied by a residue of a trace t, into another
satisfied by the trace t itself.

▶ Lemma 6 (Lifting lemma). Let φ ∈ PastPDL be an event formula and P ⊆ P be a set of
processes. We can construct an event formula liftP (φ) ∈ PastPDL such that, for all traces
t = (E,≤, λ) and events e ∈ E in t, we have resP (e), e |= φ if and only if t, e |= liftP (φ).
Moreover, if φ ∈ LocPastPDL then liftP (φ) ∈ LocPastPDL.

Proof. The construction is by structural induction on φ. We first let

liftP (a) = a for each a ∈ Σ

liftP (Yi ≤ Yj) = (Yi ≤ Yj) ∧ ¬
∨
ℓ∈P

(Yi ≤ Yℓ) ∨ (Yj ≤ Yℓ)

liftP (Yi,j ≤ Yk) = (Yi,j ≤ Yk) ∧ ¬
∨
ℓ∈P

(Yi,j ≤ Yℓ) ∨ (Yk ≤ Yℓ)

The announced statement is easily verified for these atomic formulas. Similarly, boolean
combinations of formulas are handled by letting liftP (φ ∨ ψ) = liftP (φ) ∨ liftP (ψ) and
liftP (¬φ) = ¬liftP (φ).

The last, and more interesting case, is that where φ = ⟨A⟩, for a past path automaton
A = (Q,∆, I, F ). We let liftP (⟨A⟩) = ⟨AP ⟩, where AP = (Q′,∆′, I ′, F ′) is the path
automaton defined as follows:

Q′ = Q× 2P, I ′ = I × {P} and F ′ = F × 2P,
for each test transition (q1, φ?, q2) ∈ ∆ of A and each set P1 ⊆ P, we define the test
transition ((q1, P1), liftP1(φ)?, (q2, P1)) in AP ,
for each move transition (q1,←k, q2) ∈ ∆ of A and each sets P1, P2 ⊆ P with P1 ⊆ P2,
we define a test and move1 transition ((q1, P1), changek,P1,P2? · ←k, (q2, P2)) in AP where

changek,P1,P2 =
(
¬

∨
i∈P1

Yk ≤ Yi
)
∧

( ∧
j∈P2\P1

∨
i∈P1

Yk,j ≤ Yi
)
∧

( ∧
j /∈P2

¬
∨
i∈P1

Yk,j ≤ Yi
)

1 Formally, in order to comply with the definition of a path automaton, we should split each test and move
transition into a test transition followed by a move transition with a new intermediary state in-between.
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The formula above characterises the change of context when moving from an event e
on process k to the previous event ek on process k. It is based on Lemma 5. The first
conjunct says that resP1(e) ∩ ↓ek is nonempty. The remaining conjuncts characterises the
set P2 such that resP1(e) ∩ ↓ek = resP2(ek).

Observe that AP is again a past automaton and all reachable states (q, P ′) in AP satisfy
P ⊆ P ′. Moreover, if A is k-local then so is AP .

We claim that this construction is correct, i.e., resP (e), e |= ⟨A⟩ if and only if t, e |= ⟨AP ⟩.
The proof of this claim is in Appendix A. ◀

We can finally complete the proof of Theorem 4, which shows that, as far as prime traces
are concerned, LocPastPDL event formulas can express all regular properties.

Proof of Theorem 4. We establish a more precise statement: for m ∈ M and P ⊆ P,
we construct a LocPastPDL event formula φ

(m)
P such that, if t is a prime trace satisfying

loc(t \ {max(t)}) ⊆ P , then η(t) = m if and only if t,max(t) |= φ
(m)
P . The statement of the

theorem corresponds to the case P = P.
The proof is by induction on the cardinality of P . If P = ∅, a prime trace t satisfying the

condition loc(t \ {max(t)}) ⊆ P consists of the single event max(t). Therefore, we let

φ
(m)
∅ =

∨
a∈Σ s.t. η(a)=m

a .

Assume that P ̸= ∅ and consider a prime trace t = (E,≤, λ) satisfying loc(t \ {max(t)}) ⊆ P .
If P ∩ loc(max(t)) = ∅, the primality of t implies that E is a singleton, and we let φ(m)

P = φ
(m)
∅ .

If P ∩ loc(max(t)) ̸= ∅, we pick k ∈ P ∩ loc(max(t)). Let f1 < f2 < · · · < fℓ be the
sequence of events in Ek. In particular, ℓ ≥ 1 and max(t) = fℓ. For each 1 ≤ i ≤ ℓ,
let ti = res{k}(fi). Then ti = ↓fi \ ↓fi−1 (letting ↓f0 = ∅) and hence, t = t1t2 · · · tℓ and
η(t) = η(t1)η(t2) · · · η(tℓ). By construction, loc(ti \ {fi}) ⊆ P \ {k} for each 1 ≤ i ≤ ℓ and
we can use the induction hypothesis: η(ti) = m′ if and only if ti, fi |= φ

(m′)
P\{k}. Using the

lifting lemma (Lemma 6), we then get that η(ti) = m′ if and only if t, fi |= lift{k}(φ(m′)
P\{k}).

The membership of a trace t in η−1(m) – subject to the current assumption that t is
prime, loc(t \ {max(t)}) ⊆ P and k ∈ P ∩ loc(max(t)) – can be computed by a k-local path
automaton A(m)

P,k as follows: we let A(m)
P,k = (M ∪ {$},∆, 1M , $), where the initial state is the

unit 1M of the monoid M , the final state is $ and ∆ consists of two types of transitions:
1. test and move transitions of the form (m1, actm1,m2? · ←k,m2) where m1,m2 ∈M and

actm1,m2 =
∨

m′|m2=m′m1

lift{k}(φ(m′)
P\{k})

The intuition is as follows. We use the notations above. Assume that←k moves from fi to
fi−1 and that, at fi, the automaton has already computed m1 = η(ti+1 · · · tℓ) = η(↓fℓ\↓fi).
We have seen that t, fi |= lift{k}(φ(m′)

P\{k}) if and only if η(ti) = m′. Since the disjunction
ranges over all m′ with m2 = m′m1, we deduce that m2 = η(ti · · · tℓ) = η(↓fℓ \ ↓fi−1).
Therefore, walking down the sequence fℓ, . . . , f1, the automaton computes the values of
η on the suffixes ti · · · tℓ.

2. (accepting) test transitions of the form (m1, {actm1,m ∧ ¬⟨←k⟩}?, $), where m1 ∈M .
To conclude, we let

φ
(m)
P =

( ∨
a∈Σ|η(a)=m,loc(a)∩P=∅

a

)
∨

( ∨
k∈P,a∈Σk

a ∧ ⟨A(m)
P,k ⟩

)
. ◀
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4.2 Expressivity of sentences in LocPastPDL
We now generalize Theorem 4 from prime traces to all traces, which concludes the proof of
Theorem 3. The precise statement of this generalization is as follows.

▶ Theorem 7. Let η : Tr(Σ) → M be a morphism to a finite monoid. For each m ∈ M ,
we can construct a LocPastPDL sentence Φ(m) such that, for all traces t ∈ Tr(Σ), we have
η(t) = m iff t |= Φ(m).

As in Section 4.1, where we dealt with event formulas, we introduce a notion of trace
residuation. If t = (E,≤, λ) is a trace, i ∈ P is a process and P ⊆ P is a set of processes, we
let resi,P (t), the residue of process i with respect to P , be the trace induced by the set of
events ↓Ei \ ↓EP . Here EP denotes the set

⋃
k∈P Ek, of all events involving a process in P .

We record the following result, analogous to Lemma 5 (proof in Appendix A).

▶ Lemma 8. Let t be a trace, i ∈ P a process and P ⊆ P a set of processes. Then we have

resi,P (t) =
{
ε if t |= ¬(Li ≤ Li) ∨

∨
j∈P (Li ≤ Lj),

resP ′(e) otherwise,

where e = maxEi and P ′ = {j ∈ P | t |=
∨
k∈P Li,j ≤ Lk}.

Proof of Theorem 7. The proof consists in identifying a particular, LocPastPDL-definable
decomposition of a trace t as a product of prime traces, and using Theorem 4 to handle its
factors.

Let t = (E,≤, λ) be a non-empty trace and let e1, . . . , eℓ be its maximal events. We choose
a process ik ∈ loc(ek) for each maximal event. As maximal events are pairwise concurrent,
the ik are pairwise distinct. We let t1 = ↓e1 and, for 1 < k ≤ ℓ, we let Qk = {i1, . . . , ik−1}
and tk = resik,Qk

(t). In particular, each tk is a non-empty prime trace and t = t1 · t2 · · · tℓ.
For each tuple i1, . . . , iℓ of pairwise distinct processes, the following LocPastPDL-sentence

checks that a trace has ℓ maximal events located on processes i1, . . . , iℓ (we use i as an
abbreviation for the event formula

∨
a∈Σi

a):

MAXi1,...,iℓ =
( ∧

1≤k≤ℓ

EM ik

)
∧ ¬EM¬

( ∨
1≤k≤ℓ

ik

)
∧ ¬EM

( ∨
1≤k,k′≤ℓ,k ̸=k′

ik ∧ ik′

)
Letting P1 = ∅ we have t1 = resP1(e1). Using Lemma 8, we find subsets Pk ⊆ P such

that tk = resPk
(ek) for each 1 < k ≤ ℓ. We note that Lemma 8 also justifies the following

specification of the sets Pk: assuming that t |= MAXi1,...,iℓ , these sets Pk are characterized
by the sentence∧

1≤k≤ℓ

RESPk

ik,{i1,...,ik−1}

where

RESP
′

i,P =
( ∧
j∈P ′

∨
k∈P

Li,j ≤ Lk
)
∧

( ∧
j /∈P ′

¬
∨
k∈P

Li,j ≤ Lk
)
.

Finally, once the sequence i1, . . . , iℓ and the sets P1, . . . , Pℓ are fixed, the equality η(t) = m

is checked by the sentence∨
m=m1···mℓ

∧
1≤k≤ℓ

EM
(
ik ∧ liftPk

(φ(mk))
)
,

where the φ(mk) (1 ≤ k ≤ ℓ) are given by Theorem 4.
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To conclude the proof of the theorem, if m ̸= 1M , we let Φ(m) be the sentence∨
i1,...,iℓ
P1,...,Pℓ

MAXi1,...,iℓ ∧
∧

1≤k≤ℓ

RESPk

ik,{i1,...,ik−1} ∧
∨

m=m1···mℓ

∧
1≤k≤ℓ

EM
(
ik ∧ liftPk

(φ(mk))
)
. (1)

Note that, the empty trace does not satisfy MAXi1,...,iℓ for any tuple (i1, . . . , iℓ) with ℓ > 0,
and hence it does not satisfy the formula in Equation (1), with m = 1M . Therefore, we let
Φ(1M ) be the disjunction of ¬EM⊤ (which specifies the empty trace) and the formula in
Equation (1), with m = 1M . ◀

5 Asynchronous automata and local cascade products

In Section 6, we exploit the expressive completeness of LocPastPDL established above to give
a Krohn-Rhodes style decomposition result for regular trace languages. Here, we first review
the distributed model of asynchronous automata (Zielonka, [24]), seen both as acceptors of
trace languages and as letter-to-letter trace transducers, and the related cascade product.

Asynchronous automata. work in a concurrent manner on traces over a distributed alphabet,
say (Σ, loc). They have local states, for each process in P, and their transitions on a letter
a ∈ Σ read and update only the states that are local to a process in loc(a). Formally, an
asynchronous automaton A over (Σ, loc) is a tuple ({Si}i∈P, {δa}a∈Σ, sin) where

Si is a finite non-empty set of local i-states for each process i;
For a ∈ Σ, let Sa =

∏
i∈loc(a) Si be called the set of a-states. Then δa : Sa → Sa is a

(deterministic and complete) transition function on a-states;
sin ∈ S (where S =

∏
i∈P Si is called the set of global states) is the initial global state.

If s is a global state, we write sa for its projection on Sa and s−a for its projection on the
remaining processes. It is convenient to write s = (sa, s−a).

For a ∈ Σ, let ∆a : S → S be the global transition function defined by ∆a((sa, s−a)) =
(δa(sa), s−a). Composing these functions defines the global transition ∆t of any trace
t ∈ Tr(Σ): we let ∆ε be the identity function and, if t = t′a, then ∆t = ∆a ◦∆t′ . We denote
by A(t) the global state reached when running A on t, that is, A(t) = ∆t(sin).

Zielonka’s fundamental theorem [24] states that a trace language is recognizable if and
only if it is accepted by some asynchronous automaton A, that is, if there exists a subset
Sfin ⊆ S of final global states such that L = {t ∈ Tr(Σ) | A(t) ∈ Sfin}.

Asynchronous labeling functions. Asynchronous automata can be used not only as accept-
ors, as above, but also as devices to compute certain functions on traces: maps which, given
a trace t = (E,≤, λ), compute a trace with the same underlying poset structure (E,≤), and
with a richer labeling function.

That point of view, which was developed by the authors in [1, 2], generalizes the notion
of sequential letter-to-letter word transducers, and is closely related to the locally computable
functions defined in [19].

Formally, let (Σ, loc) be a distributed alphabet and Γ be a finite non-empty set. Then
Σ× Γ is a distributed alphabet (over the same set P of processes as (Σ, loc)) for the location
function given by loc(a, γ) = loc(a) for every (a, γ) ∈ Σ×Γ. A map θ : Tr(Σ)→ Tr(Σ×Γ) is
called a Γ-labeling function if, for each t = (E,≤, λ) ∈ Tr(Σ), we have θ(t) = (E,≤, (λ, µ)),
i.e., θ adds a new label µ(e) ∈ Γ to each event e in t.
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▶ Example 9. Let F be a finite set of LocPastPDL event formulas and ΓF = {0, 1}F . For
each trace t ∈ Tr(Σ) and event e of t, we let µF (e) be the tuple of truth values of each φ ∈ F
at e. We then let θF be the ΓF -labeling function which maps a trace t = (E,≤, λ) ∈ Tr(Σ)
to the trace (E,≤, (λ, µF )) ∈ Tr(Σ× ΓF ).

An asynchronous (letter-to-letter) Γ-transducer over (Σ, loc) is a tuple Â = (A, {µa})
where A = ({Si}, {δa}, sin) is an asynchronous automaton and each µa (a ∈ Σ) is a map
µa : Sa → Γ. We associate with Â the Γ-labeling function, also denoted by Â, from Tr(Σ) to
Tr(Σ× Γ), which maps t = (E,≤, λ) to Â(t) = (E,≤, (λ, µ)) in such a way that, for every
event e ∈ E with λ(e) = a and s = A(⇓e), we have µ(e) = µa(sa). We say that Â computes
(or implements) the Γ-labeling function Â. We also say that an asynchronous automaton
A = ({Si}, {δa}, sin) computes a Γ-labeling function θ if there are maps µa : Sa → Γ such
that θ = Â, with Â = (A, {µa}).

Notice that a Γ-labeling function is defined on every input trace, hence an asynchronous
transducer admits a run on all traces and it does not use an acceptance condition.

▶ Example 10. Let i ∈ P be a process, let φi = (Yi ≤ Yi) be the LocPastPDL event formula
which states that there is an event on process i in the strict past of the current event. With
reference to Example 9, ΓF = {0, 1} and the ΓF -labeling function θF is computed by the
following asynchronous transducer. For each process j, the set of j-states is {0, 1}, and the
global initial state has every process start in state 0. When the first event e occurs on process
i, all processes in loc(e) switch to state 1: for every a ∈ Σi, δa is the constant map sending
all states in Sa to (1, . . . , 1). This information is then propagated via synchronizing events:
for every b ∈ Σ \ Σi, the map δb sends (0, . . . , 0) to itself and every other state to (1, . . . , 1).
It is easy to add output functions {µa}a∈Σ in order to compute θF .

Local cascade product. It turns out that the composition of labeling functions computed
by asynchronous transducers, can also be computed by an asynchronous transducer. This
asynchronous transducer is the result of the local cascade product operation defined below.

▶ Definition 11. Let Â = ({Si}, {δa}, sin, {µa}) be a Γ-labeling asynchronous transducer
over (Σ, loc), and let B̂ = ({Qi}, {δ(a,γ)}, qin, {ν(a,γ)}) be a Π-labeling asynchronous trans-
ducer over (Σ × Γ, loc). We define the local cascade product of Â and B̂ to be the
(Γ×Π)-labeling asynchronous transducer Â ◦ℓ B̂ = ({Si ×Qi}, {∇a}, (sin, qin), {τa}) where
∇a((sa, qa)) = (δa(sa), δ(a,µa(sa))(qa)) and τa : Sa ×Qa → Γ×Π is defined by τa((sa, qa)) =
(µa(sa), ν(a,µa(sa))(qa)).

▶ Remark 12. It is directly verified that, with the notation of Definition 11, if Â implements
fA : Tr(Σ)→ Tr(Σ× Γ) and B̂ implements fB : Tr(Σ× Γ)→ Tr(Σ× Γ×Π) then the local
cascade product Â ◦ℓ B̂ implements the composition fB ◦ fA : Tr(Σ)→ Tr(Σ× Γ×Π).

In the sequential case, that is, when |P| = 1, the local cascade product coincides with the
well-known operation of cascade product of sequential letter-to-letter transducers.

Slightly abusing language, we view a local cascade product also as an asynchronous
automaton (forgetting the local labeling functions) and we can use it to accept trace
languages as well. The celebrated theorem by Krohn and Rhodes [16] characterizes regular
word languages as those accepted by cascade products of two simple kinds of automata:

2-state reset automata, where the transition function of each letter is either the identity
function or constant;
permutation automata, where each letter induces a permutation of the state set.
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▶ Theorem 13 (Krohn-Rhodes [16]). Any regular word language is accepted by a cascade
product of 2-state reset automata and permutation automata.

In the setting of traces, we consider distributed analogues of reset and permutation automata.
If i ∈ P is a process, a 2-state reset automaton localized at i is an asynchronous automaton
with two i-local states, where all other local state sets are singletons and the local transition
induced by each letter is either the identity function, or a constant function. Similarly, a
permutation automaton localized at i is an asynchronous automaton where each set of j-states
(j ̸= i) is a singleton and the local transition by any letter is a permutation.

Another important asynchronous automaton is Mukund and Sohoni’s gossip (asynchron-
ous) automaton G, see [19]. Its main purpose is to compute the primary and secondary
comparisons, as stated in the theorem below.

▶ Theorem 14 (Mukund-Sohoni [19]). Let Y = {Yi ≤ Yj ,Yi,j ≤ Yk | i, j, k ∈ P} be the set of
all constant event formulas of LocPastPDL and let θY be the corresponding labeling function.
The gossip automaton G computes θY.

We say that a local cascade product Ĝ ◦ℓ B̂ is restricted (or θY-restricted) if the labeling
function computed by Ĝ is θY, i.e., the information passed to B̂ by Ĝ is restricted to the
truth values of the event formulas in Y.
▶ Remark 15. The gossip automaton G also computes the truth values of the constant trace
sentences L = {Li ≤ Lj , Li,j ≤ Lk | i, j, k ∈ P}, this time globally. More precisely, if S is the
global state set of G, then there is a map ζ : S → {0, 1}L such that, for every trace t, and
sentence Φ ∈ L, t |= Φ if and only if the Φ-component of ζ(G(t)) is 1.

6 Cascade decomposition

The following is the main result of this section.

▶ Theorem 16. Let φ be a LocPastPDL event formula and θφ (for θ{φ}) be the correspond-
ing {0, 1}-labeling function. One can construct a restricted cascade product of the gossip
automaton followed by a local cascade product of localized reset and permutation automata,
which computes θφ.

Before we prove Theorem 16, we establish an important corollary.

▶ Corollary 17. Any regular trace language is accepted by a restricted local cascade product
of the gossip automaton and a local cascade product of localized reset automata and localized
permutation automata.

Proof. By Theorem 3, any regular trace language L is defined by a sentence Φ in LocPastPDL.
If Φ is of the form Li ≤ Lj or Li,j ≤ Lk, then L is accepted by the gossip automaton, by
Remark 15. The case where Φ is a non-trivial boolean combination is easily handled, and we
are left with sentences of the form EMφ.

If i ∈ P is a process, let EMi φ be the sentence which expresses that a trace has at
least one i-event, and that its maximum i-event satisfies φ. Then EMφ is equivalent to the
disjunction

∨
i∈P

(
EMi φ ∧ ¬(

∨
j∈P Li < Lj)

)
, where Li < Lj = (Li ≤ Lj)∧¬(Lj ≤ Li), so we

only need to deal with sentences of the form EMi φ.
By Theorem 16, the labeling function θφ is computed by an asynchronous transducer Aφ

of the required local cascade form. Let B be the localized reset automaton with local i-states
{q0, q1} (and other local state sets singletons), initial state q0, on alphabet Σ× {0, 1}, with
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the following transitions. The transition induced by a letter (a, 1) such that i ∈ loc(a) is a
constant map to q1. Other transitions labeled (a, 0) with i ∈ loc(a) are the constant map
to q0. Then Aφ ◦ℓ B recognizes EMi φ when the global final state of the B component is q1.
Notice that B only needs to check if the maximal i-event of t satisfies φ, an information
which is already added to the label of this event by Aφ (as 0 or 1). ◀

We now move towards the proof of Theorem 16. We first associate with each local path
automaton a regular word language over a decorated alphabet. Specifically, let A be an
i-local path automaton and let F be the set of event formulas in its test transitions. Recall
that, if t ∈ Tr(Σ) and e, f are events in t, we have t, e, f |= A if there is an accepting run
q0

α1−→ q1 · · · qn−1
αn−−→ qn and a sequence of events e = e0, e1, . . . , en−1, en = f such that for

all 0 ≤ m < n we have t, em, em+1 |= αm. Checking whether t, em, em+1 |= φ? for some
φ ∈ F is done by a simple inspection of the label of event em = em+1 in θF (t) ∈ Tr(Σ× ΓF ).
Observe also that, since A is i-local, all the em are i-events. This leads to the definition of a
word language LF (A) over the alphabet Σi × ΓF . Each word w in LF (A) is induced by a
trace t and a pair of events e, f such that t, e, f |= A, and consists of the sequence of labels
in θF (t) of the i-events from f to e.

LF (A) = {θF (t) ∩ Ei ∩ ↓e ∩ ↑f | t, e, f |= A} ⊆ (Σi × ΓF )∗ .

▶ Lemma 18. Let A be an i-local path automaton and let F be the set of event formulas in
its test transitions. Then LF (A) is a regular language.

Proof. The automaton A accepts a regular language over the alphabet {φ? | φ ∈ F} ∪ {←i}.
Processing a letter from the alphabet translates to a move to a different event in the trace
(see the semantics of path automata recalled above) if that letter is ←i, but not if it is of
the form φ?. To smooth out this difference, we modify A to an automaton B with the same
semantics (in the sense that t, e, f |= A if and only if t, e, f |= B), where transitions to an
accepting state have labels of the form ψ? and all other transitions have a label of the form
ψ′?←i, where ψ,ψ′ are conjunctions of formulas in F (we talk of test-and-move transitions).

Let Q be the set of states of A and let qa /∈ Q be a new state. The set of states of B is
Q′ = Q ∪ {qa}, B has the same initial states as A, and qa is the only accepting state of B.
The transitions of B are as follows.
1. Let q, q′ ∈ Q and let ψ be a conjunction of formulas in F . B has a test-and-move transition

from q to q′ labeled ψ? · ←i in B if there is a path from q to q′ in A starting with a
sequence of test transitions using exactly all the conjuncts of ψ and ending with a move
transition (labeled ←i).

2. Let q ∈ Q and let ψ be a conjunction of formulas in F . B has a test transition from q to
qa labeled ψ? if there is a path in A from q to some accepting state q′ of A consisting of
test transitions using exactly all the conjuncts of ψ.

It is not difficult to see that A and B have the same semantics. For each φ ∈ F , let ∆φ

be the set of letters (a, γ) ∈ Σi × ΓF such that the φ-component of γ is 1. We now modify
B into a new automaton B′ by changing the labels of transitions: for each edge labeled by∧k
j=1 φj?←i (resp.

∧k
j=1 φj?), replace the label with

⋂k
j=1 ∆φj . The automaton B′, over

Σi×ΓF is easily seen to accept the reverse language of LF (A), so LF (A) itself is regular. ◀

We can finally prove Theorem 16, the last missing element of this paper.
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Proof of Theorem 16. The proof is by structural induction on the LocPastPDL event formula
φ. If φ = a (a ∈ Σ), Aa is the asynchronous transducer where each set of local states is
a singleton. The labeling function is defined by µb(s) = 1 if b = a and 0 otherwise. If
φ = Yi ≤ Yk or φ = Yi,j ≤ Yk, Theorem 14 shows that we can use the gossip automaton as
Aφ. Boolean combination of event formulae are easily handled.

The case where φ = ⟨A⟩, for some i-local path automaton A, is non-trivial. Let F be the
set of event formulas in the test transitions of A. By induction hypothesis, for each ψ ∈ F ,
we have an asynchronous transducer Aψ in the required local cascade form which computes
θψ. By the usual direct product construction, which can be subsumed by a local cascade
product (factorizing the gossip automaton), we then have an asynchronous transducer AF in
the required form which computes θF . We then construct Aφ in the form of a local cascade
product AF ◦ℓ B for an appropriate asynchronous transducer B on alphabet Σ× ΓF .

Let LF (A) be the language (over alphabet Σi × ΓF ) defined above, which is regular by
Lemma 18, and let C be an automaton accepting (Σi × ΓF )∗ · LF (A). By Krohn-Rhodes’s
theorem (Theorem 13 above), C can be chosen to be a cascade product of 2-state reset
automata and permutation automata. Let us localize each of these automata at process i, by
adding singleton local state sets for each process j ̸= i. The resulting local cascade product
(of localized reset and permutation asynchronous transducers) allows us to check whether
an i-local state is final in C or not. It is easily verified that a labeling function can then be
imposed on B, by which AF ◦ℓ B computes θφ.

This completes the proof of Theorem 16. ◀

7 Conclusion

We have shown that LocPastPDL is expressively complete. Recall that a basic trace formula
of LocPastPDL is either of the form EMφ or a constant comparision formula such as Li ≤ Lj
or Li,j ≤ Lk. We could instead use basic trace formula EMi φ which asserts that the maximum
i-event exists and satisfies the event formula φ. It follows from the results in [3] that boolean
combinations of EMi φ suffice to arrive at an expressively complete logic. Note that our
expressive-completeness proof of LocPastPDL is direct and self-contained. In view of this, it
would be interesting to directly express Li ≤ Lj and Li,j ≤ Lk using only basic formulas of the
form EMi φ. Another exciting question concerns the necessity of the primary and secondary
event comparision formulas Yi ≤ Yj and Yi,j ≤ Yk for the expressive completeness result.
This is also intimately related to the necessity of the gossip automaton in our distributed
Krohn-Rhodes theorem. It would be also interesting to identify a natural fragment of
LocPastPDL which matches first-order logic in expressive power, and also extend the results
in this work to infinite traces.
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A Appendix for Section 4

▶ Lemma 6 (Lifting lemma). Let φ ∈ PastPDL be an event formula and P ⊆ P be a set of
processes. We can construct an event formula liftP (φ) ∈ PastPDL such that, for all traces
t = (E,≤, λ) and events e ∈ E in t, we have resP (e), e |= φ if and only if t, e |= liftP (φ).
Moreover, if φ ∈ LocPastPDL then liftP (φ) ∈ LocPastPDL.

Proof. The construction is by structural induction on φ. We first let

liftP (a) = a for each a ∈ Σ

liftP (Yi ≤ Yj) = (Yi ≤ Yj) ∧ ¬
∨
ℓ∈P

(Yi ≤ Yℓ) ∨ (Yj ≤ Yℓ)

liftP (Yi,j ≤ Yk) = (Yi,j ≤ Yk) ∧ ¬
∨
ℓ∈P

(Yi,j ≤ Yℓ) ∨ (Yk ≤ Yℓ)

The announced statement is easily verified for these atomic formulas. Similarly, boolean
combinations of formulas are handled by letting liftP (φ ∨ ψ) = liftP (φ) ∨ liftP (ψ) and
liftP (¬φ) = ¬liftP (φ).

The last, and more interesting case, is that where φ = ⟨A⟩, for a past path automaton
A = (Q,∆, I, F ). We let liftP (⟨A⟩) = ⟨AP ⟩, where AP = (Q′,∆′, I ′, F ′) is the path
automaton defined as follows:

Q′ = Q× 2P, I ′ = I × {P} and F ′ = F × 2P,
for each test transition (q1, φ?, q2) ∈ ∆ of A and each set P1 ⊆ P, we define the test
transition ((q1, P1), liftP1(φ)?, (q2, P1)) in AP ,
for each move transition (q1,←k, q2) ∈ ∆ of A and each sets P1, P2 ⊆ P with P1 ⊆ P2,
we define a test and move2 transition ((q1, P1), changek,P1,P2? · ←k, (q2, P2)) in AP where

changek,P1,P2 =
(
¬

∨
i∈P1

Yk ≤ Yi
)
∧

( ∧
j∈P2\P1

∨
i∈P1

Yk,j ≤ Yi
)
∧

( ∧
j /∈P2

¬
∨
i∈P1

Yk,j ≤ Yi
)

The formula above characterises the change of context when moving from an event e
on process k to the previous event ek on process k. It is based on Lemma 5. The first
conjunct says that resP1(e) ∩ ↓ek is nonempty. The remaining conjuncts characterises the
set P2 such that resP1(e) ∩ ↓ek = resP2(ek).

Observe that AP is again a past automaton and all reachable states (q, P ′) in AP satisfy
P ⊆ P ′. Moreover, if A is k-local then so is AP .

We claim that this construction is correct, i.e., resP (e), e |= ⟨A⟩ if and only if t, e |= ⟨AP ⟩.
Let us first assume that resP (e), e |= ⟨A⟩. There is an accepting run q0

α1−→ q1 · · · qn−1
αn−−→

qn of A and a sequence of events e = e0, e1, . . . , en−1, en such that for all 1 ≤ m ≤ n we have
resP (e), em−1, em |= αm. We construct inductively

a sequence P0, P1, . . . , Pn ⊆ P so that ↓em ∩ resP (e) = resPm
(em) for all 0 ≤ m ≤ n,

an accepting run (q0, P0) β1−→ (q1, P1) · · · (qn−1, Pn−1) βn−−→ (qn, Pn) of AP such that
t, em−1, em |= βm for all 1 ≤ m ≤ n.

We start with P0 = P so that ↓e0 ∩ resP (e) = resP0(e0) and (q0, P0) is initial in AP . Now,
let 0 < m ≤ n and assume that we have constructed the sequence of sets and the run up to
m− 1. There are two cases.

2 Formally, in order to comply with the definition of a path automaton, we should split each test and move
transition into a test transition followed by a move transition with a new intermediary state in-between.
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1. If αm = ψ? is a test, we have em = em−1 and resP (e), em−1 |= ψ. Since ψ is a past
formula and ↓em−1 ∩ resP (e) = resPm−1(em−1), we deduce that resPm−1(em−1), em−1 |= ψ.
By our induction hypothesis, we then have t, em−1 |= liftPm−1(ψ), and we let βm =
liftPm−1(ψ)? and Pm = Pm−1. With this definition, the required conditions are satisfied:
↓em ∩ resP (e) = resPm

(em), ((qm−1, Pm−1), βm, (qm, Pm)) is a transition in AP , and
t, em−1, em |= βm.

2. If αm =←k is a left move, we have em−1, em ∈ Ek and em is the predecessor of em−1 on
process k. In particular, em is the maximal event in ⇓em−1 ∩ Ek. We apply Lemma 5:
first, ↓em ∩ resPm−1(em−1) = ↓em ∩ resP (e) is nonempty since it contains em; it follows
that t, em−1 |= ¬

∨
i∈Pm−1

Yk ≤ Yi. Let Pm = Pm−1 ∪ {j ∈ P | t, em−1 |= Yk,j ≤
Yi for some i ∈ Pm−1}. By Lemma 5, we have ↓em ∩ resP (e) = ↓em ∩ resPm−1(e) =
resPm(em). By definition of Pm, we get t, em−1 |= changek,Pm−1,Pm

. We then let βm =
changek,Pm−1,Pm

? · ←k so that ((qm−1, Pm−1), βm, (qm, Pm)) is a transition in AP , and
t, em−1, em |= βm.

Using the constructed run in AP and the same sequence of events e = e0, e1, . . . , en−1, en,
we find that t, e |= ⟨AP ⟩.

Conversely, assume that t, e |= liftP (⟨A⟩) = ⟨AP ⟩. There is an accepting run (q0, P0) β1−→
(q1, P1) · · · (qn−1, Pn−1) βn−−→ (qn, Pn) of AP and a sequence of events e = e0, e1, . . . , en−1, en
such that t, em−1, em |= βm for all 1 ≤ m ≤ n. We show by induction that ↓em ∩ resP (e) =
resPm

(em) for all 0 ≤ m ≤ n. We construct simultaneously a sequence α1, . . . , αn such
that q0

α1−→ q1 · · · qn−1
αn−−→ qn is an accepting run of A and resP (e), em−1, em |= αm for all

1 ≤ m ≤ n.
Since (q0, P0) is initial in AP , we have P0 = P . Using e0 = e, we get ↓e0 ∩ resP (e) =

resP0(e0). Now, assume that our properties hold up to m− 1. There are two cases.
1. If βm = liftPm−1(ψ)? is a test, then Pm = Pm−1 and em = em−1. In particular, ↓em ∩

resP (e) = resPm(em). Let αm = ψ?. By definition of AP , we know that (qm−1, αm, qm)
is a transition of A. From t, em−1, em |= βm = liftPm−1(ψ)?, we get t, em−1 |= liftPm−1(ψ)
and, by the induction hypothesis, we obtain resPm−1(em−1), em−1 |= ψ. Since ψ is a past
formula and resPm−1(em−1) = ↓em−1 ∩ resP (e), we deduce that resP (e), em−1 |= ψ and
finally resP (e), em−1, em |= αm = ψ?.

2. If βm = changek,Pm−1,Pm
? · ←k is a test-and-move, we let αm = ←k. Then t, em−1 |=

changek,Pm−1,Pm
and (qm−1, αm, qm) is a transition of A. Moreover, t, em−1, em |=

←k. Using the fact that t, em−1 |= ¬
∨
i∈Pm−1

Yk ≤ Yi, Lemma 5 shows that em ∈
resPm−1(em−1) = ↓em−1 ∩ resP (e). Therefore, resP (e), em−1, em |= ←k. Finally, us-
ing Lemma 5 again and the fact that t, em−1 |= changek,Pm−1,Pm

, we get resPm
(em) =

↓em ∩ resPm−1(em−1) = ↓em ∩ resP (e).
Thus resP (e), e |= ⟨A⟩, and this concludes the proof. ◀

▶ Lemma 8. Let t be a trace, i ∈ P a process and P ⊆ P a set of processes. Then we have

resi,P (t) =
{
ε if t |= ¬(Li ≤ Li) ∨

∨
j∈P (Li ≤ Lj),

resP ′(e) otherwise,

where e = maxEi and P ′ = {j ∈ P | t |=
∨
k∈P Li,j ≤ Lk}.

Proof. Observe that resi,P (t) is the empty trace if Ei is empty or if the maximal i-event is
below a j-event for some j ∈ P . The first condition is exactly captured by ¬(Li ≤ Li), and
the second one by

∨
j∈P (Li ≤ Lj).
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Let us now assume that resi,P (t) is not the empty trace. Then e = maxEi exists.
Moreover, by definition, resi,P (t) = ↓e \ ↓EP and resP ′(e) = ↓e \

⋃
j∈P ′ ↓ej where ej is the

maximal event in Ej ∩ ⇓e, if it exists.
Let f be an event in resi,P (t). Then f ≤ e. Suppose that f ≤ ej for some j ∈ P ′. By

definition of P ′, there exists k ∈ P such that t |= Li,j ≤ Lk. Then

f ≤ ej = max(Ej ∩ ⇓e) ≤ max(Ej ∩ ↓e) ≤ max(Ek).

In particular, f ∈ ↓EP , a contradiction since f ∈ resi,P (t) = ↓e \ ↓EP . Therefore resi,P (t) is
contained in ↓e \

⋃
j∈P ′ ↓ej = resP ′(e).

Conversely, suppose that f ∈ resP ′(e). Then, again, f ≤ e. Suppose that f ∈ ↓EP , i.e.,
f ≤ e′ = max(Ek) for some k ∈ P . If e′ < e, then f ≤ e′ = max(Ek ∩ ⇓e) = ek. Also,
Ek ⊆ ↓e, so t |= Li,k ≤ Lk and hence k ∈ P ′, which is impossible since f ∈ resP ′(e).

We cannot have e ≤ e′ either, since t ̸|= (Li ≤ Lk). Therefore e and e′ are concurrent
events. Let g be a maximal event in ↑f ∩ ↓e ∩ ↓e′. There exists j ∈ loc(g) such that
ej = g = max(Ej ∩ ↓e). Again this implies that j ∈ P ′ and f ∈

⋃
j∈P ′ ↓ej , a contradiction.

It follows that resP ′(e) is contained in resi,P (e), which concludes the proof. ◀
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Abstract
We prove a Kleene theorem for higher-dimensional automata (HDAs). It states that the languages
they recognise are precisely the rational subsumption-closed sets of interval pomsets. The rational
operations include a gluing composition, for which we equip pomsets with interfaces. For our proof,
we introduce HDAs with interfaces as presheaves over labelled precube categories and use tools
inspired by algebraic topology, such as cylinders and (co)fibrations. HDAs are a general model of
non-interleaving concurrency, which subsumes many other models in this field. Interval orders are
used as models for concurrent or distributed systems where events extend in time. Our tools and
techniques may therefore yield templates for Kleene theorems in various models and applications.
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1 Introduction

Higher-dimensional automata (HDAs) were introduced by Pratt and van Glabbeek as a general
geometric model for non-interleaving concurrency [21,23]. HDAs support autoconcurrency and
events with duration or structure, whereas events in interleaving models must be instantaneous.
They subsume, for example, event structures and safe Petri nets [24]. Asynchronous transition
systems and standard automata are two- and one-dimensional HDAs, respectively [12]. We
have recently used van Glabbeek’s (execution) paths [24] to relate HDAs with certain
languages of interval posets [6]. Yet a precise description of these languages in terms of a
Kleene theorem has so far been missing. Our main contribution is the formalisation and
proof of such a theorem.

HDAs consist of cells and lists of events that are active in them. Zero-dimensional cells
represent states in which no event is active; 1-dimensional cells represent transitions in which
exactly one event is active – as in standard automata. Higher n-dimensional cells model
concurrent behaviours with n active events. As an example, Fig. 1 shows an HDA with cells
of dimension ≤ 2. The cells x and y, for instance, have active events [ a

b ] and [ a
c ], respectively.

Cells at any dimension may serve as start and accept cells. In Fig. 1, these are marked
with incoming and outgoing arrows. Lower dimensional cells or faces are attached to higher
dimensional ones using lower and upper face maps. These indicate further when individual
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a

a

b

c

b

c

[ a
b ]
x

[ a
c ]
y

cb

cb

a a

cb

cb

a aα1

α2
α3

Figure 1 HDA with two 2-dimensional cells x and y connected along transitions and modelling
parallel execution of a and (bc)∗. Middle: unfolded view; right: three accepting paths.

events start or terminate. In Fig. 1, the lower face δ0
a(x) of x is the lower b-transition in

which a is not yet active; its upper face δ1
a(x) is the upper b-transition in which a is no longer

active. Further, δ1
b (x) = δ0

c (y) and δ1
c (y) = δ0

b (x).
Executions of HDAs are (higher-dimensional) paths [24]: sequences of cells connected

with operations of starting and terminating events. Every path α is characterised by ordering
the events ev(α) that occur in it with respect to precedence. This always yields interval
orders. In addition, ev(α) is equipped with source and target interfaces, which model events
active in the initial and final cell of α, respectively, and a secondary event order, which
captures the list structure of events in cells. We call (isomorphism classes of) such labelled
posets with interfaces and an event order ipomsets. The language of an HDA is then related
to the set of (interval) ipomsets associated with all its accepting paths – from start to
accept cells [6]. Languages of HDAs must in particular be down-closed with respect to less
concurrent executions, modelled by a subsumption preorder. This motivates the definition of
(interval ipomset) languages as subsumption-closed sets of interval ipomsets.

Kleene theorems usually require a notion of rational language. Here it is based on the
union ∪, gluing (serial) composition ∗, parallel composition ∥, and (serial) Kleene plus +

of languages. These definitions are not entirely straightforward, as down-closure and the
interval property must be preserved. In particular, ∗ is more complicated than, for instance,
the standard series composition of pomsets due to interfaces. Without interfaces, it would
reduce to the latter. We consider finite HDAs only and thus can neither include the parallel
Kleene star nor the full serial Kleene star as a rational operation. The latter contains the
identity language, which requires an HDA of infinite dimension.

Our Kleene theorem shows that the rational languages are precisely the regular languages
(recognised by finite HDAs). To show that regular languages are rational, we translate
the cells of an HDA into a standard automaton and reuse one direction of the standard
Kleene theorem. Proving that rational languages are regular is harder. Regularity of ∪ is
straightforward, and for ∥, the corresponding operation on HDAs is simply a tensor product.
But ∗ and + require an intricate gluing operation on HDAs along higher-dimensional cells.

Beyond the Kleene theorem, three further contributions seem of independent interest.
We model HDAs as presheaves on novel precube categories that feature events and labels in
the base category. These are equivalent to standard HDAs [24], but constructions become
simpler and the relation between iposets and precubical sets clearer.

We also introduce iHDAs – HDAs with interfaces – which may assign events to source or
target interfaces. Target events cannot be terminated: they either remain active at the end
of an execution or do not appear at all. By opposition, source events cannot be “unstarted”:
they are either active at the beginning of an execution or do not appear at all. Additionally,
all events of start cells are source events and all events of accept cells, target events. Every
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HDA can be converted into an equivalent iHDA (recognising the same language) and vice
versa, using operations of resolution and closure. Both models play a technical role in our
proofs, and we frequently switch between them.

Another tool used in the Kleene theorem is motivated by algebraic topology. We introduce
cylinder objects and show that every map between (i)HDAs can be decomposed into an
(initial or final) inclusion followed by a (future or past) path-lifting map. This allows us to
“pull apart” start and accept cells of iHDAs when dealing with serial compositions and loops.

In this paper we introduce the concepts needed for formulating and proving the Kleene
theorem, and we outline its proof. Most technical details can be found in the long version [7].

2 Higher-Dimensional Automata

HDAs and iHDAs are particular (pre)cubical sets. Like simplicial sets, they are typically
modelled as presheaves on certain base categories. Here we introduce new labelled precube
categories and variants with interfaces, which tame the combinatorics of concurrent events in
well-structured ways. Their objects are lo-sets, which model concurrent events that are active
in some cell of an HDA, or ilo-sets, which equip lo-sets with interfaces. Their morphisms are
coface maps (opposites of face maps), which insert events into lo-sets and preserve interfaces
if present. Some constructions require isomorphism classes of labelled precube categories
(with interfaces), and we define these as well. Finally, we briefly introduce resolution and
closure functors that translate between HDAs and iHDAs, in preparation for the summary
of our Kleene theorem in Section 5. We contextualise our approach in App. A. Throughout
the paper, we fix an alphabet Σ, finite or infinite.

Lo-sets and ilo-sets. A lo-set (U, 99K, λ) is a finite set U totally ordered by the strict order
99K and labelled by λ : U → Σ. A lo-set with interfaces (ilo-set) is a triple (S,U, T ) of a
lo-set U , a source interface S ⊆ U and a target interface T ⊆ U . Lo-sets are regarded as
ilo-sets with empty interfaces. We write SUT or just U for ilo-sets.

The labels of ilo-sets indicate the actions associated with events. The event order 99K
captures their list structure, which is convenient for regarding ilo-sets as ipomsets in Section 3.

A lo-map is an order and label preserving function between lo-sets. Lo-maps are strict
order embeddings and thus injective, as 99K is total. A lo-isomorphism is therefore a surjective
lo-map. An ilo-map f : U → V must also satisfy SU = f−1(SV ) and TU = f−1(TV ) (and
f(SU ) = SV and f(TU ) = f(TV ) if it is an ilo-isomorphism). We write U ≃ V if (i)lo-sets U
and V are isomorphic – there is at most one isomorphism between (i)lo-sets. Isomorphism
classes of lo-sets are words over Σ. Those of ilo-sets are words over an extended alphabet
Σ• = {a, • a, a •, • a • | a ∈ Σ}, where • a, for example, indicates membership in a source
interface. As in Fig. 1, we represent such words as column vectors.

Each (i)lo-map f : U ↪→ V defines and is defined by a unique A = V \ f(U) ⊆ V .
We write ∂A for this map; it is an isomorphism iff A = ∅. The composite of (i)lo-maps
∂A : U ↪→ V , ∂B : V ↪→W is ∂∂B(A)∪B : U ↪→W . This data defines categories of (i)lo-sets.
Each ∂A : U → V constructs V by inserting the events of A into U , while the face maps in
the introduction delete events and thus map in the opposite direction, see Fig. 2. Linking
(i)lo-maps with face maps and initial and final cells of HDAs requires refinements.

Labelled precube categories. Labelled precube categories account for the active, unstarted
and terminated events in HDAs and equip them with interfaces. The arrows of labelled
precube categories are coface maps. These map in the opposite direction of face maps.

CONCUR 2022
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Figure 2 Composition of morphisms in □. Letters (A) and (B) indicate events that become
unstarted (A) or terminated (B), as defined in the triple (∂A∪B , A,B).

The full labelled precube category with interfaces, I□I□, has ilo-sets as objects and coface
maps dA,B : U → V as arrows. Each dA,B is a triple (∂A∪B , A,B) with A,B ⊆ V disjoint,
A ∩ SV = ∅ = B ∩ TV , and ∂A∪B : U ↪→ V an ilo-map. The composite of dA,B : U → V and
dC,D : V →W is defined as dC,D ◦ dA,B = (∂C∪D ◦ ∂A∪B , ∂C∪D(A) ∪ C, ∂C∪D(B) ∪D).

As an instance, the full labelled precube category □□ with lo-sets as objects and coface
maps dA,B based on lo-maps ∂A∪B is trivially isomorphic to the full subcategory of I□I□ with
empty interfaces SU , TU , for each ilo-set U .

We only need coface map compositions with pairwise disjoint A,B,C,D ⊆ W and
V = W \ (C ∪D). In this case,

dC,D ◦ dA,B = dA∪C,B∪D. (1)

See Fig 2 for an example. We write d0
A for dA,∅ and d1

B for d∅,B. Intuitively, d0
A : U → V

inserts events in A into U that are unstarted in U , whereas d1
B : U → V inserts events B into

U that are terminated in U . See again Fig. 2 for an example. With d1
B , events in TV cannot

terminate in U as TV ∩B = ∅; with d0
A, those in SV cannot be unstarted in U as SV ∩A = ∅.

Both interfaces are preserved in pre-images of ∂A∪B and thus by coface map compositions.
It is standard to work with equivalence classes of events. The labelled precube category with

interfaces I□ is the quotient of I□I□ with respect to ≃. Its objects are words over Σ•. Its coface
maps are equivalence classes of coface maps in I□I□, where dA,B : U → V , dA′,B′ : U ′ → V ′ are
equivalent in I□ if U ≃ U ′ and V ≃ V ′ (hence also A ≃ A′ and B ≃ B′). They insert letters
into words, while remembering whether they correspond to unstarted or terminated actions.

The labelled precube category □ is obtained from □□ in a similar way. The categories I□
and □ are skeletal, and because isomorphisms are unique, the quotient functors I□I□ → I□
and □□→ □ are equivalences of categories. We thus switch freely between full categories and
their skeletons and identify morphisms [U ]→ [V ] with representatives dA,B : U → V .

We often use the involutive reversal functor on these categories. It maps SUT to TUS

and dA,B to dB,A, thus swapping unstarted and terminated events.

Higher-dimensional automata. A precubical set with interfaces (ipc-set) is a presheaf on
I□, that is, a functor X : I□op → Set. We write X[U ] for the value of X on object U of I□.
We write δA,B = X[dA,B] : X[U ] → X[U \ (A ∪ B)] for the face map associated to coface
map dA,B : U \ (A ∪B)→ U . Elements of X[U ] are cells of X – we often view X as a set
of cells.

We write iev(x) = SUT and ev(x) = U if x ∈ X[SUT ], as well as δ0
A = X[d0

A] and
δ1

B = X[d1
B ]. Such face maps attach lower and upper faces to the cells in X[U ].
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A precubical set is defined analogously as a presheaf X on □. We may view it as an
ipc-set X such that X[SUT ] = ∅ whenever S ̸= ∅ or T ̸= ∅. A precubical set or ipc-set X is
finite if it has finitely many cells. The dimension of a cell x ∈ X[U ] is |U |. The dimension of
X is the maximal dimension among its cells.

A higher-dimensional automaton with interfaces (iHDA) is a finite ipc-set X with subsets
X⊥ of start cells and X⊤ of accept cells. These are required to satisfy S = U for all x ∈ X⊥
with iev(x) = SUT , and T = U for all x ∈ X⊤ with iev(x) = SUT . X⊥ and X⊤ are not
necessarily precubical subsets.

Analogously, a higher-dimensional automaton (HDA) is a finite precubical set X equipped
with subsets X⊥ and X⊤ of start and accept cells. HDAs are not simply special cases of
iHDAs due to the above requirements on interfaces.

An ipc-map is a natural transformation f : X → Y of ipc-sets X, Y , an iHDA-map must
preserve start and accept cells as well: f(X⊥) ⊆ Y⊥ and f(X⊤) ⊆ Y ⊤. Precubical maps
and HDA-maps are defined analogously. We write □Set, I□Set, HDA and iHDA for the
resulting categories (of precubical sets, ipc-sets, HDAs and iHDAs, respectively).

The reversal on □ translates to ipc-sets, precubical sets, iHDAs and HDAs. It maps δA,B

to δB,A and exchanges start and accept cells if present. The relationship between HDAs and
iHDAs is studied in [7].

Standard cubes. The standard U-cube □U of lo-set U is the precubical set represented
by U (the Yoneda embedding): □U = □(−, U). For each lo-set V , □U [V ] is the set of all
dA,B : V → U with A,B ⊆ U . We write [A|B] for such a cell. For dA,B : U → V we
denote by □dA,B : □U → □V the induced map given by □dA,B ([C|D]) = [A ∪C|B ∪D]. The
definition of I□U for an ilo-set U is analogous.

▶ Example 1. For U = [ a
b ], □U has the cells occurring as pairs [−|−] in the left-hand cube

below. The first coordinate of the pair lists the unstarted events associated to a cell, the
second one the terminated ones.

[ab|∅] [b|a]

[∅|ab][a|b] [∅|b]

[b|∅]

[a|∅] [∅|a][∅|∅]

[b|a][b|∅]

[∅|a][∅|∅]

The maps □dA,B attach faces to cells. The lower face map □d0
a , for instance, attaches [a|∅]

as the left 1-cell to the 2-cell [∅|∅] and [ab|∅] as the left 0-cell to the 1-cell [b|∅]. Notation
[a|∅] indicates that a has not yet started and no element has terminated in the associated
face, while b is active. An analogous construction of the standard cube I□V , for V = [ • a

b • ],
is shown in the right-hand diagram above. Here • a and b • prevent a from starting and b

from terminating on faces. All lower faces in the left-hand cube containing a on the left of
the | and all upper faces containing b on the right of the | must thus be removed. (We have
omitted some set braces and likewise.)

The notation [A|B] for the cells of □U is useful in later proofs. For any (i)HDA X

and x ∈ X, there exists a unique precubical map, the Yoneda embedding ιx : □U → X

(I□U → X), such that ιx([∅|∅]) = x.

Standard automata. One-dimensional HDAs X are slight generalisations of standard finite
automata. Cells in X[∅] are states of the automaton, those in X[a] are a-labelled transitions.
The face maps δ0

a, δ
1
a : X[a]→ X[∅] attach sources and targets to transitions. Yet transitions

may serve as start and accept cells in X.
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Resolution and closure. The forgetful functor F : I□→ □, SUT 7→ U induces two functors
Res : □Set→ I□Set and Cl : I□Set→ □Set. Resolution Res is given by Res(X) = X ◦ F:
the free functor induced by F, and closure Cl is left adjoint to Res. We extend them to
functors between HDA and iHDA in a natural way.

Intuitively, closure fills in missing cells of ipc-sets: the standard cube □U of Example 1,
for instance, is the closure of I□V . The cells of Res(X) are triples (x, S, T ), where x is a
cell of X and the subsets S, T ⊆ ev(x) are all possible assignments of interfaces. Every cell
x ∈ X[U ] thus produces 4|U | cells in Res(X), for example,

Res
( )

=

We give a detailed description of Res and Cl in [7].

3 Ipomsets

Pomsets are a standard model of non-interleaving concurrency. Ipomsets have been introduced
to model the behaviours of a restricted class of HDAs [6]. Here we recall the basic definitions
and adapt them to general HDAs. A notion of rational ipomset language is related with
HDAs in the Kleene theorem of Section 5.

Ipomsets. A labelled iposet (P,<, 99K, S, T, λ) consists of a finite set P with two strict
(partial) orders: the precedence order < and the event order 99K such that each pair in P

is comparable by either ≤ or 99K. λ : P → Σ is a labelling function, and S, T ⊆ P are
the source and target interfaces of P . Elements of S must be <-minimal and those of T
<-maximal, hence S and T are lo-sets. We write ε for the empty iposet.

A subsumption of labelled iposets P , Q is a bijection f : P → Q for which f(SP ) = SQ,
f(TP ) = TQ, f(x) <Q f(y) implies x <P y, and x 99KP y, x ̸<P y and y ̸<P x imply
f(x) 99KQ f(y). Subsumptions thus respect interfaces, reflect precedence and preserve
essential event order. Our definition adapts the standard one [13] to the presence of event
orders; intuitively, P has more order, and less concurrency, than Q.

An isomorphism of labelled iposets is a subsumption that is an order isomorphism.
The event order makes isomorphisms unique [6, Lem. 34]. We write P ⊑ Q if there is a
subsumption P → Q (Q subsumes P ) and P ∼= Q if P and Q are isomorphic. Isomorphic
iposets have the same order and label structure. An ipomset is an isomorphism class of
labelled iposets. We switch freely between ipomsets and labelled iposets, which is safe due to
uniqueness of isomorphisms.

An ipomset P is discrete if < is empty and hence 99K total. It is an identity if S = P = T .
Discrete ipomsets can therefore be identified with isomorphism classes of ilo-sets. The
singleton ipomsets are the discrete ilo-sets [a] [• a], [a •] and [• a •] for all a ∈ Σ. They
generate the rational ipomset languages in Section 5.

An ipomset P is an interval ipomset if it admits an interval representation [11]: a pair
b, e : P → R such that b(x) ≤ e(x) for all x ∈ P and x <P y iff e(x) < b(y) for all x, y ∈ P .
We write iPoms and iiPoms for the sets of ipomsets and interval ipomsets, respectively.

Ipomset compositions. The parallel composition P ∥ Q of labelled iposets P , Q has the
disjoint union P ⊔Q as carrier set, SP ∥Q = SP ∪SQ, TP ∥Q = TP ∪TQ, <P ∥Q = <P ∪<Q, and
x 99KP ∥Q y iff x 99KP y, x 99KQ y, or x ∈ P and y ∈ Q. It is a straightforward generalisation
of the pomset case, a coproduct of P and Q that extends 99KP and 99KQ.
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The gluing composition P ∗Q is only defined if TP ≃ SQ. Its carrier set is the quotient
(P ⊔Q)/x≡f(x), where f : TP → SQ is the unique isomorphism. The interfaces are SP ∗Q = SP

and TP ∗Q = TQ, 99KP ∗Q is the transitive closure of 99KP ∪ 99KQ, and x <P ∗Q y iff x <P y,
x <Q y, or x ∈ P \ TP and y ∈ Q \ SQ. The structural inclusions P ↪→ P ∗Q←↩ Q preserve
both precedence and event orders.

For ipomsets with empty interfaces, ∗ is serial pomset composition [13]. In general,
matching interface points are glued, see [6,8] for examples. Both ∗ and ∥ respect isomorphisms
and lift to associative, non-commutative operations on ipomsets (∥ is non-commutative due
to the event order). Ipomsets form a category with lo-sets as objects, ipomsets as arrows
and ∗ as composition. Interval ipomsets are closed under ∗ [6], but not under ∥ (a→ b is an
interval ipomset; (a→ b) ∥ (a→ b) is not). Note that all (isomorphism classes of) interval
ipomsets can be generated by gluing ilo-sets [6].

The width w(P ) of ipomset P is the cardinality of a maximal <-antichain; its size is
#(P ) = |P | − 1

2 (|S|+ |T |). We glue ipomsets along interfaces below and hence remove half
of the interfaces when computing #, which thus may be fractional.
▶ Lemma 2. Let P and Q be ipomsets. Then
(a) w(P ∥ Q) = w(P ) + w(Q) and #(P ∥ Q) = #(P ) + #(Q),
(b) if TP = SQ, then also w(P ∗Q) = max(w(P ),w(Q)) and #(P ∗Q) = #(P ) + #(Q),
(c) if P ⊑ Q, then w(P ) ≤ w(Q).
▶ Lemma 3. For lo-sets W ⊆ V ⊆ U, WVV ∗ V UU = WUU . For lo-sets Z ⊆ U, V ⊆W with
Z = U ∩ V and W = U ∪ V, UUZ ∗ ZVV ⊑ UWV . ◀

The second fact is illustrated by the following picture.

S

S

T

∗

S T

T

=

S T

S

T

⊑

S T

S

T

Languages. An interval ipomset language (a language for short) is a subset L ⊆ iiPoms
that is down-closed: if P ⊑ Q and Q ∈ L, then P ∈ L. We introduce the rational operations
∪, ∗, ∥ and (Kleene plus) + for languages:

L ∗M = {P ∗Q | P ∈ L, Q ∈M, TP = SQ}↓, L ∥M = {P ∥ Q | P ∈ L, Q ∈M}↓,

L+ =
⋃

n≥1
Ln, for L1 = L,Ln+1 = L ∗ Ln.

We write A↓ = {P ∈ iiPoms | ∃Q ∈ A. P ⊑ Q} for the down-closure of a set A ⊆ iPoms.
Down-closure is needed because parallel compositions of interval ipomsets may not be interval
and gluing and parallel compositions of down-closed languages may not be down-closed.
▶ Example 4. {[a] ∥ [b]} = {[ a

b ]} = {[ a •
b • ] ∗ [ • a

• b ]} is not down-closed.
Both ∗ and ∥ are associative and non-commutative. The identity of ∥ is {ε}, that of ∗ is the
identity language Id = {UUU | U ∈ □}.

The class of rational languages is the smallest class that contains the empty language,
the empty-pomset language and the singleton pomset languages

∅, {ε}, {[a]}, {[• a]}, {[a •]}, {[• a •]}, a ∈ Σ, (2)

and that is closed under the rational operations ∪, ∗, ∥ and +.
The width of a language is the maximal width among its elements. Lemma 2 shows that

rational languages have finite width; Id has infinite width and is thus not rational.
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4 Paths and Languages of iHDAs

Computations or runs of (i)HDAs are higher-dimensional paths that keep track of the cells
and face maps traversed [24]. In this section we recall their definition. As an important
stepping stone towards a Kleene theorem we then relate paths of (i)HDAs with ipomsets – for
a more general class than [6]. We also introduce notions of path equivalence and subsumption.
The latter corresponds to ipomset subsumption. Finally, we introduce regular languages.

Paths. A path of length n in X ∈ I□Set is a sequence

α = (x0, φ1, x1, φ2, . . . , φn, xn),

where the xk ∈ X[Uk] are cells and, for all k, either
φk = d0

A ∈ I□(Uk−1, Uk), A ⊆ Uk and xk−1 = δ0
A(xk) (up-step), or

φk = d1
B ∈ I□(Uk, Uk−1), B ⊆ Uk−1, δ1

B(xk−1) = xk (down-step).
We write xk−1 ↗A xk for the up-steps and xk−1 ↘B xk for the down-steps in α, generally
assuming A ̸= ∅ ̸= B. We refer to the up- or down-steps (paths (xi, φi+1, xi+1), 0 ≤ i < n)
as steps in α and write PX for the set of all paths on X.

▶ Example 5. Figure 1 (on the right) in the introduction depicts the three paths

α1 = (δ0
ab(x)↗a δ0

b (x)↘a δ
1
ac(y)),

α2 = (δ0
ab(x)↗ab x↘b δ

1
b (x)↗c y ↘ac δ

1
ac(y)),

α3 = (δ0
ab(x)↗b δ0

a(x)↘b δ
0
ac(y)↗ac y ↘ac δ

1
ac(y)).

We equip paths with source and target maps as usual: ℓ(α) = x0 and r(α) = xn for
path α as above. For x, y ∈ X, we write PX(x, y) = {α ∈ PX | ℓ(α) = x, r(α) = y}.
Any ipc-map f : X → Y induces a map f : PX → PY . For α as above it is f(α) =
(f(x0), φ1, f(x1), φ2, . . . , φn, f(xn)). For paths α = (x0, φ1, . . . , xn), β = (y0, ψ1, . . . , ym)
with r(α) = ℓ(β) the concatenation α∗β = (x0, φ1, . . . , xn, ψ1, . . . , ym) is defined as expected.

Cell y ∈ X is reachable from cell x ∈ X, denoted x ⪯ y, if PX(x, y) ̸= ∅. This preorder is
generated by δ0

A(x) ⪯ x ⪯ δ1
B(x) for x ∈ X and A,B ⊆ ev(x). We call X acyclic if ⪯ is a

partial order. The reversal on ipc-sets reverses paths and ⪯.

From paths to ipomsets. Next we introduce a map ev that computes ipomsets of paths.
The interval ipomset ev(α) of path α ∈ PX is computed recursively:

If α = (x) has length 0, then ev(α) = ev(x)ev(x)ev(x).
If α = (y ↗A x), then ev(α) = ev(x)\Aev(x)ev(x).
If α = (x↘B y), then ev(α) = ev(x)ev(x)ev(x)\B .
If α = β1 ∗ · · · ∗ βn is a concatenation of steps βi, then ev(α) = ev(β1) ∗ · · · ∗ ev(βn).

Interfaces and gluings of ipomsets are essential for this construction. It would not have
worked with regular pomsets.

▶ Example 6. The ipomset of path α1 in Example 5 is computed recursively as ev(α1) =
ev(δ0

ab(x) ↗a δ0
b (x)) ∗ ev(δ0

b (x) ↘a δ
1
ac(y)) = ∅aa ∗ aa∅ = a. Those of the other two paths

are ev(α2) = a ∥ (b→ c) and ev(α3) = b ∗ [ a
c ].

The following fact is immediate from the definition of ev.

▶ Lemma 7. For α, β ∈ PX with r(α) = ℓ(β) and an ipc-map f : X → Y , ev(α ∗ β) =
ev(α) ∗ ev(β) and ev(f(α)) = ev(α). ◀
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a b

c

d

x0

x1 x2 x3

x4

x5 x6
α = (x0 ↗ac x1 ↘a x2 ↗b x3 ↘c x4 ↗d x5 ↘b x6)

a

c

b

d
T

ev(α) =

Figure 3 Example of a path α in an iHDA and its interval ipomset ev(α). Solid arrows show
the precedence on ev(α), dashed arrows the event order. The start interface is empty, the target
interface contains the single event d.

Path equivalence and subsumption. Path equivalence is the congruence ≃ on PX generated
by (z ↗A y ↗B x) ≃ (z ↗A∪B x), (x↘A y ↘B z) ≃ (x↘A∪B z) and γ ∗ α ∗ δ ≃ γ ∗ β ∗ δ
whenever α ≃ β. Further, path subsumption is the transitive relation ⊑ on PX generated by
(y ↘A w ↗B z) ⊑ (y ↗B x↘A z), for disjoint A,B ⊆ ev(x), γ ∗ α ∗ δ ⊑ γ ∗ β ∗ δ whenever
α ⊑ β, and α ⊑ β whenever α ≃ β. We say that β subsumes α if α ⊑ β.

This means that β is more concurrent than α. Both relations preserve sources and targets
of paths; they translate to ipomsets as follows (the proof uses Lemmas 3 and 7).

▶ Lemma 8. If α, β ∈ PX , then α ⊑ β ⇒ ev(α) ⊑ ev(β) and α ≃ β ⇒ ev(α) = ev(β). ◀

▶ Example 9. It is easy to check that path α3 in Example 5 is subsumed by α2, and so are
the corresponding pomsets in Example 6: ev(α3) = b ∗ [ a

c ] ⊑ a ∥ (b→ c) = ev(α2).

Regular languages. A path α ∈ PX of an (i)HDA X is accepting if ℓ(α) ∈ X⊥ and
r(α) ∈ X⊤. Let L(X) = {ev(α) | α ∈ PX is accepting} be the set of ipomsets recognised
by X.

▶ Proposition 10. L(X) is a language (a down-closed set of interval ipomsets).

▶ Proposition 11. HDAs and iHDAs recognise the same languages.

A language is regular if it is recognised by an HDA (or an iHDA).
Prop. 10 extends [6, Thm. 95]; see [7] for a proof. The proof of Prop. 11 in [7] uses

resolution and closure.
Lem. 2 implies the following.

▶ Lemma 12. Regular languages have finite width. ◀

An (i)HDA map f : X → Y is a weak equivalence if for every accepting path β ∈ PY

there exists an accepting path α ∈ PX with f(α) = β. The next lemma is shown in [7].

▶ Lemma 13. If f : X → Y is an (i)HDA-map, then L(X) ⊆ L(Y ). If f is a weak
equivalence, then L(X) = L(Y ).
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5 Kleene Theorem

In this section we state the Kleene theorem for HDAs and ipomset languages and provide a
road-map towards its proof. Technical details are explained in the rest of the paper.

▶ Theorem 14 (Kleene theorem). A language is regular if and only if it is rational.

Proof. By Prop. 16 and Cor. 29 below. ◀

Regular languages are rational. This follows from a translation to the standard automata-
theoretic Kleene theorem. It uses the following property which is proved in Section 6 after
introducing cylinders.

▶ Proposition 15. If L is regular, then so is L \ Id.

▶ Proposition 16. Regular languages are rational.

Proof. Suppose L = (L ∩ Id) ∪ (L \ Id) is regular. First, L ∩ Id is a finite set of identity
ipomsets and thus rational. Second, L \ Id is regular by Prop. 15; we show that it is rational.
Let X be an HDA that recognises L \ Id. Then X⊥ ∩ X⊤ = ∅ (otherwise, X accepts an
identity ipomset). Let G be an automaton with alphabet I□ whose states are cells of X and
whose transitions are, for all x ∈ X[U ], A ⊆ U ∈ □,

δ0
A(x)→ x labelled with (U\A)UU

x→ δ1
A(x) labelled with UU(U\A).

Start and accept states of G are start and accept cells of X. Accepting runs of G are then
exactly accepting paths of X. Every such run of G contains at least one transition. Hence, if
U1U2 · · ·Un ∈ I□∗ is the word of a run of G, then U1 ∗ U2 ∗ · · · ∗ Un is the interval ipomset
of the corresponding path in X. By the standard Kleene theorem, L(G) is represented by
a regular expression w(U1, . . . , Un) with operations ∪, ∗ and (−)+ for Ui ∈ I□. But each
Ui = e1

i ∥ · · · ∥ e
k(i)
i , a parallel composition of singleton ipomsets. Thus L(X) is represented

by w(e1
1 ∥ · · · ∥ e

k(1)
1 , . . . , e1

n ∥ · · · ∥ e
k(n)
n ) and therefore rational. ◀

Rational languages are regular. We need to show, as usual, that the generating languages
are regular and that the rational operations preserve regularity.

▶ Proposition 17. All languages in (2) are regular.

Proof. The languages in (2) are recognised by the HDAs

∅ a a a a

◀

▶ Proposition 18. Unions of regular languages are regular.

Proof. L(X ⊔ Y ) = L(X) ∪ L(Y ), where X ⊔ Y is coproduct. ◀

In order to show the same for parallel compositions of regular languages, we introduce
tensor products of HDAs. For HDAs X and Y , X ⊗ Y is the HDA defined, for U, V,W ∈ □,
x ∈ X[V ], y ∈ Y [W ], A,B ⊆ U , by

(X ⊗ Y )[U ] =
⋃

V ∥W =U

X[V ]× Y [W ], δA,B(x, y) = (δA∩V,B∩V (x), δA∩W,B∩W (y)),

and (X ⊗ Y )⊥ = X⊥ × Y⊥, (X ⊗ Y )⊤ = X⊤ × Y ⊤.
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▶ Proposition 19. L(X ⊗ Y ) = L(X) ∥ L(Y ) for all HDAs X,Y . As a consequence, parallel
compositions of regular languages are regular.

A proof for a restricted class of HDAs is in [6]; we show a complete proof in [7].
Analogous proofs for ∗ and + are much harder. They need gluing operations on HDAs

and additional machinery.
An ipomset P is separated if P \ (SP ∪ TP ) ̸= ∅ (some of its elements are not in an

interface). A language is separated if its elements are separated.
An (i)HDA X is start simple if it has exactly one start cell, accept simple if it has exactly

one accept cell, and simple if it is both start and accept simple. A regular language is simple
if it is recognised by a simple iHDA. Yet this reduces expressivity.

▶ Example 20. The HDA X with a single 0-cell x, a 1-loop labelled a, and X⊥ = X⊤ = {a}
is simple and recognises the language of all ipomsets [• a · · · a •], but no simple iHDA does.

Next we prove two lemmas about simple and separated languages.

▶ Lemma 21. Regular languages are unions of simple regular languages.

Proof. Prop. 11 allows us to work with an iHDA X, say. Denote X⊥ = {xi
⊥}m

i=1 and
X⊤ = {x⊤

j }n
j=1. For each tuple (i, j) let Xj

i be the iHDA with the same underlying ipc-set
as X and (Xj

i )⊥ = {xi
⊥}, (Xj

i )⊤ = {x⊤
j }. We have L(X) =

⋃
i,j L(Xj

i ). ◀

▶ Lemma 22. For L of finite width with L∩ Id = ∅, and n sufficiently large, Ln is separated.

Proof. For every Q ∈ Ln there exists P = P1 ∗ . . . ∗ Pn such that Pk ∈ L and Q ⊑ P .
As #(Pk) ≥ 1

2 , additivity of size implies #(Q) = #(P ) = #(P1) + . . . + #(Pn) ≥ n
2 and

therefore |SQ|, |TQ| ≤ w(Q) ≤ w(P ) = maxk w(Pk) ≤ w(L), since gluing composition does
not increase width. Eventually, |SQ| + |TQ| ≤ 2 w(L) < n ≤ 2 #(Q) = 2|Q| − |SQ| − |TQ|
holds for n ≥ 2 w(L) + 1 and therefore |SQ|+ |TQ| < |Q|. ◀

Let X,Y be simple HDAs with X⊤ = {x⊤}, Y⊥ = {y⊥}, and ev(x⊤) = ev(y⊥) = U . The
gluing composition of X and Y is the HDA

X ∗ Y = colim
(
X

ι
x⊤←−− □U ιy⊥−−→ Y

)
with (X ∗ Y )⊥ = X⊥, (X ∗ Y )⊤ = Y ⊤. In other words, we identify the accept cell of X
with the start cell of Y , as well as their corresponding faces. In general, L(X ∗ Y ) is a strict
superset of L(X) ∗ L(Y ); but in Sect. 6 we will introduce properties of start and accept proper
which ensure the following.

▶ Proposition 23. Let X, Y be simple iHDAs. If X is accept simple and accept proper, and
Y is start simple and start proper, then L(Cl(X) ∗ Cl(Y )) = L(X) ∗ L(Y ).

Proof. This is a special case of Prop. 52 which is shown in [7]. ◀

▶ Proposition 24. Every simple regular language is recognised by a start simple and start
proper iHDA as well as by an accept simple and accept proper iHDA.

The proof can be found in the next section.

▶ Proposition 25. Gluing compositions of simple regular languages are regular.
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Proof. Let X, Y be simple iHDAs recognising L and M , respectively. We can assume that
X is accept simple and accept proper and Y is start simple and start proper (Prop. 24).
Thus, by Prop. 23, L(Cl(X) ∗ Cl(Y )) = L(X) ∗ L(Y ) = L ∗M. ◀

▶ Proposition 26. The Kleene plus of a separated regular language is regular.

The proof is in [7]. Below we show that the additional assumptions above may be removed,
finishing the proof of the Kleene theorem.

▶ Proposition 27. Gluing compositions of regular languages are regular.

Proof. Suppose L and M are regular. By Lem. 21, L =
⋃

i Li and M =
⋃

j Mj for simple
regular languages Li and Mj . Then L ∗M =

( ⋃
i Li

)
∗

( ⋃
j Mj

)
=

⋃
i

⋃
j Li ∗Mj is regular

by Propositions 18 and 25. ◀

▶ Proposition 28. The Kleene plus of a regular language is regular.

Proof. Suppose L is regular. If L ∩ Id = ∅, then Ln is separated for sufficiently large n by
Lem. 22. In this case, L+ =

⋃n
i=1 L

i ∪
( ⋃n

i=1 L
i
)
∗ (Ln)+ is regular by Propositions 18, 27

and 26. Otherwise, if L ∩ Id ̸= ∅, then L+ = ((L ∩ Id) ∪ (L \ Id))+ = (L ∩ Id) ∪ (L \ Id)+ is
regular by Prop. 15 and Prop. 18. ◀

▶ Corollary 29. Every rational language is regular.

Proof. By Propositions 17, 18, 19, 27, and 28 ◀

The remaining proofs (Prop. 15, 25, 26). Prop. 15 needs translations between HDAs and
iHDAs via resolution and closure, established in the next section.

Next we briefly explain the proof of Prop. 25. Sequential compositions X ∗ Y of standard
automata require some care. When accept states of X have outgoing transitions or start
states of Y have incoming ones, one cannot simply identify accept states of X with start states
of Y . The language of the resulting automaton may contain more words than L(X)∗L(Y ). To
alleviate this, one usually replaces X and Y by equivalent “proper” automata without such
transitions. We proceed along similar lines for iHDA. Suppose X,Y are simple iHDA with
X⊤ = {x⊤}, Y⊥ = {y⊥} and ev(x⊤) = ev(y⊥) (ev(x⊤) ̸= ev(y⊥) implies L(X) ∗ L(Y ) = ∅).

We show that any iHDA may be converted into a start proper or target proper iHDA that
recognises the same language. Start-properness implies that any start cell is ⪯-minimal and
that different start cells do not share any faces. Target-properness is defined similarly.

We introduce cylinders in Sec 6 to perform this conversion. For ipc-sets X, Y , Z and
image-disjoint maps f : Y → X, g : Z → X, we construct an ipc-set C(f, g) together with
maps f̃ : Y → C(f, g), g̃ : Z → C(f, g) and p : C(f, g) → X, see Fig. 4. The image of f̃ is
⪯-minimal, that of g̃ is ⪯-maximal, and p ◦ f̃ = f and p ◦ g̃ = g. This construction is inspired
by algebraic topology: f̃ and g̃ are reminiscent of cofibrations and p of a trivial fibration.
Here we only show that p has suitable lifting properties. We also use cylinders for Prop. 15.

We may therefore assume that X is accept proper and Y start proper. Gluing iHDAs is
intricate due to the missing faces of start and accept cells. So, after rearranging iHDAs, we
convert them back into HDAs using closure. Then we show that the gluing of Cl(X) and
Cl(Y ) along their accept and start cells yields an HDA that recognises L(X) ∗ L(Y ).

Finally, the proof of Prop. 26 is similar but more sophisticated. Cylinders allow us to
separate start cells from each other (same for accept cells), but we are not able to separate
start cells from accept cells. Thus, we require the separability assumption.

The tools needed for gluing closures of proper iHDAs are developed in [7].
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6 Cylinders

In the final technical section of this paper we describe the cylinder construction mentioned
above, as it may be of independent interest. Omitted proofs are shown in [7].

Initial and final inclusions. A sub-ipc-set Y ⊆ X is initial if it is down-closed with respect
to the reachability preorder ⪯. Equivalently, δ1

B(x) ∈ Y implies x ∈ Y for all x ∈ X[U ]
and B ⊆ U \ TU . By reversal, Y is final if it is up-closed with respect to ⪯ or, equivalently,
δ0

A(x) ∈ Y implies x ∈ Y . An initial (final) inclusion is an injective ipc-map whose image is
an initial (final) sub-ipc-set.

▶ Lemma 30. If f : Y → X is an initial or final inclusion, then so is Cl(f) : Cl(Y )→ Cl(X).

Proper iHDAs. The start and accept maps of iHDA X are the ipc-maps

ιX⊥ =
∐

x∈X⊥

ιx :
∐

x∈X⊥

I□iev(x) → X, ι⊤X =
∐

x∈X⊤

ιx :
∐

x∈X⊤

I□iev(x) → X.

We call an iHDA start proper if its start map is an initial inclusion, accept proper if its accept
map is a final inclusion, and proper if it is start proper, accept proper and the images of the
start map and the accept map are disjoint.

▶ Lemma 31. All start cells of start proper iHDAs are ⪯-minimal; all accept cells of accept
proper iHDAs are ⪯-maximal.

The condition of Lem. 31 is not sufficient for properness. The diagrams show examples of
iHDAs that are not start proper; edges marked with x are identified.

x

x

Lifting properties. An ipc-map f : Y → X has the future lifting property (FLP) if for
every up-step α = (δ0

A(x)↗A x) in X and every y ∈ Y such that f(y) = δ0
A(x) there is an

up-step β = (y ↗A z) in Y such that f(β) = α. The past lifting property (PLP) is defined
by reversal. FLP and PLP are equivalent to the lifting property for the following diagrams.

FLP: I□U\A Y

I□U X

I□d0
A

ιy

ιx

fιz

PLP: I□U\B Y

I□U X

I□d1
B

ιy

ιx

fιz

The next lemma is immediate from the definitions.

▶ Lemma 32. An ipc-map f : Y → X has the FLP if and only if, for every α ∈ PX and
y ∈ f−1(ℓ(α)), there exists a path β ∈ PY such that ℓ(β) = y and f(β) = α. An analogous
property holds for PLP. ◀

Let f : Y → X be an ipc-map, let S, T ⊆ X (subsets, but not necessarily sub-ipc-sets).
Then f has the total lifting property (TLP) with respect to S and T if for every path α ∈ PX

with ℓ(α) ∈ S and r(α) ∈ T and every y ∈ f−1(ℓ(α)) and z ∈ f−1(r(α)), there exists a path
β ∈ PY (y, z) such that f(β) = α.
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f̃(Y )Y
f̃ g̃

jp

f g

g̃(Z) Z

j(X)

X

C(f, g)

(I□dA,B )−1(K) I□V (I□dA,B )−1(L)

K I□U L

Y X Z

I□dA,B I□dA,B I□dA,B

φ ιx ψ

f g

Figure 4 The cylinder C(f, g) and a diagram defining its cell.

▶ Proposition 33. Let f : Y → X be an iHDA map such that the functions Y⊥ → X⊥ and
Y ⊤ → X⊤ induced by f are surjective. Assume that one of the following holds.
(a) f has the FLP and Y ⊤ = f−1(X⊤),
(b) f has the PLP and Y⊥ = f−1(X⊥),
(c) f has the TLP with respect to X⊥ and X⊤.
Then f is a weak equivalence.

Cylinders. Let X,Y, Z ∈ I□Set and f : Y → X, g : Z → X ipc-maps, assuming f and g

to have disjoint images; this is not used directly in the construction, but crucial in proofs.
The cylinder C(f, g) is the ipc-set such that C(f, g)[U ] is the set of (x,K,L, φ, ψ),

where x ∈ X[U ], K is an initial and L is a final sub-ipc-set of I□U , φ : K → Y and
ψ : L→ Z are ipc-maps satisfying f ◦ φ = ιx|K and g ◦ ψ = ιx|L. For dA,B ∈ I□(V,U) and
(x,K,L, φ, ψ) ∈ C(f, g)[U ], we put

δA,B(x,K,L, φ, ψ) = (δA,B(x), (I□dA,B )−1(K), (I□dA,B )−1(L), φ ◦ I□dA,B , ψ ◦ I□dA,B ).

Equivalently, C(f, g)[U ] is the set of commutative diagrams of solid arrows in Fig. 4 and
the face map δA,B composes the diagram with the dashed arrows. The following is then clear
(recall that f(Y ) ∩ g(Z) = ∅).

▶ Lemma 34. For every (x,K,L, φ, ψ) ∈ C(f, g) we have K ⊆ (ιx)−1(f(Y )) and L ⊆
(ιx)−1(g(Z)). Thus K ∩ L = ∅, x ∈ f(Y ) implies L = ∅, and x ∈ g(Z) implies K = ∅.

C(f, g) is equipped with the ipc-maps shown in Fig. 4. They are defined by
j(x) = (x, ∅, ∅, ∅, ∅), p(x,K,L, φ, ψ) = x, f̃(y) = (f(y), I□iev(y), ∅, ιy, ∅), g̃(z) =
(g(z), ∅, I□iev(z), ∅, ιz). Below we collect some of their properties.

▶ Lemma 35.
(a) p ◦ f̃ = f , p ◦ g̃ = g, p ◦ j = idX .
(b) f̃ is an initial inclusion and f̃(Y ) = {(x,K,L, φ, ψ) ∈ C(f, g) | K = I□iev(x), L = ∅}.
(c) g̃ is a final inclusion and g̃(Z) = {(x,K,L, φ, ψ) ∈ C(f, g) | L = I□iev(x), K = ∅}.
(d) j is an inclusion and j(X) = {(x, ∅, ∅, ∅, ∅) ∈ C(f, g)}.
(e) f̃(Y ), g̃(Z) and j(X) are pairwise disjoint.

▶ Proposition 36. The projection p : C(f, g)→ X has the FLP and PLP, and the TLP with
respect to f(Y ) and g(Z).
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Proof of Prop. 24. We show only the first claim; the second follows by reversal. Let L be
recognised by a simple iHDA X with start cell x⊥ ∈ X[U ]. Let Y be the iHDA with underlying
precubical set C(ιX⊥ , ∅) (∅ : ∅ → X is the empty map). Let y⊥ = (x⊥, I□U , ∅, idI□U , ∅) be the
only start cell of Y and Y ⊤ = p−1(X⊤). Since ιY⊥ = ι̃X⊥ , Y is start proper (Lem. 35(b)). The
projection p : Y → X has the FLP (Prop. 36); thus L(Y ) = L(X) = L (Prop. 33(a)). ◀

Proof of Prop. 15. Suppose first that L is simple. Let X be a start simple and start proper
iHDA recognising L (Prop. 24) and let Y be the iHDA with same underlying ipc-set and start
cells as X and accept cells Y ⊤ = X⊤\X⊥. By Lem. 31, an accepting path α ∈ PX is accepting
in Y iff it has positive length (ev(α) is not an identity), thus L(Y ) = L(X) \ Id = L \ Id is
regular. If L is not simple, then let L =

⋃
i Li be a finite sum of simple languages. Then

L \ Id = (
⋃

i Li) \ Id =
⋃

i(Li \ Id) is regular by the first case and Prop. 18. ◀

7 Conclusion

Automata accept languages, but higher-dimensional automata (HDAs) have so far been an
exception to this rule. We have proved a Kleene theorem for HDAs, connecting models to
behaviours through an equivalence between regular and rational languages.

Showing that regular languages are rational was quite direct, but the converse direction
required some effort. One reason is that HDAs may be glued not only at states, but also at
higher-dimensional cells. This in turn led us to consider languages of pomsets with interfaces
(ipomsets) and to equip HDAs with interfaces (iHDAs), too. After showing that HDAs
and iHDAs recognise the same languages, we used topology-inspired constructions to glue
(i)HDAs and show that rational operations on languages can be reflected by operations on
(i)HDAs.

Kleene theorems build bridges between machines and languages, and there is a vast
literature on the subject. In non-interleaving concurrency, one school considers (Mazurkiewicz)
trace languages. Zielonka introduces asynchronous automata and shows that languages are
regular iff they are recognisable [26]. Droste’s automata with concurrency relations have
similar properties [4]. Yet not all rational trace languages (generated from singletons using
union, concatenation and Kleene star) are recognisable [3]. Trace languages use a binary
notion of independence and already 2-dimensional HDAs may exhibit behaviour that cannot
be captured by trace languages [12].

Another school studies Kleene theorems for series-parallel pomset languages and automata
models for these, such as branching and pomset automata [17,19], and for Petri automata [2].
Series-parallel pomsets are incomparable to the interval orders accepted by Petri nets or
HDAs, see [8, 25].

HDAs have been developed first of all with a view on operational, topological and
geometric aspects, see [10] and the extensive bibliography of [24]. Languages have only
been introduced recently [6]. Topological intuition has also guided our work, for example
in the cylinder construction. Partial HDAs [9] were introduced for defining open maps and
unfoldings on HDAs. HDAs with interfaces are a special case of partial HDAs, and our tools
and techniques should be useful for those as well.

Our new formalisation of (i)HDAs as presheaves over a category of labelled ordered sets
opens up connections to presheaf automata [22], coalgebra, and open maps [16], which we
intend to explore. Finally, our introduction of iHDA morphisms akin to cofibrations and
trivial fibrations hints at factorisation systems for HDAs. Weak factorisation systems and
model categories have been considered in a bisimulation context, for example in [18], so we
wonder about the connection.
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A Definitions of HDAs

Precubical sets and HDAs are used in a few different incantations in the literature, all more
or less equivalent. We expose some of these here in order to relate them to the setting in
this paper; we make no claim as to completeness.

Precubical sets. according to Grandis [14,15] are presheaves on a small category □G which
is generated by the following data:

objects are {0, 1}n for n ≥ 0;
elementary coface maps dν

i : {0, 1}n → {0, 1}n+1, for i = 1, . . . , n + 1 and ν = 0, 1, are
given by dν

i (t1, . . . , tn) = (t1, . . . , ti−1, ν, ti, . . . , tn).
Elementary coface maps compose to coface maps {0, 1}m → {0, 1}n for n ≥ m. See also [5].

□G-sets, i.e., elements X ∈ Set□
op
G , are then graded sets X = {Xn}n≥0 (where Xn =

X[{0, 1}n]) together with face maps Xn → Xm for n ≥ m. The elementary face maps are
denoted δν

i = X[dν
i ], and they satisfy the precubical identity

δν
i δ

µ
j = δµ

j−1δ
ν
i (i < j) (3)

for ν, µ ∈ {0, 1}.
The above elementary description of □G-sets may be taken as definition, allowing one to

avoid any talk about presheaves. For example, van Glabbeek [24] defines a precubical set
Q = (Q, s, t) as a family of sets (Qn)n≥0 and maps si : Qn → Qn−1, 1 ≤ i ≤ n, such that
αi ◦ βj = βj−1 ◦ αi for all 1 ≤ i < j ≤ n and α, β ∈ {s, t}; this is evidently equivalent to the
above.

The paper [6] introduces another base category, □□Z, given as follows:
objects are totally ordered sets (S, 99KS);
morphisms S → T are pairs (f, ε), where f : S ↪→ T is an order preserving injection and
ε : T → {0, , 1} fulfils f(S) = ε−1( ).

(The element stands for “executing”.) Letting A = ε−1(0) and B = ε−1(1), the above
notion of morphisms is equivalent to having triples (f,A,B) consisting of f : S ↪→ T (order
preserving and injective) and A,B ⊆ T such that T = A⊔ f(S)⊔B (disjoint union). Except
for the labelling, this is the same as our definition of □□ in Section 2. ( [6] also makes a
connection to [1].)

Then [6] goes on to show that the full subcategory of □□Z spanned by objects ∅ and
{1, . . . , n} for n ≥ 1 is skeletal and equivalent to □□Z. Moreover, this subcategory, □Z, is
shown to be isomorphic to □G, and that the presheaf categories on □□Z and on □Z (and thus
also on □G) are uniquely naturally isomorphic. It is clear that □Z is a representative of the
quotient of □□Z under isomorphisms, so except for the labelling, this is again the same as our
□ of Section 2.
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The advantage of □□Z, and of our □□, over the skeleton versions is that the precubical
identity (3) is automatic and that there is a built-in notion of events, i.e., in a □□Z-set X, a
cell x ∈ X[U ] has events U .

HDAs. are, generally speaking, labelled precubical sets (on the alphabet Σ) with specified
start and accept cells. The labelling may be obtained using the labelling object !Σ [12]. This
is the precubical set with !Σn = Σn and δν

i ((a1, . . . , an)) = (a1, . . . , ai−1, ai+1, . . . , an), and
a labelled precubical set is then a precubical map X → !Σ: an object of the slice category of
precubical sets over !Σ.

A labelling λ : X → !Σ induces a function λ1 : X1 → Σ with the property that for all
x ∈ X2, λ1(δ0

1(x)) = λ1(δ1
1(x)) and λ1(δ0

2(x)) = λ1(δ1
2(x)). Conversely, any such function

extends uniquely to a precubical map X → !Σ [6, Lem. 14], so that λ1 may be taken as the
definition of labelling instead. This is the approach taken in [24], where an HDA is defined
as a precubical set Q equipped with a function λ1 → Σ such that λ1(si(q)) = λ1(ti(q)) for
all q ∈ Q2 and i = 1, 2, and subsets of start and accept states I, F ⊆ Q0.

Another observation made in [6] is that regarded as a presheaf, !Σ(S) = Set(S,Σ), hence
!Σ is representable in Set via the forgetful functor □□Z → Set. This means that the labelling
may be integrated into the base category, turning □□Z into our □□ with objects being labelled
totally ordered sets. Using □□ instead of □□Z allows us to avoid working in the slice category:
everything is labelled from the outset.

To sum up, let X be an HDA in our sense, then the corresponding HDA (Q, s, t, λ1, I, F )
in the sense of [24] is given as follows.

Qn =
∐

U∈□, |U |=n X[U ].
If x ∈ X[U ], then si(x) = δ0

u(x) and ti(x) = δ1
u(x), where u ∈ U is the i-th smallest

element of U in the order 99KU .
If x ∈ X[U ] ⊆ Q1 with U = ({e}, ∅, λ(e) = a), then λ1(x) = a.
I = X⊥, F = X⊤.

Conversely, let (Q, s, t, λ1, I, F ) be an HDA as in [24]. There exist unique labelling
functions λn : Qn → Σn such that λn−1(αi(q)) = δi(λn(q)) [6, Lem. 14], where α ∈ {s, t}
and δi skips the i-th element of a sequence. We construct an HDA X as follows.

X[U ] = {q ∈ Qn | λn(q) = U} for U ∈ □□ and |U | = n.
δ0

a(q) = si(q) and δ1
a(q) = ti(q) for q ∈ X[U ] and a ∈ U the i-th smallest element of U in

the order 99KU . The remaining face maps are compositions of these.
X⊥ = I, X⊤ = F .

Finally, the only difference between van Glabbeek’s HDAs and ours is that we allow start
and accept cells that are not necessarily vertices. Our definition of HDAs, based on lo-sets,
treats the elements of these sets as labelled events that are regarded either as unstarted,
executed, or terminated. In this way, they incorporate events in a direct manner. This makes
our definition of HDAs into a model that combines event-based and state-based models of
concurrency.
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1 Introduction

The purpose of this paper is to give a principled foundation for methods from concurrency
theory that are gaining traction in the verification of security properties. Tools used in the
security domain have applied partial-order-based techniques, notably partial-order reduction
(POR), to improve their efficiency, thereby increasing the size of the systems that can be
analyzed [6, 7, 8, 17, 18, 21, 27, 38]. To date, much of that work is tool-driven and guided
by examples. However, without a solid foundation, we cannot be certain that the methods
employed are correct, and hence, if an untested example is presented, the tool might produce
incorrect results or fail to apply reductions where they might well have been applied.

This paper fulfils what we believe to be an important role: drawing from decades of theory
on the topic of non-interleaving semantics for process algebras, we bring essential concurrency
concepts to the security verification community. In particular, we aim for a semantics that is
operational, rather than denotational, to stay close to the existing semantics employed by
the main tools in the security community, so that our work may easily be adopted. As in the
non-interleaving tradition, we define a concept of event as an enhancement of actions. The
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notion of independence is then defined on events in a straightforward way using the structure
of the events only. This enables the implementation of techniques such as partial-order
reduction on the fly.

The applied π-calculus [1, 43] has become instrumental in leveraging theoretical process
calculi to certify and verify security protocols [4, 10, 14, 31, 33, 36]. Its syntax can describe
a variety of interactions between the processes involved in a security protocol, stressing the
study of the communication of complex messages. Abstracting away from cryptographic
primitives with an equational theory allows tools to focus on problems arising due to the
information flow in security protocols, while its flexibility allows a large variety of situations to
be modelled. Its inductive structure lends itself to automation of the analysis and verification
of protocols used in production thanks to tools such as ProVerif [10], DEEPSEC [17],
Akiss [16], Sapic [35], SAT-Equiv [19] and SPEC [46], which have flavours of the applied
π-calculus as their input language.

Labelled asynchronous transition systems (LATS) are a non-interleaving model of concur-
rency, which, because they extend transition systems in a natural way, are suited to being
the objects generated by our structural operational semantics for the applied π-calculus. The
word asynchronous does not refer to the type of communication between processes: it is a nod
to the Petri net literature, where independent transitions are said to act asynchronously [41].
LATS were introduced by Bednarczyk [9] and Shields [45], and have been well studied in the
concurrency literature [28, 29, 51]. They are generally required to satisfy properties such
as event determinism, and to provide an independence relation that satisfies what we call
concurrency diamonds. Developing a LATS is also an important prerequisite for further
methods to be developed such as non-interleaving process equivalences.

Endowing the applied π-calculus with a structural operational semantics that defines
a labelled asynchronous transition system gives us a concrete path towards applying non-
interleaving concurrency techniques to security problems such as the verification of security
protocols. This requires us to import and mix ideas from different communities and lines of
work, and to carefully design “the right fit” to prove seamlessly the desired properties of a
LATS. We believe our proposal to be not only elegant, but also enlightening in the way it
sidesteps “traditional” problems stemming from the π-calculus, such as the need to represent
some forms of extrusion with disjunctive causality [20, 30]. In particular, in our theory there
is never any ambiguity about which outputs an event is causally dependent on, in contrast to
the traditional semantics for the π-calculus [11] where, if two outputs concurrently extrude
the same name that is then later used, then the semantics does not record from which output
the name originates.

Our proposal is also lightweight – our events consist simply of a location (a binary string
indicating where in the binary tree of parallel and choice components the event originates)
and an action label – and provides event determinism almost for free. Avoiding disjunctive
causality will allow our model to be related to more standard concurrency models such as
safe Petri nets or prime event structures.

Outline. Sect. 2 recalls the abstract concept of a LATS. Sect. 3 introduces a syntax for the
applied π-calculus. Sect. 4 explains the design of our non-interleaving structural operational
semantics. Sect. 5 presents the main result: that our non-interleaving structural operational
semantics is a labelled asynchronous transition system. Sect. 6 situates this work in the
literature, particularly in relation to POR for the applied π-calculus. The appendices provide
example derivations and outline the key elements of the proof of the main theorem.
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2 Our Target Model: Labelled Asynchronous Transition Systems

A labelled asynchronous transition system is a labelled transition system enriched with an
independence relation on events I that satisfies what we call diamond properties. Standard
labelled transition systems, such as those obtained from structural operational semantics of
process algebras such as CCS, π-calculus, and applied π-calculus, are labelled with actions,
indicating, e.g., the input or output action of a process. Labelled asynchronous transition
systems (LATS), in contrast, are labelled with events, which contain more information,
sufficient to distinguish between events that are triggered in different ways but share the
same action label. We denote states (which usually in process algebras are process terms) by
capital letters, events by small letters, and transitions between states labelled with an event
as A

e−→ B. We illustrate the properties of LATS using standard π-calculus notation. The
reader familiar with the π-calculus may safely skip the following info box.

Key features of the π-calculus: We assume for now only some familiarity with
π-calculus features, some of which we informally recall here. Later, in Sect. 3, we extend
this to the applied π-calculus and define formally its semantics:

Name restriction νx.P binds occurrences of variable x in P , indicating that x is
a freshly generated name. Importantly, an observer (who may be an attacker)
cannot know (e.g., by guessing) which name was generated, without intercepting a
communication of this name on a public channel.
An output prefix x⟨y⟩.P indicates that the variable y is output on a channel x, before
continuing to execute process P . Such outputs may only be observed if the channel is
known to the observer, either because x is a free variable or is a fresh name that has
previously been output.
An input prefix x(y).P indicates that a channel x is used to receive a message, which
is always a variable representing a name in the π-calculus. Notably, a fresh name
may only be received if it has previously been output. The process then continues to
execute P , but with occurrences of variable y in P replaced by the variable received,
e.g., as P{z/y} if z was received along x.
Parallel composition P | Q indicates that processes P and Q execute in separate
locations, possibly communicating with each other by synchronising an input and
output on the same channel name, whether or not the channel is known to an
observer. The precise meaning of parallel composition is the main subject of the
interleaving/non-interleaving spectrum of process semantics.
The match prefix [x = y]P should be read as, “if x and y are the same variable (due
to a prior input action for example) then P can execute.”
The process 0 represents termination. We follow standard conventions such as omitting
the deadlock process 0 when it is preceded by an action (e.g., output or input) prefix.

A distinguishing feature of the π-calculus is that the scope of a name restriction is
mobile in the sense that it can expand when a message containing the variable it binds is
output. We assume that action prefixes and name restriction bind stronger than parallel
composition.

To begin with, a LATS must satisfy the following property, which ensures that, in any
given state, any two (co-initial) transitions labelled with the same event are actually the
same transition (up to some minimal congruence relation ≡, quotienting the set of states).

▶ Definition 1 (event determinism). A LATS satisfies event determinism whenever

If A0 ≡ A1, A0
e−→ B0 and A1

e−→ B1, then B0 ≡ B1.

CONCUR 2022



30:4 A Non-Interleaving Operational Semantics for the Applied Pi-Calculus

For example, for a processes c⟨n⟩ | c⟨n⟩ consisting of two parallel threads both sending
n on channel c, a LATS must label the two output transitions differently, which is not
guaranteed by standard labelled transition systems.

The other two properties a LATS must satisfy are the diamond properties (sometimes
called “sideways diamond” [42] and “square property” [37]), which ensure that events
considered to be independent with respect to the independence relation I can permute. The
first diamond property ensures that two independent events labelling (co-initial) transitions
from the same state can be performed in either order without affecting the outcomes.

▶ Definition 2 (diamond property 1). A LATS satisfies diamond property 1 whenever

If e0 I e1, A
e0−→ B0, and A

e1−→ B1 then ∃C0, C1 s.t. B0
e1−→ C0, B1

e0−→ C1 and C0 ≡ C1.

The second diamond property concerns independent events labelling (composable) transi-
tions in consecutive states, ensuring such transitions may be permuted.

▶ Definition 3 (diamond property 2). A LATS satisfies diamond property 2 whenever

If e0 I e1, A
e0−→ B0, and B0

e1−→ C0, then ∃B1, C1 s.t. A
e1−→ B1, B1

e0−→ C1 and C0 ≡ C1.

Observe that all of the above properties only concern co-initial or composable transitions,
i.e., transitions from the same state or adjacent states. We use the following example to
illustrate why this is significant: νn.

(
c⟨n⟩ | c(x).[x = n]ok⟨ok⟩

)
. For any execution of this

process in which the event corresponding to ok⟨ok⟩ occurs, the two events corresponding to
c⟨n⟩ and c(x) must have both occurred previously. Since we work with an early semantics,
strictly speaking we have one event for each possible instantiation of the variable x in the
input c(x). Structural (a.k.a. prefixing) causality ensures that the event corresponding to
ok⟨ok⟩ should not be independent from any of the input events corresponding to c(x), since
this part (or location) of the process must execute the latter to be able to access the former.
Link (a.k.a. name) causality ensures that the event corresponding to c⟨n⟩ should not be
independent from the input event corresponding to c(x) when x is instantiated with the
name n, which would also enable the guard x = n. Taken together, those two causalities
ensure that our expectations regarding the concurrency inherent in π-calculi are met.

In contrast to the above observations, although the events corresponding to c⟨n⟩ and
ok⟨ok⟩, in the above example, are causaly dependent on each other by transitivity, when
defining a LATS, we are free to allow them to be defined as “independent”, since these
events can never be executed concurrently or consecutively, and hence they will never be
considered together in a diamond property. This is a reason why LATS are suited for defining
a non-interleaving structural operational semantics, as there is no need to compute global
dependencies between events: local calculations are enough to determine whether consecutive
events are concurrent. If global dependencies are required, they are established by unfoldings
of LATS into event structures and Petri nets [39].

The relatively light requirements on the independence relation, as explained above, jus-
tifies why LATS offer an attractive take on structural operational semantics. A structural
operational semantics makes transitions easy to compute, and an easy to compute inde-
pendence relation facilitates partial-order reduction, that drastically reduces the number of
states to explore when verifying concurrent processes [3, 18]. An easily calculated indepen-
dence relation also facilitates the checking of non-interleaving variants of equivalences, e.g.,
distinguishing c⟨n⟩ | c⟨n⟩ from c⟨n⟩.c⟨n⟩ (the autoconcurrency problem). Causality in the
π-calculus has been explored in related work [11, 20, 22, 34, 40].
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Processes:
P, Q, R ::= 0 deadlock

| νx.P new
| P | Q parallel
| G guarded process
| !P replication

Guarded processes:
G, H ::= M(x).P input prefix

| M⟨N⟩.P output prefix
| [M = N ]G match
| [M ̸= N ]G mismatch
| G + H choice

Extended processes: A, B, C ::= σ | P active process
| νx.A new

Figure 1 Syntax of processes with guarded choice and of extended processes.

3 A Syntax for the Applied π-Calculus

We detail the syntax for the applied π-calculus we employ in Fig. 1 – which is close to the
one used in tools such as e.g., ProVerif [1, 10]. Variables are denoted by lowercase roman
letters such as x, y, z (generally reserved for input variables), a, b, c (generally reserved for
channel names) m, n, (generally reserved for nonces and keys). All variables are the same
syntactic category, but we are careful to distinguish variables from aliases, ranging over
α, β, γ. Traditionally in the applied π-calculus, aliases are also simply variables, but they
play a special role in this theory. We will explain the notion of alias properly in Sect. 4.2.

Variables, aliases and function symbols – discussed below – are used to build messages,
denoted by M, N, K. In processes, denoted by P, Q, R, variables, but not aliases, can be
bound by input prefix M(x).P or fresh name binders νx.P , where the latter is used to
indicate which variables – in this case, x – are treated as opaque names, such as private keys
hidden from an attacker observing the process. We use sequences of names νx⃗.P to abbreviate
multiple name binders defined inductively such that νϵ.P = P and νx, y⃗.P = νx.νy⃗.P , where
ϵ is the empty sequence.

As standard, a substitution σ, θ or ρ is a function with a domain (dom(σ) = {α : α ̸= ασ})
and a range (ran(σ) = {ασ : α ∈ dom(σ)}) that can be applied to messages as suffixes, e.g.,
fst(α)

{⟨m,n⟩/α

}
= fst(⟨m, n⟩). We write id for the identity substitution, with dom(id) =

ran(id) = ∅. Substitutions can be composed, notated σ ◦ θ, and are applied in reverse to
function composition, thus M(σ ◦ θ) = (Mσ)θ. When applied to processes, substitutions
are capture-avoiding with respect to processes νx.P and a(x).P that bind x in P . In this
work, active substitutions, which map aliases in their finite domain to messages containing
no aliases (hence are idempotent, i.e., σ ◦ σ = σ), play a central role.

The ability to choose any function symbols to construct messages is the real flexibility
of the applied π-calculus, allowing many message theories to be encoded, representing
cryptographic functions by defining an equational theory E, containing equations such as for
the decryption function dec({M}K , K)=E M or first projection of a pair fst(⟨M, N⟩)=E M .
This clean design allows us to separate problems related to the semantics of processes, as
explored in this paper, from problems associated with conducting proofs in the presence
of specific choices of message theories. Thus we never fix a specific message theory in this
paper, and any we provide is just to make examples more digestible.

Extended processes, ranging over A, B, C, offer a compact way of representing a process
along with the messages and names that have been sent. In extended processes, the messages
already sent are represented by active substitutions; and the scope of fresh name binders
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are enlarged to include the substitution, so that they may bind variables in both the
substitutions representing messages that have been output and in the continuation processes.
In an extended process A = νx⃗.(σ | P ), we assume, in this work, a normal form, where
aliases do not appear in processes. This has the effect that the active substitution σ in the
extended process A has already been applied to P .

▶ Definition 4 (free variables and aliases). A variable x (resp. an alias α) is free in a message
M if x ∈ fv(M) (resp. α ∈ fa(M)) for

fv(f(M1, . . . Mn)) = ∪n
i=1fv(Mi) fv(x) = {x} fv(α) = ∅

fa(f(M1, . . . Mn)) = ∪n
i=1fa(Mi) fa(x) = ∅ fa(α) = {α} .

The fv function extends in the standard way to (extended) processes, letting fv(νx.P ) =
fv(P ) \ {x} and fv(M(x).P ) = fv(M) ∪ (fv(P ) \ {x}), and similarly for fv(A).

▶ Definition 5 (fresh). We say a variable x is fresh for a message M (resp. process P ,
extended process A), written x # M (resp. x # P , x # A) whenever x ̸∈ fv(M) (resp.
x /∈ fv(P ), x /∈ fv(A)), and similarly for aliases. Freshness extends point-wise to lists of
entities, i.e., x1, x2, . . . xm # M1, M2, . . . , Mn, denotes the conjunction of all xi # Mj for
all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

▶ Definition 6 (α-equivalence). We define α-equivalence (denoted ≡α) for variables only
(not aliases which are fixed “addresses”) as the least congruence (a reflexive, transitive,
and symmetric relation preserved in all contexts) such that, whenever z # νx.P , we have
νx.P ≡α νz.(P{z/x}) and M(x).P ≡α M(z).(P{z/x}). Similarly, for extended processes, we
have the least congruence such that, whenever z # νx.A, we have νx.A ≡α νz.(A{z/x}).

▶ Definition 7 (capture-avoiding substitutions). Restriction is such that θ↾α⃗(x) = θ(x) if
x ∈ α⃗ and x otherwise. Capture-avoiding substitutions are defined for processes such that for
any z # dom(σ) , ran(σ) , νx.P , we have (M(x).P )σ ≡α Mσ(z).P{z/x}σ and (νx.P )σ ≡α

νz.P{z/x}σ. For extended processes, it is defined such that (νx.A)ρ ≡α νz.(A({z/x} ◦ ρ)) and
(σ | P )ρ = (σ ◦ ρ↾dom(σ) | Pρ), for z # dom(ρ) , ran(ρ) , νx.A.

▶ Definition 8 (structural congruence). Our minimal structural congruence (denoted ≡) is the
least equivalence relation on extended processes extending α-equivalence such that whenever
σ = θ (i.e., the substitutions denote the same function), P ≡α Q and A ≡ B, we have:

σ | P ≡ θ | Q νx.A ≡ νx.B νx.νz.A ≡ νz.νx.A

Notice that we did not include equations such as P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R) or
P | 0 ≡ P , for reasons that will become clear in Sect. 4.2. Many similar systems (sometimes
called proved transition systems) miss a structural congruence altogether [15, 24, 26], or miss
the associativity and commutativity of the parallel composition [25, p. 242], since they can
alter the label of the transition and complicate tracking the source of an action, yet can be
recovered by a suitable observational equivalence (e.g., a non-interleaving bisimilarity).

4 The Design of a Non-interleaving Structural Operational Semantics

The located structural operational semantic rules introduced in Figs. 2 and 3 adapt the
recent semantics developed for the applied π-calculus in [31, 32], which can be obtained
from the one here by simply ignoring the information in red and any other information
beneath the arrow in labelled transitions. To obtain a structural operational semantics for
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M =E K
Inp

K(x).P M N−−−→
[]

id | P
{

N/x

} M =E K
Out

K⟨N⟩.P M(λ)−−−→
[]

{
N/λ

}
| P

P
π−→
u

νx⃗.(σ | R) x⃗ # Q
Par-L

P | Q
π−→

0u
νx⃗.(σ | R | Q)

Q
π−→
u

νx⃗.(σ | R) x⃗ # P
Par-R

P | Q
π−→

1u
νx⃗.(σ | P | R)

P
π−→
u

A x # fv(π)
Extrude

νx.P
π−→
u

νx.A

A
π−→
u

B x # fv(π)
Res

νx.A
π−→
u

νx.B

P
Mσ(λ)−−−−→

s[s′]
νx⃗.

({
N/λ

}
| Q

)
x⃗ # ran(σ) fa(M) ⊆ dom(σ) sλ # dom(σ)

Alias-out
σ | P

M(sλ)−−−−→
s[s′]

νx⃗.
(
σ ◦

{
N/sλ

}
| Q

)
P

πσ−−→
u

νx⃗.(id | Q) x⃗ # ran(σ) fa(π) ⊆ dom(σ)
Alias-free

σ | P
π−→
u

νx⃗.(σ | Q)

G
π−→
[t]

A

Sum-L
G + H

π−−→
[0t]

A

H
π−→
[t]

A

Sum-R
G + H

π−−→
[1t]

A

P | !P π−→
u

A
Bang

!P π−→
u

A

P
π−→
u

A M =E N
Mat

[M = N ]P π−→
u

A

P
π−→
u

A M ̸=E N
Mismat

[M ̸= N ]P π−→
u

A

Figure 2 An early located non-interleaving structural operational semantics.

the π-calculus in this style, simply assume that all messages M , N , etc., are variables, and
that two variables are equal only if they are the same variable. After briefly introducing our
structural operational semantics, we explain our design choices in the subsections that follow.

Action labels range over π. A free input action label M N indicates the input of message
N on channel M . A bound output action label M(α) indicates the output of something on
channel M where the message we output is assigned the alias α, which can be used to refer
to that message in the future by the observer, or a direct communication τ that the observer
does not intercept. This is the reason why the substitution is applied to the continuation
in the Inp rule, but “stored” in the substitution in the Out rule. The label τ denotes an
internal communication, and is used in the synchronisation rules presented in Fig. 3.

The functions for free variables and free aliases extend to labels as follows.

fv(π) =


fv(M) ∪ fv(N) if π = M N

fv(M) if π = M(α)
∅ if π = τ

fa(π) =


fa(M) ∪ fa(N) if π = M N

fa(M) if π = M(α)
∅ if π = τ

Readers familiar with labelled transition systems will immediately notice the additional
annotation below transitions, that uses prefixes composed of 0s and 1s. This indicates the
location of the parallel sub-process (a.k.a. component or thread) performing the action:
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P
M(λ)−−−→

ℓ0
νy⃗.

({
N/λ

}
| P ′) Q

M N−−−→
ℓ1

νw⃗.(id | Q′) y⃗ # Q w⃗ # P, y⃗

Close-L
P | Q

τ−−−−−→
(0ℓ0,1ℓ1)

νy⃗, w⃗.(id | P ′ | Q′)

P
M N−−−→

ℓ0
νy⃗.(id | P ′) Q

M(λ)−−−→
ℓ1

νw⃗.
({

N/λ

}
| Q′) w⃗ # P y⃗ # Q, w⃗

Close-R
P | Q

τ−−−−−→
(0ℓ0,1ℓ1)

νy⃗, w⃗.(id | P ′ | Q′)

Figure 3 Rules for communication.

▶ Definition 9 (locations). A location ℓ is of the form s[t], where s ∈ {0, 1}∗ and t ∈ {0, 1}∗.
If s or t is empty, we omit it (hence, we write ϵ[ϵ] as []).

The colour coding above is to emphasise everywhere, what we call, the location prefix used
to indicate the parallel component from which a transition originates, and the “t part” of a
location serves to identify which operand of the sum triggered the transition, as indicated in
the Sum-L and Sum-R rules in Fig. 2.

To handle τ -transitions that originate from a synchronisation between an input and an
output in two different locations, location labels, used to annotate transitions with events,
may be pairs of locations, as employed in Fig. 3.

▶ Definition 10 (location labels). A location label u is either a location ℓ or a pair of
locations (ℓ0, ℓ1), and we let c(ℓ0, ℓ1) = (cℓ0, cℓ1) for c ∈ {0, 1}.

Events are pairs of action labels and location labels, as they appear above and below
labelled transitions in Fig. 2 and 3. The role of the aliases and the usefulness of their prefix
location is justified in Sec. 4.1 and 4.2. The rules Sum-L and Sum-R, and Bang rules have
also been carefully designed, as explained in Sec. 4.3, 4.4 and 4.5. We will return, in those
sections, to these rules to provide more detailed insight.

The only significant modification that we make to the standard syntax of applied π-
calculus is that aliases have more structure than variables. Aliases, ranging over α, β, γ, are
variables, extended with a, possibly empty, prefix of 0s and 1s representing the location of
the process producing them. For convenience, we use λ, λ′, . . . to range over variables used as
aliases where the prefix is empty, and assume they are of a separate syntactic category from
variables used for names and input binders, allowing us to drop some side conditions in rules.

We illustrate throughout the article how some transitions are derived. We sometimes apply
the Extrude or Res rules “in batch”, omit the id substitution, and list some hypothesis
below the derivation. The derivation presented in Fig. 4 illustrates those conventions, but
it also explicitly lists the occurrences of ϵ to help with readability. Indeed, this instance of
Alias-out is trivial, since it turns the process on the left into an extended process with the
identity substitution that records that nothing has yet been output.

Letting Pok = νm, n.(a⟨⟨m, n⟩⟩| m(x).[x = n]ok⟨ok⟩), we leave to the reader to convince
themselves that the following transition is similarly derivable, using the Par-L rule:

id | Pok
a(0λ)−−−→

0[]
νm, n.(

{
⟨m,n⟩/0λ

}
| 0 | m(x).[x = n]ok⟨ok⟩).
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Out

c⟨⟨m,n⟩⟩ c(λ)−−→
ϵ[ϵ]

{⟨m,n⟩/λ
}
| 0 n,m # fv(c(λ))

Extrude (×2)

νm.νn.c⟨⟨m,n⟩⟩ c(λ)−−→
ϵ[ϵ]

νm.νn.
({⟨m,n⟩/λ

}
| 0

)
(⋆)

Alias-out

id | (νm.νn.c⟨⟨m,n⟩⟩) c(ϵλ)−−−→
ϵ[ϵ]

νm.νn.
({⟨m,n⟩/λ

}
| 0

)
m,n # ran(id) = ∅ fa(c) = ∅ ⊆ dom(id) = ∅ ϵλ # dom(id) = ∅ (⋆)

Figure 4 First, simple example of derivation.

We discuss the next transition of Pok in Sect. 4.1, and the dependence of the two events in
Sect. 5. Another interesting example is given by the τ -transitions of the following process.

Pτ = νz.((νx.a⟨⟨x, z⟩⟩| νy.b⟨⟨y, z⟩⟩) | (a(x1).P | b(x2).Q))

This process can perform two different (and, as we will discuss in Sect. 5, independent)
synchronizations whose location labels are (00[], 10[]) and (01[], 11[]). The following execution
sequences illustrates how our semantics gracefully handles the two (parallel) sources of
extrusions of the name z without any additional machinery.

id | Pτ
τ−−−−−−→

(00[],10[])
νz.νx.(id | (0 | νy.b⟨⟨y, z⟩⟩) | (P

{
⟨x,z⟩/x1

}
| b(x2).Q)

τ−−−−−−→
(01[],11[])

νz.νx.νy.(id | (0 | 0) | (P
{

⟨x,z⟩/x1

}
| Q

{
⟨y,z⟩/x2

}
))

The full derivation trees for the above transitions are presented in Appendix A, Fig. 6. The
derivation trees for the alternative sequence of transitions below are similar.

id | Pτ
τ−−−−−−→

(01[],11[])
νz.νy.(id | (νx.a⟨⟨x, z⟩⟩| 0) | (a(x1).P | Q

{
⟨y,z⟩/x2

}
))

τ−−−−−−→
(00[],10[])

νz.νy.νx.(id | (0 | 0) | (P
{

⟨x,z⟩/x1

}
| Q

{
⟨y,z⟩/x2

}
))

We reuse this process Pτ in Sect. 4.3 to illustrate the need for equivariance.

4.1 The Modern Applied π-Calculus Avoids Disjunctive Causality
The input and output prefixes M(x).P and M⟨N⟩.P , respectively, indicate the channel as
a message M , which is the modern approach to the applied π-calculus handling extruded
messages [1]. Looking back at id | Pok

a(0λ)−−−→
[]

νm, n.(
{⟨m,n⟩/0λ

}
| 0 | m(x).[x = n]ok⟨ok⟩),

note that the active substitution
{⟨m,n⟩/0λ

}
can be used in subsequent events. For example,

we may refer to the private name m by using the message fst(0λ), which is then instantiated
with the above active substitution, as illustrated by the following derivation of a transition
(assuming a message theory featuring equation fst(⟨m, n⟩) =E m):

Referring to channels that were extruded inside messages was not possible in early versions
of the applied π-calculus [2]. This approach to extrusion is important to emphasise since
adopting this modern approach significantly simplifies our labelled asynchronous transition
system, as we explain next.

The key problem is to define a “stable” semantic in the presence of “link causality”. This
means that, if multiple output events extrude the same name, we must record which output
was used when that name appears in future events. An established approach to dealing with
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fst(⟨m,n⟩) =E m
Inp

m(x).[x = n]ok⟨ok⟩ fst(⟨m,n⟩) snd(⟨m,n⟩)−−−−−−−−−−−−−−→
[]

id | [x = n]ok⟨ok⟩
{
snd(⟨m,n⟩)/x

}
ϵ # 0

Par-R

0 | m(x).[x = n]ok⟨ok⟩ fst(⟨m,n⟩) snd(⟨m,n⟩)−−−−−−−−−−−−−−→
1[]

id | 0 | [snd(⟨m,n⟩) = n]ok⟨ok⟩ (⋆)

Alias-Free

σ | 0 | m(x).[x = n]ok⟨ok⟩ fst(0λ) snd(0λ)−−−−−−−−−−→
1[]

σ | 0 | [snd(⟨m,n⟩) = n]ok⟨ok⟩ (⋆⋆)

Ext.

νm, n.
(
σ | 0 | m(x).[x = n]ok⟨ok⟩

) fst(0λ) snd(0λ)−−−−−−−−−−→
1[]

νm, n.
(
σ | 0 | [snd(⟨m,n⟩) = n]ok⟨ok⟩

)
Letting σ =

{⟨m,n⟩/0λ
}
, since fst(0λ) snd(0λ)σ = fst(⟨m,n⟩) snd(⟨m,n⟩),

ϵ # ran(σ) = {m,n} fa(fst(0λ) snd(0λ)) = {0λ} ⊆ dom(σ) = {0λ} (⋆)

n,m # fv(fst(0λ) snd(0λ)) = ∅ (⋆⋆)

this “disjunctive dependency” is to extend the labels of transitions to record explicitly the
set of output events each input depends on (by recording the source and target processes of
the transition) [30, Def. 2.18]. Another established approach is to represent the disjunctive
link causality in an “inclusive way” [20, p. 227], that “ensures that whenever an action with
a bound subject is executed, at least one extrusion of that bound name must have been
already executed”, but without recording which output was the real extruder that influenced
another event. These additional mechanisms, used in related work, are used to acknowledge
the difference between two extrusion events and recognise them as separate events.

The use of aliases avoids the disjunctive dependency problem entirely. Consider the
process νn.(a⟨n⟩ | (a⟨n⟩ | n(x).P )) for example. This process can trigger both the output
events (a(0λ), 0[]) and (a(10λ), 10[]) :

id | νn.(a⟨n⟩| (a⟨n⟩| n(x).P )) a(0λ)−−−→
0[]

νn.({n/0λ} | 0 | (a⟨n⟩| n(x).P ))

a(10λ)−−−−→
10[]

νn.({n/0λ} ◦ {n/10λ} | 0 | (0 | n(x).P ))

and, afterwards, only one of the input events (0λ M, 11[]) or (10λ M, 11[]) (letting M ′ =
M{n/0λ}◦{n/10λ}):

νn.({n/0λ} ◦ {n/10λ} | 0 | (0 | n(x).P )


0λ M−−−→
11[]

νn.({n/0λ} ◦ {n/10λ} | 0 | (0 | P
{

M ′
/x

}
)

10λ M−−−−→
11[]

νn.({n/0λ} ◦ {n/10λ} | 0 | (0 | P
{

M ′
/x

}
)

It is clear that input 0λ M is dependent on the output originating from the first thread in
location 0, while the input with alias 10λ M is dependent on the output in location 10. Thus
there is no need to perform event splitting, since there is no ambiguity about the source of
the extrusion used to refer to channel n. The derivations of the transitions producing these
events are presented in Appendix A.

4.2 Applied π-Calculus With Located Aliases

Recall that located aliases are variables prefixed with a string indicating the location in which
the corresponding output occurred. The idea of prefixing aliases with a string representing a
location is a novelty, which is necessary for the development of our LATS, as explained here.
The strings themselves are, however, inherited from earlier work on LATS for CCS [39], where
such strings are used to annotate labelled transitions and are used to determine whether
actions are independent.
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This modification to the syntax of the applied π-calculus serves two purposes: it enables
us to define the independence relation only based on information from the events that label
the transitions (Def. 12), and provides each location with a separate pool of aliases. Let
us illustrate this latter purpose by picturing two execution sequences, with the locations
omitted for now:

id | νm, n.(a⟨m⟩| a⟨n⟩)

νm, n.({m/α} | 0 | a⟨n⟩)
a(α)

νm, n.({n/α} | a⟨m⟩| 0)
a(α)

νm, n(? | 0 | 0)

a(β)

a(β)

(rough diamond)

The challenge stems from needing to satisfy diamond property 1, as the two transitions
are clearly independent: in the initial process νm, n.(a⟨m⟩| a⟨n⟩), traditional semantics of
the applied π-calculus allow us to use alias α for both initial transitions, whether the up
or down transition is triggered. This freedom, unfortunately, violates diamond property 1,
since taking the top or bottom transitions yields distinct substitutions, represented by ?.
Of course, this difference in aliasing is irrelevant provided α and β are both fresh in every
process involved, hence we “localise” the generation of fresh aliases.

To “localise” the generation of fresh aliases, we add a prefix to aliases, similarly to location
labels, i.e., a (possibly empty) string of 1s and 0s, representing where an alias originates
from within the binary tree of parallel locations. Those locations become genuine parts of
the aliases, so that, e.g., 10λ and 11λ are distinct aliases (and of course 10λ and 10λ′ are
also distinct aliases, so there is an infinite supply of aliases for each location). Since our
structural operational semantics does not assume that the parallel operator is commutative
or associative, the bracketing of processes composed in parallel remains stable throughout an
execution; and locations do not disappear as they would if we had included P | 0 ≡ P .

Going back to our example (rough diamond), this modification allows us to satisfy
diamond property 1 (ignoring the location label from under the arrows):

id | νm, n.(a⟨m⟩| a⟨n⟩)

νm, n.({m/0λ} | 0 | a⟨n⟩)
a(0λ)

νm, n.({n/1λ} | a⟨m⟩ | 0)
a(1λ)

νm, n({m/0λ} ◦ {n/1λ} | 0 | 0)

a(1λ)

a(0λ)

(smooth diamond)

4.3 The Need for Equivariance

The order in which threads can be triggered can have an effect on the order of fresh
name binders. Therefore, we consider states up to equivariance, that is, our structural
congruence (Def. 8) extends α-equivalence such that νx.νy.A ≡ νy.νx.A. To see why we
require equivariance, consider the following diamond of output transitions:
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νm.νk.a⟨⟨m, k⟩⟩| νn.a⟨h(n)⟩

νm.νk.(
{⟨m,k⟩/0λ

}
| 0 | νn.a⟨h(n)⟩)

a(0λ)

νn.(
{

h(n)/1λ

}
| νm.νk.a⟨⟨m, k⟩⟩| 0)

a(1λ)

νm.νk.νn.(
{⟨m,k⟩/0λ

}
◦
{

h(n)/1λ

}
| 0 | 0)

νn.νm.νk.(
{

h(n)/1λ

}
◦
{⟨m,k⟩/0λ

}
| 0 | 0)

a(1λ)

a(0λ)

≡

(Diamond upto equivariance)

Without taking the quotient, both transitions would reach different states, and any indepen-
dence relation making the consecutive events a(0λ) and a(1λ) independent could not satisfy
diamond property 2. This is also because the substitutions are the same function, hence the
order in which composition is applied does not distinguish the extended processes.

Equivariance is also essential for identifying states that are the same after independent
synchronisations. For example, the two execution sequences of id | Pτ discussed earlier would
not reach equivalent states without equivariance. More explicitly, after two τ transitions
id | Pτ can either reach the state νz.νy.νx.(id | (0 | 0) | (P

{⟨x,z⟩/x1

}
| Q

{⟨y,z⟩/x2

}
)) or the

state νz.νx.νy.(id | (0 | 0) | (P
{⟨x,z⟩/x1

}
| Q

{⟨y,z⟩/x2

}
)) depending on which synchronisation

is applied first. Observe how these extended processes only differ in that the binders for x

and y are swapped, and hence are the same state up to equivariance.

4.4 Distinguishing Events in Conflict
The event determinism property of LATS requires more care in defining the semantics for the
choice operator. Since event determinism is more fine-grained than the concept of “action
determinism” in works on POR [5, Definition 4.1], our work is useful there too.

Our mechanism giving a located semantics to choice is similar to proved transtions [12] in
the sense that our locations s[t] contain information not only about the parallel structure
(given by s), but also about the structure of choices (given by t). For instance, in transition

id | (((P1 + a(x).P ) + P2) | (P3 + a⟨n⟩)) | P4
τ−−−−−−−→

0(0[01],1[1])
id | (P{n/x} | 0) | P4 ,

(derived in Fig. 5) the first choice label [01] indicates that a(x).P was responsible for the
input action in (P1 + a(x).P ) + P2. Our choice labels diverge, however, from [39] where each
location contains the source and target processes involved in that transition. We found that
this established approach for CCS does not appear to work for applied π-calculus extended
processes, such as νm, n. ({m/λ0} | c⟨⟨m, n⟩⟩+c⟨⟨n, m⟩⟩), for which transitions c(λ1)−−−−−−−−→

[c⟨⟨m,n⟩⟩][0]

and c(λ1)−−−−−−−−→
[c⟨⟨n,m⟩⟩][0]

could be made by either branch of the choice upto equivariance, unless we

add information that would break diamond properties.
Besides providing a more concise notation, our location labels unambiguously indicate

which output in the non-deterministic choice was triggered in the following two co-initial
transitions:

νm, n.({m/λ0} | c⟨⟨m, n⟩⟩+c⟨⟨n, m⟩⟩)


c(λ1)−−−→

[1]
νm, n.

(
{m/λ0} ◦

{⟨n,m⟩/λ1

}
| 0

)
c(λ1)−−−→

[0]
νm, n.

(
{m/λ0} ◦

{⟨m,n⟩/λ1

}
| 0

)
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Inp
a(x).P

an−−→
[]

id | P{n/x}
Sum-R

P1 + a(x).P
an−−→
[1]

id | P{n/x}
Sum-L

(P1 + a(x).P ) + P2
an−−→
[01]

id | P{n/x}

Out

a⟨n⟩ a(λ)−−−→
[]

{n/λ} | 0
Sum-R

P3 + a⟨n⟩ a(λ)−−−→
[1]

{n/λ} | 0 (⋆)

Close-R
((P1 + a(x).P ) + P2) | (P3 + a⟨n⟩) τ−−−−−−−→

(0[01],1[0])
id | P{n/x} | 0 P4 # ∅

Par-L
(((P1 + a(x).P ) + P2) | (P3 + a⟨n⟩)) | P4

τ−−−−−−−→
0(0[01],1[0])

id | (P{n/x} | 0) | P4 (⋆⋆)

Alias-Free
id | (((P1 + a(x).P ) + P2) | (P3 + a⟨n⟩)) | P4

τ−−−−−−−→
0(0[01],1[0])

id | (P{n/x} | 0) | P4

ϵ # (P1 + a(x).P ) + P2 ϵ # P3 + a⟨n⟩, ∅ (⋆)

ϵ # ran(id) = ∅ fa(τ) = ∅ ⊆ dom(id) = ∅ (⋆⋆)

Figure 5 Derivation example involving sum and synchronisation.

Moreover, identifying the events would violate event determinism, as the resulting extended
processes are different. Notice that we do not record name binders in the events, since, unlike
CSS, names move around in a way that would violate diamonds. Instead, name binders are
handled by mechanisms used inside the proofs of diamond properties.

4.5 Addressing the Location of Replicated Processes
As usual, the replication operator ! is used to represent an unbounded number of sessions.
Recording more structure than the labels when defining events prevents the rule Bang
from creating image-finiteness problems that the same rule creates for an action-based LTS.
Indeed, since we have event determinism, the image of any extended process and event is a
singleton upto structural congruence. This design decision gives to every replicated process
an infinite pool of explicit location names, and allows each of these locations to be triggered
in any order. This is important to satisfy diamond property 2.

To explain this, consider the following example that use the process a⟨y⟩.b⟨z⟩.Q = Pb,
which can perform the following transitions:

id | !Pb
a(0λ)−−−→

0[]
{y/0λ} | b⟨z⟩.Q | !Pb

b(0λ′)−−−−→
0[]

{y/0λ}◦{z/0λ′} | Q | !Pb

Our definition of independence relation (Def. 11) – and, we believe, any reasonable location-
based definition of independence – would ensure that the two events (a(0λ), 0[]) and (b(0λ′), 0[])
are not independent – they are treated as coming from the same location, even if that location
“did not exist” when Pb started its execution. Hence diamond property 2 cannot apply and
these events cannot permute, as expected. This mechanism echoes e.g., the dependency
relation that can be developed to accommodate replication for CCS [23].

In contrast, consider the following transitions, also originating from the same process !Pb:

{y/0λ} | b⟨z⟩.Q | !Pb

{y/10λ} | Pb | (b⟨z⟩.Q | !Pb)

id | !Pb {y/0λ} ◦ {y/10λ} | b⟨z⟩.Q | (b⟨z⟩.Q | !Pb)

a(0λ)

0[]

10[]

a(10λ)

a(10λ)
10[]

0[]
a(0λ)

(Diamond with a bang)
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The events on the left-hand side of the diamond above are expected to be independent.
Fortunately, by triggering Bang twice, we can permute these transitions as required by
diamond property 2. That is, the right side of the above diamond exists.

An alternative solution could be to use explicit names to label locations, and partially
ordering those labels to reflect the hierarchy of locations, and then minting fresh names for
each transition of a replication [13, 44]. Using opaque names as locations, however, would
have forced us to record them in the syntax of processes, that would have become e.g., of the
form ℓ1 :: b⟨z⟩.Q | (ℓ2 :: b⟨z⟩.Q | !P ) [12]. The intent is however the same.

5 The Independence Relation and the Main Result

In this section, we define what it means for two events to be independent. To do this, firstly,
we define structural independence, which ensures that two events occur in different locations
by checking that it is not the case that one location prefix is a prefix (as a string) of the
other event’s location prefix.

▶ Definition 11 (structural independence). Define Loc on location labels such that Loc(ℓ) = {ℓ}
and Loc(ℓ0, ℓ1) = {ℓ0, ℓ1}. The structural independence relation Iℓ on location labels is the
least relation defined by u0 Iℓ u1 whenever for all locations ℓ0 ∈ Loc(u0) and ℓ1 ∈ Loc(u1),
there exist a string s ∈ {0, 1}∗ and locations ℓ′

0, ℓ′
1, such that either: ℓ0 = s0ℓ′

0 and ℓ1 = s1ℓ′
1;

or ℓ0 = s1ℓ′
0 and ℓ1 = s0ℓ′

1.

For example, consider the locations of the four output events in a⟨a⟩ | b⟨b⟩.(c⟨c⟩ | d⟨d⟩).
The output on channel a (location prefix 0) is structurally independent from all other outputs.
The output on channel b (location prefix 1) is not structurally independent with respect to
the outputs on channels c or d; which will have location prefixes 10 and 11 respectively, both
with 1 as a common prefix. However, the outputs on channel c and d are independent, since
neither 10 nor 11 are prefixes of each other.

Independence on events in addition detects whether an output influences another action.
That is, in addition to structural independence, we have link independence.

▶ Definition 12 (independence of events). Events e = (π, u) are pairs of labels π and location
labels u. The independence relation I on events is the least symmetric relation such that
(π0, u0) I (π1, u1) whenever u0 Iℓ u1 and if π0 = M(α), then α # π1.

Remember that Pok from Sect. 4 and 4.1 can trigger the event (a(0λ), 0) followed by
(fst(0λ) snd(0λ), 1). Even if the locations are independent (as 0 Iℓ 1), the two events are
not independent, since 0λ is not fresh in (fst(0λ) snd(0λ)).

▶ Theorem 13. The structural operational semantics in Fig. 2 and 3 generates a labelled
asynchronous transition system with respect to the independence relation I from Def. 12, i.e.,
it respects Def. 1 – 3, where events are the pairs of action and location labels (π, u), as they
appear on the labels of transitions, and states are extended processes modulo the structural
congruence from Def. 8. [see proof in Appendix B]

Link independence is only required to permute an output event followed by an independent
event, when establishing diamond property 2. The main intricacy compared to CCS is to
ensure that the name restrictions occurring along any common prefix of two independent
transitions are handled correctly – this is how the parallel extrusion problem in related
theories manifests itself in this theory. We handle this problem entirely within the proof, via
variables accumulated in a function that picks out the component of a process corresponding
to a location prefix, rather than within the semantics as in related work [30, 50].
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6 Related Work

The earliest papers on partial-order reduction for security are not working with the applied
π-calculus, but rely on constructing execution DAGs (or Mazurkiewicz traces) recording
all input-output dependencies; as a result, the protocols considered in [18, 21, 27, 38] are
essentially threads of inputs and outputs, disregarding channels.

Our paper is closer to more recent approaches to POR for the applied π-calculus [6, 7, 8].
However, one limitation of these works is that they require processes to be of a particular
form. In that related line of work, structural independence is based on the channel of an
input and output action, thus considering events structurally independent only when they
employ distinct channels. Thus, their scope is restricted to processes in which every location
is a single thread of sequential actions (e.g., cannot spawn parallel threads in a location) and
if-then-else branches that employ a unique channel. While many finite protocol problems
can be formulated with a fixed number of threads, each employing separate channels, this
is still a significant restriction. In contrast, we base the structural independence on the
components’ addresses, which allows us to consider the “full” applied π-calculus.

For modelling infinite protocols (or protocols where the same, or multiple, actors can
engage in multiple parallel sessions) one normally uses replication, and thus parallel extrusion
appears naturally. Some of the above related works [7] approximate replication by creating
fresh channels manufactured every time a parallel component is created. However, since
these works do not have mechanisms for dealing with disjunctive causality (which in these
settings is required because of the use of a different mechanism for extrusion, similar to
the standard π-calculus), channel extrusion is only supported for processes where parallel
extrusion of channels never occurs. In contrast, our approach, where channels are extruded
like any other message and aliases resolve the aforementioned disjunctive causality problem,
supports all forms of processes including replication and parallel extrusion.

A further difference compared to the above work concerns τ transitions. In the related
work we are discussing, there is not enough information to determine whether two τ transitions
are independent, and hence such parts of a protocol’s behaviour cannot be considered for POR
optimisation. In our semantics, we resolve this problem using our structural independence
relation based on the recorded locations responsible for the input and output actions involved
in a τ transition. Our solution simply lifts classic work on CCS [39] to this security setting,
while taking care to handle parallel extrusion correctly (recall the Pτ example from Sect. 4).

All the above work does not follow the non-interleaving tradition in the sense that they
do not feature diamond property 1. It is possible in the semantics of [6, 8, 17] that two
transitions that we deem independent and are enabled from some process will disable each
other, since their executions change the substitution on which the other depends. This is the
key problem our located aliases address. The only diamond property that related approaches
obtain (and for a limited subset of processes, as explained above) is the “reordering of
sequential independent transitions”, which is our diamond property 2. However, this property
alone can be achieved without located aliases since, anyway, two sequential outputs would be
named differently by the regular constraints of the applied π-calculus, which simply ensure
that an extruded alias is globally fresh.

Event determinism can be achieved in works such as [7, 8] only for choice of the type
if-then-else. By borrowing from proved transitions [12], our events record the precise
branch of a general non-deterministic choice from which they originate, thereby achieving
event-determinism for all types of processes. This problem has been acknowledged [6], and an
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alternative approach to POR using sleep sets has been proposed. This approach essentially
defines independence in terms of events satisfying our diamond property 1, but since the
semantics they employ allows two concurrently enabled outputs on the same channel to use
the same label, such events would incorrectly be considered not independent.

We see a good opportunity in adopting (concepts from) our semantics in the settings and
tools of the above papers. This possibility has been one of our goals all along, and guided
our decisions to consider a syntax very close to the standard applied π-calculus and to define
a structural operational semantics that just extends previous semantics for applied π [32].
Even the choice of LATS was guided by our wish to stay within the realm of transition
systems, yet to go over from interleaving to non-interleaving semantics. Hence, we expect it
to be possible to upgrade tools from the above mentioned papers, so that they may fully
support POR for all processes.

7 Conclusion

The work we build on incorporates elements of the modern applied π-calculus [1] – aliases
for extrusion of channels as messages – into a structural operational semantics [31, 32].
Our semantics in Fig. 2 and 3 transforms this established semantics into a non-interleaving
structural operational semantics by recording on transitions also the location from which an
event originates as well as the location from where an alias representing an output originates.
The former is a standard device, coming from non-interleaving semantics for CCS [12, 39]
and π-calculus [30], while the latter “located alias” is the key technical innovation required to
ensure that our structural operational semantics defines a LATS (Theorem 13). In this way
we obtain a genuine operational semantics, with a remarkably simple independence relation
(Def. 12) for such a powerful calculus. Moreover, this paper can also be seen as proposing
LATS as the semantic objects for applied π-calculi, instead of transition systems, so as to
bridge other non-interleaving models to which LATS have been related in the literature.

Because LATS have been shown [28] to be exactly the higher-dimensional automata of
dimension 2, we can reuse the definitions for higher-dimensional automata of the classical
concurrency bisimulations (i.e., of ST-, history preserving-, and hereditary history preserving-
bisimulations) for LATS [47]. Moreover, through relations of LATS with configuration
structures [49] and event structures [51] we can reuse also other concurrency bisimulations [48].
In related work, partial-order semantics have been employed in tools for optimising verification
of equivalence properties [17]. Making precise the connection between the equivalences
employed in such tools and the above non-interleaving equivalences for LATS is future work.
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A Derivations for selected example transitions

We present the derivations of the transitions used to illustrate stability in Sect. 4.1. We are
explicit, in the input transitions, about the source of the extruded name.

Out

a⟨n⟩ a(λ)−−−→
[]

{n/λ} | 0 ϵ # a⟨n⟩| n(x).P
Par-L

a⟨n⟩| (a⟨n⟩| n(x).P )
a(λ)−−−→
0[]

{n/λ} | 0 | (a⟨n⟩| n(x).P ) n # fv(a(λ))

Extrude

νn.(a⟨n⟩| (a⟨n⟩| n(x).P ))
a(λ)−−−→
0[]

νn.({n/λ} | 0 | (a⟨n⟩| n(x).P )) (⋆)

Alias-out

id | νn.(a⟨n⟩| (a⟨n⟩| n(x).P ))
a(0λ)−−−→
0[]

νn.({n/0λ} | 0 | (a⟨n⟩| n(x).P ))

n # ran(id) = ∅ fa(a) = ∅ ⊆ dom(id) = ∅ 0λ # dom(id) = ∅ (⋆)

Out

a⟨n⟩ a(λ)−−−→
[]

{n/λ} | 0 ϵ # n(x).P

Par-L

a⟨n⟩| n(x).P a(λ)−−−→
0[]

{n/λ} | 0 | n(x).P ϵ # 0

Par-R

0 | (a⟨n⟩| n(x).P )
a(λ)−−−→
10[]

{n/λ} | 0 | (0 | n(x).P ) (⋆)

Alias-out

{n/0λ} | 0 | (a⟨n⟩| n(x).P )
a(10λ)−−−−→
10[]

{n/0λ}◦{n/10λ} | 0 | (a⟨n⟩| n(x).P ) n # fv(a(10λ))

Extrude

νn.({n/0λ} | 0 | (a⟨n⟩| n(x).P ))
a(10λ)−−−−→
10[]

νn.({n/0λ}◦{n/10λ} | 0 | (0 | n(x).P ))

ϵ # ran({n/0λ}) = n fa(a) = ∅ ⊆ dom({n/0λ}) = 0λ 10λ # dom({n/0λ}) = 0λ (⋆)

Inp

n(x).P
nM ′

−−−→
[]

id | P
{
M ′
/x

}
ϵ # 0

Par-R

0 | n(x).P nM ′

−−−→
1[]

id | 0 | P
{
M ′
/x

}
ϵ # 0

Par-R

0 | (0 | n(x).P )
nM ′

−−−→
11[]

id | 0 | (0 | P
{
M ′
/x

}
) (⋆)

Alias-Free

{n/0λ}◦{n/10λ} | 0 | (0 | n(x).P )
0λM−−−→
11[]

{n/0λ}◦{n/10λ} | 0 | (0 | P
{
M ′
/x

}
) n # fv(0λM)

Res

νn.({n/0λ}◦{n/10λ} | 0 | (0 | n(x).P ))
0λM−−−→
11[]

νn.({n/0λ}◦{n/10λ} | 0 | (0 | P
{
M ′
/x

}
)

Letting σ ={n/0λ}◦{n/10λ} and (0λM)σ = nM ′,
ϵ # ran(σ) = {n} fa(0λM) = {0λ} ⊆ dom(σ) = {0λ, 10λ} (⋆)

Inp

n(x).P
nM ′

−−−→
[]

id | P
{
M ′
/x

}
ϵ # 0

Par-R

0 | n(x).P nM ′

−−−→
1[]

id | 0 | P
{
M ′
/x

}
ϵ # 0

Par-R

0 | (0 | n(x).P )
nM ′

−−−→
11[]

id | 0 | (0 | P
{
M ′
/x

}
) (⋆)

Alias-Free

{n/0λ}◦{n/10λ} | 0 | (0 | n(x).P )
10λM−−−−→
11[]

{n/0λ}◦{n/10λ} | 0 | (0 | P
{
M ′
/x

}
) n # fv(10λM)

Res

νn.({n/0λ}◦{n/10λ} | 0 | (0 | n(x).P ))
10λM−−−−→
11[]

νn.({n/0λ}◦{n/10λ} | 0 | (0 | P
{
M ′
/x

}
)

Letting σ ={n/0λ}◦{n/10λ} and (10λM)σ = nM ′,
ϵ # ran(σ) = {n} fa(10λM) = {10λ} ⊆ dom(σ) = {0λ, 10λ} (⋆)
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B Proof outline: event determinism, decomposition, & composition

We prove each condition event determinism, diamond property 1 and diamond property 2
separately. For event determinism, we first establish a slightly stronger lemma for processes
only (Lemma 14), before covering extended processes. The two diamond properties are
more involved. For both, we make use of a function (Def. 16) that, for each location prefix,
“localises” in a process the corresponding “component”. This is used to pick out components of
a process that are active or inactive in a transition. The function also calculates the variables
that are to be extruded along the path to the component to be picked out. The decomposition
lemmas (Lemmas 18 and 20) use the above function, to pull apart the derivation tree of
transitions to get to the exact part of the tree that concerns the component(s) independent
from the component(s) of another transition. In both diamond properties, we have two
independent transitions, and hence by decomposition, we can identify the common parts of
the derivation of both transitions, and the parts of the derivation where the transitions differ.
We then appeal to composition lemmas (Lemmas 22 and 23), that construct transitions where
we swap the beginning and end of derivations, thereby completing the missing face of each
diamond, modulo some permutations of name binders (enabled by equivariance, Sect. 4.3)
and substitutions.

We first establish event determinism for processes only, below. The permutation on
variables is used to cope with the Extrude rules that possibly applies α-equivalence to
rename bound variables.

▶ Lemma 14 (determinism for processes). Assuming ρ is a permutation (bijective operator)
on variables such that dom(ρ) # π we have, if P ≡α Qρ and P

π−→
u

B and Q
π′

−→
u

C then:

if π = M(λ), then π′ = K(λ′) and M =E K and, furthermore, given that we have
C = νy⃗.

({
N/λ′

}
| Q′) we have also that B ≡α (νy⃗.

({
N/λ

}
| Q′))ρ;1

if π = π′, we have B ≡α Cρ.

Then we extend the above lemma to extended processes, from which event determinism
follows by taking the permutation to be the identity.

▶ Lemma 15 (determinism for extend processes). Assuming ρ is a permutation on variables
such that dom(ρ) # π, we have, if A0 ≡ A1ρ and A0

π−→
u

B0 and A1
π−→
u

B1 then B0 ≡ B1ρ.

The proofs of the diamond properties rely on the following function selecting the component
of a process corresponding to a location prefix.

▶ Definition 16 (components). Writing Proc the set of processes and Vars the set of
variables, we define inductively a partial function Comp : {0, 1}∗ → (Vars∗ × Proc) ⇀

(Vars∗ × Proc) such that Comp(ϵ)(y⃗, P ) = (y⃗, P ) and if s ̸= ϵ then it is defined as follows:

Comp(0s)(y⃗, P0 | P1) = Comp(s)(y⃗, P0)
Comp(1s)(y⃗, P0 | P1) = Comp(s)(y⃗, P1)

Comp(s)(y⃗, νx.P ) = Comp(s)(y⃗x, P )
Comp(s)(y⃗, !P ) = Comp(s)(y⃗, P | !P )

1 This means outputs may only differ in the choice of alias (λ v.s. λ′) or in that an equivalent recipe (M
v.s. K) may be used, and, furthermore, we are free to rename the alias. This clause is a trick used to
determine whether the Close-L or Close-R rule applied in an interaction, by looking at the output
action and without being required to record additional information in the interaction event.
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The decomposition lemmas below select the part of a derivation tree that concerns a
single component. We first establish decomposition for simple prefixes consisting of 0 or 1.
In what follows, we write ¬ : {0, 1} → {0, 1} for Boolean negation.

▶ Lemma 17 (decomposing prefixed transitions). For all c ∈ {0, 1}, if P
π−→
cu

νz⃗.(θ | Q), then:

Comp(c)(ϵ, P ) = (y⃗, P ′) and z⃗ = y⃗, x⃗ and P ′ π−→
u

νx⃗.(θ | Q′) and Comp(c)(ϵ, Q) = (ϵ, Q′).
In addition, Comp(¬c)(ϵ, P ) = (y⃗, R) and Comp(¬c)(ϵ, Q) = (ϵ, R) and x⃗ # R.2

We then appeal to the fact that Comp(s)(Comp(s′)(h, P )) = Comp(s′s)(h, P ) and make
use of Lemma 17 repeatedly to generalise decomposition to an arbitrary string.

▶ Lemma 18 (decomposing process transitions). For all s ∈ {0, 1}∗ and P
π−→
su

νz⃗.(θ | Q)
then we have the following:

Comp(s)(ϵ, P ) = (y⃗, P ′) and z⃗ = y⃗, x⃗ and P ′ π−→
u

νx⃗.(θ | Q′) and Comp(s)(ϵ, Q) = (ϵ, Q′);
for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, if s = s′cs′′ then Comp(s′¬c)(ϵ, P ) = (w⃗, R) and
Comp(s′¬c)(ϵ, Q) = (ϵ, R) and Comp(s′c)(ϵ, P ) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, P ′),
and also v⃗, x⃗ # R.

A richer decomposition lemma is needed for τ -transitions, so that we can identify the
two components – for the input and output transition involved in the communication – that
are both structurally independent of another transition.

▶ Lemma 19 (interaction decomposition). If P
τ−−−−−→

(0ℓ0,1ℓ1)
νz⃗.(θ | Q) then we have

Comp(0)(ϵ, P ) = (y⃗, P0) and Comp(1)(ϵ, P ) = (y⃗, P1) and Comp(0)(ϵ, Q) = (ϵ, Q0) and
Comp(1)(ϵ, Q) = (ϵ, Q1) and z⃗ = y⃗, x⃗0, x⃗1 and x⃗0 # Q1 and x⃗1 # Q0 and x⃗0 # x⃗1 and one
of the following hold:

P0
M(λ)−−−→

ℓ0
νx⃗0.

({
N/λ

}
| Q0

)
and P1

M N−−−→
ℓ1

νx⃗1.(id | Q1).

P0
M N−−−→

ℓ0
νx⃗0.(id | Q0) and P1

M(λ)−−−→
ℓ1

νx⃗1.
({

N/λ

}
| Q1

)
.

Again appealing to that fact that Comp(s)(Comp(s′)(h, P )) = Comp(s′s)(h, P ) we can
generalise decomposition of interactions to an arbitrary prefix string.

▶ Lemma 20 (full decomposition of interactions). For all s, s0, s1 ∈ {0, 1}∗ such that we have
P

τ−−−−−−−−−→
s(0s0ℓ0,1s1ℓ1)

νz⃗.(θ | Q), the following hold:

we have Comp(s0s0)(ϵ, P ) = (y⃗z⃗0, P0) and Comp(s1s1)(ϵ, P ) = (y⃗z⃗1, P1) and, also we
have Comp(s0s0)(ϵ, Q) = (ϵ, Q0) and Comp(s1s1)(ϵ, Q) = (ϵ, Q1) and z⃗ = y⃗, z⃗0, x⃗0, z⃗0, x⃗1
and z⃗0, x⃗0 # Q1 and z⃗1, x⃗1 # Q0 and z⃗0, x⃗0 # z⃗1, x⃗1 and one of the following hold:

P0
M(λ)−−−→

ℓ0
νx⃗0.

({
N/λ

}
| Q0

)
and P1

M N−−−→
ℓ1

νx⃗1.(id | Q1),

P0
M N−−−→

ℓ0
νx⃗0.(id | Q0) and P1

M(λ)−−−→
ℓ1

νx⃗1.
({

N/λ

}
| Q1

)
;

for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1} and s′ ̸= s, we have the following: if s0s0 = s′cs′′

or s1s1 = s′cs′′ then Comp(s′¬c)(ϵ, P ) = (w⃗, R) and Comp(s′¬c)(ϵ, Q) = (ϵ, R) and also
Comp(s′c)(ϵ, P ) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, P ′), and we have v⃗, x⃗0, x⃗1 # R.

2 This states that the locations independent from P ′ are unchanged by the transition stemming from
P ′, except that the common name binders will be extruded. Generalisations of this statement carry
through to the other decomposition lemmas.
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Composition lemmas are required to remember the part of the derivation tree picked out
by the decomposition lemmas, when constructing a new transition. As for decomposition,
we first establish composition for a single-character prefix: 0 or 1.

▶ Lemma 21 (composing in one-step). For any s ∈ {0, 1}, if Comp(s)(P ) = (y⃗, P ′) and we
have P ′ π−→

u
νz⃗.(σ | Q′) and, furthermore, Comp(¬s)(P ) = (y⃗, R) and z⃗ # R, then, for some

Q, we have P
π−→
su

νy⃗, z⃗.(σ | Q) and Comp(s)(ϵ, Q) = (ϵ, Q′).

As for decomposition, we extend composition to any prefix.

▶ Lemma 22 (composing transitions). Assume s ∈ {0, 1}∗, and Comp(s)(P ) = (y⃗, P ′) and
we have P ′ π−→

u
νz⃗.(σ | Q′), and, furthermore, for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1} such

that s = s′cs′′, we have Comp(s′¬c)(ϵ, P ) = (w⃗, R) and Comp(s′c)(ϵ, P ) = (w⃗, S) and
Comp(s′′)(ϵ, S) = (v⃗, P ′), and also v⃗, x⃗ # R. Given these assumptions, we have that, for
some Q, we have P

π−→
su

νy⃗, z⃗.(σ | Q) and Comp(s)(ϵ, Q) = (ϵ, Q′).

Interactions can also be composed.

▶ Lemma 23 (composing interactions). Assume s, s0, s0 ∈ {0, 1}, are such that we have
Comp(s0)(ϵ, P ) = (y⃗, Q0) and Comp(s1)(ϵ, P ) = (y⃗, Q1) and Comp(s0)(ϵ, Q0) = (x⃗0, P0)
and Comp(s1)(ϵ, Q1) = (x⃗1, P1) and either of the following hold:

P0
M(λ)−−−→

ℓ0
νz⃗.

({
N/λ

}
| P ′

0
)

and P1
M N−−−→

ℓ1
νw⃗.(id | P ′

1),

P0
M N−−−→

ℓ0
νz⃗.(id | P ′

0) and P1
M(λ)−−−→

ℓ1
νw⃗.

({
N/λ

}
| P ′

1
)
;

and also assume we have, for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, such that s′ ̸= s and
either s0s0 = s′cs′′ or s1s1 = s′cs′′, we have that Comp(s′¬c)(ϵ, P ) = (w⃗, R) and also
Comp(s′c)(ϵ, P ) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, P ′), and v⃗, z⃗, w⃗ # R. Under those
assumptions, for some P ′, we have the transition P

π−→
su

νy⃗, x⃗0, z⃗, x⃗1, w⃗.(σ | P ′) and also we
have Comp(s0s0)(ϵ, P ′) = (ϵ, P ′

0) and Comp(s1s1)(ϵ, P ′) = (ϵ, P ′
1).

Using the decomposition and composition lemmas, we can now construct the transitions
required to complete the two diamond properties.

▶ Lemma 24 (diamond property 1). If (π0, u0) I (π1, u1), A
π0−→
u0

B0 and A
π1−→
u1

B1, then

∃C0, C1 s.t. B0
π1−→
u1

C0 and B1
π0−→
u0

C1 and C0 ≡ C1.

In both diamond properties, there are several cases depending on what combination of
τ and output labelled events we are considering to be independent. Below we present the
top-level breakdown of the case analysis, which applies to both diamond properties. We
also provide the details of one of the most interesting cases, where two independent output
transitions occur.

▶ Lemma 25 (diamond property 2). If (π0, u0) I (π1, u1), A
π0−→
u0

B0 and B0
π1−→
u1

C0, then

∃B1, C1 s.t. A
π1−→
u1

B1 and B1
π0−→
u0

C1 and C0 ≡ C1.

Proof. Assume we have (π0, u0) I (π1, u1), and the two transitions A
π0−→
u0

B0 and B0
π1−→
u1

C.
For two transitions from the same state we have (π0, u0) I (π1, u1) iff for all ℓ0 ∈ Loc(u0)

and for all ℓ1 ∈ Loc(u1), we have ℓ0 Iℓ ℓ1 (i.e., there is no structural causality), and,
furthermore, if π0 = M0(α0), then α0 # π1 (i.e., there is no link causality). The structural
independence ensures that, without loss of generality, we have one of the following.
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Both location labels have a largest common prefix s ∈ {0, 1}∗ and hence are of the form
s0u′

0 = u0 and s1u′
1 = u1.

At least one transition is labelled with a τ action (without loss of generality let π0 = τ),
and so u0 = s0(0ℓ0, 1ℓ1) and there is a string s1 ∈ {0, 1}∗, characters c, d ∈ {0, 1} and
prefix location ℓ′ such that s0ds1cu′

1 = u1 and s1¬cℓ′ = ℓd. That is, one transition is an
interaction, and the other transition is entirely located within one of the locations from
which either interacting input or the interacting output emanated.
Both are τ transitions with a common prefix s ∈ {0, 1}∗ such that u0 = s

(
0ℓ0

0, 1ℓ1
0
)

and
u1 = s

(
0ℓ0

1, 1ℓ1
1
)

and there are strings s1 ∈ {0, 1}∗ such that ℓ0
0 = s00ℓ′0

0 and ℓ0
1 = s01ℓ′0

1
and ℓ1

0 = s10ℓ′1
0 and ℓ1

1 = s11ℓ′1
1 . That is, we have two interactions, where the interaction

occurs in the same location (even though the inputs and outputs involved are independent).

We break down further the first case above, where the two independent transitions have
a common prefix. Due to differences between Alias-out or and Alias-free, we should
consider separately the cases where the first transition is an output transition or a free
transition. We consider only the most interesting case, where we appeal to the absence of link
causality, which is only relevant when π0 = M0(α0) is an output transition. That case itself
breaks down into two cases, where π1 is either another output transition or a free transition.
We provide only the case when π1 is an output transition such that π1 = M1(α1) below.

Without loss of generality (0 and 1 can be reversed without changing the proof), assume
there exists s such that u0 = ℓ0 = s0s0[t0] and u1 = ℓ1 = s1s1[t1].

Thus, by the Res rule, repeatedly, we have A = νx⃗.(σ | P ) and α0 = s0s0λ0 and
x⃗ # M0 and B0 = νx⃗, y⃗0.

(
σ ◦

{
N0/s0s0λ0

}
| Q0

)
, and, also by the Alias-out rule we have

the following.

P
M0σ(λ0)−−−−−→
s0s0[t0]

νy⃗0.
({

N0/λ0

}
| Q0

)
y⃗ # ran(σ) fa(M0) ⊆ dom(σ) s0s0λ0 # dom(σ)

σ | P
M0(s0s0λ0)−−−−−−−→

s0s0[t0]
νy⃗0.

(
σ ◦

{
N0/s0s0λ0

}
| Q0

)
=======================================
νx⃗.(σ | P ) M0(s0s0λ0)−−−−−−−→

s0s0[t0]
νx⃗, y⃗0.

(
σ ◦

{
N0/s0s0λ0

}
| Q0

)
Now, since we have P

M0σ(λ0)−−−−−→
s0s0[t0]

νy⃗0.
({

N0/λ0

}
| Q0

)
, by Lemma 18, we have the following:

P0
M0σ(λ0)−−−−−→

s0[t0]
νz⃗0.

({
N0/λ0

}
| Q′

0
)

and Comp(s0)(ϵ, P ) = (y⃗, P0) and y⃗0 = y⃗, z⃗0 and

Comp(s0)(ϵ, Q0) = (y⃗, Q′
0).

for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, if s0 = s′cs′′ then Comp(s′¬c)(ϵ, P ) = (w⃗, R) and
Comp(s′¬c)(ϵ, Q0) = (ϵ, R) and Comp(s′c)(ϵ, P ) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, P0),
and also v⃗, x⃗ # R.

Now since B0 = νx⃗, y⃗0.
(
σ ◦

{
N0/s0s0λ0

}
| Q0

)
and B0

π1−→
ℓ1

C, by the Res rule repeatedly

and the Alias-out rule, we have the following, where x⃗, y⃗0 # M1 and θ0 = σ ◦
{

N0/s0s0λ0

}
and C0 = νx⃗, y⃗0, z⃗1.

(
θ0 ◦

{
N1/s1s1λ1

}
| R0

)
.

Q0
M1σ(λ1)−−−−−→
s1s1[t1]

νz⃗1.
({

N1/λ1

}
| R0

)
z⃗1 # ran(θ0) fa(M1) ⊆ dom(θ0) s1s1λ1 # dom(θ0)

θ0 | Q0
M1(s1s1λ1)−−−−−−−→

s1s1[t1]
νz⃗1.

(
θ0 ◦

{
N1/s1s1λ1

}
| R0

)
==============================================
νx⃗, y⃗0.(θ0 | Q0) M1(s1s1λ1)−−−−−−−→

s1s1[t1]
νx⃗, y⃗0, z⃗1.

(
θ0 ◦

{
N1/s1s1λ1

}
| R0

)
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Since Q0
M1σ(λ1)−−−−−→
s1s1[t1]

νz⃗1.
({

M1/λ1

}
| R0

)
, by Lemma 18, we have the following:

Comp(s1)(ϵ, Q0) = (s1, Q′
0) and Q′

0
M1σ(λ1)−−−−−→

s1[t1]
νz⃗1.

({
M1/λ1

}
| R′

0
)

and Comp(s1)(ϵ, R0) =

(ϵ, R′
0).

for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, if s1 = s′cs′′ then Comp(s′¬c)(ϵ, Q0) = (w⃗, R) and
Comp(s′¬c)(ϵ, R0) = (ϵ, R) and Comp(s′c)(ϵ, Q0) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, Q′

0),
and also v⃗, x⃗ # R.

From the above we have that Comp(s1)(ϵ, P ) = (y⃗, Q′
0) and Comp(s1)(ϵ, Q0) =

(ϵ, Q′
0). We also have that, for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, if s = s′cs′′ then

Comp(s′¬c)(ϵ, P0) = (w⃗, R) and Comp(s′¬c)(ϵ, Q0) = (ϵ, R) and Comp(s′¬c)(ϵ, R0) = (ϵ, R)
and Comp(s′c)(ϵ, Q0) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, Q′

0), and also v⃗, x⃗ # R.
We now appeal to the absence of link causality, so we know that s0s0λ0 # M1, and hence

M1θ0 = M1σ, and so Q′
0

M1σ(λ1)−−−−−→
s1[t1]

νz⃗1.
({

N1/λ1

}
| R′

0
)
. Therefore by Lemma 22, we have

P
M1σ(λ1)−−−−−→
s1s1[t1]

νy⃗, z⃗1.
({

N1/λ1

}
| Q1

)
and Comp(s1)(ϵ, Q1) = (ϵ, R′

0). Since we know fa(M1) ⊆

dom(θ0) and s0s0λ0 # M1 we know that fa(M1) ⊆ dom(σ). Since s1s1λ1 # dom(θ0) we
have s1s1λ1 # dom(σ). Thus, by Alias-out and Res repeatedly, we have the following.

P
M1σ(λ1)−−−−−→
s1s1[t1]

νy⃗, z⃗1.
({

N1/λ1

}
| Q1

)
fa(M1) ⊆ dom(σ) y⃗, z⃗1 # ran(σ) s1s1λ1 # dom(σ)

σ | P
M1σ(s1s1λ1)−−−−−−−−→

s1s1[t1]
νy⃗, z⃗1.

(
σ ◦

{
N1/s1s1λ1

}
| Q1

)
==========================================
νx⃗.(σ | P ) M1σ(s1s1λ1)−−−−−−−−→

s1s1[t1]
νx⃗, y⃗, z⃗1.

(
σ ◦

{
N1/s1s1λ1

}
| Q1

)
Recall that A = νx⃗.(σ | P ), hence we have the first of our desired transitions.

It remains to show that νx⃗, y⃗, z⃗1.(θ1 | Q1) π0−→
u0

C1, where θ1 = σ ◦
{

N1/s1s1λ1

}
, and also

C0 ≡ C1. Since fa(M0) ⊆ dom(σ) ⊆ dom(θ1), we have M0σ = M0θ1, thus P0
M0θ1(λ0)−−−−−−→

s0[t0]

νz⃗0.
({

N0/λ0

}
| Q′

1
)
. Therefore, since we know (via Lemma 18) that Comp(s0)(ϵ, Q1) = (ϵ, P0),

by Lemma 22, Q1
M0θ1(λ0)−−−−−−→

s0[t0]
νz⃗0.

({
N0/λ0

}
| R1

)
and Comp(s0)(ϵ, R1) = (ϵ, Q′

0).

By the Res rule repeatedly and the Alias-out rule, we have that x⃗, y⃗, z⃗1 # M0 and we
have the following transition, and so C1 = νx⃗, y⃗, z⃗1, z⃗0.

(
θ1 ◦

{
N0/s0s0λ0

}
| R1

)
.

Q1
M0(λ0)−−−−−→
s0s0[t0]

νz⃗0.
({

N0/s0s0λ0

}
| R1

)
fa(M0) ⊆ dom(θ1) z⃗0 # ran(θ1) s0s0λ0) # dom(θ1)

θ1 | Q1
M0(s0s0λ0)−−−−−−−−→

s0s0[t0]
νz⃗0.

(
σ ◦

{
N1/s1s1λ1

}
◦

{
N0/s0s0λ0

}
| R1

)
=============================================================
νx⃗, y⃗, z⃗1.(θ1 | Q1) M0(s0s0λ0)−−−−−−−−→

s0s0[t0]
νx⃗, y⃗, z⃗1, z⃗0.

(
σ ◦

{
N1/s1s1λ1

}
◦

{
N0/s0s0λ0

}
| R1

)
Now since for all s′, s′′ ∈ {0, 1} and c, d ∈ {0, 1} such that s′cs′′ = sd we have

Comp(s′¬c)(ϵ, R0) = Comp(s′¬c)(ϵ, R1) (via Lemma 18 and the above), clearly it is the case
that R0 = R1. Furthermore, we have the following, as required.

C0 = νx⃗, y⃗, z⃗0, z⃗1.
(
σ ◦

{
N0/s0s0λ0

}
◦

{
N1/s1s1λ1

}
| R0

)
≡ νx⃗, y⃗, z⃗1, z⃗0.

(
σ ◦

{
N1/s1s1λ1

}
◦

{
N0/s0s0λ0

}
| R1

)
= C1

Other cases follow a similar pattern of applying to decomposition and composition. ◀
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1 Introduction

Linearizability [19] has become a standard safety condition for concurrent objects that access
shared state. Golab, Higham and Woelfel [13] however showed that linearizability does not
preserve probability distributions in randomised algorithms. They therefore proposed a notion
called strong linearizability, which unlike linearizability, must use the same linearization
order for every prefix of a linearizable history. Strong linearizability allows consideration of
concurrent objects in the presence of adversaries and can – amongst others – be used to show
the preservation of security properties. Here, the adversary is modelled by an adversarial
scheduler, which plays the role of a strong adversary [1].

Our security properties of interest are hyperproperties [5], which are properties over sets of
sets of traces (analogous to trace properties, which are over sets of traces). Hyperproperties
allow characterisation, for instance, of information flow properties such as non-interference
and observational determinism. Like trace properties, which can be characterised by a
conjunction of a safety and a liveness property, every hyperproperty can be characterised
as the conjunction of a hypersafety and hyperliveness property. For instance, as observed
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by Clarkson and Schneider [5], observational determinism [33] is a hypersafety property,
possibilistic information flow [23] is a hyperliveness property, and Goguen and Meseguer’s
noninterference property [12] is a conjunction of a hypersafety and hyperliveness property.

Attiya and Enea [2] revisited preservation of hyperproperties in the context of concurrent
objects and proposed a generalisation of strong linearizability called strong observational
refinement. They showed that strong observational refinement preserves all hyperproperties,
when replacing an abstract library specification, A, by a concrete library implementation,
C, in a client program, P . Here, C strongly observationally refines A iff the executions of
any client program P using C as scheduled by some scheduler cannot be observationally
distinguished from those of P using A under another scheduler1.

A second claim in [2] is that forward simulation [22] is equivalent to strong observational
refinement, i.e., it is both necessary and sufficient. The claim is motivated with examples
using (hyper)safety properties, however it raises questions for (hyper)liveness. It turns
out, that the study of strong observational refinement and forward simulation by Attiya
and Enea is in the restricted setting of finite traces2, though this restriction is unclear in
their paper [2]. Thus, all hyperproperties considered by Attiya and Enea are hypersafety
properties, which leaves out a large class of hyperproperties. We described the problem,
namely that forward simulation does not preserve hyperliveness properties in out recent
brief announcement [8]. There, we also proposed a new condition called progressive forward
simulation that strengthens forward simulation so that it preserves all hyperproperties
through refinement (i.e., progressive forward simulation is a sufficient condition).

Our point of departure for this paper is the question in the other direction: “Is progressive
forward simulation necessary for strong observational refinement?” The answer, it turns out,
is no! As we shall see in §4.1, it is possible for a concrete object to be a strong observational
refinement of some abstract object, yet for there to be no progressive forward simulation
between them.

Contributions

In this paper, we present a relaxation of progressive forward simulation that is both necessary
and sufficient. Our main contribution therefore is a new result that closes the gap between
strong observational refinement and a corresponding proof technique between concurrent
objects. In particular, we provide, for the first time, a stepwise technique that coincides with
a notion of refinement that preserves all client-object hyperproperties.

Overview

In §2 we present our main example to demonstrate the inadequacy of forward simulation for
hyperliveness properties. §3 presents the formal background and recaps the key definitions
and prior results. §4 motivates and defines weak progressive forward simulation, which we
prove to be both sufficient (§5) and necessary (§6) for strong observational refinement.

2 Motivating Example

We start by giving an example of an abstract atomic object A and a non-atomic implementa-
tion C such that there is a forward simulation from C to A, but hyperliveness properties are
not preserved for all schedules.

1 Both of these schedulers are additionally required to be admissible and deterministic (see §3.2).
2 Private communication
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int* current_val initially 0

int fetch_and_inc ():
F1. do
F2. n = LL(& current_val )
F3. while (!SC(& current_val , n + 1))
F4. return n

Figure 1 A fetch-and-inc implementation with a nonterminating schedule when LL and SC are
implemented using the algorithm of [20].

As the atomic abstract object A we choose a fetch-and-inc object with just one operation,
fetch_and_inc(), which increments the value of a shared integer variable and returns the
value of that variable before the increment. Let P be a program with two threads t1 and t2,
each of which executes one fetch_and_inc operation and assigns the return value to a local
variable of the thread. Clearly, for any scheduler S, the variable assignment of both threads
will eventually occur. This “eventually” property can be expressed as a hyperproperty.

Now, consider the fetch-and-inc implementation presented in Figure 1. This implemen-
tation uses the load-linked/store-conditional (LL/SC) instruction pair. The LL(ptr)
operation loads the value at the location pointed to by the pointer ptr. The SC(ptr,v)
conditionally stores the value v at the location pointed to by ptr if the location has not
been modified by another SC since the executing thread’s most recent LL(ptr) operation. If
the update actually occurs, SC returns true, otherwise the location is not modified and SC
returns false. In the first case, we say that the SC succeeds. Otherwise, we say that it fails.

Critically, we stipulate that the LL and SC operations are implemented using the algorithm
of [20]. This algorithm has the following property. If thread t1 executes an LL operation, and
then thread t2 executes an LL operation before t1 has executed its subsequent SC operation,
then that SC is guaranteed to fail. This happens even though there is no intervening
modification of the location.

Now, let C be a labelled transition systems (LTS) representing a multithreaded version of
this fetch_and_inc implementation, using the specified LL/SC algorithm3. Figure 2 gives
a sketch of this LTS, detailing just the most important actions. Consider furthermore the
program P (above) running against the object O1. A scheduler can continually alternate the
LL at line F2 of t1 and that of t2 (with some executions of F3 in between), such that neither
fetch_and_inc operation ever completes (see the blue arrows in the LTS). Therefore, unlike
when using the A object, the variable assignments of P will never occur, so the C system
does not satisfy the hyperproperty for all schedulers.

There is, however, a forward simulation (see Definition 3.2) from C to A. Therefore,
standard forward simulation is insufficient to show that all hyperproperties are preserved.

3 Background

Notation. Let ξ and ξ′ be sequences. The empty sequence is denoted ε and the length of
ξ denoted #ξ. We write ξ ⊑ ξ′ (similarly, ξ ⊏ ξ′) iff ξ is a prefix (similarly, proper prefix)
of ξ′. Assuming m < n ≤ #ξ, we write ξ<n for the prefix of ξ of length n and ξ[m] for the
element of ξ at index m. Thus, ξ<0 = ε, and if n > 0, ξ<n = ξ[0] · ξ[1] · ξ[2] · · · ξ[n − 1]. If ξ

3 There are several ways to represent a multithreaded program or object as an LTS, e.g., [21, 28].
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LL1 LL2

SC1

LL2

SC2

LL1
SC2

LL1

SC1

LL2

!SC1

SC2SC1

!SC2

!SC2 !SC1

Figure 2 Sketch of labelled transition system for the example in Fig. 1 for threads t1 and t2

calling fetch_and_inc once (LLi action for execution of F2 by thread ti, SCi for F3 when the SC
returns true, !SCi when it returns false, i ∈ {1, 2}).

is finite, we let last(ξ) be the last element of ξ, i.e., last(ξ) = ξ[#ξ − 1]. For a set S, let ξ|S
be the sequence ξ restricted to elements in S. We lift this to sets of sequences and define
T |S = {ξ|S | ξ ∈ T}. Let xω = x · x · x · · · be the infinite sequence comprising the element x.

3.1 LTSs, refinement and forward simulation
We describe (concurrent) systems by labelled transition systems (LTSs). An LTS L =
(Q, Qini, Σ , δ) consists of a (possibly infinite) set of states Q, an alphabet Σ of actions, initial
states Qini ⊆ Q and a transition relation δ ⊆ Q × Σ × Q. We say that an action a is enabled
in state q iff there exists a state q′ such that (q, a, q′) ∈ δ. Labelled transition systems give
rise to (finite or infinite) runs which are alternating sequences q0 · a1 · q1 · a2 · . . . of states
and actions with (qi, ai+1, qi+1) ∈ δ. We also write q0 −a1...an−−−−→ qn if there is a finite run
q0 · a1 · q1 · · · an · qn. In particular, q −ε→ q. A run is an execution of an LTS L if q0 ∈ Qini.

A trace is the sequence of actions of an execution and the set of traces of an LTS L
is denoted T (L), which may be partitioned into finite traces, denoted Σ∗, and infinite
traces, denoted Σω. We use σ ∈ Σ∗ and π ∈ Σω when refering to finite and infinite traces,
respectively, and ρ ∈ T (L) to refer to a trace that may be finite or infinite. Note that for
any L, T (L) is prefix closed.

An LTS is step-deterministic if it has a single initial state (i.e., Qini = {qini}), and for
every state q and action a, if q −a→ q′ and q −a→ q′′ then q′ = q′′. Step-determinism implies
that each trace corresponds to a unique run; if the trace is finite then there is at most one
state q′ such that qini −σ→ q′. In this case, we let state(σ) denote q′.4

Like [2], we use step-deterministic LTSs to describe objects and the programs that use
these objects. The terms “object” and “program” are taken from [2], the object describing a
library (e.g. of a data structure) and the program using this library by calling operations of it.
To define interfaces between objects and programs, we partition the actions of an LTS into
internal and external actions. Objects offer operations to their environment which can be
invoked (by programs) using an external invocation action from a set I with a corresponding
external response action from a set R. For this paper, the exact form of invocation and
response actions is unimportant. Besides invocations and responses, an object may have
further internal actions used to implement the operations.

4 Note that a step-deterministic LTS differs from the notion of a deterministic automaton of Lynch and
Vaandrager [22]. Attiya and Enea simply refer to step-deterministic LTSs as deterministic LTSs [2].
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A program uses objects by invoking their operations and waiting for the corresponding
responses. Thus, if P is an LTS corresponding to a program its actions can be partitioned as
follows: ΣP = I ∪̇ R ∪̇ ΓP , where ∪̇ is a disjoint union and ΓP is the set of program actions.
The composition of a program with an object is formally defined as the product of two LTSs.

▶ Definition 3.1 (Program-object composition). Suppose that P = (QP , Qini
P , ΣP , δP) and

O = (QO, Qini
O , ΣO, δO) are LTSs. The product of P with O, denoted P × O, is the LTS

(Q, Qini, Σ , δ) with
Q = QP × QO, Qini = Qini

P × Qini
O , Σ = ΣP ∪ ΣO, and

δ =
⋃

a∈ΣP ∩ΣO
{(qP , qO) −a→ (q′

P , q′
O) | qP −a→P q′

P ∧ qO −a→O q′
O} ∪⋃

a∈ΣP \ΣO
{(qP , qO) −a→ (q′

P , qO) | qP −a→P q′
P } ∪⋃

a∈ΣO\ΣP
{(qP , qO) −a→ (qP , q′

O) | qO −a→O q′
O}

Note that ΣP ∩ ΣO in our case will typically be I ∪ R.
An object can either be an abstract (often sequential) specification (denoted LA or simply

A) or a concrete implementation (denoted LC or C). A history of an LTS is a sequence ρ|∆,
where ρ is a trace of the LTS and ∆ ⊆ Σ is the set of external actions. We formally relate
the behaviours of A and C by comparing their histories. We say C is a ∆-refinement of A iff
T (C )|∆ ⊆ T (A)|∆. One can establish ∆-refinement between C and A by proving forward
simulation between the systems.5

▶ Definition 3.2 (Forward simulation). Let C and A be two LTSs with sets of actions ΣC and
ΣA, respectively, and let ∆ ⊆ ΣC ∩ ΣA. A relation F ⊆ QC × QA is a ∆-forward simulation
from C to A iff both of the following hold:
Initialisation. (qini

C , qini
A ) ∈ F ,

Simulation step. For all (qC , qA) ∈ F , if qC −a→C q′
C then there exist σ ∈ Σ∗

A and q′
A ∈ QA

such that a|∆ = σ|∆, qA −σ→A q′
A and (q′

C , q′
A) ∈ F .

Note that σ in the above definition may be ε in which case the condition a|∆ = σ|∆ reduces
to a|∆ = ε. In this case, the proof obligation for the simulation step forms a triangular
diagram. For instance, in Figure 4, the step executing τ3 forms such as diagram.

▶ Lemma 3.3 (Lynch [21]). If there is a ∆-forward simulation from C to A, then T (C)|∆ ⊆
T (A)|∆.

3.2 Strong Observational Refinement
Attiya and Enea [2] have proposed the notion of strong observational refinement, which is a
strengthening of refinement (and generalisation of strong linearizability [13]) that preserves
all hyperproperties. Strong observational refinement is defined in terms of an adversary and
is modelled by a scheduler that is assumed to have full control over a step-deterministic
LTS’s execution.

Formally, a scheduler for an LTS is a function S : Σ∗ → 2Σ that determines the next
action to be executed based on the sequence of actions that have been executed thus far. A
trace ρ is consistent with a scheduler S if ρ[n] ∈ S(ρ<n) for all n < #ρ. We write T (L, S)
for the set of traces of L that are consistent with S. A scheduler is admitted by an LTS L if
for all finite traces σ of L consistent with S, the scheduler satisfies

5 It is well known that forward simulation is sound for proving refinement, but completeness requires
both forward and backward simulation [7, 22].
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1. S(σ) is non-empty and
2. all actions in S(σ) are enabled in state(σ).
The scheduled traces in T (L, S) can alternatively be viewed as the traces of a product
L × LTS(S), where LTS(S) is an LTS generated from S with set of states Σ∗; initial state ε;
and transitions σ −a→ σ · a, where a ∈ S(σ).

In addition to being admissible, the schedulers we consider (for the combination of
program with object, P × O) must be deterministic: they must deterministically choose one
of the enabled actions of the object. A scheduler S for P × O is deterministic if either (i)
S(σ) ⊆ ΓP (i.e., it can choose several program actions, excluding invocations and responses
of object operations) or (ii) |S(σ)| = 1 (i.e., if S chooses an action of O, including invocations
and responses, then it chooses exactly one).

Now we are ready to define strong observational refinement.

▶ Definition 3.4 (Strong observational refinement). An object C strongly observationally
refines an object A, written C ≤s A, iff for every program P and every deterministic scheduler
SC admitted by P × C, there exists a deterministic scheduler SA admitted by P × A such
that T (P × C, SC)|ΓP = T (P × A, SA)|ΓP .

Note that unlike Attiya and Enea [2], this definition of strong observational refinement
considers infinite traces, which is necessary for preservation of all hyperproperties. In this
setting, as discussed in §2, forward simulation is no longer necessary and sufficient for
establishing strong observational refinement (contrasting the results of Attiya and Enea [2]).

4 A necessary and sufficient condition

We now motivate and develop the notion of weak progressive forward simulation, providing
a proof method for strong observational refinement. We first recap progressive forward
simulation [8] and show that it is not a necessary condition (§4.1). Our new relaxed definition
is given in §4.2.

4.1 Progressive forward simulation is too strong
In [8], we developed a condition called progressive forward simulation that enhances forward
simulation with a well-founded order that rules out infinite stuttering. It is guaranteed by
an implementation, e.g., when the underlying implementation is lock-free [6,18]. First we
provide the formal definition of progressive forward simulation.

▶ Definition 4.1 (Progressive Forward Simulation [8]). Let C and A be two deterministic
LTSs and ∆ ⊆ ΣC ∪ ΣA. A relation F ⊆ QC × QA together with a well-founded order
≫ ⊆ QC × QC is called a progressive ∆-forward simulation from C to A iff
Initialisation. (qini

C , qini
A ) ∈ F ,

Step. For all (qC , qA) ∈ F , if qC −a→C q′
C then there exist σ ∈ Σ∗

A and q′
A ∈ QA such that

Simulation. a|∆ = σ|∆, qA −σ→A q′
A and (q′

C , q′
A) ∈ F , and

Progressiveness. if σ = ε then qC ≫ q′
C .

In [8], we have additionally shown that progressive forward simulation is sufficient for strong
observational refinement.

▶ Theorem 4.2 (Sufficiency [8]). If there exists a progressive forward simulation between C

and A, then C ≤s A.
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A:
qA q0

A q1
A q2

A

· · ·
i

r r′

τ̂1

r′

τ̂2

r′

τ̂3
C:

qC q0
C q1

C q2
C

· · ·
i

r r′

τ1

r r′

τ2

r r′

τ3

Figure 3 Two objects A and C such that C ≤s A, but there does not exist a progressive forward
simulation between C and A.

The main motivation for this paper has been the pursuit of a proof in the other direction,
i.e., that progressive forward simulation is also necessary for strong observational refinement.
However, it turns out that strong observational refinement does not imply the existence of a
progressive forward simulation.

To see this consider the labelled transition systems depicted in Figure 3. We assume an
abstract object A and concrete implementation C with a single operation, external actions
i, r, r′ ∈ I ∪ R, abstract internal actions τ̂k ∈ ΣA \ (I ∪ R), and concrete internal actions
τk ∈ ΣC \ (I ∪ R). The objects A and C differ in that C continually allows both r and r′

after c, whereas A only allows both r and r′ immediately after i; it stops offering r after τ̂1.
It is straightforward to show that C ≤s A:

1. if C generates a run qC · i · q′
C · r or qC · i · q′

C · r′ without executing any internal actions
after i, a corresponding run can clearly be generated by A;

2. if C generates a run qC · i · q0
C · τ1 · · · τn · qn

C · r or qC · i · q0
C · τ1 · · · τn · qn

C · r′ executing
the internal actions τ1,. . . , τn, then a corresponding run can be executed in A by not
executing any of the internal actions of A;

3. if C generates a (diverging) run qC ·i·q0
C ·τ1 ·q1

C ·τ2 · · · that never responds, a corresponding
run qA · i · q0

A · τ̂1 · q1
A · τ̂2 · · · can be generated in A.

Thus, for any program P and scheduler SC , there exists a scheduler SA such that T (P ×
C, SC)|ΓP = T (P × A, SA)|ΓP .

Now we show that there does not exist a progressive forward simulation. First, there
exists a forward simulation, F , that allows each τk to behave as the corresponding τ̂k and as
a stuttering step, i.e., (qj

C , q0
A) ∈ F for each j. However, there is no well-founded ordering

over the states since stuttering is unbounded, thus progressiveness cannot be guaranteed.
The problem is that progressiveness enforces 2 above, but does not account for the possibility
of 3.

The main result of this work is a weaker form of progressive forward simulation that
we prove to coincide with strong observational refinement. Weak progressiveness does not
necessitate a well-founded order when the concrete implementation executes an infinite
number of consecutive internal actions provided that the abstraction can also execute an
infinite number of consecutive internal actions. This relaxation accounts for the scenario
highlighted by 3 above.

4.2 Weak progressive forward simulation

In our LTSs, distinguishing between internal and external actions allows us to define divergent
states. State q is ∆-divergent (written q −∞−→\∆) if there exists an infinite run q · a1 · q1 · a2 · · ·
such that ai ∈ Σ \ ∆ for all i ≥ 1.

We therefore obtain the following definition of weak progressive forward simulation, which
relaxes the progressiveness condition from Definition 4.1.
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▶ Definition 4.3 (Weak Progressive Forward Simulation). Let C and A be two deterministic
LTSs and ∆ ⊆ ΣC ∪ ΣA. A relation F ⊆ QC × QA together with a well-founded order
≫ ⊆ QC × QC is called a weak progressive ∆-forward simulation from C to A iff
Initialisation. (qini

C , qini
A ) ∈ F ,

Step. For all (qC , qA) ∈ F , if qC −a→C q′
C then there exist σ ∈ Σ∗

A and q′
A ∈ QA such that

Simulation. a|∆ = σ|∆, qA −σ→A q′
A and (q′

C , q′
A) ∈ F , and

Weak progressiveness. if σ = ε then either qC ≫ q′
C or qA −∞−→\∆.

Note that we do not require that any triangular diagram with qC −a→C q′
C , (qC , qA) ∈ F ,

and (q′
C , qA) ∈ F with no diverging trace from qA to have qC ≫ q′

C . We only require this if
there is no other (q′

C , q′
A) ∈ F with qA −σ→A q′

A and σ ̸= ε.
Also note that for concrete LTSs without any divergence, all three notions (forward

simulation, strong observational refinement and weak progressive forward simulation) coincide
(because without divergence s ≫ s′ iff s −τ→ s′ for some internal action τ is a well-founded
order). For example, progress conditions such as lock-freedom [18] would be sufficient to
ensure absence of divergence in the concurrent object (see also [11,14,17]).

This definition weakens the progressiveness condition: Either the concrete state must
decrease in the well-founded order, or qC corresponds to a qA that diverges. A standard
forward simulation would allow one to relate all concrete states of the diverging run to qA,
“hiding” the divergence. Weak progressiveness ensures that divergence on the concrete level
is not possible without a corresponding diverging run from qA. Our earlier definition of a
progressive forward simulation always required the well-founded ordering to decrease for a
stuttering concrete transition. With this change in place, we can now show equality of strong
observational refinement and this form of forward simulation.

▶ Theorem 4.4. C ≤s A iff there exists a weak progressive (I ∪ R)-forward simulation from
C to A.

The rest of the paper is now devoted to proving this theorem. We prove sufficiency in §5
and necessity in §6.

5 Weak Progressive Forward Simulation implies Strong Observational
Refinement

We start with the sufficiency of weak progressive forward simulation for strong observational
refinement. This proof is an adaptation of the proof for progressive forward simulation [8, 9],
so we relegate the details to the appendix.

▶ Theorem 5.1. If there exists a weak progressive I ∪ R-forward simulation from C to A,
then C ≤S A.

Given two LTLs C and A for which a weak progressive forward simulation (F, ≫) exists and
given an arbitrary program P together with a scheduler SC for traces over P×C , our proof has
to construct a scheduler SA such that T (P × C , SC )|ΓP = T (P × A, SA)|ΓP . The construction
is in two steps: First a function f is constructed that maps traces ρC ∈ T (P × C , SC ) to
traces f(ρC ) ∈ T (P × A), such that the executed program actions in ΣP are the same for
both traces.

The construction is shown in Fig. 4. Steps of C are mapped to fixed steps of A using
a mapping m (a formal definition is in the appendix), such that the forward simulation is
preserved. Program steps in ΓP are mapped by identity, such that the program states of
both traces are always equal. For finite traces ρC ∈ T (P × C , SC ) this results in a finite
trace with the same program steps.
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f(πC) :

πC :

(qini
P , qini

A ) (q1
P , qini

A ) (q2
P , q1

A) (q2
P , q3

A) ...

m(qini
C , a1, qini

A )
= a1

m(qini
C , i2, qini

A )
= α1i2α2

m(q1
C , τ3, q1

A)
= ϵ m(q2

C , τ4, q1
A)

= α

(qini
P , qini

C ) (q1
P , qini

C ) (q2
P , q1

C ) (q2
P , q2

C ) (q2
P , q3

C ) ...
a1 ∈ ΓP i2 ∈ I τ3 τ4

F F F F F

Figure 4 Constructing f(πC ) ∈ T (P × A) from πC ∈ T (P × C , SC ) with τ3, τ4 ∈ ΣC \ (I ∪ R),
α, α1, α2 ∈ (ΣA \ (I ∪ R))∗ and q1

C ≫ q2
C .

Infinite traces πC ∈ T (P × C , SC ) are mapped either to infinite traces directly, or by
exploiting that the forward simulation is weakly progressive: if the abstract trace is finite,
ending with (qP , qA) while the concrete trace ends with an infinite sequence of stuttering
steps, then a diverging run of A from qA is guaranteed to exist. This run (where all A-states
are combined with qP) can then be attached at the end to give an infinite trace which is
defined to be f(πC ). Again, πC and f(πC ) will have the same program steps.

A formal definition of f will be given in the appendix. Given f , an abstract scheduler
SA can be defined that schedules exactly all the steps of f(ρC ). For this definition to be
well-defined it is crucial that the traces in the image of f form a tree-shaped structure, where
branching points are at program actions only. We have the following theorem.

▶ Theorem 5.2. T (P × A, SA) = {σA | ∃πC ∈ T (P × C , SC ). σA ⊑ f(πC )}.

Theorem 5.1 then is a simple consequence, since both πC and f(πC ) have the same program
actions, and each πA ∈ T (P × A, SA) is some f(πC ) as stated by Theorem 5.2.

6 Strong Observational Refinement implies Weak Progressive Forward
Simulation

We now prove the necessity theorem for weak progressive forward simulation.

▶ Theorem 6.1. If C ≤s A, then there exists a weak progressive (I ∪ R)-forward simulation
from C to A.

Given that C is a strong observational refinement of A, we must show that a weak progressive
forward simulation exists between A and C . Since we are tasked with finding a forward
simulation, we must also instantiate a client program and concrete scheduler that act as
witnesses to the forward simulation. Our proof proceeds in stages (see Figure 5) for a client
program P that invokes the operations of the object in question and concrete scheduler SC .
This method is similar to that of Attiya and Enea [2], but the underlying formal mechanisms
have been completely reworked.

Client Program and Concrete Scheduler

The program for concrete object C = (QC , Qini
C , ΣC , δC ) that we use is given by the LTS

P = (QP , Qini
P , ΣP , δP), where

QP = {qini
P , qdiv} ∪ {qe, qrec(e) | e ∈ I ∪ R},

Qini
P = {qini

P },
ΓP = {div} ∪ {g(q), g(e, q), rec(e) | q ∈ QC ∧ e ∈ I ∪ R},
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A

P × A × SA

P × C × SC

C

(F3, ≫3)

(F2, ≫2)

(F1, ≫1)

Figure 5 Proof overview.

qini
Pqdiv

qe

qrec(e)

g(q)

div
e

g(e, q)

rec(e)

Figure 6 Representation of client P used as a witness
to the forward simulation, where q ∈ QC and e ∈ I ∪ R.

ΣP = ΓP ∪ I ∪ R,
δP = {qini

P −div−→ qdiv} ∪⋃
e∈I∪R,q∈QC

{qini
P −g(e,q)−−−→ qe, qe −e→ qrec(e), qrec(e) −rec(e)−−−→ qini

P , qini
P −g(q)−−→ qini

P }

This program is depicted in Figure 6, where dashed states and transitions are used
to denote families of states and transitions. We refer to g(q) and g(e, q) as guess actions
and rec(e) as record actions. These are used to make the (internal) choices made by the
client program, concrete object and scheduler visible in the traces of T (P × C × SC )|ΓP .
Additionally, we use an external action div that is enabled whenever the underlying object
can diverge, i.e., div is enabled in qC iff qC −∞−→\(I∪R). The program P can only synchronise
with div when it is in state qini

P . Once executed, the program transitions to state qdiv and
from this point, it is only possible to schedule internal actions of C in P × C.

We now define a particular admissible scheduler. The concrete scheduler SC must schedule
the actions of P × C , i.e., define the next action for a given trace σ ∈ (ΣP ∪ ΣC )∗.

SC (σ) =



{τ} if div ∈ σ, τ ∈ ΣC \ (I ∪ R), and
∃qC . state(σ|ΣC )−τC−→ qC ∧ qC −∞−→\I∪R

{τ} else if last(σ) = g(qC ) and
τ ∈ ΣC \ (I ∪ R) ∧ state(σ|ΣC ) −τ→ qC

{e} else if last(σ) = g(e, qC )
{rec(e)} else if last(σ) = e

{div | state(σ|ΣC ) −∞−→\I∪R} ∪
{g(qC ) | ∃τ ∈ ΣC \(I ∪ R). state(σ|ΣC )−τ→ qC }
∪ {g(e, qC ) | ∃e ∈ I ∪ R. state(σ|ΣC ) −e→ qC }

otherwise

Note that state(σ|ΣC ) is calculated wrt the LTS C as opposed to the composition P × C.
Furthermore, the scheduler decides on the next action of P × C based on the last action
in the given trace σ. The first two cases determine the next action of C depending on
whether the program has executed div. In the first two cases, there may be a choice of τ , the
scheduler chooses one such that the resulting set is a singleton. Clearly the third case results
in a singleton set since the action g(e, qC ) fixes the only external action e allowed by the
scheduler. Therefore, the scheduler SC defined above is deterministic.

The last two cases describe the scheduler’s behaviour wrt to a program action. As per
Figure 6, these are the record and guess actions as well as div. In the fourth case, action rec(e)
must be scheduled if the last action executed in σ is e. In the final case, the scheduler may
choose to diverge (if the program diverges), perform a guess action, g(qC ) (corresponding
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to an internal transition of C ) or a guess action, g(e, qC ) (corresponding to an external
transition of C ). Note that for both g(qC ) and g(e, qC ), state qC is the post state of the
given action after executing from state(σ).

By design, we therefore have the following proposition for P × C .

▶ Proposition 6.2. Let σ ∈ T (P × C , SC) for the scheduler SC . If div ∈ σ holds then
state(σ|ΣC ) −∞−→\(I∪R) and (∃ q′

C . state(σ|ΣC ) −SC (σ)−−−→ q′
C ∧ q′

C −∞−→\(I∪R)).

Simulation (F1, ≫1)

Our first step is the construction of a weak progressive forward simulation (F1, ≫1) between
C and P × C × SC (see Figure 5) with F1 ⊆ QC × (QP × QC × Σ∗

P×C ). We define F1 such
that (qC , (qP , qC , σ)) ∈ F1 iff

qini
C −σ|ΣC−−−→ qC ,

div /∈ σ and last(σ) /∈ {g(q), g(e, q), e | q ∈ QC ∧ e ∈ I ∪ R} (so that σ is either empty or
ends with rec(e) or an internal action; thus the next step is a guessing step),
qP = qini

P , and
state(σ) = qC .

▶ Lemma 6.3. (F1, ∅) is a weak progressive forward simulation from C to P × C × SC .

Simulation (F2, ≫2)

Our next step is to show that a weak progressive forward simulation (F2, ≫2) from P ×C ×SC
to P × A × SA exists, when SA is any scheduler with T (P × C, SC)|ΓP = T (P × A, SA)|ΓP

that exists due to the assumption C ≤s A. The proof follows from a general completeness
result for refinements for ∆-deterministic systems.

▶ Lemma 6.4. If C ∆-refines A and A is ∆-deterministic, then there exists a ∆-forward
simulation.

A ∆-deterministic LTS is one, where every history h ∈ ∆∗ has a unique state q that
can be reached with shortest executions that have history h. (A formal definition of ∆-
deterministic LTSs is given in Definition B.1.) Such a shortest execution is empty, if h = ϵ,
and otherwise has the last element of h as the action of its last step (note, that this definition
of ∆-deterministic is weaker than the ones given in [2] and [22]). Clearly, P × A × SA is
ΓP-deterministic, so the theorem applies. The proof of 6.4 shown in the appendix constructs
a forward simulation F2 that relates all states of P × C × SC that are reached with history h

to the unique minimally reachable state of P × A × SA with the same history. F2 is weak
progressive, since SC never schedules more than one internal action in a row. Our definition
of the program P guarantees that F2 also preserves the actions e ∈ I ∪ R, since each of these
is followed by the corresponding rec(e) action, that is already preserved.

▶ Lemma 6.5. There exists a weak progressive ΣP-forward simulation (F2, ≫2) between
P × C × SC and P × A × SA.

Simulation (F3, ≫3)

We now define the weak progressive (I ∪ R)-forward simulation F3 between P ×A×SA and A.
The states of P×A×SA includes those of A. Thus we keep the two LTSs synchronised, i.e., the
forward simulation is over pairs of the form ((qP , qA, σ), qA), where (qP , qA, σ) ∈ QP×A×SA .
For (qP , qA, σ) ∈ QP×A×SA , let F3 = {((qP , qA, σ), qA) | (qP , qA, σ) ∈ QP×A}.
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The well-founded ordering that we use is the relation ≫3, where:
1. (qini

P , _, _) ≫3 (qe, _, _)
2. (qrec(e), _, _) ≫3 (qini

P , _, _)
3. (qini

P , _, _) ≫3 (qdiv, _, _)

▶ Lemma 6.6. (F3, ≫3) is a weak progressive forward (I ∪ R)-simulation between P ×A×SA
and A.

It is trivial to prove that F3 is a forward simulation. We therefore focus on a proof of
weak progressiveness, which provides further insight into our choice of P and the inclusion of
the div action in our model.

Note that from (qdiv, _, _), the only possible transition is an −a→ step, where a ∈ ΣA \
(I ∪ R), which is non-stuttering. Similarly, from (qe, _, _), the only possible transition is −e→,
where e ∈ I ∪ R. Thus, when we reach a state that is minimal wrt ≫3, no more stuttering is
possible. Any transition from state (qrec(e), _, _) is guaranteed to reduce w.r.t. ≫3, as are
transitions corresponding to g(e, q) and div from (qini

P , _, _).
This leaves us with transitions corresponding to g(q) from (qini

P , qA, σ), which may stutter
infinitely often. We we can show that such stuttering only exists if A contains a diverging
run from qA, i.e., div is enabled in (qini

P , qA, σ) ∈ QP×A×SA .
Suppose there exists an infinite run

(qini
P , qA, σ) −g(q1)−−−→ (qini

P , qA, σ · g(q1)) −g(q2)−−−→ (qini
P , qA, σ · g(q1) · g(q2)) −g(q3)−−−→ . . . .

By construction, P × A × SA is an “abstraction” of P × C × SC such that T (P × A, SA)|Γ =
T (P × C , SC )|Γ, thus, (σ|Γ) · g(q1) · g(q2) · g(q3) · · · · ∈ T (P × C , SC )|Γ. Thus, there exists a
qC such that last(σ) = g(qC) and

(qini
P , qC , σ) −g(q1)·τ1−−−−→ (qini

P , q1, σ·g(q1)·τ1) −g(q2)·τ2−−−−→ (qini
P , q2, σ·g(q1)·τ1 ·g(q2)·τ2) −g(q3)·τ3−−−−→ . . .

where τk ∈ ΣC \(I ∪ R) for all k. Note that the definition of SC enforces a −g(qk)·τk−−−−−→ transition
for each −g(qk)−−−→ transition in P × A × SA. This execution, when restricted to the actions of
C corresponds to a diverging run of C :

qC −τ1−→ q1 −τ2−→ q2 −τ3−→ . . .

Since this is an infinite run of internal actions, by definition, the action div must be offered by
P × C × SC , and enabled in (qini

P , qC , σ). Moreover, since T (P × A, SA)|Γ = T (P × C , SC )|Γ,
div must also be possible in P × A × SA. In particular, div must be enabled in (qini

P , qA, σ).
Now, P × A × SA contains a run with final state σ. Therefore, P × A × SA also contains a run

(qini
P , qA, σ) −div−→ (qdiv, qA, σ) −τ ′

1−→ (qdiv, q′
1, σ) −τ ′

2−→ (qdiv, q′
2, σ) −τ ′

3−→ . . .

where τ ′
k ∈ ΣA \ (I ∪ R) for all k since P ×A×SA can no longer schedule any further external

actions after executing div, i.e., must schedule an internal action. Thus, we must have a
diverging run in A as well.

Combined simulation. Finally, to derive at a weak progressive simulation from C to A, we
show that the relation of weak progressive forward simulation is transitive.

▶ Theorem 6.7. Let (F1, ≫1) be a weak progressive ∆-forward simulation from C to B, and
(F2, ≫2) one from B to A. Then there exists a weak progressive ∆-forward simulation (F, ≫)
from C to A.
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The proof of this theorem uses F = F1 ◦ F2 and ≫ as defined by qC ≫ q′
C if qC −a→ q′

C
for an internal action a ̸∈ ∆ such that one of the following two conditions holds:

(1) ∃qB. (qC , qB) ∈ F1 ∧ (q′
C , qB) ∈ F1 ∧ qC ≫1 q′

C ∧ ¬qB −∞−→\∆,

(2) ∃qB, α, q′
B, qA. (qC , qB) ∈ F1 ∧ (q′

C , q′
B) ∈ F1 ∧ qB −α→ q′

B ∧ qB ≫2 q′
B

∧ (qB, qA) ∈ F2 ∧ (q′
B, qA) ∈ F2 ∧ ¬qA −∞−→\∆

where α is a finite sequence of internal actions.
Case (1) requires a triangular diagram for the lower simulation from B to C with a

non-diverging state qB, where ≫1 decreases. Case (2) requires an arbitrary commuting
diagram for the lower simulation, and a triangular diagram for the upper simulation from A
to B, where the abstract state qA does not have a diverging run, and ≫2 decreases.

7 Progressive and weak progressive examples

We now present two example programs to demonstrate the implications of progressive and
weak progressive forward simulation on program design. The first satisfies progressive forward
simulation (and hence weak progressive forward simulation) w.r.t. its abstract specification,
while the second satisfies weak progressive simulation only.

7.1 FAI with Lock-free LL/SC
Consider the FAI implementation from Figure 1, but where the LL/SC is assumed to be
lock-free. We refer to this implementation as FAI-lf. Unlike the example in §2, we assume
that an LL operation executed by one thread does not interfere with an LL in another thread.
If two concurrent threads have loaded the same LL value, then only one SC will succeed.
Forward simulation for FAI-lf holds for the same reason as FAI. We now define a global
well-founded order over states using the technique described in [6], which implies a weak
progressive forward simulation. This in turn guarantees that all hyperproperties (including
hyperliveness) of the abstract specification are preserved by FAI-lf.

The well-founded order is straightforward to define: it is a lexicographic ordering that
captures how “close” a thread is to successfully executing a successful SC operation. The
base of the well-founded ordering guarantees that some thread will successfully execute its
SC operation. The generic lexicographic scheme is the following, where b, b′ are booleans and
pc, pc′ are program counter values:

b ≫B b′ =̂ b ∧ ¬b′

(b, pc) ≫L (b′, pc′) =̂ b ≫B b′ ∨ (b′ = b ∧ (b ∧ pc ≫✓ pc′) ∧ (¬b ∧ pc ≫✗ pc′))

where ≫B orders true before false and ≫L is a lexicographic order with a different orderings
on pc depending on whether or not b holds. We instantiate this generic scheme over states
as follows, where current_val, nt and pct are the variables of the algorithm in Figure 1 for
a thread t. In particular, current_val corresponds to the shared variable current_val, nt

corresponds to the local variable n of thread t, and pct is the program counter for thread t

taking values from the set {F1, F2, F3, F4, idle}.

q ≫ q′ =̂ ∃t. (q(current_val) = q(nt), q(pct)) ≫L (q′(current_val) = q′(nt), q′(pct))

All that remains is the instantiation of ≫✓ and ≫✗. The order ≫✓ is empty, since
q(current_val) = q(nt) implies that q(pct) = F3, and execution of thread t corresponds
to a successful SC operation. We define F2 ≫✗ F3, representing a retry since this order allows
t to make progress towards making q(current_val) = q(nt) true.

CONCUR 2022



31:14 Weak Progressive Forward Simulation Is Necessary and Sufficient

7.2 FAI with backoff
We now consider a load-balancing FAI specification, which we refer to as FAI-lb. In this
example, we weaken the specification to either perform the FAI or perform an operation
backofft for a thread t that causes the FAI executed by thread t to be delayed. Abstractly,
backofft is equivalent to a skip action. Note that although the resulting specification is
non-deterministic, the LTS is still step-deterministic since the execution of each action from
any state results in exactly one next state.

For FAI-lb, we can prove weak progressive forward simulation even for the obstruction-
free FAI implementation from §2. Informally, the interference caused by an LL by thread t

on another thread’s SC can be mapped to a backofft operation executed by thread t. Thus,
although the obstruction-free implementation in §2 has a divergent execution, this execution
can be matched by the specification FAI-lb.

8 Related work

The study of refinement, and in particular linearizability [19], in the context of adversaries was
initiated by the work of Golab, Higham and Woelfel [13] who observed that replacing atomic
objects by linearizable implementations in randomized algorithms [1] does not guarantee
the expected substitutability result of linearizability. Instead, the probability distribution of
results may differ when using a linearizable implementation instead of an abstract atomic
object. The difference is due to the abilities of adversaries scheduling process steps depending
on the current system state. To alleviate this problem, Golab, Higham and Woelfel suggested
strong linearizability, requiring a “prefix preservation” property in addition to the conditions
of linearizability.

Following this proposal, Attiya and Enea studied the preservation of hyperproperties by
linearizability. They proposed the definition of strong observational refinement and showed it
to (a) preserve all hyperproperties, and (b) to coincide with strong linearizability for atomic
abstract specifications. They also proved strong observational refinement to be equivalent to
forward simulation. In a brief announcement [8], Derrick et al. gave a counter example to
this proof, and provided an alternative result for one direction of the equivalence, proposing
progressive forward simulation and proving it to imply strong observational refinement. Our
work in this paper closes the missing gap of the relationship between progressive forward
simulation and strong observational refinement by proving strong observational refinement to
imply (yet another) version of forward simulation, weak progressive forward simulation. In
addition, we strengthen the result of Derrick et al. [8] and show that weak progressive forward
simulation also implies strong observational refinement, thereby arriving at an equivalence
once again.

The relationship between (the standard definition of) linearizability and forward and
backward simulation has already been investigated before, with Schellhorn, Wehrheim and
Derrick [27,28] showing linearizability proofs in general to require both forward and backward
simulations, and Bouajjani et al. [3] studying under what circumstances and how forward
simulation alone can be employed. The relationship between observational refinement,
safety (linearizability) and progress in the context of atomic objects has been studied in
prior works [11, 14]. The use of well-founded orderings to enforce progress for a forward
simulation has already been used in the context of ASM refinement [25, 26] and non-atomic
refinement [10]. Another form of simulations employing well-founded orders are the normed
(forward and backward) simulations of Griffioen and Vaandrager [15, 16]. They require every
matching internal (τ) step to decrease a norm defined on a well-founded set. It has been
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shown that normed forward simulations do not agree with ordinary forward simulations, even
on divergence-free LTSs. As weak progressive forward simulations does coincide with forward
simulation on divergence-free LTSs, we thus get inequality of normed forward simulation and
weak progressive forward simulation.

The study of notions of refinement and equivalence taking internal actions into account
has been actively pursued in the field of process algebras, with weak bisimulation [24] for
CCS and failures-divergences refinement [4] for CSP being the two most prominent examples.
Failures-divergences refinement explicitly considers divergences (i.e., infinite sequences of
internal actions) during the comparison. For bisimulation, there are also extensions for
divergence, e.g. [31,32]. A comparison of various such semantic equivalences and preorders
for systems with internal actions has been given by van Glabbeek [30]. Finally, the game-
theoretic characterisation of bisimulation [29] is in spirit similar to the idea of adversaries in
strong observational refinement which try to bring the concrete object into an execution that
can or cannot be mimicked by the abstract object.

9 Conclusion

In this paper, we have proposed a new type of forward simulation which is both necessary
and sufficient for strong observational refinement, thereby closing an existing gap. The
importance of strong observational refinement lays in the fact that it preserves safety and
liveness hyperproperties which are themselves of fundamental significance for the area of
security. As future work, we plan to look at concrete case studies, and to this end will
develop a formalization of weak progressive forward simulation within a theorem prover. We
furthermore plan to re-investigate the third contribution of Attiya and Enea [2], namely
the fact that strong linearizability coincides with strong observational refinement for atomic
abstract objects. Since the proof of this property assumes equality of forward simulation
and strong observational refinement, this–in the light of our result–also requires a fresh
investigation.

References

1 J. Aspnes. Randomized protocols for asynchronous consensus. Distributed Comput., 16(2-
3):165–175, 2003. doi:10.1007/s00446-002-0081-5.

2 H. Attiya and C. Enea. Putting strong linearizability in context: Preserving hyperproperties
in programs that use concurrent objects. In J. Suomela, editor, DISC, volume 146 of LIPIcs,
pages 2:1–2:17. Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.DISC.2019.2.

3 A. Bouajjani, M. Emmi, C. Enea, and S. O. Mutluergil. Proving linearizability using forward
simulations. In R. Majumdar and V. Kuncak, editors, CAV, volume 10427 of Lecture Notes in
Computer Science, pages 542–563. Springer, 2017. doi:10.1007/978-3-319-63390-9_28.

4 S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560–599, 1984. doi:10.1145/828.833.

5 M. R. Clarkson and F. B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–1210,
2010. doi:10.3233/JCS-2009-0393.

6 R. Colvin and B. Dongol. A general technique for proving lock-freedom. Sci. Comput. Program.,
74(3):143–165, 2009. doi:10.1016/j.scico.2008.09.013.

7 J. Derrick and E. A. Boiten. Refinement in Z and Object-Z - Foundations and Advanced
Applications (2. ed.). Springer, 2014. doi:10.1007/978-1-4471-5355-9.

8 J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim. Brief Announcement:
On Strong Observational Refinement and Forward Simulation. In S. Gilbert, editor, DISC,
volume 209 of LIPIcs, pages 55:1–55:4, Dagstuhl, Germany, 2021. doi:10.4230/LIPIcs.DISC.
2021.55.

CONCUR 2022

https://doi.org/10.1007/s00446-002-0081-5
https://doi.org/10.4230/LIPIcs.DISC.2019.2
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1145/828.833
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1016/j.scico.2008.09.013
https://doi.org/10.1007/978-1-4471-5355-9
https://doi.org/10.4230/LIPIcs.DISC.2021.55
https://doi.org/10.4230/LIPIcs.DISC.2021.55


31:16 Weak Progressive Forward Simulation Is Necessary and Sufficient

9 J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim. On strong observational
refinement and forward simulation. CoRR, 2021. arXiv:2107.14509.

10 J. Derrick, G. Schellhorn, and H. Wehrheim. Proving linearizability via non-atomic refinement.
In J. Davies and J. Gibbons, editors, iFM, volume 4591 of Lecture Notes in Computer Science,
pages 195–214. Springer, 2007. doi:10.1007/978-3-540-73210-5_11.

11 B. Dongol and L. Groves. Contextual trace refinement for concurrent objects: Safety and
progress. In K. Ogata, M. Lawford, and S. Liu, editors, ICFEM, volume 10009 of Lecture
Notes in Computer Science, pages 261–278, 2016. doi:10.1007/978-3-319-47846-3_17.

12 J. A. Goguen and J. Meseguer. Security policies and security models. In S&P, pages 11–20.
IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.

13 W. M. Golab, L. Higham, and P. Woelfel. Linearizable implementations do not suffice for
randomized distributed computation. In L. Fortnow and S. P. Vadhan, editors, STOC, pages
373–382. ACM, 2011. doi:10.1145/1993636.1993687.

14 A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In L. Aceto, M. Henzinger,
and J. Sgall, editors, ICALP, volume 6756 of Lecture Notes in Computer Science, pages 453–465.
Springer, 2011. doi:10.1007/978-3-642-22012-8_36.

15 W. O. D. Griffioen and F. W. Vaandrager. Normed simulations. In A. J. Hu and M. Y. Vardi,
editors, CAV, volume 1427 of LNCS, pages 332–344, Vancouver, BC, Canada, 1998.

16 W. O. D. Griffioen and F. W. Vaandrager. A theory of normed simulations. ACM Trans.
Comput. Log., 5(4):577–610, 2004. doi:10.1145/1024922.1024923.

17 M. Helmi, L. Higham, and P. Woelfel. Strongly linearizable implementations: possibilities and
impossibilities. In D. Kowalski and A. Panconesi, editors, PODC, pages 385–394. ACM, 2012.
doi:10.1145/2332432.2332508.

18 M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann, 2008.
19 M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/78969.78972.
20 V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-single-swap. In A. L. Rosenberg

and F. M. auf der Heide, editors, SPAA, pages 314–323. ACM, 2003. doi:10.1145/777412.
777468.

21 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
22 N. A. Lynch and F. W. Vaandrager. Forward and backward simulations: I. untimed systems.

Inf. Comput., 121(2):214–233, 1995. doi:10.1006/inco.1995.1134.
23 J. McLean. A general theory of composition for a class of "possibilistic” properties. IEEE

Trans. Software Eng., 22(1):53–67, 1996. doi:10.1109/32.481534.
24 R. Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall,

1989.
25 G. Schellhorn. Verification of ASM Refinements Using Generalized Forward Simulation.

Journal of Universal Computer Science (J.UCS), 7(11):952–979, 2001.
26 G. Schellhorn. Completeness of Fair ASM Refinement. Science of Computer Programming,

Elsevier, 76, issue 9:756–773, 2009.
27 G. Schellhorn, J. Derrick, and H. Wehrheim. A sound and complete proof technique for

linearizability of concurrent data structures. ACM Trans. Comput. Log., 15(4):31:1–31:37,
2014. doi:10.1145/2629496.

28 G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms linearisable. In
P. Madhusudan and S. A. Seshia, editors, CAV, volume 7358 of Lecture Notes in Computer
Science, pages 243–259. Springer, 2012. doi:10.1007/978-3-642-31424-7_21.

29 P. Stevens. Abstract games for infinite state processes. In D. Sangiorgi and R. de Simone,
editors, CONCUR, volume 1466 of Lecture Notes in Computer Science, pages 147–162. Springer,
1998. doi:10.1007/BFb0055621.

30 R. J. van Glabbeek. The linear time - branching time spectrum II. In E. Best, editor,
CONCUR, volume 715 of Lecture Notes in Computer Science, pages 66–81. Springer, 1993.
doi:10.1007/3-540-57208-2_6.

http://arxiv.org/abs/2107.14509
https://doi.org/10.1007/978-3-540-73210-5_11
https://doi.org/10.1007/978-3-319-47846-3_17
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1007/978-3-642-22012-8_36
https://doi.org/10.1145/1024922.1024923
https://doi.org/10.1145/2332432.2332508
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/777412.777468
https://doi.org/10.1145/777412.777468
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1109/32.481534
https://doi.org/10.1145/2629496
https://doi.org/10.1007/978-3-642-31424-7_21
https://doi.org/10.1007/BFb0055621
https://doi.org/10.1007/3-540-57208-2_6


B. Dongol, G. Schellhorn, and H. Wehrheim 31:17

31 R. J. van Glabbeek, B. Luttik, and N. Trcka. Branching bisimilarity with explicit divergence.
Fundam. Informaticae, 93(4):371–392, 2009. doi:10.3233/FI-2009-109.

32 D. Walker. Bisimulation and divergence. Information and Computation, 85:202–241, 1990.
33 S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security.

In CSFW-16, page 29. IEEE Computer Society, 2003. doi:10.1109/CSFW.2003.1212703.

A Proofs for Section 5

The proof of theorem 5.1 assumes that two LTLs C and A are given, for which a weak
progressive simulation (F, ≫) exists. Given an arbitrary program P together with a scheduler
SC for traces over P×C , the proof has to construct a scheduler SA such that T (P×C , SC )|ΓP =
T (P × A, SA)|ΓP . The construction is in two steps: First a function f is constructed that
maps traces ρC ∈ T (P ×C , SC ) to traces f(ρC ) ∈ T (P ×A). This function has to be carefully
defined to then allow the definition of a scheduler SA that schedules exactly all the steps of
f(ρC ). Weak progressiveness is key to ensure that for an infinite trace ρC the trace f(ρC ) is
infinite as well. This then allows to schedule actions for any prefix.

The construction of f shown in Fig. 4 first has to fix a unique sequence of abstract actions
in f(ρC ) that correspond to a single step of ρC . To this end, a mapping m is defined. For
two states qC ∈ QC and qA ∈ QA with (qC , qA) ∈ F and an action a ∈ ΣC , m returns a fixed
sequence σ ∈ Σ∗

A such that (q′
C , q′

A) ∈ F holds again for the (unique) states with qC −a→C q′
C

and qA −σ→A q′
A. Mapping m chooses a triangular diagram with σ = ϵ only, when there is no

nonempty choice, so qC ≫ q′
C is implied. The existence of σ is guaranteed by the main proof

obligation for a weak progressive forward simulation. To be useful for constructing traces
over P × A when a step of a trace over P × C is given, we extend the definition to allow a
program action a ∈ ΓP as well. In this case m just returns the one element sequence of a.
Intuitively, in addition to the commuting diagrams of the forward simulation this defines
commuting diagrams that map program steps one-to-one. Formally,

m : QC × (ΣP×C ) × QA → (ΣP×A)∗

is defined to return m(qC , a, qA) := a when a ∈ ΓP , and to return the fixed sequence σ as
described above when a ∈ ΣC .

It is then possible to define partial functions f0, f1, . . . (viewed as sets of pairs) with
dom(fn) = {σC ∈ T (P × C , SC ) : #σC ≤ n}, cod(fn) ⊆ T (P × A), such that f0 ⊆ f1 ⊆ . . .

inductively as follows:

f0 = {(ε, ε)}
fn+1 = fn ∪ {(σC · a, f(σC ) · α) | σC · a ∈ T (P × C , SC ), #σC = n,

α = m(state(σC ).obj, a, state(f(σC )).obj)}

The inductive definition maps the new action a ∈ SC (σC ) to the corresponding sequence
α that is chosen by m. In the definition (qP , qC ).obj := qC and the final state of σC is
state(σC ) = (qP , qC ). Analogously (qP , qA).obj = qA.

The states (qP , qC ) = state(σC ) and (q′
P , qA) = state(fn(σC )) reached at the end of

two corresponding traces always satisfy qP = q′
P and (qC , qA) ∈ F . The use of m in the

construction guarantees that all the fn are prefix-monotone: if fn is defined on σ and σ′ ⊑ σ,
then fn(σ′) ⊑ fn(σ).

Now, define f :=
⋃

n fn. Function f is obviously prefix-monotone as well. Intuitively, it
maps all finite traces of T (P × C , SC ) to a corresponding abstract trace, where m is used in
each commuting diagram to choose the abstract action sequence.
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If πC is an infinite trace from T (P × C , SC ), and σn
A := f(πC

<n), then σ0
A ⊑ σ1

A ⊑
σ2

A ⊑ . . .. Therefore a natural choice for extending f to infinite traces is to use the limit
of this ascending chain. We define f lim(πC ) to be the limit and will use function f lim

in several of the lemmas below. There are two cases in this definition. Either the length
of σn

A always eventually increases. Then the sequences converges to an infinite sequence
f lim(πC ) = πA ∈ T (P × A). Otherwise, the σn

A eventually become a constant finite trace σA
and we can set f lim(πC ) = σA. In this case the final state state(σA) must have a diverging
run, since the forward simulation is weak progressive (otherwise the well-founded relation
would have to decrease infinitely often, which is impossible). In this case a diverging run
from state(σA) can be fixed with an infinite sequence πA of internal actions. Adding this
infinite sequence to the trace is necessary for defining the abstract scheduler, so different
from setting f lim(πC ) := σA we set f(πC ) := σA · πA.

We will now define a scheduler SA, that will schedule exactly those traces in σA ∈ T (P ×A)
where σA is a prefix of some f(πC ) such that πC is an infinite trace in T (P × C , SC ). Before
we can do this properly, a number of lemmas is needed.

▶ Lemma A.1. f(σC )|ΓP = σC |ΓP for all σC ∈ T (P × C , SC ).

Proof. This should be obvious from the construction, since the forward simulation guarantees
that m(qC , a, qA)|ΓP = a|ΓP for all a ∈ I ∪ R, while a ∈ ΓP is mapped by identity. ◀

▶ Lemma A.2. For two finite traces σC , σ′
C ∈ T (P × C , SC ): if f(σC ) and f(σ′

C ) have the
same program actions in ΓP , then σC is a prefix of σ′

C or vice versa, and the longer one just
adds internal actions of C .

Proof. Lemma A.1 implies σC |ΓP = σ′
C |ΓP . If the lemma would be wrong, then there

would be a maximal common prefix σ0 and two actions a ̸= a′ such that σ0 · a ⊑ σC and
σ0 · a′ ⊑ σ′

C . The case where both a and a′ are external actions is impossible, because
otherwise the external actions in σC and σ′

C would not be the same. If however one of
them is internal, then SC (σ0) is a one-element set, and both a and a′ must be in the set,
contradicting a ̸= a′. ◀

▶ Lemma A.3. For all finite prefixes σA of f lim(πC ), there is a unique n, such that
f(πC

<n) ⊑ σA ⊏ f(πC
<n) · α), where α := m(state(πC

<n).obj, π[n], state(f(πC
<n)).obj) ̸=ε.

Intuitively, each element of f lim(πC ) is added by a uniquely defined commuting diagram.

Proof. First, note that f(πC
<n+1) = f(πC

<n)·α. Since the lengths of f(πC
<n) are increasing

with n to the length of f lim(πC ) (and f(πC
<0) = f(ε) = ε) n is the biggest index where the

length of f(πC
<n) is still less or equal to #σ. ◀

▶ Lemma A.4. Assume πC , π′
C ∈ T (P × C , SC ). if σA is a prefix of both f(πC ) and f(π′

C ),
then there is m such that πC

<m = π′
C

<m and σA ⊑ f(πC
<m).

The lemma says, that a common prefix of two traces in the image of f is possible only as
the result of a common prefix in the domain of f .

Proof. Since σA ⊑ f(πC ) and each step from f(πC
<n) to f(πC

<n+1) adds at most one
program action, a minimal index n can be found such that σA has the same program actions
as f(πC

<n), while f(πC
<n−1) has fewer when n ̸= 0. Note that when f lim(πC ) is finite, n is

less than its length, since the diverging run attached at the end has no program actions at all.
Similarly, a minimal index n′ can be found such that σA|ΓP = f(π′

C
<n′

). By Lemma A.2
above, it follows that πC

<n is a prefix of π′
C

<n′
or vice versa, with only internal C -actions
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added to the longer one. When both are equal, then n = n′ and m can be set to be n.
However, when the two are not equal, the longer one, say π′<n′

ends with an internal C -action.
But then, since this action is mapped to a sequence of internal A-actions f(π′<n′−1) also
has the same program actions than σA, contradicting the minimality of n′. ◀

Equipped with these lemmas, it is now possible to define the scheduler SA and to
prove it is well-defined. We define SA(σA) for any finite prefix σA of any f(πC ), where
πC ∈ T (P × C , SC ). There are two cases. Either σA is not a prefix of f lim(πC ). Then it
has the form f lim(πC )σ′

A where σ′
A is a prefix of the infinite sequence of internal actions

that is used in the definition of f in this case that schedules a diverging run. The next
action to be sceduled then is the next action of this sequence. Otherwise the definition
uses Lemma A.3 to find unique index n, such that f(πC

<n) ⊑ σA ⊏ f(πC
<n · α. where

α = m(state(πC
<n).obj, π[n], state(f(πC

<n)).obj) ̸= ϵ. Since σA is a proper prefix, there is
an event a, such that σA · a ⊑ f lim(πC

<n) · α, and a is an element of α. If a is an external
action in ΓP , then a must be equal to πC [n] (α contains either πC [n] if it is an external
action, or no external action at all). In this case, we set SA(σA) := SC (πC

<n). Note that a

is enabled and in SC (πC
<n) in this case. Otherwise, when a ̸∈ ΓP , we set SA(σA) := {a}.

▶ Theorem A.5. SA is well-defined.

Proof. Assume that σA is a prefix of two traces f(πC ) and f(π′
C ). We prove that this

never leads to two different definitions of SA(σA). First, Lemma A.4 gives an index m with
πC

<m = π′
C

<m and σA ⊑ f(πC
<m) If σA is a proper prefix of f(πC

<m), then the n used
in the construction of SA must satisfy n + 1 ≥ m, and the prefix f(πC

<n+1) = f(πC
<n) · α

on which the definition of SA is based, is the same for both traces. The remaining case is
m = n + 1 and σA = f(πC

<n+1). In this case the next elements πC [n + 1] and π′
C [n + 1] in

the two traces πC and π′
C could be different. If one of them is internal (i.e. not in ΓP), then

this is not possible, since then SC (πC
<n+1) is a one-element set that contains both of them.

However, it is possible that π[n + 1] and π′[n + 1] are two different program events a ̸= a′,
both in ΓP , but in SC (πC

<m). However, in this case SA(f(πC
<m)) is defined in both cases

cases to be SC (πC
<n+1). ◀

The following lemma is the inductive step of the theorem below, that shows that SA
allows exactly all f(πC ) as scheduled traces.

▶ Lemma A.6. Given σA ∈ T (P × A, SA), for which a πC ∈ T (P × C , SC ) exists with
σA ⊑ f(πC ), then σA · a ∈ T (P × A, SA) (or equivalently a ∈ SA(σA)) is equivalent to the
existence of some π′

C ∈ T (P × C , SC ) such that σA · a ⊑ f(π′
C ).

Proof. The case, where σA ̸⊑ f lim(πC ) is simple, since after f lim(πC ) a unique diverging
trace is attached that is the scheduled one. Otherwise, Lemma A.3 asserts that there is
a unique n such that f lim(πC

<n) ⊑ σA ⊏ f lim(πC
<n+1). Let πC

<n+1 = (πC
<n) · a and

α = m(state(πC
<n).obj, a, state(f(πC

<n)).obj).
Case 1: a ̸∈ ΣC . Then α = a, a1 = a by definition, implying σA = f(πC

<n).
“⇒”: If σA ·a ∈ T (P ×A, SA), then a ∈ SA(σA) is equivalent to a1 ∈ SC (σA), since a1 = a
and SA(σ) is defined to be equal to SC (πC

<n). Since actions in SC (πC
<n) are enabled,

and every finite trace can be extended to an infinite one, there is an infinite trace π′
1 with

(πC
<n) · a1 ⊑ π′

1. π′
1 has the required prefix πC · a1 such that σA · a1 = f(πC

<n) · a
“⇐”: if π′

C exists with σA · a ⊑ f(π′
1), then like in the well-definedness proof πC

<n and
π′

1
<n must be the same (both have the same program actions as σA). Therefore a1 = a

is scheduled after πC
<n as required.
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Case 2: a ̸∈ ΣC . Then α is a nonempty sequence of internal actions and α is the only
continuation of f(πC

<n) compatible with SA. σA is f(πC
<n) concatenated with some

proper prefix of α.
“⇒”: If σA · a ∈ T (P × A, SA), then a must be the next element in α. Then, setting
π′

1 := πC we get the required prefix f(πC
<n+1) = f(πC

<n) · α of which σA · a is still a
prefix.
“⇐”: Assume σA · a ⊑ f(π′

1). Then σA · a is a prefix of both f(πC ) and f(π′
1), so Lemma

A.3 implies that there is some m, such that σA ·a ⊑ π′
1

<m = πC
<m. Obviously, m ≥ n+1,

so the next element after σA in π′
1 is the scheduled a too. ◀

With this, we are now ready to prove Theorem 5.2, which implies the main Theorem 5.1.

Proof. The proof is by contradiction. If the theorem does not hold, then there is a trace
σA ⊑ T (P × A, SA) of minimal length and some action a, such that a ∈ SA(σA) is not
equivalent to the existence of some π′

C ∈ T (P × C , SC ) such that σA · a ⊑ f(π′
C ). However,

this equivalence is asserted by Lemma A.6. ◀

B Proofs for Section 6

▶ Lemma 6.3. (F1, ∅) is a weak progressive forward simulation from C to P × C × SC .

Proof. First of all, observe that (qini
C , (qini

P , qini
C , ε)) ∈ F1. Now let (qC , (qP , qC , σ)) ∈ F1 and

let qC −a→C q′
C be a step of C . There are two cases to consider.

Internal steps: a ∈ ΣC \ I ∪ R.
The diagram illustrates the simulation.

(qini
P , qC , σ)

(
qini

P , q′
C , σ · g(q′

C ) · a
)

qC q′
C

g(q′
C ) a

a

F1 F1

Since last(σ) = qC , we get (by definition of SC ) that g(q′
C ) ∈ SC (σ) and a ∈ SC (σ ·g(q′

C )).
Hence, the following transitions are possible:

(qini
P , qC , σ) −g(q′

C )−−−→ (qini
P , qC , σ · g(q′

C )) −a→ (qini
P , q′

C , σ · g(q′
C ) · a)

We furthermore get (qC , (qini
P , q′

C , σ · g(q′
C ) · a)) ∈ F1.

Invokes and returns: a ∈ I ∪ R.
The diagram illustrates the simulation.

(qini
P , qC , σ)

(
qini

P , q′
C , σ · g(a, q′

C ) · a · rec(a)
)

qC q′
C

g(a, q′
C ) a rec(a)

a

F1 F1

Since last(σ) = qC , we get g(a, q′
C ) ∈ SC (σ). By definition of SC we hence get

(qini
P , qC , σ) −g(a,q′

C )−−−−→ (qa, qC , σ · g(q′
C )) −a→ (qrec(a), q′

C , σ · g(q′
C ) · a) −rec(a)−−−→

(qini
P , q′

C , σ · g(q′
C ) · a · rec(a))

We furthermore get (qC , (qini
P , q′

C , σ · g(q′
C ) · a · rec(a))) ∈ F1.
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This is furthermore a weak progressive forward simulation as the matching steps are never
empty (no triangular diagrams), so that we can take ≫1 to be empty. ◀

▶ Definition B.1. Given an LTS L, and a subset ∆ ⊆ Σ a state q is
reachable with h ∈ ∆∗, written reachL(h, q) if q = last(ξ) for an execution ξ that has
history h.
minimally reachable, written if additionally, the execution ξ is shortest: its trace σ is
either empty when h = ϵ (then the state is initial), or the last action of σ is the last of h.

We then say that an LTS is ∆-deterministic if the set of minimally reachable states for every
history h consists of a single element which we write minstateL(h).

▶ Lemma B.2. The two LTSs P × C × SC and P × A × SA are ΣP-deterministic.

Proof. We first prove that P × C × SC and P × A × SA are ΓP-deterministic. To do so
we show that given two finite traces σ1 and σ2 with h = σ1|ΓP = σ2|ΓP the corresponding
executions must be prefixes of each other by induction over the length of the shorter one.
The initial states are the same since the initial state of deterministic systems is unique. Given
that the executions agree up to step n, the next action is the same: either it is the single
scheduled internal one, or the next action is the common one of the history. Since the steps
are deterministic the next state is equal as well. It follows that there is only one minimally
reachable state for every history, since in particular the final states of two minimal executions
must agree, as their traces must be the same. For our specific program a minimal execution
with history h also executes the same actions from I ∪ R, since each such action e is followed
by the corresponding record-action rec(e), otherwise it would not be minimal. Therefore the
two LTS are ΣP-deterministic too. ◀

▶ Lemma 6.4. If C ∆-refines A and A is ∆-deterministic, then there exists a ∆-forward
simulation.

Proof. Define the forward simulation F as

F = {(qC , qA) | ∃ h ∈ ∆∗. reachC (h, qC ) ∧ qA = minstateA(h)}

where reachC (h, qC ) and minstateA(h) are from Def. B.1 . The proof obligations of a forward
simulation are satisfied: The initial concrete state is related to the initial abstract one by
choosing h = ϵ. Given (qC , qA) ∈ F , and qC −a→ q′

C there are two cases: If a is internal, then
doing a stuttering step by choosing q′

A = qA is sufficient to show (q′
C , qA) ∈ F . If a ∈ ∆,

then (qC , qA) ∈ F implies that there is a history h and a minimal execution of A with this
history and final state qA = minstateA(h). Also ha is a history of C that has final state
q′

C , so by refinement h · a is a history of A too. Therefore, there exists a minimal execution
with this history h · a of A ending in some state q′

A. This state fits our correctness proof
obligation: since the execution has a minimal prefix with history h (the prefix removes a and
all internal actions after the last one of h), uniqueness of the minimal reachable state implies
that it must pass through qA. The trace σ of the remaining steps then has a|∆ = σ|∆ and
qA −σ→A q′

A as required, and (q′
C , q′

A) ∈ F holds by definition. ◀

▶ Lemma 6.5. There exists a weak progressive ΣP-forward simulation (F2, ≫2) between
P × C × SC and P × A × SA.

Proof. Since strong observational refinement implies ΓP-refinement, and the abstract system
is ΣP-deterministic (Lemma B.2) Lemma 6.4 ensures that a ΣP-forward simulation F exists.
This forward simulation is weak progressive, since the concrete system never executes more
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than one internal action in a row (SC (σ′ · a) is external, when a is internal). Thus the
well-founded order can be chosen to have (q′

P , q′
C , σ′)) ≫ (qP , qC , σ) iff qP = q′

P = qini
P and

there is an internal action a with qC −a→ q′
C and σ′ = σ · a. ◀

▶ Lemma 6.6. (F3, ≫3) is a weak progressive forward (I ∪ R)-simulation between P ×A×SA
and A.

Proof. First we prove that F3 is a forward simulation.
Stuttering steps The stuttering steps are a ∈ {g(q), g(e, q), div, rec(e)}. The proofs for each

of these are trivial, but for completeness, we consider each of these in turn. We have the
following transitions:

a = g(q). We have (qini
P , qA, σ) −g(q)−−→ (qini

P , qA, σ · g(q)).
a = g(e, q). We have (qini

P , qA, σ) −g(e,q)−−−→ (qe, qA, σ · g(e, q)).
a = div. We have (qini

P , qA, σ) −div−→ (qdiv, qA, σ).
a = rec(e). We have (qrec(e), qA, σ) −rec(e)−−−→ (qini

P , qA, σ · rec(e)).

In each of these, if F3 holds in the pre-state, it holds again in the post state since qA is
unchanged, and the abstract system, i.e., A does not take a step.

Non-stuttering steps All internal and external steps of A are non-stuttering. Since F3
ensures that the states of A at the concrete and abstract states coincide, these can be
trivially discharged too. In particular, the possible transitions are:

a = e ∈ (I ∪ R). We have (qe, qA, σ) −e→ (qrec(e), q′
A, σ · e).

a ∈ ΣA \ (I ∪ R). We have
(q, qA, σ) −a→ (q, q′

A, σ).

In both cases, in A, we can take the corresponding transition qA −a→ q′
A, preserving F3.

We now prove weak progressiveness of F3. Note that for each stuttering transition, except
g(q), the program state changes. We define the well-founded order to be the relation ≫3
such that:
1. (qini

P , _, _) ≫3 (qe, _, _)
2. (qrec(e), _, _) ≫3 (qini

P , _, _)
3. (qini

P , _, _) ≫3 (qdiv, _, _)
Note that from (qdiv, _, _), the only possible transition is an −a→ step, where a ∈ ΣA \ (I ∪ R),
which is non-stuttering. Similarly, from (qe, _, _), the only possible transition is −e→, where
e ∈ I ∪ R. Thus, when we reach a state that is minimal wrt ≫3, no more stuttering is
possible. Any transition from state (qrec(e), _, _) is guaranteed to reduce w.r.t. ≫3, as are
transitions corresponding to g(e, q) and div from (qini

P , _, _).
This leaves us with transitions corresponding to g(q) from (qini

P , qA, σ), which may stutter
infinitely often. We we can show that such stuttering only exists if A contains a diverging
run from qA, i.e., div is enabled in (qini

P , qA, σ) ∈ QP×A×SA .
Suppose there exists an infinite run

(qini
P , qA, σ) −g(q1)−−−→ (qini

P , qA, σ · g(q1)) −g(q2)−−−→ (qini
P , qA, σ · g(q1) · g(q2)) −g(q3)−−−→ . . . .

By construction, P × A × SA is an “abstraction” of P × C × SC such that T (P × A, SA)|Γ =
T (P × C , SC )|Γ, thus, (σ|Γ) · g(q1) · g(q2) · g(q3) · · · · ∈ T (P × C , SC )|Γ. Thus, there exists a
qC such that last(σ) = g(qC) and

(qini
P , qC , σ) −g(q1)·τ1−−−−→ (qini

P , q1, σ·g(q1)·τ1) −g(q2)·τ2−−−−→ (qini
P , q2, σ·g(q1)·τ1 ·g(q2)·τ2) −g(q3)·τ3−−−−→ . . .
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where τk ∈ ΣC \(I ∪ R) for all k. Note that the definition of SC enforces a −g(qk)·τk−−−−−→ transition
for each −g(qk)−−−→ transition in P × A × SA. This execution, when restricted to the actions of
C corresponds to a diverging run of C :

qC −τ1−→ q1 −τ2−→ q2 −τ3−→ . . .

Since this is an infinite run of internal actions, by definition, the action div must be offered by
P × C × SC , and enabled in (qini

P , qC , σ). Moreover, since T (P × A, SA)|Γ = T (P × C , SC )|Γ,
div must also be possible in P × A × SA. In particular, div must be enabled in (qini

P , qA, σ).
Now, P × A × SA contains a run with final state σ. Therefore, P × A × SA also contains a run

(qini
P , qA, σ) −div−→ (qdiv, qA, σ) −τ ′

1−→ (qdiv, q′
1, σ) −τ ′

2−→ (qdiv, q′
2, σ) −τ ′

3−→ . . .

where τ ′
k ∈ ΣA \ (I ∪ R) for all k since P ×A×SA can no longer schedule any further external

actions after executing div, i.e., must schedule an internal action. Thus, we must have a
diverging run in A as well. ◀

▶ Theorem 6.7. Let (F1, ≫1) be a weak progressive ∆-forward simulation from C to B, and
(F2, ≫2) one from B to A. Then there exists a weak progressive ∆-forward simulation (F, ≫)
from C to A.

Proof. We show that (F, ≫) is a weak progressive forward from C to A. Standard refinement
results (e.g. Proposition 4.9 in [22]) imply, that refinement by forward simulation is transitive,
i.e. F1 ◦ F2 is a ∆-forward simulation. The definition of ≫ also clearly implies that the
order ≫ decreases on a triangular diagram, when its abstract state has no diverging run. It
remains to be shown that ≫ is well-founded. An infinite descending chain q0

C ≫ q1
C ≫ . . .

leads to a contradiction as follows: by definition of ≫ the states are the ones of a diverging
run of C that starts with q0

C . Since F1 is a forward simulation, there is a corresponding run
of B with states q0

B, q1
B, . . .. For all k both (qk

C , qk
B) ∈ F1 and qk

B −αk

−→ qk+1
B hold, where each

αk is a sequence of internal actions. Some αk may be empty, so states may occur several
times. It is, however, not possible that there is a final state qk

B such that qk
B = qk+1

B = . . .,
since then qk

C ≫1 qk+1
C ≫1 . . . would be implied, contradicting well-foundedness of ≫1. Note

that qk
B cannot start a diverging run in this case, otherwise qk

C ≫ qk+1
C would not hold by

definition. Therefore, the states q0
B, q1

B, . . . are some states of an infinite diverging run too.
By applying the same argument for the upper simulation a sequence q0

A, q1
A, . . . of states

of A can be found, such that for all k (qk
B, qk

A) ∈ F2 and qk
A −βk

−→ qk+1
A holds. Again the βk

are sequences of internal actions, and the existence of a final state with qk
A = qk+1

A = . . .

would contradict well-foundedness of ≫2. Therefore the construction results in a diverging
run from q0

A, contradicting the definition of q0
C ≫ q1

C which required that no corresponding
abstract state q0

A with a diverging run exists. ◀
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Abstract
A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e.,
together with a strategy a labelled MDP induces a labelled Markov chain. Motivated by applications
to the verification of probabilistic noninterference in security, we study problems whether there exist
strategies such that the labelled MDPs become bisimilarity equivalent/inequivalent. We show that
the equivalence problem is decidable; in fact, it is EXPTIME-complete and becomes NP-complete if
one of the MDPs is a Markov chain. Concerning the inequivalence problem, we show that (1) it is
decidable in polynomial time; (2) if there are strategies for inequivalence then there are memoryless
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1 Introduction

Given a model of computation (e.g., finite automata), and two instances of it, are they
semantically equivalent (e.g., do the automata accept the same language)? Such equivalence
problems can be viewed as a fundamental question for almost any model of computation. As
such, they permeate computer science, in particular, theoretical computer science.

In labelled Markov chains (LMCs), which are Markov chains whose states (or, equivalently,
transitions) are labelled with an observable letter, there are two natural and very well-studied
versions of equivalence, namely trace (or language) equivalence and probabilistic bisimilarity.

The trace equivalence problem has a long history, going back to Schützenberger [18]
and Paz [15] who studied weighted and probabilistic automata, respectively. Those models
generalize LMCs, but the respective equivalence problems are essentially the same. For
LMCs, trace equivalence asks if the same label sequences have the same probabilities in the
two LMCs. It can be extracted from [18] that equivalence is decidable in polynomial time,
using a technique based on linear algebra; see also [21, 5].

Probabilistic bisimilarity is an equivalence that was introduced by Larsen and Skou [14].
It is finer than trace equivalence, i.e., probabilistic bisimilarity implies trace equivalence.
A similar notion for Markov chains, called lumpability, can be traced back at least to the
classical text by Kemeny and Snell [10]. Probabilistic bisimilarity can also be computed in
polynomial time [1, 4, 22]. Indeed, in practice, computing the bisimilarity quotient is fast
and has become a backbone for highly efficient tools for probabilistic verification such as
Prism [13] and Storm [8].
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In this paper, we study probabilistic bisimilarity in (labelled) Markov decision processes
(MDPs), which are LMCs plus nondeterminism; i.e., each state may have several actions
(or “moves”) one of which is chosen by a controller, potentially randomly. An MDP and a
controller strategy together induce an LMC (potentially with infinite state space, depending
on the complexity of the strategy). The nondeterminism in MDPs gives rise to a spectrum
of equivalence queries: one may ask about the existence of strategies for two given MDPs
such that the induced LMCs become trace/bisimilarity equivalent, or such that they become
trace/bisimilarity inequivalent. Another potential dimension of this spectrum is whether to
consider general strategies or more restricted ones, such as memoryless or even memoryless
deterministic (MD) ones.

Much of this spectrum has been covered in previous work. It was shown in [6] that
whether there exist (general) strategies such that two given MDPs become trace equivalent
is undecidable. In fact, even whether there exists a strategy such that a given MDP
becomes trace equivalent to a given LMC is undecidable [6, Theorem 3.1]. This points to a
fundamental difficulty when dealing with a general strategy in an MDP: since the strategy
may use unrestricted memory, the induced LMC can have an infinite (countable) state space,
even when the MDP is finite. For this reason it is not a priori clear whether the bisimilarity
equivalence problem, namely whether there exist general strategies such that two given MDPs
become bisimilar, is even decidable.

The problem was “dodged” in [11], where trace and bisimilarity (in)equivalence problems
were covered, but under the explicit assumption of memoryless strategies. There are good
reasons to consider memoryless strategies, particularly their naturalness and simplicity in
implementations, and their connection to interval Markov chains (see, e.g., [9, 3]) and
parametric MDPs (see, e.g., [7, 23]). It was shown in [11, Theorem 19] that the bisimilarity
equivalence problem is NP-complete for memoryless strategies.

It remained open in [11] whether the bisimilarity equivalence problem is decidable for
general strategies, which would be in contrast to the undecidability of the corresponding
trace equivalence problem [6]. There are also good reasons to consider general unrestricted
strategies, primarily their naturalness (in their definition for MDPs) and their generality.
The latter is important particularly for security applications, see below, where an attacker
should be conservatively assumed to be powerful to employ an arbitrary strategy.

As one of our main results, we show that the bisimilarity problem for general strategies is
decidable, in fact, EXPTIME-complete. This high computational complexity means that in
order to induce two bisimilar LMCs in the two given MDPs it is generally necessary to employ
complex strategies, inducing complex behaviours. We also show that the computational
complexity reduces to NP if one of the MDPs is already an LMC.

The challenges of the corresponding bisimilarity inequivalence problems are somewhat
analogous, but the results are opposite. It was shown in [11, Corollary 13] that whether
there are memoryless strategies in two given MDPs that induce nonbisimilar LMCs can
be decided in polynomial time and that such memoryless strategies, if they exist, can be
computed in polynomial time. As our second main result we show that this extends in an
almost ideal way (although the proof is nontrivial): whenever there are general strategies
for inequivalence, there are memoryless ones (and thus can be computed as in [11]). This
means that, very much unlike for equivalence, memoryless strategies suffice for inequivalence,
inducing relatively simple inequivalent LMCs.

Complementing the theoretical nature of these questions, let us mention an application
from the field of security. Noninterference refers to an information-flow property of a program,
stipulating that information about high data (i.e., data with high confidentiality) may not
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leak to low (i.e., observable) data, or, quoting [17], “that a program is secure whenever
varying the initial values of high variables cannot change the low-observable (observable by
the attacker) behaviour of the program”. It was proposed in [17] to reason about probabilistic
noninterference in probabilistic multi-threaded programs by proving probabilistic bisimilarity;
see also [20, 16]. More precisely, probabilistic noninterference is established if it can be
shown that any two states that differ only in high data are probabilistic bisimilar, as then an
attacker who only observes the low part of a state learns nothing about the high part. The
observable behaviour of a multi-threaded program depends strongly on the scheduler, which
raises the question whether bisimilarity holds under some or even under all schedulers [17].
A scheduler in this context amounts to a strategy in the corresponding MDP.

The rest of the paper is organized as follows. We give preliminaries in Section 2.
In Sections 3 and 4 we prove our results on bisimilarity equivalence and inequivalence,
respectively. We conclude in Section 5. Missing proofs can be found in an appendix.

2 Preliminaries

We write N for the set of nonnegative integers. Let S be a finite set. We denote by
Distr(S) the set of probability distributions on S. For a distribution µ ∈ Distr(S) we write
support(µ) = {s ∈ S | µ(s) > 0} for its support.

A labelled Markov chain (LMC) is a quadruple ⟨S, L, τ, ℓ⟩ consisting of a nonempty set S

of states1, a nonempty finite set L of labels, a transition function τ : S → Distr(S), and a
labelling function ℓ : S → L.

We denote by τ(s)(t) the transition probability from s to t. Similarly, we denote by
τ(s)(E) =

∑
t∈E τ(s)(t) the transition probability from s to E ⊆ S.

An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all (s, t) ∈ R,
ℓ(s) = ℓ(t) and τ(s)(E) = τ(t)(E) for each R-equivalence class E. Probabilistic bisimilarity,
denoted by ∼, is the largest probabilistic bisimulation.

A (labelled) Markov decision process (MDP) is a tuple ⟨S, Act, L, φ, ℓ⟩ consisting of a
finite set S of states, a finite set Act of actions, a finite set L of labels, a partial function
φ : S × Act 7→ Distr(S) denoting the probabilistic transition, and a labelling function
ℓ : S → L. The set of available actions in a state s is Act(s) = {m ∈ Act | φ(s, m) is defined}.

A path is a sequence ρ = s0m1s1 · · · mnsn such that φ(si, mi+1) is defined and
φ(si, mi+1)(si+1) > 0 for all 0 ≤ i < n. The last state of ρ is last(ρ) = sn. Let Paths(D)
denote the set of paths in D.

A (general) strategy for an MDP is a function α : Paths(D) → Distr(Act) that given a
path ρ, returns a probability distribution on the available actions at the last state of ρ, last(ρ).
A memoryless strategy depends only on last(ρ); so we can identify a memoryless strategy
with a function α : S → Distr(Act) that given a state s, returns a probability distribution on
the available actions at that state.

Given a general strategy α for D, an LMC D(α) = ⟨P , L, τ, ℓ′⟩ is induced, where P ⊆
Paths(D). For ρ ∈ P, we have τ(ρ)(ρmt) = α(ρ)(m)φ(s, m)(t) and ℓ′(ρ) = ℓ(s) where
s = last(ρ) and m ∈ Act(s).

1 We mainly consider LMCs with finitely many states unless otherwise stated.
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h0

h = 0
l := h | l := ¬h
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l = 0; h = 0
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s1
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l0

l = 0; h = 0
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l = 1; h = 0
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h = 1
l := h | l := ¬h
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1 m1 1m2

1
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1
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Figure 1 The program l := h | l := ¬h as an MDP.

3 Bisimilarity Problems

In this section we consider the bisimilarity problem which, given an MDP and two (initial)
states, asks whether there is a general strategy such that the two states are probabilistic
bisimilar in the LMC induced by the general strategy.

▶ Example 1. Borrowing an example from [17, Section 4], consider the following simple
program composed of two threads, involving a high boolean variable h (high confidentiality)
and a low boolean variable l (observable):

l := h | l := ¬h

The vertical bar | separates two threads. The order in which the threads are executed is
determined by a scheduler. We assume that the variable l becomes visible upon program
termination. Its value will be h or ¬h, depending on whether the left or the right thread
is executed last. The program can be viewed as an MDP as shown in Figure 1. The top
part of each state indicates its name; the bottom part indicates the values of the variables,
as well as the part of the program that is yet to be executed. Different colours indicate
different state labels. The two top states h0, h1 differ in their value of h, but this difference
is not observable; thus, h0, h1 have the same label. The actions m1, m2 available in h0, h1
correspond to the two scheduling options of the program: m1 means that the thread l := h

is scheduled next and m2 means that the thread l := ¬h is scheduled next. The strategy
that in h0, h1 picks one of the two actions uniformly at random induces an LMC in which
h0 and h1 are probabilistic bisimilar. In fact, the bisimilarity equivalence classes under
this strategy are {h0, h1}, {h0m1s0, h1m2s3}, {h0m2s1, h1m1s2}, {h0m1s0m2l1, h1m2s3m1l′

1},
{h0m2s1m1l0, h1m1s2m2l′

0}. Since h0, h1 are probabilistic bisimilar, this memoryless strategy
prevents a leak of the value of h: an attacker who observes l in the end learns nothing
about h.

In this section we show that the bisimilarity problem is EXPTIME-complete. We prove
the upper and lower bound in Sections 3.1 and 3.2, respectively.
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3.1 Membership in EXPTIME
To prove that the bisimilarity problem can be decided in EXPTIME, we define and analyse
an auxiliary game, the attacker-defender game. It is a two-person (zero-sum, non-stochastic,
turn-based) game, and is defined from an MDP D = ⟨S, Act, L, φ, ℓ⟩ and a set of states
E1 ⊆ S. The two players are called Defender and Attacker. The intuition (which we will
prove in Proposition 3 below) is that Defender can win the game if and only if there is a
general strategy α for D such that in the LMC induced by α all states in E1 are probabilistic
bisimilar. The attacker-defender game proceeds in rounds 1, 2, . . .. At the beginning of
round 1 the game is in state E1. Suppose at the beginning of round i the game is in state
Ei ⊆ S. Then in round i Defender chooses (and announces publicly)

S′ ⊆ 2S such that for any E ∈ S′ and any s, t ∈ E we have ℓ(s) = ℓ(t) (intuitively,
Defender claims for each E′ ∈ S′ that there is a general strategy such that all states in E′

are probabilistic bisimilar);
a distribution υ ∈ Distr(S′);
for each s ∈ Ei a memoryless strategy (possibly randomised) αs ∈ Distr(Act(s)); and
a function f : Ei × Act × S → S′ with t ∈ f(s, m, t) for all (s, m, t) ∈ Ei × Act × S

such that for all s ∈ Ei and all E′ ∈ S′ we have

υ(E′) =
∑

m∈Act(s)

∑
t∈S s.t. f(s,m,t)=E′

αs(m)φ(s, m)(t) .

If objects with the properties required above do not exist, Defender loses and Attacker wins.
Otherwise, to complete round i, Attacker chooses from S′ a set Ei+1, which is the state of
the game at the beginning of round i+1. If the game goes on forever, Defender wins and
Attacker loses.

Memoryless winning strategies suffice for Defender:

▶ Lemma 2. Given an MDP D = ⟨S, Act, L, φ, ℓ⟩ and a set E1 ⊆ S, if Defender has a
winning strategy for the attacker-defender game, Defender has a memoryless winning strategy,
i.e., a winning strategy that depends only on the current state of the game.

Proof. Recall that the states in the attacker-defender game are sets E ⊆ S. Let Sw ⊆ 2S

denote the set of those E ⊆ S such that starting from E Defender can win the attacker-
defender game. We define a memoryless strategy, σ′, for Defender such that starting from
any E ∈ Sw, all possible successor states are also in Sw. Therefore, using σ′, starting from
any E ∈ Sw, the game remains in Sw indefinitely; i.e., σ′ is a winning strategy for Defender.

Let E ∈ Sw. Then Defender has a (not necessarily memoryless) winning strategy σ

starting from E. According to the rules of the game, in the first round σ chooses various
objects, including S′ ⊆ 2S . Since σ is winning for Defender, Defender has a (not necessarily
memoryless) winning strategy for all E′ ∈ S′, i.e., S′ ⊆ Sw. The memoryless strategy σ′ is
defined so that in E it makes the same choices that σ makes in E in the first round. All
possible successor states are in Sw, as required. ◀

The following proposition establishes the connection between the bisimilarity problem
and the attacker-defender game:

▶ Proposition 3. Given an MDP D = ⟨S, Act, L, φ, ℓ⟩ and a set E1 ⊆ S, Defender has a
winning strategy for the attacker-defender game if and only if there exists a general strategy
α for D such that in the LMC induced by α all states in E1 are probabilistic bisimilar.
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Proof. ( =⇒ ) Assume Defender can win the attacker-defender game which starts in E1. By
Lemma 2, Defender has a memoryless strategy. Using this memoryless strategy (the objects
chosen by Defender), a general strategy α for the MDP D can be constructed.

Let Pi be a set of paths in D such that for any ρ ∈ Pi we have that ρ begins with a state
s ∈ E1 and the number of states in ρ is i. Let P =

⋃
i≥1 Pi. A path in P can be mapped

to a possible state of the attacker-defender game. Let us define P and such a mapping W

inductively on i as follows:
Base case i = 1. We have P1 := E1. For any state s ∈ E1, it is mapped to the start state
of the game E1, that is, W (s) := E1 for s ∈ E1.
Inductive case when i > 1. For a path ρ′ = ρmt, it belongs to Pi if and only if ρ ∈ Pi−1
and ρ′ ∈ Paths(D). Next, we define W (ρmt) for a path ρmt ∈ Pi. Let s = last(ρ) and
Ei−1 = W (ρ). If Ei−1 is the state at the beginning of some round of the attacker-defender
game, Defender chooses a set S′ ⊆ 2S and a function f : Ei−1 × Act × S → S′ with
t ∈ f(s, m, t) for all (s, m, t) ∈ Ei−1 × Act × S. We define W (ρmt) := f(s, m, t). Since
f(s, m, t) ∈ S′, W (ρmt) may be chosen by Attacker as the new state.

Let i ≥ 1. A path ρ ∈ Pi is mapped to W (ρ), a possible state at the beginning of
round i of the attacker-defender game. It can be shown by induction that Defender has
a winning strategy for W (ρ). We assume that Defender chooses memoryless strategies
αs ∈ Distr(Act(s)) for s ∈ W (ρ). We define the general strategy α : P → Distr(Act) as
α(ρ) := αs where s = last(ρ). We show in the appendix that all states in E1 are probabilistic
bisimilar in the LMC induced by α.

( ⇐= ) We define the notion of an equalisable set. A set E ⊆ S is equalisable if and
only if there is a general strategy such that all states in E are probabilistic bisimilar in the
induced LMC.

Let E ⊆ S be an arbitrary equalisable set. We define a strategy for Defender when the
attacker-defender game is in state E at the beginning of some round.

By definition, there is a general strategy, say αE , such that all states in E are probabilistic
bisimilar in the LMC induced by αE . In the induced LMC, the successor states of any state
of E can be partitioned into probabilistic bisimulation classes, say B1, . . . , Bk where k is a
positive integer. The transition probability distributions υ′ over B1, . . . , Bk from any state
in E are the same, that is, υ′(Bi) =

∑
smt∈Bi

αE(s)(m)φ(s, m)(t) for any 1 ≤ i ≤ k and s ∈ E.

This probability distribution will be the one chosen by Defender. In the LMC induced by
αE , a state ρ ∈ Bi where 1 ≤ i ≤ k, a successor state of s ∈ E, is of the form smt where
m ∈ support(αE(s)) and t ∈ support(φ(s, m)). We define E′

i = {t | s ∈ E ∧ smt ∈ Bi} for
1 ≤ i ≤ k. We are ready to define the objects chosen by Defender when the game is in state
E at the beginning of some round:

S′ =
{

E′
1, . . . , E′

k

}
;

A probability distribution υ over S′ where υ(E′
i) = υ′(Bi) for 1 ≤ i ≤ k;

for any s ∈ E a memoryless strategy αs = αE(s); and
a function f : E × Act × S → S′ such that f(s, m, t) = E′

i for any s ∈ E and smt ∈ Bi.

We verify in the appendix that the objects chosen by Defender satisfy the required
properties. If the game starts with an equalisable set and all the future game states are
equalisable sets, Defender can always choose objects with required properties and hence win
the game. We prove in the appendix that all sets in S′ are equalisable.

As we assume there is a general strategy such that all states in E1 are probabilistic
bisimilar in the induced LMC, E1 by definition is an equalisable set. This completes the
proof. ◀

Now we can prove membership in EXPTIME.
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▶ Lemma 4. The bisimilarity problem is in EXPTIME.

Proof. As EXPTIME equals APSPACE, it suffices to construct a PSPACE-bounded al-
ternating Turing machine M that accepts the bisimilarity problem. By the definition of
alternating Turing machines, the set of control states of M is partitioned into existential
and universal states. There is an existential (respectively, universal) player who controls
the existential (respectively, universal) states, and the player who controls the state of the
current configuration chooses a successor configuration that is consistent with the transition
relation of M . The goal of the existential player is to drive the computation into an accepting
configuration (defined by a special control state), and the goal of the universal player is to
prevent that from happening. If the existential player has a winning strategy, M is said to
accept the input; otherwise M rejects the input.

In our case, the input of M is an MDP D = ⟨S, Act, L, φ, ℓ⟩ and two states s, t ∈ S. We
need to construct M so that the existential player has a winning strategy if and only if there
exists a general strategy α for D such that s and t are probabilistic bisimilar in the induced
LMC D(α). Using Proposition 3, it suffices to construct M so that the existential player has
a winning strategy if and only if Defender has a winning strategy in the attacker-defender
game defined by D and E1 := {s, t}.

We construct M so that it implements the attacker-defender game: the existential
(respectively, universal) player in M takes the role of Defender (respectively, Attacker) in the
attacker-defender game. We have to ensure that M uses only polynomial space. The state of
the attacker-defender game at the beginning of each round consists of a set Ei ⊆ S, which can
clearly be stored in polynomial space. In each round, Defender (i.e., the existential player)
needs to choose a set S′ ⊆ 2S , a distribution υ on S′, memoryless strategies αs for s ∈ Ei,
and a function f . The equations that υ and αs are required to satisfy imply that Defender
can restrict herself to choosing the set S′ as the image of the function f ; then S′ has at most
polynomially many sets of states. Further, Defender can restrict herself to choosing υ and αs

such that the numbers are fractions of integers with polynomially many bits (in particular,
the numbers are rational). Indeed, given S′ and f , there is a linear program of polynomial
size whose solutions are exactly those υ and αs that satisfy, for all s ∈ Ei and all E′ ∈ S′,

υ(E′) =
∑

m∈Act(s)

∑
t∈S s.t. f(s,m,t)=E′

αs(m)φ(s, m)(t) .

So if there exist any υ and αs satisfying these equations, then there also exist rational ones
with polynomially many bits.

Finally, we have to ensure that M enters an accepting configuration when Defender can
win the attacker-defender game (recall that Defender wins the attacker-defender game if
and only if it goes on forever). Using a counter on the tape, we make M enter an accepting
configuration once 2|S| rounds of the attacker-defender game have been played without
Attacker having won. This is justified as follows. If Attacker has a winning strategy for the
attacker-defender game, Attacker also has a winning strategy that guarantees that every set
Ei ⊆ S appears at most once as the state of the game at the beginning of a round. It follows
that if Attacker can win, Attacker can also win in at most 2|S| rounds. ◀

3.2 EXPTIME-Hardness
Recall that in the previous section an intermediate technical notion (attacker-defender games)
was useful to derive the EXPTIME upper bound in the previous section. In this section we
show that the bisimilarity problem is EXPTIME-hard. For this lower bound we leverage
another non-stochastic intermediate tool, namely intersection emptiness of deterministic tree
automata. Let us introduce the required definitions.
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A ranked alphabet Σ is a finite set of symbols such that each symbol a ∈ Σ is associated
with a rank, rank(a) ∈ N\{0}. A tree over Σ is an ordered tree in which each node is labelled
with a symbol a ∈ Σ (we call such a node an a-node) and every a-node has rank(a) children.
Since we exclude symbols of rank 0, a tree over Σ is necessarily infinite. A deterministic
top-down tree automaton (DTTA) is a quadruple A = (Q, Σ, δ, q0) where Q is a finite set
of states, Σ is a ranked alphabet, δ : Q × Σ 7→ Q∗ is a partial transition function with
|δ(q, a)| = rank(a) for all q, a for which δ(q, a) is defined, and q0 ∈ Q is the initial state. A
run of DTTA A on tree t is a labelling of the nodes of t such that the root is labelled with q0
and for every a-node (a ∈ Σ), if it is labelled with q ∈ Q, then its children, read from left to
right, are labelled with δ(q, a). Note that a DTTA has at most one run on any tree. Write
L(A) for the set of trees on which A has a run. Given DTTAs A1, . . . , Ak over the same
ranked alphabet, the intersection nonemptiness problem asks whether

⋂k
i=1 L(Ai) ̸= ∅, i.e.,

whether there is a tree on which every DTTA Ai has a run. A version of this problem, for
finite trees, was proved EXPTIME-hard by Seidl [19]. The version of this problem for DFAs
and finite words is a well-known PSPACE-complete problem [12]. By adapting these proofs
we show:

▶ Lemma 5. The intersection nonemptiness problem is EXPTIME-hard.

We use this result to prove the following lemma.

▶ Lemma 6. The bisimilarity problem is EXPTIME-hard.

Proof. The reduction is from the intersection nonemptiness problem of DTTAs, which by
Lemma 5 is EXPTIME-hard.

Given DTTAs A1, . . . , Ak over the same alphabet, we construct k MDPs D1, . . . , Dk and
show that

⋂k
i=1 L(Ai) ̸= ∅ ⇐⇒ there is a general strategy for each MDP such that the k

initial states in the induced LMCs are probabilistic bisimilar. Later we show how to replace
the k MDPs by two MDPs, proving the statement of the lemma.

Let r be the maximum rank of symbols in the DTTAs. Let Lorder = {1, . . . , r} be a set
of integer labels which is disjoint from the set Σ. Let m be an action different from any
symbol in Σ. For each DTTA Ai = (Qi, Σ, δi, qi

0) where 1 ≤ i ≤ k, we construct an MDP
Di = ⟨Si, Act, Li, φi, ℓi⟩ as follows:

Si := {qj | q ∈ Qi and j ∈ N and 1 ≤ j ≤ r} ∪ {qa | q ∈ Qi and a ∈
Σ and δi(q, a) is defined} ∪ {di} where di is a special sink state only available in Di;
Act := Σ ∪ {m};
Li := Σ ∪ Lorder ∪ {deadlocki} where deadlocki is a special symbol only available in Di;
φi(qj, a) := {qa 7→ 1} for all q ∈ Qi, a ∈ Σ such that δi(q, a) is defined and all 1 ≤ j ≤ r;
φi(qa, m) = {q′j 7→ 1

rank(a) | q′ is the jth symbol in δ(q, a)} for all q ∈ Qi, a ∈ Σ such
that δi(q, a) is defined; φi(qj, m) := {di 7→ 1} for all 1 ≤ j ≤ r and all q ∈ Qi

such that δi(q, a) is not defined for any a ∈ Σ; since di is a sink state, we also have
φi(di, m) := {di 7→ 1};
ℓi(qj) = j for all q ∈ Qi and 1 ≤ j ≤ r; ℓi(qa) = a for all q ∈ Qi and a ∈ Σ such that
δi(q, a) is defined; ℓi(di) = deadlocki.

The initial state of Di is qi
01. Each state q of Qi corresponds to a set of states qj in Di

where the number j represents that q is the jth child. Such a state qj is assigned the label j.
For each q ∈ Qi and a ∈ Σ such that δi(q, a) is defined, we also have a state qa in Di. Such
a state qa is assigned the label a. There is a special sink state di for each MDP Di. The set
of actions is the same for all MDPs while each MDP Di has a special label deadlocki which
is used to label the sink state di. Since the only states in the MDPs that may have multiple
actions are those qj states where q is a state in the automata and j is a number, we only
need to specify the general strategy upon reaching those states.
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1
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Figure 2 Consider a DTTA Ai with rank(a0) = 2, δ(qi
0, a0) = q1q2 and {(qi

0, a′
0), (q1, a′

1)} ⊆
support(δ). On the right, there is the MDP Di corresponding to the DTTA Ai. If δ(q2, a2) is defined
in the DTTA Ai, the state q22 of Di has a single action a2 taking it to the state q2a2. Otherwise, if
δ(q2, a2) is undefined in the DTTA Ai, the state q22 of Di has a single action m taking it to the
deadlock state di (see the dashed transitions). The labels of the states of Di are written next to the
states in orange. The left shows a part of a run of the DTTA Ai on an ordered tree over Σ, that is,
a labelling (in orange) of q ∈ Qi on the nodes of the tree. This run corresponds to a deterministic
general strategy (highlighted in green) of the MDP Di on the right.

We show in the appendix that
⋂k

i=1 L(Ai) ̸= ∅ if and only if there is a general strategy
αi for each MDP Di such that the k initial states in the induced LMCs are probabilistic
bisimilar. See Figure 2 for an illustration.

It remains to replace the k MDPs D1, . . . , Dk by two MDPs. Specifically, we construct
D′

1 = ⟨S′
1, Act, L1, φ′

1, ℓ′
1⟩ and D′

2 = ⟨S′
2, Act, L′

2, φ′
2, ℓ′

2⟩ so that the following property holds:
there is a general strategy D1, . . . , Dk respectively such that the k initial states in the induced
LMCs are probabilistic bisimilar ⇐⇒ there is a general strategy for D′

1 and D′
2 respectively

such that the two initial states in the induced LMCs are probabilistic bisimilar.
We distinguish the two cases: k ≥ 2 and k = 1. When k = 1, for any general strategy,

the initial state in the induced LMC is trivially probabilistic bisimilar with itself.
If k ≥ 2, as shown in Figure 3, the initial state s1 of the MDP D′

1 has a single action
m taking it to the initial state q1

01 of D1 with probability one, while the initial state s2 of
the MDP D′

2 has a single action m taking it to the initial states of D2, . . . , Dk with equal
probabilities, that is,

S′
1 = S1 ∪̇ {s1}, φ′

1(s, a) =
{

φ1(s, a) if (s, a) ∈ support(φ1)
{q1

01 7→ 1} if s = s1 and a = m

and ℓ′
1(s) =

{
ℓ1(s) if s ∈ S1
1 if s = s1;

S′
2 =

⋃̇
i∈{2,...,k}Si ∪̇ {s2}, L′

2 =
⋃̇

i∈{2,...,k}Li,
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s1 1

m

q1
01 1

MDP D′
1

MDP D1

· · · · · ·· · ·

s2 1

m

q2
01 1 · · · qk

0 11

MDP D′
2

MDP D2 MDP Dk

· · · · · · · · · · · · · · · · · ·

1 1
k−1

1
k−1

Figure 3 Case k ≥ 2. Two MDPs D′
1 = ⟨S′

1, Act, L1, φ′
1, ℓ′

1⟩ and D′
2 = ⟨S′

2, Act, L′
2, φ′

2, ℓ′
2⟩ are

constructed using the k MDPs D1, . . . , Dk.

φ′
2(s, a) =

{
φi(s, a) if (s, a) ∈ support(φi) where i = 2, . . . , k

{qi
01 7→ 1

k−1 | i = 2, . . . , k} if s = s2 and a = m

and ℓ′
2(s) =

{
ℓi(s) if s ∈ Si where i ∈ {2, . . . , k}
1 if s = s2.

Consider the two MDPs D′
1 and D′

2. Assume that there is a general strategy αi for D′
i

where i ∈ {1, 2} such that s1 and s2 are probabilistic bisimilar in the induced LMCs. We
define a general strategy for each MDP Di as follows: the general strategy for D1 maps each
path ρ in D1 to α1(s1mρ) and the general strategy for Di where i > 1 maps each path ρ in Di

to α2(s2mρ). We have that the k initial states in the induced LMCs are probabilistic bisimilar.
For the other direction, assume there is a general strategy αi for Di where i ∈ {1, . . . , k}
such that the k initial states in the induced LMCs are probabilistic bisimilar. Since both s1
and s2 only have a single available action m, s1 and s2 can be made probabilistic bisimilar
by the following general strategies: the strategy for D′

1 maps a path s1mρ, where ρ is in D1,
to α1(ρ) and the strategy for D′

2 maps a path s2mρ, where i > 1 and ρ is in Di, to αi(ρ). ◀

Lemmas 4 and 6 imply the main result of this section:

▶ Theorem 7. The bisimilarity problem is EXPTIME-complete.

3.3 The Bisimilarity Problem for an LMC and an MDP
We consider the subproblem when one MDP is restricted to be an LMC, that is, given an
LMC and an MDP, and two states from the LMC and the MDP respectively, whether there
exists a general strategy for the MDP to make these two states probabilistic bisimilar.

In general, memoryless strategies do not suffice for the problem. Consider the example in
Figure 4. For the MDP on the left, the general strategy which in state s alternates between
the two actions m1 and m2 witnesses that s and t are probabilistic bisimilar in the induced
LMC. However, no memoryless strategy can make s and t probabilistic bisimilar.

s
m2m1

s1 s2
1 1

1 1

t t1 t′ t2
1 1 1

1

Figure 4 In this MDP no memoryless strategy witnesses s ∼ t.

We show that this problem is NP-complete.
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▶ Lemma 8. The bimilarity problem for an LMC and an MDP is in NP.

Proof. Given an LMC M = ⟨S1, L, τ, ℓ1⟩, an MDP D = ⟨S2, Act, L, φ, ℓ2⟩, and two states
s1 ∈ S1 and s2 ∈ S2, we decide whether there is a general strategy α for D such that s1 and
s2 are probabilistic bisimilar in the LMC M ⊕ Dα.

Consider the attacker-defender game defined in terms of the MDP M ⊕ D and the set
{s1, s2}. According to Lemma 2 and Proposition 3, it suffices to check whether Defender has
a memoryless winning strategy for the attacker-defender game.

Without loss of generality, assume that the LMC M is a quotient LMC, that is, no two
states in S1 are probabilistic bisimilar, and all states in S1 are reachable from s1. Each state
s ∈ S1 corresponds to a game state and we have |S1| game states. We guess the following
components of a winning strategy for Defender:

For each state s ∈ S1, guess a set of states Es ⊆ S2. Intuitively, Defender claims that
there is a general strategy such that all states in Es are probabilistic bisimilar with s. Let
Sw be the set of all the Es sets. Let E′

s = {s} ∪ Es be the game state which corresponds
to the state s. The state s2 is in Es1 , and is also in E′

s1
.

For each E ∈ Sw, guess a function fE : E × Act × S2 → Sw with v ∈ fE(u, m, v) for all
(u, m, v) ∈ E × Act × S2.

In the game state E′
s where s ∈ S1, the probability distribution υ over the successor

game states is determined by the probability transition function of the LMC M, that is,
υ(Et) = τ(s)(t) for all t ∈ S1 where Et ∈ Sw is the set of states which Defender claims can
be made probabilistic bisimilar with t.

For each Es ∈ Sw and each u ∈ Es, a memoryless strategy αu
s ∈ Distr(Act(u)) can be

characterised by numbers xs,u,m where m ∈ Act(u) such that xs,u,m = αu
s (m). We write x̄ for

the collection (xs,u,m)s∈S1,u∈Es,m∈Act(u). Checking whether there is a memoryless winning
strategy for Defender amounts to a feasibility test of the following linear program: ∃x̄ such
that

xs,u,m ≥ 0 for all s ∈ S1, u ∈ Es, m ∈ Act(u);∑
m∈Act(u) xs,u,m = 1 for all s ∈ S1, u ∈ Es;

τ(s)(t) =
∑

m∈Act(u)
∑

v∈S2 s.t. fEs (u,m,v)=Et
xs,u,mφ(u, m)(v) for all s, t ∈ S1 and u ∈ Es.

Hence, this can be decided in polynomial time. ◀

NP-hardness follows from a reduction from the Subset Sum problem. The reduction is
similar to [11, Theorem 19]. Given a set P = {p1, . . . , pn} where P ⊆ N and N ∈ N, Subset
Sum asks whether there exists a set Q ⊆ P such that

∑
pi∈Q pi = N . Subset Sum is known

to be NP-complete [2].

▶ Lemma 9. The bimilarity problem for an LMC and an MDP is NP-hard.

By combining Lemma 8 and Lemma 9 we get:

▶ Theorem 10. The bimilarity problem for an LMC and an MDP is NP-complete.

4 Bisimilarity Inequivalence Problem

In this section, we consider the bisimilarity inequivalence problem which, given an MDP and
two initial states, asks whether there is a general strategy such that in the induced LMC the
two states are not probabilistic bisimilar.
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▶ Example 11. Consider again the 2-threaded program and MDP from Example 1 and
Figure 1. This time we take the view of an eavesdropper. The memoryless strategy that, in
h0 and h1, chooses action m1 with probability 0.4 and action m2 with probability 0.6 induces
an LMC in which h0 and h1 are not probabilistic bisimilar. Thus, if the eavesdropper has
control over the scheduling and chooses a suitable strategy, they can glean information about
the value of h. In this sense, the bisimilarity inequivalence problem can be viewed as the
problem whether a program is safe from such information leaks, even if an adversary controls
the scheduler.

▶ Example 12. In general, a single memoryless strategy does not suffice for the bisimilarity
inequivalence problem. Consider the MDP in Figure 5. The general strategy which in state

s

t

u

m1

m2

x

y

1

1

1

1

1

1

Figure 5 In this MDP no memoryless strategy witnesses s ̸∼ t.

u selects the action m1 after seeing the path su and selects the action m2 after seeing the
path tu witnesses that s and t are not probabilistic bisimilar in the induced LMC. However,
given any memoryless strategy, s and t are probabilistic bisimilar in the induced LMC.

We write ρ[α] for the state ρ in the LMC Dα induced by a strategy α. In the following, we
show that if there is a general strategy such that s and t are not probabilistic bisimilar in
the induced LMC, there are memoryless strategies σ and τ such that s[σ] and t[τ ]2 are not
probabilistic bisimilar. These two memoryless strategies are not necessarily the same and
they can be combined to form a general witnessing strategy for the bisimilarity inequivalence
problem. Take the MDP in Figure 5 as an example. Although no single memoryless strategy
witnesses the probabilistic bisimilarity inequivalence of s and t, with the memoryless strategies
σ and τ where σ(u) = m1 and τ(u) = m2, we have that s[σ] and t[τ ] are not probabilistic
bisimilar.

A partition of the states S is a set X consisting of pairwise disjoint subsets E of S

with
⋃

E∈X = S. Recall that φ(s, m)(s′) is the transition probability from s to s′ when
choosing action m. Similarly, φ(s, m)(E) =

∑
s′∈E φ(s, m)(s′) is the transition probability

from s ∈ S to E ⊆ S when choosing action m. We write φ(s, m)(X) to denote the probability
distribution (φ(s, m)(E))E∈X . We define φ(s)(X) = {φ(s, m)(X) : m ∈ Act(s)}, which is a
set of probabilistic distributions over the partition X when choosing all available actions of s.

Abusing the notation slightly, for a memoryless strategy α we write α(s)(s′) for
the transition probability from s to s′ in the LMC induced by α, that is, α(s)(s′) =∑

m∈Act(s) α(s)(m)φ(s, m)(s′). Similarly, the transition probability from s to E ⊆ S in the
LMC induced by a memoryless strategy is α(s)(E) =

∑
s′∈E α(s)(s′) and the probability

distribution on a partition X is α(s)(X) =
(
α(s)(E)

)
E∈X

.
The assumption that for two states s, t we have s[σ] ∼ t[τ ] for all general strategies σ and

τ has consequences on s, on t, and on their successors, as detailed in the following lemma.

2 Here s and t are paths of length 1.



S. Kiefer and Q. Tang 32:13

▶ Lemma 13. Let s, t ∈ S with s[σ] ∼ t[τ ] for all general strategies σ and τ .
1. For all general strategies σ and τ , we have s[σ] ∼ s[τ ] and t[σ] ∼ t[τ ];
2. For all successors u of s and all general strategies σ and τ , we have u[σ] ∼ u[τ ].

Given an MDP D = ⟨S, Act, L, φ, ℓ⟩, define a superbisimulation relation to be any
equivalence relation R ⊆ S × S such that (s, t) ∈ R if and only if ℓ(s) = ℓ(t) and α(s)(X) =
α(t)(X) for all memoryless strategies α where X = S/R. The union of superbisimulations
is a superbisimulation. Let superbisimilarity ≈D be the largest superbisimulation, i.e., the
union of all superbisimulations. The subscript D can be omitted if it is clear from the context.
We write s ≈ t if (s, t) ∈ ≈.

Let S̄ := S × {0, 1}. We define an MDP D̄ = (S̄, Act, L, φ̄, ℓ̄) where φ̄
(
(s, i)

)
(m)

(
(t, i)

)
=

φ(s, m)(t) for all s, t ∈ S, i ∈ {0, 1} and m ∈ Act and ℓ̄
(
(s, i)

)
= ℓ(s) for all (s, i) ∈ S̄. The

MDP D̄ is basically made up of two disjoint copies of the original MDP D.
The following lemma is a counterpart to Lemma 13. It spells out consequences of the

assumption that (s, 0) and (t, 1) are superbisimilar in D̄.

▶ Lemma 14. Let s, t ∈ S with (s, 0) ≈D̄ (t, 1).
1. Let R be any superbisimulation that contains

(
(s, 0), (t, 1)

)
. For any successor (u, 0)

of (s, 0), there exists a successor (v, 1) of (t, 1) such that
(
(u, 0), (v, 1)

)
∈ R. Simil-

arly, for any successor (v, 1) of (t, 1), there exists a successor (u, 0) of (s, 0) such that(
(u, 0), (v, 1)

)
∈ R. In other words, any successor of (s, 0) is superbisimilar with some

successor of (t, 1) and vice versa.
2. We have (s, 1) ≈D̄ (t, 0), (s, 0) ≈D̄ (s, 1) and (t, 0) ≈D̄ (t, 1).

The following theorem, whose proof is based on Lemmas 13 and 14, is the main technical
result of this section. It provides a superbimilarity-based characterisation of s and t being
bisimilar under all general strategies.

▶ Theorem 15. For all s, t ∈ S, we have (s, 0) ≈ (t, 1) ⇐⇒ ∀ general strategies σ, τ : s[σ] ∼
t[τ ].

Proof. ( ⇐= ) Let S′ = {s ∈ S | ∀ general strategies σ, τ : s[σ] ∼ s[τ ]} and S̄′ = {(s, i) ∈
S̄ | s ∈ S′}.

Let R := {
(
(s, i), (t, j)

)
∈ S̄ × S̄

)
| ∀ general strategies σ, τ : s[σ] ∼ t[τ ]}.

Firstly, R is an equivalence relation on S̄′:

R ⊆ S̄′ × S̄′: Assume for all general strategies σ, τ : s[σ] ∼ t[τ ]. By Lemma 13, we have
that s[σ] ∼ s[τ ] and t[σ] ∼ t[τ ] for all general strategies σ and τ . Both s and t are in S′,
hence, (s, i), (t, i) ∈ S̄′ for all i ∈ {0, 1}.
R is reflexive. (trivial)
R is symmetric. (trivial)
R is transitive. (trivial)

By Lemma 13, all successors of a state s ∈ S′ in the MDP D are in S′, hence, all successors
of a state (s, i) ∈ S̄′ are in S̄′. Let D̄′ be the sub-MDP of D̄ that contains S̄′ and all the
transitions between S̄′.

To show that (s, i) ≈ (t, j) for any
(
(s, i), (t, j)

)
∈ R, we show that R is a superbisimulation

of D̄′. The details can be found in the appendix.
( =⇒ ) Let S′ = {s | ∃(t, 1) such that (s, 0) ≈ (t, 1)}. Define a relation R =

{(s, t) | (s, 0) ≈ (t, 1)} on S′. By Lemma 14, R is an equivalence relation. Let X = S′/R.
By Item 1 of Lemma 14, all successors of a state in S′ are in S′. Let D′ be the sub-MDP

that contains S′ and all the transitions between S′. Let σ, τ be two arbitrary general
strategies of D′.
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Let R′ = {(ρ1[µ1], ρ2[µ2]) | ρ1, ρ2 are paths in D′,
(
last(ρ1), last(ρ2)

)
∈ R and µ1, µ2 ∈

{σ, τ}} be a relation on the states of the LMC D′
σ ⊕ D′

τ , the disjoint union of the induced
LMCs D′

σ and D′
τ .

Since R is an equivalence relation, it is not hard to see that R′ is also an equivalence
relation. We show in the appendix that R′ is a probabilistic bisimulation on the states of the
LMC D′

σ ⊕ D′
τ .

For any (s, 0) ≈ (t, 1), we have (s[σ], t[τ ]) ∈ R′, and hence, s[σ] and t[τ ] are probabilistic
bisimilar in the LMC D′

σ ⊕ D′
τ . Since σ and τ are arbitrary general strategies for D′ and the

sub-MDP D′ has all the available actions and successors of S′ from D, we have s[σ] ∼ t[τ ]
for all general strategies σ and τ for D. ◀

By Theorem 15, to decide whether there exist general strategies σ and τ such that
s[σ] ̸∼ t[τ ], it suffices to decide whether (s, 0) ̸≈ (t, 1), which can be done by running [11,
Algorithm 2] on the MDP D̄. This partition refinement algorithm is polynomial-time and
the relation computed is superbisimilarity. By [11, Theorem 12, Corollary 13], if two states
s and t are not superbisimilar, we can compute in polynomial time a memoryless strategy
that witnesses s ̸∼ t. Since the two states (s, 0) and (t, 1) are from two disjoint MDPs, if
(s, 0) ̸≈ (t, 1), we can also compute in polynomial time two memoryless strategies σ and
τ that witness (s, 0)[σ] ̸∼ (t, 1)[τ ], equivalently (s)[σ] ̸∼ (t)[τ ]. Hence we have proved the
following theorem.

▶ Theorem 16. The bisimilarity inequivalence problem is in P. For any positive instance of
the problem, there are memoryless strategies σ and τ such that s[σ] ̸∼ t[τ ]. Further, for any
positive instance of the problem, we can compute in polynomial time memoryless strategies σ

and τ that witness s[σ] ̸∼ t[τ ].

5 Conclusion

In this paper we have settled the decidability and complexity of the bisimilarity equivalence
and inequivalence problems of MDPs under general strategies. Let us review the key technical
steps.

We have proved that bisimilarity equivalence is decidable, albeit with a high, EXPTIME,
computational complexity. For the EXPTIME upper bound we have provided a reduction
to a non-stochastic two-player game, the attacker-defender game, which can be decided
in EXPTIME. For the EXPTIME lower bound we have provided a reduction from the
intersection emptiness problem for deterministic tree automata, which we have shown to be
EXPTIME-hard. Further, we have obtained NP-completeness for the case that one of the
MDPs is a Markov chain.

We have also shown that the bisimilarity inequivalence problem has much lower computa-
tional complexity, as it can be decided in polynomial time. This extends an earlier result
that the corresponding inequivalence problem for memoryless strategies is in P. The key
novel technique we have developed here is the notion of superbisimilarity, whose definition is
similar to bisimilarity but with a different quantification over strategies.
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A Proofs of Section 3

▶ Proposition 3. Given an MDP D = ⟨S, Act, L, φ, ℓ⟩ and a set E1 ⊆ S, Defender has a
winning strategy for the attacker-defender game if and only if there exists a general strategy
α for D such that in the LMC induced by α all states in E1 are probabilistic bisimilar.

Proof. ( =⇒ ) We show in the following that all states in E1 are probabilistic bisimilar in
the LMC induced by α defined in the main text.

Given the MDP D and the general strategy α, an LMC D(α) = ⟨P , L, τα, ℓα⟩ is induced.
To show that all states in E1 are probabilistic bisimilar in the LMC D(α), we show that for
any two states ρ1 and ρ2 of D(α), if ρ1, ρ2 ∈ P and W (ρ1) = W (ρ2), we have ρ1 ∼ ρ2. It
suffices to show the relation ∼W ⊆ P × P defined by ρ1 ∼W ρ2 if and only if W (ρ1) = W (ρ2)
is a probabilistic bisimulation.

Let ρ1, ρ2 ∈ P be two states in the LMC D(α) and E = W (ρ1) = W (ρ2) be a state at the
beginning of some round of the attacker-defender game. Let s1 = last(ρ1) and s2 = last(ρ2).
We have ℓα(ρ1) = ℓ(s1) = ℓ(s2) = ℓα(ρ2) since s1, s2 ∈ E and all states in E have the
same label. Defender has a winning strategy for E and we assume that she chooses a set
S′ ⊆ 2S , a distribution υ on S′, and a function f . Consider a set E′ ∈ support(υ). By
definition of ∼W , for all ρ1m1t1, ρ2m2t2 ∈ P such that W (ρ1m1t1) = W (ρ2m2t2) = E′ we
have ρ1m1t1 ∼W ρ2m2t2. We also have

υ(E′)

=
∑

m1∈Act(s1)

∑
t1∈S s.t. f(s1,m1,t1)=E′

αs1(m1)φ(s1, m1)(t1)

[property satisfied by υ]

=
∑

m1∈Act(s1)

∑
t1∈E′

α(ρ1)(m1)φ(s1, m1)(t1)

=
∑

m1∈Act(s1)

∑
t1∈E′

τα(ρ1)(ρ1m1t1). [definition of τα]

=
∑

ρ1m1t1∈Pi+1 and t1∈E′

τα(ρ1)(ρ1m1t1).

Similarly, we have υ(E′) =
∑

ρ2m2t2∈Pi+1 and t2∈E′

τα(ρ2)(ρ2m2t2).

Thus, the relation ∼W is a probabilistic bisimulation. Consider any state s ∈ P1 of D(α).
We have W (s) = E1, it concludes that all states in E1 are probabilistic bisimilar.
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( ⇐= ) We verify that the objects chosen by Defender satisfies the required properties.
For all s ∈ E and all E′

i ∈ S′ where 1 ≤ i ≤ k we have

υ(E′
i)

= υ′(Bi)

=
∑

smt∈Bi

αE(s)(m)φ(s, m)(t)

=
∑

smt∈Bi

αs(m)φ(s, m)(t)

=
∑

m∈Act(s)

∑
t∈S s.t. f(s,m,t)=E′

i

αs(m)φ(s, m)(t) .

If the game starts with an equalisable set and all the future game states are equalisable
sets, Defender can always choose objects with required properties and hence win the game.
It remains to show that all sets in S′ are equalisable. Consider the probabilistic bisimulation
class Bi which is used to construct E′

i ∈ S′. We define a general strategy αi for any path
that starts with a state t ∈ E′

i. Let ρ be such a path. We define αi(ρ) := αE(smρ) where
s ∈ E and smt ∈ Bi. Basically, after going along the path ρ, the general strategy αi plays
as αE(smρ). The LMC induced by the general strategy αi can be seen as part of the LMC
induced by αE where a state ρ in the former LMC corresponds to the state smρ in the latter.
That is, a state t ∈ E′

i in the LMC induced by αi corresponds to a state smt ∈ Bi in the
LMC induced by αE . Since all states in Bi are probabilistic bisimilar in the LMC induced
by αE , all states in E′

i in the LMC induced by αi are also probabilistic bisimilar. ◀

▶ Lemma 5. The intersection nonemptiness problem is EXPTIME-hard.

Proof. We give a polynomial-time reduction from the problem of acceptance of a word by
a PSPACE-bounded alternating Turing machine. Let M = (P∃, P∀, Γ, ∆, p0, pacc, prej) be
a PSPACE-bounded alternating Turing machine, where P = P∃ ∪ P∀ is the finite set of
(control) states partitioned into existential states P∃ and universal states P∀, and Γ is the tape
alphabet, and ∆ ⊆ P × Γ × P × Γ × {−1, +1} is the transition relation, and p0, pacc, prej ∈ P

are the initial, accepting, rejecting state, respectively. A transition (p, a, p′, a′, d) ∈ ∆ means
that if M is in state p and its read-write head reads letter a, then M rewrites the contents
of the current cell with the letter a′, moves the head in direction d (either left if d = −1, or
right if d = +1), and changes its state to p′. Such a transition is called outgoing from (p, a).
We assume that for all (p, a) ∈ P × Γ there is at least one outgoing transition, and for all
(p, a) ∈ P∀ × Γ there are exactly two outgoing transitions. A configuration of M is given by
the current state p ∈ P , the tape content (from Γ∗), and the position of the head. If the
current state p is existential, i.e., p ∈ P∃, and the head reads a ∈ Γ, then the existential
player picks a transition that is outgoing from (p, a). Similarly for the universal states and
the universal player. Starting from an input word w ∈ Γ∗ on the tape, strategies of the
two players define a computation, i.e., a sequence of configurations. It is the goal of the
existential player to form a computation that reaches pacc; the goal of the universal player
is to avoid this. We can assume that all computations reach either pacc or prej and no
configuration is repeated before that (this is achieved, e.g., using a counter on the tape), and
after reaching pacc or prej the control state no longer changes. If the existential player has a
strategy to reach pacc no matter what strategy the universal player uses, then we say that M

accepts w. Since APSPACE = EXPTIME, there is a (fixed) PSPACE-bounded alternating
Turing machine, say M = (P∃, P∀, Γ, ∆, p0, pacc, prej), such that it is EXPTIME-complete to
decide if it accepts a given input word.

CONCUR 2022
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Let w ∈ Γn be the input word. The Turing machine M uses only space polynomial in n,
say N . We construct, in polynomial time, DTTAs A0, . . . , AN such that

⋂N
i=0 L(Ai) ̸= ∅ if

and only if M accepts w. To do so, we encode a strategy of the existential player by a tree
whose branches encode the computations that are consistent with the existential player’s
strategy; the strategy of the universal player effectively chooses one branch in the tree, which
encodes the computation defined by both players’ strategies. We want to construct DTTAs
A0, . . . , AN so that

⋂N
i=0 L(Ai) contains exactly those trees that encode a winning strategy

of the existential player. Each Ai ensures some aspect of correctness of such strategy trees;
when Ai encounters a problem with a tree, it uses the partiality of its transition function δ

so that it does not have a run on that tree.
The trees consist of blocks of the form a1 · · · am−1#am · · · aN p, which encode a config-

uration. Here, a1 · · · aN ∈ ΓN is the tape content, the position of the symbol # indicates
the position of the head (reading am), and p ∈ P is the current control state. As ranked
alphabet we take Σ = Γ ∪ {#} ∪ P (we can assume this is a union of disjoint sets), where all
symbols have rank 1, except those in P∀, which have rank 2. As a result, a p-node at the
end of a block, where p ∈ P∃, has one child, which starts another block encoding a successor
configuration. Similarly, if p ∈ P∀, then the node has two children, both of which start
another block encoding successor configurations.

We construct, in polynomial time, DTTA A0 so that it ensures that the input tree starts
with #w1 · · · wn␣ · · · ␣p0, encoding the initial configuration of M ; here w = w1 · · · wn is the
input word, which is followed by N − n blank symbols ‘␣’. DTTA A0 also ensures that
prej occurs nowhere in the tree. It also ensures that the blocks, which encode configurations
as described above, are well-formed in that each of them consists of N symbols from Γ, a
single occurrence of # in front of one of the symbols from Γ, and a p ∈ P at the end.

Let i ∈ {1, . . . , N}. We construct, in polynomial time, DTTA Ai so that it ensures the
following properties for all blocks in the input tree.

If the symbol # precedes the ith symbol from Γ in the block, say a, and the block ends
with p ∈ P∃ and, in the directly following block, the symbol # precedes the (i + d)th
symbol (i ∈ N) from Γ in the block and the ith symbol from Γ in the block is a′ and the
block ends with p′ ∈ Γ, then (p, a, p′, a′, d) ∈ ∆.
If the symbol # precedes the ith symbol from Γ in the block, say a, and the block ends
with p ∈ P∀ and (p, a, p1, a1, d1), (p, a, p2, a2, d2) ∈ ∆ are the two outgoing transitions
from (p, a) (we assume that these two transitions are ordered in some way), then in the
left (respectively, right) successor block the symbol # precedes the (i+d1)th (respectively,
(i + d2)th) symbol from Γ and the ith symbol from Γ in the block is a1 (respectively, a2)
and the block ends with p1 (respectively, p2).
If the symbol # does not precede the ith symbol from Γ in the block, say a, then the ith
symbol from Γ in the (either one or two) directly following block(s) is also a.

In this way,
⋂N

i=0 L(Ai) contains exactly those trees that encode a winning strategy of the
existential player. ◀

▶ Lemma 6. The bisimilarity problem is EXPTIME-hard.

Proof. We show in the following that
⋂k

i=1 L(Ai) ̸= ∅ if and only if there is a general strategy
αi for each MDP Di such that the k initial states in the induced LMCs are probabilistic
bisimilar.

( =⇒ ) Assume
⋂k

i=1 L(Ai) ̸= ∅. Let t be an ordered tree over Σ in the intersection⋂k
i=1 L(Ai). There is a deterministic general strategy αi for each MDP Di corresponding to

t. An example of a deterministic general strategy of an MDP corresponding to a run tree is
given in Figure 2.
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We define a function fi which maps a path starting from the root of the run tree of Ai (t
labelled with states of Ai) to a path in the MDP Di:

fi(a) = qi
01 where the root of the tree t is an a-node (the root of t is labelled with qi

01);
fi(xa) = fi(x)last(x)(qlast(x))m(q′j) where x ∈ Σ+, a ∈ Σ, q ∈ Qi, l is a number and
ql = last(fi(x)), a is the jth child of its parent and is labelled with q′ ∈ Qi.

For a path x ∈ Σ+ of t, fi(x) is a path in Di which ends with a state of the form qj where
q ∈ Qi and j is a number. We now define the deterministic general strategy αi for the MDP
Di. For a path ρ in the MDP Di, we have

αi(ρ) =


a if fi(x) = ρ for a path x ∈ Σ+ of the tree t and a = last(x)
m if last(ρ) is of the form qia where qi ∈ Qi and a ∈ Σ
m′ otherwise, m′ is an arbitrary available action of last(ρ)

Every state in the induced LMC Di(αi) corresponds to a tree path. The states ρ in the
induced LMC Di(αi), where last(ρ) is of the form qij such that qi ∈ Qi and j is a number,
correspond to the tree path x such that fi(x) = ρ. The states ρa(qia) where qi ∈ Qi and
a ∈ Σ in the induced LMC Di(αi) correspond to the tree path x such that fi(x) = ρ. Let
P be the union of the states of the induced LMCs. Let R ⊆ P × P be a relation in which
(ρ, ρ′) ∈ R if and only if either (1) there exist a tree path x ∈ Σ+ and i, j ∈ {1, . . . , k} such
that fi(x) = ρ and fj(x) = ρ′ or (2) both states correspond to the same tree path and
last(ρ) (respectively, last(ρ′)) is of the form qa where q ∈ Qi for some i and a ∈ Σ. In case
(1), we have the pairs of states ρ and ρ′ in the induced LMCs where last(ρ) (respectively,
last(ρ′)) is of the form qj where q ∈ Qi for some i and j is a number. We can show that the
relation R is a probabilistic bisimulation. Hence, the initial states qi

01 of the LMCs Di(αi)
are probabilistic bisimilar.

( ⇐= ) Assume that there is a general strategy αi for each MDP Di such that the k

initial states in the induced LMCs are probabilistic bisimilar. Since the general strategies are
possibly randomised, there might be multiple trees embedded in each of the induced LMC.
We extract one common tree from these LMCs. We will then show that this tree witnesses
the intersection nonemptiness of the k DTTAs as there is a run on this common tree for
every DTTA Ai.

Let us prioritise the symbols in Σ such that each symbol has a different priority. In the
following, we show how to obtain an ordered tree ti for the MDP Di level by level. The
process is similar to the construction of the LMC induced by the general strategy αi. We
first add the initial state qi

01 (it is also a path with only one state) to the tree and make it
the root of the tree. We call this node qi

01. For every node ρ in the tree without children,
we assign a symbol from Σ to it and add the children as follows. Since the LMCs induced
by the general strategies are probabilistic bisimilar, there is no state in the LMCs labelled
with deadlocki. For a node ρ in the tree, we have that last(ρ) is of the form qj where q is a
state in the DTTA Ai and j is a number. The strategy αi over the path ρ is a distribution
over the set support(αi(ρ)) ⊆ Acti(qj), a subset of the available actions at qj. Let a ∈ Σ
be the one with the highest priority in support(αi(ρ)) and now make the node ρ an a-node.
From now on, we only consider paths in the MDP Di with prefix ρa(qa) and discard all the
other paths with prefix ρ. The strategy αi on the path ρa(qa) is a Dirac distribution on
the only available action m. Each of the rank(a) successor of the path ρa(qa) is of the form
ρa(qa)m(q′j′), which is then added as the j′th child of the node ρ. The tree is infinite and is
over Σ.

For all the MDPs, the ordered tree constructed in the above way is the same. The nodes
have the same symbols from Σ. We label each node ρ in ti with q ∈ Ai, where qj = last(ρ).
It is not hard to verify that this labelling of the tree ti is a run of the DTTA Ai on ti. Thus,
the tree is in the intersection of the languages of the DTTAs. ◀
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▶ Lemma 9. The bimilarity problem for an LMC and an MDP is NP-hard.

Proof. Given an instance of Subset Sum ⟨P, N⟩ where P = {p1, . . . , pn} and N ∈ N, we
construct an MDP D; see Figure 6. Let T =

∑
pi∈P pi. In the MDP, state s transitions to

state si with probability pi/T for all 1 ≤ i ≤ n. Each state si has two available actions, each
transitions to sa and sb by taking the action mi and m′

i, respectively. State t transitions to
t1 and t2 with probability N/T and 1 − N/T , respectively. All the remaining states have
only one available action transitioning to the successor state with probability one. States sb

and tb have label b and all other states have label a.
It suffices to consider memoryless strategies in the MDP constructed since the only states

that we need to specify a strategy are the si states and there is only one path from s to any
of the si state.

s

s1 · · · sn

m1

m′
1 mn

m′
n

sa sb

p1
T

pn

T

1

1

t

t1 t2

ta tb

N
T 1 − N

T

1 1
1

1

Figure 6 The MDP D in the reduction for NP-hardness of the bisimilarity problem. All states
have the same label a except sb and tb which have label b.

Next, we show that ⟨P, N⟩ ∈ Subset Sum if and only if there exists a general strategy α

such that s and t are probabilistic bisimilar in the induced LMC Dα.
Intuitively, making si probabilistic bisimilar with t1 simulates the membership of pi in

Q. Conversely, making si probabilistic bisimilar with t2 simulates the membership of pi in
P \ Q.

( =⇒ ) Let Q ⊆ P be the set such that
∑

pi∈Q pi = N . Let α be an memoryless
deterministic strategy such that if pi ∈ Q then α(si) = mi and α(si) = m′

i otherwise. It is
clear that in the induced LMC, all states si where pi ∈ Q are probabilistic bisimilar with t1
and all the other states are probabilistic bisimilar with t2. Since

∑
pi∈Q pi = N , s and t are

probabilistic bisimilar in the induced LMC.
( ⇐= ) Assume there is a memoryless strategy α such that s and t are probabilistic

bisimilar in the induced LMC Dα. We have t1 ̸∼ t2. Let S1 be the set of successor states
of s that are probabilistic bisimilar to t1. Then,

∑
si∈S1

pi

T = τ(s)(S1) = τ(t)(t1) = N
T . Let

Q = {pi ∈ P | si ∈ S1}. We have Q ⊆ P be the set such that
∑

pi∈Q pi = N . ◀

B Proofs of Section 4

▶ Lemma 13. Let s, t ∈ S with s[σ] ∼ t[τ ] for all general strategies σ and τ .
1. For all general strategies σ and τ , we have s[σ] ∼ s[τ ] and t[σ] ∼ t[τ ];
2. For all successors u of s and all general strategies σ and τ , we have u[σ] ∼ u[τ ].
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Proof.
1. Assume for all general strategies σ, τ : s[σ] ∼ t[τ ]. Since bisimulation is an equivalence

relation, we have that for all general strategies σ, τ : s[σ] ∼ s[τ ]. Similarly, we have
t[σ] ∼ t[τ ] for all general strategies σ and τ .

2. Assume s[σ] ∼ t[τ ] for all general strategies σ and τ . By Item 1, we have s[σ] ∼ s[τ ] for
all general strategies σ and τ . Assume there exist a successor u of s and general strategies
σ, τ such that u[σ] ̸∼ u[τ ].
Let σ′ be a general strategy that in s takes an action m to reach u with positive chance
in the first step and plays the strategy σ once u is reached, that is, φ(s, m)(u) > 0,
σ′(s)(m) = 1 and σ′(smρu) = σ(ρu) where ρu is any path starting with u.
Let τ ′ be the same general strategy as σ′ except that it plays the strategy τ once u is
reached, that is, τ ′(ρ) = σ′(ρ) for any path ρ ̸= smρu and τ ′(smρu) = τ(ρu) where ρu is
any path starting with u.
In the LMCs Dσ′ and Dτ ′ , for all the other successor states v of s in D where v ≠ u, we
have smv[σ′] ∼ smv[τ ′]. However, since smu[σ′] ̸∼ smu[τ ′], we have s[σ′] ̸∼ s[τ ′], which
contradicts that s[σ] ∼ s[τ ] holds for all general strategies σ and τ . ◀

▶ Lemma 14. Let s, t ∈ S with (s, 0) ≈D̄ (t, 1).
1. Let R be any superbisimulation that contains

(
(s, 0), (t, 1)

)
. For any successor (u, 0)

of (s, 0), there exists a successor (v, 1) of (t, 1) such that
(
(u, 0), (v, 1)

)
∈ R. Simil-

arly, for any successor (v, 1) of (t, 1), there exists a successor (u, 0) of (s, 0) such that(
(u, 0), (v, 1)

)
∈ R. In other words, any successor of (s, 0) is superbisimilar with some

successor of (t, 1) and vice versa.
2. We have (s, 1) ≈D̄ (t, 0), (s, 0) ≈D̄ (s, 1) and (t, 0) ≈D̄ (t, 1).

Proof. Assume (s, 0) ≈ (t, 1).
1. Let R be a superbisimulation such that

(
(s, 0), (t, 1)

)
∈ R. Let X = S̄/R. For a

contradiction, assume for a successor of (s, 0), say (u, 0), there exists no successor (v, 1)
of (t, 1) such that

(
(u, 0), (v, 1)

)
∈ R. Then, (u, 0) is in an equivalence class E ∈ X

in which there are no successors of (t, 1). Let α be a memoryless strategy such that
α

(
(s, 0)

)(
(u, 0)

)
> 0. We have α

(
(s, 0)

)
(E) > 0 = α

(
(t, 1)

)
(E), which contradicts that(

(s, 0), (t, 1)
)

∈ R.
2. If (s, 0) ≈ (t, 1) then, by symmetry, (s, 1) ≈ (t, 0).

Let R = {
(
(s, i), (s, i)

)
| s ∈ S ∧ i ∈ {0, 1}} ∪ {

(
(s, 0), (s, 1)

)
,
(
(s, 1), (s, 0)

)
| ∃t ∈

S such that (s, 0) ≈ (t, 1)}. To show (s, 0) ≈ (s, 1) and (t, 0) ≈ (t, 1), it suffices to show
that R is a superbisimulation.
Firstly, note that R is an equivalence relation.
For any

(
(s, i), (s, j)

)
∈ R, clearly we have ℓ̄

(
(s, i)

)
= ℓ̄

(
(s, j)

)
. Let X = S̄/R. It remains

to show that for all
(
(s, i), (s, j)

)
∈ R it holds that α

(
(s, i)

)
(X) = α

(
(s, j)

)
(X) for all

memoryless strategies α. Assume
(
(s, i), (s, j)

)
∈ R. If i = j, it is trivially true. Otherwise,

j = 1 − i. There must exist a state t ∈ S such that (t, j) ≈ (s, i). For any successor (u, i)
of (s, i), by Item 1, there is some successor (v, j) of (t, j) such that

(
(u, i), (v, j)

)
∈ R.

Thus, for all successors (u, i) of (s, i),
(
(u, i), (u, j)

)
is in R and (u, i), (u, j) are in the same

equivalence class in X. Thus, we have α
(
(s, i)

)
(X) = α

(
(s, j)

)
(X) for all memoryless

strategies α.
Hence, R is a superbisimulation. ◀

▶ Theorem 15. For all s, t ∈ S, we have (s, 0) ≈ (t, 1) ⇐⇒ ∀ general strategies σ, τ : s[σ] ∼
t[τ ].
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Proof. ( ⇐= ) To show that (s, i) ≈ (t, j) for any
(
(s, i), (t, j)

)
∈ R, it suffices to show that

R is a superbisimulation of D̄′.
Let α be an arbitrary memoryless strategy for D̄′. We define a relation Rα =

{
(
(s, i), (t, j)

)
∈ S̄′ × S̄′ | (s, i)[α] ∼ (t, j)[α]}. Then, Rα is a probabilistic bisimulation

on S̄′ and Xα = S̄′/Rα
is the set of probabilistic bisimulation classes.

Next, we show R = Rα. It is obvious that R ⊆ Rα. To show Rα ⊆ R, we assume(
(s, i), (t, j)

)
∈ S̄′ × S̄′ and (s, i)[α] ∼ (t, j)[α]. Since (s, i) ∈ S̄′, we have (s, i)[α] ∼ (s, i)[σ]

for all general strategies σ. Similarly, we have (t, j)[α] ∼ (t, j)[τ ] for all general strategies τ .
Since probabilistic bisimulation is transitive, we have (s, i)[σ] ∼ (s, i)[α] ∼ (t, j)[α] ∼ (t, j)[τ ]
for all general strategies σ and τ .

Let X = S̄′/R. We have Xα = S̄′/Rα = S̄′/R = X. Let
(
(s, i), (t, j)

)
∈ R. We have(

(s, i), (t, j)
)

∈ Rα and α
(
(s, i)

)
(X) = α

(
(s, i)

)
(Xα) = α

(
(t, j)

)
(Xα) = α

(
(t, j)

)
(X). Since

α was arbitrary, R is a superbisimulation of D̄′.
( =⇒ ) We show that the relation R′ defined in the proof in the main text is a probabilistic

bisimulation on the states of the LMC D′
σ ⊕ D′

τ .
Let X ′ be the partition of the states of the LMC D′

σ ⊕ D′
τ with respect to R′. Let

(ρ1[µ1], ρ2[µ2]) ∈ R′ with last(ρ1) = s and last(ρ2) = t. To show R′ is a probabilistic
bisimulation on the states of the LMC D′

σ ⊕ D′
τ , it suffices to show that (1) ρ1[µ1] and ρ2[µ2]

have the same label; (2) the probability distributions over X ′ from ρ1[µ1] and from ρ2[µ2]
are the same.

Since (ρ1[µ1], ρ2[µ2]) ∈ R′, we have (s, 0) ≈ (t, 1). It follows that ρ1[µ1] and ρ2[µ2] have
the same label. Furthermore, we have α1(s)(X) = α2(t)(X) for all memoryless strategies α1
and α2 for D. Let α1(s) = µ1(ρ1), α2(t) = µ2(ρ2). The successors of (ρ1[µ1] ((ρ2[µ2]) can be
partitioned with respect to R′ and each class can be identified by a set E ∈ X. We define
E1 = {ρ1mu[µ1] | m ∈ Act(s) ∧ u ∈ E}, which is the set of successors of ρ1[µ1] corresponding
to E. Similarly, define E2 = {ρ2mu[µ2] | m ∈ Act(t) ∧ u ∈ E}, which is the set of successors
of ρ2[µ2] corresponding to E. We have that the transition probability from ρ1[µ1] to E1
is

∑
m∈Act(s) µ1(ρ1)(m)φ(s, m)(E1), which is equal to α1(s)(E). Similarly, the transition

probability from ρ2[µ2] to E2 is
∑

m∈Act(t) µ2(ρ2)(m)φ(t, m)(E2), which is equal to α2(t)(E).
Thus, the probability distribution over X ′ from ρ1[µ1] is equal to that from ρ2[µ2], and we
conclude that R′ is a probabilistic bisimulation on the states of the LMC D′

σ ⊕ D′
τ . ◀
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1 Introduction

Formal verification is essential to ensure the correctness of systems responsible for critical
tasks. Many advancements have been made in the field of formal verification both in terms
of theoretical foundations and tool development, and computer-aided verification techniques,
such as model-checking [4, 7], are now widely used in industry. In the classical approach to
verification, it is assumed that the system designer provides (i) a model of the system to
verify, together with (ii) a model of the environment in which the system will be executed,
and (iii) a specification φ (e.g. an ω-regular property) that must be enforced by the system.
Those models are usually nondeterministic automata that cover all possible behaviors of both
the system and the environment. The model-checking algorithm is then used to decide if all
executions of the system in the environment are correct with regard to φ. Unfortunately, in
some settings, providing a faithful and sufficiently precise model of the environment may
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33:2 Pareto-Rational Verification

be difficult or even impossible. This is particularly true in heterogeneous systems composed
of software entities interacting with human users, e.g. self-driving cars interacting with
human drivers. Alternative approaches are thus needed in order to verify such complex
multi-agent systems. One possible solution to this problem is to consider more declarative
ways of modeling the environment. Instead of considering an operational model of each
agent composing the environment, in this paper, we propose instead to identify the objectives
of those agents. We then consider only the behaviors of the environment that concur to
those objectives, instead of all behaviors described by some model of the system. We study
the problem of rational verification: the system needs to be proven correct with regard to
property φ, not in all the executions of the environment, but only in those executions that
are rational with regard to the objectives of the environment.

There are several ways to model rationality. For instance, a famous model of rational
behavior for the agents is the concept of Nash equilibrium (NE) [39]. Some promising
exploratory works, based on the concept of NE, exist in the literature, like in verification of
non-repudiation and fair exchange protocols [35, 23], planning of self-driving cars interacting
with human drivers [45], or the automatic verification of an LTL specification in multi-agent
systems that behave according to an NE [32]. Another classical approach is to model the
environment as a single agent with multiple objectives. In that setting, trade-offs between
(partially) conflicting objectives need to be made, and a rational agent will behave in a
way to satisfy a Pareto-optimal set of its objectives. Pareto-optimality and multi-objective
formalisms have been considered in computer science, see for instance [41] and references
therein, and in formal methods, see e.g. [2, 12].

Nevertheless, we have only scratched the surface and there is a lack of a general theoretical
background for marrying concepts from game theory and formal verification. This is the
motivation of our work. We consider the setting in which a designer specifies the behavior of
a system and identifies its objective Ω0 as well as the multiple objectives {Ω1, . . . ,Ωt} of the
environment in a underlying game arena G. The behavior of the system is usually modeled by
the designer using a deterministic Moore machine that describes the strategy of the system
opposite the environment. The designer can also use the model of nondeterministic Moore
machine in order to describe a set of multiple possible strategies for the system instead of
some single specific strategy. Given a strategy σ0 for the system, the environment being
rational only executes behaviors induced by σ0 which result in a Pareto-optimal payoff with
regard to its set of objectives {Ω1, . . . ,Ωt}. When the Moore machine M is deterministic,
the Pareto-rational verification (PRV) problem asks whether all behaviors that are induced
by the machine M in G and that are Pareto-optimal for the environment all satisfy the
objective Ω0 of the system (a toy example giving intuition on this problem is proposed in
the full version). When the Moore machine is nondeterministic, the universal PRV problem
asks whether for all strategies σ0 of the system described by M, all behaviors induced by
σ0 that are Pareto-optimal for the environment satisfy Ω0. The latter problem is a clear
generalization of the former and is conceptually more challenging, as it asks to verify the
correctness of the possibly infinite set of strategies described by M. The universal PRV
problem is also a well motivated problem, as typically, in the early stages of a development
cycle, not all implementation details are fixed, and the use of nondeterminism is prevailing.
In this last setting, we want to guarantee that a positive verification result is transferred to
all possible implementations of the nondeterministic model of the system.

Technical Contributions. We introduce the Pareto-rational verification (PRV) problem and
its universal variant. The objective Ω0 of the system and the set {Ω1, . . . ,Ωt} of objectives
of the environment are ω-regular objectives. We consider several ways of specifying these
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Table 1 Summary of complexity results for the PRV problem and UPRV problem.

Objective PRV problem complexity UPRV problem complexity
Parity co-NP-complete (Theorem 5) PSPACE, NP-hard, co-NP-hard (Theorem 10)
Boolean Büchi Π2P-complete (Theorem 5) PSPACE-complete (Theorem 10)
LTL PSPACE-complete (Theorem 15) 2EXPTIME-complete (Theorem 14)

objectives: either by using parity conditions (a canonical way to specify ω-regular objectives),
Boolean Büchi conditions (a generic way to specify Büchi, co-Büchi, Streett, Rabin, and other
objectives), or using LTL formulas. Our technical results, some of which are summarized in
Table 1, are as follows.

First, we study the complexity class of the PRV problem. We prove that it is co-NP-
complete for parity objectives, Π2P-complete for Boolean Büchi objectives, and PSPACE-
complete for LTL objectives.

Second, we consider the universal variant of the PRV problem. We prove that it is
in PSPACE and both NP-hard and co-NP-hard for parity objectives, PSPACE-complete for
Boolean Büchi objectives, and 2EXPTIME-complete for LTL objectives.

Third, we establish the fixed-parameter tractability (FPT) of the universal PRV problem
where the parameters are the number t of objectives of the environment as well as the highest
priorities used in the parity objectives or the size of the formulas used in the Boolean Büchi
objectives. For the particular case of the PRV problem with parity conditions, the parameters
reduce to t only. Since this number is expected to be limited in practice, our result is of
practical relevance. We additionally provide an alternative, possibly more efficient in practice,
FPT algorithm for solving the PRV problem which exploits counterexamples and builds an
under-approximation of the set of Pareto-optimal payoffs on demand.

Related Work. The concept of nondeterminism for strategies has been studied in the
particular context of two-player zero-sum games where one player is opposed to the other
one, under the name of permissive strategy, multi-strategy, or nondeterministic strategy
in [5, 9, 10, 38, 44]. Those works concern synthesis and not verification.

Several fundamental results have been obtained on multi-player games played on graphs
where the objectives of the players are Boolean or quantitative (see e.g. the book chapter [31]
or the surveys [11, 13, 14]). Several notions of rational behavior of the players have been
studied such as NEs, subgame perfect equilibria (SPEs) [46], secure equilibria [21], or profiles
of admissible strategies [6]. The existing results in the literature are mainly focused on the
existence of equilibria or the synthesis of such equilibria when they exist. Multidimensional
energy and mean-payoff objectives for two-player games played on graphs have been studied
in [20, 49, 50] and the Pareto curve of multidimensional mean-payoff games has been studied
in [12]. Two-player games with heterogeneous multidimensional quantitative objectives have
been investigated in [16].

Recent results concern the synthesis of strategies for a system in a way to satisfy its
objective when facing an environment that is assumed to behave rationally with respect to
the objectives of all his components. In [29, 36, 37], the objectives are expressed as LTL
formulas and the considered models of rationality are NEs or SPEs. Algorithmic questions
about this approach are studied in [24] for different types of ω-regular objectives. In [18],
the objectives are ω-regular and the environment is assumed to behave rationally by playing
in a way to obtain Pareto-optimal payoffs with respect to its objectives. We consider the
concepts of [18] as a foundation for Pareto-rational verification.
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33:4 Pareto-Rational Verification

The previously mentioned results all deal with the existence or the synthesis of solutions.
Rational verification (instead of synthesis) is studied in [32] (see also the survey [1]), where
the authors study how to verify a given specification for a multi-agent system with agents
that behave rationally according to an NE when all objectives are specified by LTL formulas.
They prove that this problem is 2EXPTIME-complete and design an algorithm that reduces
this problem to solving a collection of parity games. This approach is implemented in the
Equilibrium Verification Environment tool. In this paper, we study Pareto-optimality as a
model of rationality instead of the concepts of NE or SPE. Our framework is more tractable
as the PRV problem is PSPACE-complete for LTL specifications.

2 Definitions and the Pareto-Rational Verification Problem

We start by recalling several classical concepts of game theory, and in particular the model
of (nondeterministic) Moore machines. We then present the verification problem studied in
this paper and illustrate it on an example. We end the section by discussing the complexity
of useful checks performed in several algorithms throughout this paper.

2.1 Definitions
Game Arena and Plays. A game arena is a tuple G = (V, V0, V1, E, v0) where (V,E) is a
finite directed graph such that: (i) V is the set of vertices and (V0, V1) forms a partition
of V where V0 (resp. V1) is the set of vertices controlled by Player 0 (resp. Player 1), (ii)
E ⊆ V × V is the set of edges such that each vertex v has at least one successor v′, i.e.,
(v, v′) ∈ E, and (iii) v0 ∈ V is the initial vertex. We denote by |G| the size of G. A sub-arena
G′ with a set V ′ ⊆ V of vertices and initial vertex v′

0 ∈ V ′ is a game arena defined from G

as expected. A single-player game arena is a game arena where V0 = ∅ and V1 = V .
A play in a game arena G is an infinite sequence of vertices ρ = v0v1 · · · ∈ V ω such that

it starts with the initial vertex v0 and (vj , vj+1) ∈ E for all j ∈ N. Histories in G are finite
non-empty sequences h = v0 . . . vj ∈ V + defined similarly. The set of plays in G is denoted
by PlaysG and the set of histories (resp. histories ending with a vertex in Vi) is denoted by
HistG (resp. HistG,i). Notations Plays, Hist, and Histi are used when G is clear from the
context. The set of vertices occurring (resp. occurring infinitely often) in a play ρ is written
Occ(ρ) (resp. Inf(ρ)).

Strategies and Moore Machines. A strategy σi for Player i is a function σi : Histi → V

assigning to each history hv ∈ Histi a vertex v′ = σi(hv) such that (v, v′) ∈ E. A play
ρ = v0v1 . . . is consistent with σi if vj+1 = σi(v0 . . . vj) for all j ∈ N such that vj ∈ Vi.
Consistency is naturally extended to histories. The set of plays (resp. histories) consistent
with strategy σi is written Playsσi

(resp. Histσi
).

A strategy σi for Player i is finite-memory [30] if it can be encoded by a deterministic
Moore machine M = (M,m0, αU , αN ) where M is the finite set of states (the memory of the
strategy), m0 ∈M is the initial memory state, αU : M ×V →M is the update function, and
αN : M×Vi → V is the next-move function. Such a machine defines the strategy σi such that
σi(hv) = αN (α̂U (m0, h), v) for all histories hv ∈ Histi, where α̂U extends αU to histories as
expected. In this paper, we consider the broader notion of nondeterministic Moore machine
M (see e.g. [5]) with a next-move function αN : M × Vi → 2V . Such a machine embeds a
(possibly infinite) set of strategies σi for Player i such that σi(hv) ∈ αN (α̂U (m0, h), v) for all
histories hv ∈ Histi

1. We denote by JMK the set of all strategies defined by M. The size of
M is equal to the number |M | of its memory states. Example 1 illustrates these concepts.

1 Notice that this definition is different from simply making the machine deterministic by fixing a single
next vertex v′ ∈ αN (m, v) for each m ∈ M and v ∈ Vi.
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When M is a deterministic Moore machine with |M | = 1, then it defines a memoryless
strategy σi where σi(hv) = σi(h′v) for all hv, h′v ending with the same vertex v ∈ Vi. When
M is a nondeterministic Moore machine with |M | = 1 and such that αN (m0, v) = {v′ |
(v, v′) ∈ E}, then JMK is exactly the set of all possible strategies for Player i.

Objectives. An objective for Player i is a set of plays Ω ⊆ Plays. A play ρ satisfies the
objective Ω if ρ ∈ Ω. The opposite objective of Ω is written Ω = Plays \ Ω. We consider the
following objectives in this paper:

Let c : V → {0, . . . , d} be a function called a priority function which assigns an integer
to each vertex in the arena (we assume that d is even). The set of priorities occurring
infinitely often in a play ρ is Inf(c(ρ)) = {c(v) | v ∈ Inf(ρ)}. The parity objective
Parity(c) = {ρ ∈ Plays | min(Inf(c(ρ))) is even} asks that the minimum priority visited
infinitely often be even. The opposite objective Ω of a parity objective Ω is again a parity
objective (the priority function c′ of Ω is such that c′(v) = c(v) + 1 for all v ∈ V ).
Given m sets T1, . . . , Tm such that Ti ⊆ V , i ∈ {1, . . . ,m}, and ϕ a Boolean formula
over the set of variables X = {x1, . . . , xm}, the Boolean Büchi2 [27, 17] objective
BooleanBüchi(ϕ, T1, . . . , Tm) = {ρ ∈ Plays | ρ satisfies (ϕ, T1, . . . , Tm)} is the set of plays
whose valuation of the variables in X satisfy formula ϕ. Given a play ρ, its valuation
is such that xi = 1 if and only if Inf(ρ) ∩ Ti ̸= ∅ and xi = 0 otherwise. That is, a play
satisfies the objective if the Boolean formula describing the sets to be visited (in)finitely
often by a play is satisfied. It is assumed that negations only appear in literals of ϕ and
we denote by |ϕ| the size of ϕ equal to the number of symbols in {∧,∨,¬} ∪X in ϕ.
The opposite objective Ω of a Boolean Büchi objective Ω is again a Boolean Büchi
objective (the formula ¬ϕ of Ω is obtained from ϕ by replacing each symbol ∨ (resp. ∧)
by ∧ (resp. ∨) and each literal by its negation).

We recall that parity and Boolean Büchi objectives Ω are prefix-independent, i.e., whenever
ρ ∈ Ω, then all suffixes of ρ also satisfy Ω.

Zero-Sum Games. A two-player zero-sum game G = (G,Ω) is a game on a game arena G
where Player 0 has objective Ω and Player 1 has the opposite objective Ω. Given an initial
vertex v0, we say that a player is winning from v0 if he has a strategy such that all plays
starting with v0 and consistent with this strategy satisfy his objective. We assume that the
reader is familiar with this concept, see e.g. [30].

Lattices and Antichains. A complete lattice is a partially ordered set (S,≤) where S is a
set, ≤ ⊆ S × S is a partial order on S, and for every pair of elements s, s′ ∈ S, their greatest
lower bound and their least upper bound both exist. A subset A ⊆ S is an antichain if all of
its elements are pairwise incomparable with respect to ≤. Given T ⊆ S and an antichain
A ⊆ S, we denote by ⌈T ⌉ the set of maximal elements of T (which is thus an antichain) and
by ↓<A the set of all elements s ∈ S for which there exists some s′ ∈ A such that s < s′.
Given two antichains A,A′ ⊆ S, we write A ⊑ A′ when for all s ∈ A, there exists s′ ∈ A′

such that s ≤ s′, and we write A ⊏ A′ when A ⊑ A′ and A ̸= A′.

2.2 Pareto-Rational Verification Problem
We start by recalling the class of two-player games considered in this paper and the notion
of payoffs in those games.

2 This objective is also called Emerson-Lei objective.
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33:6 Pareto-Rational Verification

Stackelberg-Pareto Games. A Stackelberg-Pareto game (SP game) G = (G,Ω0,Ω1, . . . ,Ωt)
is composed of a game arena G, an objective Ω0 for Player 0, and t ≥ 1 objectives Ω1, . . . ,Ωt

for Player 1 [18]. An SP game where all objectives are parity (resp. Boolean Büchi) objectives
is called a parity (resp. Boolean Büchi) SP game.

Payoffs. The payoff of a play ρ ∈ Plays is the vector of Booleans pay(ρ) ∈ {0, 1}t such that
for all i ∈ {1, . . . , t}, payi(ρ) = 1 if ρ ∈ Ωi, and payi(ρ) = 0 otherwise. Notice that we omit
to include the objective of Player 0 when discussing the payoff of a play. Instead we say
that a play ρ is won by Player 0 if ρ ∈ Ω0 and we write won(ρ) = 1, otherwise it is lost by
Player 0 and we write won(ρ) = 0. We write (won(ρ), pay(ρ)) for the extended payoff of ρ. A
payoff p (resp. extended payoff (w, p)) is realizable if there exists a play ρ ∈ Plays such that
pay(ρ) = p (resp. (won(ρ), pay(ρ)) = (w, p)); we say that ρ realizes p (resp. (w, p)).

We consider the following partial order on payoffs. Given two payoffs p = (p1, . . . , pt) and
p′ = (p′

1, . . . , p
′
t) such that p, p′ ∈ {0, 1}t, we say that p′ is larger than p and write p ≤ p′ if

pi ≤ p′
i for all i ∈ {1, . . . , t}. Moreover, when it also holds that pi < p′

i for some i, we say
that p′ is strictly larger than p and we write p < p′. Notice that the pair ({0, 1}t,≤) is a
complete lattice with size 2t and that the size of any antichain on ({0, 1}t,≤) is thus upper
bounded by 2t.

Let G = (G,Ω0,Ω1, . . . ,Ωt) be an SP game and let σ0 be a strategy of Player 0. We can
consider the set of payoffs of plays consistent with σ0 which are Pareto-optimal, i.e., maximal
with respect to ≤. We write this set Pσ0 = max{pay(ρ) | ρ ∈ Playsσ0

}. Notice that this set
is an antichain. In this paper, we study the following verification problem.

▶ Problem. Let G be an SP game and let M be a nondeterministic Moore machine for
Player 0. The universal Pareto-rational verification problem (UPRV problem) is to decide
whether for all σ0 ∈ JMK, it holds that every play ρ ∈ Playsσ0 such that pay(ρ) ∈ Pσ0 satisfies
the objective of Player 0. WhenM is deterministic, we consider the single strategy σ0 ∈ JMK
and speak about the Pareto-rational verification problem (PRV problem).

The UPRV problem models the situation where the system may employ one of several
possible strategies in a nondeterministic manner and we therefore want to verify that all
of them are correct. We do so in the context where the environment is rational and only
executes behaviors which result in a Pareto-optimal payoff with regard to its set of objectives.
In the following sections, we study the complexity of the (U)PRV problem in terms of |G|
the size of the game arena, |M | the size of the Moore machine, t the number of objectives
of Player 1, max di the maximum of all maximum priorities di according to each parity
objective Ωi in case of parity SP games, and max |ϕi| the maximum of all sizes |ϕi| such that
ϕi is the formula for objective Ωi in case of Boolean Büchi SP games.

▶ Example 1. Consider the parity SP game G with arena G depicted in Figure 1 (left) in
which Player 1 has t = 3 objectives [18]. The vertices of Player 0 (resp.Player 1) are depicted
as circles (resp. squares)3. We do not explicitly define the parity objective Ω0 of Player 0
nor the three parity objectives of Player 1. Instead, the extended payoff of plays reaching
vertices from which they can only loop is displayed in the arena next to those vertices, and
we set the extended payoff of play v0v2(v3v5)ω to (0, (0, 1, 0)).

3 This convention is used throughout this paper.
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m0 m1

V \ {v3}

v3/v5

V \ {v3}

v3/v7

m0 m1

V \ {v3}

v3/{v5}

V \ {v3}

v3/{v5, v7}

m0 m1 m2

V \ {v3}

v3/{v5}

V \ {v3}

v3/{v5, v7}

V \ {v3}

v3/{v7}

v0

v1

v2

v3

v4

v5

v7

v6(0, (0, 0, 1))

(0, (1, 0, 0))

(1, (1, 1, 0))

(1, (0, 1, 1))

Figure 1 A parity SP game (left), one deterministic Moore machine Mt and two nondeterministic
Moore machines Mc and Mb (respectively top, center, and bottom right).

Consider the memoryless strategy σ0 of Player 0 such that he chooses to always move to v5
from v3. The set of payoffs of plays consistent with σ0 is {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1)}
and the set of those that are Pareto-optimal is Pσ0 = {(1, 0, 0), (0, 1, 1)}. Notice that play
ρ = v0v2v

ω
4 is consistent with σ0, has payoff (1, 0, 0) ∈ Pσ0 and is lost by Player 0. Together

with G, strategy σ0 is therefore a negative instance of the PRV problem.
Let us now consider the finite-memory strategy σ′

0 such that σ′
0(v0v2v3) = v5 and

σ′
0(v0v2v3v5v3) = v7. Contrarily to the previous strategy, G and σ′

0 constitute a posi-
tive instance of the PRV problem. Indeed, the set of Pareto-optimal payoffs is Pσ′

0
=

{(0, 1, 1), (1, 1, 0)} and Player 0 wins every play consistent with σ′
0 whose payoff is in this set.

A deterministic Moore machine Mt for σ′
0 is depicted in Figure 1 (top right). It has two

memory states with state m1 indicating that v3 has been visited. Each edge from m to m′ is
labeled by v/v′ with an optional v′ such that αU (m, v) = m′ and αN (m, v) = v′ if v ∈ V0.

Finally, we provide two nondeterministic Moore machines in Figure 1 (center right and
bottom right). Each edge from m to m′ is now labeled by v/T such that αN (m, v) = T ⊆ V
when v ∈ V0. Let us show that the SP game G with machine Mc (resp. machine Mb) is a
negative (resp. positive) instance of the UPRV problem.

One can check that the memoryless strategy σ0 mentioned above (always move to v5
from v3) belongs to the set JMcK. It follows that G and Mc are a negative instance of
the UPRV problem. Notice that all the other strategies σk

0 , k ≥ 1, of JMcK are such that
σk

0 (hv3) = v5 except when h = v0v2(v3v5)k in which case σk
0 (hv3) = v7 (the strategy allows

to cycle between v3 and v5 k times before dictating that v7 be visited).
The machine Mb has three memory states such that m1 (resp. m2) records one visit

(resp. at least two visits) to v3. The set JMbK contains exactly two strategies: one is
the finite-memory strategy σ′

0 given before and the other one is the strategy σ′′
0 such that

σ′′
0 (v0v2v3) = σ′′

0 (v0v2v3v5v3) = v5 and σ′′
0 (v0v2v3(v5v3)2) = v7. One can verify that G and

Mb are a positive instance of the UPRV problem. ⌟

▶ Remark 2. In the sequel, we often consider the Cartesian product G ×M with initial
vertex (v0,m0) of the arena G of G with the (nondeterministic) Moore machine M for
Player 0. When M is nondeterministic, this finite graph G×M is a two-player game arena
(as the vertices of Player 0 may have several successors). The strategies σ′

0 for Player 0 in
this product correspond exactly to the strategies σ0 ∈ JMK. With this in mind, we can
reformulate the UPRV problem to take a game arena as input. Given G′ = G×M, the UPRV
problem is to decide whether for all strategies σ′

0 of Player 0 in G′, every play ρ ∈ Playsσ′
0

such that pay(ρ) ∈ Pσ′
0

satisfies the objective of Player 0. When M is deterministic, this

CONCUR 2022



33:8 Pareto-Rational Verification

product is a finite graph whose infinite paths, starting from the initial vertex, are exactly the
plays consistent with the single strategy σ0 ∈ JMK. This graph can be seen as a single-player
game arena G′ (as every vertex of Player 0 only has a single successor). In that setting,
given a single-player arena G′ = G×M, the PRV problem is to decide whether every play
ρ ∈ PlaysG′ such that pay(ρ) ∈ max{pay(ρ) | ρ ∈ PlaysG′} satisfies the objective of Player 0.

Payoff Realizability and Lassoes. In order to study the (U)PRV problem, we need to
perform specific checks on payoffs as described in the next proposition (the proof of which
can be found in the full version).
▶ Proposition 3. Let G = (G,Ω1, . . . ,Ωt) be an SP game and let p (resp. (w, p)) be a payoff
(resp. extended payoff). The existence of a play ρ realizing payoff p (resp. extended payoff
(w, p)) can be decided with the following complexities.

For parity objectives: in time polynomial in |G|, t, and max di.
For Boolean Büchi objectives: in time polynomial in |G|, and exponential in t and max |ϕi|.

Checking whether a realizable payoff p is Pareto-optimal is decided with the same complexities.
We also need the next property which shows that when a play satisfies a parity or a

Boolean Büchi objective, there exists another such play that is a lasso of polynomial size.
▶ Lemma 4 ([8]). For any play ρ ∈ Plays, there exists a lasso ρ′ = ghω such that ρ and ρ′

start with the same vertex, Occ(ρ) = Occ(ρ′), Inf(ρ) = Inf(ρ′), and |gh| is quadratic in |G|.

Related Synthesis Problem. Our verification problem is related to the Stackelberg-Pareto
Synthesis problem introduced in [18]. This synthesis problem asks, given a two-player SP
game, whether there exists a strategy σ0 for Player 0 such that every play in Playsσ0 with a
Pareto-optimal payoff satisfies the objective of Player 0. This problem is solved in [18] for
parity and reachability objectives. It is shown that the problem is NEXPTIME-complete, and
that finite-memory strategies are sufficient for Player 0 to have a solution σ0 to the problem.

3 Complexity Class of the PRV problem

In this section, we provide the complexity class of the PRV problem for both parity SP
games and Boolean Büchi SP games. The complexity class of the UPRV problem is studied
in Section 4. In this whole section, we assume that an instance of the PRV problem is an SP
game with a single-player game arena (see Remark 2). This is not problematic with respect
to the algorithmic complexities since the size of the single-player game arena is |G| · |M |.
▶ Theorem 5. The PRV problem is co-NP-complete for parity SP games and Π2P-complete
for Boolean Büchi SP games.

We now detail the arguments used to show the co-NP-completeness for parity SP games,
and refer the reader to the full version for the completeness result for Boolean Büchi SP
games.

Membership to co-NP. The co-NP-membership stated in Theorem 5 is easily proved by
showing that the complement of the PRV problem is in NP. Given a single-player SP game
G, we guess a payoff p ∈ {0, 1}t, and we check (i) whether p is realizable and Pareto-optimal,
and (ii) whether there exists a play ρ with payoff p which is lost by Player 0. In the case of
parity objectives, those two checks can be performed in polynomial time by Proposition 3.

The proof of co-NP-hardness is more involved. In order to show this result, we provide a
reduction from the co-3SAT problem to the PRV problem.
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G1
v1

x1 ¬x1

. . . . . .

xm ¬xm

S1
s1

x1 ¬x1

. . . . . .

xm ¬xm

Sr
sr

x1 ¬x1

. . . . . .

xm ¬xm

G2v2

...

v0

Figure 2 The single-player arena G used in the reduction from co-3SAT for parity objectives.

The co-3SAT Problem. We consider a formula ψ = D1 ∧ · · · ∧Dr in 3-Conjunctive Normal
Form (3CNF) consisting of r clauses, each containing exactly 3 literals over the set of variables
X = {x1, . . . , xm}. We assume that each variable x occurs as a literal ℓ ∈ {x,¬x} in at least
one clause of ψ. The satisfiability problem, called 3SAT, is to decide whether there exists a
valuation of the variables in X such that the formula ψ evaluates to true. This problem is
well-known to be NP-complete [25, 34]. We can consider the complement of this problem,
which is to decide for such a formula ψ whether all valuations of the variables in X falsify
the formula i.e., make at least one of the clauses evaluate to false. This problem, called
co-3SAT, being the complement of an NP-complete problem, is co-NP-complete [40].

Intuition of the Reduction. Given an instance of co-3SAT, we create a parity SP game G
with a single-player game arena G consisting of two sub-arenas G1 and G2 reachable from
the initial vertex v0 as depicted in Figure 2. The intuition behind this construction is the
following. A play in the arena starts in v0 and will either enter G1 through v1 and stay in
that sub-arena forever or enter G2 through v2, visit some vertex si with i ∈ {1, . . . , r}, and
stay forever in the corresponding sub-arena Si. The objectives are devised such that a payoff
contains one objective per literal of X and one objective per literal, per clause of ψ. A play
in G1 has a payoff corresponding to a valuation of X and the literals in the clauses of ψ
satisfied by that valuation. In addition, the objective of Player 0 is not satisfied in those
plays. Therefore, it must be the case that the payoffs of plays in G1 are not Pareto-optimal
in order for the instance of the PRV problem to be positive. This is only the case when the
instance of co-3SAT is also positive due to the fact that plays in G2, which all satisfy the
objective of Player 0, then have payoffs strictly larger than that of plays in G1. This is not
the case if some play in G1 corresponds to a valuation of X which satisfies ψ.

Structure of a Payoff. We now detail the objectives used in the reduction and the corre-
sponding structure of a payoff in G. Player 0 has a single parity objective Ω0. Player 1 has
1 + 2 ·m+ 3 · r parity objectives (assuming each clause is composed of exactly 3 literals).
The payoff of a play in G therefore consists in a vector of 1 + 2 ·m+ 3 · r Booleans for the
following objectives:
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(Ω1,Ωx1 ,Ω¬x1 , . . . ,Ωxm
,Ω¬xm

,Ωℓ1,1 ,Ωℓ1,2 ,Ωℓ1,3 , . . . ,Ωℓr,1 ,Ωℓr,2 ,Ωℓr,3).

The objective Ω0 is equal to objective Ω1 = Parity(c) with c(v) = 2 if v ∈ G2 and c(v) = 1
otherwise. It is direct to see that these objectives are only satisfied for plays in G2. We
define the objective Ωx = Parity(c) (resp. Ω¬x = Parity(c′)) with c(x) = 2 and c(¬x) = 1
(resp. c′(¬x) = 2 and c′(x) = 1) for the vertices labelled x and ¬x in G1 and G2, and such
that every other vertex has priority 2 according to c (resp. c′). Objective Ωx (resp. ¬Ωx)
is satisfied if and only if vertex x (resp. ¬x) is visited infinitely often and ¬x (resp. x) is
not. If both x and ¬x are visited infinitely often, neither Ωx not Ω¬x are satisfied. These
objectives are used to encode valuations of X into payoffs. The objective Ωℓi,j corresponds
to the objective for the jth literal of the ith clause of ψ, written ℓi,j ∈ {xk,¬xk} for some
k ∈ {1, . . . ,m}, we define the priority function for this objective later for each sub-arena.

Payoff of Plays Entering Sub-Arena G1. We define the priority function c of objective
Ωℓi,j in G1 such that c(ℓi,j) = 2 and c(¬ℓi,j) = 1 for vertices labeled ℓi,j and ¬ℓi,j in G1.
Notice that a play in G1 corresponds to repeatedly making the choice of visiting xi or ¬xi

for i ∈ {1, . . . ,m}. We call plays which visit both xi and ¬xi infinitely often for some i
unstable plays and those which visit infinitely often either xi or ¬xi for each i stable plays.
We introduce the following lemma on the stability of plays in G1 (proved in the full version).

▶ Lemma 6. Unstable plays in G1 do not have a Pareto-optimal payoff.

In the sequel, we therefore only consider stable plays ρ in G1. The objective Ω0 of Player 0
and Ω1 of Player 1 are not satisfied in ρ and such a play satisfies either the objective Ωxi

or Ω¬xi
for each xi ∈ X. The part of the payoff of ρ for these objectives can be seen as

a valuation of the variables in X, expressed as a vector of 2 ·m Booleans. The objective
Ωℓi,j is satisfied in the payoff of ρ if and only if the literal ℓi,j is satisfied by that valuation.
That is if either ℓi,j = xk and Ωxk

is satisfied or ℓi,j = ¬xk and Ω¬xk
is satisfied, for xk ∈ X.

Given a positive instance of the co-3SAT problem, it holds that none of the valuations of X
satisfy the formula ψ. Therefore, since stable plays in G1 encode valuations of X and the
corresponding satisfied literals of the clauses of ψ, the next lemma holds (see full version).

▶ Lemma 7. Given a positive instance of the co-3SAT problem and any stable play ρ in G1,
there exists a clause Di for i ∈ {1, . . . , r} such that Ωℓi,j is not satisfied in ρ for j ∈ {1, 2, 3}.

In order for the instance of the PRV problem to be positive in case of a positive instance
of co-3SAT, since plays in G1 do not satisfy the objective of Player 0, it must be the case
that the payoff of these plays are not Pareto-optimal when considering the whole arena G.
Therefore, given any play in G1, there must exists a play with a strictly larger payoff in G2
which also satisfies the objective of Player 0.

Payoff of Plays Entering Sub-Arena G2. We define the priority function c of objective
Ωℓi,j in G2 such that c(si) = 1 and c(v) = 2 for v ̸= si in G2. Therefore, any play entering
Si satisfies every objective for the literals of the clauses of ψ, except for objectives Ωℓi,j ,
j ∈ {1, 2, 3}. After entering a sub-arena Sj , plays in G2 can visit infinitely often either or
both xi and ¬xi for i ∈ {1, . . . ,m} and we therefore introduce the following lemma on the
stability of plays in G2, the proof of which is given in the full version.
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▶ Lemma 8. Unstable plays in G2 do not have a Pareto-optimal payoff.

We therefore only consider stable plays in G2. Such a play ρ satisfies either the objective
Ωxi

or Ω¬xi
for each xi ∈ X. The objectives corresponding to the literals in the clauses of ψ

which are satisfied in ρ only depend on the sub-arena Sj entered by ρ. It can easily be shown
that every such objective is satisfied by ρ except for Ωℓj,1 ,Ωℓj,2 and Ωℓj,3 for clause Dj .

Correctness. Finally, we briefly discuss the correctness of this reduction (a full proof is
provided in the full version). In case of a positive instance of the co-3SAT problem, for every
valuation of X (and therefore every stable play ρ in G1), this valuation does not satisfy some
clause Di of ϕ (and therefore ρ does not satisfy any objective Ωℓi,j by Lemma 7). It follows
that there exists a play with a strictly larger payoff in G2 given the form of the payoff of
plays in G2 discussed above (and the fact that they satisfy objective Ω1 while ρ does not).
In case of a negative instance of co-3SAT, this is not the case as some stable play in G1
corresponds to a valuation which satisfies ϕ and therefore satisfies at least one objective for
each clause Di. As plays in G2 do not satisfy any objective for some clause, G1 contains a
Pareto-optimal play lost by Player 0, and the instance of the PRV problem is negative.

▶ Remark 9. As stated in Theorem 5, the lower bound for the PRV problem is stronger for
Boolean Büchi objectives than for parity objectives. We can show that this difference in
complexity is even more apparent if we consider the following variant of the complement
of the PRV problem in which we fix a payoff for Player 1: given a single-player SP game
and a payoff p, decide whether there exists a play with payoff p not satisfying Ω0 and p is
Pareto-optimal. While this problem is in P for parity SP games (indeed p does not need to
be guessed anymore), it is BH2-complete for Boolean Büchi SP games. We refer the reader
to the full version for details about this additional complexity result.

4 Complexity Class of the UPRV problem

We study in this section the complexity class of the UPRV problem for parity and Boolean
Büchi SP games. Our results are summarized in the following theorem.

▶ Theorem 10. The UPRV problem is
PSPACE-complete for Boolean Büchi SP games,
in PSPACE, NP-hard and co-NP-hard for parity SP games.

We show the PSPACE-membership stated in Theorem 10 in the following proposition.

▶ Proposition 11. The UPRV problem is in PSPACE for both Boolean Büchi SP games and
parity SP games.

Proof. Let G be an SP game and M be a nondeterministic Moore machine for Player 0. By
Remark 2, the strategies of JMK are exactly the strategies of the product G′ = G×M. In
the sequel, we will shift from G to G′ and conversely without mentioning it explicitly.

To prove Proposition 11, it is enough to show that the complement of the UPRV
problem is in NPSPACE, since NPSPACE = PSPACE and as the PSPACE class is closed under
complementation. The complement of the UPRV problem is to decide whether there exists a
strategy σ0 ∈ JMK and a play ρ ∈ Playsσ0 such that pay(ρ) ∈ Pσ0 and ρ is lost by Player 0.

Our algorithm works as follows in G′ (we detail its correctness and complexity later):
1. guess a lasso ρ′ = g′h′ω in PlaysG′ such that g′h′ has polynomial size,
2. check that ρ′ is lost by Player 0,
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3. check that for each vertex v of ρ′ controlled by Player 1, Player 0 is winning from v in the
two-player zero-sum game H = (G′,Ω′) with arena G′ and objective Ω′ = {ρ∗ ∈ PlaysG′ |
¬(pay(ρ∗) > pay(ρ′))}.

Let us prove that this algorithm is correct. (i) Assume first that there exists a strategy
σ0 ∈ JMK and a play ρ ∈ Playsσ0

such that pay(ρ) ∈ Pσ0 and ρ is lost by Player 0. We see
this play ρ as a play in G′. By Lemma 4 there exists a lasso ρ′ = g′h′ω of polynomial size
in G′ which realises the same extended payoff and such that Occ(ρ) = Occ(ρ′). This lasso
is what is guessed in step 1 of the algorithm. By our assumptions on ρ, we know that it
satisfies the check of step 2. It remains to explain why the second check also succeeds in
step 3. From each vertex v of ρ′ (and thus of ρ) controlled by Player 1, Player 0 is winning
in H thanks to his strategy σ0. Indeed, any play ρ′

1 ∈ PlaysG′ consistent with σ0 cannot
have a payoff strictly larger than pay(ρ′) ∈ Pσ0 , and parity and Boolean Büchi objectives
are prefix-independent. (ii) Assume now that the two checks of our algorithm succeed for
the guessed lasso ρ′. Let us define a strategy σ0 for Player 0 in G′ (which is also a strategy
σ0 ∈ JMK) as follows: first we define σ0 in a way to produce play ρ′; second after each history
hvv′ such that hv is prefix of ρ′ and hvv′ is not (meaning that v belongs to Player 1), σ0
acts as the winning strategy of Player 0 from v in H. We have thus proved that there exist a
strategy σ0 ∈ JMK and a play ρ′ ∈ Playsσ0 such that pay(ρ′) ∈ Pσ0 and ρ′ is lost by Player 0.

Let us now show that our nondeterministic algorithm executes in polynomial space. Step 1
requires polynomial space to store g′h′. The check of step 2 requires to verify that ρ′ ̸∈ Ω0
such that Ω0 is either a parity or a Boolean Büchi objective. This can be done by looking
at the cycle h′ in polynomial space. Let us now study step 3. We are going to show that
H = (G′,Ω′) is a zero-sum game with a Boolean Büchi objective Ω′, known to be solvable in
PSPACE [33]. Let us denote by p = (p1, . . . , pt) the payoff of ρ′. The objective Ω′ is equal to( ⋂

pi=0
Ωi

)
∪

( ⋃
pi=1
pj=0

(
Ωi ∩ Ωj

))
(1)

where the the first disjunct expresses plays with payoffs less than or equal to p and the
second disjunct expresses plays with payoffs incomparable with p. Recall that any parity
objective can be expressed as a Boolean Büchi objective using a formula of size O(d2) where
d is the highest priority in the parity objective (see e.g. [3]). Therefore, for both parity and
Boolean Büchi SP games, the objective Ω′ is a Boolean Büchi objective defined by a formula
of polynomial size. ◀

We now turn to the hardness results stated in Theorem 10. The co-NP hardness of the
UPRV problem for parity SP games is easily obtained from the co-NP hardness of the PRV
problem (Theorem 5). We consider the other hardness results in the following proposition.

▶ Proposition 12. The UPRV problem is NP-hard for parity SP games, and PSPACE-hard
for Boolean Büchi SP games.

We prove the NP-hardness for parity SP games and refer the reader to the full version
for the PSPACE-hardness for Boolean Büchi SP games. For this purpose, we reduce the
following co-NP-hard problem to an instance of the complement of the UPRV problem.

Generalized Parity Game. Let us consider a two-player zero-sum generalized parity game
(G,Ωa ∧Ωb) where the objective of Player 0 is a conjunction Ωa ∧Ωb of two parity objectives.
Deciding whether Player 0 has a winning strategy from a vertex v0 in G is co-NP-hard [22].
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v′
0g1 G

Figure 3 The arena G′ used in the reduction from zero-sum games with two parity objectives.

Intuition of the Reduction. Given a zero-sum generalized parity game (G,Ωa ∧ Ωb) and a
vertex v0, we construct an instance of the UPRV problem with the game arena G′ depicted
in Figure 3. In G′, the dashed box labeled G represents the arena of the zero-sum game
and we assume that the edge from v′

0 goes to v0 in G. Equivalently, the dashed box is
the Cartesian product of G and the nondeterministic machine M with one memory state
embedding all possible strategies of Player 0 (see Remark 2). Notice that given a play ρ′

of G′ reaching G, we can retrieve a corresponding play ρ from v0 in G. Any strategy σ0
of Player 0 in G′ is a strategy in JMK and the converse also holds. We will see that the
proposed construction is such that Player 0 has a winning strategy from v0 in (G,Ωa ∧Ωb) if
and only if the corresponding instance of the UPRV problem is negative.

Objectives. Player 0 has a single parity objective Ω0 and Player 1 has two parity objectives
Ω1 and Ω2. We first extend the priority function ca of Ωa (resp. cb of Ωb) to G′ such that
ca(g1) = ca(v′

0) = cb(g1) = cb(v′
0) = 1 and consider the corresponding objective Ω′

a (resp. Ω′
b)

in G′. Notice that Ω′
a = Ωa (resp. Ω′

b = Ωb) when considering only the plays of sub-arena
G in G′. We define the actual objectives used in the reduction as follows. Player 0 has
objective Ω0 = Parity(c) with a priority function c defined such that Ω0 is only satisfied in
plays reaching G. The first (resp. second) objective of Player 1 is such that Ω1 = Ω′

a (resp.
Ω2 = Ω′

b). Notice that objective Ω1 (resp. Ω2) is satisfied in plays reaching G if and only if
the objective Ωa (resp. Ωb) is not satisfied in those plays. The play v′

0g
ω
1 is consistent with

any strategy of Player 0 and has extended payoff (0, (0, 0)). Any play reaching G is of the
form ρ′ = v′

0ρ where ρ is a play in G starting from the initial vertex v0. The extended payoff
for such a play ρ′ is (1, (0, 0)) if ρ satisfies Ωa and Ωb; (1, (0, 1)) if ρ satisfies Ωa and not Ωb;
(1, (1, 0)) if ρ satisfies Ωb and not Ωa; and (1, (1, 1)) if ρ does not satisfy Ωa nor Ωb.

Correctness. If the instance of the UPRV problem is negative, it holds there exists a
strategy σ0 ∈ JMK such that some play in Playsσ0 has a Pareto-optimal payoff and is lost
by Player 0. Since the play v′

0g
ω
1 with payoff (0, 0) is the only one in G′ not to satisfy Ω0,

its payoff must be Pareto-optimal. It follows that all plays in G that are consistent with
σ0 have payoff (0, 0) and therefore satisfy the conjunction Ωa ∧ Ωb. Hence, σ0 is a winning
strategy for Player 0 from v0 in the zero-sum game (G,Ωa ∧ Ωb). Conversely, if Player 0 has
a winning strategy from v0 in (G,Ωa ∧ Ωb), it holds that this strategy is in JMK and such
that all consistent plays in G satisfy the conjunction Ωa ∧ Ωb and therefore has payoff (0, 0).
It is easily checked that the instance of the UPRV problem is negative.

5 Fixed-Parameter Complexity

In this section, we study the fixed-parameter complexity of the (U)PRV problem. We refer
the reader to [26] for the concept of fixed-parameter tractability (FPT). We recall that
given an SP game G = (G,Ω0, . . . ,Ωt), max di is the maximum of all maximum priorities di

according to each objective Ωi in case of parity SP games, and that max |ϕi| is the maximum
of all sizes |ϕi| such that each ϕi defines objective Ωi in case of Boolean Büchi SP games.
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▶ Theorem 13. The UPRV problem is in FPT
with parameters t and max di for parity SP games (with an exponential in t and max di),
with parameters t and max |ϕi| for Boolean Büchi SP games (with an exponential in t

and max |ϕi|).
The proof of this theorem uses a deterministic variant of the algorithm given in the proof

of Proposition 11. Instead of guessing a lasso, we loop over each possible payoff p for which
we test whether there exists a play ρ with payoff p not satisfying Ω0, and such that Player 0
has a winning strategy from each vertex v of ρ in the zero-sum game H = (G×M,Ω′) with
Ω′ defined in (1). Whether Player 0 is winning from v in H can be checked with an FPT
algorithm with parameter |ϕ′| (with an exponential in |ϕ′|) where ϕ′ defines the Boolean
Büchi objective Ω′ [17, 15].4 Details of the proof are given in the full version.

A direct corollary of Theorem 13 is that the PRV problem is also in FPT. Nevertheless,
we provide in the full version a simpler FPT algorithm for the PRV problem leading to an
improved complexity for parity SP games (with a sole exponential in t). A second, more
clever, variation is given in Algorithm 1 where instead of computing the antichain Pσ0 by
going through the entire lattice of payoffs, we compute an under-approximation (with respect
to ⊑) of Pσ0 on demand by using counterexamples. The algorithm systematically searches
for plays ρ losing for Player 0 and maintains an antichain A of realizable payoffs to eliminate
previous counterexamples. Initially, this antichain A is empty. A potential counterexample
is a play ρ losing for Player 0 and such that for all payoffs p of A, pay(ρ) is not strictly
smaller than p, that is, pay(ρ) ̸∈ ↓<A (line 3). When a potential counterexample ρ exists,
there are two possible cases. First, there exists a play ρ′ winning for Player 0 and such that
pay(ρ′) > pay(ρ) (line 4). The payoff of ρ′ is added to A and a new approximation A of Pσ0

is computed (by keeping only the maximal elements, line 5). Second, if such a play ρ′ does
not exist, then we have identified a counterexample (the play ρ), showing that the instance
of the PRV problem is negative (line 7). If there are no more potential counterexamples,
then the instance is positive (line 9), otherwise we iterate. This algorithm is guaranteed to
terminate as A ⊏ ⌈A ∪ {pay(ρ′)}⌉ in line 5. Algorithm 1 is shown to be correct and in FPT
in the full version of the paper, where we also evaluate it to show its efficiency in practice.

Algorithm 1 Counterexample-based algorithm for the PRV problem.

Input: A single-player SP game resulting from the Cartesian product of the arena G
of an SP game and a deterministic Moore machine M for Player 0.

Output: Whether the instance of the PRV problem is positive.
1 A← ∅
2 repeat
3 if ∃ρ ∈ Plays such that won(ρ) = 0 and pay(ρ) ̸∈ ↓<A then
4 if ∃ρ′ ∈ Plays such that won(ρ′) = 1 and pay(ρ′) > pay(ρ) then
5 A← ⌈A ∪ {pay(ρ′)}⌉
6 else
7 return False
8 else
9 return True

4 The FPT algorithm in [17] is linear in the number of symbols ∨, ∧ of ϕ′ and double exponential in the
number of variables of ϕ′. This complexity is improved in [15] by replacing the double exponential in
|ϕ′| by a single one.
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6 LTL Pareto-Rational Verification

We now show that when the objectives are expressed using Linear Temporal Logic (LTL)
formulas, the PRV problem retains the PSPACE-completeness of the LTL model-checking
problem, and the UPRV problem retains the 2EXPTIME-completeness of solving LTL games.
We do not investigate the fixed-parameter complexity in this context as the completeness to
PSPACE (resp. 2EXPTIME) already holds when Player 1 has a single objective.

LTL (Universal) Pareto-Rational Verification Problem. A labeled game arena Gλ is a
game arena where a labeling function λ : V → 2AP maps each vertex to a set of propositional
variables in AP . An LTL SP game G = (Gλ, ϕ0, ϕ1, . . . , ϕt) is composed of a labeled game
arena Gλ, an LTL formula ϕ0 for Player 0 and t ≥ 1 LTL formulas ϕ1, . . . , ϕt for Player 1.
The difference with regular SP games is thus that the goal of the players is expressed using
LTL formulas over the set of propositional variables AP . The payoff of plays in Gλ is defined
as expected. Given an LTL SP game, we consider the two verification problems described in
Section 2 and call them the LTL PRV problem and LTL UPRV problem.

▶ Theorem 14. The LTL UPRV problem is 2EXPTIME-complete.

Proof. We first prove that the LTL UPRV problem is in 2EXPTIME. Given an LTL SP game
G and a nondeterministic Moore machine M, we proceed as follows. We first perform the
Cartesian product G′ = Gλ×A0×A1×· · ·×At of the arena Gλ with a Deterministic Parity
Automaton (DPA) Ai for each LTL formula ϕi, i ∈ {0, . . . , t}. The size of each automaton is
at most double exponential in the size of its corresponding LTL formula, and the number of
priorities it uses is exponential [48, 42, 28]. We thus have a parity SP game G′ with arena G′

of double exponential size. We then use the FPT algorithm of Theorem 13 on this SP game G′,
which is polynomial in |G′| and exponential in the parameters t and max d′

i (the maximum
priority used in the parity objectives). Therefore this algorithm is polynomial in |Gλ|, single
exponential in t, and double exponential in the size of LTL formulas ϕi, i ∈ {0, . . . , t}. This
shows the 2EXPTIME-easyness.

Let us now prove the 2EXPTIME-hardness result by adapting the reduction of Proposi-
tion 12 for the case of the LTL UPRV problem.

We consider the problem of deciding whether Player 0 has a winning strategy from v0 in
a two-player zero-sum game (Gλ, ϕ) where the ϕ is the LTL objective of Player 0. This
problem is 2EXPTIME-complete [43].
Given such a zero-sum game (Gλ, ϕ) and a vertex v0, we construct an instance of the
UPRV problem on the same game arena G′ depicted in Figure 3. In this arena, G is
replaced by Gλ and both v′

0 and g1 are labelled with the set {x} containing the single
atomic proposition x which does not appear in ϕ. The nondeterministic machine M
considered in the reduction is again the one with a single memory state that embeds every
possible strategy of Player 0. The objective Ω0 of Player 0 is defined by LTL formula ϕ0
and the single objective Ω1 of Player 1 is defined by LTL formula ϕ1 as follows:
ϕ0 = ¬⃝ x,
ϕ1 = (¬⃝ x) ∧ (¬⃝ ϕ)

where ⃝ is the next operator in LTL. It is direct to see that objective Ω0 is not satisfied
by the play v′

0g
ω
1 and is satisfied by all plays reaching Gλ. The objective Ω1 is not satisfied

by the play v′
0g

ω
1 and is satisfied by plays reaching Gλ if and only if the formula ϕ is not

satisfied in those plays.
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Using similar arguments as used in the proof of Proposition 12, the following holds.
A strategy σ0 ∈ JMK makes the instance of the LTL UPRV problem negative if every
play v′

0ρ reaching Gλ and consistent with this strategy falsifies objective Ω1 of Player 1
(as no payoff is then strictly larger than that of play v′

0g
ω
1 , lost by Player 0). If this is

the case, it follows that strategy σ0 is a winning strategy for Player 0 from v0 in the
zero-sum game (Gλ, ϕ) as every play ρ consistent with this strategy satisfies formula ϕ.
The converse is also true. Player 0 therefore has a winning strategy from v0 in (Gλ, ϕ) if
and only if the corresponding instance of the LTL UPRV problem is negative. It follows
that the LTL UPRV problem is 2EXPTIME-hard for LTL SP games (as co-2EXPTIME =
2EXPTIME). ◀

▶ Theorem 15. The LTL PRV problem is PSPACE-complete.

The proof of this theorem relies on two variants of the LTL model-checking problem that
are both PSPACE-complete [47].

LTL Model-Checking Problem. Given a finite transition system T , an initial state, and an
LTL formula ψ, the LTL existential (resp. universal) model-checking problem is to decide
whether ψ is satisfied in at least one infinite path (resp. all infinite paths) of T starting from
the initial state. Notice that a finite transition system is the same model as a single-player
labeled game arena and that an infinite path in T corresponds to a play in this arena.

Proof of Theorem 15. We first show that the LTL PRV problem is in PSPACE. Given an
LTL SP game G, we proceed as follows. For each payoff p ∈ {0, 1}t, we check (i) whether it
is realizable and Pareto-optimal, if yes (ii) whether there exists a play ρ such that pay(ρ) = p

and won(ρ) = 0. If for some payoff p, both tests succeed, then the given instance G is negative,
otherwise it is positive (this approach is similar to the simpler FPT algorithm for the PRV
problem provided in the full version). Checking that a payoff p is realizable reduces to solving
the LTL existential model-checking problem for the formula ψ = (

∧
pi=1 ϕi) ∧ (

∧
pi=0 ¬ϕi),

this test can be performed in polynomial space. The second check in (i) and the last check in
(ii) are similarly executed in polynomial space. The LTL PRV problem is hence in PSPACE.

We now prove that the LTL PRV problem is PSPACE-hard by showing that we can
transform any instance of the LTL universal model-checking problem into an instance of
the LTL PRV problem such that the instance of the former is positive if and only if the
corresponding instance of the latter is positive as well. Let T be transition system and ψ be
an LTL formula. Given our previous remark, T can be seen as a single-player labeled arena
Gλ for some labeling function λ. We create the following LTL SP game G = (Gλ, ψ, ϕ1)
played on Gλ = T where the objective of Player 0 is to satisfy the formula ψ and the sole
objective of Player 1 is to satisfy the formula ϕ1 = true. It is direct to see that any play in
Gλ satisfies the objective of Player 1 and therefore that every play in Gλ is Pareto-optimal.
It follows that the given instance of the LTL PRV problem is positive if and only if every play
in Gλ satisfies the formula ψ. This corresponds exactly to the LTL universal model-checking
problem. ◀
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Abstract

Concurrent multi-player games with ω-regular objectives are a standard model for systems that
consist of several interacting components, each with its own objective. The standard solution concept
for such games is Nash Equilibrium, which is a “stable” strategy profile for the players.

In many settings, the system is not fully observable by the interacting components, e.g., due to
internal variables. Then, the interaction is modelled by a partial information game. Unfortunately,
the problem of whether a partial information game has an NE is not known to be decidable. A
particular setting of partial information arises naturally when processes are assigned IDs by the
system, but these IDs are not known to the processes. Then, the processes have full information
about the state of the system, but are uncertain of the effect of their actions on the transitions.

We generalize the setting above and introduce Multi-Topology Games (MTGs) – concurrent
games with several possible topologies, where the players do not know which topology is actually
used. We show that extending the concept of NE to these games can take several forms. To this end,
we propose two notions of NE: Conservative NE, in which a player deviates if she can strictly add
topologies to her winning set, and Greedy NE, where she deviates if she can win in a previously-losing
topology. We study the properties of these NE, and show that the problem of whether a game
admits them is decidable.
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1 Introduction

Concurrent multi-player games of infinite duration over graphs are a standard modelling tool
for representing systems that consist of several interacting components, each having its own
objective. Each player in the game corresponds to a component in the interaction. In each
round of the game each of the player chooses an action and the next state of the game is
determined by the current state and the vector of actions chosen. A strategy for a player is
then a mapping from the history of the game so far to the next action.

A strategy profile (i.e., a tuple of strategies, one for each player) induces an infinite trace
of states, and the goal of each player is to direct the game into a trace that satisfies her
specification. This is modeled by augmenting the game with ω-regular objectives describing
the objectives of the players.

Unlike traditional zero-sum games, here the objectives of the players do not necessarily
contradict each other. Accordingly, the typical questions about these games concern their
stability. Specifically, the most well-known stability measure is Nash Equilibrium (NE): an
NE is a strategy profile such that no single player can improve her outcome by unilaterally
deviating from the profile. The problem of whether a multi-player game with ω-regular
objectives has an NE was shown to be decidable in [6].

In many settings, the players only have partial information about the system, or can
view only certain parts of it. This happens when e.g., the system has private and global
variables, and the players model threads that can only view the global variables. To this end,
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games with partial information have been extensively studied in various forms [3, 5, 9, 10].
However, in contrast to the full-information setting, the problem of deciding whether a
partial-information multi-player game of infinite duration has a Nash equilibrium is not
known to be decidable, and is known to be undecidable in the case of stochastic games [25].

In this work, we introduce and study Multi-Topology Games (MTG). Intuitively, an MTG
is a concurrent multi-player game with several transition functions (i.e., topologies). Then,
players are fully aware of the possible topologies of the game, but do not know which topology
they currently play on. Thus, MTGs capture a restricted form of partial information.

As we now demonstrate, MTGs naturally model the sort of partial information that arises
in the context of process symmetry.

▶ Example 1. Consider a virtual router with multiple ports. When the router is initialized,
several processes are plugged in. The router assigns each process to a port id, but the id
is not revealed to the processes. Each process attempts to send messages, and its goal is
to have its messages delivered (where some messages may be dropped due to heavy traffic).
While the processes know exactly how the router works, they do not know which port they
are assigned to. Therefore, their strategies must be oblivious to their port number.

As a concrete example, consider the concurrent game in Figure 1 with players {blue, red}.
When both players know the port assignment, for example, blue →Port 1 and red →Port 2,
then blue can win by always taking action 1, and red will lose in any strategy. However,
if the port assignment is not known then in order for either player to win under both port
assignments, the players must coordinate e.g., by taking turns trying to send a message.
Thus, a-priori, the game has two possible topologies: Figure 1a and Figure 1b.

ready

start

send1 send2

00

10,11

01

(a) blue →Port 1, red →Port 2.

ready

start

send1 send2

00

01,11

10

(b) blue →Port 2, red →Port 1.

Figure 1 Router game from Example 1. The players are blue and red, and the router has two
ports 1, 2. In every round each player can try to send (action 1), or wait (action 0). The labels on
the edges describe the actions of the players. The first is the action of the blue player, and the
second is the action of the red player. From ready, if only the player in Port i ∈ {1, 2} tries to send,
the game transitions to sendi. If both players try to send, the router prioritizes the request from
Port 1. The objective of the player Port i is to visit sendi infinitely many times. Note that sendi is
colored according to the player that tries to reach it in each port assignment.

These type of settings are commonly referred to as process symmetry [12, 15, 18, 19, 1],
and have been studied in several contexts (e.g., model checking with symmetry reductions).
However, to our knowledge this setting has not been studied in games. In Section 3.1 we
demonstrate how MTGs can model the general setting of process symmetry in games. ⌟

In an MTG, a strategy for a player maps sequences of states to an action, and hence does
not depend on a certain topology. Unlike standard games, a strategy profile in an MTG no
longer induces a single trace, but rather a set of traces, one per topology. Thus, a player
can no longer be said to be “winning” or “losing” in a strategy profile, as this may vary
between topologies. In particular, it is not clear how analogues of Nash equilibrium and
social optimum should be defined.
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To this end, we propose two versions of Nash equilibria, corresponding to two extremities:
in a Conservative NE (CNE), a player deviates if she can increase (w.r.t. containment) the
set of topologies she wins in. In a Greedy NE (GNE), a player deviates if she can win in a
currently-losing topology (even at the cost of losing some of the currently-winning topolgies).

We study the properties of CNE and GNE and compare their strictness, showing that a
GNE is also a CNE, but the converse does not hold. We also compare their properties to
those of the standard notion of NE. Our main technical contribution is showing that the
problem of whether a game has a CNE (resp. GNE) is decidable.

Related Work. A central work concerning NE in concurrent games is [6], where the problem
of deciding whether a concurrent game admits an NE was studied for various winning
conditions. Apart from establishing tight complexity bounds, this work also introduced the
suspect game – a useful technique for reasoning about concurrent games. Interestingly, the
suspect game does not seem to be adaptable to reason about MTGs, suggesting a fundamental
difference between the models.

Zero-sum concurrent reachability games were studied in [13], where fundamental tech-
niques for reasoning about them were developed. We remark that the zero-sum setting is
technically very different to ours, due to the non-adversarial nature of the players.

Concurrent games can be formulated in the turn-based setting using partial information.
The latter were extensively studied, e.g., in [9, 22, 10, 3, 8, 14], typically in the zero-sum
setting.

Finally, the work in [3] extends strategy logic [11] with imperfect information. The
authors show that, in general, the model checking problem for this logic is undecidable, but it
is decidable in some special cases. Unfortunately, these cases do not readily capture MTGs.

Paper organization. In Section 2 we present the basic definitions of concurrent games. In
Section 3 we formally define MTGs, introduce two notions of equilibria for them, and study
their properties. In Section 4 we give our main technical result, establishing the decidability
of detecting CNE in MTGs. In Section 5 we establish the decidability of detecting GNE.
Finally, in Section 6 we discuss our results and some extensions, and detail future directions.

2 Preliminaries

A concurrent parity game is a tuple G = ⟨Pla,S, s0,Act, δ, (αp)p∈Pla⟩ where the components
are as follows. Pla is a finite set of players, S is a finite set of states, s0 ∈ S is an initial state,
Act is a finite set of actions. The transition function δ : S × ActPla → S maps a state and
an action profile (i.e., a = (ap)p∈Pla ∈ ActPla) to the next state. Every player p ∈ Pla has a
parity objective αp ⊆ Sω, as we describe below.

A play of G is an infinite sequence of states ρ = s0, s1, . . . ∈ Sω such that for every step
i ∈ N there exists an action profile a such that si+1 = δ(si,a). For k ≥ 1 we denote the
length-k prefix of ρ≤k = s0, . . . , sk−1 ∈ S+. We denote by Inf(ρ) the set of states that occur
infinitely often in ρ. A parity objective is given by a function Ω : S → {0, . . . , d} for some
d ∈ N. Then, ρ satisfies the objective if min{Ω(s) | s ∈ Inf(ρ)} is even. Thus, the objective
αp is the set of all plays that satisfy the parity function of Player p. In the following, we
mostly use the parity function implicitly, and so we do not include Ω in the description of G.

The description size of G, denoted |G| is the number of bits required to represent the
components of G.
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▶ Remark 2 (Game representation). Note that we assume an explicit representation of the
transition function as a table. In particular, we describe for every state the transition on
every action profile in ActPla. Thus, the size of the transition functions is exponential in |Pla|.

This is in contrast with a more succinct representation, i.e., representing the transition
function as a circuit. We choose this focus to eliminate the complexity effect of succinct
representation.

A history of G is a finite prefix of a play h ∈ S+. A strategy for Player p is a function
σ : S+ → Act that maps a history to the next action of Player p. A strategy profile
σ = (σp)p∈Pla is vector of strategies, one for each player. We denote the set of all strategies
by ΣG and the set of all strategy profiles by ΣPla

G (we omit the subscript G when it is clear
from context). A strategy profile σ can be thought as a function that maps histories to
action profiles: given a history h ∈ S+ we have σ(h) = (σp(h))p∈Pla ∈ ActPla.

For a strategy profile σ we define its outcome to be the infinite sequence of states
(i.e. play) in G that is taken when all the players follow their strategies in σ. Formally,
outG(σ) = s0s1 . . . ∈ Sω where s0 is the initial state, and for every i ≥ 1 we have si =
δ(si−1,σ(s0, . . . , si−1)). Consider a play ρ ∈ Sω. The set of winners in ρ is the set of players
whose objectives are met in ρ. Formally, WinG(ρ) = {p ∈ Pla | ρ ∈ αp} ⊆ Pla. The set of
winners in a strategy profile σ is then WinG(σ) = WinG(outG(σ)). Player p is said to be
losing if she is not winning.
▶ Remark 3 (Action visibility). Note that strategies are defined to “see” only the history of
visited states, and not the history of actions taken by the other players. This is a standard
and natural assumption [6, 10] for concurrent models. There are, however, works (e.g., [2])
where players can view the entire action history. The latter approach is slightly easier to
reason about, as players have full information on the game progress.

A strategy profile σ is a Nash Equilibrium (NE) if, intuitively, no single player can
benefit from unilaterally changing her strategy. Since the objectives in our setting are binary,
“benefiting” amounts to moving from the set of losers to the set of winners. We refer to such
a change as a beneficial deviation. Formally, consider a strategy profile σ, a player p ∈ Pla
and a strategy σ′

p ∈ ΣG for Player p. We denote by σ[p 7→ σ′
p] ∈ ΣPla the strategy profile

obtained from σ by replacing σp with σ′
p. Then, σ is an NE if for every player p ∈ Pla and

every strategy σ′
p ∈ ΣG for Player p, if p ∈ WinG(σ[p 7→ σ′

p]) then p ∈ WinG(σ). Viewed
contrapositively: if p loses when G is played with σ, then p also loses after changing her
strategy.

3 Multi-Topology Games

A multi-topology game (MTG) is a tuple G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩
where Pla, S, s0, Act, are the same as in concurrent games. Top is a finite set of topologies,
and for every t ∈ Top we have a transition function δt : S×ActPla → S and objective αt,p ⊆ Sω

for every player p ∈ Pla. An MTG can be thought of as a tuple of games over the same states,
players and actions. That is, for t ∈ Top, we can define Gt = ⟨Pla,S, s0,Act, δt, (αt,p)p∈Pla⟩
to be the concurrent parity game obtained by fixing the transition function to δt and the
objective for Player p to αt,p.

Crucially, the players are assumed to have no a-priori information on which topology is
selected when the game is played. This is captured in the definition of strategies: a strategy
for Player p is identical to the setting of concurrent parity games, i.e., σp : S+ → Act. This
lifts to strategy profiles and outcomes, as per Section 2. In particular, a strategy σ in G
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can be applied to Gt for every t ∈ Top. Consider a strategy profile σ ∈ ΣPla. The winning
topologies of Player p is the set of topologies that Player p wins in when G is played with
strategy profile σ. Formally, WinTopp

G(σ) = {t ∈ Top | p ∈ WinGt
(σ)}.

3.1 Process Symmetry in Concurrent Games
As we discuss in Section 1, a central motivation for MTGs come from settings where players
plug in to the system without knowing their identity. This setting is commonly referred to
as process symmetry [12, 15, 18, 19, 1]. Symmetry in games was studied in [24, 23, 7, 17] for
strategic form games, which are games with a single turn. In [5, 26], symmetry in concurrent
games was studied by imposing restrictions on the game structure. We consider a different
setting, where processes 1, . . . , k log into a system described as a concurrent game, but the
index of the action controlled by each process is not revealed to the processes. This setting
is naturally modelled as an MTG, as follows.

Consider a concurrent game G = ⟨Pla, S, s0,Act, δ, (αp)p∈Pla⟩ with k ≥ 2 players, and that
Pla = {1, . . . , k}. We obtain from G an MTG with k! topologies by letting each topology
correspond to a different permutation of the players. Formally, consider a permutation
π ∈ Sk, were Sk is the set of permutations over {1, . . . , k}. For an action profile a ∈ ActPla

we define π(a) = (aπ−1(1), . . . , aπ−1(k)). That is, the action performed by Player i is taken
at index π(i). We now obtain the MTG G′ = ⟨Pla,S, s0,Act,Sk, (δπ)π∈Sk

, (απ,p)π∈Sk,p∈Pla⟩
where Sk is the set of topologies, δπ is obtained by applying π to the action profile of the
players, that is, for s ∈ S and a ∈ ActPla we have δπ(s,a) = δ(s, π(a)). Finally, the objective
of Player p is απ,p = απ(p). Figure 1 is an example of such game.

3.2 Solution Concepts
Recall that in NE, a beneficial deviation moves a player from losing to winning. In MTGs,
however, winning is no longer binary. Indeed, a strategy profile associates with each player
a set of winning topologies. Thus, the meaning of “beneficial deviation” becomes context
dependent. We introduce and study two notions of equilibria for MTGs that lie on two
“extremities”: in the conservative approach, a deviation is beneficial if it strictly increases
(w.r.t. containment) the set of winning topologies. In the greedy approach, a deviation is
beneficial if a previously-losing topology becomes winning. We now turn to formally define
and demonstrate these notions.

Conservative NE. A conservative NE (CNE) is a strategy profile σ where no player can
deviate from σ and have her winning topologies be a strict superset1 of her winning topologies
when obeying σ. Formally, σ ∈ ΣPla is a CNE if the following holds:

∀p ∈ Pla ∀σ′
p ∈ Σp

G ((∀t ∈ Top p ∈ WinGt(σ[p 7→ σ′
p]) → WinGt(σ))∨

(∃t ∈ Top p /∈ WinGt
(σ[p 7→ σ′

p]) ∧ p ∈ WinGt
(σ)))

Equivalently, this condition can be written in terms of the set of winning topologies:

∀p ∈ Pla ∀σ′
p ∈ Σp

G ¬(WinTopp
G(σ) ⊊ WinTopp

G(σ[p 7→ σ′
p]))

We refer to this notion as conservative since a deviating player wants to conserve her
existing winning strategies.

1 we emphasize that the relation ⊊ means “strictly contained”.

CONCUR 2022



34:6 Concurrent Games with Multiple Topologies

Greedy NE. A greedy NE (GNE) is a strategy profile σ where no player can unilaterally
deviate and win in a previously-losing topology. Formally, σ ∈ ΣPla is a GNE if the following
holds:

∀p ∈ Pla ∀σ′
p ∈ Σp

G ∀t ∈ Top (p ∈ WinGt
(σ[p 7→ σ′

p]) → p ∈ WinGt
(σ))

Equivalently, this condition can also be written in terms of the set of winning topologies:

∀p ∈ Pla ∀σ′
p ∈ Σp

G (WinTopp
G(σ[p 7→ σ′

p]) ⊆ WinTopp
G(σ))

The latter formulation shows that in a GNE, for every player and for every deviation, the
player’s winning topologies when deviating are a subset of the player’s winning topologies
when obeying σ. It refer to this notion as greedy since it assumes that a player deviates if
she improves her outcome in a single topology, disregarding the outcome in other topologies.

▶ Example 4 (CNE and GNE). Recall the router game from Figure 1. The strategy profile
where Player blue repeatedly plays (0, 0, 1, 1)ω and red plays (1, 1, 0, 0)ω is a CNE, since
the set of winning topologies of this profile is {1, 2} for both players. Thus, no deviation can
win in strictly more topologies.

Note that the same strategy profile is also a GNE, since every set of winning topologies
is a subset of {1, 2}.

▶ Remark 5 (Additional notions of NE). CNE and GNE are based on the ⊆ preorder on the
sets of topologies, 2Top. In Section 6 we discuss other notions of NE in MTGs.

3.3 Properties of CNE and GNE
We start by examining some properties and relationships between the notions of CNE and
GNE, as well as their relation to standard NE.

Consider an MTG ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. The following obser-
vation is immediate from the definitions of GNE and CNE, since if there is only a single
topology, the MTG collapses into a concurrent game.

▶ Observation 6. If Top = {t}, i.e. there is only a single topology t, then the definitions of
NE in Gt coincides with that of CNE and of GNE in G.

Next, we observe that GNE is a stricter notion than CNE. Indeed, a beneficial deviation
in the conservative setting (namely increasing the set of winning topologies) implies a
beneficial deviation in the greedy setting (namely winning in a previously-losing topology).
Contrapositively, if there is no greedy beneficial deviation, there is also no conservative
beneficial deviation. We thus have the following.

▶ Observation 7. Let G be an MTG. If σ is a GNE in G then σ is a CNE in G.

The following example shows that the implication of Observation 7 is strict. That is, there
are MTGs with a CNE but without a GNE.

▶ Example 8 (CNE without GNE). Consider the single-player game depicted in Figure 2.
The outcome of the game depends only on the first action that the player takes and the
topology that the game is played in. If the player takes action 1, then the set of winning
topologies is {t1}. If the player takes action 2, then the set of winning topologies is {t2}.
Since {t1} ̸⊆ {t2} and {t2} ̸⊆ {t1}, there is no GNE in the game, as the player can switch
strategies from t1 to t2 and vice versa to win in a previously-losing topology.

However, since there is no strategy for the player such that the set of winning topologies
is {t1, t2} (the only strict superset of {t1} and {t2}), then every strategy is a CNE.
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s0

start

s1 s2
1 2

(a) t1.

s0

start

s1 s2
2 1

(b) t2.

Figure 2 A single player MTG with two topologies, t1 and t2. In both topologies, the objective
of the player is to reach s1 (it is easy to capture this using a parity objective).

▶ Remark 9 (Best-response dynamics in GNE). Example 8 demonstrates that, in stark contrast
to NE, an MTG might not have a GNE even when there is only a single player. This has
to do, in particular, with the notion of best-response dynamics: in standard games, one can
approach an NE by starting from some profile, and repeatedly letting players deviate to their
best-response strategy, until this process converges. While this does not always converge, it
does so for a large class of games (e.g., finite-potential games [21]).

Thus, Example 8 shows that best-response does not converge even for a single player
in MTGs, whereas it does converge for a single player both for standard NE, as well as in
CNE for MTGs. Indeed, the best-response of a single player in the conservative setting will
increase her set of winning topologies to the maximum, and from there she will no longer
have incentive to deviate.

Remark 9 reflects the intuition that a GNE must be stable in each topology separately.
That is, it captures the notion “NE on all topologies”, in the following sense.

▶ Observation 10. A GNE σ is also an NE in Gt for every t ∈ Top.

Indeed, if σ was not an NE in Gt for some t ∈ Top, then a player that deviates from σ in Gt

would similarly deviate from σ in G, greedily winning in the previously-losing topology t.
In contrast, we now show that CNE is a more intricate notion, and might hold even when

there is no NE in the separate topologies.

s0

start

s1 s2
00,11 01,10

(a) t1.

s0

start

s1 s2
00,11 01,10

(b) t2.

Figure 3 Symmetric XOR game. The players are blue and red. In topology t1, the objective
of blue is to reach s1, and the objective of red is to reach s2. In topology t2 the objectives of the
players are swapped. The game starts from s0. If both players take the same action, then the game
transitions to state s1 and gets stuck there. If the players take different actions then the game
transitions to s2 and gets stuck there.

▶ Example 11 (CNE without NE). Consider the Symmetric XOR game G depicted in Figure 3.
Note that neither Gt1 nor Gt2 have a NE, since if a strategy for a single player is fixed, the
other player can respond to it and win.

On the other hand, any strategy profile is a CNE, since every player always wins in
exactly one topology. Thus, there is no way for a player to deviate and get strict superset of
winning topologies.

CONCUR 2022



34:8 Concurrent Games with Multiple Topologies

There are MTGs without CNE. For example, every concurrent game G without an NE can
be viewed as an MTG with a single topology t1. Since there is no NE in G, then for every
profile σ there exists a player p that loses with σ, which corresponds to WinTopp

G(σ) = ∅ but
p can deviate and win G, which corresponds to WinTopp

G(σ[p 7→ σ′
p]) = {t1}. Since ∅ ⊊ {t1},

then σ is not a CNE.

4 Existence of Conservative NE is Decidable

We now turn to our main technical contribution – showing that the existence of a CNE is a
decidable property.

▶ Theorem 12. The problem of deciding, given an MTG G, whether there exists a CNE in
G is in 2-EXPTIME.

The remainder of the section is devoted to proving Theorem 12. Our solution is based on
a reduction to the problem of solving a restricted form of partial-information game. We
then employ a result from [10], and obtain the complexity result by a careful analysis of the
construction. The rest of the section is organized as follows. In Section 4.1 we present the
model of partial-information games and the result of [10]. In Section 4.2 we give an overview
of the reduction and in Section 4.3 we describe and analyze the reduction from our setting.

4.1 Partial-Information Games
Partial-information games (also known as games with incomplete information) are a ubiquitous
model for settings where the players cannot fully observe the state of the game due to e.g.,
private/hidden variables, unknown parameters or abstractions of part of the system.

Formally, a partial-information game is a tuple G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩ where
Pla, S, s0, Act and δ are the same as in concurrent games. For every player p ∈ Pla, the set
of observations Op ⊆ 2S is a partition of S. We omit the acceptance condition, and we will
include it explicitly in Theorem 13 below.

Intuitively, when the play of G is at state s ∈ S, Player p can only observe o ∈ Op

such that s ∈ o, and needs to select an action according to o. Thus, we distinguish
between state histories, S+ and observation histories (of Player p), (Op)+. For s ∈ S we
define obsp(s) = o ∈ Op to be the unique observation of Player p such that s ∈ o. We
extend obsp to histories: let h = s0s1...sk ∈ S+ be a state history, we define obsp(h) =
obsp(s0)obsp(s1), . . . , obsp(sk) ∈ (Op)+ to be the corresponding observation history.

Strategies are observation based, that is, a strategy for Player p is a function σp : O+
p → Act.

Since different players may have different observation sets, we denote by Σp
G the set of all

strategies for Player p. We denote by ΣPla
G the set of all strategy profiles.

Similarly to concurrent games, a strategy profile σ can be thought of as a function
that maps histories to action profiles σ(h) = (σp(obsp(h)))p∈Pla ∈ ActPla, and we define
outG(σ) ∈ Sω similarly to concurrent games.

We say that Player p ∈ Pla has perfect information if Op = {{s} | s ∈ S}. That is, Player
p can observe the exact state of the game. If all players have perfect information then the
game is a perfect information game, and coincides with our definition of concurrent games.
We say that Player i is less informed than Player j if Oj is a refinement of Oi. That is, for
every oj ∈ Oj there exists oi ∈ Oi such that oj ⊆ oi.

Finally, consider an objective α ⊆ Sω, we say that α is visible to Player p if for every
ρ, ρ′ ∈ Sω such that obsp(ρ) = obsp(ρ′) we have that ρ ∈ α if and only if ρ′ ∈ α. That is, the
objective can be defined according to observation sequences rather than plays.
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The following theorem is a result from [10] that will serve as the target of our reduction.

▶ Theorem 13. Let G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩ be a partial information game, with
Pla = {1, 2, 3} where Player 1 less informed than Player 2. Let α ⊆ Sω be parity objective
over S. The problem of deciding whether ∃σ1 ∈ Σ1

G ∀σ2 ∈ Σ2
G ∃σ3 ∈ Σ3

G outG(σ1, σ2, σ3) ∈ α

is 2-EXPTIME complete.

4.2 Overview of the Reduction

We now turn to describe a reduction from the CNE existence problem to the setting of
Theorem 13. We start with a high-level description. Consider an MTG G. Instead of asking
directly whether G admits a CNE, we first fix a set of “intended” winning topologies Tp ⊆ Top
for each player p ∈ Pla. Then, we ask whether G admits a CNE σ in which WinTopp

G(σ) = Tp

for every p ∈ Pla. If we are able to answer the latter problem, we can iterate over every
possible tuple (Tp)p∈Pla (or nondeterministically guess a set) and conclude whether G admits
a CNE. We remark that this approach is reminiscent of the technique in [6], where the
existence of an NE in a game is decided by first guessing a “witness” path.

Once the set of intended topologies is fixed, we construct a 3-player partial-information
game whose players are Eve, Adam and Snake, with the following roles:

Eve controls the coalition of all players, and suggests a strategy profile σ by selecting the
actions for all the players at each step.
Adam selects a deviating player p, and the deviating strategy σ′

p for that player. In
addition, Adam selects a set T ⊆ Top in which Player p tries to win when playing σ′

p.
Snake helps2 Eve by selecting a concrete topology t from the set T picked by Adam.

The game starts with Adam and Snake choosing p, T and t ∈ T . It then proceeds with Eve
and Adam choosing σ and σ′

p, respectively, while playing on Gt. The observation sets of the
players are such that both Eve and Adam can only observe the current state of the game, so
Eve is ignorant of p, T and t, and Adam is ignorant of t (except knowing that t ∈ T ).

The objective of Eve and Snake is then composed of three conditions:
1. Snake must choose a topology t ∈ T .
2. If the strategy σ′

p proposed by Adam does not in fact deviate from the profile σ proposed
by Eve (dubbed “Adam obeys Eve”), and if t ∈ Tp, i.e., p was intended to win in t, then
the outcome must be winning for Player p.

3. If Adam selected T to contain a topology not in Tp (i.e., Player p potentially tries to win
in a superset of Tp), then the outcome must be losing for Player p.

The overall idea is that if Eve can find a strategy for all the players, from which any deviation
choice of Adam can be shown to be non-beneficial by an appropriate choice by Snake, then
there is a CNE with the intended winning topologies, and vice-versa.

There are, however, some caveats: first, in order to allow Adam to choose any set of
topologies, the size of the game would be exponential, which is undesirable. Second, it is
not immediate that the conjunction of conditions above can be captured by a small parity
objective (since the parity condition does not allow conjunction without a change of state
space [4]). Third, we need to separate the cases where Adam obeys Eve. In the following we
give the complete construction, which overcomes these caveats.

2 It is arguable whether this matches the biblical interpretation. This work makes no theological claims.
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4.3 Reduction to Partial Information Game
Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. For every Player
p ∈ Pla, fix Tp ⊆ Top to be the intended set of winning topologies.

Game construction. We construct a 3-player partial-information game H with the following
components. The players are Eve, Adam and Snake. The states of H are QH = {q0} ∪ Q,
where q0 is a designated initial state and Q ⊆ S × Pla × 2Top × Top × {true, false} is
described in the following. A state (s, p, T, t, b) ∈ Q comprises s ∈ S which tracks the state of
G, a player p ∈ Pla that is controlled by Adam, a set T ⊆ Top of topologies that Adam picks,
t ∈ Top is a topology picked by Snake and determines the topology G is played in, and a bit
b ∈ {true, false} which tracks whether Adam obeys Eve.

In order to restrict the state space to a polynomial size in |G|, i.e. reduce the 2Top

component, we define Tp = {Tp ∪ {t} | t ∈ Top} ⊆ 2Top and T = (
⋃

p∈Pla Tp) ∪ {{t} | t ∈ Top}.
Note that |T | ≤ (|Pla| + 1) · |Top| ≤ 2 · |Pla| · |Top|. We now define Q = S × Pla × T × Top ×
{true, false}. Intuitively, the restriction of 2Top to T is sound, since if a Player p is able to
deviate and increase her winning topologies from Tp to some T , then she can also increase
her winning topologies by just one topology, and thus we can assume T ∈ Tp.

We now turn to define the transitions in H. The actions are defined implicitly by the
transitions.3 From q0, Adam selects a player p ∈ Pla and a set of topologies T ∈ Tp. As
explained in Section 4.2, Adam controls Player p and attempts to show that p wins in T . Still
in q0, Snake selects a topology t ∈ Top that G will be played in. Then, H transitions to state
(s0, p, T, t, true) ∈ Q.

Henceforth, p, T and t remain fixed throughout the play, and Snake has no further effect
on the play. From state (s, p, T, t, b) ∈ Q, Eve chooses an action profile a ∈ ActPla and
Adam selects an action a′

p ∈ Act. Then, the game transitions to state (s′, p, T, t, b′) ∈ Q such
that s′ = δt(s,a[p 7→ a′

p]), and b′ = b ∧ ap = a′
p. That is, Eve chooses an action profile,

Adam chooses a possible deviation, and the game proceeds according to Gt. If Adam actually
deviates, the bit b becomes false and remains so throughout the play. Adding {{t} | t ∈ T }
to T is to make sure that if Player p is supposed to win in topology t (that is, t ∈ Tp),
then, the profile suggested by Eve must lead to player p winning in topology t. If not, Adam
can choose {t} and Player p at the start of the game, and obey Eve, falsifying one of Eve’s
winning conditions (ψ2).

Next, we define the observation sets of H. For a state q = (s, p, T, t, b) ∈ Q we define the
projection of q on G to be proj(q) = s. For every state s ∈ S of G, let os = {q ∈ Q | proj(q) =
s} ⊆ Q. The observation sets in H are OAdam = OEve = O = {{q0}} ∪ {os | s ∈ S}. That is,
Adam and Eve can observe the initial state q0, and for every q ∈ Q they can only observe
proj(q). Snake has perfect information.

This completes the construction of the game H (recall that H does not have an objective).
We proceed to formalize the connection between G and H.

Correspondence between H and G. We lift the definition of projection to plays: for a play
ρ = q0q1q2... ∈ q0 ·Qω of H define proj(ρ) = proj(q1)proj(q2)... (note that we skip the initial
state q0). We also define the predicate obey(ρ) =

∧
i≥1 bi, where bi is the true/false bit of

qi. That is, obey(ρ) is true if and only if Adam always takes the actions suggested by Eve.
When obey(ρ) is true, we say that Adam obeys Eve.

3 In the model we describe, actions are identical for all players. However, the model of [10] allows different
actions as well as enabled and disabled actions in each state, so it is easy to accommodate our actions.
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Since the observation of Eve and Adam correspond to states of G, there is a correspondence
between plays, observation-histories and strategies in H to plays, histories and strategies
in G. We make this precise in the following. Consider the function γobs : {q0} · Oω → Sω

defined γobs({q0}, os0 , os1 , . . .) = s0, s1, . . .. Since os = {q | proj(q) = s} for every s ∈ S, we
have that γobs is a bijection between observation-plays of Eve and Adam in H, and plays of G.
By looking at finite sequences, namely histories, we can refer to γobs as a bijection between
observation-histories of Adam and Eve in H, and histories in G. Moreover, since strategies in
H are observation based, the following functions are also bijective:

γEve : ΣEve
H → ΣG defined by γEve(σEve) = σEve ◦ γ−1

obs.
γAdam : ΣAdam

H →
⋃

p∈Pla{p}×Tp ×Σp
G defined γAdam(σAdam) = (p, T, σ′

p) such that σAdam(q0) =
(p, T ) are the player and the set of topologies selected by Adam in state q0, and σ′

p =
σAdam ◦ γ−1

obs is the deviating strategy in G induced by the deviation proposed in σAdam in H.
γSnake : ΣSnake

H → Top defined by γSnake(σSnake) = σSnake(q0) (recall that Snake only acts
in q0).

For readability, we omit the the subscript and write γ instead of γobs, γAdam, γEve, γSnake. The
correct subscript can be resolved from context. Intuitively, γ is the correspondence from
strategies/histories/plays in H to their counterpart in G.

The connection between strategies and outcomes in H and G is formalized in the following
lemma (see Appendix A.1 for the proof).

▶ Lemma 14. Consider strategies σEve ∈ ΣEve
H , σAdam ∈ ΣAdam

H and σSnake ∈ ΣSnake
H . Let

σ = γ(σEve), (p, T, σ′
p) = γ(σAdam) and t = γ(σSnake). Let ρ = outH(σEve, σAdam, σSnake),

π′ = outGt(σ[p 7→ σ′
p]), and π = outGt(σ). Then proj(ρ) = π′. Furthermore, if Adam obeys

Eve on ρ then proj(ρ) = π = π′.

Objective for H. As sketched in Section 4.2, the objective α in H is constructed so that
Eve and Snake can win if and only if there is a CNE in G with winning topologies (Tp)p∈Pla.

We define α as a conjunction of three conditions α = {ρ ∈ q0 · Qω | ψ1(ρ) ∧
ψ2(ρ) ∧ ψ3(ρ)}, where the conditions are defined as follows. Consider a play ρ =
q0, (s0, p, T, t, b0), (s1, p, T, t, b1), . . . of H.

ψ1(ρ) := t ∈ T . That is, ψ1 forces Snake to choose a topology from the set of topologies
selected by Adam.
ψ2(ρ) := (obey(ρ) ∧ t ∈ Tp) → proj(ρ) ∈ αt,p. That is, ψ2 is satisfied if whenever Adam
obeys Eve then Player p wins in any topology t ∈ Tp selected by Snake.
ψ3(ρ) := Tp ⊊ T → proj(ρ) /∈ αt,p. That is, ψ3 is satisfied if whenever Adam tries to win
in a strict superset of Tp, then Player p loses in the topology selected by Snake.

As mentioned in Section 4.2, it is not clear that α can be expressed as a single parity
objective over QH. Nonetheless, we prove that this is possible. The key observation is
that the “postconditions” of ψ2 and ψ3 contradict, hence one of them must hold vacuously.
This allows us to decouple the parity conditions for each of them and obtain a single parity
objective that captures both, as follows.

For each objective αt,p in G we write αt,p = Parity(Ωt,p) such that Ωt,p : S → {0, . . . , d}
is the parity ranking function, where d ∈ N. We define a new ranking function Ω : QH →
{0, ..., d+ 1}, and show that α = Parity(Ω).

First, observe that q0 occurs only once in each play, so its parity rank has no effect. We
arbitrarily set Ω(q0) = 0. Let ρ ∈ q0 ·Qω be a play of H and (s, p, T, t, b), (s′, p′, T ′, t′, b′) ∈
Inf(ρ). It must be that p = p′, T = T ′ and t = t′ since those are constant throughout the
play, and b = b′ since it is either always true or from some point in ρ it turns into false
and stays that way to the rest of the play.
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Let q = (s, p, T, t, b) ∈ Q. We define Ω(q) by cases according to p, T, t, b, and show that
in each case, ρ ∈ α if and only if ρ ∈ Parity(Ω), concluding that α = Parity(Ω). For a
formula of the form ψ = φ1 → φ2, we refer to φ1 as the precondition of ψ, and φ2 as the
postcondition of ψ.

t /∈ T : In this case, if q ∈ Inf(ρ) then ρ does not satisfy ψ1, thus, ρ /∈ α. We set Ω(q) = 1
to get ρ /∈ Parity(Ω).
t ∈ T , b = true, t ∈ Tp and Tp ⊊ T : In this case, if q ∈ Inf(ρ) then ρ satisfies the
preconditions of both ψ2 and ψ3, but the postconditions of ψ2 and ψ3 contradict, thus,
ρ /∈ α. We set Ω(q) = 1 to get ρ /∈ Parity(Ω).
t ∈ T , b = true ∧ t ∈ Tp and ¬(Tp ⊊ T ): In this case, if q ∈ Inf(ρ), then ρ ∈ α ⇐⇒
proj(ρ) ∈ αt,p. So we set Ω(q) = Ωt,p(s), to apply the objective αt,p over proj(ρ).
t ∈ T , ¬(b = true ∧ t ∈ Tp) and Tp ⊊ T : In this case, if q ∈ Inf(ρ), then ρ ∈ α ⇐⇒
proj(ρ) /∈ αt,p. So we set Ω(q) = Ωt,p(s) + 1, to apply the complement of the objective
αt,p over proj(ρ).
t ∈ T , ¬(b = true ∧ t ∈ Tp) and ¬(Tp ⊊ T ): In this case, if q ∈ Inf(ρ) then ψ2 and ψ3
are vacuously satisfied, and ρ ∈ α. So we set Ω(q) = 0 to get that ρ ∈ Parity(Ω).

We are now ready to characterize the existence of a CNE in G by winning strategies in H.

▶ Lemma 15. Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. Let
(Tp)p∈Pla be sets of topologies for each player and let H be the corresponding partial-information
game. There exists a strategy profile σ in G such that σ is a CNE and for every p ∈ Pla we
have WinTopp

G(σ) = Tp if and only if the follwing holds:

∃σEve ∈ ΣEve
H ∀σAdam ∈ ΣAdam

H ∃σSnake ∈ ΣSnake
H outH(σEve, σAdam, σSnake) ∈ α.

Proof. Assume σ is a CNE in G such that for every p ∈ Pla, WinTopp
G(σ) = Tp, and

fix σEve = γ−1(σ) to be the corresponding strategy for Eve in H. Consider a strategy
σAdam ∈ ΣAdam

H for Adam, and let (p, T, σ′
p) = γ(σAdam). We show that there exists a strategy

σSnake ∈ ΣSnake
H so that the outcome satisfies α. Recall that a strategy for Snake amounts to

choosing a topology. We divide to cases according to the choice of T by Adam.
If ¬(Tp ⊊ T ), then ψ3 is satisfied vacuously. Choose t ∈ T for Snake, then ψ1 is satisfied.
If Adam does not obey Eve or t /∈ Tp then ψ2 is vacuously satisfied. Otherwise, if Adam
obeys Eve and t ∈ Tp, let ρ = outH(σEve, σAdam, σSnake). In order to show that ψ2 is
satisfied we need to show that proj(ρ) ∈ αt,p. Let π = outGt(σ). Since Tp = WinTopp

G(σ)
and t ∈ Tp we have that π ∈ αt,p. From Lemma 14 we have that proj(ρ) = π, so we get
that proj(ρ) ∈ αt,p, as required.
If Tp ⊊ T , denote T ′ = WinTopp

G(σ[p 7→ σ′
p]). Since σ is a CNE, we have that ¬(Tp ⊊ T ′),

so T \ T ′ ≠ ∅, as otherwise we would have that Tp ⊊ T ⊆ T ′. Choose t ∈ T \ T ′ for
Snake, then ψ1 is satisfied. Let ρ = outH(σEve, σAdam, σSnake), π′ = outGt

(σ[p 7→ σ′
p]) and

π = outGt(σ). From Lemma 14 we have that proj(ρ) = π′ and if Adam obeys Eve then we
have proj(ρ) = π = π′. Note that since t /∈ T ′ = WinTopp

G(σ[p 7→ σ′
p]) then π′ /∈ αt,p, so

ψ3 is satisfied. Finally, ψ2 is satisfied vacuously since we cannot have t ∈ Tp and that
Adam obeys Eve simultaneously, as this would yield T ′ = Tp = WinTopp

G(σ), but t /∈ T ′.
We conclude that in all cases ρ ∈ α, as required.

Conversely, assume that σEve ∈ ΣEve
H is such that for every σAdam ∈ ΣAdam

H there exists
σSnake ∈ ΣSnake

H such that outH(σEve, σAdam, σSnake) ∈ α. Let σ = γ(σEve). We start by showing
that for every p ∈ Pla it holds that WinTopp

G(σ) = Tp. Indeed, let p ∈ Pla and t ∈ Top.
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If t ∈ Tp, take σAdam ∈ ΣAdam
H that selects player p and T = {t}, and obeys Eve. The only

strategy σSnake for Snake that satisfies ψ1 is to select t. Let ρ = outH(σEve, σAdam, σSnake).
From ψ2 we get that proj(ρ) ∈ αt,p, and by Lemma 14 we have proj(ρ) = outGt

(σ). Thus,
t ∈ WinTopp

G(σ).
If t /∈ Tp, take σAdam ∈ ΣAdam

H that selects Player p and T = Tp ∪ {t}, and obeys Eve. Since
Adam obeys Eve, in order for ψ1, ψ2 and ψ3 to be satisfied, Snake must choose t, otherwise
both preconditions of ψ2 and ψ3 hold, which means that in order to win we must have
both proj(ρ) ∈ αt,p (by ψ2) and proj(ρ) /∈ αt,p (by ψ3), which cannot hold. Thus, Snake
chooses t, and from Lemma 14 we have proj(ρ) = outGt

(σ). By ψ3 we have proj(ρ) /∈ αt,p,
so outGt

(σ) /∈ αt,p. Thus t /∈ WinTopp
G(σ). Therefore, WinTopp

G(σ) = Tp.
It remains to show that σ is a CNE. Assume by way of contradiction that there exists

a player p ∈ Pla with a beneficial deviation σ′
p ∈ Σp

G . That is, T ′ = WinTopp
G(σ[p 7→ σ′

p])
satisfies Tp ⊊ T ′. We will construct a strategy of Adam such that every strategy of Snake
is losing, thereby reaching a contradiction. Let T = Tp ∪ {t′} for some t′ ∈ T \ Tp and
fix σAdam = γ−1(p, T, σ′

p). Consider a strategy σSnake, denote t = γ(σSnake) and let ρ =
outH(σEve, σAdam, σSnake). By Lemma 14 we have proj(ρ) = outGt

(σ[p 7→ σ′
p]), and because

t ∈ T ⊆ WinTopp
G(σ[p 7→ σ′

p]) it holds that proj(ρ) ∈ αt,p. However, Tp ⊊ T , so ψ3 is
violated, and ρ /∈ α, which is a contradiction. We conclude that σ is a CNE. ◀

Using Lemma 15 we can decide whether a given MTG G has a CNE, by iterating over all
possible sets of candidate winning topologies (Tp)p∈Pla, and repeatedly applying the reduction,
and using the decision procedure of Theorem 13. It remains to analyze the complexity of
this procedure.

To this end, observe that the size of H is polynomial in the size of G. Indeed, |Q| ≤
|S| · |Pla| · |T | · |Top| · 2 where |T | ≤ 2|Pla||Top|. and the description of the actions is also
polynomial in that of G (note that Eve has exponentially more actions than each player in G,
but the overall description of the transition table in G is similarly exponential, cf. Remark 2).

Finally, by Theorem 13, solving H takes double-exponential time in |G|, and we have a
single-exponential number of iterations, so the overall complexity remains double-exponential
time in |G|. This completes the proof of Theorem 12.
▶ Remark 16 (Lower bounds and improving the upper bound). We do not have a lower bound
for the 2-EXPTIME complexity of Theorem 12. Indeed, we suspect that this bound can be
lowered. This is due in part to the fact that game H we construct does not utilize the full
scope of Theorem 13 from [10]. Unfortunately, the decision procedure in [10] goes through
three nontrivial reductions, one of which involves Safra’s determinization, that is notoriously
difficult to analyze: The first reduction [9, 10] transforms the objective to a visible objective
for Adam which involves the determinization of a parity automaton. The second reduction [10]
reduces the three-player partial-information game into a two-player partial-information game.
The third reduction uses the results of [22] to reduce the two-player partial-information game
to a two-player perfect-information game.

Therefore, it is likely that improving the bound (if indeed possible) will involve devising
an ad-hoc procedure, possibly using some key ideas from [9, 10, 22].

5 Existence of Greedy NE is Decidable

We now turn our attention to Greedy NE (GNE). Recall that a greedy beneficial deviation is
one that wins in a previously-losing topology, even at the cost of losing in previously-winning
topologies. That is, given an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩, a
profile σ ∈ ΣPla

G is a GNE if for every p ∈ Pla, σ′
p ∈ ΣG and t ∈ Top, if p ∈ WinGt

(σ[p 7→ σ′
p])

then p ∈ WinGt(σ).
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Intuitively, reasoning in the greedy approach is much less delicate than the conservative
approach, since a deviating player need not concern itself with keeping the current winning
topologies. As we show in the following, this allows for an exponentially faster solution.

▶ Theorem 17. The problem of deciding, given an MTG G, whether there exists a GNE in
G is in EXPTIME.

Similarly to Section 4, our approach is to reduce the problem at hand to solving a partial-
information game. In the greedy setting, however, it suffices to use two-player games.
Specifically, we employ the following result from [9].

▶ Theorem 18. Let G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩ with Pla = {1, 2}. Let α ⊆ Sω be a
parity objective. The problem of deciding whether ∃σ1 ∈ Σ1

G ∀σ2 ∈ Σ2
G outG(σ1, σ2) ∈ α is

EXPTIME-complete.

We sketch the proof of Theorem 17. The complete construction and analysis are detailed in
Appendix B.

Proof sketch. As in Section 4.3, we first fix a set of “intended” winning topologies Tp ⊆ Top
for each player p ∈ Pla. Then, we ask whether G admits a GNE σ in which WinTopp

G(σ) = Tp

for every p ∈ Pla. We then construct a 2-player partial-information game whose players are
Eve, Adam, where Eve again controls the coalition of all players.

The behaviour of Adam is different than in the conservative setting. Here, Adam starts by
choosing a deviating player p ∈ Pla and a single topology t ∈ Top where p attempts to win.
The topology t is unobservable by Eve. The observations sets of Eve and Adam are again
only the current state of G. Then, the game is played on topology t with Eve suggesting an
action profile, and Adam possibly deviating with Player p.

The objective for Eve now comprises two conditions:
ψ1 requires that whenever Adam obeys Eve and t ∈ Tp, the outcome is winning for Player
p in Gt.
ψ2 requires that if t /∈ Tp, then Player p loses in Gt.

Intuitively, Adam tries to cause Player p to win in a new topology t in which Player p is
not intended to win, while Eve is trying to prevent Player p from achieving this, provided
that Player p is actually deviating. Note that Eve must do this without knowing which
topology is chosen, nor which player deviates (if at all). ◀

6 Discussion, Extensions and Future Work

We introduced MTGs and notions of NE pertaining to them, and showed that deciding
whether an MTG admits either notion is decidable (in 2-EXPTIME for CNE and in EXPTIME
for GNE). We have also explored the relationships and properties of these notions of NE. We
now turn to explore several extensions, and remark about future research directions.

Social optimum. A standard solution concept for concurrent games, apart from NE, is
social optimum, namely what is the maximum welfare the player can obtain by cooperating.
Since in MTGs the winning sets of topologies may be incomparable, we formulate this as
follows: given sets (Tp)p∈Pla, is there a strategy profile σ such that WinTopp

G(σ) = Tp for
every p ∈ Pla?
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Fortunately, the techniques we developed enable us to readily solve this problem. Indeed,
we can modify the reduction used to decide the existence of GNE (Section 5) so that Adam
chooses a player and a topology, but does not attempt to deviate and has no further effect
on the game. Intuitively, Adam “challenges” Eve to show that the winning topologies for the
players are exactly the intended ones. The complexity of this approach remains EXPTIME.

Lower bounds. As discussed in Remark 16, we do not provide lower bounds for our results.
Trivial lower bounds on the existence of CNE and GNE can be obtained from those of NE
existence in concurrent games, namely PNP

|| -hardness [6]. This, however, is unlikely to be
tight. A central open challenge is to determine the exact complexity of CNE and GNE
existence in MTGs.

Additional notions of equilibria. The notions we propose, namely CNE and GNE, lie on
two extremities: in the conservative setting a deviation is very strict, and in the greedy
setting it is very lax. Generally, one can obtain a notion of equilibrium using any binary
relation on 2Top, which describes what the beneficial deviations are for each player. Moreover,
different players can have different relations.

Of particular interest is a quantitative notion of NE, whereby a player deviates if she can
increase the number of her winning topologies. This notion is fundamentally different from
CNE and GNE, as it is not based on set containment, which is key to the correctness of our
approach.

Succinct representation of topologies. A central motivation for MTGs, demonstrated
in Example 1 and in Section 3.1 concerns process symmetry. There, from a game with k

players, we construct an MTG with k! topologies. However, these topologies can be succinctly
represented by computing them on-the-fly. An interesting direction for future work is to
determine whether we can devise a symbolic approach that is able to handle such MTGs
without incurring an exponential blowup.

Logic for partial information games. Another approach to solve the CNE and GNE
existence problems might be to formulate those problems with a logic for partial information
games [3, 16, 20]. The most promising of those is [3], as it is the most expressive and the
complexity of different fragments has been studied. From the complexity of the decision
procedures for those logics, it not likely that this approach can be used to lower the EXPTIME
complexity for GNE and the 2-EXPTIME complexity for CNE.
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A Proofs

A.1 Proof of Lemma 14
Proof. We prove by induction that for every k ≥ 1, proj(ρ≤k+1) = π′

≤k, and if Adam obeys
Eve then proj(ρ≤k+1) = π′

≤k = π≤k. For k = 1, ρ≤2 = q0, (s0, p, t, T, b0) and π′
≤1 = π≤1 = s0

and we have that proj(ρ≤k+1) = π′
≤k. Assuming that proj(ρ≤k+1) = π′

≤k for k ≥ 1, the next
state of proj(ρ) will depend on the transition function δt and action profile σ[p 7→ σ′

p](π′
≤k)

from the way γ and the transitions of H are defined, and the next state in π′ will also depend
on the same transition function and action profile. Thus, it holds that proj(ρ≤k+2) = π′

≤k+1.
Farther more, if Adam obeys Eve then in every step the action that Adam takes is identical to
the action that Eve suggests for Player p, so we have that σ[p 7→ σ′

p](π′
≤k) = σ(π′

≤k), and
π≤k+1 = π′

≤k+1, thus, proj(ρ≤k+2) = π≤k+1 = π′
≤k+1. ◀

B Proof of Theorem 17

Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. For every Player
p ∈ Pla fix Tp ⊆ Top to be the intended set of winning topologies.

Game construction. We construct a two-player partial-information game H with the
following components. The players are Eve and Adam. The states of H are QH = {q0} ∪Q

such that q0 is a designated initial state and Q = S × Pla × Top × {true, false} is described
in the following. A state (s, p, t, b) ∈ Q comprises of s ∈ S which tracks the state of G, a
player p ∈ Pla that is controlled by Adam, a topology t ∈ Top that Adam picks, and a bit
b ∈ {true, false} which tracks whether Adam obeys Eve.

We now turn to define the transitions of H. The actions are defined implicitly by the
transitions. From state q0, Adam selects a player p ∈ Pla to control and a topology t ∈ Top
that G will be played in. Then, H transitions to state (s0, p, t, true) ∈ Q. Henceforth, p and
t remain fixed throughout the play. From state (s, p, t, b) ∈ Q, Eve chooses an action profile
a ∈ ActPla, and Adam selects an action a′

p ∈ Act and H transitions to state (s′, p, t, b′) ∈ Q

such that s′ = δt(s,a[p 7→ a′
p]), and b′ = b ∧ (a′

p = ap).
The observation sets for the players, proj and obey are defined similarly as Section 4.3.

Correspondence between H and G, γobs, γEve is defined in the same way as in Section 4.3,
and γAdam : ΣAdam

H →
⋃

p∈Pla{p} × Top × Σp
H is defined for γ(σAdam) = (p, t, σ′

p) such that (p, t)
are the player and topology selected by σAdam in state q0 and σ′

p = σAdam ◦ γ−1
obs.

The connection between strategies and outcomes in H and G is formalized in the following
lemma whose proof is similar to that of Lemma 14.

▶ Lemma 19. Consider strategies σEve ∈ ΣEve
H and σAdam ∈ ΣAdam

H . Let σ = γ(σEve) and
(p, t, σ′

p) = γ(σAdam). Let ρ = outH(σEve, σAdam) π′ = outGt
(σ[p 7→ σ′

p]) and π = outGt
(σ).

Then, proj(ρ) = π′. Furthermore, if Adam obeys Eve on ρ then proj(ρ) = π = π′.

Objective for H. Let ρ = q0 · (s0, p, t, b0) · (s1, p, t, b1) · ... be a play in H. The objective α
is such that ρ ∈ α ⇐⇒ ψ1(ρ) ∧ ψ2(ρ), where

ψ1(ρ) := (obey(ρ) ∧ t ∈ Tp) → proj(ρ) ∈ αt,p.
ψ2(ρ) := t /∈ Tp → proj(ρ) /∈ αt,p.

α can be expressed as a parity objective as follows. For every t ∈ Top, p ∈ Pla, let
Ωt,p : S → {0, ..., dt,p} be the priority function for the parity objective αt,p in G. We construct
a priority function Ω : QH → {0, ..., d} such that d = max{dt,p + 1 | t ∈ Top, p ∈ Pla}. We
set Ω(q0) = 0 and for state q = (s, p, t, b) ∈ Q we have
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Ω(q) =


Ωt,p(s) + 1 t /∈ Tp

Ωt,p(s) b ∧ t ∈ Tp

Ω(q) = 0 ¬b ∧ t ∈ Tp

If t /∈ Tp, then, according to α, ρ ∈ α if and only if proj(ρ) /∈ αt,p. This is achieved by adding
1 to Ωt,p which gives us the complement of αt,p. The case where Adam obeys Eve and t ∈ Tp

is captured in the second case, where ρ ∈ α if and only if proj(ρ) ∈ αt,p. This is achieved by
setting Ω to be the same as Ωt,p. In the last case, non of the preconditions of ψ1 and ψ2
hold, so ρ ∈ α. This is achieved by setting Ω to 0, such that every such play will satisfy the
objective.

▶ Lemma 20. There exists a GNE σ ∈ ΣG in G with WinTopp
G(σ) = Tp for every p ∈ Pla,

if and only if ∃σEve ∈ ΣEve
H ∀σAdam ∈ ΣAdam

H outH(σEve, σAdam) ∈ α.

Proof. Let σ ∈ ΣG be a GNE with WinTopp
G(σ) = Tp for every p ∈ Pla. Let σEve ∈

ΣEve
H be the corresponding strategy for σ, and let σAdam ∈ ΣAdam

H be some strategy for
Adam that corresponds to (p, t, σ′

p). Let ρ = outH(σEve, σAdam). If obey(ρ) ∧ t ∈ Tp, then
from Lemma 19 we have that proj(ρ) = outGt

(σ), and since t ∈ Tp = WinTopp
G(σ) then

outGt
(σ) ∈ αt,p. Thus, ψ1 is satisfied by ρ. If t /∈ Tp then from Lemma 19 we have that

proj(ρ) = outGt
(σ[p 7→ σ′

p]) and since Player p is losing in t when G is played with σ and σ

is a GNE, then outGt(σ[p 7→ σ′
p]) /∈ αt,p. Thus, ψ2 is satisfied and ρ ∈ α.

Conversely, let σEve ∈ ΣEve
H be such that for any σAdam ∈ ΣAdam

H we have outH(σEve, σAdam) ∈
α. Let σ ∈ ΣG correspond to σEve. We show that σ is a GNE. First, we show that for
every p ∈ Pla, WinTopp

G(σ) = Tp. Let t ∈ Top and p ∈ Pla. Take σAdam ∈ ΣAdam
H that

corresponds to (p, t, σp) where σp is the strategy assigned to p in σ. Let ρt = outGt
(σ) and

ρ = outH(σEve, σAdam). We have that ρ ∈ α. Since Adam obeys Eve on ρ, from Lemma 19
we have that proj(ρ) = ρt. If t ∈ Tp then from ψ1 we get that ρt = proj(ρ) ∈ αt,p,
thus, t ∈ WinTopp

G(σ). If t /∈ Tp then from ψ2 we get that ρt = proj(ρ) /∈ αt,p, thus,
t /∈ WinTopp

G(σ). So we get that WinTopp
G(σ) = Tp. Now, we show that σ is a GNE.

Let p ∈ Pla, σ′
p ∈ Σp

G and t ∈ Top such that t /∈ Tp. Let σAdam ∈ ΣAdam
H correspond to

(p, t, σ′
p), and let ρ = outH(σEve, σAdam). We have that ρ ∈ α, thus, since t /∈ Tp then

proj(ρ) /∈ αt,p. From Lemma 19 we have that ρ′
t = outGt

(σ[p 7→ σ′
p]) = proj(ρ) /∈ αt,p, thus,

t /∈ WinTopp
Gt

(σ[p 7→ σ′
p]) = Tp, so σ is a GNE. ◀

The algorithm for solving the GNE existence problem is, for each (Tp)p∈Pla ∈ (2Top)Pla we
construct H from G and (Tp)p∈Pla, and check if there exists σEve ∈ ΣEve

H such that for every
σAdam ∈ ΣAdam

H , outH(σEve, σAdam) ∈ α, if there exists such σEve, then according to Lemma 20
is corresponding strategy profile is a GNE, then we return it. If we went through all
(Tp)p∈Pla ∈ (2Top)Pla, then return that there does not exist a GNE in G.

The size of H is polynomial in the size of G. We copy each s ∈ S for every combination
of p ∈ Pla, t ∈ Top, b ∈ {true, false}, so we get |QH| = 2 · |S| · |Pla| · |Top| + 1, which is
polynomial in the size of G. The number of actions in H is also polynomial in the number of
enabled actions in G (similarly to the analysis in Section 4.3).

The algorithm performs at most 2|Top|·|Pla| iterations, which is exponential in |G|. In each
iteration we solve H with size that is polynomial in |G|, so according to Theorem 18 this
takes exponential time in |G|, so the GNE existence problem is in EXPTIME.
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Session types enable the specification and verification of communicating systems. However, their
theory often assumes that processes never fail. To address this limitation, we present a generalised
multiparty session type (MPST) theory with crash-stop failures, where processes can crash arbitrarily.
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syntactic changes to standard session π-calculus and types: we model crashes and their handling
semantically, with a generalised MPST typing system parametric on a behavioural safety property.
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assumptions, and prove type safety and protocol conformance in the presence of crash-stop failures.

Introducing crash-stop failures has non-trivial consequences: writing correct processes that
handle all crash scenarios can be difficult. Yet, our generalised MPST theory allows us to tame this
complexity, via model checking, to validate whether a multiparty session satisfies desired behavioural
properties, e.g. deadlock-freedom or liveness, even in presence of crashes. We implement our approach
using the mCRL2 model checker, and evaluate it with examples extended from the literature.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Process calculi; Software and its engineering → Model checking

Keywords and phrases Session Types, Concurrency, Failure Handling, Model Checking

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.35

Related Version Full Version: https://doi.org/10.48550/arXiv.2207.02015

Supplementary Material Software (Source Code): https://github.com/alcestes/mpstk-crash-
stop, archived at swh:1:dir:dd8b3c8c6f5f16e5405c0a697f1acd72e3868514

Funding Work supported by: EU Horizon 2020 project 830929; EPSRC grants EP/K011715/1,
EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1, EP/T006544/1, EP/T014709/1,
EP/V000462/1, and NCSS/EPSRC VeTSS; Danmarks Industriens Fond 2020-0489.

1 Introduction

Multiparty session types (MPST) [20] provide a typing discipline for message-passing processes.
The theory ensures well-typed processes enjoy desirable properties, a.k.a. the Session Theor-
ems: type safety (processes communicate without errors), protocol conformance (a.k.a. session
fidelity, processes behave according to their types), deadlock-freedom (processes do not get
stuck), and liveness (input/output actions eventually succeed). Researchers devote significant
effort into integrating session types in programming languages and tools [16].

© Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 35; pp. 35:1–35:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.barwell@imperial.ac.uk
https://orcid.org/0000-0003-1236-7160
mailto:alcsc@dtu.dk
https://orcid.org/0000-0002-1153-6164
mailto:yoshida@doc.ic.ac.uk
https://orcid.org/0000-0002-3925-8557
mailto:fangyi.zhou15@imperial.ac.uk
https://orcid.org/0000-0002-8973-0821
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.48550/arXiv.2207.02015
https://github.com/alcestes/mpstk-crash-stop
https://github.com/alcestes/mpstk-crash-stop
https://archive.softwareheritage.org/swh:1:dir:dd8b3c8c6f5f16e5405c0a697f1acd72e3868514;origin=https://github.com/alcestes/mpstk-crash-stop;visit=swh:1:snp:bddbcdfe4d6cdd7b7269c79dbb003d61578a1836;anchor=swh:1:rev:3104e4ddfdc03385f68f53325908136c4a18b421
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 Generalised Multiparty Session Types with Crash-Stop Failures

A common assumption in session type theory is that everything is reliable and there are
no failures, which is often unrealistic in real-world systems. So, we pose a question: how can
we better model systems with failures, and make session types less idealistic?

In this paper, we take steps towards bridging the gap between theory and practice
with a new generalised multiparty session type theory that models failures with crash-stop
semantics [5, §2.2]: processes may crash, and crashed processes stop interacting with the
world. This model is standard in distributed systems, and is used in related work on session
types with error-handling capabilities [33,34]. However, unlike previous work, we allow any
process to crash arbitrarily, and support optional assumptions on non-crashing processes.

In our new theory, we add crashing and crash handling semantics to processes and session
types. With minimal changes to the standard surface syntax, we model a variety of subtle,
complex behaviours arising from unreliable communicating processes. An active process P

may crash arbitrarily, and a process Q interacting with P might need to be prepared to
handle possible crashes. Messages sent from Q to a crashed P are lost – but if Q tries to
receive from P , then Q can detect that P has crashed, and take a crash handling branch.
Meanwhile, another process R may (or may not) have detected P ’s crash, and may be
handling it – and in either case, any interaction between Q and R should remain correct.

Our MPST theory is generalised in two aspects: (1) we introduce optional reliability
assumptions, so we can model a mixture of reliable and unreliable communicating peers;
and (2) our type system is parametric on a type-level behavioural property φ which can be
instantiated as safety, deadlock freedom, liveness, etc. (in the style of [29]), while accounting
for potential crashes. We prove session fidelity, showing how type-level properties transfer to
well-typed processes; we also prove that our new theory satisfies other Session Theorems of
MPST, while (unlike previous work) being resilient to arbitrary crash-stop failures.

With optional reliability assumptions, one may declare that some peers will never crash
for the duration of the protocol. Such optional assumptions allow for simplifying protocols
and programs: if a peer is assumed reliable, the other peers can interact with it without
needing to handle its crashes. By making such assumptions explicit and customisable, our
theory supports a spectrum of scenarios ranging from only having sessions with reliable peers
(thus subsuming classic MPST works [20,29]), to having no reliable peers at all.

As in the real world, a system with crash-stop failures can have subtle complex behaviours;
hence, writing protocols and processes where all possible crash scenarios are correctly handled
can be hard. This highlights a further benefit of our generalised theory: we formalise our
behavioural properties as modal µ-calculus formulæ, and verify them with a model checker.
To show the feasibility of our approach, we present an accompanying tool, utilising the mCRL2
model checker [4], for verifying session properties under optional reliability assumptions.

Overview. Session typing systems assign session types (a.k.a. local types) to communication
channels, used by processes to send and receive messages. In essence, a session type describes
a protocol: how a role is expected to interact with other roles in a multiparty session. The
type system checks whether a process implements desired protocols.

As an example, consider a simple Domain Name System (DNS) scenario: a client p
queries a server q for an IP address of a host name. With classic session types (without
crashes), we use the type Tp = q⊕req .q&res to represent the client p’s behaviour: first
sending (⊕) a request message to server q, and then receiving (&) a response from q. The
server implements a dual type Tq = p&req.p⊕res., who receives a request from client p, and
then sends a response to p. We can write a process Q = s[q][p]&req.s[q][p]⊕res.0 for the
server. Using Tq, we type-check the channel (a.k.a. session endpoint) s[q], where Q plays the
role q on session s. Here, Q type-checks – it uses channel s[q] correctly, according to type Tq.
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Figure 1 Transition systems (based on Def. 7, with labels omitted) generated from the DNS
examples. Left: without crashes/handling. Right: with crashes (for q) and crash handling.

In this work, we augment the classic session types theory by introducing process failures
with crash-stop semantics [5, §2.2]. We adopt the following failure model: (1) processes have
crash-stop failures, i.e. they may crash and do not recover; (2) communication channels deliver
messages in order, without losses (unless the recipient has crashed); (3) each process has a
failure detector [11], so a process trying to receive from a crashed peer accurately detects the
crash. The combination of (1), (2), and (3) is called the crash-fail model in [5, §2.6.2].

We now revise our DNS example in the presence of failures. Let us assume that the server
q may crash, whereas the client p remains reliable. The client p may now send its request to
a new failover server r (assumed reliable for simplicity). We represent this scenario by a
type for the new failover server T ′

r, and a new branch in T ′
p for handling q’s crash:

T ′
p = q⊕req.q&

{
res
crash.r⊕req.r&res

}
T ′

q = p&req.p⊕res
T ′

r = q&crash.p&req.p⊕res

Here, T ′
p states that client p first sends a message to the unreliable server q; then, p expects

a response from q. If q crashes, the client p detects the crash and handles it (via the new
crash handling branch) by requesting from the failover server r. Meanwhile, r also detects
whether q has crashed. If so, r activates its crash handling branch and handles p’s request.

In our model, crash detection and handling is done on the receiving side, e.g. T ′
p detects

whether q has crashed when waiting for a response, while T ′
r monitors whether q has crashed.

Handling crashes when receiving messages from a reliable role is unnecessary, e.g. the server
q does not need crash handling when it receives from the (reliable) client p; similarly, the
(reliable) roles p and r interact without crash handling. This failure model is reflected in the
semantics of both processes and session types in our work. Unlike classic MPST works, we
allow processes to crash arbitrarily while attempting inputs or outputs (§ 2). When a process
crashes, the channel endpoints held by the process also crash, and are assigned the new type
stop (§ 3). E.g. when the server process Q crashes, the endpoint s[q] held by Q becomes a
crashed endpoint s[q] ; accordingly, the server type T ′

q advances to stop to reflect the crash.
To ensure that communicating processes are type-safe even in the presence of crashes,

we require their session types to satisfy a safety property accounting for possible crashes
(Def. 8), which can be refined, e.g. as deadlock-freedom or liveness (Def. 18). We prove
subject reduction, session fidelity, and various process properties (deadlock-freedom, liveness,
etc.) even in the presence of crashes and optional reliability assumptions (Thms. 11, 15, 20).

Despite minimal changes to the surface syntax of session types and processes, the semantics
surrounding crashes introduce subtle behaviours and increase complexity. Taking the DNS
examples above, we compare the sizes of their (labelled) transition systems in Fig. 1 (based
on Def. 7): the original system (left, two roles p and q, no crashes) has 10 states and 15
transitions; and the revised system (right, q may crash, with a new role r) has 101 states
and 427 transitions. We discuss another, more complex example in § 4. Checking whether a
given combination of session types with possible crashes is safe, deadlock-free, or live, can be
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challenging due to non-trivial behaviours and increased model size arising from crashes and
crash handling. To tackle this, we show how to automatically verify such type-level properties
by representing them as modal µ-calculus formulæ via the mCRL2 model checker [4].

Contributions and Structure. In § 2 we introduce a multiparty session π-calculus (with
minimal changes to the standard syntax) giving crash and crash handling semantics modelling
crash-stop failures. In §3 we present multiparty session types with crashes: they describe how
communication channels should be used to send/receive messages, and handle crashes. We
formalise the semantics of collections of local types under optional reliability assumptions; we
introduce a type system, and prove the Session Theorems: type safety, protocol conformance,
and process properties (deadlock-freedom, termination, liveness, etc.) in Thms. 11, 15, and 20.
In § 4 we show how model checking can be incorporated to verify our behavioural properties,
by expressing them as modal µ-calculus formulæ. We discuss related work and conclude in
§ 5. Appendices § C and § D include additional examples and more details about the tool
implementing our theory using the mCRL2 model checker. Further appendices with proofs
are available in a separate technical report [3].

2 Multiparty Session Calculus with Crash-Stop Semantics

In this section, we formalise the syntax and operational semantics of our multiparty session
π-calculus, where a process can fail arbitrarily, and crashes can be detected and handled by
receiving processes. For clarity of presentation, we formalise a synchronous semantics.

Syntax of Processes. Our multiparty session π-calculus models processes that interact via
multiparty channels, and may arbitrarily crash. For simplicity of presentation, our calculus
is streamlined to focus on communication; standard extensions, e.g. with expressions and
“if. . . then. . . else” statements, are routine and orthogonal to our formulation.

▶ Definition 1 (Syntax of Multiparty Session π-Calculus). Let p, q, . . . denote roles belonging to
a set R; let s, s′, . . . denote sessions; let x, y, . . . denote variables; let m, m′, . . . denote message
labels; let X, Y , . . . denote process variables. The multiparty session π-calculus syntax is:

c ::= x
∣∣ s[p] (variable or channel for session s with role p)

d ::= v
∣∣ c (basic value, variable, or channel with role)

w ::= v
∣∣ s[p] (basic value or channel with role)

P , Q ::= 0
∣∣ (νs) P

∣∣ P | Q (inaction, restriction, parallel composition)
c[q]⊕m⟨d⟩.P (where m ̸= crash) (selection towards role q)
c[q]&{mi(xi).Pi}i∈I (branching from role q with an index set I ̸= ∅)
def D in P

∣∣ X⟨d̃⟩ (process definition, process call)
err

∣∣ s[p] (error, crashed channel endpoint)
D ::= X(x̃) = P (declaration of process variable X)

We write Πi∈IPi for the parallel composition of processes Pi. Restriction, branching, and
process definitions and declarations act as binders, as expected; fc(P ) is the set of free
channels with roles in P (including s[p] in s[p] ), and fv(P ) is the set of free variables in
P . Noticeable changes w.r.t. standard session calculi are highlighted.

Our calculus (Def. 1) includes basic values v (e.g. unit (), integers, strings), channels
with roles (a.k.a. session endpoints) s[p], session scope restriction (νs) P , inaction 0, parallel
composition P | Q, process definition def D in P , process call X⟨d̃⟩, and error err. Selection
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[R-⊕&] s[p][q]&{mi(xi).Pi}i∈I | s[q][p]⊕mk⟨w⟩.Q → Pk{w/xk} | Q if k ∈I

[R-Err] s[p][q]&{mi(xi).Pi}i∈I | s[q][p]⊕m⟨w⟩.Q → err if ∀i∈I : mi ̸=m

[R-X] def X(x1, . . . , xn) = P in (X⟨w1, . . . , wn⟩ | Q)
→ def X(x1, . . . , xn) = P in (P{w1/x1} · · · {wn/xn} | Q)

[R-Ctx] P → P ′ implies C[P ] → C[P ′]
[R-≡] P ′ ≡ P and P → Q and Q ≡ Q′ implies P ′ → Q′

[R- ⊕] P = s[p][q]⊕m⟨w⟩.P ′ → Πj∈Jsj [pj ] where {sj [pj ]}j∈J = fc(P )
[R- &] P = s[p][q]&{mi(xi).Pi}i∈I → Πj∈Jsj [pj ] where {sj [pj ]}j∈J = fc(P )

[R- mB] s[p] | s[q][p]⊕m⟨v⟩.Q′ → s[p] | Q′

[R- m] s[p] | s[q][p]⊕m⟨s′[r]⟩.Q′ → s[p] | s′[r] | Q′

[R-⊙] s[p][q]&{mi(xi).Pi, crash.P ′}i∈I | s[q] → P ′ | s[q] 

Figure 2 Semantics of our session π-calculus. Rule [R-≡] uses the congruence ≡ defined in § A.

(a.k.a. internal choice) c[q]⊕m⟨d⟩.P sends a message m with payload d to role q via endpoint c,
where c may be a variable or channel with role, while d may also be a basic value. Branching
(a.k.a. external choice) c[q]&{mi(xi).Pi}i∈I expects to receive a message mi (for some i ∈ I)
from role q via endpoint c, and then continues as Pi. Importantly, a process implements crash
detection by “receiving” the special message label crash in an external choice; such special
message cannot be sent by any process (side condition m ̸= crash in selection). For example,
s[p][q]&{m(x).P , crash.P ′} is a process that uses the session endpoint s[p] to receive message
m from q, but if q has crashed, then the process continues as P ′. Finally, our calculus includes
crashed session endpoints s[p] , denoting that the endpoint for role p in session s has crashed.

Operational Semantics. We give the operational semantics of our session π-calculus in
Def. 2, using a standard structural congruence extended with a new crash elimination rule
which garbage-collects sessions where all endpoints are crashed: (full congruence rules in § A)
(νs) (s[p1] | · · · | s[pn] ) ≡ 0 [C-CrashElim]

▶ Definition 2. A reduction context C is defined as: C ::= C | P
∣∣ (νs)C

∣∣ def D in C
∣∣ [ ]

The reduction → is defined in Fig. 2; we write →+/ →∗ for its transitive / reflexive-transitive
closure. We write P ↛ iff ̸ ∃P ′ such that P →P ′ is derivable without rules [R- ⊕] and [R- &]

(i.e. P is stuck, unless a crash occurs). We say P has an error iff ∃C with P =C[err].

Part of our operational semantics rules in Fig. 2 are standard. Rule [R-⊕&] describes a
communication on session s between receiver p and sender q, if the sent message mk can be
handled by the receiver (k ∈ I); otherwise, a message label mismatch causes an error via
rule [R-Err]. Rule [R-X] expands process definitions when called. Rules [R-Ctx] and [R-≡] allow
processes to reduce under reduction contexts and modulo structural congruence.

The remaining rules in Fig. 2 (highlighted) are novel: they model crashes, and crash
handling. Rules [R- ⊕] and [R- &] state that a process P may crash while attempting any
selection or branching operation, respectively; when P crashes, it reduces to a parallel
composition where all the channel endpoints held by P are crashed. The lost message rules
[R- mB] and [R- m] state that if a process sends a message to a crashed endpoint, then the
message is lost; if the message payload is a session endpoint s′[r], then it becomes crashed.
Finally, the crash handling rule [R-⊙] states that if a process attempts to receive a message
from a crashed endpoint, then the process detects the crash and follows its crash handling
branch P ′. We now show an example of rule [R- ⊕]; more examples can be found in § C.
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▶ Example 3. Processes

P = s[p][q]⊕m′⟨s[r]⟩.s[p][r]&m(x) and Q = s[q][p]&m′(x).x[p]⊕m⟨42⟩

communicate on a session s; P uses s[p] to send s[r] to role q; Q uses s[q] to receive it, then
sends a message to role p via s[r]. Suppose that P crashes before sending: this gives rise to
the reduction (by rule [R- ⊕]) (νs) (P | Q) → (νs) (s[p] | s[r] | Q). Observe that s[p] and
s[r], which were held by P , are now crashed.

3 Multiparty Session Types with Crashes

In this section, we present a generalised type system for our multiparty session π-calculus
(introduced in Def. 1). As in standard MPST, we assign session types to channel endpoints;
we show the syntax of our types in §3.1, where our key additions are crash handling branches,
and a new type stop for crashed endpoints. In § 3.2, we give a labelled transition system
(LTS) semantics to typing contexts, to represent the behaviour of a collection of types.

Unlike classic MPST, our type system is generalised in the style of [29], hence it has no
global types; rather, it uses a safety property formalising the minimum requirement for a
typing context to ensure subject reduction (and thus, type safety). In this paper, such a
safety property is defined in § 3.3: unlike previous work, the property accounts for potential
crashes, and supports explicit (and optional) reliability assumptions. We show typing rules
in § 3.4, and the main properties of the typing system: subject reduction (Thm. 11) and
session fidelity (Thm. 15) in § 3.5. Finally, we demonstrate how we can infer runtime process
properties from typing contexts in § 3.6.

3.1 Types

A session type describes how a process is expected to use a communication channel to
send/receive messages to/from other roles involved in a multiparty session. We formalise the
syntax of session types in Def. 4, where we add the stop type to their standard syntax [29].

▶ Definition 4 (Types). Our types include both basic types and session types:
B ::= int

∣∣ bool
∣∣ real

∣∣ unit
∣∣ . . . (basic types)

S ::= B
∣∣ T (basic type or session type)

T ::= p&{mi(Si).Ti}i∈I

∣∣ p⊕{mi(Si).Ti}i∈I (external or internal choice, with I ̸= ∅)∣∣ µt.T
∣∣ t

∣∣ end (recursion, type variable, or termination)
U ::= T

∣∣ stop (session type or crash type)

In internal and external choices, the index set I must be non-empty, and labels mi must be pair-
wise distinct. Types are always closed (i.e. each recursion variable t is bound under a µt.. . .)
and recursion variables are guarded, i.e. they can only appear under an internal/external
choice (e.g. µt.µt′.t is not a valid type). For brevity, we may omit the payload type unit and
the trailing end: e.g. p⊕m1 .r&m2 is shorthand for p⊕m1(unit).r&m2(unit).end.

The internal choice (selection) type p⊕{mi(Si).Ti}i∈I denotes sending a message mi (by
picking some i ∈ I) with a payload of type Si to role p, and then continue the protocol as Ti.
Dually, the external choice (branching) type p&{mi(Si).Ti}i∈I denotes receiving a message
mi (for any i ∈ I) with a payload of type Si from role p, and then continue as Ti. The type
end indicates that a session endpoint should not be used for further communications.
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k ∈ I

s[p]:q⊕{mi(Si).Ti}i∈I

s[p]:q⊕mk(Sk)−−−−−−−−→ s[p]:Tk

[Γ-⊕] k ∈ I

s[p]:q&{mi(Si).Ti}i∈I

s[p]:q&mk(Sk)−−−−−−−−→ s[p]:Tk

[Γ-&]

Γ1
s[p]:q⊕m(S)−−−−−−−→ Γ′

1 Γ2
s[q]:p&m(S′)−−−−−−−→ Γ′

2 S⩽S′

Γ1, Γ2
s[p][q]m−−−−→ Γ′

1, Γ′
2

[Γ-⊕&] s[p]:T{µt.T/t} α−→ Γ′

s[p]:µt.T
α−→ Γ′

[Γ-µ] Γ α−→ Γ′

Γ, c:U α−→ Γ′, c:U
[Γ-,]

T ̸⩽ end

s[p]:T s[p] −−−→ s[p]:stop
[Γ- ]

s[p]:stop s[p]stop−−−−→ s[p]:stop
[Γ-stop] Γ α−→ Γ′

Γ, x:B α−→ Γ′, x:B
[Γ-,B]

Γ1
s[q]:p&crash−−−−−−−→ Γ′

1 Γ2
s[p]stop−−−−→ Γ′

2

Γ1, Γ2
s[q]⊙p−−−−→ Γ′

1, Γ′
2

[Γ-⊙]
Γ1

s[p]:q⊕m(S)−−−−−−−→ Γ′
1 Γ2

s[q]stop−−−−→ Γ′
2

Γ1, Γ2
s[p][q]m−−−−→ Γ′

1, Γ′
2

[Γ- m]

Figure 3 Typing context semantics.

Crashes and Crash Detection. The key novelty of Def. 4 is the new type stop describing
a crashed session endpoint. Similarly to Def. 1, we also introduce a distinguished message
label crash for crash handling in external choices. For example, recall the types in § 1:

the type q&{res.T , crash.T ′} means that we expect a response message from role q, but
if we detect that q has crashed, then the protocol continues along the handling branch T ′;
the type q&crash.T denotes a “pure” crash recovery behaviour: we are not communicating
with q, but the recovery protocol T is activated whenever we detect that q has crashed.

Since crash messages cannot be crafted by any role in a session (see Def. 1), we postulate
that the crash message label cannot appear in internal choice types.

Session Subtyping. We use a subtyping relation ⩽ that is mostly standard: a subtype can
have wider internal choices and narrower external choices w.r.t. a supertype. To correctly
support crash handling, we apply two changes: (1) we add the relation stop ⩽ stop, and (2)
we treat external choices with a singleton crash branch in a special way: they represent a
“pure” crash recovery protocol (as outlined above), hence we do not allow the supertype to
have more input branches. This way, a “pure” crash recovery type can only be implemented
by a “pure” crash recovery process (with a singleton crash detection branch); such processes
are treated specially by the properties in § 3.6. For the complete definition of ⩽, see § B.

3.2 Typing Contexts and their Semantics
Before introducing the typing rules for our calculus (in § 3.4), we first formalise typing
contexts (Def. 5) and their semantics (Def. 7).

▶ Definition 5 (Typing Contexts). Θ denotes a partial mapping from process variables to
n-tuples of types, and Γ denotes a partial mapping from channels to types. Their syntax is:

Θ ::= ∅
∣∣ Θ, X:S1, . . . , Sn Γ ::= ∅

∣∣ Γ, x:S
∣∣ Γ, s[p]:U

The context composition Γ1, Γ2 is defined iff dom(Γ1) ∩ dom(Γ2) = ∅. We write s ̸∈ Γ iff
∀p : s[p] ̸∈dom(Γ) (i.e. session s does not occur in Γ). We write Γ⩽Γ′ iff dom(Γ)=dom(Γ′)
and ∀c∈dom(Γ) : Γ(c)⩽Γ′(c).

Unlike typical session typing systems, our Def. 5 allows a session endpoint s[p] to have
either a session type T , or the crash type stop. We equip our typing contexts with a labelled
transition system (LTS) semantics (in Def. 7) using the labels in Def. 6.
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▶ Definition 6 (Transition Labels). Let α denote a transition label having the form:

α ::= s[p]:q&m(S) (in session s, p receives message m(S) from q; we omit S if S = unit)∣∣ s[p]:q⊕m(S) (in session s, p sends message m(S) to q; we omit S if S = unit)∣∣ s[p][q]m (in session s, message m is transmitted from p to q)∣∣ s[p] (in session s, p crashes)∣∣ s[p]⊙q (in session s, p has detected that q has crashed)∣∣ s[p]stop (in session s, p has stopped due to a crash)

▶ Definition 7 (Typing Context Semantics). The typing context transition α−→ is defined in
Fig. 3. We write Γ α−→ iff Γ α−→Γ′ for some Γ′. We define the two reductions → and → \s;R
(where s is a session, and R is a set of roles) as follows:

Γ→Γ′ holds iff Γ s[p][q]m−−−−→ Γ′ or Γ s[q]⊙p−−−−→ Γ′ (for some s, p, q, m). This means that Γ can
advance via message transmission or crash detection, but it cannot advance by crashing
one of its entries. We write Γ→ iff Γ→Γ′ for some Γ′, and Γ̸→ for its negation (i.e.
there is no Γ′ such that Γ→Γ′), and →∗ for the reflexive and transitive closure of →;
Γ→ \s;R Γ′ holds iff Γ α−→ Γ′ with α∈

{
s[q][r]m, s[q]⊙r, s[p] 

∣∣ p, q, r∈R, p ̸∈R
}

. This
means that Γ can advance via message transmission or crash detection on session s,
involving any roles q and r. (Recall that R is the set of all roles.) Moreover, Γ can
advance by crashing one of its entries s[p] – unless p∈R, which means that p is assumed
to be reliable. We write Γ→ \s;R iff Γ→ \s;R Γ′ for some Γ′, and Γ̸→ \s;R for its
negation, and →∗

 \s;R as the reflexive and transitive closure of → \s;R. We write Γ→ Γ′

iff Γ→ \s;∅ Γ′ for some s (i.e. Γ may advance by crashing any role on any session).

Def. 7 subsumes the standard typing context reductions [29, Def. 2.8]. Rule [Γ-⊕] (resp.
[Γ-&]) says that an entry can perform an output (resp. input) transition. Rule [Γ-⊕&] syn-
chronises matching input/output transitions, provided that the payloads are compatible by
subtyping; as a result, the context advances via a message transmission label s[p][q]m. Other
standard rules are [Γ-µ] for recursion, and [Γ-,] and [Γ-,B] for reductions in a larger context.

The key innovations are the (highlighted) rules modelling crashes and crash detection.
By rule [Γ- ], an entry can crash and become stop at any time (unless it is already ended or
stopped); then, by rule [Γ-stop], it keeps signalling that it is crashed, with label s[p]stop.

Rule [Γ-⊙] models crash detection and handling: if s[p] signals that it has crashed and
stopped, another entry s[q] can then take its crash handling branch (part of an external
choice from p). This corresponds to the process reduction rule [R-⊙] for crash detection.

Finally, rule [Γ- m] models the case where the entry s[p] is sending a message m(S) to a
crashed s[q]: this yields a transmission label s[p][q]m, and p continues – although the sent
message is not actually received by crashed q. This corresponds to the process reduction rule
[R- m] where a process sends a message to a crashed endpoint, and cannot detect its crash.

3.3 Typing Context Safety

To ensure type safety (Cor. 12), i.e. well-typed processes do not result in errors, we define
a safety property φ(·) (Def. 8) as a predicate on typing contexts Γ. The safety property φ

is the key feature of generalised MPST systems [29, Def. 4.1]; in this work, we extend its
definition in two crucial ways: (1) we support crashes and crash detection, and (2) we make
the property parametric upon a (possibly empty) set of reliable roles R, thus introducing
optional reliability assumptions about roles in a session that never fail.
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Θ(X) = S1, . . . , Sn

Θ ⊢ X :S1, . . . , Sn
[T-X]

v ∈ B

∅ ⊢ v :B
[T-B]

∀i ∈ 1..n Si is basic or ci :Si ⊢ ci :end
end(c1 :S1, . . . , cn :Sn)

[T-end]

Θ ⊢ X :S1, . . . , Sn end(Γ0) ∀i ∈ 1..n Γi ⊢ di :Si Si ̸⩽ end
Θ · Γ0, Γ1, . . . , Γn ⊢ X⟨d1, . . . , dn⟩

[T-Call]

end(Γ)
Θ · Γ ⊢ 0

[T-0]
Θ, X:S1, . . . , Sn · x1 :S1, . . . , xn :Sn ⊢ P Θ, X:S1, . . . , Sn · Γ ⊢ Q

Θ · Γ ⊢ def X(x1 :S1, . . . , xn :Sn) = P in Q
[T-def]

Γ1 ⊢ c:q&{mi(Si).Ti}i∈I ∀i∈I Θ · Γ, yi :Si, c:Ti ⊢ Pi

Θ · Γ, Γ1 ⊢ c[q]&{mi(yi).Pi}i∈I

[T-&]
Θ · Γ1 ⊢ P1 Θ · Γ2 ⊢ P2

Θ · Γ1, Γ2 ⊢ P1 | P2
[T-|]

Γ1 ⊢ c:q⊕{m(S).T } Γ2 ⊢ d:S S ̸⩽ end Θ · Γ, c:T ⊢ P

Θ · Γ, Γ1, Γ2 ⊢ c[q]⊕m⟨d⟩.P
[T-⊕]

S ⩽ S′

c:S ⊢ c:S′ [T-Sub]

end(Γ)
Θ · Γ, s[p]:stop ⊢ s[p] 

[T- ]
Γ′ = {s[p]:Tp}p∈I φ(Γ′) s ̸∈Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs:Γ′) P
[T-ν]

Figure 4 Typing rules for processes; φ in [T-ν] is an (s;R)-safety property, for some R.

▶ Definition 8 (Typing Context Safety). Given a set of reliable roles R and a session s, we
say that φ is an (s; R)-safety property of typing contexts iff, whenever φ(Γ), we have:

[S-⊕&] Γ s[p]:q⊕m(S)−−−−−−−→ and Γ s[q]:p&m′(S′)−−−−−−−−→ implies Γ s[p][q]m−−−−→;
[S- &] Γ s[p]stop−−−−→ and Γ s[q]:p&m(S)−−−−−−−→ implies Γ s[q]⊙p−−−−→;
[S-→ ] Γ → \s;R Γ′ implies φ(Γ′).

We say Γ is (s; R)-safe, written safe(s; R, Γ), if φ(Γ) holds for some (s; R)-safety property φ.
We say Γ is safe, written safe(Γ), if φ(Γ) holds for some property φ which is an (s; ∅)-safety
property for all sessions s occurring in dom(Γ).

By Def. 8, safety is a coinductive property [28]: fix s and R, (s; R)-safe is the largest
(s; R)-safety property, i.e. the union of all (s; R)-safety properties; to prove that some Γ is
(s; R)-safe, we must find a property φ such that Γ∈φ, and prove that φ is an (s; R)-safety
property. Intuitively, we can construct such φ (if it exists) as the set containing Γ and all
its reductums (via transition →∗

 \s;R), and checking whether all elements of φ satisfy all
clauses of Def. 8. By clause [S-⊕&], whenever two roles p and q attempt to communicate,
the communication must be possible, i.e. the receiver q must support all output messages of
sender p, with compatible payload types (by rule [Γ-⊕&] in Fig. 3). For “pure” crash recovery
types (with a singleton crash handling branch) there would not be corresponding sender, so
this clause holds trivially. Clause [S- &] states that if a role q receives from a crashed role p,
then q must have a crash handling branch. Clause [S-→ ] states that any typing context Γ′

that Γ transitions to (on session s) must also be in φ (hence, Γ′ must also be (s; R)-safe);
notice that, by using transition → \s;R, we ignore crashes s[p] of any reliable role p∈R.

▶ Example 9. Consider the simple DNS scenario from § 1, its types T ′
p, T ′

q and T ′
r, and the

typing context Γ = s[p]:T ′
p, s[q]:T ′

q, s[r]:T ′
r. We know, and can verify, that Γ is (s; {p, r})-

safe by checking its reductions. For example, for the case where q crashes immediately,
we have: Γ → \s;{p,r} s[p]:T ′

p , s[q]:stop , s[r]:T ′
r →∗

 \s;{p,r} s[p]:end, s[q]:stop, s[r]:end and each
reductum satisfies all clauses of Def. 8. Full reductions are available in § C, Ex. 23.
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3.4 Typing Rules
Our type system uses two kinds of typing contexts (introduced in Def. 5): Θ to assign an
n-tuple of types to each process variable X (one type per argument), and Γ to map variables
to payload types (basic types or session types), and channels with roles to session types or
the stop type. Together, they are used in judgements of the form:

Θ · Γ ⊢ P (with Θ omitted when empty)

which reads, “given the process types in Θ, P uses its variables and channels linearly according
to Γ.” This typing judgement is defined by the rules in Fig. 4, where, for convenience, we
type-annotate channels bound by process definitions and restrictions.

The main innovations in Fig. 4 are rules [T-ν] and [T- ] (highlighted). Rule [T-ν] utilises a
safety property φ (Def. 8) to validate session restrictions, taking into account crashes and
crash handling, and any reliable role assumption in the (possibly empty) set R. The rule
can be instantiated by choosing a set R and safety property φ (e.g. among the stronger
properties presented in Def. 18 later on). Rule [T- ] types crashed session endpoints as stop.

The rest of the rules in Fig. 4 are mostly standard. [T-X] looks up process variables. [T-B]

types a value v if it belongs to a basic type B. [T-Sub] holds for a singleton typing context
c:S, and applies subtyping when assigning a type S′ to a variable or channel c. [T-end] defines
a predicate end(·) on typing contexts, indicating all endpoints are terminated – it is used in
[T-0] for typing an inactive process 0, and in [T- ] for crashed endpoints. [T-⊕] and [T-&] assign
selection and branching types to channels used by selection and branching processes. Minor
changes w.r.t. standard session types are the clauses “S ̸⩽ end” in rules [T-⊕] and [T-Call]:
they forbid sending or passing end-typed channels, while allowing sending/passing channels
and data of any other type.1 Rules [T-def] and [T-Call] handle recursive processes declarations
and calls. [T-|] linearly splits the typing context into two, one for typing each sub-process.

3.5 Subject Reduction and Session Fidelity
We present our key results on typed processes: subject reduction and session fidelity (Thms. 11
and 15). A main feature of our theory is that our results explicitly account for the spectrum
of optional reliability assumptions used during typing.

On one end of the spectrum, our results hold without any reliability assumption: any
process and session endpoint may crash at any time. This is obtained if, for each Γ used
during typing, we assume safe(Γ) (Def. 8), with no reliable roles.
At the other end of the spectrum, we recover the classic MPST results by assuming that
all roles in all sessions are reliable – i.e. if for each Γ used during typing, and for all s∈Γ,
we assume safe(s; Rs, Γ) with Rs = {p | s[p]∈dom(Γ)}.

Subject reduction (Thm. 11 below) states that if a well-typed process P reduces to P ′, then
the reduction is simulated by its typing context Γ, provided that the reliability assumptions
embedded in Γ hold when P reduces. In other words, if a channel endpoint s[p] occurring in
P is assumed reliable in Γ, then P should not crash s[p] while reducing; any other reduction
of P (including those that crash other session endpoints) are type-safe. To formalise this
idea, we define reliable process reduction → \s;R as a subset of P ’s reductions. We also define
assumption-abiding reduction ✓−→ to enforce reliable process reductions across nested sessions.

1 This restriction is needed for Thms. 11 and 20. It does not limit the expressiveness of our typed calculus,
since sending an end-typed channel (not usable for communication) amounts to sending a basic value.
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▶ Definition 10 (Reliable Process Reductions and Assumption-Abiding Reductions). The reliable
process reduction → \s;R is defined as follows:

P → P ′ ∀p ∈ R : ∄R : P ′ ≡ R | s[p] 
P → \s;R P ′

Assume Θ · Γ ⊢ P where, for each s ∈ Γ, there is a set of reliable roles Rs such that
safe(s; Rs, Γ). We define the assumption-abiding reduction ✓−→ such that P

✓−→ P ′ holds
when: (1) P → \s;Rs

P ′ for all s ∈ Γ; and (2) if P ≡ (νs′ :Γs′) Q (for some s′, Γs′ , Q) and
P ′ ≡ (νs′) Q′ and Q → Q′, then ∃R′ such that safe(s′; R′, Γs′) and Q → \s′;R′ Q′. We
write ✓−→+/ ✓−→∗ for the transitive / reflexive-transitive closure of ✓−→.

Hence, when P → \s;R P ′ holds, none of the session endpoints s[p] (where p is a reliable role
in set R) are crashed in P ′. When P is well-typed, the reduction P

✓−→ P ′ covers all (and
only) the reductions of P that do not violate any reliability assumption used for deriving
Θ · Γ ⊢ P ; notice that we use congruence ≡ to quantify over all restricted sessions in P and
ensure their reductions respect all reliability assumptions in their typing, by [T-ν] in Fig. 4.

We can now use ✓−→ to state our subject reduction result. Its proof is available in [3].

▶ Theorem 11 (Subject Reduction). Assume Θ · Γ ⊢ P where ∀s ∈ Γ : ∃Rs : safe(s; Rs, Γ).
If P

✓−→ P ′, then ∃Γ′ such that Γ →∗
 Γ′, and ∀s ∈ Γ′ : safe(s; Rs, Γ′), and Θ · Γ′ ⊢ P ′.

▶ Corollary 12 (Type Safety). Assume ∅ · ∅ ⊢ P . If P
✓−→∗ P ′, then P ′ has no error.

▶ Example 13 (Subject reduction). Take the DNS example (§ 1) and consider the process
acting as the (unreliable) role q: Pq = s[q][p]&req.s[q][p]⊕res.0. Using type T ′

q from the
same example, can type Pq with the typing context Γq = s[q]:T ′

q. Following a crash reduction
via [R- &], the process evolves as Pq → P ′

q = s[q] . Observe that the typing context Γq can
reduce to Γ′

q = s[p]:stop, via [Γ- ]; and by typing rule [T- ], we can type P ′
q with Γ′

q.

Session fidelity states the opposite implication w.r.t. subject reduction: if a process
P is typed by Γ, and Γ can reduce along session s (possibly by crashing some endpoint
of s), then P can reproduce at least one of the reductions of Γ (but maybe not all such
reductions, because Γ over-approximates the behaviour of P ). As a consequence, we can infer
P ’s behaviour from Γ’s behaviour, as shown in Thm. 20. This result does not hold for all
well-typed processes: a well-typed process can loop in a recursion like def X(...) = X in X,
or deadlock by suitably interleaving its communications across multiple sessions [13]. Thus,
similarly to [29] and most session type works, we prove session fidelity for processes with
guarded recursion, and implementing a single multiparty session as a parallel composition of
one sub-process per role. Session fidelity is given in Thm. 15 below, by leveraging Def. 14.

▶ Definition 14 (from [29]). Assume ∅ · Γ ⊢ P . We say that P :
(1) has guarded definitions iff in each process definition in P of the form

def X(x1 :S1, ..., xn :Sn) = Q in P ′, for all i ∈ 1..n, if Si is a session type, then a call
Y ⟨..., xi, ...⟩ can only occur in Q as a subterm of xi[q]&{mj(yj).Pj}j∈J or
xi[q]⊕m⟨d⟩.P ′′ (i.e. after using xi for input or output);

(2) only plays role p in s, by Γ iff: (i) P has guarded definitions; (ii) fv(P )=∅; (iii)
Γ=Γ0, s[p]:S with S ̸⩽end and end(Γ0); (iv) for all subterms (νs′ :Γ′) P ′ in P , end(Γ′).

We say “P only plays role p in s” iff ∃Γ : ∅ · Γ ⊢ P , and item 2 holds.
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Item 1 of Def. 14 formalises guarded recursion for processes. Item 2 identifies a process
that plays exactly one role on one session; clearly, an ensemble of such processes cannot
deadlock by waiting for each other on multiple sessions. All our examples satisfy Def. 14(2).

We can now formalise our session fidelity result (Thm. 15). The statement is superficially
similar to Thm. 5.4 in [29], but it now includes explicit reliability assumptions for Γ; it also
covers more cases, since our typing contexts and processes can reduce by crashing, handling
crashes, or losing messages sent to crashed session endpoints. The proof is available in [3].

▶ Theorem 15 (Session Fidelity). Assume ∅·Γ ⊢P , with safe(s; R, Γ), P ≡ Πp∈IPp, and
Γ =

⋃
p∈I Γp such that for each Pp: (1) ∅· Γp ⊢Pp, and (2) either Pp ≡ 0, or Pp only plays p

in s, by Γp. Then, Γ→ \s;R implies ∃Γ′, P ′ such that Γ→ \s;R Γ′, P
✓−→+ P ′ and ∅·Γ′ ⊢ P ′,

with safe(s; R, Γ′), P ′ ≡ Πp∈IP ′
p, and Γ′ =

⋃
p∈I Γ′

p such that for each P ′
p: (1) ∅· Γ′

p ⊢P ′
p,

and (2) either P ′
p ≡ 0, or P ′

p only plays p in s, by Γ′
p.

3.6 Statically Verifying Run-Time Properties of Processes with Crashes
We conclude this section by showing how to infer run-time process properties from typing
contexts, even in the presence of arbitrary process crashes. The formulations are based
on [29, Def. 5.1 & Fig. 5(1)], but (1) we cater for optional assumptions on reliable roles; (2)
a successfully-terminated process or typing context may include crashed session endpoints
and failover types/processes (like DNS server r in § 1) that only run after detecting a crash;
and (3) non-failover reliable roles terminate by reaching 0 (in processes) or end (in types).

Def. 16 formalises several desirable process properties, using the assumption-abiding
reduction ✓−→ (Def. 10) to embed any assumptions on reliable roles used for typing. The
properties are mostly self-explanatory: deadlock-freedom means that if a process cannot reduce,
then it only contains inactive or crashed sub-processes, or recovery processes attempting
to detect others’ crashes; liveness means that if a process is trying to perform an input or
output, then it eventually succeeds (unless it is only attempting to detect others’ crashes).

▶ Definition 16 (Runtime Process Properties). Assume ∅ · Γ ⊢ P where, ∀s∈Γ, there is a set
of roles Rs such that safe(s; Rs, Γ). We say P is:
(1) deadlock-free iff P

✓−→∗ P ′↛ implies
P ′ ≡ 0 | Πi∈Isi[pi] | Πj∈J(def Dj,1 in . . . def Dj,nj in sj [pj ][qj]&crash.Q′

j);
(2) terminating iff it is deadlock-free, and ∃j finite such that ∀n≥j : P =P0

✓−→P1
✓−→· · · ✓−→

Pn implies Pn↛;
(3) never-terminating iff P

✓−→∗ P ′ implies P ′→;
(4) live iff P

✓−→∗ P ′ ≡C[Q] implies:
(i) if Q = c[q]⊕m⟨w⟩.Q′ then ∃C′ : P ′ →∗ C′[Q′];
(ii) if Q = c[q]&{mi(xi).Q′

i}i∈I where {mi | i∈I} ≠ {crash}, then ∃C′, k ∈ I, w :
P ′ →∗ C′[Q′

k{w/xk}].

In Def. 18 we formalise the type-level properties corresponding to Def. 16. Type-level
liveness means that all pending internal/external choices are eventually fired (via a message
transmission or crash detection) – assuming fairness (Def. 17, based on strong fairness of
components [32, Fact 2]) so all enabled message transmissions are eventually performed.

▶ Definition 17 (Non-crashing, Fair, Live Paths (adapted from [17, Def. 4.4])). A non-crashing
path is a possibly infinite sequence of typing contexts (Γn)n∈N , where N = {0, 1, 2, . . .} is a
set of consecutive natural numbers, and, ∀n∈N , Γn → Γn+1.

We say that a non-crashing path (Γn)n∈N is fair for session s iff, ∀n∈N : Γn
s[p][q]m−−−−→

implies ∃k, m′ such that N ∋ k ≥ n, and Γk
s[p][q]m′

−−−−−→ Γk+1.
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We say that a non-crashing path (Γn)n∈N is live for session s iff, ∀n ∈ N :
(1) Γn

s[p]:q⊕m(S)−−−−−−−→ implies ∃k, m′ such that N ∋ k ≥ n and Γk
s[p][q]m′

−−−−−→ Γk+1;
(2) Γn

s[q]:p&m(S)−−−−−−−→ and m ̸= crash implies ∃k, m′ such that N ∋ k ≥ n and Γk
s[p][q]m′

−−−−−→ Γk+1 or
Γk

s[q]⊙p−−−−→Γk+1.

▶ Definition 18 (Typing Context Properties). Given a session s and a set of reliable roles R,
we say Γ is:
(1) (s; R)-deadlock-free iff Γ →∗

 \s;R Γ′ ̸→ implies ∀s[p] ∈ Γ : Γ(s[p])⩽ end or Γ(s[p]) =
stop or ∃q: Γ(s[p]) ⩽ q&crash.T ′;

(2) (s; R)-terminating iff it is deadlock-free, and ∃j finite such that ∀n≥j: Γ=Γ0 → \s;R
Γ1 → \s;R · · ·→ \s;R Γn implies Γn̸→;

(3) (s; R)-never-terminating iff Γ →∗
 \s;R Γ′ implies Γ′→;

(4) (s; R)-live iff Γ →∗
 \s;R Γ′ implies all non-crashing paths starting with Γ′ which are

fair for session s are also live for s.

▶ Example 19. Reliability assumptions R can affect typing context properties, e.g. consider:
Γ = s[p]:µtp.q⊕ok.tp, s[q]:µtq.p&

{
ok.tq, crash.µt′

q.r&
{

ok.t′
q, crash.end

}}
, s[r]:µtr.q⊕ok.tr

If R=∅, Γ is safe and deadlock-free but not live: if p does not crash, r’s ok message is never
received by q. If we have R={r}, Γ satisfies never-termination. Here, neither liveness nor
termination can be satisfied by adding reliability assumptions. More examples in § C, Ex. 24.

We conclude by showing how the type-level properties in Def. 18 allow us to infer the
corresponding process properties in Def. 16. The proof is available in [3].

▶ Theorem 20 (Verification of Process Properties). Assume ∅·Γ ⊢P , where Γ is (s; R)-
safe, P ≡ Πp∈IPp, and Γ =

⋃
p∈I Γp such that for each Pp, we have ∅· Γp ⊢Pp. Further,

assume that each Pp is either 0 (up to ≡), or only plays p in s, by Γp. Then, for all
φ ∈ {deadlock-free, terminating, never-terminating, live}, if Γ is (s; R)-φ, then P is φ.

4 Verifying Type-Level Properties via Model Checking

In our generalised typing system, we prove subject reduction when a typing context satisfies
a safety property (Def. 8); we then give examples of more refined typing context properties
(Def. 18) and show how they are inherited by typed processes (Thm. 20). In this section,
we highlight a major benefit of our theory: we show how such typing context behavioural
properties can be verified using model checkers. We use our typing contexts and their
semantics (including crashes and crash handling) as models, and we express our behavioural
properties as modal µ-calculus formulæ; we then use a model checker (mCRL2 [4]) to verify
whether a typing context enjoys a desired property.

Contexts as Models. We encode our typing contexts as mCRL2 processes, with LTS
semantics that match Def. 7. To embed our optional reliability assumptions, the context
encoding reflects the transition relation → \s;R, so it never crashes any reliable role in R.

Properties as Formulæ. A modal µ-calculus formula ϕ accepts or rejects a typing context Γ
depending on the transition labels Γ can fire while reducing. We write Γ |= ϕ when a typing
context Γ satisfies ϕ. Actions α range over transition labels in Def. 6; d (for data) ranges
over sessions, roles, message labels, and types. Our formulæ ϕ follow a standard syntax:

CONCUR 2022
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[µ-safe] Γ |= νZ.

(
∀s, p, q, m, m′, S, S′ .

(
⟨s[p]stop⟩⊤ ∧ ⟨s[q]:p&m′(S′)⟩⊤ ⇒ ⟨s[q]⊙p⟩⊤

)
∧
(
⟨s[p]:q⊕m(S)⟩⊤ ∧ (⟨s[q]:p&m′(S′)⟩⊤ ∨ ⟨s[q]stop⟩⊤) ⇒ ⟨s[p][q]m⟩⊤

)
∧ ϕ→(Z)

)
[µ-df] Γ |= νZ.

(((∀s, p, q, m.[s[p][q]m]⊥ ∧ [s[p]⊙q]⊥) ⇒
∀s, p, q, m, S .[s[p]:q&m(S)]⊥ ∧ [s[p]:q⊕m(S)]⊥

)
∧ ϕ→(Z)

)
[µ-term] Γ |= µZ.

(((∀s, p, q, m.[s[p][q]m]⊥ ∧ [s[p]⊙q]⊥) ⇒
∀s, p, q, m, S .[s[p]:q&m(S)]⊥ ∧ [s[p]:q⊕m(S)]⊥

)
∧ ϕ→(Z)

)
[µ-nterm] Γ |= νZ.

(
(∃s, p, q, m.⟨s[p][q]m⟩⊤ ∨ ⟨s[p]⊙q⟩⊤) ∧ ϕ→(Z)

)

[µ-live] Γ |= νZ.



∀s, p, q.

ϕin =

(∃m, S .⟨s[q]:p&m(S)⟩⊤) ⇒

µZ′ .

(
∃m.⟨s[p][q]m⟩⊤ ∨ ⟨s[q]⊙p⟩⊤

∨∃p′, q′ .

(∃m′ .⟨s[p′][q′]m′⟩⊤ ∨ ⟨s[q′]⊙p′⟩⊤
∧ ϕ′

→(s, p′, q′, Z′)

))
∧ ϕout = ∀m.

(∃S.⟨s[p]:q⊕m(S)⟩⊤) ⇒

µZ′ .

(
⟨s[p][q]m⟩⊤

∨∃p′, q′ .

(∃m′ .⟨s[p′][q′]m′⟩⊤ ∨ ⟨s[q′]⊙p′⟩⊤
∧ ϕ′

→(s, p′, q′, Z′)

))
∧ ϕ→(Z)


Figure 5 Modal µ-Calculus Formulæ corresponding to Properties in Defs. 8 and 18, where

ϕ→(Z) = ∀s, p, q.ϕ′
→(s, p, q, Z), and ϕ′

→(s, p, q, Z) = ∀m.[s[p][q]m]Z ∧ [s[p] ]Z ∧ [s[p]⊙q]Z.

ϕ ::= ⊤
∣∣ ⊥

∣∣ [α]ϕ
∣∣ ⟨α⟩ϕ

∣∣ ϕ1 ∧ ϕ2
∣∣ ϕ1 ∨ ϕ2

∣∣ ϕ1 ⇒ ϕ2
∣∣ µZ.ϕ

∣∣ νZ.ϕ
∣∣ Z

∣∣ ∀d.ϕ
∣∣ ∃d.ϕ

Truth (⊤) accepts any Γ; falsity (⊥) accepts no Γ. The box (resp. diamond) modality, [α]ϕ
(resp. ⟨α⟩ϕ), requires that ϕ is satisfied in all cases (resp. some cases) after action α is fired.
The least (resp. greatest) fixed point µZ.ϕ (resp. νZ.ϕ) allows one to iterate ϕ for a finite
(resp. infinite) number of times, where Z denotes a variable for iteration. Lastly, the forms
ϕ1 ⇒ ϕ2, ∀d.ϕ, and ∃d.ϕ denote implication, and universal and existential quantification.

In Fig. 5 we show the µ-calculus formulæ corresponding to our properties in Defs. 8 and 18.
Compared to [29], such properties are more complex, since they cater for crashes and crash
handling transitions. Recall Def. 8, and take a safety property φ: for φ(Γ) to hold, clause
[S-→ ] requires that whenever Γ can transition to some Γ′ (via → \s;R), then φ(Γ′) also holds.
To represent this clause in modal µ-calculus, we use fixed points for possibly infinite paths;
in Fig. 5 we write ϕ→(Z) for following a fixed point Z via any transmission, crash,2 or crash
handling actions, and we define it as ϕ→(Z) = ∀s, p, q, m.[s[p][q]m]Z ∧ [s[p] ]Z ∧ [s[p]⊙q]Z.

Safety ([µ-safe]) requires (in its second implication) that whenever Γ can fire an input
action, and either an output or s[q]stop action, then Γ can also fire a message transmission,
s[p][q]m. The first implication requires that, if Γ can fire a s[p]stop action and an input action
s[q]:p&m′(S′), then Γ must be capable of firing a crash handling action, s[q]⊙p.

Deadlock-Freedom ([µ-df]) requires that, if Γ is unable to reduce further without
crashing (via →), then Γ can hold only ended or stopped endpoints. The antecedent of ⇒
characterises a context that is unable to reduce (since → only allows for transmissions s[p][q]m
and crash detection s[p]⊙q); the consequent forbids the presence of any input s[p]:q&m(S)
or output s[p]:q⊕m(S) transitions. By Def. 7, this means all session endpoints in Γ are ended
or stopped.

Terminating ([µ-term]) holds when Γ can reach a terminal configuration (i.e. cannot
further reduce via →) within a finite number of steps. Hence, the formula is similar to
deadlock-freedom, except that it uses the least fixed point (µZ.. . .) to ensure finiteness.

2 Since our typing contexts encoded in mCRL2 produce → \s;R-transitions that never crash reliable roles
in R, our µ-calculus formulæ can follow all crash transitions; hence, the formulæ do not depend on R.
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s[b1]:s⊕req(Str).s& {quote(Int).b2⊕split(Int).b2& {crash.T1}, crash.b2⊕Tko}
T1 = s&

{
rp1.s⊕{ok.T2, Tko}, rp2.T2, rp3.s& {date(Str).end, T }, T 

}
T2 = s⊕addr(Str).s& {date(Str).end, T }

s[b2]:s& {quote(Int).T1, Tko, crash.T1}
T1 = b1&

{
split(Int).s⊕{ok.s⊕addr(Str).s& {date(Str).end, T }, Tko}, Tko, crash.s⊕Tko

}
s[s]:b1& {req(Str).b1⊕quote(Int).b2⊕quote(Int).b2& {ok.T1, Tko, crash.b1⊕rp1.T2}, crash.b2⊕Tko}

T1 = b2& {addr(Str).b2⊕date(Str).b2& {crash.b1⊕rp3.T4}, crash.b1⊕rp2.T3}
T2 = b1& {ok.T3, Tko, T } T3 = b1& {addr(Str).T4, T } T4 = b1⊕date(Str).end

where: T = crash.end Tok = ok.end Tko = ko.end

Figure 6 Two-Buyers protocol extended with crash-handling.

Never-Terminating ([µ-nterm]) requires that Γ can always keep reducing via → trans-
itions. Therefore, we require some transmission s[p][q]m or crash detection action s[p]⊙q to
be always fireable, even after some of the non-reliable roles crash.

Liveness ([µ-live]) requires that any enabled input/output action is triggered by a
corresponding message transmission or crash detection, within a finite number of steps. For
input actions (sub-formula ϕin): if an input s[q]:p&m(S) is enabled (left of ⇒), then, in
a finite number of steps (µZ′ .. . .) involving other roles p′, q′, a transmission s[p][q]m′ or a
crash detection s[q]⊙p can be fired. For output actions, the sub-formula ϕout is similar. The
µ-calculus formula embeds fairness (Def. 17) by finding some roles p′, q′ that, no matter how
they interact (sub-formula ϕ′

→), lead to the desired transmission or crash detection.

Tool Implementation and Example. To verify the properties in Fig. 5, we implement a
prototype tool that extends mpstk [30] (based on the mCRL2 model checker [4]) with support
for our crash-stop semantics. The updated tool is available at:

https://github.com/alcestes/mpstk-crash-stop

We now illustrate how this new tool helps in writing correct session protocols with crash
handling, and briefly discuss its performance.

In the two-buyers protocol from MPST literature [19], buyers b1 and b2 agree on splitting
the cost of buying a book from seller s. We tackle this protocol with crashes and no reliability
assumptions: all roles may crash, and survivors must end the session correctly. The resulting
crash-tolerant two-buyers protocol (Fig. 6) is much more complex than the one in the literature.
In fact, the possibility of crashes introduces a variety of scenarios where different roles may
be crashed (or not), hence the protocol needs many crash branches. The protocol exhibits
two crash-handling patterns: i) exiting gracefully, and ii) recovery behaviour. The former
occurs either when s crashes or when b1 crashes prior to the agreed split. The latter occurs
should b2 crash after the agreed split, whereupon b2 concludes the transaction if both b2
and s do not crash. This behaviour is activated via a recovery type in s[b1], where the labels
rpn represent the point at which b2 crashed: rp1 represents b2 failing prior to confirmation
with s; rp2 corresponds to before the sending of addr; and rp3 prior to receiving the date.
Overlooking or mishandling some cases is easy; our tool spots such errors, so the protocol
can be tweaked until all desired properties hold. We used our tool to verify the protocol: it
has 1409 states and 10248 transitions; it is safe, deadlock-free, live, and it is terminating;
it is not never-terminating. All properties verify within 100ms on a 4.20 GHz Intel Core
i7-7700K CPU with 16 GB RAM. More experimental results can be found in § D.
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5 Related Work, Conclusions, and Future Work

Previous Work on Failure Handling in Session Types. can be generally classified under two
main approaches: affine and coordinator model. The former adapts session types to allow
session endpoints to cease prematurely (e.g. by throwing an exception); the latter assumes
reliable process coordination to handle failures.

Affine failure handling is first proposed in [24] for a π-calculus with binary sessions (i.e.
two roles), and [14] presents a concurrent λ-calculus with binary sessions and exception
handling; exceptions are also found in [7, 8]. These works model failures at the application
level, via throw/catch constructs. Our key innovations are: (1) we model arbitrary failures
(e.g. hardware failures); (2) we specify what to do when a failure is detected at the type level;
(3) we support multiparty sessions; and (4) we seamlessly support handling the crash of a
role while handling another role’s crash, whereas the do-catch constructs cannot be nested.

Coordinator model approaches include [1], which extends MPST with optional blocks
where default values are used when communications fail; and [12], which uses synchronisation
points to detect and handle failures. Both need processes to coordinate to handle failures. [33]
extends MPST with a try-handle construct: a reliable coordinator detects and broadcasts
failures, and the remaining processes proceed with failure handling. Unlike these works, we
do not assume reliable processes, failure broadcasts, or coordination/synchronisation points.

Other papers address failures with different approaches. The recent work [26] annotates
global and local types to specify which interactions may fail, and how (process crash, message
loss). Their failure model is different from ours; and unlike us, they handle failures by
continuing the protocol via default branches and values. Instead, our types include crash
branches defining recovery behaviours that are only executed upon crash detection; further,
by nesting such crash branches, we can specify different behaviours depending on which roles
have crashed. [25] uses an MPST specification to build a dependency graph among running
processes, supervise them, and restart them in case of failure. [34] utilises MPST to specify
fault-tolerant, event-driven distributed systems, where processes are monitored and restarted
if they fail; unlike our work, they require certain reliable roles, but their model tolerates false
crash suspicions. More on the theory side, [6] presents a Curry-Howard interpretation of a
language with binary session types and internal non-determinism, which is used to model
failures (that are propagated to all relevant sessions, similarly to [14,24]). Process calculi
with localities have been proposed to model distributed systems with failures [2, 9, 27]; unlike
our work, they do not have a typing system to verify failure handling.

Generalised Multiparty Session Type Systems. (introduced in [29]) depart from “classic”
MPST [20] by not requiring top-down syntactic notions of protocol correctness (global
types, projection, etc.); rather, they check behavioural predicates (safety, liveness, etc.)
against (local) session types. [18] adopts the approach to model actor systems with explicit
connections in their types [21]. By adopting this general framework, we support protocols
not representable as global types in classic MPST (e.g. DNS in § 1, two-buyers in § 4, and all
examples in § D, excepting Adder).

Model Checking Behavioural Types. [10] develops a behavioural type system for the π-
calculus, and check LTL formulæ against such types. In [22], the type system combines
typing and local analyses, with liveness properties verified via model checking. A similar
approach is introduced in [29] for MPST. Regarding applications, [15, 23] verify behavioural
types extracted from Go source code; and in [31], the Effpi Scala library assigns behavioural
types to communicating programs. These works use a model checker to validate e.g. liveness
through type-level properties, but do not support crashes or crash handling.
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Conclusions and Future Work. We presented a multiparty session typing system for
verifying processes with crash-stop failures. We model crashes and crash handling in a session
π-calculus and its typing contexts, and prove type safety, protocol conformance, deadlock
freedom and liveness. Our system is generalised in two ways: (1) it supports optional
reliability assumptions, ranging from fully reliable (as in classic MPST), to fully unreliable
(every process may crash); and (2) it is parametric on a behavioural property φ (validated
by model checking) which can ensure deadlock-freedom, liveness, etc. even in presence of
crashes. We also present a prototype implementation of our approach. As future work, we
plan to study more crash models (e.g. crash-recover) and types of failure (e.g. link failures).
We also plan to study the use of asynchronous global types for specifying protocols with
failure handling – but unlike [26], we plan to support the type-level specification of dedicated
recovery behaviours that are only executed upon crash detection.
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Here, fpv(D) is the set of free process variables in D, and dpv(D) is the set of declared process
variables in D.
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P | Q ≡ Q | P [C-Par] (P | Q) | R ≡ P | (Q | R) [C-Assoc] P | 0 ≡ P [C-ParId]

(νs) 0 ≡ 0 [C-ResElim] (νs) (νs′) P ≡ (νs′) (νs) P [C-ResVar]

(νs) (P | Q) ≡ P | (νs) Q if s ̸∈ fc(P ) [C-ResLift] (νs) (s[p0] | · · · | s[pn] ) ≡ 0 [C-CrashElim]

def D in 0 ≡ 0 [C-DefElim] def D in (νs) P ≡ (νs) (def D in P ) if s ̸∈ fc(D) [C-DefLift]

def D in (P | Q) ≡ (def D in P ) | Q if dpv(D) ∩ fpv(Q) = ∅ [C-DefParLift]

def D in (def D′ in P ) ≡ def D′ in (def D in P ) [C-DefOrd]

if (dpv(D) ∪ fpv(D)) ∩ dpv
(
D′
)

= (dpv
(
D′
)

∪ fpv
(
D′
)
) ∩ dpv(D) = ∅

B Session Subtyping

We formalise our subtyping relation ⩽ in Def. 21 below. The relation is mostly standard [29,
Def. 2.5], except for the new rule [Sub-stop], and the new (highlighted) side condition “|I| =
1 =⇒ . . .” in rule [Sub-&]: this condition prevents the supertype from adding input branches
to “pure” crash recovery external choices.

▶ Definition 21 (Subtyping). Given a standard subtyping <: for basic types (e.g. including
int <: real), the session subtyping relation ⩽ is coinductively defined:

B <: B′

B ⩽ B′ [Sub-B]
end ⩽ end

[Sub-end]
∀i ∈ I S′

i ⩽ Si Ti ⩽ T ′
i

p⊕{mi(Si).Ti}i∈I∪J ⩽ p⊕{mi(S′
i).T ′

i }i∈I

[Sub-⊕]

stop ⩽ stop [Sub-stop]
∀i ∈ I Si ⩽ S′

i Ti ⩽ T ′
i |I| = 1 =⇒ (mi ̸= crash or J = ∅)

p&{mi(Si).Ti}i∈I ⩽ p&{mi(S′
i).T ′

i }i∈I∪J

[Sub-&]

T [µt.T /t] ⩽ T ′

µt.T ⩽ T ′ [Sub-µL]
T ⩽ T ′[µt.T ′/t]

T ⩽ µt.T ′ [Sub-µR]

Rule [Sub-B] lifts ⩽ to basic types. The rest of the rules say that a subtype describes
a more permissive session protocol w.r.t. its supertype. By rule [Sub-⊕], the subtype of an
internal choice allows for selecting from a wider set of message labels, and sending more
generic payloads. By rule [Sub-&], the subtype of an external choice can support a smaller set
of input message labels, and less generic payloads; the side condition “|I| = 1 . . .” ensures
that if the subtype only has a singleton crash branch, then the same applies to the supertype
– hence, both subtype and supertype describe a “pure” crash recovery behaviour, and do not
expect to receive any other input.3 By rules [Sub-end] and [Sub-stop], the types end and stop are
only subtypes of themselves. Finally, rules [Sub-µL] and [Sub-µR] say that recursive types are
related up to their unfolding.

C Additional Examples

▶ Example 22. We show an example of our crashing semantics. Processes P and Q below
communicate on a session s; P uses the endpoint s[p] to send an endpoint s[r] to role q; Q

uses the endpoint s[q] to receive an endpoint x, then sends a message to role p via x.

P = s[p][q]⊕m′⟨s[r]⟩.s[p][r]&m(x) Q = s[q][p]&m′(x).x[p]⊕m⟨42⟩

3 Notice, however, that rule [Sub-&] allows a supertype to have a crash-handling branch even when the
subtype does not have one.
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On a successful reduction (without crashes), we have:

(νs) (P | Q)
= (νs) (s[p][q]⊕m′⟨s[r]⟩.s[p][r]&m(x) | s[q][p]&m′(x).x[p]⊕m⟨42⟩)
→ (νs) (s[p][r]&m(x) | s[r][p]⊕m⟨42⟩)
→ 0

Now, suppose that P crashes before sending; this gives rise to the reduction:

(νs) (P | Q)
= (νs) (s[p][q]⊕m′⟨s[r]⟩.s[p][r]&m(x) | s[q][p]&m′(x).x[p]⊕m⟨42⟩)
→ (νs) (s[p] | s[r] | s[q][p]&m′(x).x[p]⊕m⟨42⟩)

We can observe that when the sending process P crashes (by [R- ⊕]), all endpoints in P (i.e.
both s[p] and s[r]) crash. If Q has a crash handling branch, it can be triggered via [R-⊙],
suppose instead we have

Q′ = s[q][p]&{m′(x).x[p]⊕m⟨42⟩, crash.0}

A crash handling reduction can trigger when P crashes:

(νs) (P | Q′)
= (νs) (s[p][q]⊕m′⟨s[r]⟩.s[p][r]&m(x) | s[q][p]&{m′(x).x[p]⊕m⟨42⟩, crash.0})
→ (νs) (s[p] | s[r] | s[q][p]&{m′(x).x[p]⊕m⟨42⟩, crash.0})
→ (νs) (s[p] | s[r] | 0)

▶ Example 23. Recall the types of the DNS example in § 1:

T ′
p = q⊕req.q&

{
res.end
crash.r⊕req.r&res.end

}
T ′

q = p&req.p⊕res.end
T ′

r = q&crash.p&req.p⊕res.end

Now, consider the following typing context, containing such types:

Γ = s[p]:T ′
p, s[q]:T ′

q, s[r]:T ′
r

Such Γ is (s; {p, r})-safe. We can verify it by checking its reductions. When no crashes
occur, we have the following two reductions, where each reductum satisfies Def. 8:

Γ → \s;{p,r} s[p]:q&
{

res
crash.r⊕req.r&res

}
, s[q]:p⊕res, s[r]:T ′

r

→ \s;{p,r} s[p]:end, s[q]:end, s[r]:T ′
r

In the case where q crashes immediately, we have:

Γ → \s;{p,r} s[p]:T ′
p, s[q]:stop, s[r]:T ′

r
→ \s;{p,r} s[p]:q&{res, crash.r⊕req.r&res}, s[q]:stop, s[r]:T ′

r
→ \s;{p,r} s[p]:r⊕req.r&res, s[q]:stop, s[r]:T ′

r
→ \s;{p,r} s[p]:r⊕req.r&res, s[q]:stop, s[r]:p&req.p⊕res
→ \s;{p,r} s[p]:r&res, s[q]:stop, s[r]:p⊕res
→ \s;{p,r} s[p]:end, s[q]:stop, s[r]:end

and each reductum satisfies Def. 8. The case where q crashes after receiving the request is
similar. There are no other crash reductions to consider, since p and r are reliable.
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▶ Example 24. We illustrate safety, deadlock-freedom, liveness, termination, and never-
termination over typing contexts via a series of small examples. We first consider the typing
context ΓA = ΓAp, ΓAq, ΓAr where:

ΓAp = s[p]:µtp.q⊕
{

ok.q&
{

ok.tp, ko.end, crash.end
}

, ko.end
}

ΓAq = s[q]:µtq.p&
{

ok.p⊕
{

ok.tq, ko.end
}

, ko.end, crash.r⊕ok.end
}

ΓAr = s[r]:p& {crash.q& {ok.end, crash.end}}

If we assume that all roles in ΓA are unreliable, ΓA is safe since its inputs/outputs are dual.
However, ΓA is neither deadlock-free nor live since it is possible for p to crash immediately
before q sends ko to p. In such cases, q will not detect that p has crashed (since we only
detect crashes on receive actions) and terminate without sending a message to the backup
process r. This results in a deadlock because r will detect that p has crashed, and will
expect a message from q.

We observe that changing the reliability assumptions, without changing the typing context,
may influence whether a typing context property holds. For example, consider the typing
context ΓB = ΓBp, ΓBq, ΓBr where:

ΓBp = s[p]:µtp.q⊕ok.tp

ΓBq = s[q]:µtq.p&
{

ok.tq, crash.µt′
q.r&

{
ok.t′

q, crash.end
}}

ΓBr = s[r]:µtr.q⊕ok.tr

If we assume that all roles are unreliable, ΓB is safe and deadlock-free but not live – because
p may never crash, and in this case, r’s outputs are never received by q. Notably, ΓB is not
never-terminating because if both p and r crash, then the surviving q can reach end; however,
if we assume that just r is reliable (i.e. R = {r}), then ΓB becomes also never-terminating –
because even if both p and q crash, role r can keep running by sending forever ok messages
that are lost (by rule [Γ- m] in Fig. 3).

Notice that, in the case of ΓB , we are unable to make liveness hold purely via combinations
of reliable roles: this is because (unless p crashes) r’s output will never be received by q,
irrespective of reliability assumptions. The typing context itself must instead be adapted; for
example, by only permitting r to send once it has detected that p has crashed.

Instead, in the case of ΓA, we can obtain liveness by adjusting the reliability assumptions:
in fact, if we assume r ∈ R, then ΓA is both deadlock-free and live.

Finally, consider the typing context ΓC = ΓCp, ΓCq, ΓCr where:

ΓCp = s[p]:q⊕m1 .q&
{

m2 .end, crash.µtp.r⊕ok.tp
}

ΓCq = s[q]:p& {m1 .p⊕m2 .end}
ΓCr = s[r]:p&

{
crash.µtq.p&

{
ok.tq

}}
ΓC satisfies safety, deadlock-freedom, and termination when all roles are assumed to be
reliable. However, should we instead assume that only p is reliable, then ΓC does not satisfy
termination. Since external choices in ΓC do not feature a crash-handling branch when
receiving from p, should no roles be assumed reliable, ΓC satisfies only safety.

D Tool Evaluation

To verify the properties in Fig. 5, we extend the Multiparty Session Types toolKit (mpstk) [30],
which uses the mCRL2 model checker [4]. Our extended tool is available at:

https://github.com/alcestes/mpstk-crash-stop

https://github.com/alcestes/mpstk-crash-stop
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(α)
s[p]:q⊕req.q& {res.end, crash.r⊕req.r&res.end}
s[q]:p&req.p⊕res.end
s[r]:q&crash.p&req.p⊕res.end

(β) s[p]:µt.q⊕add(Int).q⊕{add(Int).q& {res(Int).t, T }, ko.q& {Tko., T }}
s[q]:µt.p& {add(Int).p& {add(Int).p⊕res(Int).t, ko.p⊕Tko, T }, T }

(γ)

s[b1]:s⊕r(Str).s& {q(Int).b2⊕s(Int).b2& {crash.T1}, crash.b2⊕Tko}
T1 = s&

{
rp1.s⊕{ok.T2, Tko}, rp2.T2, rp3.s& {d(Str).end, T }, T 

}
T2 = s⊕a(Str).s& {d(Str).end, T }

s[b2]:s& {q(Int).T1, Tko, crash.T1}
T1 = b1&

{
s(Int).s⊕{ok.s⊕a(Str).s& {d(Str).end, T }, Tko}, Tko, crash.s⊕Tko

}
s[s]:b1& {r(Str).b1⊕q(Int).b2⊕q(Int).b2& {ok.T1, Tko, crash.b1⊕rp1.T2}, crash.b2⊕Tko}

T1 = b2& {a(Str).b2⊕d(Str).b2& {crash.b1⊕rp3.T4}, crash.b1⊕rp2.T3}
T2 = b1& {ok.T3, Tko, T } T3 = b1& {a(Str).T4, T } T4 = b1⊕d(Str).end

(δ)

s[n]:c&
{

o(Int).µt.c⊕g.c⊕
{

o(Int).c& {o(Int).t, ok.c⊕Tok, Tko, T }, ok.c&{Tok, T }, Tko
}

, T 
}

s[c]:n⊕o(Int).µt0.n& {g.n& {o(Int).T1, ok.n& {crash.b⊕Tok}, Tko, crash.T2}, crash.T2}
T1 = n⊕

{
o(Int).t0, ok.n&{Tok, crash.T2}, ko.n& {crash.b⊕Tko}

}
T2 = b⊕o(Int).µt1.b&

{
g.b&

{
o(Int).b⊕

{
o(Int).t1, ok.b&{Tok}, Tko

}
, ok.b&{Tok}, Tko

}}
s[b]:n&

{
crash.c&

{
o(Int).µt.c⊕g.c⊕{o(Int).T1, ok.T2, Tko}, Tok, Tko, T 

}}
T1 = c& {o(Int).t, ok.c⊕Tok, Tko} T2 = c& {ok.c⊕Tok, T }

(ε)
s[p]:q⊕data(Str).r⊕data(Str).end
s[q]:p& {data(Str).p& {crash.r& {h.r⊕data(Str).end, T }}, crash.r& {req.r⊕Tko, T }}
s[r]:p& {data(Str).end, crash.q⊕req.q& {data(Str).end, Tko, T }}

Figure 7 Typing contexts for (α) DNS, (β) Adder, (γ) TwoBuyers, (δ) Negotiate, and (ε) Broadcast.
Roles p and q of DNS, and b of Negotiate are reliable; all other roles are unreliable. Let T = crash.end,
Tko = ko.end, and Tok = ok.end.

We evaluate our approach with 5 examples: DNS, from § 1; Adder, TwoBuyers, and
Negotiate, extended from the session type literature [35] with crashes and crash handling
behaviour; and Broadcast, inspired by the reliable broadcast algorithms in [5, Ch. 3]. The
full typing contexts for each example are given in Fig. 7. We model and verify both fully
reliable and (partially) unreliable versions of each example. In all examples, we show how
the introduction of unreliability leads to an increase of model sizes and verification times.
The increased model size reflects how the addition of crash handling can complicate even
simple protocols, and motivates the use of automatic model checking. Still, we show that the
verification of our examples always completes in less than 100 ms.

D.1 Description of the Examples in Figure 7
DNS is the example described in § 1. The example demonstrates both backup processes and

optional reliability assumptions.
Adder demonstrates a minimal extension of the fully reliable protocol, in which q receives

two numbers from p, sums them, and communicates the result to p. In our extension,
both roles are unreliable and the protocol ends when a crash is detected. It satisfies
safety, deadlock-freedom, and liveness.

TwoBuyers is the example described in § 4. It assumes that both the seller and buyers b1
and b2 are unreliable. In cases where the split has been agreed upon, and b2 has crashed,
b1 concludes the sale. It satisfies safety, deadlock-freedom, liveness, and terminating.
This form of TwoBuyers is not projectable from a global type, since b1 would need to be
informed on conclusion of a sale. TwoBuyers uses recovery behaviour in order to satisfy
deadlock-freedom. Finally, TwoBuyers demonstrates the flexibility of crash-handling that
our approach permits: b2 does not alter its behaviour having detected that s has crashed
(i.e. continues as T1), instead leaving b1 to instigate crash-handling behaviour.
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Table 1 Average times (in milliseconds ± std. dev.) for the verification of DNS (α), Adder (β),
TwoBuyers (γ), Negotiate (δ), and Broadcast (ε) in Fig. 7 over safety (safe), deadlock-freedom (df),
liveness (live), never-terminating (nterm) and terminating (term). Each example has two rows of
measurements, varying the sets of reliable roles R: either zero/one/two reliable roles (first row), or
all reliable roles (second row). (Benchmarking specs: Intel Core i7-7700K CPU, 4.20 GHz, 16 GB
RAM, mCRL2 202106.0 invoked 30 times with: pbes2bool --solve-strategy=2.)

R states transitions safe df live nterm term

(α) {p, r} 101 427 12.28 ± 1% 17.14 ± 1% 11.24 ± 1% 15.47 ± 0% 12.33 ± 0%
R 10 15 7.61 ± 1% 8.23 ± 1% 7.46 ± 1% 7.78 ± 1% 7.6 ± 1%

(β) ∅ 37 159 12.43 ± 0% 15.74 ± 0% 12.24 ± 1% 14.46 ± 0% 12.06 ± 1%
R 26 56 8.92 ± 2% 10.06 ± 0% 8.71 ± 1% 9.42 ± 0% 8.79 ± 0%

(γ) ∅ 1409 10248 45.6 ± 0% 88.26 ± 0% 31.33 ± 0% 77.2 ± 0% 45.65 ± 0%
R 169 510 11.12 ± 1% 15.94 ± 0% 10.9 ± 1% 12.19 ± 0% 11.06 ± 1%

(δ) {b} 1089 8106 34.61 ± 0% 55.07 ± 0% 25.69 ± 0% 47.46 ± 0% 26.04 ± 0%
R 50 157 10.17 ± 0% 12.7 ± 0% 9.93 ± 0% 11.33 ± 0% 9.72 ± 0%

(ε) ∅ 161 925 17.99 ± 1% 28.13 ± 0% 14.08 ± 0% 25.72 ± 1% 17.74 ± 0%
R 13 25 7.85 ± 3% 8.65 ± 1% 7.7 ± 0% 8.12 ± 1% 7.85 ± 0%

Negotiate introduces a (reliable) backup negotiator to the version found in the literature.
During normal operation, a client will send an opening offer to a negotiator. Both c
and n can then choose to repeatedly exchange counter offers until the other accepts the
offer, or rejects it outright, bringing the protocol to an end. In our extension, should
the customer detect that the original negotiator crashes, the backup negotiator activates
and continues the negotiation with c. The example satisfies safety, deadlock-freedom,
and liveness. Recovery actions are necessary for c in two locations in order to avoid
deadlocks: it is otherwise possible for an offer to be declined or agreed upon, then for n
to crash without c noticing; this results in b activating, and expecting a message from
the terminated c.

Broadcast contains an unreliable broadcaster p attempting to send data to two receivers
q and r. In cases where p crashes, r requests the data from q, who responds with the
data it received before p crashed, or with ko when p crashed immediately. The example
is not projectable from a global type, since q would otherwise require a message from
r even when p had not crashed. Broadcast satisfies safety, deadlock-freedom, liveness,
and termination. As in Negotiate, recovery behaviour is necessary for Broadcast to satisfy
deadlock-freedom.

Notably, Adder, TwoBuyers and Broadcast have no reliability assumptions: any role may
crash at any point. Barring Adder, our examples cannot be written using global types in the
session types literature. This demonstrates the flexibility of our generalised MPST system
over the classic one. Moreover, the examples include the use of failover processes (DNS
and Negotiate) and complex recovery behaviour (TwoBuyers, Negotiate, and Broadcast), thus
showcasing the expressivity of our approach.

D.2 Experimental Results

We applied our extended implementation of mpstk to the examples in Fig. 7. Table 1 gives
the full set of verification times, reported in milliseconds with standard deviations, where
each time is an average of 30 runs.
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For each example, we give verification times for both the typing contexts in Fig. 7 and a
corresponding fully reliable version (i.e. where all roles in the protocol are reliable; R = R).
For Adder, TwoBuyers, and Negotiate, we use the standard protocol definitions from the
literature. For DNS and Broadcast, we omit crash-handling branches. For DNS, this has the
consequence of removing the backup role r entirely.

All examples satisfy safety, deadlock-freedom, and liveness; Adder and Broadcast satisfy
termination; no example satisfies never-termination.

Unsurprisingly, all examples demonstrate an increase in verification times and the number
of states and transitions when comparing unreliable to reliable versions. Even Adder, which
represents minimal crash-handling, demonstrates relevant increases to the number of states
and transitions: this is a direct consequence of the unreliable roles, and the resulting generation
of crash and crash-detection transitions in the LTS generated by mCRL2. Verification times
also increase because the verified properties follow crash and communication actions, thus
requiring the exploration of a larger state space compared to the fully reliable versions.

Nevertheless, our verification times do not increase as quickly as the state space grows, and
are always under 100 ms. This is because our µ-calculus furmulæ only follow communication,
crash, and crash detection transitions, and thus, their verification may not need to follow every
possible transition into every state. This suggests greater scalability of the approach that
would otherwise be suggested by the size of the state space. This also lends greater motivation
to the use of model checkers, as it is infeasible to manually determine the properties of a
large LTS with complex crash-handling behaviour.
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Abstract
Fair termination is the property of programs that may diverge “in principle” but that terminate “in
practice”, i.e. under suitable fairness assumptions concerning the resolution of non-deterministic
choices. We study a conservative extension of µMALL∞, the infinitary proof system of the multiplica-
tive additive fragment of linear logic with least and greatest fixed points, such that cut elimination
corresponds to fair termination. Proof terms are processes of πLIN, a variant of the linear π-calculus
with (co)recursive types into which binary and (some) multiparty sessions can be encoded. As a
result we obtain a behavioral type system for πLIN (and indirectly for session calculi through their
encoding into πLIN) that ensures fair termination: although well-typed processes may engage in
arbitrarily long interactions, they are fairly guaranteed to eventually perform all pending actions.
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1 Introduction

The linear π-calculus [28] is a typed refinement of Milner’s π-calculus in which linear channels
can be used only once, for a one-shot communication. As it turns out, the linear π-calculus is
the fundamental model underlying a broad family of communicating processes. In particular,
all binary sessions [22, 23, 25] and some multiparty sessions [24] can be encoded into the linear
π-calculus [27, 5, 11, 8]. Sessions are private communication channels linking two or more
processes and whose usage is disciplined by a session type, a type representing a structured
communication protocol. In all session type systems, session endpoints are linearized channels
that can be used repeatedly but in a sequential manner. The key insight for encoding sessions
into the linear π-calculus is to encode linearized channels in a continuation-passing style:
when some payload is transmitted over a linear channel, it can be paired with another linear
channel (the continuation) on which the subsequent interaction takes place.

In this work we propose a type system for πLIN, a linear π-calculus with (co)recursive
types, such that well-typed processes are fairly terminating. Fair termination [21, 17] is a
liveness property stronger than lock freedom [26, 32] – i.e. the property that every pending
action can be eventually performed – but weaker than termination. In particular, a fairly
terminating program may diverge, but all of its infinite executions are considered “unfair” –
read impossible or unrealistic – and so they can be ignored insofar termination is concerned.
A simple example of fairly terminating program is that modeling a repeated interaction
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between a buyer and a seller in which the buyer may either pay the seller and terminate or
may add an item to the shopping cart and then repeat the same behavior. In principle, there
is an execution of the program in which the buyer keeps adding items to the shopping cart
and never pays. In practice, this behavior is considered unfair and the program terminates
under the fairness assumption that the buyer eventually pays the seller.

Our type system is a conservative extension of µMALL∞ [3, 16, 2], the infinitary proof
system for the multiplicative additive fragment of linear logic with least and greatest fixed
points. In fact, the modifications we make to µMALL∞ are remarkably small: we add one
(standard) rule to deal with non-deterministic choices, those performed autonomously by a
process, and we relax the validity condition on µMALL∞ proofs so that it only considers the
“fair behaviors” of the program it represents. The fact that there is such a close correspondence
between the typing rules of πLIN and the inference rules of µMALL∞ is not entirely surprising.
After all, there have been plenty of works investigating the relationship between π-calculus
terms and linear logic proofs, from those of Abramsky [1], Bellin and Scott [4] to those on
the interpretation of linear logic formulas as session types [15, 40, 6, 30, 37, 35]. Nonetheless,
we think that the connection between πLIN and µMALL∞ stands out for two reasons. First,
πLIN is conceptually simpler and more general than the session-based calculi that can be
encoded in it. In particular, all the session calculi based on linear logic rely on an asymmetric
interpretation of the multiplicative connectives ⊗ and O so that φ⊗ ψ (respectively, φO ψ)
is the type of a session endpoint used for sending (respectively, receiving) a message of
type φ and then used according to ψ. In our setting, the connectives ⊗ and O retain their
symmetry since we interpret φ⊗ ψ and φO ψ formulas as the output/input of pairs, in the
same spirit of the original encoding of linear logic proofs proposed by Bellin and Scott [4].
This interpretation gives πLIN the ability of modeling bifurcating protocols of which binary
sessions are just a special case. The second reason why πLIN and µMALL∞ get along has
to do with the cut elimination result for µMALL∞. In finitary proof systems for linear
logic, cut elimination may proceed by removing topmost cuts. In µMALL∞ there is no such
notion as a topmost cut since µMALL∞ proofs may be infinite. As a consequence, the cut
elimination result for µMALL∞ is proved by eliminating bottom-most cuts [2]. This strategy
fits perfectly with the reduction semantics of πLIN – and that of any other conventional
process calculus, for that matter – whereby reduction rules act only on the exposed (i.e.
unguarded) part of processes but not behind prefixes. As a result, the reduction semantics of
πLIN is completely ordinary, unlike other logically-inspired process calculi that incorporate
commuting conversions [40, 30], perform reductions behind prefixes [35] or swap prefixes [4].

In previous work [9] we have proposed a type system ensuring the fair termination of
binary sessions. The present work achieves the same objective using a more basic process
calculus and exploiting its strong logical connection with µMALL∞. In fact, the soundness
proof of our type system piggybacks on the cut elimination property of µMALL∞. Other
session typed calculi based on linear logic with fixed points have been studied by Lindley
and Morris [30] and by Derakhshan and Pfenning [14, 13]. The type systems described in
these works respectively guarantee termination and strong progress, whereas our type system
guarantees fair termination which is somewhat in between these properties. Overall, our type
system seems to hit a sweet spot: on the one hand, it is deeply rooted in linear logic and yet
it can deal with common communication patterns (like the buyer/seller interaction described
above) that admit potentially infinite executions and therefore are out of scope of other
logic-inspired type systems; on the other hand, it guarantees lock freedom [26, 32], strong
progress [14, Theorem 12.3] and also termination, under a suitable fairness assumption.
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Table 1 Syntax of πLIN.

P,Q ::= x ↔ y link
| casex{} empty input
| x().P unit input
| x(z, y).P pair input
| casex(y){P,Q} sum input
| corecx(y).P corecursion

| (x)(P ∥Q) composition
| P ⊕Q choice
| x() unit output
| x(z, y)(P ∥Q) pair output
| ini x(y).P sum output i ∈ {1, 2}
| recx(y).P recursion

The paper continues as follows. Section 2 presents πLIN and the fair termination property
ensured by our type system. Section 3 describes πLIN types, which are suitably embellished
µMALL∞ formulas. Section 4 describes the inference rules of µMALL∞ rephrased as typing
rules for πLIN. Section 5 identifies the valid typing derivations and states the properties of
well-typed processes. Section 6 discusses related work in more detail and Section 7 presents
ideas for future developments. Supplementary material, additional examples and proofs can
be found in the long version of the paper [10].

2 Syntax and Semantics of πLIN

In this section we define syntax and reduction semantics of πLIN, a variant of the linear
π-calculus [28] in which all channels are meant to be used for exactly one communication.
The calculus supports (co)recursive data types built using units, pairs and disjoint sums.
These data types are known to be the essential ingredients for the encoding of sessions in the
linear π-calculus [27, 11, 38].

We assume given an infinite set of channels ranged over by x, y and z. πLIN processes
are coinductively generated by the productions of the grammar shown in Table 1 and their
informal meaning is given below. A link x ↔ y acts as a linear forwarder [18] that forwards
a single message either from x to y or from y to x. The uncertainty in the direction of the
message is resolved once the term is typed and the polarity of the types of x and y is fixed
(Section 4). The term casex{} represents a process that receives an empty message from x

and then fails. This form is only useful in the metatheory: the type system guarantees that
well-typed processes never fail, since it is not possible to send empty messages. The term
x() models a process that sends the unit on x, effectively indicating that the interaction is
terminated, whereas x().P models a process that receives the unit from x and then continues
as P . The term x(y, z)(P ∥ Q) models a process that creates two new channels y and z,
sends them in a pair on channel x and then forks into two parallel processes P and Q.
Dually, x(y, z).P models a process that receives a pair containing two channels y and z from
channel x and then continues as P . The term ini x(y).P models a process that creates a new
channel y and sends ini(y) (that is, the i-th injection of y in a disjoint sum) on x. Dually,
casex(y){P1, P2} receives a disjoint sum from channel x and continues as either P1 or P2
depending on the tag ini it has been built with. For clarity, in some examples we will use
more descriptive labels such as add and pay instead of in1 and in2. The terms recx(y).P
and corecx(y).P model processes that respectively send and receive a new channel y and
then continue as P . They do not contribute operationally to the interaction being modeled,
but they indicate the points in a program where (co)recursive types are unfolded. A term
(x)(P ∥Q) denotes the parallel composition of two processes P and Q that interact through
the fresh channel x. Finally, the term P ⊕Q models a non-deterministic choice between two
behaviors P and Q.
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πLIN binders are easily recognizable because they enclose channel names in round paren-
theses. Note that all outputs are in fact bound outputs. The output of free channels can be
modeled by combining bound outputs with links [30]. For example, the output x⟨y, z⟩ of
a pair of free channels y and z can be modeled as the term x(y′, z′)(y ↔ y′ ∥ z ↔ z′). We
identify processes modulo renaming of bound names, we write fn(P ) for the set of channel
names occurring free in P and we write {y/x} for the capture-avoiding substitution of y for
the free occurrences of x. We impose a well-formedness condition on processes so that, in
every sub-term of the form x(y, z)(P ∥Q), we have y ̸∈ fn(Q) and z ̸∈ fn(P ).

We omit any concrete syntax for representing infinite processes. Instead, we work directly
with infinite trees obtained by corecursively unfolding contractive equations of the form
A(x1, . . . , xn) = P . For each such equation, we assume that fn(P ) ⊆ {x1, . . . , xn} and we
write A⟨y1, . . . , yn⟩ for its unfolding P{yi/xi}1≤i≤n. The technical report [10] describes
the changes for supporting a more conventional (but slightly heavier) handling of infinite
processes.
▶ Notation 1. To reduce clutter due to the systematic use of bound outputs, by convention
we omit the continuation called y in Table 1 when its name is chosen to coincide with that
of the channel x on which y is sent/received. For example, with this notation we have
x(z).P = x(z, x).P and ini x.P = ini x(x).P and casex{P,Q} = casex(x){P,Q}. ⌟

A welcome side effect of adopting Notation 1 is that it gives the illusion of working
with a session calculus in which the same channel x may be used repeatedly for multiple
input/output operations, while in fact x is a linear channel used for exchanging a single
message along with a fresh continuation that turns out to have the same name. If one takes
this notation as native syntax for a session calculus, its linear π-calculus encoding [11] turns
out to be precisely the πLIN term it denotes. Besides, the idea of rebinding the same name
over and over is widespread in session-based functional languages [20, 34] as it provides a
simple way of “updating the type” of a session endpoint after each use.

▶ Example 2. Below we model the interaction informally described in Section 1 between
buyer and seller using the syntactic sugar defined in Notation 1:

(x)(Buyer⟨x⟩ ∥ Seller⟨x, y⟩) where Buyer(x) = recx.(addx.Buyer⟨x⟩ ⊕ pay x.x())
Seller(x, y) = corecx.casex{Seller⟨x, y⟩, x().y()}

At each round of the interaction, the buyer decides whether to add an item to the shopping
cart and repeat the same behavior (left branch of the choice) or to pay the seller and terminate
(right branch of the choice). The seller reacts dually and signals its termination by sending
a unit on the channel y. As we will see in Section 4, recx and corecx identify the points
within processes where (co)recursive types are unfolded.

If we were to define Buyer using distinct bound names we would write an equation like

Buyer(x) = recx(y).(add y(z).Buyer⟨z⟩ ⊕ pay y(z).z())

and similarly for Seller. ⌟

The operational semantics of the calculus is given in terms of the structural precongruence
relation ≼ and the reduction relation → defined in Table 2. As usual, structural precongruence
relates processes that are syntactically different but semantically equivalent. In particular,
[s-link] states that linking x with y is the same as linking y with x, whereas [s-comm] and
[s-assoc] state the expected commutativity and associativity laws for parallel composition.
Concerning the latter, the side condition x ∈ fn(Q) makes sure that Q (the process brought
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Table 2 Structural pre-congruence and reduction semantics of πLIN.

[s-link] x ↔ y ≼ y ↔ x

[s-comm] (x)(P ∥Q) ≼ (x)(Q ∥ P )
[s-assoc] (x)(P ∥ (y)(Q ∥R)) ≼ (y)((x)(P ∥Q) ∥R) if x ∈ fn(Q)

and y ̸∈ fn(P )

[r-link] (x)(x ↔ y ∥ P ) → P{y/x}
[r-unit] (x)(x() ∥ x().P ) → P

[r-pair] (x)(x(z, y)(P1 ∥ P2) ∥ x(z, y).Q) → (z)(P1 ∥ (y)(P2 ∥Q))
[r-sum] (x)(ini x(y).P ∥ casex(y){P1, P2}) → (y)(P ∥ Pi) i ∈ {1, 2}
[r-rec] (x)(recx(y).P ∥ corecx(y).Q) → (y)(P ∥Q)
[r-choice] P1 ⊕ P2 → Pi i ∈ {1, 2}
[r-cut] (x)(P ∥R) → (x)(Q ∥R) if P → Q

[r-struct] P → Q if P ≼ R → Q

closer to P when the relation is read from left to right) is indeed connected with P by means
of the channel x. Note that [s-assoc] only states the right-to-left associativity of parallel
composition and that the left-to-right associativity law (x)((y)(P ∥Q)∥R) ≼ (y)(P ∥(x)(Q∥R))
is derivable when x ∈ fn(Q). The reduction relation is mostly unremarkable. Links are
reduced with [r-link] by effectively merging the linked channels. All the reductions that
involve the interaction between processes except [r-unit] create new continuations channels
that connect the reducts. The rule [r-choice] models the non-deterministic choice between
two behaviors. Finally, [r-cut] and [r-struct] close reductions by cuts and structural
precongruence. In the following we write ⇒ for the reflexive, transitive closure of → and we
say that P is stuck if there is no Q such that P → Q.

We conclude this section by formalizing fair termination. To this aim, we introduce
the notion of run as a maximal execution of a process. Hereafter ω stands for the lowest
transfinite ordinal number and o ranges over the elements of ω + 1.

▶ Definition 3 (run). A run of P is a sequence (Pi)i∈o where o ∈ ω + 1 and P0 = P and
Pi → Pi+1 for all i+ 1 ∈ o and either the sequence is infinite or it ends with a stuck process.

Hereafter we use ρ to range over runs. Using runs we can define a range of termination
properties for processes. In particular, P is terminating if all of its runs are finite and P is
weakly terminating if it has a finite run. Fair termination is a termination property somewhat
in between termination and weak termination in which only the “fair” runs of a process are
taken into account insofar its termination is concerned. There exist several notions of fair
run corresponding to different fairness assumptions [17, 29, 39]. The notion of fair run used
here is an instance of the fair reachability of predicates by Queille and Sifakis [36].

▶ Definition 4 (fair termination). A run is fair if it contains finitely many weakly terminating
processes. We say that P is fairly terminating if every fair run of P is finite.

To better understand our notion of fair run, it may be useful to think of the cases in
which a run is not fair. An unfair run is necessarily infinite and describes the execution of a
process that always has the chance to terminate but systematically avoids doing so. Think
of the system modeled in Example 2: the (only) run in which the buyer adds items to the
shopping cart forever and never pays the seller is unfair; any other run of the system is fair
and finite. So, the system in Example 2 is not terminating (it admits an infinite execution)
but it is fairly terminating (all the fair executions are finite).
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The following result characterizes fair termination without using fair runs. Most impor-
tantly, it provides us with the key proof principle for the soundness of our type system.

▶ Theorem 5 (proof principle for fair termination). P is fairly terminating if and only if
P ⇒ Q implies that Q is weakly terminating.

Theorem 5 says that any reasonable type system that ensures weak process termination
also ensures fair process termination. By “reasonable” we mean a type system for which type
preservation (also know as subject reduction) holds, which is usually the case. Indeed, if we
consider a well-typed process P such that P ⇒ Q, we can deduce that Q is also well typed.
Now, the soundness of the type system guarantees that Q is weakly terminating. By applying
Theorem 5 from right to left, we conclude that every well-typed P is fairly terminating.

3 Formulas and Types

The types of πLIN are built using the multiplicative additive fragment of linear logic enriched
with least and greatest fixed points. In this section we specify the syntax of types along with
all the auxiliary notions that are needed to present the type system and prove its soundness.

The syntax of pre-formulas relies on an infinite set of propositional variables ranged over
by X and Y and is defined by the grammar below:

Pre-formula φ,ψ ::= 0 | ⊤ | 1 | ⊥ | φ⊕ ψ | φN ψ | φ⊗ ψ | φO ψ | µX.φ | νX.φ | X

As usual, µ and ν are the binders of propositional variables and the notions of free and
bound variables are defined accordingly. We assume that the body of fixed points extends
as much as possible to the right of a pre-formula, so µX.X ⊕ 1 means µX.(X ⊕ 1) and not
(µX.X) ⊕ 1. We write {φ/X} for the capture-avoiding substitution of all free occurrences of
X with φ. We write φ⊥ for the dual of φ, which is the involution defined by the equations

0⊥ = ⊤ (φ⊕ ψ)⊥ = φ⊥ N ψ⊥ (µX.φ)⊥ = νX.φ⊥

1⊥ = ⊥ (φ⊗ ψ)⊥ = φ⊥ O ψ⊥ X⊥ = X

A formula is a closed pre-formula. In the context of πLIN, formulas describe how linear
channels are used. Positive formulas (those built with the constants 0 and 1, the connectives
⊕ and ⊗ and the least fixed point) indicate output operations whereas negative formulas
(the remaining forms) indicate input operations. The formulas φ⊕ ψ and φN ψ describe a
linear channel used for sending/receiving a tagged channel of type φ or ψ. The tag (either in1
or in2) distinguishes between the two possibilities. The formulas φ⊗ ψ and φO ψ describe
a linear channel used for sending/receiving a pair of channels of type φ and ψ; µX.φ and
νX.φ describe a linear channel used for sending/receiving a channel of type φ{µX.φ/X}
or φ{νX.φ/X} respectively. The constants 1 and ⊥ describe a linear channel used for
sending/receiving the unit. Finally, the constants 0 and ⊤ respectively describe channels on
which nothing can be sent and from which nothing can be received.

▶ Example 6. Looking at the structure of Buyer and Seller in Example 2, we can make an
educated guess on the type of the channel x they use. Concerning x, we see that it is used
according to φ def= µX.X ⊕ 1 in Buyer and according to ψ def= νX.X N ⊥ in Seller. Note that
φ = ψ⊥, suggesting that Buyer and Seller may interact correctly when connected. ⌟

We write ⪯ for the subformula ordering, that is the least partial order such that φ ⪯ ψ if
φ is a subformula of ψ. For example, consider φ def= µX.νY.X ⊕ Y and ψ

def= νY.φ⊕ Y . Then
we have φ ⪯ ψ and ψ ̸⪯ φ. When Φ is a set of formulas, we write min Φ for its ⪯-minimum
formula if it is defined. Occasionally we let ⋆ stand for an arbitrary binary connective ⊕, ⊗,
N, or O and σ stand for an arbitrary fixed point operator µ or ν.
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When two πLIN processes interact on some channel x, they may exchange other channels
on which their interaction continues. We can think of these subsequent interactions stemming
from a shared channel x as being part of the same conversation (the literature on sessions [22,
25] builds on this idea [27, 11]). The soundness proof of the type system is heavily based
on the proof of the cut elimination property of µMALL∞, which relies on the ability to
uniquely identify the types of the channels that belong to the same conversation and to trace
conversations within typing derivations. Following the literature on µMALL∞ [3, 16, 2], we
annotate formulas with addresses. We assume an infinite set A of atomic addresses, A⊥

being the set of their duals such that A ∩ A⊥ = ∅ and A⊥⊥ = A. We use a and b to range
over elements of A ∪ A⊥. An address is a string aw where w ∈ {i, l, r}∗. The dual of an
address is defined as (aw)⊥ = a⊥w. We use α and β to range over addresses, we write ⊑ for
the prefix relation on addresses and we say that α and β are disjoint if α ̸⊑ β and β ̸⊑ α.

A type is a formula φ paired with an address α written φα. We use S and T to range
over types and we extend to types several operations defined on formulas: we use logical
connectives to compose types so that φαl ⋆ ψαr

def= (φ ⋆ ψ)α and σX.φαi
def= (σX.φ)α; the dual

of a type is obtained by dualizing both its formula and its address, that is (φα)⊥ def= φ⊥
α⊥ ;

type substitution preserves the address in the type within which the substitution occurs, but
forgets the address of the type being substituted, that is φα{ψβ/X} def= φ{ψ/X}α.

We often omit the address of constants (which represent terminated conversations) and
we write S for the formula obtained by forgetting the address of S. Finally, we write ⇝ for
the least reflexive relation on types such that S1 ⋆ S2 ⇝ Si and σX.S ⇝ S{σX.S/X}.

▶ Example 7. Consider once again the formula φ def= µX.X ⊕ 1 that describes the behavior
of Buyer (Example 6) and let a be an arbitrary atomic address. We have

φa ⇝ (φ⊕ 1)ai ⇝ φail ⇝ (φ⊕ 1)aili ⇝ 1ailir

where the fact that the types in this sequence all share a common non-empty prefix “a”
indicates that they belong to the same conversation. Note how the symbols i, l and r

composing an address indicate the step taken in the syntax tree of types for making a move
in this sequence: i means “inside”, when a fixed point operator is unfolded, whereas l and r
mean “left” and “right”, when the corresponding branch of a connective is selected. ⌟

4 Type System

We now present the typing rules for πLIN. As usual we introduce typing contexts to track
the type of the names occurring free in a process. A typing context is a finite map from
names to types written x1 : S1, . . . , xn : Sn. We use Γ and ∆ to range over contexts, we write
dom(Γ) for the domain of Γ and Γ ,∆ for the union of Γ and ∆ when dom(Γ) ∩ dom(∆) = ∅.
Typing judgments have the form P ⊢ Γ . We say that P is quasi typed in Γ if the judgment
P ⊢ Γ is coinductively derivable using the rules shown in Table 3 and described below. For
the time being we say “quasi typed” and not “well typed” because some infinite derivations
using the rules in Table 3 are invalid. Well-typed processes are quasi-typed processes whose
typing derivation satisfies some additional validity conditions that we detail in Section 5.

Rule [ax] states that a link x ↔ y is quasi typed provided that x and y have dual types,
but not necessarily dual addresses. Rule [cut] states that a process composition (x)(P ∥Q)
is quasi typed provided that P and Q use the linear channel x in complementary ways, one
according to some type S and the other according to the dual type S⊥. Note that the context
Γ ,∆ in the conclusion of the rule is defined provided that Γ and ∆ have disjoint domains.
This condition entails that P and Q do not share any channel other than x ensuring that the
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Table 3 Typing rules for πLIN.

x ↔ y ⊢ x : φα, y : φ⊥
β

[ax]
P ⊢ Γ , x : S Q ⊢ ∆, x : S⊥

(x)(P ∥Q) ⊢ Γ ,∆
[cut]

casex{} ⊢ Γ , x : ⊤
[⊤]

P ⊢ Γ

x().P ⊢ Γ , x : ⊥
[⊥]

x() ⊢ x : 1
[1]

P ⊢ Γ , y : S, z : T
x(y, z).P ⊢ Γ , x : S O T

[O]
P ⊢ Γ , y : S Q ⊢ ∆, z : T

x(y, z)(P ∥Q) ⊢ Γ ,∆, x : S ⊗ T
[⊗]

P ⊢ Γ , y : S Q ⊢ Γ , y : T
casex(y){P,Q} ⊢ Γ , x : S N T

[N]
P ⊢ Γ , y : Si

ini x(y).P ⊢ Γ , x : S1 ⊕ S2
[⊕]

P ⊢ Γ , y : S{νX.S/X}
corecx(y).P ⊢ Γ , x : νX.S

[ν]
P ⊢ Γ , y : S{µX.S/X}

recx(y).P ⊢ Γ , x : µX.S
[µ]

P ⊢ Γ Q ⊢ Γ

P ⊕Q ⊢ Γ
[choice]

interation between P and Q may proceed without deadlocks. Rule [⊤] deals with a process
that receives an empty message from channel x. Since this cannot happen, we allow the
process to be quasi typed in any context. Rules [1] and [⊥] concern the exchange of units.
The former rule states that x() is quasi typed in a context that contains a single association
for the x channel with type 1, whereas the latter rule removes x from the context (hence
from the set of usable channels), requiring the continuation process to be quasi typed in the
remaining context. Rules [⊗] and [O] concern the exchange of pairs. The former rule requires
the two forked processes P and Q to be quasi typed in the respective contexts enriched with
associations for the continuation channels y and z being created. The latter rule requires the
continuation process to be quasi typed in a context enriched with the channels extracted
from the received pair. Rules [⊕] and [N] deal with the exchange of disjoint sums in the
expected way. Rules [µ] and [ν] deal with fixed point operators by unfolding the (co)recursive
type of the channel x. As in µMALL∞, the two rules have exactly the same structure despite
the fact that the two fixed point operators being used are dual to each other. Clearly, the
behavior of least and greatest fixed points must be distinguished by some other means, as
we will see in Section 5 when discussing the validity of a typing derivation. Finally, [choice]
deals with non-deterministic choices by requiring that each branch of a choice must be quasi
typed in exactly the same typing context as the conclusion.

Besides the structural constraints imposed by the typing rules, we implicitly require that
the types in the range of all typing contexts have pairwise disjoint addresses. This condition
ensures that it is possible to uniquely trace a communication protocol in a typing derivation:
if we have two channels x and y associated with two types φα and ψβ such that α ⊑ β, then
we know that y is a continuation resulting from a communication that started from x. In a
sense, x and y represent different moments in the same conversation.

▶ Example 8 (buyer and seller). Let us show that the system described in Example 2 is quasi
typed. To this aim, let φ def= µX.X ⊕ 1 and ψ

def= νX.X N ⊥ respectively be the formulas
describing the behavior of Buyer and Seller on the channel x. Note that ψ = φ⊥ and let a
be an arbitrary atomic address. We derive
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...
Buyer⟨x⟩ ⊢ x : φail

[⊕]
addx.Buyer⟨x⟩ ⊢ x : (φ⊕ 1)ai

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : (φ⊕ 1)ai

[choice]
addx.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : (φ⊕ 1)ai

[µ]
Buyer⟨x⟩ ⊢ x : φa

and also

...
Seller⟨x, y⟩ ⊢ x : ψa⊥il, y : 1

[1]
y() ⊢ y : 1

[⊥]
x().y() ⊢ x : ⊥, y : 1

[N]
casex{Seller⟨x, y⟩, x().y()} ⊢ x : (ψ N ⊥)a⊥i, y : 1

[ν]
Seller⟨x, y⟩ ⊢ x : ψa⊥ , y : 1

showing that Buyer and Seller are quasi typed. Note that both derivations are infinite, but
for dual reasons. In Buyer the infinite branch corresponds to the behavior in which Buyer
chooses to add one more item to the shopping cart. This choice is made independently of
the behavior of other processes in the system. In Seller, the infinite branch corresponds to
the behavior in which Seller receives one more add message from Buyer. By combining these
derivations we obtain

...
Buyer⟨x⟩ ⊢ x : φa

...
Seller⟨x, y⟩ ⊢ x : ψa⊥ , y : 1

[cut]
(x)(Buyer⟨x⟩ ∥ Seller⟨x, y⟩) ⊢ y : 1

showing that the system as a whole is quasi typed. ⌟

As we have anticipated, there exist infinite typing derivations that are unsound from a
logical standpoint, because they allow us to prove 0 or the empty sequent. For example, if we
consider the non-terminating process Ω(x) = Ω⟨x⟩ ⊕ Ω⟨x⟩ we obtain the infinite derivation

...
Ω⟨x⟩ ⊢ x : 0

...
Ω⟨x⟩ ⊢ x : 0

[choice]
Ω⟨x⟩ ⊢ x : 0

(1)

showing that Ω⟨x⟩ is quasi typed. As illustrated by the next example, there exist non-
terminating processes that are quasi typed also in logically sound contexts.

▶ Example 9 (compulsive buyer). Consider the following variant of the Buyer process

Buyer(x, z) = recx.addx.Buyer⟨x, z⟩

that models a “compulsive buyer”, namely a buyer that adds infinitely many items to the
shopping cart but never pays. Using φ def= µX.X ⊕ 1 and an arbitrary atomic address a we
can build the following infinite derivation

...
Buyer⟨x⟩ ⊢ x : φail

[⊕]
addx.Buyer⟨x⟩ ⊢ x : (φ⊕ 1)ai

[µ]
Buyer⟨x⟩ ⊢ x : φa
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showing that this process is quasi typed. By combining this derivation with the one for
Seller in Example 8 we obtain a derivation establishing that (x)(Buyer⟨x⟩ ∥ Seller⟨x, y⟩) is
quasi typed in the context y : 1, although this composition cannot terminate. ⌟

5 From Quasi-Typed to Well-Typed Processes

To rule out unsound derivations like those in Equation (1) and Example 9 it is necessary
to impose a validity condition on derivations [3, 16]. Roughly speaking, µMALL∞’s validity
condition requires every infinite branch of a derivation to be supported by the continuous
unfolding of a greatest fixed point. In order to formalize this condition, we start by defining
threads, which are sequences of types describing sequential interactions at the type level.

▶ Definition 10 (thread). A thread of S is a sequence of types (Si)i∈o for some o ∈ ω + 1
such that S0 = S and Si ⇝ Si+1 whenever i+ 1 ∈ o.

Hereafter we use t to range over threads. For example, if we consider φ def= µX.X ⊕ 1 from
Example 2 we have that t def= (φa, (φ⊕ 1)ai, φail, . . . ) is an infinite thread of φa. A thread is
stationary if it has an infinite suffix of equal types. The above thread t is not stationary.

Among all threads, we are interested in finding those in which a ν-formula is unfolded
infinitely often. These threads, called ν-threads, are precisely defined thus:

▶ Definition 11 (ν-thread). Let t = (Si)i∈ω be an infinite thread, let t be the corresponding
sequence (Si)i∈ω of formulas and let inf(t) be the set of elements of t that occur infinitely
often in t. We say that t is a ν-thread if min inf(t) is defined and is a ν-formula.

If we consider the infinite thread t above, we have inf(t) = {φ,φ⊕1} and min inf(t) = φ, so
t is not a ν-thread because φ is not a ν-formula. Consider instead φ def= νX.µY.X⊕Y and ψ def=
µY.φ⊕Y and observe that ψ is the “unfolding” of φ. Now t1

def= (φa, ψai, (φ⊕ψ)aii, φaiil, . . . )
is a thread of φa such that inf(t1) = {φ,ψ, φ ⊕ ψ} and we have min inf(t1) = φ because
φ ⪯ ψ, so t1 is a ν-thread. If, on the other hand, we consider the thread t2

def= (φa, ψai, (φ⊕
ψ)aii, ψaiir, (φ⊕ ψ)aiiri, . . . ) such that inf(t2) = {ψ,φ⊕ ψ} we have min inf(t2) = ψ because
ψ ⪯ φ⊕ ψ, so t2 is not a ν-thread. Intuitively, the ⪯-minimum formula among those that
occur infinitely often in a thread is the outermost fixed point operator that is being unfolded
infinitely often. It is possible to show that this minimum formula is always well defined [16].
If such minimum formula is a greatest fixed point operator, then the thread is a ν-thread.

Now we proceed by identifying threads along branches of typing derivations. To this aim,
we provide a precise definition of branch.

▶ Definition 12 (branch). A branch of a typing derivation is a sequence (Pi ⊢ Γi)i∈o of
judgments for some o ∈ ω + 1 such that P0 ⊢ Γ0 occurs somewhere in the derivation and
Pi+1 ⊢ Γi+1 is a premise of the rule application that derives Pi ⊢ Γi whenever i+ 1 ∈ o.

An infinite branch is valid if supported by a ν-thread that originates somewhere therein.

▶ Definition 13 (valid branch). Let γ = (Pi ⊢ Γi)i∈ω be an infinite branch in a derivation.
We say that γ is valid if there exists j ∈ ω such that (Sk)k≥j is a non-stationary ν-thread
and Sk is in the range of Γk for every k ≥ j.

For example, the infinite branch in the typing derivation for Seller of Example 2 is valid
since it is supported by the ν-thread (ψa⊥ , (ψ N ⊥)a⊥i, ψa⊥il, . . . ) where ψ def= νX.X N ⊥
happens to be the ⪯-minimum formula that is unfolded infinitely often. On the other hand,
the infinite branch in the typing derivation for Buyer of Example 9 is invalid, because the
only infinite thread in it is (φa, (φ⊕ 1)ai, φail, . . . ) which is not a ν-thread.
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A µMALL∞ derivation is valid if so is every infinite branch in it [3, 16]. For the purpose
of ensuring fair termination, this condition is too strong because some infinite branches in a
typing derivation may correspond to unfair executions that, by definition, we neglect insofar
its termination is concerned. For example, the infinite branch in the derivation for Buyer
of Example 8 corresponds to an unfair run in which the buyer insists on adding items to
the shopping cart, despite it periodically has a chance of paying the seller and terminate
the interaction. That typing derivation for Buyer would be considered an invalid proof in
µMALL∞ because the infinite branch is not supported by a ν-thread (in fact, there is a
µ-formula that is unfolded infinitely many times along that branch, as in Example 9).

It is generally difficult to understand if a branch corresponds to a fair or unfair run because
the branch describes the evolution of an incomplete process whose behavior is affected by
the interactions it has with processes found in other branches of the derivation. However, we
can detect (some) unfair branches by looking at the non-deterministic choices they traverse,
since choices are made autonomously by processes. To this aim, we introduce the notion of
rank to estimate the least number of choices a process can possibly make during its lifetime.

▶ Definition 14 (rank). Let r and s range over the elements of N∞ def= N ∪ {∞} equipped
with the expected total order ≤ and operation + such that r + ∞ = ∞ + r = ∞. The rank of
a process P , written |P |, is the least element of N∞ such that

|x ↔ y| = 0
|casex{}| = 0

|x()| = 0
|x().P | = |P |

|x(y, z).P | = |P |
|ini x(y).P | = |P |
|recx(y).P | = |P |

|corecx(y).P | = |P |

|casex(y){P,Q}| = max{|P |, |Q|}
|P ⊕Q| = 1 + min{|P |, |Q|}

|(x)(P ∥Q)| = |P | + |Q|
|x(y, z)(P ∥Q)| = |P | + |Q|

Roughly, the rank of terminated processes is 0, that of processes with a single continuation
P coincides with the rank of P , and that of processes spawning two continuations P and Q

is the sum of the ranks of P and Q. Then, the rank of a sum input with continuations P
and Q is conservatively estimated as the maximum of the ranks of P and Q, since we do not
know which one will be taken, whereas the rank of a choice with continuations P and Q is 1
plus the minimum of the ranks of P and Q. If we take Buyer and Seller from Example 2
we have |Buyer⟨x⟩| = 1 and |Seller⟨x, y⟩| = 0. We also have |Ω⟨x⟩| = ∞. Note that |P | only
depends on the structure of P but not on the actual names occurring in P , so it is well and
uniquely defined as the least solution of a finite system of equations [10].

▶ Definition 15. A branch is fair if it traverses finitely many, finitely-ranked choices.

A finitely-ranked choice is at finite distance from a region of the process in which there are
no more choices. An unfair branch gets close to such region infinitely often, but systematically
avoids entering it. Note that every finite branch is also fair, but there are fair branches
that are infinite. For instance, all the infinite branches of the derivation in Equation (1)
and the only infinite branch in the derivation for Seller⟨x, y⟩ of Example 8 are fair since
they do not traverse any finitely-ranked choice. On the contrary, the only infinite branch
in the derivation for Buyer⟨x⟩ of the Example 8 is unfair since it traverses infinitely many
finitely-ranked choices. All fair branches in the same derivation for Buyer are finite.

At last we can define our notion of well-typed process.

▶ Definition 16 (well-typed process). We say that P is well typed in Γ , written P ⊩ Γ , if the
judgment P ⊢ Γ is derivable and each fair, infinite branch in its derivation is valid.

Note that Ω is ill typed since the fair, infinite branches in Equation (1) are all invalid. We
can now formulate the key properties of well-typed processes, starting from subject reduction.
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▶ Theorem 17 (subject reduction). If P ⊩ Γ and P → Q then Q ⊩ Γ .

All reductions in Table 2 except those for non-deterministic choices correspond to cut-
elimination steps in a quasi typing derivation. As an illustration, below is a fragment of
derivation tree for two processes exchanging a pair of y and z on channel x.

...
P ⊢ Γ , y : S

...
Q ⊢ ∆, z : T

[⊗]
x(y, z)(P ∥Q) ⊢ Γ ,∆, x : S ⊗ T

...
R ⊢ Γ ′, y : S⊥, z : T⊥

[O]
x(y, z).R ⊢ Γ ′, x : S⊥ O T⊥

[cut]
(x)(x(y, z)(P ∥Q) ∥ x(y, z).R) ⊢ Γ ,∆, Γ ′

As the process reduces, the quasi typing derivation is rearranged so that the cut on x is
replaced by two cuts on y and z. The resulting quasi typing derivation is shown below.

...
P ⊢ Γ , y : S

...
Q ⊢ ∆, z : T

...
R ⊢ Γ ′, y : S⊥, z : T⊥

[cut]
(z)(Q ∥R) ⊢ ∆, Γ ′, y : S⊥

[cut]
(y)(P ∥ (z)(Q ∥R)) ⊢ Γ ,∆, Γ ′

It is also interesting to observe that, when P → Q, the reduct Q is well typed in the same
context as P but its rank may be different. In particular, the rank of Q can be greater than
the rank of P . Recalling that the rank of a process estimates the number of choices that
the process must perform to terminate, the fact that the rank of Q increases means that Q
moves away from termination instead of getting closer to it (we will see an instance where
this phenomenon occurs in Example 23). What really matters is that a well-typed process is
weakly terminating. This is the second key property ensured by our type system.

▶ Lemma 18 (weak termination). If P ⊩ x : 1 then P ⇒ x().

The proof of Lemma 18 is a refinement of the cut elimination property of µMALL∞.
Essentially, the only new case we have to handle is when a choice P1 ⊕P2 “emerges” towards
the bottom of the typing derivation, meaning that it is no longer guarded by any action. In
this case, we reduce the choice to the Pi with smaller rank, which is guaranteed to lay on a
fair branch of the derivation. An auxiliary result used in the proof of Lemma 18 is that our
type system is a conservative extension of µMALL∞.

▶ Lemma 19. If P ⊩ x1 : S1, . . . , xn : Sn then ⊢ S1, . . . , Sn is derivable in µMALL∞.

The property that well-typed processes can always successfully terminate is a simple
consequence of Theorem 17 and Lemma 18.

▶ Theorem 20 (soundness). If P ⊩ x : 1 and P ⇒ Q then Q ⇒ x().

Theorem 20 entails all the good properties we expect from well-typed processes: failure
freedom (no unguarded sub-process case y{} ever appears), deadlock freedom (if the process
stops it is terminated), lock freedom [26, 32] (every pending action can be completed in finite
time) and junk freedom (every channel can be depleted). The combination of Theorems 5
and 20 also guarantees the termination of every fair run of the process.

▶ Corollary 21 (fair termination). If P ⊩ x : 1 then P is fairly terminating.

Observe that zero-ranked process do not contain any non-deterministic choice. In that case,
every infinite branch in their typing derivation is fair and our validity condition coincides with
that of µMALL∞. As a consequence, we obtain the following strengthening of Corollary 21:
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▶ Proposition 22. If P ⊩ x : 1 and |P | = 0 then P is terminating.

For regular processes (those consisting of finitely many distinct sub-trees, up to renaming
of bound names) it is possible to easily adapt the algorithm that decides the validity of a
µMALL∞ proof so that it decides the validity of a πLIN typing derivation. The algorithm is
sketched in more detail in the technical report [10, Appendix D].

▶ Example 23 (parallel programming). In this example we see a πLIN modeling of a parallel
programming pattern whereby a Work process creates an unbounded number of workers each
one dedicated to an independent task and a Gather process collects and combines the partial
results from the workers. The processes Work and Gather are defined as follows:

Work(x) = recx.(complex x.x(y)(y() ∥ Work⟨x⟩) ⊕ simplex.x())
Gather(x, z) = corecx.casex{x(y).y().Gather⟨x, z⟩, x().z()}

At each iteration, the Work process non-deterministically decides whether the task is
complex (left hand side of the choice) or simple (right hand side of the choice). In the first
case, it bifurcates into a new worker, which in the example simply sends a unit on y, and
another instance of itself. In the second case it terminates. The Gather process joins the
results from all the workers before signalling its own termination by sending a unit on z.
Note that the number of actions Gather has to perform before terminating is unbounded, as
it depends on the non-deterministic choices made by Work.

Below is a typing derivation for Work where φ def= µX.(1 ⊗X) ⊕ 1 and a is an arbitrary
atomic address:

[1]
y() ⊢ y : 1

...
Work⟨x⟩ ⊢ x : φailr

[⊗]
x(y)(y() ∥ Work⟨x⟩) ⊢ x : (1 ⊗ φ)ail

[⊕]
complex x . . . ⊢ x : ((1 ⊗ φ) ⊕ 1)ai

[1], [⊕]
simplex.x() ⊢ x : ((1 ⊗ φ) ⊕ 1)ai

[choice]
complex x.x(y)(y() ∥ Work⟨x⟩) ⊕ simplex.x() ⊢ x : ((1 ⊗ φ) ⊕ 1)ai

[µ]
Work⟨x⟩ ⊢ x : φα

Note that the only infinite branch in this derivation is unfair because it traverses infinitely
many choices with rank 1 = |Work⟨x⟩|. So, Work is well typed.

Concerning Gather, we obtain the following typing derivation where ψ def= νX.(⊥OX)N⊥:
...

Gather⟨x, z⟩ ⊢ x : ψa⊥ilr, z : 1
[⊥]

y().Gather⟨x, z⟩ ⊢ x : ψa⊥ilr, y : ⊥, z : 1
[O]

x(y).y().Gather⟨x, z⟩ ⊢ x : (⊥ O ψ)a⊥il, z : 1
[1], [⊥]

x().z() ⊢ x : ⊥, z : 1
[N]

casex{x(y).y().Gather⟨x, z⟩, x().z()} ⊢ x : ((⊥ O ψ) N ⊥)a⊥i, z : 1
[ν]

Gather⟨x, z⟩ ⊢ x : ψa⊥ , z : 1

Here too there is just one infinite branch, which is fair and supported by the ν-thread
t = (ψa⊥ , ((⊥ O ψ) N ⊥)a⊥i, (⊥ O ψ)a⊥il, ψa⊥ilr, . . . ). Indeed, all the formulas in t occur
infinitely often and min inf(t) = ψ which is a ν-formula. Hence, Gather is well typed and so
is the composition (x)(Work⟨x⟩ ∥ Gather⟨x, z⟩) in the context z : 1. We conclude that the
program is fairly terminating, despite the fact that the composition of Work and Gather may
grow arbitrarily large because Work may spawn an unbounded number of workers. ⌟
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▶ Example 24 (forwarder). In this example we illustrate a deterministic, well-typed process
that unfolds a least fixed point infinitely many times. In particular, we consider once again
the formulas φ def= µX.X⊕ 1 and ψ def= νX.XN⊥ and the process Fwd defined by the equation

Fwd(x, y) = corecx.rec y.casex{in1 y.Fwd⟨x, y⟩, in2 y.x().y()}

which forwards the sequence of messages received from channel x to channel y. We derive
...

Fwd⟨x, y⟩ ⊢ x : ψail, y : φbil
[⊕]

in1 y.Fwd⟨x, y⟩ ⊢ x : ψail, y : (φ⊕ 1)bi

[1], [⊥]
x().y() ⊢ x : ⊥, y : 1

[⊕]
in2 y.x().y() ⊢ x : ⊥, y : (φ⊕ 1)bi

[N]
casex{in1 y.Fwd⟨x, y⟩, in2 y.x().y()} ⊢ x : (ψ N ⊥)ai, y : (φ⊕ 1)bi

[ν], [µ]
Fwd⟨x, y⟩ ⊢ x : ψa, y : φb

and observe that |Fwd⟨x, y⟩| = 0. This typing derivation is valid because the only infinite
branch is fair and supported by the ν-thread of ψa. Note that φ = ψ⊥ and that the derivation
proves an instance of [ax]. In general, the axiom is admissible in µMALL∞ [3]. ⌟

▶ Example 25 (slot machine). Rank finiteness is not a necessary condition for well typedness.
As an example, consider the system (x)(Player⟨x⟩ ∥ Machine⟨x, y⟩) where

Player(x) = recx.(play x.casex{Player⟨x⟩, recx.quitx.x()} ⊕ quitx.x())
Machine(x, y) = corecx.casex{winx.Machine⟨x, y⟩ ⊕ losex.Machine⟨x, y⟩, x().y()}

which models a game between a player and a slot machine. At each round, the player
decides whether to play or to quit. In the first case, the slot machine answers with either
win or lose. If the player wins, it also quits. Otherwise, it repeats the same behavior. It is
possible to show that Player⟨x⟩ ⊢ x : φa and Machine⟨x, y⟩ ⊢ x : ψa⊥ , y : 1 are derivable
where φ def= µX.(X N X) ⊕ 1 and ψ

def= νX.(X ⊕ X) N ⊥ [10]. The only infinite branch in
the derivation for Player is unfair since |Player⟨x⟩| = 1, so Player is well typed. There are
infinitely many branches in the derivation for Machine accounting for all the sequences of
win and lose choices that can be made. Since |Machine⟨x, y⟩| = ∞, all these branches are
fair but also valid. So, the system as a whole is well typed. ⌟

6 Related Work

On account of the known encodings of sessions into the linear π-calculus [27, 11, 38], πLIN
belongs to the family of process calculi providing logical foundations to sessions and session
types. Some representatives of this family are πDILL [6] and its variant equipped with a
circular proof theory [14, 13], CP [40] and µCP [30], among others. There are two main
aspects distinguishing πLIN from these calculi. The first one is that these calculi take sessions
as a native feature. This fact can be appreciated both at the level of processes, where session
endpoints are linearized resources that can be used multiple times albeit in a sequential way,
and also at the level of types, where the interpretation of the φ ⊗ ψ and φ O ψ formulas
is skewed so as to distinguish the type φ of the message being sent/received on a channel
from the type ψ of the channel after the exchange has taken place. In contrast, πLIN adopts
a more fundamental communication model based on linear channels, and is thus closer
to the spirit of the encoding of linear logic proofs into the π-calculus proposed by Bellin
and Scott [4] while retaining the same expressiveness of the aforementioned calculi. To
some extent, πLIN is also more general than those calculi, since a formula φ ⊗ ψ may be
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interpreted as a protocol that bifurcates into two independent sub-protocols φ and ψ (we
have seen an instance of this pattern in Example 23). So, πLIN is natively equipped with the
capability of modeling some multiparty interactions, in addition to all of the binary ones. A
session-based communication model identical to πLIN, but whose type system is based on
intuitionistic rather than classical linear logic, has been presented by DeYoung et al. [15].
In that work, the authors advocate the use of explicit continuations with the purpose of
modeling an asynchronous communication semantics and they prove the equivalence between
such model and a buffered session semantics. However, they do not draw a connection
between the proposed calculus and the linear π-calculus [28] through the encoding of binary
sessions [27, 11] and, in the type system, the multiplicative connectives are still interpreted
asymmetrically. The second aspect that distinguishes πLIN from the other calculi is its
type system, which is still deeply rooted into linear logic and yet it ensures fair termination
instead of progress [6, 40, 35], termination [30] or strong progress [14, 13]. Fair termination
entails progress, strong progress and lock freedom [26, 32], but at the same time it does
not always rule out processes admitting infinite executions. Simply, infinite executions are
deemed unrealistic because they are unfair.

Another difference between πLIN and other calculi based on linear logic is that its
operational semantics is completely ordinary, in the sense that it does not include commuting
conversions, reductions under prefixes, or the swapping of communication prefixes. The cut
elimination result of µMALL∞, on which the proof of Theorem 20 is based, works by reducing
cuts from the bottom of the derivation instead of from the top [3, 16, 2]. As a consequence,
it is not necessary to reduce cuts guarded by prefixes or to push cuts deep into the derivation
tree to enable key reductions in πLIN processes.

Some previous works [9, 7] have studied type systems ensuring the fair termination
of binary and multiparty sessions. Although the enforced property is the same and the
communication models of these works are closely related to the one we consider here, the used
techniques are quite different and the families of well-typed processes induced by the two type
systems are not comparable. One aspect that is shared among all of these works, including
the present one, is the use of a rank annotation or function that estimates how far a process
is from termination. In previous works for session-based communications [9, 7], ranks account
for the number of sessions that processes create and the number of times they use subtyping
before they terminate. Since ranks are required to be finite, this means that deterministic
processes can only create a finite number of sessions and can only use subtyping a finite
number of times. As a consequence, the forwarder in Example 24 is ill typed according to
those typing disciplines because it applies subtyping (in an implicit way, whenever it sends a
tag) an unbounded number of times. At the same time, a “compulsive” variant of the player
in Example 25 that keeps playing until it wins is well typed in previous type systems [9, 7]
but ill typed in the present one. This difference stems, at least in part, from the fact that
the previous type systems support processes defined using general recursion, whereas πLIN’s
type system relies on the duality between recursion and corecursion. A deeper understanding
of these differences requires further investigation.

The extension of calculi based on linear logic with non-deterministic features has recently
received quite a lot of attention. Rocha and Caires [37] have proposed a session calculus with
shared cells and non-deterministic choices that can model mutable state. Their typing rule
for non-deterministic choices is the same as our own, but in their calculus choices do not
reduce. Rather, they keep track of every possible evolution of a process to be able to prove a
confluence result. Qian et al. [35] introduce coexponentials, a new pair of modalities that
enable the modeling of concurrent clients that compete in order to interact with a shared
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server that processes requests sequentially. In this setting, non-determinism arises from the
unpredictable order in which different clients are served. Interestingly, the coexponentials
are derived by resorting to their semantics in terms of least and greatest fixed points. For
this reason, the cut elimination result of µMALL∞ might be useful to attack the termination
proof in their setting.

7 Concluding Remarks

We have studied a conservative extension of µMALL∞ [3, 16, 2], an infinitary proof system
of multiplicative additive linear logic with fixed points, that serves as type system for πLIN,
a linear π-calculus with (co)recursive types. Well-typed processes fairly terminate.

One drawback of the proposed type system is that establishing whether a quasi-typed
process is also well typed requires a global check on the whole typing derivation. The
need for a global check seems to arise commonly in infinitary proof systems [12, 16, 3, 2],
so an obvious aspect to investigate is whether the analysis can be localized. A possible
source of inspiration for devising a local type system for πLIN might come from the work of
Derakhshan and Pfenning [14]. They propose a compositional technique for dealing with
infinitary typing derivations in a session calculus, although their type system is limited to
the additive fragment of linear logic.

Fair subtyping [31, 33] is a refinement of the standard subtyping relation for session
types [19] that preserves fair termination and that plays a key role in our previous type
system ensuring fair termination for binary and multiparty sessions [9, 7]. Given the rich
literature exploring the connections between linear logic and session types, πLIN and its type
system might provide the right framework for investigating the logical foundations of fair
subtyping.
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Abstract
A system of session types is introduced as induced by a Curry Howard correspondence applied to
bounded linear logic, suitably extended with probabilistic choice operators and ground types. The
resulting system satisfies some expected properties, like subject reduction and progress, but also
unexpected ones, like a polynomial bound on the time needed to reduce processes. This makes the
system suitable for modelling experiments and proofs from the so-called computational model of
cryptography.
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1 Introduction

Session types [30, 23, 31] are a typing discipline capable of regulating the interaction between
the parallel components in a concurrent system in such a way as to prevent phenomena such
as deadlock or livelock, at the same time enabling the parties to interact following the rules of
common communication protocols. In the twenty-five years since their introduction, session
types have been shown to be a flexible tool, being adaptable to heterogeneous linguistic and
application scenarios (see, e.g., [45, 10, 32, 16]). A particularly fruitful line of investigation
concerns the links between session-type disciplines and Girard’s linear logic [26]. This intimate
relationship, known since the introduction of session types, found a precise formulation in the
work of Caires and Pfenning on a Curry-Howard correspondence between session types and
intuitionistic linear logic [11], which has been developed along many directions [47, 48, 44, 18].
In Caires and Pfenning’s type system, proofs of intuitionistic linear logic become type
derivations for terms of Milner’s π-calculus. Noticeably, typable processes satisfy properties
(e.g. progress and deadlock freedom) which do not hold for untyped processes.

Process algebras, and in particular algebras in the style of the π-calculus, have been used,
among other things, as specification formalisms for cryptographic protocols in the so-called
symbolic (also known as formal) model of cryptography, i.e. in the model, due to Dolev
and Yao [25], in which aspects related to computational complexity and probability theory,
themselves central to the computational model, are abstracted away: strings become symbolic
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expressions, adversaries are taken as having arbitrary computing power, and nondeterminism
replaces probabilism in regulating the interaction between the involved parties. This includes
π-calculus dialects akin to the applied π-calculus [2], or the spi-calculus [3].

Is it possible to model cryptographic protocols by way of process algebras in the so-called
computational model itself ? A widely explored path in this direction consists in the so-called
computational soundness results for symbolic models, which have been successfully proved
in the realm of process algebras [1, 17, 46, 5]. In computationally sound symbolic models,
any computational attack can be simulated by a symbolic attack, this way proving that
whenever a protocol is secure in the latter, it must be secure in the former, too. If one is
interested in calculi precisely and fully capturing the computational model, computational
soundness is not enough, i.e., one wants a model capturing all and only the computational
adversaries. And indeed, there have been some attempts to define process algebras able to
faithfully capture the computational model by way of operators for probabilistic choice and
constraints on computational complexity [42]. The literature, however, is much sparser than
for process algebras in symbolic style. We believe that this is above all due to the fact that
the contemporary presence of probabilistic evolution and the intrinsic nondeterminism of
process algebras leads to complex formal systems which are hard to reason about.

This paper shows that session typing can be exploited for the sake of designing a simple
formal system in which, indeed, complexity constraints and probabilistic choices can be both
taken into account, this way allowing for the modelling of cryptographic experiments. At
the level of types, we build on the approach by Caires and Pfenning, refining it through the
lenses of bounded linear logic, a logical system which captures polynomial time complexity
in the sequential setting [27, 29], at the same time allowing for a high degree of intensional
expressivity [21]. At the level of processes, we enrich proof terms with first-order function
symbols computing probabilistic polytime functions, namely the basic building blocks of any
cryptographic protocol. This has two consequences: process evolution becomes genuinely
probabilistic, while process terms and types are enriched so as to allow for the exchange of
strings, this way turning the calculus to an applied one. From a purely definitional perspective,
then, the introduced calculus, called πDIBLL, is relatively simple, and does not significantly
deviate from the literature, being obtained by mixing well-known ingredients in a novel way.
The calculus πDIBLL is introduced in Section 3 below.

Despite its simplicity πDIBLL is on the one hand capable of expressing some simple
cryptographic experiments, and on the other hand satisfies some strong meta-theoretical
properties. This includes type soundness, which is expected, and can be spelled out as subject
reduction and progress, but also a polynomial bound on the length of reduction sequences, a
form of reachability property which is essential for our calculus to be considered a model of
cryptographic adversaries. All this is described in Section 4.

As interesting as they are, these properties are not by themselves sufficient for considering
πDIBLL a proper calculus for computational cryptography. What is missing, in fact, is
a way to capture computational indistinguishability, in the sense of the computational
model [35, 28]. Actually, this is where the introduced calculus shows its peculiarities with
respect to similar calculi from the literature, and in particular with respect to the CCS-style
calculus by Mitchell and Scedrov [42]. Indeed, πDIBLL typable processes enjoy a confluence
property which cannot hold for untyped processes. The latter, in turn, implies that firing
internal actions on any typable process results in a unique distribution of processes, all of
them ready to produce an observable action. This makes relational reasoning handier. We in
particular explore observational equivalence in Section 5, then showing how this can be of
help in a simple experiment-based security proof in Section 6.
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PrivKeav
A,Π(n) :
m0, m1 ← A(1n)
k ← Gen(1n)
b← {0, 1}
c← Enc(k, mb)
g ← A(c)
return (b = g)

(a) As Pseudocode.

PRIVK Π :
input m0 from adv;
input m1 from adv;
let k = gen() in

let b = flipcoin() in

let c = enc(k, mb) in

output c to adv;
input g from adv;
let r = eq(g, b) in

output r to exp;

(b) As a Process.

Figure 1 The Indistinguishability Experiment.

Due to space constraints, many details had to be elided, but can be found in the long
version of this paper [20], which is available online.

2 A Bird’s Eye View on Cryptographic Experiments and Sessions

In this section, we introduce the reader to cryptographic experiments, and we show how they
and the parties involved can be conveniently modelled as session-typed processes. We will
also hint at how relational reasoning could be useful in supporting proofs of security. We
will do all this by way of an example, namely the one of private key encryption schemes and
security against passive adversaries. We will try to stay self-contained, and the interested
reader can check either this paper’s extended version [20] or textbooks [35] for more details
or for the necessary cryptographic preliminaries.

▶ Definition 1 (Negligible Functions). A function f from the natural numbers to the non-
negative real numbers is negligible iff for every positive polynomial p there is an N ∈ N such
that for all natural numbers n > N it holds that f(n) < 1/p(n).

▶ Definition 2 (Probabilistic Polynomial Time Algorithms). An algorithm A is called prob-
abilistic polynomial time (PPT in the following) iff it is randomized, and there exists a
polynomial p which is an upper limit to the computational complexity of A regardless of the
probabilistic choices made by the latter.

Since the running time of any cryptographic algorithm has to be polynomially bounded
w.r.t. the value of the security parameter n, the latter is passed in unary (i.e. as 1n) to the
algorithm, so that n is also a lower bound to the length of the input.

A private-key encryption scheme is a triple of algorithms Π = (Gen, Enc, Dec), the first
one responsible for key generation, the latter two being the encryption and decryption
algorithms, respectively. When could we say that such a scheme Π is secure? Among
the many equivalent definitions in the literature, one of the handiest is the one based on
indistinguishability, which is based on the experiment PrivKeav reported in Figure 1a exactly
in the form it has in [35]. As the reader may easily notice, the experiment is nothing more
than a randomized algorithm interacting with both the adversary A and the scheme Π.
The interaction between PrivKeav and the adversary A can be put in evidence by switching
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to a language for processes, see Figure 1b. The process PRIVK Π communicates with the
adversary through the channel adv and outputs the result of its execution to the channel exp.
Apart from the fact that the adversary has been factored out, the process is syntactically very
similar to the experiment PrivKeav. Actually, we could have made the interaction between
PRIVK and Π explicit by turning the latter into a process interacting with the former
through a dedicated channel.

The interaction between an adversary ADV and PRIVK Π can be modelled through the
parallel composition operator, i.e., by studying the behaviour of ADV | PRIVK Π. As we
will soon see, we would like the aforementioned parallel composition to output true on the
channel exp with probability very close to 1

2 , and this is indeed what cryptography actually
prescribes [35]. We should not, however, be too quick to proclaim the problem solved. What,
for example, if ADV communicates with PRIVK Π in a way different from the one prescribed
by the experiment, e.g. by not passing two strings to it, thus blocking the interaction? Even
worse, what if PRIVK Π becomes the parallel composition PRIVK | Π and ADV cheats on
the communication by intercepting the messages exchanged between Π and PRIVK? These
scenarios are of course very interesting from a security viewpoint, but we are not interested
at those here: the only thing ADV is allowed to do is to send the two messages and to use
its internal computational capabilities to guess the value b the experiment produces.

How to enforce all this at the level of processes? Actually, this is what session types are
good for! It would be nice, for example, to be able to type the two processes above as follows:

adv : S[p]⊗ S[p]⊗ (S[p] ⊸ B) ⊢PRIVK Π :: exp : B
⊢ADV :: adv : S[p]⊗ S[p]⊗ (S[p] ⊸ B)

where B is the type of booleans and S[p] is the type of strings of length p. Moreover, we
would like to somehow force a restriction νadv to be placed next to the parallel composition
ADV | PRIVK Π, so as to prescribe that ADV can only communicate with the experiment,
and not with the outside world. Finally, we would like ADV to range over processes working
in polynomial time. All this is indeed taken care by our session type discipline as introduced
in Section 3.

But now, would it be possible to not only express simple cryptographic situations, but
also to prove some security properties about them from within the realm of processes? As
already mentioned, this amounts to requiring that for every efficient adversary (i.e. for every
PPT algorithm) A it holds that Pr[PrivKeav

A,Π(n)] ≤ 1
2 + ε(n), where ε is negligible. In the

world of processes, this becomes the following equation

νadv.(PRIVK Π | ADV ) ∼ FAIRFLIPexp (1)

where FAIRFLIPexp behaves like a fair coin outputting its value on the channel exp, and ∼
expresses approximate equivalence as induced by negligible functions. Making all this formal
is nontrivial for at least three reasons:

First of all, the statement only holds for efficient adversaries. The relation ∼, however
specified, must then take this constraint into account.
Secondly, the relation ∼ only holds in an approximate sense, and the acceptable degree
of approximation crucially depends on n, the so-called security parameter. This is due to
negligibly, without which cryptography would be essentially vacuous.
Finally, the computational security of Π can at the time of writing be proved only based
on assumptions, e.g. that one-way functions or pseudorandom generators exist. In other
words, Equation (1) only holds in a conditional sense, and cryptographic proofs have to
be structured accordingly.

The calculus πDIBLL successfully addresses all these challenges, as we are going to show in
the rest of this paper.
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3 Processes and Session Typing

This section is devoted to introducing πDIBLL, a variation on πDILL [11] in which a
polynomial constraint on the replicated processes is enforced following the principles of
bounded linear logic [27]. For the sake of properly representing cryptographic protocols in
the computational model, πDIBLL is also equipped with indexed ground types and a notion
of probabilistic choice.

3.1 Preliminaries

Preliminary to the definition of the πDIBLL session type system are three concepts, namely
polynomials, probability distributions and indexed ground types. Let us start this section
introducing polynomials.

▶ Definition 3 (Polynomials). Polynomial variables are indicated with metavariables like
n and m, and form a set PV. Polynomials expressions are built from natural number
constants, polynomial variables, addition and multiplication. A polynomial p depending on the
polynomial variables n = n1, . . . , nk is sometime indicated as p(n1, . . . , nk) and abbreviated as
p(n). Such a polynomial is said to be a V-polynomial whenever all variables in the sequence
n are in V ⊆ PV. If V ⊆ PV, any map ρ : V → N is said to be a V-substitution, and the
natural number obtained by interpreting any variable m ∈ V occurring in a V-polynomial p

with ρ(m) is indicated just as p(ρ). If V is a singleton {n}, the substitution mapping n to
the natural number i is indicated as ρi, and V is indicated, abusing notation, with n.

Distributions play a crucial role in probability theory and represent the likelihood of observing
an element from a given set. In this paper, they will be the key ingredient in giving semantics
to types and processes.

▶ Definition 4 (Probability Distributions). A probability distribution on the finite set A is
a function D : A → R[0,1] such that:

∑
v∈AD(v) = 1. A probability distribution is often

indicated by way of the notation {vr1
1 , . . . , vrm

m } (where v1, . . . , vm are distinct elements of
A), which stands for the distribution D such that ri = D(vi) for every i ∈ {1, . . . , m}. Given
a probability distribution D on A, its support S(D) ⊆ A contains precisely those elements of
A to which D attributes a strictly positive probability. The set of all probability distributions
on a set A is indicated as D(A).

In the computational model, the agents involved exchange binary strings. We keep the set
of ground types slightly more general, so as to treat booleans as a separate type. As a
crucial step towards dealing with polytime constraints, the type of strings is indexed by a
polynomial, which captures the length of binary strings inhabiting the type.

▶ Definition 5 (Ground Types). Ground types are expressions generated by the grammar
B ::= B

∣∣ S[p], where p is a polynomial expression. A V-ground type is a ground type B

such that all polynomial variables occurring in it are taken from V, and as such can be given
a semantics in the context of a V-substitution ρ: [[B]]ρ = {0, 1} , [[S[p]]]ρ = {0, 1}p(ρ).

The precise nature of any ground type S[p(n)] is only known when the polynomial variables
in n, which stand for so-called security parameters, are attributed a natural number value.
For reasons of generality, we actually allow more than one security parameter, even if
cryptographic constructions almost invariably need only one of them.
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3.2 Terms
Terms are expressions which are internally evaluated by processes, the result of this evaluation
having a ground type and being exchanged between the different (sub)processes.

Function Symbols. We work with a set F of function symbols, ranged over by metavariables
like f and g. In the context of this paper, it is important that function symbols can be
evaluated in probabilistic polynomial time, and this can be achieved by taking function
symbols from a language guaranteeing the aforementioned complexity bounds [40, 22]. Each
function symbol f ∈ F comes equipped with:

A type typeof (f) having the form B1, . . . , Bm → C where the Bi and C are {n}-ground
types.
A family [[f ]] = {[[f ]]i}i∈N of functions giving semantics to f such that [[f ]]i goes from
[[B1]]ρi × . . .× [[Bm]]ρi to D([[C]]ρi), where typeof (f) is B1, . . . , Bm → C.
We assume each function symbol f to be associated with an {n}-polynomial comof (f)
bounding the complexity of computing f , in the following sense: there must be a PPT
algorithm algof (f) which, on input 1i and a tuple t in [[B1]]ρi

× · · · × [[Bm]]ρi
returns

in time at most comof (f)(ρi) each value x ∈ [[C]]ρi with probability [[f ]]i(t)(x), where
typeof (f) = B1, . . . , Bm → C.

Term Syntax and Semantics. Finally, we are able to define terms and values, which are
expressions derivable in the following grammars:

a, b, c ::= v
∣∣ fp(v1, . . . , vn) v, w ::= z

∣∣ true
∣∣ false

∣∣ s.

Here f is a function symbol, p is a polynomial, true and false are the usual boolean constants,
s is any binary string, and z is a term variable taken from a set T V disjoint from PV . Terms
are assumed to be well-typed according to an elementary type system that we elide for the
sake of simplicity (see [20] for more details). Reduction rules between terms and distributions
of values are given only for terms which are closed with respect to both term variables and
polynomial variables. Here are the rules:

v ↪→ {v1} fi(v1, . . . , vm) ↪→ [[f ]]i(v1, . . . , vm)

3.3 Processes
It is finally time to introduce the process terms of πDIBLL, which as already mentioned are
a natural generalization of those of πDILL [11]. Due to space reasons, we concentrate on the
aspects in which πDIBLL differs from πDILL, at the same time trying to be self-contained.
More details can be found in [20].

▶ Definition 6 (Process Syntax). Given an infinite set of names, the set of processes, indicated
with metavariables like P and Q is defined by the following grammar:

P, Q ::= 0
∣∣ P | Q

∣∣ (ν y) P
∣∣ x⟨y⟩.P

∣∣ x(y).P
∣∣ [x← v]

∣∣ let x = a in P
∣∣

x.P
∣∣ !x(y).P

∣∣ x.inl; P
∣∣ x.inr; P

∣∣ x.case(P, Q)
∣∣

if v then P else Q

where x , y are channel names from a set CV such that T V ⊆ CV, a is a term and v is a
value.
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Most of the operators from the grammar above have the same meaning as in πDILL, and are
standard. Let us briefly describe the novel ones. The process [x← v] outputs the value v on
the channel x. Dually, the process x .P inputs a value v through the channel x, substituting
it for any free occurrence of x in the process P . The process let x = a in P serves to
evaluate the term a, then substituting the outcome for x in P . As such, it is the operator
incepting the probabilistic behaviour coming from terms into processes. Finally, the process
if v then P else Q is as expected a conditional construction; observe that the argument is
a value, and thus does not need to be evaluated. The grammar of processes we have just
introduced is perfectly adequate to represent the process PRIVK Π as from Figure 1b. As an
example, a process P ⊕Q which evolves as either P or Q depending on the outcome of the
flip of fair random coin can be written as the process

let x = flipcoin() in if x then P else Q,

where flipcoin is a function symbol such that typeof (flipcoin) is ϵ→ B and the underlying
algorithm comof (flipcoin) is the trivial constant-time procedure one can imagine.

The set of names occurring free in the process P (hereby denoted fn(P )) is defined as
usual. The same holds for the capture avoiding substitution of a channel x or value v for y

in a process P (denoted P{x/y} and P{v/y}, respectively).

3.4 Process Reduction
Process reduction in πDIBLL is intrinsically probabilistic, and as such deserves to be
described with some care. Structural congruence can be defined in a standard way as a
binary relation ≡ on processes, see [20] for a formal definition. The reduction relation
between processes is not a plain binary relation anymore, and instead puts a process
P in correspondence with a distribution D of processes, namely an object in the form
{P r1

1 , . . . , P rm
m }, where the Pi are processes and the ri are positive real numbers summing to

1. We write P → D in this case.
Let us now consider reduction rules, starting from the one for the let construct, namely

the only genuinely probabilistic one:

a ↪→ {vri
i }i∈I

let x = a in P → {P{vi/x}ri}i∈I

The other new operators can be evaluated in the expected way, giving rise to trivial (i.e.
Dirac) distributions:

[x← v] | x.P → {P{v/x}1}

if true then P else Q→ {P 1} if false then P else Q→ {Q1}
Reduction axioms and rules from πDILL are all available in πDIBLL, but must be appro-
priately tailored to the presence of distributions:

Q→ {Qri
i }i∈I

P | Q→ {P | Qri
i }i∈I

P → {Qri
i }i∈I

(ν y) P → {(ν y) Qri
i }i∈I

P ≡ R R→ {Qri
i }i∈I Qi ≡ Ti for every i ∈ I

P → {T ri
i }i∈I
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3.5 Type System
Traditionally, session typing serves the purpose of guaranteeing safety properties, like the
absence of deadlocks. In this paper, however, they also enforce some bounds on the complexity
of the reduction process, and as such have to be made more restricted.

Types. First of all, let us introduce the language of types, which is defined as follows:

A, B ::= 1
∣∣ A ⊸ B

∣∣ !pA
∣∣ A⊗B

∣∣ A⊕B
∣∣ A&B

∣∣ B
∣∣ S[p]

Again, most of the type constructions are taken from πDILL, but there are some significant
and crucial differences:

The indexed exponential type !pA takes the place of !A as the type of replicated inputs;
the presence of the polynomial p serves to impose an upper bound on the number of
replicas, all of them of type A, which can be spawned.
The ground types B and S[p] are available as session types too, and here become the type
of channels carrying a single value.

Type Environments. In dual intuitionistic linear logic, and thus in πDILL, the typing
environment to the left of the turnstyle is split into two parts, namely an unrestricted part Γ
and a linear part ∆. Here, we adopt the same notation, but the unrestricted part is modified
in such a way that the polynomial limitation is made explicit when giving types to channels.
In πDIBLL, in other words, Γ contains assignments in the form xp : A where x is the name
of an unrestricted channel, p is a polynomial and A is a type. Type environments, however,
have to be further enriched with a third portion, denoted by Θ, consisting of assignments in
the form x : B where x is a term variable and B is a ground type. This reflects the possibility
of having occurrences of term variables inside processes. The unrestricted portion of the type
environment has to be manipulated with great care while typing processes, in particular in
all binary typing rules. This requires the introduction of a (partial) binary operation ⊞ on
unrestricted type environments such that if

Γ = {x1
p1

: A1, . . . , xn
pn

: An}; Ξ = {x1
q1

: A1, . . . , xn
qn

: An};

then Γ⊞Ξ is defined as {x1
p1+q1

: A1, . . . , xn
pn+qn

: An}. With the same hypotheses, we write
that Γ ⊑ Ξ when pi ≤ qi for every i ∈ {1, . . . , n}, this way turning ⊑ into a preorder.

Type Judgments. A type judgment is an expression in the form

Γ; ∆; Θ ⊢V P :: z : C

where Γ, ∆, Θ are the three aforementioned portions of the type environment, and P is a
process offering a session of type C along the channel z. Polynomials can occur in type
environments and types, and V serves to declare all variables which might occur in those
polynomials. As in πDILL, we assume that all channels and variables declared in Γ, ∆, and
Θ are distinct and different from z.

Typing Rules. One way πDIBLL deviates from πDILL are the typing rules related to the
exponential connective !, namely those introducing the connective on the right and on the
left, but also the rule capturing contraction, Tcopy, and the so-called exponential cut rule.
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Γ; ∆; Θ, x : B ⊢V Q :: T [TBL]
Γ; ∆, x : B; Θ ⊢V x.Q :: T

Θ ⊢V v : B [TBR]
Γ; ∆; Θ ⊢V [x← v] :: x : B

Θ ⊢V a : A Γ; ∆; Θ, x : A ⊢V P :: T [Tlet]
Γ; ∆; Θ ⊢V let x = a in P :: T

Θ ⊢V v : B Γ; ∆; Θ ⊢V P :: x : A Γ; ∆; Θ ⊢V Q :: x : A [Tif]
Γ; ∆; Θ ⊢V if v then P else Q :: x : A

Figure 2 Typing Rules for Ground Types, the let construct, and Conditionals.

For example, the Tcopy rule, which allows to type processes which perform output actions on
an unrestricted channel up ∈ Γ, must now keep track of the increase in p:

Γ, up : A; ∆, y : A; Θ ⊢V P :: T
[Tcopy]

Γ, up+1 : A; ∆; Θ ⊢V (ν y) u⟨y⟩.P :: T

This, however, is not enough to enforce the polynomial bounds we aim at from within the
type system. Whenever typing a parallel composition P | Q, it is necessary to appropriately
account for the use of any unrestricted channel by both P and Q, thus splitting the unrestricted
part of the underlying type environment. More concretely, any typing rule dealing with
parallel composition has to make appropriate use of the ⊞ operator, applying to the two
unrestricted environments at hand, the result of this sum thus weakened through the partial
order ⊑. For example, the Tcut rule is modified as follows

Γ1 ⊞ Γ2 ⊑ Γ Γ1; ∆1; Θ ⊢V P :: x : A Γ2; ∆2, x : A; Θ ⊢V Q :: T [Tcut ]Γ; ∆1, ∆2; Θ ⊢V (ν x) (P | Q) :: T

All typing rules involving a parallel composition between two processes have to be amended
similarly. The remaining typing rules, and in particular those for the additive connectives ⊕
and &, are exactly as in πDILL. We conclude by giving the typing rules for the new process
operators, which are in Figure 2, and are all standard. It is worth observing that in these
rules we implicitly refer to the type system for terms and values in the rules TBR, Tif, and
Tlet.

4 Safety and Reachability

In this section we prove some properties about the transition system induced by the reduction
relation →, as introduced in Section 3.4. Before delving into the details, a couple of remarks
are in order. Although the relation → is defined for arbitrary processes, we will be concerned
with the reduction of typable closed processes, namely those processes which can be typed
under empty Θ and V. In fact, reducing processes in which term variables occur free does
not make sense when reduction is supposed to model computation (as opposed to equational
reasoning), like here. When Θ or V are empty, we simply omit them from the underlying
typing judgment. Reduction being probabilistic, it is convenient to introduce some other
reduction relations, all of them derived from →:

▶ Definition 7 (Auxiliary Reduction Relations). We first of all define a relation 7→ on plain
processes by stipulating that P 7→ R iff P → D and R ∈ S(D). We also need another
reduction relation ⇒ as the monadic lifting of →, thus a relation on process distributions:

Ri → Ei for every i ∈ I

{Rri
i }i∈I ⇒

∑
i∈I ri · Ei
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Finally, it is convenient to put any process P in relation with the distribution of irreducible
processes to which P evaluates:

P is irreducible
P ⇛ {P 1}

P → {Rri
i }i∈I Ri ⇛ Ei for every i ∈ I

P ⇛
∑

i∈I ri · Ei

The relation 7→ is perfectly sufficient to capture the qualitative aspects of the other reduction
relations, e.g., if P → D then for every R ∈ S(D) it holds that P 7→ R. Indeed, in the rest
of this section we will be concerned with 7→, only.

4.1 Subject Reduction
The property of subject reduction is the minimal requisite one asks to a type system, and
says that types are preserved along reduction. In πDIBLL, as in πDILL, this property
holds:

▶ Theorem 8 (Subject Reduction). If Γ ; ∆ ⊢ P :: z : C and P 7→ R, then it holds that
Γ ; ∆ ⊢ R :: z : C .

Following [11], subject reduction can be proved by carefully inspecting how P can be reduced
to R, which can happen as a result of either communication, the evaluation of a term, or the
firing of a conditional construction. Many cases have to be analysed, some of them not being
present in πDILL. A novel aspect is a lemma about the typing of processes obtained by
substituting term variables with values. More details can be found in [20], where a progress
property is also given, very much in the style of that from [11].

4.2 Polytime Soundness
As already mentioned in Section 1, subject reduction is not the only property one is in-
terested in proving about reduction in πDIBLL. In fact, the latter has been designed to
guarantee polynomial bounds on reduction time, as prescribed by the computational model
of cryptography. But what do we mean by that, exactly? What is the underlying parameter
on which the polynomial depends? In cryptography, computation time must be polynomially
bounded on the value of the so-called security parameter which, as we hinted at already,
is modelled by an element of V. As a consequence, what we are actually referring to are
bounds parametric on the value of the polynomial variables which P mentions in its type
judgments, i.e. the V in

Γ ; ∆ ⊢V P :: z : C (2)

Doing so, we have to keep in mind that process reduction is only defined on closed processes.
We can thus proceed in three steps:

We can first of all assign a V-polynomial W(π) to every type derivation π with conclusion
mentioning V. This is done by induction on the structure of π.
We then prove that for closed type derivations, W(·) strictly decreases along process
reduction, at the same time taking the cost of each reduction step into account. In other
words, if π is closed and types P where P 7→ Q, then a type derivation ξ for Q can be
found such that W(π) ≥W(ξ) + k, where k is the cost of the reduction leading P to Q.
(In most cases k is set to be 1, the only exception being the evaluation of a let operator,
which might involve the evaluation of costly functions.)
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Finally, the previous two points must be proved to interact well, and this is done by
showing that for every type derivation π with conclusion in the form (2) and for every
V-substitution ρ, there is a type derivation πρ with conclusion

Γρ; ∆ρ ⊢ Pρ :: z : Cρ

such that, crucially, W(πρ) = W(π)ρ. In other words, the weight functor on type
derivations commutes well with substitutions.

Altogether, this allows us to reach the following:

▶ Theorem 9 (Polytime Soundness). For every derivation π typing P , there is a polynomial
pπ such that for every substitution ρ, if Pρ 7→∗ Q, then the overall computational cost of the
aforementioned reduction is bounded by pπ(ρ).

We can thus claim that, e.g., every process ADV such that

⊢n ADV :: c : S[p]⊗ S[p]⊗ (S[p] ⊸ B)

can actually be evaluated in probabilistic polynomial time, since out of it one can type the
processes R0, R1, Rfun computing the three components in ADV ’s type. Moreover, since F
can be made large enough to be complete for PPT (see, e.g., [22]), one can also claim that
all probabilistic (first-order) polytime behaviours can be captured from within πDIBLL.

5 Typable Processes and Their Probabilistic Behaviour

The properties we proved in the last section, although remarkable, are agnostic to the
probabilistic nature of πDIBLL. It is now time to investigate the genuinely quantitative
aspects of the calculus.

5.1 Confluence
It might seem weird that confluence can be proved for a calculus in which internal probabilistic
choice is available. In fact, there are two forms of nondeterministic evolution πDIBLL
processes can give rise to, the first one coming from the presence of terms which can evolve
probabilistically, the second one instead due, as in πDILL, to the presence of parallel
composition, itself offering the possibility of concurrent interaction. Confluence is meant to
address the latter, not the former. More specifically, we would like to prove that whenever
a typable process P evolves towards two distinct distributions D and E , the latter can be
somehow unified. This indeed turns out to be the case:

▶ Theorem 10 (Confluence). If Γ ; ∆ ⊢ P :: T and D ← P → E then either D = E or
there exists F such that D ⇒ F ⇐ E .

In other words, while probabilistic evolution coming from terms is unavoidable, the choice of
how to reduce a typable process does not matter, in the spirit of what happens in sequential
languages like the λ-calculus. Notice, however, that confluence holds in a very strong sense
here, i.e., Theorem 10 has the flavour of the so-called diamond property. The proof of it,
which can be found in [20], exploits a characterization of reduction semantics by way of
labelled semantics, the latter rendering the proof simpler.

Among the corollaries of confluence, one can prove that the way a typable process is
reduced is irrelevant as far as the resulting distribution is concerned:

▶ Corollary 11 (Strategy Irrelevance). If Γ ; ∆ ⊢ P :: T and D ⇚ P ⇛ E , then D = E .
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5.2 Relational Reasoning
Strategy irrelevance has a positive impact on the definition of techniques for relational
reasoning on typed processes. In this section, we are concerned precisely with introducing a
form of observational equivalence, which turns out to have the shape one expects it to have
in the realm of sequential languages. This is a simplification compared to similar notions
from the literature on process algebras for the computational model of cryptography [42].

When defining observational equivalence, we want to dub two processes as being equivalent
when they behave the same in any environment. We thus have to formalize environments
and observable behaviours. The former, as expected, is captured through the notion of a
context, which here takes the form of a term in which a single occurrence of the hole [·] is
allowed to occur in linear position (i.e. outside the scope of the any replication).

C [·] ::= [·]
∣∣ C [·] | Q

∣∣ P | C [·]
∣∣ (ν y) C [·]

∣∣ x⟨y⟩.C [·]
∣∣ x(y).C [·]

∣∣
x.C [·]

∣∣ x.inl; C [·]
∣∣ x.inr; C [·]

∣∣ x.case(C [·], Q)
∣∣ x.case(P, C [·])

∣∣
let x = a in C [·]

∣∣ if v then C [·] else Q
∣∣ if v then P else C [·]

On top of contexts, it is routine to give a type system deriving judgments in the form

Γ; ∆; Θ ⊢V C [(Ξ; Ψ; Φ ⊢V · :: T )] :: U

guaranteeing that whenever a process P is such that Ξ; Ψ; Φ ⊢V P :: T , it holds that
Γ; ∆; Θ ⊢V C [P ] :: U .

Talking about observations, what we are interested in observing here is the probability of
certain very simple events. For example, in Section 2 we hint at the fact that the experiment
PrivKeav can be naturally modelled as a process offering a channel carrying just a boolean
value. This will very much inform our definition. Suppose that ⊢V P :: x : B. After having
instantiated P through a substitution ρ : V → N, some internal reduction steps turn Pρ into
a (unique) distribution D of irreducible processes, and the only thing that can happen at
that time is that a boolean value b is produced in output along the channel x. We write
P ↓ρ

x b for this probabilistic event, itself well defined thanks to Theorem 9, Corollary 11
(which witness the existence and unicity of D , respectively), and Progress (see [20] for more
details).

Finally, we are ready to give the definition of observational equivalence.

▶ Definition 12 (Observational Equivalence). Let P and Q two processes such that
Γ; ∆; Θ ⊢V P, Q :: T . We say that P and Q are observationally equivalent iff for
every context C [·] such that ⊢V C [(Γ; ∆; Θ ⊢V · :: T )] :: x : B, there is a neg-
ligible function ε : (V → N) → R[0,1] such that for every ρ it holds that

∣∣ Pr[C [P ] ↓ρ
x

v] − Pr[C [Q] ↓ρ
x v]

∣∣≤ ε(ρ). In that case we write Γ; ∆; Θ ⊢V P ∼= Q :: T , or just
P ∼= Q if this does not cause any ambiguity.

Proving pairs of processes to be observationally equivalent is notoriously hard, due to the
presence of a universal quantification over all contexts. However, the fact πDIBLL enjoys
confluence facilitates the task. In particular, we can prove certain pairs of processes to be
observationally equivalent, and this will turn out to be very useful in the next section. The
first equation we can prove is the commutation of input prefixes and the let construct:

x(y).let z = t in P ∼= let z = t in x(y).P (3)
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As innocuous as it seems, this equation is not validated by, e.g., probabilistic variations on
bisimilarity, being (essentially) the classic counterexample to the coincidence of the latter
and trace equivalence. In fact, Equation 3 indeed holds here, see [20] for the details. An
equation scheme which can be easily proved to be sound for observational equivalence is
the one induced by so-called Kleene-equivalence: if P and Q are such that there exists a
distribution D such that both Pρ ⇛ D and Qρ ⇛ D (for every ρ), then we can safely
conclude that P ∼= Q. Finally, an equation in which the approximate nature of observational
equivalence comes into play is the following one:

x.[y ← x] ∼= x.let z = rand in let b = eq(x, z) in if b then [y ← x] else [y ← z]

The two involved processes, both offering a session on y having type S[n] by way of a session
with the same type on x, behave the same, except on one string z chosen at random.

6 A Simple Cryptographic Proof

In this section, we put relational reasoning at work on the simple example we introduced
in Section 2. More specifically, we will show that the notion of observational equivalence
from Section 5.2 is sufficient to prove Equation 1, where ∼ is taken to be the non-contextual
version of observational equivalence. We will do that for an encryption scheme Πg such that
Enc is based on a pseudorandom generator g, i.e. Enc returns on input a message m and a
key k the ciphertext xor(m, g(k)). When can such a function g be said to be pseudorandom?
This happens when the output of g is indistinguishable from a truly random sequence of the
same length. This, in turn, can be spelled out as the equation

OUTPRg
∼= OUTR (4)

where OUTR is a process outputting a random string of polynomial length of a channel out,
while OUTPRg is a process outputting a pseudorandom such string produced according to g.

We now want to prove, given (4), that (1) holds, the latter now taking the following form:

νadv.(PRIVK Π | ADV ) ∼ FAIRFLIPexp.

Following the textbook proof of this result (see, e.g., [35]), we can structure the proof as a
construction, out of ADV , of a distinguisher DADV having type out : S[p] ⊢n DADV :: exp : B
such that the following two equations hold:

νout.(OUTPRG | DADV ) ∼ νadv.(PRIVK Π | ADV ) (5)
νout.(OUTR | DADV ) ∼ FAIRFLIP (6)

Actually, the construction of DADV is very simple, being it the process

νadv.(PRIVKEYK OTP | ADV ),

where OTP is the so-called one-time pad encryption scheme, and PRIVKEYK OTP is the
process obtained from PRIVK OTP by delegating the computation of the key to a subprocess:

PRIVKEYK OTP : let c = xor(k, mb) in

input m0 from adv; output c to adv;
input m1 from adv; input g from adv;
let b = flipcoin() in let r = eq(g, b) in

input k from out; output r to exp;

CONCUR 2022
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By construction, and using some of the equations we mentioned in Section 5, one can prove
that PRIVK Πg

∼= νout.(OUTPRg | PRIVKEYK OTP), from which, by congruence of ∼=, one
derives Equation (5):

νout.(OUTPRG | DADV ) ≡ νout.(OUTPRG | (νadv.(PRIVKEYK Π | ADV )))
≡ νadv.(νout.(OUTPRG | PRIVKEYK Π) | ADV )
∼ νadv.(PRIVK Π | ADV ).

Since PRIVK OTP ∼= νout.(OUTR | PRIVKEYK OTP), one can similarly derive that

νout.(OUTRg | DADV ) ∼ νadv.(PRIVK OTP | ADV ).

It is well known, however, that the OTP encryption scheme is perfectly secure, which yields
Equation (6).

7 Conclusion

Contributions. In this paper, we show how the discipline of session types can be useful in
modelling and reasoning about cryptographic experiments. The use of sessions, in particular,
allows to resolve the intrinsic nondeterminism of process algebras without the need for a
scheduler, thus simplifying the definitional apparatus. The keystone to that is a confluence
result, from with it follows that the underlying reduction strategy (i.e. the scheduler) does
not matter: the distribution of irreducible processes one obtains by reducing a typable
process is unique. The other major technical results about the introduced system of session
types are a polynomial bound on the time necessary to reduce any typable process, together
with a notion of observational equivalence through which it is possible to faithfully capture
computational indistinguishability, a key notion in modern cryptography.

Future Work. This work, exploratory in nature, leaves many interesting problems open.
Currently, the authors are investigating the applicability of πDIBLL to more complex
experiments than that considered in Section 6. In particular, the ability to build higher-order
sessions enables the modelling of adversaries which have access to an oracle, but also of
experiments involving such adversaries. As an example, an active adversary ACTADV to an
encryption scheme would have type

⊢n ACTADV :: c :!q(S[p] ⊸ S[p]) ⊸ S[p]⊗ S[p]⊗ (S[p] ⊸ B).

This reflects the availability of an oracle, modelled as a server for the encryption function,
which can be accessed only a polynomial amount of times. Being able to capture all
those adversaries within our calculus seems feasible, but requires extending the grammar
of processes with an iterator combinator. On the side of relational reasoning, notions of
equivalence are being studied which are sound with respect to observational equivalence, that
is, included in it, at the same time being handier and avoiding any universal quantification
on contexts. The use of logical relations or bisimulation, already known in πDILL [11] can
possibly be adapted to πDIBLL, but does not allow to faithfully capture linearity, falsifying
equations (like (3)) which are crucial in concrete proofs. As a consequence, we are considering
forms of trace equivalence and distribution-based bisimilarity [19], since the latter are known
to be fully abstract with respect to (linear) observational equivalence, even in presence of
effects.
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Related Work. We are certainly not the first to propose a formal calculus in which to model
cryptographic constructions and proofs according to the computational model. The so-called
Universal Composability model (UC in the following), introduced by Canetti more than
twenty years ago [12, 13], has been the subject of many investigations aimed at determining
if it is possible to either simplify it or to capture it by way of a calculus or process algebra
(e.g. [14, 38, 37, 6]). In all the aforementioned works, a tension is evident between the need
to be expressive, so as to capture UC proofs, and the need to keep the model simple enough,
masking the details of probability and complexity as much as possible. πDIBLL is too
restrictive to capture UC in its generality, but on the other hand it is very simple and handy.
As for the approaches based on process algebras, it is once again worth mentioning the series
of works due to Mitchell et al. and based, like ours, on a system of types derived from
bounded linear logic [39, 41, 42]. As already mentioned, the main difference with this work is
the absence of a system of behavioural types such as session types, which forces the framework
to be complex, relying on a further quantification on probabilistic schedulers, which is not
needed here. Another very interesting line of work is the one about imperative calculi, like
the one on which tools like EasyCrypt are based [8, 7]. Recently, there have been attempts
at incepting some form of probabilistic behaviour into session types, either by allowing for
probabilistic internal choice in multiparty sessions [4], or by enriching the type system itself,
by making it quantitative in nature [34]. The system πDIBLL is certainly more similar to
the former, in that randomization does not affect the type structure but only the process
structure. This design choice is motivated by our target applications, namely cryptographic
experiments, in which randomization affects which strings protocols and adversaries produce,
rather than their high-level behaviour. Indeed, our calculus is closer in spirit to some previous
work on cryptographic constructions in λ-calculi [43] and logical systems [33], although the
process algebraic aspects are absent there. Finally, session types have also been used as
an handy tool guaranteeing security properties like information flow or access control (see,
e.g., [15, 9]), which are however different from those we are interested at here. The literature
on session types and their relations with linear logic is vast, and deeply influenced the way
πDIBLL is defined. As an example, the way we handle ground types is very inspired by
the one adopted by Toninho, Caires and Pfenning [47]. Moreover, indexed modalities in the
style of bounded linear logic have been already considered, e.g., by Kokke et al [36] as a
way to tame the inherent nondeterminism arising from a more permissive typing rule for
parallel composition. Das and Pfenning [24], instead, label ground types with a sequence
of arithmetic expressions obtaining a notion of refinement which is similar, although much
more expressive, than the one we use here. In all these works, however, the underlying
objective is different from ours, which consists in enforcing complexity bounds in the context
of cryptographic experiments.
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