33rd International Conference on
Concurrency Theory

CONCUR 2022, September 12-16, 2022, Warsaw, Poland

Edited by
Bartek Klin
Stawomir Lasota
Anca Muscholl

\\v LIPICS

LIPlcs — Vol. 243 — CONCUR 2022 www.dagstuhl.de/lipics

Editors

Bartek Klin
University of Oxford, UK
bartek.klin@cs.ox.ac.uk

Stawomir Lasota
University of Warsaw, Poland
s.lasota@uw.edu.pl

Anca Muscholl
Bordeaux University, France
anca@labri.fr

ACM Classification 2012
Theory of computation — Concurrency

ISBN 978-3-95977-246-4

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-246-4.

Publication date
September, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs. CONCUR.2022.0

ISBN 978-3-95977-246-4 ISSN 1868-8969 https: / /www.dagstuhl.de/lipics

https://orcid.org/0000-0001-5793-7425
mailto:bartek.klin@cs.ox.ac.uk
https://orcid.org/0000-0001-8674-4470
mailto:s.lasota@uw.edu.pl
mailto:anca@labri.fr
https://www.dagstuhl.de/dagpub/978-3-95977-246-4
https://www.dagstuhl.de/dagpub/978-3-95977-246-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CONCUR.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-246-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, 1T)
Christel Baier (TU Dresden, DE)

Mikolaj Bojanczyk (University of Warsaw, PL)

Roberto Di Cosmo (Inria and Université de Paris, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University - Brno, CZ)

Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (University of Oxford, GB)

Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CONCUR 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Bartek Klin, Stawomir Lasota, and Anca Muscholl 0:ix

Invited Paper

CONCUR Test-Of-Time Award 2022
Hlaria Castellani, Paul Gastin, Orna Kupferman, Mickael Randour, and
Davide SangiorTqio 1:1-1:3

Invited Talks

Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and
Environment Liveness Conditions
Philippa Gardnero.o o 2:1-2:1

Distributed Decision Problems: Concurrent Specifications Beyond Binary
Relations

Sergio Rajshaum 3:1-3:13
Sequential Decision Making With Information Asymmetry

Jiarui Gan, Rupak Majumdar, Goran Radanovic, and Adish Singla 4:1-4:18
Involved VASS Zoo

Wojciech Czerwinski o e 5:1-5:13

Regular Papers

On the Axiomatisation of Branching Bisimulation Congruence over CCS
Luca Aceto, Valentina Castiglioni, Anna Ingdlfsdéttir, and Bas Luttik 6:1-6:18

Non-Deterministic Abstract Machines
Malgorzata Biernacka, Dariusz Biernacki, Serguei Lenglet, and Alan Schmitt 7:1-7:24

Slimming down Petri Boxes: Compact Petri Net Models of Control Flows
Victor Khomenko, Maciej Koutny, and Alex Yakovlev 8:1-8:16

On the Sequential Probability Ratio Test in Hidden Markov Models
Oscar Darwin and Stefan Kiefer i, 9:1-9:16

Parameter Synthesis for Parametric Probabilistic Dynamical Systems and
Prefix-Independent Specifications
Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheuz,
Joél Ouaknine, David Purser, Markus A. Whiteland, and James Worrell 10:1-10:16

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes
Kush Grover, Jan Kretinsky, Tobias Meggendorfer, and Mazimilian Weininger ... 11:1-11:20

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics
Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz 12:1-12:24

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi

Contents

Simulations for Event-Clock Automata

S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan

History-Deterministic Timed Automata

Thomas A. Henzinger, Karoliina Lehtinen, and Patrick Totzke

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is
Decidable

Wojciech Czerwinski and Piotr Hofmano i,

Complexity of Coverability in Depth-Bounded Processes

A. R. Balasubramanian

Determinization of One-Counter Nets

Shaull Almagor and Asaf Yeshurunooiiiiiiiiiiiiiiiiiiiiin..

Energy Games with Resource-Bounded Environments

Orna Kupferman and Naama Shamash Halevy

Half-Positional Objectives Recognized by Deterministic Biichi Automata

Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove

Two-Player Boundedness Counter Games

Emmanuel Filiot and Edwin Hamel-de le Court,

Different Strokes in Randomised Strategies: Revisiting Kuhn’s Theorem Under
Finite-Memory Assumptions

James C. A. Main and Mickael Randourccccciiiiiiiiiiiiiinn.

Regular Model Checking Upside-Down: An Invariant-Based Approach

Javier Esparza, Mikhail Raskin, and Christoph Welzel

On an Invariance Problem for Parameterized Concurrent Systems

Marius Bozga, Lucas Bueri, and Radu Tosif ooiii...

Towards Concurrent Quantitative Separation Logic

Ira Fesefeldt, Joost-Pieter Katoen, and Thomas Noll

Completeness Theorems for Kleene Algebra with Top
Damien Pous and Jana Wagemaker i,

Expressiveness and Decidability of Temporal Logics for Asynchronous
Hyperproperties
Laura Bozzelli, Adriano Peron, and César Sdnchez

Propositional Dynamic Logic and Asynchronous Cascade Decompositions for
Regular Trace Languages

Bharat Adsul, Paul Gastin, Saptarshi Sarkar, and Pascal Weil

A Kleene Theorem for Higher-Dimensional Automata
Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemianiski

..... 13:1-13:18

..... 14:1-14:21

..... 15:1-15:22

..... 16:1-16:22

..... 17:1-17:19

..... 18:1-18:23

..... 19:1-19:23

20:1-20:18

..... 21:1-21:23

..... 22:1-22:18

..... 23:1-23:19

..... 24:1-24:16

..... 25:1-25:24

..... 26:1-26:18

..... 27:1-27:16

..... 28:1-28:19

..... 29:1-29:18

Contents

Diamonds for Security: A Non-Interleaving Operational Semantics for the
Applied Pi-Calculus

Clément Aubert, Ross Horne, and Christian Johansen

Weak Progressive Forward Simulation Is Necessary and Sufficient for Strong
Observational Refinement

Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim

Strategies for MDP Bisimilarity Equivalence and Inequivalence

Stefan Kiefer and Qiyi Tango

Pareto-Rational Verification

Véronique Bruyére, Jean-Francois Raskin, and Clément Tamines

Concurrent Games with Multiple Topologies

Shaull Almagor and Shai Guendelman

Generalised Multiparty Session Types with Crash-Stop Failures

Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhouw

An Infinitary Proof Theory of Linear Logic Ensuring Fair Termination in the
Linear 7m-Calculus

Luca Ciccone and Luca Padovani

On Session Typing, Probabilistic Polynomial Time, and Cryptographic
Experiments

Ugo Dal Lago and Giulia GIusti

0:vii

30:1-30:26

31:1-31:23

32:1-32:22

33:1-33:20

34:1-34:18

35:1-35:25

36:1-36:18

37:1-37:18

CONCUR 2022

Preface

This proceedings volume contains peer-reviewed contributions accepted at the 33rd Interna-
tional Conference on Concurrency Theory (CONCUR), 2022.

The CONCUR conference series brings together researchers, developers, and students
in order to advance the theory of concurrency, and promote its applications. CONCUR
2022 was organised at Warsaw University (Poland), as part of the umbrella conference
CONFEST 2022. In addition to CONCUR 2022, the CONFEST 2022 comprised also the
27th International Conference on Formal Methods for Industrial Critical Systems (FMICS),
the 20th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS) and the 19th International Conference on Quantitative Evaluation of SysTems
(QEST), alongside with several workshops.

Out of 90 submissions, the PC has accepted 32 papers for presentation at CONCUR
2022. Given the great quality of many submissions, the acceptance bar was quite high. The
quality criteria for acceptance were very strict and we thank our program committee and
external reviewers for their excellent job in reviewing the CONCUR 2022 submissions. We
are especially grateful to all our reviewers for their efforts in providing high-quality and
timely reviews and conducting active discussions on each submission.

We are honored to have had Wojciech Czerwiniski (Warsaw University, Poland), Philippa
Gardner (Imperial College London, UK), Rupak Majumdar (Max Planck Institute for
Software Systems, Germany) and Sergio Rajsbaum (Universidad Nacional Auténoma de
México) as our invited speakers.

Starting in 2020, a CONCUR Test-of-Time(ToT) Award has been established by the
CONCUR conference and the IFTP 1.8 Working Group on Concurrency Theory. The purpose
of this award is to recognise important achievements in Concurrency Theory that were
published at CONCUR conferences and have stood the test of time. For the 2022 edition, two
periods are considered. Two awards were given to papers published in CONCUR, between
1998 and 2001 and two more were given to papers published between 2000 and 2003. The
award winners for the CONCUR, ToT Awards 2022 have been selected by a jury composed
of Ilaria Castellani (chair), Paul Gastin, Orna Kupferman, Mickael Randour, and Davide
Sangiorgi. The results and winners of the CONCUR, ToT Award 2022 selection process are
described in the invited contribution by Ilaria Castellani in these proceedings.

We are very grateful to the University of Warsaw for hosting CONCUR. We thank the
Ministry of Science and Higher Education of Poland for its generous financial support. As
usual, the CONCUR 2022 proceedings are open access thanks to the LIPIcs series, and we are
grateful to LIPIcs and Schloss Dagstuhl — Leibniz Center for Informatics for the invaluable
service they provide.

Bartek Klin, Stawomir Lasota and Anca Muscholl
CONCUR 2022 PC Chairs

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

CONCUR Test-Of-Time Award 2022

Ilaria Castellani &
INRIA Sophia Antipolis Méditerranée, France

Paul Gastin &
Université Paris-Saclay, ENS Paris-Saclay, CNRS, France

Orna Kupferman =
School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel

Mickael Randour &
F.R.S.-FNRS & UMONS - Université de Mons, Belgium

Davide Sangiorgi &

Department of Computer Science, University of Bologna, Italy

—— Abstract

This short article recaps the purpose of the CONCUR Test-of-Time Award and presents the four
papers that received the Award in 2022.

2012 ACM Subject Classification Theory of computation — Concurrency
Keywords and phrases CONCUR Test-of-Time Award

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.1

Category Invited Paper

Acknowledgements We thank Javier Esparza (chair of the CONCUR Steering Committee), Pedro
d’Argenio and Ana Sokolova (chair and secretary of the IFIP Working Group 1.8 on Concurrency
Theory), and Bartek Klin, Stawomir Lasota and Anca Muscholl (chairs of the CONCUR 2022

Programme Committee) for their assistance throughout our work as a jury for this year’s award.

1 Introduction

The CONCUR Test-of-Time Award was established in 2020 by the Steering Committee of
the CONCUR conference and by the IFIP Working Group 1.8 on Concurrency Theory. Its
purpose is to recognise important achievements in Concurrency Theory that were published
at CONCUR and have stood the test of time. At its normal pace, starting from 2024, the
CONCUR Test-of-Time Award will be attributed every other year, during the CONCUR
conference, to one or two papers published in the 4-year period from 20 to 17 years earlier.
In the transient period from 2020 to 2023, on the other hand, two such awards are attributed
every year, in order to catch up with papers published in the first fifteen years of the
conference, namely between 1990 and 2004. At CONCUR 2020 two awards were given, each
rewarding two papers published in the period 1990-1995. Similarly, at CONCUR 2021 two
awards were given, each rewarding two papers published in the period 1994-1999.

We had the honour to serve as members of the third CONCUR Test-of-Time Award
Jury. All papers published at CONCUR in the period 1998-2003 were eligible, and we were
asked to select one or two papers for each of the two periods 1998-2001 and 2000-2003
(the overlap between the two periods allowing for some variability in the number of selected
papers over the years). After setting up a shortlist of candidate papers and discussing their
relative merits and influence on the CONCUR research community and beyond, we selected
the four papers described below for the Award, out of a number of excellent candidates.

© Tlaria Castellani, Paul Gastin, Orna Kupferman, Mickael Randour, and Davide Sangiorgi;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).

Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 1; pp.1:1-1:3

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ilaria.castellani@inria.fr
https://orcid.org/0000-0001-9820-0892
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0002-1313-7722
mailto:orna@cs.huji.ac.il
https://orcid.org/0000-0003-4699-6117
mailto:mickael.randour@gmail.com
mailto:Davide.Sangiorgi@gmail.com
https://doi.org/10.4230/LIPIcs.CONCUR.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2

CONCUR Test-Of-Time Award 2022

The presentation of the Award will take place during CONCUR 2022, the 33th edition of
the CONCUR conference, which is co-chaired by Bartek Klin, Stawomir Lasota and Anca
Muscholl, and will be held in Warsaw.

2 The Award Winning Contributions

2.1 Period 1998-2001

Christel Baier, Joost-Pieter Katoen & Holger Hermanns. Approximate symbolic model
checking of continuous-time Markov chains. CONCUR 1999.
https://doi.org/10.1007/3-540-48320-9_12

This paper presents the first symbolic model-checking algorithm for systems that combine
probabilistic and real-time behaviours. Specifically, the model-checking algorithm handles
real-time probabilistic systems, modelled by continuous-time Markov chains systems, and
specifications in CSL — a branching and continuous-time stochastic logic. This setting
significantly extends the scope of systems to which automatic model-checking can be
applied. Beyond the new model-checking algorithm, the paper introduces several ideas
that have been extensively used since their introduction in the paper. This includes a
reduction from a quantitative model-checking problem to the problem of solving a system
of equations, as well as a generalisation of BDDs to MTDDs (multi-terminal decision
diagrams, which allow both Boolean and real-valued variables), which enables symbolic
reasoning.

Franck Cassez & Kim Larsen. The Impressive Power of Stopwatches. CONCUR, 2000.
https://doi.org/10.1007/3-540-44618-4_12

This paper studies the expressive power of timed automata enriched with stopwatches
and unobservable behaviours. Surprisingly, it is proved with smart constructions that
this seemingly mild extension already reaches the full expressive power of linear hybrid
automata, a very powerful model using a finite discrete control together with continuous
variables, linear guards and linear updates. An important consequence is the reduction of
the reachability analysis of linear hybrid automata to that of stopwatch automata. Even
though both problems are undecidable, approximate reachability for stopwatch automata
is easier to develop and implement. Stopwatch automata find another very important
application in the field of scheduling problems for timed pre-emptive systems.

2.2 Period 2000-2003

James J. Leifer & Robin Milner. Deriving Bisimulation Congruences for Reactive Systems.
CONCUR 2000.

https://doi.org/10.1007/3-540-44618-4_19

This paper presents a uniform approach for deriving a Labelled Transition System (LTS)
semantics from a reduction semantics, in such a way that the resulting bisimilarity is
a congruence. LTS semantics, inspired by automata theory, specifies the interactive
behaviour of systems, while reduction semantics specifies their internal evolution and
is closer to the operational semantics of sequential programs. LTS semantics has been
favoured in early work on process calculi, as it lends itself to the definition of a variety of
behavioural equivalences that are easy to work with. Subsequently, a wealth of process
calculi have been proposed, tailored to specific features (mobility, locations, security,
sessions, etc). In these more complex calculi, it became more debatable what to adopt
as labels or “observables” for the LTS semantics, and this motivated the shift towards a
reduction semantics in conjunction with a structural congruence, allowing for a compact
semantic description.

https://doi.org/10.1007/3-540-48320-9_12
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/3-540-44618-4_19

I. Castellani, P. Gastin, O. Kupferman, M. Randour, and D. Sangiorgi

The thrust to retrieve an LTS semantics from a reduction semantics is an important one,
and this paper is a milestone in this line of work. The solution proposed is robust, i.e.,
broadly applicable. It is also mathematically elegant, formulated using the categorical
notion of relative pushout (RPO). The paper has spurred a whole trend of research on
congruence properties for bisimilarity in which RPOs constitute the key notion. Good
examples are applications to bigraphs, graph rewriting and name calculi.

Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar & Mariélle
Stoelinga. The Element of Surprise in Timed Games. CONCUR 2003.
https://doi.org/10.1007/978-3-540-45187-7_9

This paper studies concurrent two-player games played on timed game structures, and in
particular the ones arising from playing on timed automata. A key contribution of the
paper is the definition of an elegant timed game model, allowing both the representation of
moves that can take the opponent by surprise as they are played “faster”, and the definition
of natural concepts of winning conditions for the two players — ensuring that players
can win only by playing according to a physically meaningful strategy. This approach
provides a clean answer to the problem of time convergence, and the responsibility of the
players in it. For this reason, it has since been the basis of numerous works on timed
games. The algorithm established in the paper to study omega-regular conditions in
this neat model of timed games is also enticing, resorting to mu-calculus on a cleverly
enriched structure.

3 Concluding Remarks

Interviews with the award recipients, which give some information on the historical context
that led them to develop their award-winning work and on their research philosophy, have
been conducted by Luca Aceto with the help of some jury members. The interviews
are accessible as blog posts in the Process Algebra Diary maintained by Luca Aceto at
https://processalgebra.blogspot.com/. Links to these interviews may also be found on
the award’s webpage https://concur2022.mimuw.edu.pl/tot-award/.

1:3

CONCUR 2022

https://doi.org/10.1007/978-3-540-45187-7_9
https://processalgebra.blogspot.com/
https://concur2022.mimuw.edu.pl/tot-award/

Concurrent Separation Logics: Logical Abstraction,
Logical Atomicity and Environment Liveness
Conditions

Philippa Gardner =
Imperial College London, UK

—— Abstract

Scalable verification for concurrent programs with shared memory is a long-standing, difficult problem.

In 2004, O’Hearn and Brookes introduced concurrent separation logic to provide compositional
reasoning about coarse-grained concurrent programs with synchronisation primitives (Godel prize,
2016).

In 2010, I introduced logical abstraction (the fiction of separation) to CSL, developing the
CAP logic for reasoning about fine-grained concurrent programs in general and fine-grained lock
algorithms in particular. In one logic, it was possible to provide two-sided specifications of concurrent
operations, with formally verified implementations and clients.

In 2014, I introduced logical atomicity (the fiction of atomicity) to concurrent separation logics,
developing the TaDA logic to capture when individual operations behave atomically. Unlike CAP,
where synchronisation primitives leak into the specifications, with TaDA the specifications are “just
right” in that they provide more general atomic functions specifications to capture, for example, the
full behaviour of lock operations.

In 2021, I introduced environment liveness conditions to concurrent separation logics, developing
the TaDA Live logic for reasoning compositionally about the termination of blocking fine-grained
concurrent programs. The crucial challenge is how to deal with abstract atomic blocking: that is,
abstract atomic operations that have blocking behaviour arising from busy-waiting patterns as found
in, for example, fine-grained spin locks. The fundamental innovation is with the design of abstract
specifications that capture this blocking behaviour as liveness assumptions on the environment.

In this talk, I will explain this on-going journey in the wonderful world of concurrent separation
logics. I will also explain why I have a bright green office chair in the corner of my office, patterned
in gold lamé.

Many thanks to my fabulous coauthors on concurrent separation logics: Thomas Dinsdale-Young,
Emanuele D’Osualdo, Mike Dodds, Azadeh Farzan, Matthew Parkinson, Pedro da Rocha Pinto,
Julian Sutherland, Viktor Vafeiadis and more.

Suggested Reading:
Peter O’'Hearn: Resources, Concurrency and Local Reasoning, Journal of Theoretical Computer
Science, Festschrift for John C Reynolds 70th birthday, 2007.
Thomas Dinsdale-Young, Pedro da Rocha Pinto and Philippa Gardner: A Perspective on
Specifying and Verifying Concurrent Modules, Journal of Logical and Algebraic Methods in
Programming, 2018.
Emanuele D’Osualdo, Azadeh Farzan, Philippa Gardner and Julian Sutherland: TaDA Live:
Compositional Reasoning for Termination of Fine-grained Concurrent Programs, ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 2021.

2012 ACM Subject Classification Theory of computation — Concurrency
Keywords and phrases Concurrent separation logic
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.2

Category Invited Talk

© Philippa Gardner;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 2; pp. 2:1-2:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:p.gardner@imperial.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Distributed Decision Problems: Concurrent
Specifications Beyond Binary Relations

Sergio Rajsbaum 24
Institute of Mathematics, National Autonomous University of Mexico, Mexico City, Mexico

—— Abstract

Much discussion exists about what is computation, but less about is a computational problem.
Turing’s definition of computation was based on computing functions. When we move from sequential
computing to interactive computing, discussions concentrate on computations that do not terminate,
overlooking notions of distributed problems. Many models where concurrency happens have been
proposed, ranging from those equivalent to a Turing machine, to those where much heated discussion
has taken place, claiming that interactive models are fundamentally different from Turing machines.

It is argued here that there is no need to go all the way to non-terminating interaction, to
appreciate how different distributed computation is from sequential computation. The discussion
concentrates on the various ways that exist of representing a distributed decision problem. Fach
process of a distributed system starts with an initial private input value, and after communicating
with other processes in the system, produces a local output value. An input/output relation is
needed, to specify which output values are legal for a particular assignment of input values to the
processes.

An overview is provided of some results that show how rich the topic of distributed decision
problems can be, when asynchronous processes can fail, but mostly independent of particular models
of distributed computing and their many intricate details (types of failures and of communication).
We are in a world very different from that of the functions of sequential computation; moving away
from the world of graphs beyond binary relations, to the world of simplicial complexes.

2012 ACM Subject Classification Theory of computation — Distributed computing models

Keywords and phrases Distributed decision tasks, simplicial complex, linearizability, interval-
linearizability, Arrow’s impossibility, Speedup theorems

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.3
Category Invited Talk

Funding Supported by UNAM-PAPIIT IN106520.

1 What is Computation and what is a Computational Problem?

The tools of a barber include scissors, razor, shave brush, comb, clipper, neck duster; the
process that repeatedly uses these tools is barbering. It is awkward to talk about barbering
before saying what the problem being solved is: shaving, hair-cutting, and hair-dressing. Yet,
it seems we are sometimes more obsessed with understanding what is computation, than
with understanding what is a computational problem.

The first ACM Ubiquity symposium (2011) thoroughly discussed the question: What is
computation? The most fundamental question of our field, says Peter Denning in the Editor’s
Introduction [18]. But except for mentioning Turing and how he invented his machine to
classify functions according to computability, not much is said about computational problems.

For sequential computing not much is discussed about computational problems, beyond
functions, and for distributed computing even less. The participants of the workshop were
asked to consider how three new developments might have affected the traditional answers
to the question. One of the three developments is interactive computation, motivated by
situations such as operating systems and networks that are based on computations that do

© Sergio Rajsbaum;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 3; pp. 3:1-3:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:rajsbaum@im.unam.mx
http://www.matem.unam.mx/rajsbaum
https://orcid.org/0000-0002-0009-5287
https://doi.org/10.4230/LIPIcs.CONCUR.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Distributed Decision Problems

not terminate and regularly interact with their environments. All through the discussions
in the workshop, it seems that the interest on interactive computation comes from their
non-terminating nature, e.g. [24].

Some argue about the enduring legacy of the Turing Machine like Lance Fortnow [21],
while others strongly against it, like Peter Wegner [54]. But in the conclusions of the
workshop, Denning [17] mentions that there is an emerging consensus that interactive models
are fundamentally different from Turing machines.

Aho [1] easily describes the computational problem: A function f from strings to strings
is computable if there is some Turing machine M that given any input string w always halts
in the accepting state with just f(w) on its tape. But describes in detail what a Turing
machine is:

The reason we went through this explanation is to point out how much detail is involved
in precisely defining the term computation for the Turing machine, one of the simplest
models of computation. It is not surprising, then, as we move to more complex models,
the amount of effort needed to precisely formulate computation in terms of those
models grows substantially.

Aho [1] continues: Many real-world computational systems compute more than just a
single function — the world has moved to interactive computing. But there is no discussion
of what is it that they compute.

Indeed, as the authors of the workshop discuss, there are many models of distributed
computing, consisting of autonomous computing processes that communicate with one
another. To model multicore shared memory systems, wide area message passing networks,
biological systems such as cells and organisms, even the human brain. There are theoretical
models such as message-passing Actor model, Petri nets, process calculi, I/O automata, etc.
Many shared-memory and message passing models are discussed in the distributed computing
literature, e.g. [5, 33, 48, 49].

2 Distributed Decision Problems

To discuss distributed computing problems, very few details about the computational model
need to be considered; the same notions of distributed computing problem are relevant to
many of the models mentioned above.

2.1 Distributed computing problems

There are many problems to discuss about distributed computing. Distributed systems can
exhibit behaviors such as deadlock, livelock, race conditions. And there are many aspects to
study about routing, robot coordination, agents moving along a network, distributed graph
algorithms, and the like that cannot be studied using Turing machines. Concerns such as
reliability, performance, scalability and adaptivity, mobility, psychical locality, are inherently
different from sequential computing.

All through the symposium, it is emphasized the importance of models where interaction
takes place, assuming as evident that the interest is in non-terminating computations. I would
like to slow down here, to show the richness exhibited already in terminating distributed
computation. Furthermore, that there is no need to get into the intricacies of a distributed
computing model, to discuss distributed problems. The goal is to show that indeed very novel
issues arise that do not exists in Turing machines, already when we consider input/output
problems.

S. Rajsbaum

In this paper the goal is to focus on possibly the purest form of distributed computing
problem, a direct analogue of the notion of a function for a Turing machine. The input x to
the function is now distributed, each process knows only part of z. Also the output f(x) is
distributed: after communicating with each other, the processes collectively compute f(z),
each one computes one part of it. As we shall see, instead of functions it is of interest to
consider relations T'(z), called tasks, possibly allowing for more than one output for each
input z.

Assume the simplest case of a fixed, finite set of n individual processes composing the
distributed system. To focus only on the problem of computing a task in a distributed way,
disregard any routing and network communication problems, and assume that the processes
can directly communicate with each other. Similarly, to focus only on the distributed aspects
of the problem, disregard any individual sequential computing limitation. It turns out that
some tasks have no solution, even if each process is an infinite state automata, while when
there is a solution, each process is a (usually) simple Turing machine.

For the purposes of discussing distributed problems, there is no need to discuss many of
the specifics about the computational model — ways in which processes communicate with
each other, their relative speeds and failures. Roughly, the only thing needed, is that a
process may have to produce an output value without knowing the input values of some of
the other processes.

2.2 Distributed decision tasks

Early on in the development of distributed computing theory, Moran and Wolfstahl [43]
defined the notion of distributed decision task, to encompass the various problems that were
being studied at that time, such as consensus, approximate agreement and renaming. It was
already known that consensus is impossible to solve in a message passing system even if
only one process can fail by crashing [20] (even if each process is an infinite state machine).
Moran and Wolfstahl extended the impossibility to general decision tasks, and then Biran,
Moran and Zaks [6] extended it to a full characterization.

Consider n-dimensional vectors with entries over some set of possible values V: the i-th
entry of a vector is associated to the i-th process. A distributed decision task 7 = (Z, O, A)
consists of a set of input vectors, T a set of output vectors, O and a relation A, specifying,
for each input vector I € Z, a set of legal output vectors A(I) C O. The i-th entry of an
input vector is the input value of the i-th process. The i-th entry of an output vector is the
output value of the i-th process. It is assumed that each process, has two special variables, a
read-only one for the input value and a write-once variable for the output value.

A decision task is solvable by a distributed algorithm in some model of computation, if
the following holds. The system can start in any of the input vectors I € Z allowed by the
task. Now, consider any execution starting with input vector I, where all processes produce
an output value, defining a vector O consisting of all the n output values. Then, it must be
the case that O € A(I).

Notice that task solvability is defined only by a safety requirement. There is also a liveness
requirement defined by the specifics of the model of computation. In the sequel of papers by
Biran, Moran, Zaks and Wolfstahl [6, 7, 8, 43], the focus was on 1-resilient asynchronous
processes (running at arbitrary speeds, independent from each other) communicating by
message passing. In this case, the liveness requirement is that, in an execution where at most
one process crashes, all processes that do not crash have to produce a decision value. A similar
situation but in shared memory was considered by Moran and Taubenfeld [53], including the
case where t < n processes may crash, where the liveness is adjusted accordingly.

3:3

CONCUR 2022

3:4

Distributed Decision Problems

The following examples are well-known by now.

1. Consensus. For a set of values V, the inputs are all n-vectors over V. There is one
output vector for each v € V', consisting of all output values equal to v, denoted O, and
O = U,ev{O,}. For any input vector with at least two different input values, A(I) = O,
for an input vector I, with a single input value v, A(I,) = {O,}.

2. Approzimate agreement. It is defined in [6] for any given € > 0, and V the set of rational
numbers. Any n-vector over V is a possible input vector, and the output vectors contain
rational numbers so that for any two entries d;, d;, |d; — d;j| < e. Then, A(I) contains all
output vectors with entries d; such that m < d; < M, where m is the smallest value of I
and M is the largest.

There are many variants of consensus and approximate agreement, including multidimensional

ones e.g. [41].

2.3 Participating processes

The discovery of the intimate connection between distributed computing and topology,
overviewed in [30], was facilitated by the realization that the 1-resilient case is not the most
fundamental situation, and surprisingly not the easiest to analyze — it is the wait-free case.
Wait-freedom is a progress condition which guarantees that each process can make progress in
a finite number of steps regardless of the behavior of other processes. So long as processes are
scheduled, wait-freedom guarantees progress for all processes. Thus, a distributed algorithm
that is wait-free never includes instructions by which a process waits for an event of another
process (if that process crashes, the event might never happen).

For this paper, the important property is that any set of processes may have to produce
output values, without knowing the input values of the remaining processes. Therefore,
the vectors of a decision task need to incorporate a notion of participating processes. Not
all entries in a given input (output) vector need contain an input (output) value; some
may contain the special value L, indicating that some processes do not participate in the
execution (crashes before taking any steps). Thus, the set of input vectors is required to be
prefix closed. Meaning that if I is an input vector, then the task has to consider also any
input vector I’ contained in I, in the sense that any subset of the entries of I is replaced by
L. Furthermore, for each such input vector I’, where the input values of some subset of the
processes P’ is defined as L, the input/output relation A has to specify what are the legal
output vectors. Namely, A(I’) is a set of vectors, all with L in the entries for processes P’.

As already discussed by Herlihy and Shavit [32] and Hoest and Shavit [35], the intuitive
notion of “order of actions in time” is captured through the use of participating processes.
The example given is how it can be used to distinguish between tasks such as Unique-Id
and Fetch-And-Increment, which have the same sets of input and output vectors, have the
same A when all processes participate, but have quite different task specification maps when
subsets of participating processes are taken into account. The Figure 1 is from [35], for a set
of n 4 1 processes.

The Unique-1d task is defined as follows: each participating process ¢ € {0,...,n} has an

input z; = 0 and chooses an output y; € {0,...,n} such that for any pair of processes i # 7,
Yi #Yj-

In the Fetch-And-Increment task, each participating process i € {0,...,n} has an input
x; = 0 and chooses a unique output y; € {0,...,n} such that (1) for some participating

process i, y; = 0, and (2) for 1 < k < n, if y; = k, then for some j #1, y; =k — L.

S. Rajsbaum

(0,L1,1) 1 (0,L1,1)

0,L,1) | (0,L,1),1L1L),@LL

(o) | (LoD D (L0, | (£01)

(L,L,0) | (L, L,0),(L,L,1),(L,L,2) (4, 1,0) | (L,1,0)

(0,0, 1) | (0,1, 1),(1,0,1),(0,2, 1), (0,2, 1),(2,1,1),(1,2,1) (0,0,1) | (0,1,1),(1,0,1)

(0,1,0) | (0,.L,1),(1,1,0),(0,1,2),(0,1,2),(2,L,1),(1, L,2) (0,1,0) | (0,1,1),(1,L1,0)

(L,0,0) | (L,0,1),(L,1,0),(L,0,2),(L,0,2),(L,2,1),(L,1,2) (£,0,0) | (L,0,1),(L,1,0)

(0,0,0) | (0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0) (0,0,0) | (0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0)

(a) Unique-1d task. (b) Fetch-And-Increment task.

Figure 1 Two tasks with the same set of vectors when all participate. First column is the input
vector, and for each row I, in the second column A(]) .

2.4 Beyond binary relations

These two examples already hint at why by moving from vectors to partial vectors, the
notion of decision task is interestingly enriched. This is clearly exposed using the appropriate
mathematical structure for partial vectors closed under containment: simplicial complexes.
Here follows and overview of how to use them to represent tasks, additional details are in
e.g. [30].

The following notions are illustrated in Figure 2, where the Fetch-And-Increment task
is represented using simplicial complexes, for three processes denoted 0,1,2. Intuitively,
triangles represent vectors with 0 entries equal to L, edges represent vectors with 1 entry
equal to L, and vertices correspond to vectors with 0 entires equal to L. An input vertex
(7,2) means that process ¢ has input value x, and for the vertex (0,0), A(é,z)) = o1. For
the input edge {(0,0),(1,0)}, A({(0,0),(1,0)}) = {02,053}, while for the input triangle
{(0,0),(1,0),(2,0)}, A({(0,0),(1,0),(2,0)}) consists of all 6 triangles of O.

A simplicial complex is a generalization of a graph, where sets of vertices of cardinality
more than two can also be grouped into a simplex (the generalization of an edge). Formally,
it is a collection C of non-empty sets, closed under containment, i.e., if o € K then, for every
non-empty set o’ C o, o’ € K. Every set in K is called a simplex. A subset of a simplex is
called a face, and a facet of K is a face that is maximal for inclusion in . The dimension of
a simplex o is |o] — 1, where |o| denotes the cardinality of 0. The dimension of a complex is
the maximal dimension of its facets. A complex in which all facets are of the same dimension
is called pure. The wvertices of K are all simplices with a single element (i.e., of dimension 0).
The set of vertices of a complex K are denoted by V(K).

All complexes in this paper are chromatic, i.e., every vertex is a pair v = (i,) where
i€ [n] ={1,...,n} for some n > 1 is the color of v denoting a process, and z is some value
(an input value or an output value). Moreover, in a chromatic complex, a color ¢ must appear
at most once in every simplex. Let o = {(i,2;) : ¢ € I'} be a simplex. We denote by ID(0)
the set of colors in o, i.e., ID(¢) = I. Indeed, in the following, the color of a vertex is actually
the identity of a process.

A task can be defined using vectors as above, or using simplicial complexes as follows,
exposing the role of combinatorial topology notation, and why going beyond binary relations
is intrinsic to distributed computing problems.

A task for n processes is a triple II = (Z, O, A) where Z and O are (n — 1)-dimensional
complexes, respectively called input and output complexes, and A : T — 29 is an input-
output specification. Every simplex o = {(¢,;) : i € I'} of Z, where I = ID(0) is a non-empty
subset of [n], defines a legal input state corresponding to the scenario in which, for every
i € I, process i starts with input value x;. Similarly, every simplex 7 = {(i,y;) : ¢ € I'} of O
defines a legal output state corresponding to the scenario in which, for every i € I, process 4
outputs the value y;. The map A is an input-output relation specifying, for every input state

3:5

CONCUR 2022

3:6

Distributed Decision Problems

Figure 2 The Fetch-And-Increment task. Inside a vertex is its id, outside is its input or output
value. The input complex Z consists of a single triangle, and its faces. The input complex O consists
of 6 triangles, and its faces. The triangles marked with an x are deleted.

Figure 3 The input complex of the set agreement task for 3 processes, and part of the output
complex. The triangle marked with x is deleted. The corners of the input triangle are mapped by
A to the corners of @. The boundary of the input triangle is mapped to the boundary of O. The
input triangle is mapped to all the depicted 12 triangles of O.

o € Z, the set of output states 7 € O with ID(7) = ID(0) that are legal with respect to o.
That is, assuming that only the processes in ID(o) participate to the computation (the set
of participating processes is not known a priori to the processes in o), these processes are
allowed to output any simplex 7 € A(c). It is often assumed that A is a carrier map (that
is, for every 0,0’ € Z, if ¢’ C o then A(o’) C A(o) as subcomplexes).

An important example is the set agreement task, with a single input facet (and all its
faces), where process 4 starts with input value i. The n processes need to agree on at most
n —1 input values of participating processes. For three processes, at most two different values
can be decided, as illustrated in Figure 3, where part of the output complex is depicted.
This task is important, because it is unsolvable wait-free [9, 32, 52], and the reason for
the impossibility is a topological one: intuitively, the task has a hole while no wait-free
distributed algorithm has one.

S. Rajsbaum

3 Selected Topics

Here is a selection of the various aspects about tasks that have been studied. Consensus is
the most fundamental task, in a sense the most difficult one together with variants such as
interactive consistency where all of the processes have to agree on the same vector such that
the 7th entry of the vector contains the value proposed by the i-process; any task is solvable,
if processes can agree on their inputs. Much can be said about consensus in long-lived
situations, and consensus is known to be enormously important in real systems since early
on [37], as well as in theory e.g. [29], for reasons including the consensus hierarchy [39] and
as a universal object [50], but here the focus is on decision problems.

3.1 Colorless tasks, local tasks, continuous tasks: decidability and
reductions

The class of colorless tasks was identified in [10]. Such a task can be defined in terms of sets
of input and output values, without referring to which process is assigned which input value
or produces which output value, and without referring to the number of processes in the
system. Many widely-studied tasks are colorless, including consensus, set-agreement, and
approximate agreement. Some important tasks like renaming [13] and others [12] are not
colorless, and are more difficult to study, but easier than set agreement [11]. A notion of
continuous task has been prosed aiming at obtaining wait-free solvability characterization [25]
in a more intuitive way than the original one [32].

The rendezvous task [38] is a colorless task that models scenarios where autonomous
agents move around in a specific space to meet one another. A chromatic version where
a process must end in a vertex of its own color in a chromatic subdivision of an input
simplex, is the chromatic simplex agreement task, important for the wait-free task solvability
theorem [32], and the affine tasks, on subcomplexes of the chromatic subdivision by Kuznetsov
and Rieutord [36]. The loop agreement task is an example of rendezvous task, which is defined
in terms of an edge loop in a 2-complex. Herlihy and Rajsbaum [31] showed that a loop
agreement task is wait-free solvable if and only if the loop is contractible in the 2-complex,
as a result, the wait-free solvability of loop agreement tasks is undecidable. Rendezvous on
the vertices of a graph was introduced in [15], and variants were studied in [3] including
applications to robot coordination problems [2].

A task G implements task I if one can construct a protocol for F' by calling any
protocol for G, possibly followed by access to a shared read/write memory. This notion of
implementation induces a partial order on tasks and hence it induces a classification of a set
of tasks, into disjoint classes such that tasks in the same class implement each other. In this
sense, all tasks in a class are computationally equivalent. A classification of loop agreement
tasks was presented in [31], and extended in [55] to rendezvous tasks.

A task T is wait-free checkable if and only if it satisfies a certain locality condition. Notions
of locality considered by Fraigniaud, Travers and Rajsbaum [23] are mostly independent of
the computing model. Wait-free solvability of local tasks remains undecidable. A strong
notion of locality is defined by covering tasks whose output complex is a covering of the
input complex. This topological property yields obstacles for wait-free solvability different in
nature from the classical agreement impossibility results, and, apart from the identity task,
locality-preserving tasks are not wait-free solvable. A classification of locality-preserving
tasks in term of their computational power is presented. Also closely related to covering
tasks and with a similar impossibility argument [26], is the equality negation task. For two
processes, each of which has an input from a set of three distinct values, each process must

3:7

CONCUR 2022

3:8

Distributed Decision Problems

decide a binary output value so that the decisions of the processes are the same if and
only if the initial values of the processes are different. This task was defined by Lo and
Hadzilacos [39], as the central idea to prove that the consensus hierarchy is not robust.

Fraigniaud, Paz and Rajsbaum [22] study consensus and approximate agreement, through
an approach for proving lower bounds and impossibility results, called the asynchronous
speedup theorem. For a given task T and a given computational model M, the closure of
T with respect to M is a task that is supposed to be a slightly easier version of 7. The
asynchronous speedup theorem states that if a task T is solvable in ¢ > 1 rounds in M, then
its closure w.r.t. M is solvable in ¢ — 1 rounds in M. As an application they study the power
of test&set and binary consensus, for wait-free solving approximate agreement faster.

3.2 Domain restrictions and social choice

A research line started by Mostefaoui, Rajsbaum and Raynal [44] considers restricting the
input domain of a task, to obtain an easier task. A restriction of the input complex is called
a condition. For example, although consensus is unsolvable even if only one process can crash,
if we assume that more than a majority of processes propose the same value then consensus
becomes solvable (n > 4). The paper identified the conditions for which consensus is solvable
in an asynchronous distributed system with ¢ crash failures. In a sequel paper [45] they
study conditions for consensus in a synchronous system where processes can fail by crashing.
A hierarchy of conditions parametrized by d is presented, that allows solving synchronous
consensus with less and less rounds, as we go from d =t to d = 0.

There are remarkable analogies between social choice theory and distributed computing,
despite the fact that social choice theory is typically not concerned with concurrency (for
decentralised studies see [16, 40]). The modern field of social choice theory took off with
Kenneth Arrow’s remarkable 1950 result [4] for the basic problem of democracy: it is
impossible to aggregate individual preferences into a single social preference, under some
reasonable-looking axioms. In Arrow’s setting, each process proposes a total order on the
possible candidates, and the outcome of the election, computed by a centralized aggregation
function f, is also a total order, that should reflect the social preference. One requirement
is unanimity, if everyone prefers candidate = over y, so should the social preference. With
only this requirement, the aggregation function can simply decide on the preferences of
one individual, say the 1st one, which would become a dictator. Arrow’s impossibility says
that f must be dictatorial, if one requires, additionally to the unanimity requirement, an
independence of irrelevant alternatives (IIS) requirement, stating that f depends only on
pairwise preferences.

Much research has been devoted to identify domain restriction to circumvent Arrow’s
impossibility theorem. Rajsbaum and Ravent6s [47] identify the exact domain restrictions for
the case of two voters and three alternatives, and present a new proof of Arrow’s impossibility
based on a task formalization using simplicial complexes, showing that any unanimous IIS
aggregation function must be dictatorial, on any of the corresponding restricted domains.
The proof uses techniques analogous to those used in distributed computing [13, 26].

3.3 Tasks and objects

Tasks are not the only possible input/output distributed specifications. Objects are defined
in terms of sequential specifications, and can specify ongoing, never-ending behavior, such as
for concurrent data structures [42]. For this paper consider their one-shot version, and one
method that can be invoked only once by each process, with an input parameter. The object

S. Rajsbaum

returns an output value to the invoking process. Thus, one-shot objects are similar to tasks,
in that they specify input/output problems. Objects come with an accompanying notion of
when a concurrent execution satisfies the object’s sequential specification, linearizability.

In fact we encounter in the literature three ways of talking about distributed decision
problems. As a set of informal requirements, as a sequential object plus a consistency
condition (linearizability), and as a task. For example, we have seen that consensus can be
defined as a task. But often it is defined by two safety requirements. Validity: a decided
value is the input of some participating process; Agreement: any two decided values are
equal. The third way is to think of consensus as an object, defined by a sequential automata,
whose states represent which values have been proposed to the object, and which values can
be returned to a process.

The relation between tasks and objects has been studied by Castaneda, Rajsbaum and
Raynal [14], motivated by Neiger [46], who proposed a generalization of linearizability to
be able to specify tasks, such as set agreement, which have no natural specification as
sequential objects. Set-sequential objects can define executions in which a set of processes
access an object concurrently. The notion of an interval-sequential object [14], together
with a corresponding consistency condition, is able to express any concurrency pattern of
overlapping invocations of operations, that might occur in an execution [27]. While some
important tasks have no specification either as a sequential object nor as a set-sequential
object, all tasks can be naturally expressed as interval-sequential objects. Remarkably,
there are objects that cannot be expressed as tasks. An extension of the task framework is
described, called refined tasks, that has more expressive power, and is able to specify any
one-shot interval-sequential object.

An interesting notion appears with objects, composabilty, which has not been studied
as much for tasks. Linearizability is very popular to design components of large systems
because one can consider linearizable object implementations in isolation and compose them
for free, without sacrificing linearizability of the whole system [34]. It was shown that by
going from linearizability to interval-linearizability, one does not sacrifice the benefits of
composability [14].

3.4 Tasks and knowledge

Rosenbloom [51] argues that computation is information transformation. In this sense, one
may view a distributed problem as setting the goals, from an initial state of information, to
a final one. More precisely, a task is reformulated by Goubault, Rajsbaum and Ledent [28]
as a knowledge transformation goal. The input complex defines what processes know about
each other inputs, formalized as a simplicial model, the dual of the classic one-dimensional
Kripke model, that exposes relations beyond binary. A task can be re-interpreted as a goal
in terms of knowledge gain, using an output simplicial model, which is the product update
of the initial simplicial model and an action model. This formally specifies the knowledge
gain required by the task.

The importance of common knowledge for reaching agreement is well understood [19].
Consensus and common knowledge is discussed in [28], as well as approximate agreement,
in terms of knowledge gain. After all, the difficulty of distributed decisions comes from the
absence of common knowledge about the inputs and consensus gives us just that. Indeed, in
the epistemic setting, consensus is the requirement of achieving common knowledge on an
input value. This is impossible in asynchronous systems. In contrast, approximate agreement
is solvable, because it is a finite version of common knowledge, requiring only that everybody
knows that everybody knows, and so on, a certain number of times.

3:9

CONCUR 2022

3:10

Distributed Decision Problems

—— References

1

10

11

12

13

14

15

Alfred V. Aho. Computation and Computational Thinking. The Computer Journal, 55(7):832—
835, July 2012. doi:10.1093/comjnl/bxs074.

Manuel Alcantara, Armando Castafieda, David Flores-Penaloza, and Sergio Rajsbaum. The
topology of look-compute-move robot wait-free algorithms with hard termination. Distributed
Comput., 32(3):235-255, 2019. doi:10.1007/s00446-018-0345-3.

Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement on graphs. In
Tomasz Jurdzinski and Stefan Schmid, editors, Structural Information and Communication
Complexity - 28th International Colloquium, SIROCCO 2021, Wrocltaw, Poland, June 28 -
July 1, 2021, Proceedings, volume 12810 of Lecture Notes in Computer Science, pages 87-105.
Springer, 2021. doi:10.1007/978-3-030-79527-6_6.

Kenneth J. Arrow. A difficulty in the concept of social welfare. Journal of Political Economy,
58(4):328-346, 1950. doi:10.1086/256963.

Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons, Hoboken, NJ, USA, 2004.

Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characterization of the
distributed 1-solvable tasks. J. Algorithms, 11(3):420-440, 1990. Preliminary version in PODC
1988. d0i:10.1016/0196-6774(90)90020-F.

Ofer Biran, Shlomo Moran, and Shmuel Zaks. Deciding 1-sovability of distributed task
is np-hard. In Rolf H. Méhring, editor, Graph-Theoretic Concepts in Computer Science,
16rd International Workshop, WG ’90, Berlin, Germany, June 20-22, 1990, Proceedings,
volume 484 of Lecture Notes in Computer Science, pages 206—220. Springer, 1990. doi:
10.1007/3-540-53832-1_44.

Ofer Biran, Shlomo Moran, and Shmuel Zaks. Tight bounds on the round complexity of
distributed 1-solvable tasks. In Jan van Leeuwen and Nicola Santoro, editors, Distributed
Algorithms, 4th International Workshop, WDAG ’90, Bari, Italy, September 24-26, 1990,
Proceedings, volume 486 of Lecture Notes in Computer Science, pages 373-389. Springer, 1990.
doi:10.1007/3-540-54099-7_25.

Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient
asynchronous computations. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors,
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18,
1993, San Diego, CA, USA, pages 91-100. ACM, 1993. doi:10.1145/167088.167119.
Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG distributed
simulation algorithm. Distributed Comput., 14(3):127-146, 2001. doi:10.1007/PL00008933.
Armando Castaneda, Damien Imbs, Sergio Rajsbaum, and Michel Raynal. Renaming is
weaker than set agreement but for perfect renaming: A map of sub-consensus tasks. In
David Fernandez-Baca, editor, LATIN 2012: Theoretical Informatics - 10th Latin American
Symposium, Arequipa, Peru, April 16-20, 2012. Proceedings, volume 7256 of Lecture Notes in
Computer Science, pages 145—156. Springer, 2012. doi:10.1007/978-3-642-29344-3_13.
Armando Castafieda, Damien Imbs, Sergio Rajsbaum, and Michel Raynal. Generalized
symmetry breaking tasks and nondeterminism in concurrent objects. SIAM J. Comput.,
45(2):379-414, 2016. doi:10.1137/130936828.

Armando Castafieda, Sergio Rajsbaum, and Michel Raynal. The renaming problem in
shared memory systems: An introduction. Comput. Sci. Rev., 5(3):229-251, 2011. doi:
10.1016/j.cosrev.2011.04.001.

Armando Castaneda, Sergio Rajsbaum, and Michel Raynal. Unifying concurrent objects and
distributed tasks: Interval-linearizability. J. ACM, 65(6):45:1-45:42, 2018. doi:10.1145/
3266457.

Armando Castaneda, Sergio Rajsbaum, and Matthieu Roy. Two convergence problems for
robots on graphs. In 2016 Seventh Latin-American Symposium on Dependable Computing,
LADC 2016, Cali, Colombia, October 19-21, 2016, pages 81-90. IEEE Computer Society, 2016.
doi:10.1109/LADC.2016.21.

https://doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1007/s00446-018-0345-3
https://doi.org/10.1007/978-3-030-79527-6_6
https://doi.org/10.1086/256963
https://doi.org/10.1016/0196-6774(90)90020-F
https://doi.org/10.1007/3-540-53832-1_44
https://doi.org/10.1007/3-540-53832-1_44
https://doi.org/10.1007/3-540-54099-7_25
https://doi.org/10.1145/167088.167119
https://doi.org/10.1007/PL00008933
https://doi.org/10.1007/978-3-642-29344-3_13
https://doi.org/10.1137/130936828
https://doi.org/10.1016/j.cosrev.2011.04.001
https://doi.org/10.1016/j.cosrev.2011.04.001
https://doi.org/10.1145/3266457
https://doi.org/10.1145/3266457
https://doi.org/10.1109/LADC.2016.21

S. Rajsbaum

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Himanshu Chauhan and Vijay K. Garg. Democratic elections in faulty distributed systems. In
Davide Frey, Michel Raynal, Saswati Sarkar, Rudrapatna K. Shyamasundar, and Prasun Sinha,
editors, Distributed Computing and Networking, 14th International Conference, ICDCN 20183,
Mumbasi, India, January 3-6, 2013. Proceedings, volume 7730 of Lecture Notes in Computer
Science, pages 176-191. Springer, 2013. doi:10.1007/978-3-642-35668-1_13.

Peter J. Denning. Reflections on a Symposium on Computation. The Computer Journal,
55(7):799-802, July 2012. doi:10.1093/comjnl/bxs064.

Peter J. Denning and Peter Wegner. Introduction to What is Computation. The Computer
Journal, 55(7):803-804, July 2012. doi:10.1093/comjnl/bxs065.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995. doi:10.7551/mitpress/5803.001.0001.

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374-382, 1985. doi:10.1145/3149.214121.

Lance Fortnow. The enduring legacy of the turing machine. Comput. J., 55(7):830-831, July
2012. doi:10.1093/comjnl/bxs073.

Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum. A speedup theorem for asynchronous
computation with applications to consensus and approximate agreement. To appear in ACM

PODC 2022, abs/2206.05356, 2022. To appear in ACM PODC 2022. doi:10.48550/arXiv.

2206.05356.

Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Locality and checkability in wait-
free computing. Distributed Comput., 26(4):223-242, 2013. doi:10.1007/s00446-013-0188-x.
Dennis J. Frailey. Computation is Process. The Computer Journal, 55(7):817-819, July 2012.
doi:10.1093/comjnl/bxs069.

Hugo Rincon Galeana, Sergio Rajsbaum, and Ulrich Schmid. Continuous tasks and the
asynchronous computability theorem. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley,
CA, USA, volume 215 of LIPIcs, pages 73:1-73:27. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.73.

Eric Goubault, Marijana Lazic, Jérémy Ledent, and Sergio Rajsbaum. Wait-free solvability
of equality negation tasks. In Jukka Suomela, editor, 33rd International Symposium on
Distributed Computing, DISC 2019, October 14-18, 2019, Budapest, Hungary, volume 146
of LIPIcs, pages 21:1-21:16. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. doi:
10.4230/LIPIcs.DISC.2019.21.

Eric Goubault, Jérémy Ledent, and Samuel Mimram. Concurrent specifications beyond
linearizability. In Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira, editors,
22nd International Conference on Principles of Distributed Systems, OPODIS 2018, December
17-19, 2018, Hong Kong, China, volume 125 of LIPIcs, pages 28:1-28:16. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2018. doi:10.4230/LIPIcs.0P0ODIS.2018.28.

Eric Goubault, Jérémy Ledent, and Sergio Rajsbaum. A simplicial complex model for dynamic
epistemic logic to study distributed task computability. Inf. Comput., 278:104597, 2021.
doi:10.1016/j.ic.2020.104597.

Rachid Guerraoui, Michel Hurfin, Achour Mostéfaoui, Rui Carlos Oliveira, Michel Raynal,
and André Schiper. Consensus in asynchronous distributed systems: A concise guided tour.
In Sacha Krakowiak and Santosh K. Shrivastava, editors, Advances in Distributed Systems,
Advanced Distributed Computing: From Algorithms to Systems, volume 1752 of Lecture Notes
in Computer Science, pages 33—47. Springer, 1999. doi:10.1007/3-540-46475-1_2.
Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013. URL: https://store.elsevier.com/
product. jsp?isbn=9780124045781.

Maurice Herlihy and Sergio Rajsbaum. A classification of wait-free loop agreement tasks.
Theor. Comput. Sci., 291(1):55-77, 2003. doi:10.1016/50304-3975(01)00396-6.

3:11

CONCUR 2022

https://doi.org/10.1007/978-3-642-35668-1_13
https://doi.org/10.1093/comjnl/bxs064
https://doi.org/10.1093/comjnl/bxs065
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1145/3149.214121
https://doi.org/10.1093/comjnl/bxs073
https://doi.org/10.48550/arXiv.2206.05356
https://doi.org/10.48550/arXiv.2206.05356
https://doi.org/10.1007/s00446-013-0188-x
https://doi.org/10.1093/comjnl/bxs069
https://doi.org/10.4230/LIPIcs.ITCS.2022.73
https://doi.org/10.4230/LIPIcs.DISC.2019.21
https://doi.org/10.4230/LIPIcs.DISC.2019.21
https://doi.org/10.4230/LIPIcs.OPODIS.2018.28
https://doi.org/10.1016/j.ic.2020.104597
https://doi.org/10.1007/3-540-46475-1_2
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://doi.org/10.1016/S0304-3975(01)00396-6

3:12

Distributed Decision Problems

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858-923, 1999. doi:10.1145/331524.331529.

Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463-492, 1990. doi:10.1145/78969.78972.

Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous com-
plexity. SIAM J. Comput., 36(2):457-497, 2006. doi:10.1137/S0097539701397412.

Petr Kuznetsov and Thibault Rieutord. Affine tasks for k-test-and-set. In Stéphane Devismes
and Neeraj Mittal, editors, Stabilization, Safety, and Security of Distributed Systems, pages
151-166, Cham, 2020. Springer International Publishing.

Butler Lampson. How to build a highly available system using consensus. In Ozalp Babaoglu and
Keith Marzullo, editors, 10th International Workshop on Distributed Algorithms (WDAG 1996),
pages 1-17. Springer, October 1996. The proceedings are: Distributed Algorithms, Lecture
Notes in Computer Science 1151, Springer, 1996. URL: https://www.microsoft.com/en-us/
research/publication/how-to-build-a-highly-available-system-using-consensus/.
Xingwu Liu, Zhiwei Xu, and Jianzhong Pan. Classifying rendezvous tasks of arbitrary
dimension. Theor. Comput. Sci., 410(21-23):2162-2173, 2009. doi:10.1016/j.tcs.2009.01.
033.

Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of us: Nondeterministic
wait-free hierarchies are not robust. SIAM J. Comput., 30(3):689-728, 2000. doi:10.1137/
S0097539798335766.

Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. Byzantine preferential voting. In George
Christodoulou and Tobias Harks, editors, Web and Internet Economics, pages 327-340, Cham,
2018. Springer International Publishing.

Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K. Garg. Multidimensional
agreement in byzantine systems. Distributed Computing, 28(6):423-441, 2015. doi:10.1007/
s00446-014-0240-5.

Mark Moir and Nir Shavit. Concurrent data structures. In Dinesh P. Mehta and Sartaj
Sahni, editors, Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004.
d0i:10.1201/9781420035179.ch47.

Shlomo Moran and Yaron Wolfstahl. Extended impossibility results for asynchronous complete
networks. Inf. Process. Leit., 26(3):145-151, 1987. doi:10.1016/0020-0190(87)90052-4.
Achour Mostéfaoui, Sergio Rajsbaum, and Michel Raynal. Conditions on input vectors for
consensus solvability in asynchronous distributed systems. J. ACM, 50(6):922-954, 2003.
doi:10.1145/950620.950624.

Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal. Synchronous condition-based
consensus. Distributed Computing, 18(5):325-343, 2006. doi:10.1007/s00446-005-0148-1.

Gil Neiger. Set-linearizability. In James H. Anderson, David Peleg, and Elizabeth Borowsky,
editors, Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, Los Angeles, California, USA, August 14-17, 199/, page 396. ACM, 1994. doi:
10.1145/197917.198176.

Sergio Rajsbaum and Armajac Raventés-Pujol. A distributed combinatorial topology approach
to arrow’s impossibility theorem. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing, PODC ’22, page to appear, New York, NY, USA, 2022. Association
for Computing Machinery.

Michel Raynal. Concurrent Programming - Algorithms, Principles, and Foundations. Springer,
2013. doi:10.1007/978-3-642-32027-9.

Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach.
Springer, 2018. doi:10.1007/978-3-319-94141-7.

https://doi.org/10.1145/331524.331529
https://doi.org/10.1145/78969.78972
https://doi.org/10.1137/S0097539701397412
https://www.microsoft.com/en-us/research/publication/how-to-build-a-highly-available-system-using-consensus/
https://www.microsoft.com/en-us/research/publication/how-to-build-a-highly-available-system-using-consensus/
https://doi.org/10.1016/j.tcs.2009.01.033
https://doi.org/10.1016/j.tcs.2009.01.033
https://doi.org/10.1137/S0097539798335766
https://doi.org/10.1137/S0097539798335766
https://doi.org/10.1007/s00446-014-0240-5
https://doi.org/10.1007/s00446-014-0240-5
https://doi.org/10.1201/9781420035179.ch47
https://doi.org/10.1016/0020-0190(87)90052-4
https://doi.org/10.1145/950620.950624
https://doi.org/10.1007/s00446-005-0148-1
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/197917.198176
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-319-94141-7

S. Rajsbaum

50

51

52

53

54

55

Michel Raynal. The notion of universality in crash-prone asynchronous message-passing
systems: A tutorial. In 2019 38th Symposium on Reliable Distributed Systems (SRDS), pages
334-33416, 2019. doi:10.1109/SRDS47363.2019.00046.

Paul S. Rosenbloom. Computing and Computation. The Computer Journal, 55(7):820-824,
July 2012. doi:10.1093/comjnl/bxs070.

Michael E. Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The
topology of public knowledge. SIAM J. Comput., 29(5):1449-1483, 2000. doi:10.1137/
S0097539796307698.

Gadi Taubenfeld and Shlomo Moran. Possibility and impossibility results in a shared memory

environment. Acta Informatica, 33(1):1-20, 1996. Preliminary version in WDAG 1989.

do0i:10.1007/s002360050034.

Peter Wegner. The Evolution of Computation. The Computer Journal, 55(7):811-813, July
2012. doi:10.1093/comjnl/bxs067.

Yunguang Yue, Jie Wu, and Fengchun Lei. The evolution of non-degenerate and degenerate

rendezvous tasks. Topology and its Applications, 264:187-200, 2019. doi:10.1016/j.topol.

2019.06.015.

3:13

CONCUR 2022

https://doi.org/10.1109/SRDS47363.2019.00046
https://doi.org/10.1093/comjnl/bxs070
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1007/s002360050034
https://doi.org/10.1093/comjnl/bxs067
https://doi.org/10.1016/j.topol.2019.06.015
https://doi.org/10.1016/j.topol.2019.06.015

Sequential Decision Making With
Information Asymmetry

Jiarui Gan =
University of Oxford, UK

Rupak Majumdar &
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Goran Radanovic &
Max Planck Institute for Software Systems (MPI-SWS), Saarbriicken, Germany

Adish Singla =
Max Planck Institute for Software Systems (MPI-SWS), Saarbriicken, Germany

—— Abstract

We survey some recent results in sequential decision making under uncertainty, where there is
an information asymmetry among the decision-makers. We consider two versions of the problem:
persuasion and mechanism design. In persuasion, a more-informed principal influences the actions
of a less-informed agent by signaling information. In mechanism design, a less-informed principal
incentivizes a more-informed agent to reveal information by committing to a mechanism, so that the
principal can make more informed decisions. We define Markov persuasion processes and Markov
mechanism processes that model persuasion and mechanism design into dynamic models. Then
we survey results on optimal persuasion and optimal mechanism design on myopic and far-sighted
agents. These problems are solvable in polynomial time for myopic agents but hard for far-sighted
agents.

2012 ACM Subject Classification Theory of computation — Models of computation

Keywords and phrases Bayesian persuasion, Automated mechanism design, Markov persuasion
processes, Markov mechanism processes, Myopic agents

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.4
Category Invited Talk

Funding Rupak Majumdar: This research was funded in part by the Deutsche Forschungsgemeinschaft
project 389792660 TRR 248-CPEC.

1 Introduction

Sequential decision making under uncertainty is a fundamental problem in modeling and
analysis of systems. In concurrency theory and formal verification, many such models have
been studied extensively. In Markov decision processes (MDPs), a single agent observes
the state of the world, picks an action, and the new state of the world is determined by an
uncertain transition relation. The goal of the agent is to find a policy that optimizes her
expected utility, usually over an infinite horizon. In partially observable MDPs (POMDPs),
the state is no longer perfectly observed; the agent gets a signal about the state of the world
and has to find a policy with partial information about the world. Finally, in stochastic
games, multiple agents play against each other. The objectives of the agents can be zero-sum
(the two player, purely adversarial situation) or non-zero sum. The complexity landscape of
these models have been studied extensively. Broadly, full information settings (MDPs) are
polynomial time solvable [14], partial observation settings are undecidable [20, 4], and games
are intermediate in complexity [6, 13, 5].

? Jiarui Gan, Rupak. Majumdar, Go'ran Radanovic, and Adish Singla;

5v icensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 4; pp.4:1-4:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jiarui.gan@cs.ox.ac.uk
https://orcid.org/0000-0003-1280-2134
mailto:rupak@mpi-sws.org
https://orcid.org/0000-0003-2136-0542
mailto:gradanovic@mpi-sws.org
https://orcid.org/0000-0001-6016-4013
mailto:adish@mpi-sws.org
https://orcid.org/0000-0001-9922-0668
https://doi.org/10.4230/LIPIcs.CONCUR.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Sequential Decision Making with Information Asymmetry

There are a number of applications of sequential decision making where the interaction
between agents and the world involve information asymmetry. These are games of imperfect
information on one side, in which one agent influences the behavior of another by selectively
signaling additional information about the state of the world, or incentivizes the other to
provide accurate information about the world. These models have been largely studied in the
economics and artificial intelligence literature, as problems of persuasion or of mechanism
design, but have not received attention in the concurrency theory literature.

In persuasion (also called information design), a knowledgeable principal knows some
aspects of the state of the world and interacts with an agent who does not. However, only the
agent has the capacity to take an action. Since the objectives of the principal and the agent
may be misaligned, the agent may not do the principal’s bidding. The goal of the principal
is to strategically reveal information about the world, through a process of signaling, so that
the agent’s actions optimize the principal’s own interests.

In mechanism design, one or more agents know the state of the world; the principal can
take an action based on the report from the agents. Again, it is possible that the agent
misrepresents the state of the world to optimize their own payoff. The goal of the principal
is to design incentive mechanisms to elicit the agent’s private information about the state of
the world, so as to make more informed decisions.

If the principal and the agent are completely aligned in their utilities, the signals or the
mechanisms involve revealing the unknown information; the more interesting case is when
the objectives are misaligned. Persuasion and mechanism design problems in the sequential
setting involve partial information and strategic interaction but have not been considered in
the concurrency theory literature. The goals of this paper are to provide an introduction to
these models, describe some basic results and pointers to the literature, and to point out
open problems in the domain.

Persuasion. Kamenica and Gentzkow [17] introduced a fundamental and very influential
model of Bayesian persuasion as a formal model for persuasion problems. They consider a
two player game between a principal and an agent. The players share a common prior on the
state of the world, but only the principal observes the realization. The principal commits
to a signaling strategy before the game starts. On observing the realization, the principal
signals the agent and the agent picks an action based on the signal. They each receive a
payoff dependent on the realized state of the world and the action. Kamenica and Gentzkow
characterize the optimal signaling strategy of the principal.

Since the publication of this work [17], Bayesian persuasion has seen many applications
in the field of economics and algorithmic game theory. The basic model has also been
extended in many ways. We refer the reader to the comprehensive survey [16] for pointers
to the literature. Our focus in this survey is on algorithmic problems in dynamic models,
where persuasion is performed repeatedly over time. Work in this direction is fairly new
[12, 23, 15, 26].

Mechanism Design. In automated mechanism design, we consider models where the roles
of the players are reversed: now, the principal is the receiver of information, and commits
to a mechanism that specifies the action they will take upon receiving each signal. The
agent is the signal sender and, knowing the principal’s mechanism, sends signals optimally
in response. Intuitively, to design a good mechanism requires balancing between the goals
of eliciting more information from the agent and of acting optimally based on the elicited
information. The principal aims to find a mechanism that maximizes their overall utility
from the interaction.

J. Gan, R. Majumdar, G. Radanovic, and A. Singla

The model follows the line of work on automated mechanism design, initiated by Conitzer
and Sandholm [7, 8]. It is shown in their work that the problem of computing an optimal
mechanism is NP-hard in general, in settings that allow restrictions to be placed on what
signals can be sent given the true state of the world. We consider models without such
restrictions, which are less expressive in this regard but arguably also captures a wide range
of applications. Following the seminal work of Conitzer and Sandholm, variants of their
model have been proposed and studied [24, 18, 19, 27, 28]. A recent work of Zhang and
Conitzer [28] introduces a dynamic model of automated mechanism design, and studies some
fundamental algorithmic questions for this model. There is a broader literature on various
forms of dynamic mechanism design in economics. We refer the reader to the comprehensive
surveys [22, 2].

Dynamic Models. Most problems in persuasion and mechanism design were studied in the
one-shot setting. More recently, dynamic versions of these models have been introduced to

capture persuasion and mechanism design in sequential decision making [12, 23, 26, 3, 15, 28].

Dynamic models generalize MDPs from a single agent to settings in which a principal and
an agent interact, with an information asymmetry between them. The game is played
over a state space. In addition, there is an external parameter, chosen from a known prior
distribution, that is the source of information asymmetry. In a Markov persuasion process
(MPP), in each step, the principal observes the realizations of the external parameters and
signals the agent to elicit a favorable action. The agent picks the action based on the current
state of the MPP and the signal, both the principal and the agent receive a reward, and
the game moves to the next state based on a probabilistic transition relation. In a Markov
mechanism process (MMP), in each step, the agent observes the realizations of the external
parameters. The agent is incentivized by the principal to provide true information by a
mechanism — a precommitment to act in a certain way. The agent reports the external
parameters as a best response to the precommitment, and the principal chooses an action
based on this information. Both principal and agent receive a reward, and the game moves
to a new state based on the current state and the chosen action.

Dynamic models of persuasion and mechanism design are special cases of stochastic games
of incomplete information [1, 25] and many fundamental insights in characterizing optimal
strategies carry over. By focusing on the subclass of games with persuasion and mechanism
design as the central aspects, we are able to provide specialized algorithmic results that are
applicable to many problems of practical interest.

Myopic and Far-sighted Agents. A new aspect in the study of dynamic persuasion and
mechanism design problems is the nature of the agent. In models of concurrency, we usually
assume that all players are long-lived, that is, survive throughout the game. In MPPs and
MMPs, we distinguish between far-sighted and myopic agents. A far-sighted agent is long
lived and optimizes their expected utility in the long run — it is the “usual case” we study in
concurrent games.

In contrast, a myopic agent is short-lived, and only interested in optimizing the payoff
in the current stage of the game. In a game with myopic agents, the long-lived principal
interacts with a sequence of independent myopic agents, one for each time step. As we shall
see, decision problems often become easier when we deal with myopic agents.

There is good motivation for studying myopic agents in both persuasion and mechanism
design problems. As an example of a dynamic persuasion problem with myopic agents,
consider a ride-sharing app, where the application developer is the long-running principal,

4:3

CONCUR 2022

4:4

Sequential Decision Making with Information Asymmetry

and users of the app can be seen as myopic agents. The users are interested in optimizing
their current commute times. The application developer may have a different goal, that
of minimizing congestion. The application developer may provide a noisy signal about the
status of roads to persuade the commuters to choose routes that minimize overall congestion.

As an example of a dynamic mechanism design problem with myopic agents, consider a
firm that consults with a research organization to decide upon a product strategy [28]. Each
year, the research organization presents its market research. The firm decides to invest in
certain directions based on the reports. The goal of the firm is to have a strong long term
business while keeping costs low. On the other hand, the research organization’s goal can be
myopic — to generate as much revenue from the firm each year, by possibly misrepresenting
market conditions. A mechanism in this case is a compensation strategy of the firm that
ensures each research report truthfully represents market conditions.

Current Status. In this article, we summarize some recent decidability and complexity
results for MPPs and MMPs [15, 28, 26]. We shall see that the principal’s optimal signaling
strategy and optimal mechanism design problems can be solved in polynomial-time in
the infinite horizon setting, against myopic agents. In contrast, we can only show some
intractability for these problems against far-sighted agents but a complete characterization
remains open.

We have collected the basic results of persuasion and mechanism design in this article and
we hope it can serve as the starting point for investigating the specification and verification
of dynamic models with information asymmetry in the context of concurrency theory.

2 Persuasion: Principal Observes, Agents Act

2.1 One-shot Bayesian Persuasion

The basic persuasion model by Kamenica and Gentzkow [17] considers two agents: Sender
and Receiver (who are the principal and agent, respectively). Receiver has a utility function
u(a,w) that depends on her action a from a fixed set A of available actions, as well as a state
of the world w from a set © (chosen by nature). Sender has a utility function v(a,w), that
also depends on the receiver’s action a and w. Both players share a common prior pg on 2.
Sender does not influence the world by picking an action himself, but influences Receiver by
transmitting a signal.

A signal, broadly construed, is some information about the state of the world that Sender
can transmit to Receiver. Let G be a sufficiently large space of signal realizations. A signaling
strategy 7 : @ — A(G) of Sender is a map that associates each realization of the state of
the world to a distribution over G. Using 7, Sender will send a signal g to Receiver with
probability m(w, g) whenever w is observed. Intuitively, the strategy specifies a statistical
relationship between the state of the world and Receiver’s observed data.

For example, one simple signaling strategy is to always reveal the true information, which
always sends a deterministic signal g,, associated with the observed w (i.e., g,, is a message
saying “The current state of the world is w.”, and 7w (w) is a Dirac delta distribution at g,,).
In contrast, if the same signal is sent irrespective of the realized w, i.e., m(w) = 7(w’) for all
w,w’ € Q, then the signaling strategy is completely uninformative: observing the signal gives
Receiver no information about the current realization of w.

The steps of Bayesian persuasion are as follows.

1. Sender and Receiver share a prior pyg.
2. Sender picks a signaling strategy 7 : Q@ — A(G) and commits to it; Receiver observes .

J. Gan, R. Majumdar, G. Radanovic, and A. Singla

3. Nature picks w ~ g and reveals it to Sender.
4. Sender picks g ~ m(w) according to his commitment.

5. Receiver observes the realized g, and takes some action a € A (we describe below how
the action is chosen).

6. Sender receives utility v(a,w) and Receiver receives u(a,w).

Upon receiving a signal g, Receiver updates her posterior belief about the state of the
world using the Bayes’ rule, whereby the following conditional probability is derived:

po(w) m(w,g) (1)

po(w) m(w’,9) "

Pr(w|g,m) =

(wlg,m) S
Receiver picks an action a*(Pr(- [g, 7)) that maximizes E,,p:(.|g,x)[u(a,w)]. By convention,
we assume that Receiver breaks ties in favor of Sender when there are multiple optimal
actions. Given the choice of Receiver, Sender solves

max Bon o Bgnr(yv(a”(Pr(- | g, 7)), w) (2)
to optimize her expected utility, where II is the set of all signaling strategies.

The optimization problem seems complicated at a first glance, since the space G of signals
can be arbitrary, and the choice of 7 influences the utility of Sender both by influencing how
the signal realizations are distributed and by influencing the action that Receiver picks based
on the signal realization. However, we shall show that the problem can be reduced to an
optimization problem of a simpler form.

2.2 The Revelation Principle and Action Advice

According to a standard argument via the revelation principle [21, 17], we can restrict
attention to signaling strategies in the form of action advice without any loss of generality.
Specifically, for any signaling strategy in an arbitrary space of signals, there exists an
equivalent strategy m that uses only a finite set G4 := {g, : a € A} of signal realizations,
where each signal g, corresponds to an action a € A. With the signal g,, Sender “advises”
Receiver to play a. Moreover, we can additionally ensure that 7 is incentive compatible (IC),
which means that Receiver is indeed incentivized to take the corresponding action a upon
receiving g,. Formally, 7 ensures that

EwNPT('mavﬂ')u(a? w) > EwNPr(‘|9a,ﬂ')u(a/7 w)
for all o’ € A, or equivalently:

Z Pr(w | ga,7) (u(a,w) —u(a’,w)) >0 for all a’ € A. (3)
weN

In other words, 7 signals which action Receiver should take and it is designed in a way such
that Receiver cannot be better off deviating from the advised action with respect to the
posterior belief. (Again, we assume that Receiver breaks ties in favor of Sender, which means
following the advice in this case.) We call a signaling strategy that only uses signals in G 4
an action advice, and call it an IC action advice if it also satisfies (3).

4:5

CONCUR 2022

4:6 Sequential Decision Making with Information Asymmetry

In case A and € are finite sets, we can write Sender’s optimization problem as a linear
program (LP) with variables {m(w,g,) | w € Q,a € A} (see, e.g., [11, 10]):

max >0 (@) - 7w, ga) - v(a,w) (4)

weNacA

subject to Z po(w) - m(w, gq) - (u(a,w) —ula’,w)) >0, for a,a’ € A (5)
weN
Z m(w, ga) =1, for w e Q (6)
acA
(W, ga) > 0, forweN,aec A (7)

The variable m(w, g,) denotes the conditional probability of recommending action a when
the state of the world is w. The LP maximizes the expected utility of Sender over the joint
distribution of w and a, subject to incentive compatibility (i.e., (5), where Pr(w | gq,7) in
(3) is replaced by po(w) - m(w, go) according to (1)). Since linear programming can be solved
in polynomial time, the above formulation shows that one-shot persuasion can be solved in
polynomial time when the actions and the external parameters are given explicitly.

» Theorem 2.1 [11]. Sender’s optimization problem can be solved in polynomial time in |A|
and |9].

More generally, Kamenica and Gentzkow showed a characterization of the optimal function
for compact action spaces and payoff functions that are continuous in the action [17].

Given a signal, each signal realization g, induces a posterior belief u, € A(2). The
marginal probability of signal realization g, is Pr[ga] = >, c to(w)-7(w, a) and the posterior
distribution Pr(w | ga,7) = %.

Thus, we can think of a feasible solution of the LP as a distribution over posteriors (an
element of A(A(f2))), one per signal realization, whose expectation equals the prior ug (such
a distribution of posteriors is called Bayes plausible). Thus, if pg is represented as a point
in the simplex A(f), then the signal corresponds to writing 1o as a convex combination of
posterior distributions in A(€2). The incentive compatibility constraints ensure that action a
is preferred by Receiver on the posterior distribution on 2 induced by a.

Each posterior distribution p € A() is associated with a preferred action a*(u) for
Receiver, i.e., the action that maximizes E,,u(a,w). We can plot Sender’s utility as a
function V' : A(2) — R of the posterior: V(p) = Eyopv(a*(p),w). Define cav(V) as the
concavification of V: the pointwise smallest concave function that is an upper bound for V.
Equivalently,

cav(V)(u) = sup{z : (p, 2) € co(V)} (8)

where co(V) is the convex hull of the graph of V. The convex hull co(V) is the set of pairs
(1, z) such that if the prior is yu, there exists a signal with value z. Thus, cav(V)(uo) is the
optimal utility that Sender can achieve when the prior is .

This is a very general result, holding also for compact spaces of actions and continuous
reward functions. It also follows from an older result on games of imperfect information
studied by Aumann and Maschler [1].

Note that if V is already concave, then Sender reveals no information. For example, in the
zero-sum case when the utility functions of Sender and Receiver sum to zero, V' is concave.
On the other hand, if the Sender and Receiver have completely aligned utility functions, V'
is convex and Sender reveals all information.

J. Gan, R. Majumdar, G. Radanovic, and A. Singla

In general, we do not know how to compute the concavification of an arbitrary function
V i A(Q) — R. If the graph of V is semi-algebraic (defined by a Boolean combination
of polynomial inequalities), we can use techniques from the theory of reals, using the
characterization that the concavification of V evaluated at u is sup{z | (i, 2) € co(V)} and
that co(V') is a semi-algebraic set if the graph of V' is semi-algebraic.

The above LP assumes that the world is given explicitly. In case the world is given
symbolically, as valuations to a set of variables, it still works if we assume that the prior
has small (polynomial-size in the size of the problem) support. The optimization problem
can sometimes be solved even when this assumption is not true. Consider the case in

which u(a,w) and v(a,w) are real-valued random variables that can be arbitrarily correlated.

We say actions are independent if u(a) = u(a,w) and u(a’) = u(a’,w) are independent
random variables for distinct actions a # a’, and the same is true for v(a) = v(a,w) and
v(a’) = v(a’,w). Then, the distribution pug is fully specified by the marginal distribution of
the pair (u(a),v(a)) for each action a. We assume that each action’s marginal distribution
has finite support, and refer to each element of the support as a type.

Dughmi and Xu [11] show that in case u(a) and u(a’) are independent and identically
distributed (IID) for a # @/, and v(a) and v(a’) are also IID, Sender’s optimization problem

can be solved in polynomial time in the number of actions n and the number of types m.

This is non-trivial, since the above LP has exponentially many (m™) states of the world. On
the other hand, the problem becomes #P-hard if the distributions are arbitrary.

2.3 Examples

Prosecution. Kamenica and Gentzkow [17] give an example of Bayesian persuasion in a
courtroom setting. A prosecutor (Sender) is trying to convince a judge (Receiver) that a
defendant is guity. When the defendant is guilty, revealing all the evidence will help the
prosecutor, but when the defendant is innocent, revealing all the evidence will likely hurt the
prosecutor’s case. Kamenica and Gentzkow show that when the prosecutor and the judge
are rational Bayesian, a prosecutor can organize their argument to increase the probability
of conviction.

Concretely, assume that the judge has two actions: acquit or convict. The states of the
world correspond to the defendant’s status: guilty or innocent. The judge gets a utility of 1
for choosing the just action (convict the guilty and acquit the innocent) and utility 0 for
the unjust action. The prosecutor gets a utility of 1 if the judge convicts and 0 otherwise
— regardless of the defendant’s status. Assume that the prior Pr[guilty] = 0.3 is common
knowledge.

We model the prosecutor’s possible investigations into the case as distributions 7 (- | guilty)
and 7 (- | innocent). The prosecutor has to pick 7 and truthfully report the realization to
the judge (the commitment step). (It is required by law that the prosecutor cannot hide
evidence, even it makes a conviction unlikely.)

If there is no communication, e.g., if the investigation is completely uninformative, the
judge always acquits, since innocence is more likely than guilt according to the prior. If
the investigation is fully informative, i.e., reveals the defendant’s status with probability 1,
then the judge convicts 30% of the time. However, suppose that the prosecutor picks an
investigation as follows:

m(acquit | innocent) = m(acquit | guilty) =0

| W N

m(convict | innocent) = m(convict | guilty) = 1

4:7

CONCUR 2022

4:8

Sequential Decision Making with Information Asymmetry

This constitutes an IC action advice for the judge. Notice that the judge convicts with
probability 60% (Bayes’ rule!). This is true even though the judge knows that 70% of
defendants are innocent and even though the judge is fully aware that the prosecutor’s advice
(the signal) is designed to maximize the probability of conviction!

Traffic Control. Das et al. [9] describe a simple example of persuasion to improve congestion
in uncertain traffic conditions. Imagine a traffic network with two paths between a source
and an origin. Travel time on Path I is independent of the number of agents using it, but
depends on an uncertain state of nature (e.g., Path I is a highway that is prone to repair).
Travel time on Path II depends on the number of agents taking the path: the more agents
take the path, the more time it takes. The goal of Sender (a social planner) is to signal
the state of Path I to the agents so that the congestion on Path II is reduced to a social
optimum. Hence, each agent is an individual Receiver, and they are modeled as non-atomic
players, who individually is a zero-measure and have negligible influence to the system (but
collectively their influence integrates).

Let us be more precise. There are two paths P; and P», and the state of the world is
w € {0,1}, both states are equally likely. The travel times are given by ¢(P;) = w and
c(P) = 1 + 2s. Agents seck to minimize their travel costs.

If Sender can mandate how everyone drives, the socially optimum cost is calculated as
follows. If w = 0, everyone uses P; and the total cost is zero. If w = 1, the socially optimum

17

move is to send % of the agents to P so that the aggregate cost is 5. Thus, the expected
17

aggregate travel cost is 5.

Suppose Sender provides exact information. Then, when w = 1, agents will crowd P
until the costs of the two paths are equalized: % +2s=1,0r s = % The aggregate cost is 1
and therefore the expected aggregate cost is %, which is worse than the optimum.

Now consider the following signaling strategy.

m(take P |w =0) = m(take Py |w =0) =

m(take P |w=1) =

1 0
5 1
= w(take P |w=1) ==
£ (take Py | w=1) = ¢
(Namely, when w = 1, we send the message “take P;” to 5/6 of the agents and “take Py” to
the rest.) Then, when w = 0, everyone takes P; and the cost is zero. When w = 1, we expect
é fraction to go on P,. The overall expected cost is the same as the optimal: é—g. Thus, the
social planner persuades some fraction of people to take P;.

We observe that the signal is incentive compatible. Upon seeing the advice “take P;” the
expectation of the cost of Py is

Jon

Prlw=1]take P,]-1= +%— = —
r[w | take P] 51
(where Pr{w =1 | take P] is the posterior belief given 7) and the expectation of the cost of
P2 is
1 1 16 5
Thus, the agent should pick P;. Similarly, on seeing “take P»”, the expectation of Pj is 1
and the expectation of P is % < 1. Thus, the agent should again pick Ps.

J. Gan, R. Majumdar, G. Radanovic, and A. Singla

2.4 Markov Persuasion Processes

We now extend the model of Bayesian persuasion to the sequential setting. Our formal
model, called Markov persuasion processes (MPP),! is an MDP with reward uncertainties,
given by a tuple

M = <SvAaP7Q7(MS)s€Sau7’U> (9>

that represents the repeated interaction between Sender and Receiver.

Similar to a standard MDP, S is a finite state space; A is a finite action space available to
Receiver; P : Sx Ax S — [0, 1] is the transition dynamics of the state. When the environment
is in state s and Receiver takes action a, the state transitions to s’ with probability P(s,a,s’);
both Sender and Receiver are aware of the state throughout. Meanwhile, rewards are generated
for both Sender and Receiver, and are specified by the reward functions u : S x 2 x A = R
and v: S x Q x A — R, respectively. That is, unlike in a standard MDP, the rewards in our
setting also depend on an external parameter w € § (akin to the state of the world in the
basic model). This parameter captures an additional layer of uncertainty of the environment.
At each state s € S, we assume that the parameter follows a distribution us € A(Q) and is
drawn anew every time the state changes. ps is common prior knowledge shared between
Sender and Receiver, but only Sender has access to the realization of w.

Since the actions are taken only by Receiver, Sender does not directly influence the
state. As in Bayesian persuasion, Sender influences Receiver’s action by signaling. We only
consider Markovian signaling strategies, whereby signals only depend on the current state
(independent of the history). As in the one-shot case, a revelation theorem argument shows
that Sender only needs to consider IC action advice at each state.

Formally, a signaling strategy m = (75)ses of Sender consists of a function 7, : @ — A(G4)
for each state s € S. Sender will commit to a strategy before the start of play. In every
step, upon observing the realization of the external parameter w, Sender will send an action
advice sampled from 74 (w) when the current state is s.

2.5 Optimal Signaling Problem

Similarly to the one-shot setting, we take Sender’s point of view and investigate the problem
of optimal signaling strategy design: given M, find a signaling strategy 7 that maximizes
Sender’s (discounted) cumulative reward. The cumulative reward is defined as

T
E lz V- o(se, ar,wi)
t=0

where z = (z5)ses is the distribution of the starting state, v € [0,1) is a discount factor, T is
a given horizon, and the expectation is taken over the trajectory (s;,ws,at)i_o induced by z,
the signaling strategy =, and the dynamics P. If T is finite, we call the problem the finite
horizon setting, and if T' is infinite, we call the setting infinite horizon.

z,m, P, (10)

Finally, we introduce a behavioral model for Receiver. We will consider two major types
of Receivers — myopic and far-sighted. A myopic Receiver only cares about their instant
reward in each step, whereas a far-sighted Receiver considers the cumulative reward with
respect to a discount factor 4 > 0 (which need not be equal to 7).

! The nomenclature comes from [26].

4:9

CONCUR 2022

4:10

Sequential Decision Making with Information Asymmetry

In summary, the game proceeds as follows. At the beginning, Sender commits to a
signaling strategy m and announces it to Receiver. Then in each step, an external parameter
w ~ s is drawn (by nature) according to the state s € S of the MPP; Sender observes
w € w, samples an action advice g ~ 7s(w), and sends g to Receiver. Receiver receives g,
updates their belief about w and decides an action a € A to take. Sender receives v(s,w,a)
and Receiver receives u(s,w,a). The state then transitions to s’ ~ P(s,a,-), which both
players observe. The game proceeds until the horizon T (or forever, if T = o).

2.6 Solving the Optimal Signaling Problem
2.6.1 Myopic Receiver

We first consider the case where Receiver is myopic. In this case, Receiver aims to maximize
her reward in each individual step. Upon receiving a signal g in state s, Receiver takes a
best action a € A, which maximizes the immediate expected reward E.,p(.g,r,)u(8,a,w).
Think of a myopic Receiver as a sequence of “short-lived” Receivers, one for each time step.
Receiver in step t plays a one-shot Bayesian persuasion game with Sender, collects their
reward, and disappears.

We consider the problem of computing an optimal signaling strategy in an infinite-horizon
MPP (T = oo) with a myopic Receiver. We call this problem OPTIMALSIGNALING -MYOPIC.

» Theorem 2.2 [15]. OPTIMALSIGNALINGo,-MYOPIC can be solved in polynomial time.

The proof of Theorem 2.2 is via a reduction from the problem to linear programming.
The approach is as follows.

We can easily characterize the outcome of an IC action advice 7: at each state s, since
Receiver is incentivized to follow the advice, with probability ¢7(w,a) := ps(w) - 7s(w, ga)
they will take action a when the realized external parameter is w. Thus, ¢7 is a distribution
over 2 x A.

We then define the following set A; C A(O© x A), which contains all such distributions
that can be induced by some IC action advice:

As = {¢7 € A(2 x A) : w is an IC action advice} .
We can now view the problem facing Sender as an (single-agent) MDP
M = <Sa ('AS)SES? P*,U*> ;

where S is the same state space in M; A, defines an (possibly infinite) action space for
each s; the transition dynamics P* : S x A(Q x A) x S — [0,1] and reward function
v*: S x A(Q x A) — R are such that

P*(s,x,5") =B a)xP(s,a,8) and v*(s,x) =E(, q)uxv(s,a,w)

for any x € A,. Namely, M* is defined as if Sender can choose actions (which are (w,a)
pairs) freely from A, whereas the choice is actually realized through persuasion. A policy o
for M* maps each state s to an action x € A,, and it corresponds to an IC action advice
7 in M, with ¢T = o(s) for all s. The problem of designing an optimal action advice then
translates to computing an optimal policy for M*.

The standard approach to computing an optimal policy for an MDP is to compute a
value function V : .S — R that satisfies the Bellman equation:

Vi(s) = * . P NV(s for all S.
(s) max v*(s,x) + v S,zezq (s,x,8)-V(s) orall s €

J. Gan, R. Majumdar, G. Radanovic, and A. Singla

There exists a unique solution to the above system of constraints, from which an optimal
policy can be extracted. The solution is posed as the following linear program over variables

{V(s):s€ S}

min Z zs - V(s) (11)
ses
subject to V(s) > v*(s,x) + 7 - Z P*(s,x,8")-V(s') forallseS,xeAs (12)
s’€S

The optimal value of this LP directly gives the cumulative reward of optimal policies under
a given initial state distribution z.

The issue with this LP formulation is that there may be infinitely many constraints as
(12) must hold for all x € A,. This is unlike MDPs with a finite action space, where there
are a finite number of constraints, one for each action.

Gan et al. [15] show that LP (11) can nevertheless be solved in polynomial time by using
the ellipsoid method. The key to this approach is to implement the separation oracle in
polynomial time. For any given value assignment of the variables (in the above LP, values of
V(s)), the oracle should decide correctly whether all the constraints of the LP are satisfied
or not and, if not, output a violated one.

Implementing the separation oracle for the LP requires solving maxxec 4, v*(s,x) + 7 -
Yoes P¥(8,%x,8") - V(s') = V(s) for all s € S: by checking if the maximum value is positive,
we can identify if (12) is violated for some x € A,. Indeed, the set of IC action advice
can be characterized by (5)—(7). Hence, we obtain the following LP implementation of the
separation oracle, where {z(w,a) : w € Q,a € A} and {7s(w, g,) : w € Q,a € A} are the
variables.

max v*(s,x) 4" Z P*(s,x,8")-V(s') = V(s)

s'es
st. z(w,a) = ps(w) - ms(w, gq) foralwe Q,ae A,s€ S
Z ps(w) - ms(w, ga) - (u(s,a,w) —u(s,a’;w)) >0, for a,a’ € A,s € S
weN
Zws(w,ga):l, forwe QsesS
a€A
ms(w, gq) > 0, forweQacAsecS

Since the ellipsoid method runs in polynomial time, the tractability of
OPTIMALSIGNALING ,-MYOPIC follows immediately. By exploiting the duality of linear
programming, one can provide a different, “direct” encoding into a linear programming
problem as well (see [15]).

» Remark 2.3 Finite Horizon. When the horizon is finite, one can set up the Bellman equation
and evaluate it by backward induction. Each step in the process solves a one-shot persuasion
problem using the linear programming formulation. This gives a polynomial time algorithm
when the time horizon is given in unary. Wu et al. [26] study several variants of this problem,
as well as the setting of reinforcement learning.

» Remark 2.4. In the reachability problem for Markov persuasion processes, there is a subset
of marked states and Sender receives a unit reward if and only if one of these states is
reached along a trajectory. The reachability problem asks what is the expected probability
that the subset is reached. The above linear programming formulation can be used to solve
the reachability problem against myopic Receivers. Since the reachability problem is at the

4:11

CONCUR 2022

4:12

Sequential Decision Making with Information Asymmetry

core of model checking logics on MDPs, we should be able to build up a logic on Markov
persuasion processes and obtain efficient model checking algorithms in case of myopic agents.
We leave the design of appropriate logics and model checking, as well as the computation of
optimal signals for omega-regular properties, as future work.

2.6.2 Far-sighted Receiver

A far-sighted (FS) Receiver looks beyond the immediate reward and optimizes the cumulative
reward

T
> 3t ulse, ap,wi)

t=0

E

z,m, P|, (13)

where, as in (10), z = (z5)secs is the distribution of the starting state, 4 € [0,1) is a discount
factor possibly different from Sender’s discount factor, T is the horizon, and the expectation
is taken over the trajectory (s, a:,w;)_, induced by the initial distribution z, the signaling
strategy m, and the dynamics P.

When facing an FS Receiver, we cannot define a set A, independently for each state.
Sender needs to take a global view and aim to induce Receiver to use a policy that benefits
Sender. We consider the problem of optimal signaling strategy design in an infinite horizon
setting against an FS Receiver, called OPTIMALSIGNALING.-F'S.

At this point, we know very little about the decidability and complexity of this problem
or a characterization of optimal strategies. For example, we know that Sender can do better
with history-dependent signaling. We also know that the problem is hard.

» Theorem 2.5 [15]. Assuming that P # NP, OPTIMALSIGNALING-F'S does not admit

any polynomial-time /\1175 -approzimation algorithm for any constant € > 0, where X is the

number of states s € S in which the prior distribution s is non-deterministic (i.e., supported
on at least two external parameters). This holds even when |©| = 2 and the discount factors
7,5 € (0,1) are fized.

The proof of Theorem 2.5 is via a reduction from the MAXIMUM INDEPENDENT SET
problem, which is known to be NP-hard to approximate [29].

2.6.3 Advice-myopic Receiver

Between the tractable (myopic) Receivers and the intractable (FS) Receivers lie the advice-
myopic Receivers. An advice-myopic (AM) Receiver accounts for the cumulative future
rewards just as an F'S Receiver, but behaves myopically in ignoring the future signals of
Sender. In other words, an AM Receiver always assumes that Sender will disappear in the
next step and relies only on their own prior knowledge to estimate any future payoff.

» Theorem 2.6 [15]. OPTIMALSIGNALINGso-AM is solvable in polynomial time.

The idea is that, since an AM Receiver does not consider future signals, their future
reward is independent of Sender’s signaling strategy. One can compute the future payoff in
polynomial time by fixing the uninformative signal for Sender and solving the resulting MDP.
This payoff is added to the reward function of the AM Receiver, but now we can consider
Receiver to be myopic since the future payoffs have been taken into account.

The interest in AM Receiver is that an optimal signaling policy of Sender assuming an
AM Receiver can be used to define a strategy against an arbitrary FS Receiver. The idea
is to provide a threat: if Receiver ever deviates from the action advice, Sender will forever
provide only uninformative signals. One can show that this threat strategy enables Sender
to get an expected payoff that is at least as much against any AM Receiver.

J. Gan, R. Majumdar, G. Radanovic, and A. Singla

External parameter

Wa Wy
a (1,1) (-1,0)
b (_170) (171)

¢ (0.1,0)

Figure 1 A simple example from [15].

The threat strategy uses one bit of memory (to remember if Receiver had deviated
from the advice). However, this threat-based strategy may not be an optimal one-memory
strategy. Indeed, for any positive integer k, the problem of computing an optimal k-memory
strategy against F'S Receivers is inapproximable (via an adapted version of the reduction for
proving Theorem 2.5). In contrast, in the myopic and advice-myopic settings, since Receiver’s
behavior is Markovian, the optimal signaling strategies we designed remain optimal even
when we are allowed to use memory-based strategies.

2.7 Example

Figure 1 shows a simple example to distinguish myopic, far-sighted, and advice-myopic
Receivers. In the MPP, Sender wishes to reach ss while maximizing rewards. Transitions
are deterministic. Each edge is labeled with the corresponding action and (in the brackets)
rewards for Receiver and Sender, respectively. The rewards for state-action pairs (sg,a) and
(s0,b) (dashed edges) also depend on the 2-valued state of the world {w,,ws}, as specified
in the table. The state of the world is sampled uniformly at random at each step. Assume
discount factor % both for Sender and for Receivers.

With no signaling, Receiver will always take action ¢ in sg, so Sender will obtain payoff 0.

Sender can reveal information about the external parameter to attract Receiver to move to
s1. If Receiver is myopic, Sender can reveal full information, which leads to Receiver moving
to s1, taking action b, and ending in s5. As a result, Sender obtains payoff 6.

However, if Receiver is F'S, this strategy will not work. Receiver will loop between sg
and s1, resulting in overall payoff 4/3 for Sender. To improve, Sender can choose to be less
informative in sg, e.g., advising Receiver to take the more profitable action 10% of the time
and a uniformly sampled action in {a, b} the remaining 90% of the time. Receiver will move

to s1 under this signaling, breaking ties in favor of Sender. Sender’s expected payoff is 5.55.

Alternatively, Sender can also use the following threat-based strategy, which again yields
a payoff of 6. Sender always reveals the true information in sg, advises Receiver to take b in
s1, and threatens to stop providing any information if Receiver does not follow the advice.
The outcome of this strategy coincides with how an advice-myopic Receiver behaves. Such a
Receiver will choose b at s; as future disclosures are not considered.

2.8 Extensions to the Model

In our model of MPPs thus far, the external parameter w is picked independently at each
step. We can envision a more general model, in which the external parameter also evolves
according to a stochastic process. For example, we can assume that the external parameter
evolves according to a Markov chain. Such extensions have been studied [12, 23], but we do
not know of any general algorithmic results.

4:13

CONCUR 2022

4:14

Sequential Decision Making with Information Asymmetry

One can show that against myopic Receivers, the optimal value can be calculated on a
Markov process on the space of distributions in S x A(Q); the initial belief is the initial
distribution of the state of the world and the value function maps beliefs to values and is the
fixpoint of a functional mapping beliefs to beliefs. The functional is a contraction map on a
suitable topological space, and therefore the fixpoint exists and is unique. While one can
approximately evaluate the fixpoint numerically, we do not know how to characterize the
complexity of the decision problem. Since the belief space A(Q) is infinite, we can no longer
set up a (finite) linear programming problem nor argue about termination of the iterations.

3 Mechanism: Agent Observes, Principal Acts

A dual scenario of persuasion is one where Receiver is the principal and Sender is the agent.
In this case Receiver can commit to a mechanism to influence Sender’s signaling behavior.
A mechanism o : G — A(A) is a map from Sender’s signal space G to a distribution over
the action space A, which specifies how Receiver will act, upon receiving each signal from
Sender.

3.1 One-shot Mechanism Design

In the one-shot setting, the steps in this scenario are as follows.

1. Sender and Receiver share a prior pyg.

Receiver picks a mechanism o : G — A(A) and commits to it; Sender observes o.
Nature picks w ~ pg and reveals it to Sender.

Sender observes w and sends a signal g € G (we describe below how this signal is chosen).
Receiver observes g and takes an action a ~ o(g) according to her commitment.

A

Sender receives utility v(a,w) and Receiver receives u(a,w).

In Step 4, as a rational player, Sender best-responds to the mechanism o, sending a signal
so that the action taken by Receiver in Step 5 maximizes Sender’s payoff in expectation.
Namely, the following signal is sent:

g € arg I;’leaé(Egmo(g)v(a,w). (14)

Here, one subtlety, similar to the one in the persuasion setting, is that there is actually no
predefined signal space or one that is agreed upon between the two players, so the mechanism
is not well-defined if Sender picks a signal outside of G. The revelation principle then comes
in again, which now says that it is without loss of generality to consider direct mechanisms,
whereby the signal space is restricted to a finite set G := {g,, : w € Q}; each signal g, € Gq
corresponds to a realization of the state of the world. In other words, the interaction in
Step 4 can be viewed as an information elicitation process, where Receiver asks Sender: what
is the realization of the external parameter? Sender answers w by sending the corresponding
signal g,,.

Specifically, given an arbitrary mechanism o : G — A(A), an equivalent mechanism
¢ : Ga — A(A) can be constructed by letting ¢(g,,) = o (f(w)) for all w € Q, where f : Q@ — G
is a map defined by (14) (by fixing an arbitrary tie-breaking rule to select g in case there are
multiple optimal signals). Tt is not hard to see that ¢ induces an equivalent signaling behavior
of Sender and the same payoffs in Step 6. Moreover, it also elicits truthful information from
Sender, incentivizing Sender to send g, whenever the realization is w.

J. Gan, R. Majumdar, G. Radanovic, and A. Singla

In summary, the revelation principle indicates that it is without loss of generality to
consider mechanisms that are both direct and IC. Given this result, the problem of computing
an optimal mechanism for Receiver can be formulated as the following LP with variables
{0(gw,a) i w € Q,a € A}, i.e., 0(gy,a) is the probability of Receiver taking action a upon
receiving g,,.

max 303 () - o(gura) - ula,w) (15)

w€ENacA

subject to Z 0(gw,a) - v(a,w) > Z 0(guw,a) - v(a,w), for w,w’' € A (16)
acA a€cA
Z 0(gw,a) =1, forae A (17)
acA
0(gu,a) >0 forweN,ac A (18)

The formulation takes a form symmetric to LP (4). The first constraint requires o to be IC.

3.2 Markov Mechanism Process

Moving to the dynamic setting, we consider the same MDP M = (S, A, P,Q, (1is)ses, U, V)
as in (9). Receiver commits to a state-dependent mechanism o, : Go — A(A). At every step,
both players observes the state s of M, and nature samples an external parameter w ~ .
Sender observes w and sends a signal g to Receiver. Receiver plays an action a ~ o(g)
according to a pre-committed state-dependent mechanism. Consequently, rewards v(s, a, w)
and u(s, a,w) are generated for the players, and M transitions to a next state s’ ~ P(s,a,-).
We ask the infinite-horizon optimal mechanism design problem from Receiver’s prospective. In
what follows we present a polynomial-time algorithm for this problem when Sender is myopic.
The approach is similar to the LP-based algorithm for OPTIMALSIGNALING ,-MYOPIC.

3.3 Optimal Mechanism Design for Myopic Sender

Call the optimal mechanism design problem OPTIMALMECHANISM o,-MYOPIC when Sender
is myopic.

» Theorem 3.1. OPTIMALMECHANISM,-MYOPIC can be solved in polynomial time.

The proof is similar to that of Theorem 2.2. We reduce the problem to linear programming
and use the ellipsoid method. We define the set of possible outcomes of a direct IC mechanism
o as follows:

As ={¢7 € A(Q x A) : 0 is a direct IC mechanism},

where ¢7 is a distribution with ¢J(w, a) := ps(w)-0s(gw, @) being the probability that Receiver
takes action a while the realized external parameter is w. The problem facing Receiver
then reduces to an (single-agent) MDP M* = (S, (As)ses, P*,u*), where the transition
dynamics P* and reward function u* are such that P*(s,x,s") = E, .)~xP(s,a,s"), and
u*(5,%x) = B q)~xt(s, w,a) for any x € A;. The follwoing LP, similar to LP (11), is then
devised to compute an optimal mechanism (with variables {V (s) : s € S}).

min Z zs - V(s) (19)
ses

subject to V(s) > u*(s,x) + - Z P*(s,x,8) - V(s) forse S;xe A (20)
s'es

4:15

CONCUR 2022

4:16

Sequential Decision Making with Information Asymmetry

The separation oracle of this LP can further be implemented by solving the following LP for
all s € S, where {z(w,a) : w € Q,a € A} and {05(gu,a) : w € Q,a € A} are the variables.

max u'(s,x)+y- Z P*(s,x,8") - V(s') = V(s)

s'eS
subject to z(w,a) = pus(w) - 0s(gw, a) forse S, weQae A
Zas(gw,a) ~v(s,a,w) > Zas(gw/,a) ~v(s,a,w), for w,w' € A,s €S
acA acA
ng(gw’a):]-v forae A,se S
a€A
os(gw,a) >0 forweQaecAseS

» Remark 3.2. Zhang and Conitzer [28] studied a more general model in the finite-horizon
case and consider history-dependent mechanisms. In their model, Receiver cannot observe
the state of the MDP and has to rely on Sender to make observations; essentially, the state
is equivalent to the external parameter in our model but follows a stochastic process. They
show that the problem is polynomial time solvable in the finite horizon case when Sender is
myopic, but NP-hard to approximate when Sender is FS. They also characterize optimal
mechanisms and show that the optimal mechanism against an F'S sender depends on the
history of state-action trajectories, as well as the current state. Note that the NP-hardness
does not imply the hardness of the optimal mechanism design problem we defined against
an FS Sender, where the goal is to compute an optimal Markov mechanism for an infinite
horizon, whereas the external parameter is sampled independently in each step. We leave
the complexity of this problem open for future work.

4 Conclusion

We have described some basic results in the theory of Markov decision processes with
information asymmetry. We show that in the two settings we study, persuasion and mechanism
design, one can obtain optimal signaling policy and optimal mechanism design in polynomial
time against myopic agents. As we point out throughout the article, many algorithmic
questions in these domains remain open. While the models have been applied to many
problems in economics and game theory, their applications to system design have not been
explored so far. We hope our article can act as a starting point for studying these models
and their algorithmic properties, in the context of concurrency theory and system design.

—— References

1 Robert J. Aumann and Michael B. Maschler. Repeated Games with Incomplete Information.
MIT Press, 1995.

2 Dirk Bergemann and Juuso Véliméki. Dynamic mechanism design: An introduction. Journal
of Economic Literature, 57(2):235-74, 2019.

3 Andrea Celli, Stefano Coniglio, and Nicola Gatti. Private Bayesian persuasion with sequential
games. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’20), pages
1886-1893, 2020.

4 Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol. What is decidable about
partially observable markov decision processes with w-regular objectives. J. Comput. Syst.
Sci., 82(5):878-911, 2016. doi:10.1016/j.jcss.2016.02.009.

5 Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic w-regular games. J.
Comput. Syst. Sci., 78(2):394-413, 2012. doi:10.1016/j.jcss.2011.05.002.

https://doi.org/10.1016/j.jcss.2016.02.009
https://doi.org/10.1016/j.jcss.2011.05.002

J. Gan, R. Majumdar, G. Radanovic, and A. Singla

10
11

12
13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203-224, 1992.
doi:10.1016/0890-5401(92)90048-K.

Vincent Conitzer and Tuomas Sandholm. Complexity of mechanism design. In Adnan Darwiche
and Nir Friedman, editors, Proceedings of the 18th Conference in Uncertainty in Artificial
Intelligence (UAI’02), pages 103—-110. Morgan Kaufmann, 2002.

Vincent Conitzer and Tuomas Sandholm. Self-interested automated mechanism design and
implications for optimal combinatorial auctions. In Proceedings of the 5th ACM Conference
on Electronic Commerce (EC°04), pages 132-141, 2004.

Sanmay Das, Emir Kamenica, and Renee Mirka. Reducing congestion through information
design. In Proceedings of the 55th Allerton Conference on Communication, Control, and
Computing, pages 1279-1284, 2017.

S. Dughmi. Algorithmic information structure design. ACM SIGecom FExch., 15(2):2-24, 2017.
Shaddin Dughmi and Haifeng Xu. Algorithmic Bayesian persuasion. In Daniel Wichs and
Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 412—-425. ACM,
2016. doi:10.1145/2897518.2897583.

J. Ely. Beeps. American Economic Review, 107(1):31-53, 2017.

Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other
fixed points. SIAM J. Comput., 39(6):2531-2597, 2010. doi:10.1137/080720826.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.
Jiarui Gan, Rupak Majumdar, Goran Radanovic, and Adish Singla. Bayesian persuasion
in sequential decision-making. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence, (AAAI’22). AAAT Press, 2022.

Emir Kamenica. Bayesian persuasion and information design. Annual Review of Economics,
11:249-272, 2019.

Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. American Economic Review,
101(6):2590-2615, 2011.

Andrew Kephart and Vincent Conitzer. Complexity of mechanism design with signaling costs.
In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’15), pages 357-365, 2015.

Andrew Kephart and Vincent Conitzer. The revelation principle for mechanism design with
reporting costs. In Proceedings of the 2016 ACM Conference on Economics and Computation
(EC’16), pages 85-102, 2016.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Artif. Intell., 147(1-2):5-34, 2003.
do0i:10.1016/50004-3702(02)00378-8.

Roger B. Myerson. Incentive compatibility and the bargaining problem. Fconometrica,
47(1):61-73, 1979.

Alessandro Pavan. Dynamic mechanism design: Robustness and endogenous types. In Advances
in Economics and Econometrics: Eleventh World Congress, volume 1, pages 1-62, 2017.

J. Renault, E. Solan, and N. Vieille. Optimal dynamic information provision. Games and
Economic Behavior, 104:329-349, 2017.

Tuomas Sandholm, Vincent Conitzer, and Craig Boutilier. Automated design of multistage
mechanisms. In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI’07), volume 7, pages 1500-1506, 2007.

Sylvain Sorin. A First Course on Zero-Sum Repeated Games. Springer, 2008.

Jibang Wu, Zixuan Zhang, Zhe Feng, Zhaoran Wang, Zhuoran Yang, Michael 1. Jordan,
and Haifeng Xu. Sequential information design: Markov persuasion process and its efficient
reinforcement learning. CoRR, abs/2202.10678, 2022. arXiv:2202.10678.

Hanrui Zhang, Yu Cheng, and Vincent Conitzer. Automated mechanism design for classification
with partial verification. In Proceedings of the 25th AAAI Conference on Artificial Intelligence
(AAATI’21), volume 35(6), pages 5789-5796, 2021.

4:17

CONCUR 2022

https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1145/2897518.2897583
https://doi.org/10.1137/080720826
https://doi.org/10.1016/S0004-3702(02)00378-8
http://arxiv.org/abs/2202.10678

4:18 Sequential Decision Making with Information Asymmetry

28 Hanrui Zhang and Vincent Conitzer. Automated dynamic mechanism design. Advances in
Neural Information Processing Systems (NeurIPS’21), 34, 2021.

29 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC’06), pages 681-690. Association for Computing Machinery, 2006.

Involved VASS Zoo

Wojciech Czerwinski &

University of Warsaw, Poland

—— Abstract

We briefly describe recent advances on understanding the complexity of the reachability problem
for vector addition systems (or equivalently for vector addition systems with states - VASSes). We
present a zoo of a few involved VASS examples, which illustrate various aspects of hardness of
VASSes and various techniques of proving lower complexity bounds.

2012 ACM Subject Classification Theory of computation — Parallel computing models
Keywords and phrases vector addition systems, reachability problem, low dimensions, examples
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.5

Category Invited Talk

Funding Wojciech Czerwinski: Supported by the ERC grant INFSYS, agreement no. 950398.

1 Introduction

Vector addition systems and essentially equivalent Petri nets are one of the most natural
models of computation. They are also widely used in practise [21]. A convenient way to work
with vector addition systems is to consider its extension by states (which is also essentially
equivalent), namely vector addition systems with states (VASSes). A d-dimensional VASS
(shortly a d-VASS) is a finite automaton equipped with d integer counters. Each transition
can increase or decrease the counters by fixed values. Importantly, no counter can be ever
decreased below zero. The counter represents the current number of items of some resource
in the modelled system, thus it is natural to assume that this number is nonnegative.

» Example 1. The following 3-VASS was introduced in [9], we call it the HP-gadget after
the names of authors of [9]. This VASS has interesting properties, which we use in the sequel.

Transition colours are just to distinguish particular transitions, they have no semantics in
the VASS behaviour.

(0,0,0)

(—1,1,0) quQ@,Lo)
(0,0, 1)

The following is an example of a run
p(27 07 7) — p(la 17 7) — p(07 2a 7) — q(07 27 7) — q(27 17 7) — Q(47 07 7) — p(43 07 6)

Observe that in a similar way there is a run from p(k,0,n) to p(2k,0,n — 1): we apply k
times the blue transition reaching p(0, k,n), then once the black transition reaching ¢(0, k, n),
then k times the green transition reaching ¢(2k,0,n) and finally once the red transition
reaching p(2k,0,n — 1). Intuitively in the state p we transfer value k from the first counter
to the second one and then jump to state ¢g. In the state ¢ we transfer back value k to the

© Wojciech Czerwinski;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 5; pp. 5:1-5:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:wczerwin@mimuw.edu.pl
https://orcid.org/0000-0002-6169-868X
https://doi.org/10.4230/LIPIcs.CONCUR.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Involved VASS Zoo

first counter while multiplying it by 2. Finally we jump back to the state p decreasing the
third counter by one. We will use similar approach many times in the sequel. Notice that
repeating this process n times we have the following run

p(1,0,n) — p(2,0,n —1) — ... — p(2"71,0,1) — p(2",0,0),

where each black arrow represents a sequence of transitions (in the sequel we often draw a
sequence of transitions as one arrow). We also have

p(2",0,0) — p(z,y,0)

for any = +y = 2", so the set of configurations reachable from p(1,0,n) is of at least
exponential size.

On the other hand the size of the reachability set of p(1,0,n) (set of configurations
reachable from p(1,0,n)) is finite. Indeed, the red transition can be fired at most n times and
it is easy to see that in between of two firings of the red transition all the other transitions
also have to be fired only finitely many times. Thus the above example is the first interesting
one: the reachability set is finite, but of at least exponential size (in that case of exactly
exponential size).

Various decision problems for VASSes are studies since the 70-ties (with the proviso that
in those times they were known under the name of Petri nets). Probably the most central
one is the reachability problem. It asks whether in a given VASS there is a run from a given
source configuration, to a given target configuration. A configuration is a state together
with a counter valuation. Another related fundamental problem is the coverability problem,
which asks whether in a given VASS there is a run from a given source configuration to a
configuration which is above a given target configuration. We say that one configuration is
above the other one if it has the same state, but counter values may be higher.

2 History of the problem

The reachability and coverability problems are considered since the 70-ties. The first milestone
result was ExpSpace-hardness of the coverability problem by Lipton in 1976 [17]. Notice that
this implies ExpSpace-hardness of the reachability problem, as coverability can be reduced
to reachability by adding to a VASS additional transitions decreasing counters in the target
state (one transition for each counter). In 1978 Rackoff has proven that the coverability
problem is in ExpSpace [19]. He achieved it by showing that if there is a run from the source
configuration s to some configuration ¢’ > ¢ (namely ¢’ is above t) then there is also some
short run from the source configuration s to some configuration ¢ = t, where by short be
mean at most doubly-exponential in the input size. This approach, by small witness (which
is often a short run) turns out to be successful in many cases for the reachability problem in
VASSes. In 1982 finally decidability of the reachability problem was proved by Mayr [18].
The construction was very involved, so the follow-up works by Kosaraju and Lambert tried
to simplify the solution and phrase it in a bit simpler setting [10, 11]. This construction is
currently often known by the name KLM decomposition, as it decomposes the input VASS
into many simpler ones.

After these breakthrough results there was a long period of not much progress on the
reachability problem. The community tried to improve the state of art, but it was hard, so
results about VASSes are scarce in the 90-ties. In 2009 Haase at al. proved that in 1-VASSes
with numbers on transitions encoded in binary (we call such VASSes binary) the reachability

W. Czerwinski

problem is NP-complete [8]. It is easy to show that for unary 1-VASSes the problem is
NL-complete. More progress on low dimensional VASSes followed. In 2015 Blondin at el.
proved that in binary 2-VASSes the reachability problem is PSpace-complete [1], while a year
later this result was improved by Englert at el. to NL-completeness in unary 2-VASSes [6].
Both the upper complexity bounds in dimension two were shown by the use of short run
approach: authors of [1] proved that if there is any run from the source to the target in
binary 2-VASS then there is also one of at most exponential length, while in [6] the same
was shown for unary 2-VASSes and polynomial length runs.

Recently there was also a big progress in fixing complexity of the reachability problem.
In 2015 Leroux and Schmitz have obtained first complexity upper bound on the problem [15].
By careful analysis of the KLLM decomposition algorithm they proved that it runs in cubic-
Ackermann time. In 2019 the same authors improved their previous result. They proposed
a slight modification of the KLM decomposition algorithm and elegantly analysing the

dimension a some vector spaces proved that the modified version runs in Ackermann time [16].

Also in 2019 Czerwiniski et al. proved that the reachability problem is Tower-hard [2]. This
was a surprise as many people felt that the problem should rather be ExpSpace-complete,
but we probably lack some insight to prove the upper bound. In [2] we have used the
technique of multiplication triples described later. Just two years later the complexity of
the problem was finally settled to be Ackermann-complete. Two teams have independently
shown Ackermann-hardness using slightly different techniques: Leroux [13] and Czerwinski
and Orlikowski [4]. In [4] we have used the technique of controlling-counter and amplifiers,
the technique of controlling-counter is described later.

3 Remaining challenges

Despite the fact that the complexity of the reachability problem is VASSes was established
the problem still remains elusive in my opinion. The gap in our understanding is most striking
in dimension three. For binary 2-VASSes the problem is PSpace-complete [1]. However for
binary 3-VASSes the best complexity lower bound is still PSpace-complete inherited from the
dimension two, while the best known upper bound is higher than Tower, namely in the F7
complexity class of the fast growing hierarchy [16]. We define the hierarchy of fast growing
functions as Fy(n) = 2n and Fjy1(n) = Fx_10...0 Fy_1(1) for any & > 1. One can easily
—_—

see that in particular Fy(n) = 2" and Fs(n) = TFL[‘ower(n). Based on the hierarchy of fast
growing functions F; one defines a hierarchy of fast growing complexity classes F;, which
roughly speaking is the class of problems solvable in time F; closed under a few natural
operations [20]. Thus in particular we do not know whether existence of a run from the
source to the target always implies existence of exponential length run or not. Or maybe
length of this short run is doubly-exponential or tower size. Similarly we lack knowledge
about other low dimensions.

Generally in dimension d the best upper bound for the reachability problem is Fyy4 [16]
(that is how we get F7 in dimension three). The current best lower complexity bound
is F4-hardness in dimension 2d + 4, so F(4_4)/2-hardness for d-VASSes [14]. The current
research goal here is to find out whether we can get Fy-hardness in dimension d + C for
some constant C' € N.

Recently we worked with co-authors on the reachability problem for low dimensional
VASSes [3, 5] motivated by the following two main ideas: 1) low dimensional VASSes
are by itself a natural computation model, 2) understanding problems in low dimensional
VASSes often turns out to be the best way of developing techniques very useful in general

5:3

CONCUR 2022

5:4

Involved VASS Zoo

dimension. Indeed, understanding low dimensions was actually the triggering point for our
results [2] and [4]. Current best complexity lower bounds for low dimensional VASSes are
proven in our work with Lukasz Orlikowski [4]:

NP-hardness for unary 4-VASSes;

PSpace-hardness for unary 5-VASSes;

ExpSpace-hardness for binary 6-VASSes;

Tower-hardness for unary 8-VASSes.

The rest of this text focuses on presenting techniques of proving lower complexity bounds
from the perspective of concrete low dimensions or concrete examples of involved low
dimensional VASSes. We believe this perspective is the best way to illustrate the intuitions
behind various approaches and to introduce various techniques useful in general.

4 Big finite reachability sets

We start the involved examples zoo from a family of examples, which is a folklore since years.
These are VASSes, which have finite reachability set, but this set is very big. We first present
a 3-VASS with finite, but doubly-exponential reachability set. For simplicity we do not write
a vector on the transition if it does not change the counters at all (we often colour such
transitions black).

» Example 2. The following 3-VASS has doubly-exponential reachability set.

Crnl =00
(—1,1,0) D1 q1 (2,—1,0)
~_

(0,0, 1)
r Q (-1,0,1)
(1,0,0)

PQ/\(D
\/

(0,0,-1)

(—1,1,0) (2,-1,0)

Notice that the above example consists of two copies of the HP-gadget from Example 1.
Thus we have the following run:

p1(1,0,n) — ... — ¢1(2",0,0) — r(2",0,0) — ... — 1(0,0,2")
— p2(1,0,2") — ... q2(2%",0,0).

In other words in the first copy of the HP-gadget from p;(1,0,n) we reach p2(2",0,0). Then
in state r we transfer value from the third counter to the first one. The transition from r to
p2 adds one to the first counter such that we start from po(1,0,2") in the second copy of the
HP-gadget.

It is easy to show that the reachability set of pi(1,0,n) is finite, the proof goes as in
Example 1.

W. Czerwinski

In a similar way one can constructs a 3-VASS which has k-fold exponential reachability
set, we just take k copies of the HP-gadget and connect them by states r; as above. However
this requires a growing number of states in a VASS. Here comes another idea: by adding just
one additional counter we can simulate any number of copies on this counter.

» Example 3. The following 4-VASS has finite, but tower size reachability set. It is just a
slight modification of Example 2.

(=1,1,0,0) CpC g Q (2,-1,0,0)

(0,0,—1,0)

r Q (~1,0,1,0)

In this 4-VASS we have added the fourth counter and the only transition which modifies
this counter is the orange transition. The rest is exactly like in the HP gadget with additional
state r. Thus for any k& we have to following run:

p(1,0,k,n) — ... — q(27,0,0,n) — r(2",0,0,n) — ... — (0,0,2",n) — p(1,0,2",n—1).

In other words we can exponentiate the first counter for the cost of decreasing the forth
counter by one. Thus for any n € N there is also the following run:

p(1,0,1,n) — p(2,0,1,n — 1) — p(4,0,1,n — 2) — ... — p(Tower(n),0, 1,0).

This easily implies that the reachability set from p(1,0,1,n) is of at least Tower(n) size. It
remains to show that this reachability set is finite. To see this notice first that the orange
transition can be fired at most n times. Now it is easy to see that in between of any two
firings of the orange transition other transitions can be fired at most exponentially many
times wrt. the current counter values, which finishes the argument.

The Example 3 already shows that a very simple VASS can have a pretty complicated
behaviour. It is not hard to see that in a similar vein one can construct in any dimension d a
unary d-VASS with finite reachability set of size around Fj;_1(n), where n is the size of the
source configuration.

5 Finite reachability sets are enough

It is a good moment to emphasise that authors of [16] not only have shown that the
reachability problem in d-VASSes can be solved in Fyi4, but they proved that if there is
a run from the source to the target then there is also one of length bounded by roughly
speaking Fyy4(n). Using this result and the generalised Example 3 one can show that
VASSes with finite reachability sets are actually not much simpler than VASSes without that
restriction. More concretely speaking one can reduce the reachability problem for d-VASSes
to the reachability problem for (d + 6)-VASSes with finite reachability sets. Assume we need
to check whether s — ¢ in a d-VASS V. We construct a (d + 6)-VASS U as follows. First
part of U behaves like generalised Example 3 in dimension d + 5, thus on one of the counters
(say counter number d + 5) can have values up to Fyi4(n). We use the last (d+ 6)-th counter

5:5

CONCUR 2022

5:6

Involved VASS Zoo

to keep the sum of all the dimensions numbered from 1 to d + 4. In the second part U
simulates V' on dimensions from 1 to d. In the target configuration of U we demand that
dimension d + 6 is equal to zero, so after the first part all the dimensions from 1 to d + 4
need also to be zero. The only change of the second part of U wrt. to V is that to simulate
any transition of V' in U we decrease the (d 4 5)-th counter by one. Notice now that if there
is a run from s to ¢ in U by [16] there is also one of length at most Fj4(n) thus there is also
one in V. Of course no run in U implies no run in V as the simulation is faithful. On the
other hand the reachability set of any configuration in V is finite as in each step we decrease
the (d + 5)-th counter. This finishes the argument.

The above reasoning does not show that considering VASSes with finite reachability sets is
enough, because we have added six additional dimensions. However it suggests that in order
to understand well low dimensions it might be sufficient to look sometimes at this special
case of finite reachability set. Notice that this is a strong statement, as the reachability
problem can be easily solved for VASSes with finite reachability set: we just compute the
whole set of configurations reachable from the source and after this computation stops (it
has to, as the reachability set is finite) we check whether the target belongs to the set.
Moreover we have a pretty good complexity upper bounds for this very naive algorithm.
By [7] the longest sequence of configurations in a d-VASS without a domination (situation
that a configuration further in the sequence is strictly bigger than a configuration earlier in
the sequence) is bounded roughly speaking by Fy11(n), where n upper bounds the size of
VASS and the source configuration. Notice that in VASSes with finite reachability set no run
has a domination, as domination allows for pumping counters up and would imply an infinite
reachability set. Thus [7] shows that exploring the whole space of reachable configurations in
a d-VASS can be achieved in the complexity class Fgi1.

Notice however that for 3-VASSes even assuming finite reachability set we still get
complexity Fy, which is much higher than the known lower bound of PSpace-hardness. Thus
there might be a possibility of constructing a 3-VASS or other lower dimensional VASS with
shortest run being exponential, doubly exponential or even Tower length. Below we show
a few current, still very weak, techniques which can lead in the future to some involved
examples.

6 Telescope equations

Example 3 and its generalisations exhibit a complicated behaviour of low dimensional VASSes.
Notice however that it does not eliminate a possibility that in low dimensional VASSes there
are always some short paths. Imagine the following slight modification of Example 3.

(-=1,1,0,0) Cp O q Q (2,-1,0,0)

(0,0,—1,0)

(—l,0,0,0)Ct rQ (=1,0,1,0)

W. Czerwinski

From Example 3 we know that in the above VASS there are Tower(n)-long paths
from p(1,0,1,n) to ¢(0,0,1,0): such a path first reaches p(Tower(n),0,1,0), then goes
to t(Tower(n),0,1,0) and then in a loop decreases the first counter. However there are also
some very short runs: we n times apply the sequence

p(¢,0,1,k) — ¢q(£,0,1,k) — r(£,0,1,k) p({+1,0,1,k—1)

then go to state ¢ and quickly decrease the first counter.

This illustrates the main challenge with proving lower bounds for the reachability problem
in VASSes: it is very hard to force a VASS to take some long run from the source to the
target. Here we present one approach how to force a VASS to have only long runs, the
example is taken from [3]. It is based on the following simple telescope equation:

k k—1 3 2
= .. 2.z 1
K k—1 k-2 2 1 (1)
Based on (1) we build a 3-VASS Vj, with size of all the transitions bounded by k and a
property that the shortest path from the source to the target is of length exponential in k.

» Example 4. In this example the source configuration is s(0, 0, 0) and the target configuration

is (0,0, 0).
(1,1,0) 0,—(k—1),k) (0,—(k—2),k—1) (0,—1,2)
(1,170)‘ | | /t
S k qk—1 q2

Let us analyze how a run from the source to the target in VASS Vj can look like. In
the state s we fire the blue transition to s'(1,1,0) and then some number N — 1 times the
blue loop in state s’ reaching the configuration s’'(N, N,0). So the prefix of our run is the
following

$(0,0,0) — s'(1,1,0) — ... —> s(N, N,0) — pp(N, N, 0).

States s and s’ are distinguished to assure that N > 1. Notice now that the only other
transition in V; which modifies the first counter is the red transition in state ¢. Thus the
considered run need to finish in the following way:

¢2(N,NE,0) — t(N,Nk,0) — ... — ¢(0,0,0).

Observe now that for each i € {2,...,k} the orange transitions in ¢; do not change the sum
of the second and the third counter while the violet transitions in p; can multiply this sum
by at most ﬁ Moreover this is the case if and only if the run enters p; in the configuration
of the form p;(0, K, 0) where K is divisible by ¢ — 1 and leaves it in the configuration of the
form p;(0,0, K - ijl). In other words in the state p; the whole value of second counter needs
to be transferred to the third counter while multiplying it by *7. Notice now that from
pr(N, N,0) till g2(N, Nk,0) the second counter needs to be multiplied by exactly k. Using

Equation (1) we derive that in any run from pg(N, N,0) to g2(N, Nk,0) in all the states the

5:7

CONCUR 2022

5:8

Involved VASS Zoo

whole value of the second counter have to be transferred to the third counter or vice versa.
In particular each loop have to be fired the maximal number of times. So the run needs to
look as follows:

(N, N,0) — pe(N,0, F) qu(iv, 0, &) N, NE oy — o, XE o)
Pk)) Pk 77}{:71 qk) ’k}fl qk ’k?*l’ Prk—1 7}9715

— (N,0 Nk) — (N,0 Nk) (N Nk 0) — (N Nk 0)

Prk—1 T o dk—1 T o qk—1 e _9’ Prk—2 "E_ o’
Nk Nk Nk Nk

—>I73(N7077)_)QS(N,O,7) QS(Na770)—>I72(N7770)

— pa(N,0, Nk) —> g2(N,0, Nk) q2(N, Nk, 0).
Now notice that in the run for each i € {2,...,k — 1} we have a configuration g;(N, NT’“, 0),

which means that Nk is divisible by each i € {2,...,k —1}. Thus Nk is a multiplicity of the
lem(2,. ..,k — 1), which is known to be exponential wrt. k (see [3], Claim 6). This finishes
the proof that any run from the source to the target needs to be of length exponential wrt. k.

The above example can also be expressed by another formalism, which is often much
more convenient to present VASSes then drawing them as automata. This formalism is called
the counter programs. We do not introduce counter programs formally, instead we present
VASS from Example 4 as a counter program hoping that this clarifies the issue. We assume
that the three counters are named z, y and z. For more details look into [3].

Lrx4+=1 y+4+=1

2: loop

3: z4+=1 y+=1

4: for i := k down to 2do
5: loop

6: y—=1—1 z+4+=1

7: loop

8: y+=1 2z-—=1

9: loop

10: x—=1 y—==%

Using similar trick with the telescope equation (but a bit more involved) we have shown
in [3] an example a 4-VASS in which the shortest run from the source to the target is of
doubly-exponential length.

7 Controlling-counter

VASSes, in contrast to counter machines lack zero-tests, thus it is pretty hard to force their
runs to be exact. Notice that with zero-tests we can easily force the modified Example 3
(mentioned in paragraph Telescopic equations) to have only runs of Tower length. We just
enforce that all the loops are fired maximally by zero-testing appropriate counters after the
loops. Of course we cannot hope to simulate zero-tests by VASSes as VASSes with zero-tests
(called counter machines) have undecidable reachability problem.

However, we are able to simulate some restricted number of zero-tests in VASSes. First
of all notice that in the reachability problem we ask whether we can reach the target
configuration, so we already have some very weak for of zero-tests: if we set the target
configuration to be zero at some counter then we can test this counter to be zero at the end
of the run. Now the idea is to boost this single zero-test to simulate more zero-tests during
the run.

W. Czerwinski

Let us assume that we have a d-VASS V with some the counter z and we want to zero-test
counter z in some three moments during the run. First very naive idea is to add three
additional counters 1,2, x3 to V', which are copies of z and modify them exactly as x. The
first one is stopped being modified after the first moment, the second one is not modified
after the second moment and the third one is not modified after the third moment. In this
way if in the modified (d + 3)-VASS we set the target configuration to be zero on counters
1, %2, x3 then we enforce that any run reaching the target indeed have value zero in the
three considered moments. The main drawback of this idea is that it introduces additional
counters, so is too costly. However, already this technique illustrates that zero-test in the
target configuration can be used to simulate zero-tests in other moments in the run.

Here we introduce the technique of the controlling-counter, which was proposed in [4].

Assume we have a run p in our d-VASS V of the following form:
5&01 ﬁ)CQﬁ)Cgﬁ)t

and we want to zero-test the counter z in the configurations ¢y, ¢, c3. Let us assume that the
value of the counter = in the source configuration s is zero. Let the value of the counter z in
configurations ¢; be x;, for ¢ € {1,2,3}. We need to check whether z; = 23 = 23 = 0. Notice

that it is enough to check if 1 + 2o + x3 = 0 as all the counter values x; are nonnegative.

Let A; be the effect of the run p; on the counter z. Thus we have x1 = Ay, 0 = Ay + Ay
and x3 = A1 + Ay + Ag. Therefore z1 + o + z3 = 3A1 + 2A5 + A3 and it is enough to
check whether this expression has value zero. In order to do that we introduce one additional
controlling-counter y which is tested for zero in the target configuration t. We set the value
of the counter y in the configuration s to be zero. Each change of x by C' in p; is matched
by change of y by 3C. Similarly, each change of x by C in py is matched by change of y by

2C'. Finally, each change of by C' in p3 is matched by change of y by the same value C.

Thus indeed final value of y is exactly 3A; + 2As + Ag and it is enough to check y for zero
in the target configuration in order to assure that 1 = xo = x3 = 0.

It is easy to observe that this reasoning can be extended to any number of zero-tests.
In general if we are in the part of the run p such that after this part still k zero-tests are

performed on = then each change of x by C' needs to be matched by the change of y by k- C.

We only need that configurations ¢y, co, c3, ... are distinguishable in the sense that we can
change behaviour of counter y after any ¢;. This can be often easily implemented by use of
states.

It is also not hard to see that one controlling-counter can control many original counters,
not just one.

Below we present the simplest possible application of the controlling-counter to 3-VASSes.

Consider the following 2-VASS with two counters z and y starting in the counter valuation
(z,y) = (1,0).

5:9

CONCUR 2022

5:10

Involved VASS Zoo

It is easy to see that if all the loops are fired maximally then before entering line 6
counter values are (z,y) = (2¥,0) and loop in lines 6-7 can be fired 2* times. Thus if we
want to reach values (0,0) at the end of the counter program there exists an exponential run.
However, there is also a very short run, the one totally ignoring the loops in lines 2-3 and in
lines 4-5 and immediately jumping to the loop in lines 6-7 which is fired just once. However,
introducing a controlling-counter z we may enforce the loops to be fired maximal number of
times and thus obtain another example of a VASS with shortest one run being exponential.

» Example 5. In the 2-VASS above both counters z and y are tested exactly k times. Thus
as the starting valuation is (z,y) = (1,0) we should start from value z = k. Therefore in
the i-th iteration of the for-loop in the line 3 the counter z is still waiting for k — (i — 1)
zero-tests as well as the counter y. Similarly as in the line 3 the counter x in the line 5 is still
waiting for k — i zero-tests while the counter y is waiting for k — (i — 1) zero-tests. Therefore
in the line 3 we should increase z by (—=1)-(k—i+1)+2-(k—i+1) = k—i+ 1 while in the
line 5 we should increase z by 1- (k —4) 4+ (—1) - (k — i+ 1) = —1. Therefore the resulting
3-VASS have the property that the shortest (and the only) run from (1,0, %) to (0,0,0) is
exponential in k.

1: for 7 := 1 to kdo
2 loop
3 r—=1 y4+=2 z4=k—i+1
4: loop
5 r4+=1 y—=1 z-—=1
6: loop

7 r—=1

The use of the controlling-counter technique may be much more intricate, however the
above Example 5 presents its main idea. In [4] the whole Ackermann-hardness idea was based
on controlling-counters. Lasota in [12] simplified our approach and presented it without
the use of controlling-counters. It turns however that in low dimensions controlling-counter
technique can be very convenient as it uses only one additional dimension to control others
in contrast to the multiplication triple technique (explained below), which requires three
dimensions (at least in its classical version). Below we briefly describe the multiplication
triple technique. We also show how to use it together with the controlling-counter technique
to obtain Tower-hardness for the reachability problem in VASSes already in dimension eight.

8 Multiplication triples

Both the above presented techniques of telescope equations and controlling-counter are useful
for designing VASSes with long runs, but it is not clear how they solely can be used to get
some complexity lower bounds.

Here we briefly introduce the technique of multiplication triples and show how to use
it to get pretty easily PSpace-hardness lower bound for the reachability problem in unary
7-VASSes. Notice that it is not hard to improve this result, in [4] we have show PSpace-
hardness for unary 5-VASSes. Here we present this simple result to illustrate briefly an
application of the multiplication triple technique.

Recall that a d-counter machine is just a d-VASS with possibility of zero-tests. We say
that a run of a counter machine is B-bounded if at each configuration on this run the sum of
all the counter values does not exceed B. We first recall the following theorem, which is a
folklore.

W. Czerwinski

» Theorem 6. The problem whether a given three-counter machine for a given number n € N

has a 2™-bounded run from a given source configuration to a given target comfiguration is
PSpace-hard.

The main idea behind the multiplication triple technique is that a d-VASS equipped with
three additional counters (z,y, z) with initial values (B, C, BC) can simulate C/2 zero-tests
on B-bounded counters. Here we do not explain how this simulation exactly works and why
this is the case, explanations can be found in [12, 4]. It is important for us here that in order
to obtain PSpace-hardness for 7-VASSes it is enough to construct a family V,, of 7-VASSes
with the following properties:

transition values of V,, are bounded by 2n (any polynomial function of n is fine),

all the reachable configurations of the form ¢(x1,...,z7), where t is the target state, have

the property that if z7 = 0 then x1 = zo = x3 =0, 4 = 2" and xg = 2" - 5.
Intuitively speaking by testing x7 for zero in the target configuration we get a triple of
the form (2™, C,2"™ - C) on counters (x4, Ts5,2g). In the latter part of the VASS run we can
simulate a three-counter machine on counters (1, z2,x3) and use the counters (x4, x5, x¢)

to check whether x1, x5, z3 are indeed 2™-bounded and for simulating zero-tests on them.

Thus in the rest of this paragraph we focus on showing how to construct the above family
V... Recall that counter programs are just ways of presenting VASSes, so we interchangeably
speak about VASSes and counter programs.

» Example 7. The idea is simple. We only use counters x1, x4, x5, Tg, T7. We first set z4 = 1
and z5 = xg = C for some guessed value C. Then using x; as an auxiliary counter we
multiply n times counters x4 and ¢ by 2. Counter z7 is used as the controlling-counter to
assure that the multiplications are exact. During this process the counters x4 and xg are
zero-tested n times while the counter z; is zero-tested 2n times. Therefore in the line 1 the
increase of x4 by 1 results in the increase of x7 by n. Similarly in line 3 the increase of zg by
1 results in the increase of 7 by 2n. In the i-th iteration of the for-loop we have that:

in the line 6 counter x4 is waiting for n — ¢ 4+ 1 zero-tests and counter x; is waiting for

2(n — i+ 1) zero-tests, so z7 should be increased by 3n — 3i + 3,

in the line 8 counter z; is waiting for 2(n — i + 1) zero-tests and counter x4 is waiting for

n — i zero-tests, so x7 should be decreased by n — i + 2,

in the line 6 counter zg is waiting for n — i + 1 zero-tests and counter z; is waiting for

2(n —i4 1) — 1 zero-tests, so x7 should be increased by 3n — 3i + 1,

in the line 8 counter x; is waiting for 2(n — i+ 1) — 1 zero-tests and counter z¢ is waiting

for n — i zero-tests, so x7 should be decreased by n — i + 1,

Laxg+=1 x74+=n
2: loop
3: 5 +=1 a6 +=1 z74+= 2n

4: for i := 1 to ndo

5 loop

6: s ——=1 x4 4+=2 x74+=3n—-3i+3
7 loop

8 rn—=1 z4+=1 7 —=n—-14+2
9: loop

10: xe—=1 1 +=2 zr+=3n—-31+1
11: loop

12: xrn—=1 z¢4+=1 xz7—=n—-14+1

5:11

CONCUR 2022

5:12

Involved VASS Zoo

If after this counter program the controlling-counter x; has value zero then it means that
indeed 1 =0, x4 = 2", x5 = 2" - x5 and clearly o = x3 = 0, so all the necessary conditions
for PSpace-hardness are fulfilled.

The above example shows how to join forces of controlling-counter and multiplication
triples technique to rather easily show some not entirely trivial PSpace-hardness lower bound
for 7-VASSes. By more clever constructions we can get a bit stronger lower bounds, but we
are still very far away from matching the upper and the lower bounds for the reachability
problem in low dimensional VASSes.

9 Afterthought

In this short tutorial we tried to present in the simplest possible way almost the whole
spectrum of current techniques of designing involved VASSes. Many of the applications are
more elaborate than the presented once, however it is still surprising that most of them are
not extremely complicated and some problems open for decades are solvable by techniques
which are at the end of the day rather simple. In my opinion we still need at least a few
more techniques in order to understand what phenomena are hiding in the low dimensional

VASSes.

—— References

1 Michael Blondin, Alain Finkel, Stefan Goller, Christoph Haase, and Pierre McKenzie. Reachab-
ility in two-dimensional vector addition systems with states is PSpace-complete. In Proceedings
of LICS 2015, pages 32-43, 2015.

2 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérome Leroux, and Filip Mazowiecki.

The reachability problem for Petri nets is not elementary. In Proceedings of STOC 2019, pages
24-33. ACM, 2019.

3 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérome Leroux, and Filip Mazowiecki.
Reachability in fixed dimension vector addition systems with states. In Proceedings of CONCUR
2020, pages 48:1-48:21, 2020.

4 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In Proceedings of FOCS 2021, pages 1229-1240, 2021.

5 Wojciech Czerwinski and Lukasz Orlikowski. Lower bounds for the reachability problem in
fixed dimensional vasses. CoRR, abs/2203.04243, 2022.

6 Matthias Englert, Ranko Lazic, and Patrick Totzke. Reachability in two-dimensional unary
vector addition systems with states is NL-complete. In Proceedings of LICS 2016, pages
477-484, 2016.

7 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and Primitive-Recursive Bounds with Dickson’s Lemma. In Proceedings of LICS 2011, pages
269-278, 2011.

8 Christoph Haase, Stephan Kreutzer, Joél Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In Proceedings of CONCUR 2009, pages
369-383, 2009.

9 John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theor. Comput. Sci., 8:135-159, 1979.

10 S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary version).
In Proceedings of STOC 1982, pages 267281, 1982.

11 Jean-Luc Lambert. A structure to decide reachability in Petri nets. Theor. Comput. Sci.,
99(1):79-104, 1992.

12 Slawomir Lasota. Improved Ackermannian Lower Bound for the Petri Nets Reachability
Problem. In Proceedings of STACS 2022, volume 219 of LIPIcs, pages 46:1-46:15, 2022.

W. Czerwinski

13

14

15

16

17

18

19

20

21

Jéréme Leroux. The reachability problem for petri nets is not primitive recursive. In Proceedings
of FOCS 2021, pages 1241-1252, 2021.

Jérome Leroux. The reachability problem for petri nets is not primitive recursive. CoRR,
abs/2104.12695, 2021.

Jérome Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In
Proceedings of LICS 2015, pages 56—67, 2015.

Jéréome Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In Proceedings of LICS 2019, pages 1-13. IEEE, 2019.

Richard J. Lipton. The reachability problem requires exponential space. Technical report,
Yale University, 1976.

Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proceedings
of STOC 1981, pages 238246, 1981.

Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor.
Comput. Sci., 6:223-231, 1978.

Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1-3:36, 2016.

Richard Zurawski and MengChu Zhou. Petri nets and industrial applications: A tutorial.
IEEE Trans. Ind. Electron., 41(6):567-583, 1994.

5:13

CONCUR 2022

On the Axiomatisation of Branching Bisimulation
Congruence over CCS

Luca Aceto
Reykjavik University, Iceland
Gran Sasso Science Institute, I’Aquila, Italy

Valentina Castiglioni
Reykjavik University, Iceland

Anna Ingdlfsdoéttir
Reykjavik University, Iceland

Bas Luttik
Eindhoven University of Technology, The Netherlands

—— Abstract

In this paper we investigate the equational theory of (the restriction, relabelling, and recursion free
fragment of) CCS modulo rooted branching bisimilarity, which is a classic, bisimulation-based notion
of equivalence that abstracts from internal computational steps in process behaviour. Firstly, we
show that CCS is not finitely based modulo the considered congruence. As a key step of independent
interest in the proof of that negative result, we prove that each CCS process has a unique parallel
decomposition into indecomposable processes modulo branching bisimilarity. As a second main
contribution, we show that, when the set of actions is finite, rooted branching bisimilarity has a
finite equational basis over CCS enriched with the left merge and communication merge operators
from ACP.

2012 ACM Subject Classification Theory of computation — Equational logic and rewriting
Keywords and phrases Equational basis, Weak semantics, CCS, Parallel composition

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.6

Related Version Technical report version with full proofs: http://arxiv.org/abs/2206.13927 [4]

Funding This work has been partially supported by the project “Open Problems in the Equational
Logic of Processes” (OPEL) of the Icelandic Research Fund (grant No. 196050-051). V. Castiglioni has
been supported by the project “ Programs in the wild: Uncertainties, adaptabiLiTy and veRificatiON”
(ULTRON) of the Icelandic Research Fund (grant No. 228376-051).

Acknowledgements We thank the reviewers for their valuable comments that helped us to improve

our contribution.

1 Introduction

This paper is a new chapter in the saga of the axiomatisation of the parallel composition
operator || (also known as “full” merge [12,13]) of the Calculus of Communicating Systems
(CCS) [27]. The saga has its roots in the works [22,23], in which Hennessy and Milner
studied the equational theory of (recursion free) CCS and proposed a ground-complete
aziomatisation for it modulo strong bisimilarity and observational congruence, two classic
notions of behavioural congruence (i.e., an equivalence relation that is compositional with
respect to the language operators) that allow one to establish whether two processes have the
same observable behaviour [34]. That axiomatisation included infinitely many axioms, which
were instances of the expansion law used to “simulate equationally” the operational semantics
of ||. Then, Bergstra and Klop showed, in [12], that a finite ground-complete axiomatisation
? Luca Aceto, Valent.ina Castiglioni,' Anna Ingdlfsdéttir, and Bas Luttik;
5v icensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 6; pp. 6:1-6:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2197-3018
https://orcid.org/0000-0002-8112-6523
https://orcid.org/0000-0001-8362-3075
https://orcid.org/0000-0001-6710-8436
https://doi.org/10.4230/LIPIcs.CONCUR.2022.6
http://arxiv.org/abs/2206.13927
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

On the Axiomatisation of Branching Bisimulation Congruence over CCS

modulo bisimilarity can be obtained by enriching CCS with two auxiliary operators, i.e., the
left merge | and the communication merge |, expressing one step in the pure interleaving
and the synchronous behaviour of ||, respectively. Their result was strengthened by Aceto et
al. in [7], where it is proved that, over the fragment of CCS without recursion, restriction
and relabelling, the auxiliary operators L and | allow for finitely axiomatising || modulo
bisimilarity also when CCS terms with variables are considered. Moreover, in [9] that
result is extended to the fragment of CCS with relabelling and restriction, but without
communication. From those studies, we can infer that Il and | are sufficient to finitely
axiomatise || over CCS modulo bisimilarity. (Henceforth, we only consider the recursion,
restriction and relabelling free fragment of CCS.) Moller showed, in [30,31], that they are
also necessary. He considered a minimal fragment of CCS, including only the inactive
process, action prefixing, nondeterministic choice and interleaving, and proved that, even
in the presence of a single action, bisimilarity does not afford a finite ground-complete
axiomatisation over that language. Moller’s proof technique was then used to show that the
same negative result holds if we replace | and | with the so called Hennessy’s merge [21],
which denotes an asymmetric interleaving with communication, or, more generally, with a
single binary auxiliary operator satisfying three assumptions given in [3].

The aforementioned works considered equational characterisations of || modulo strong
bisimilarity. However, a plethora of behavioural congruences have been proposed in the
literature, corresponding to different levels of abstraction from the information on process
execution. Hence, another chapter in the saga consisted in extending the studies recalled above
to the behavioural congruences in van Glabbeek’s linear time-branching time spectrum [15].
The work [5] delineated the boundary between finite and non-finite axiomatisability of ||
modulo all the congruences in the spectrum.

Our contribution: branching bisimulation congruence. Some information on process
behaviour can either be considered irrelevant or be unavailable to an external observer.
Weak behavioural semantics have been introduced to study the effects of these unobservable
(or silent) actions, usually denoted by 7, on the observable behaviour of processes, each
semantics considering a different level of abstraction. A taxonomy of weak semantics is
given in [17], and studies on the equational theories of various of these semantics have been
carried out over the algebra BCCSP, which consists of the basic operators from CCS and
CSP [24] but does not include || (see, among others, [6,14,20,23,33]). A finite, ground-
complete axiomatisation of parallel composition modulo rooted weak bisimilarity (also known
as observational congruence [23]) is provided by Bergstra and Klop in [13] over the algebra
ACP, that includes the auxiliary operators L and |. To the best of our knowledge, the only
study on the axiomatisability of CCS’s || over open terms modulo weak congruences is the
negative result from [2], which shows that a class of weak congruences (including rooted
weak bisimilarity) does not afford a finite, complete axiomatisation over the open terms of
the minimal fragment of CCS with interleaving.

In this paper we focus on branching bisimilarity [19], which generalises strong bisimilarity
to abstract away from 7-steps of terms while preserving their branching structure [19,20],
and its rooted version, which is a congruence with respect to CCS operators.

As a first main contribution, we show that rooted branching bisimilarity affords no finite
ground-complete aziomatisation over CCS. To this end, we adapt the proof-theoretic technique
used by Moller to prove the corresponding negative result for strong bisimilarity. We remark
that, even though the general proof strategy is a natural extension of Moller’s, our proof
requires a number of original, non-trivial technical results on (rooted) branching bisimilarity.

L. Aceto, V. Castiglioni, A. Ingolfsdottir, and B. Luttik

In particular, we observe that equational proofs of 7-free equations might involve terms
having occurrences of 7 in some intermediate steps (see, e.g., page 175 of Moller’s thesis [30]),
and our proof of the negative result for rooted branching bisimilarity will account for those
uses of 7, thus making our results special for the considered weak congruence. Moreover, as
an intermediate step in our proof, we establish a result of independent interest: we show
that each CCS process has a unique decomposition into indecomposable processes modulo
branching bisimilarity. A similar result was proven in [26], but only for interleaving parallel
composition. Here, we extend this result to the full merge operator, including thus the
possibility of communication between the parallel components.

Having established the negative result, a natural question is whether the use of the
auxiliary operators from [12] can help us to obtain an equational basis for rooted branching
bisimilarity. Hence, as our second main contribution, we consider the language CCSy ¢,
namely CCS enriched with Il and |, and we provide a complete aziomatisation for rooted
branching bisimilarity over CCSLc that is finite when so is the set of actions over which
terms are defined. This axiomatisation is obtained by extending the complete axiom system
for strong bisimilarity over CCSy,¢ from [7] with axioms expressing the behaviour of Il and |
in the presence of 7-actions (from [13]), and with the suitable 7-laws (from [20,23]) necessary
to deal with rooted branching bisimilarity. Specifically, we will see that we can express
equationally the fact that left merge and communication merge distribute over choice (left
merge in one argument, communication merge in both), thus allowing us to expand the
behaviour of the parallel components using only a finite number of axioms, regardless of
their size. A key step in the proof of the completeness result consists in another intermediate
original contribution of this work: the definition of the semantics of open CCSy,c terms.

Our contribution can then be summarised as follows:

1. We show that every branching equivalence class of CCS processes has a unique parallel
decomposition into indecomposables.

2. We prove that rooted branching bisimilarity admits no finite equational axiomatisation

over CCS.
3. We define the semantics of open CCSy,¢ terms.

4. We provide a (finite) complete axiomatisation for ~ggp over CCSy,c.

2 Background

Labelled transition systems. As semantic model we consider classic labelled transition
systems [25]. We assume a non-empty set of action names A, and we let A denote the set of
action co-names, i.e., A = {@ | a € A}. As usual, we postulate that @ = a and a # @ for all
a € A. Then, we define A, = AU AU {7}, where 7 ¢ AU A. Henceforth, we let p,v,...
range over actions in A,, and a, 3, ... range over actions in AU A.

» Definition 1 (Labelled Transition System). A labelled transition system (LTS) is a triple
(P, A;,—), where P is a set of processes (or states), A, is a set of actions, and — C
P x A; x P is a (labelled) transition relation.

As usual, we use p - p/ in lieu of (p, u,p’) € —. For each p € P and p € A, we write
p 5 if p 25 p/ holds for some p/, and p 4 otherwise. The initials of p are the actions that
label the outgoing transitions of p, that is, init(p) = {u € A, | p £5}.

6:3

CONCUR 2022

6:4

On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 1 The SOS rules for CCS operators (u € A,, a € AU A).

t t St

pt 2t t+uStY tu st | u tlu "t | o

The language CCS. We consider the recursion, relabelling and restriction free fragment of
Milner’s CCS [28], which for simplicity we still call CCS, given by the following grammar:

o= O|a|pt|t+t|t]t,

where z is a variable drawn from a countably infinite set V disjoint from A,, and p € A,.
We use the Structural Operational Semantics (SOS) framework [35,36] to equip processes
with an operational semantics. The SOS rules (or inference rules) for the CCS operators
given above are reported in Table 1 (symmetric rules for + and || are omitted).

We shall use the meta-variables t,u, v, w to range over process terms, and write var(t)
for the collection of variables occurring in the term ¢. We use a summation Zie{l,...,k} t; to
abbreviate t1 +- - -+ty, where the empty sum represents 0. We call the term ¢; (j € {1,...,k})
a summand of t = Zie{l’”_k} t; if it does not have + as head operator. The size of a term ¢,
denoted by size(t), is the number of operator symbols in ¢. A term is closed if it does not
contain any variables. Closed terms, or processes, will be denoted by p, g,r. Moreover, we
omit trailing 0’s from terms. A (closed) substitution is a mapping from process variables to
(closed) terms. Substitutions are extended from variables to terms, transitions, and rules in
the usual way. Note that o(t) is closed, if so is . We let o[x — p| denote the substitution
that maps the variable x into process p and behaves like o on all other variables. In particular,
[x — p] denotes the substitution that maps the variable x into process p and behaves like
the identity on all other variables.

The inference rules in Table 1 allow us to derive valid transitions between closed terms.
The operational semantics for our language is then modelled by the LTS whose processes
are the closed terms, and whose labelled transitions are those that are provable from the
SOS rules. Henceforth, we let P denote the set of CCS processes. We remark that whenever
p -5 9, then size(p) > size(p').

Branching bisimilarity. Branching bisimilarity is a bisimulation-based behavioural equival-
ence that abstracts away from computation steps in processes that are deemed unobservable,
while preserving their branching structure. The abstraction is achieved by labelling these
computation steps with 7, and giving 7-labelled transitions a special treatment in the defini-
tion of the behavioural equivalence. Preservation of the branching structure is mainly due to
the stuttering nature of branching bisimulation, which guarantees that the behaviour of a
term is preserved in the execution of a sequence of silent steps [19,20].
Let = denote the reflexive and transitive closure of the transition —s.

» Definition 2 (Branching bisimilarity). Let (P, A;,—) be a LTS. Branching bisimilarity,
denoted by ~gp, is the largest symmetric relation over P such that, whenever p ~gg q, if
H / ;
p — p’, then either:
p=1 and p' ~pp q, or

there are processes ¢',q" such that ¢ = ¢" 25 ¢/, p ~ss ¢", and p' ~ps ¢'.

L. Aceto, V. Castiglioni, A. Ingolfsdottir, and B. Luttik

Table 2 Some axioms for rooted branching bisimilarity.

Some axioms for bisimilarity over CCS:

A0 z+0=z PO z||O0O=z
Al z4+y~ry+ax Pl zlly~vyl=x
A2 (z+y)tzma+(y+2) P2 (zlly)llz=z| (v 2)

A3 z4+zzrRz

Additional axioms for rooted branching bisimilarity over CCS:

TB p(r(z+y) +y) =~ px+y) Tl urz = px

Branching bisimilarity satisfies the stuttering property [20, Lemma 2.5]: Assume that
T T T
p ~gp q. Whenever p — p1 — ... — pn and p, ~gs q, for some n > 1, then p; ~pp q for
alli=1,....,n—1.
To guarantee compositional reasoning over a process language, we require a behavioural
equivalence ~ to be a congruence with respect to all language operators. This consists in
verifying whether, for all n-ary operators f

if t; ~t, foralli=1,...,n, then f(t1,...,t,) ~ f(t],...,t,).

It is well known that branching bisimilarity is an equivalence relation [11,20]. Moreover,
action prefixing and parallel composition satisfy the simple BB cool rule format [18] and
hence ~pgg is compositional with respect to those operators. However, ~gg is not a congruence
with respect to nondeterministic choice. To remedy this inconvenience, the root condition
is introduced: rooted branching bisimilarity behaves like strong bisimilarity on the initial
transitions, and like branching bisimilarity on subsequent transitions.

» Definition 3 (Rooted branching bisimilarity). Rooted branching bisimilarity, denoted by
~rpB, 45 the symmetric relation over P such that, whenever p ~gpp q, if p Ly o, then there
is a process ¢' such that ¢ 2 ¢/ and p' ~gg ¢'.

It is well known that rooted branching bisimilarity is an equivalence relation [11,20], and
that ~gpp is a congruence over CCS (see, e.g., [18]).

Equational Logic. An aziom system £ is a collection of (process) equations t ~ u over the
considered language, thus CCS in this paper. An equation ¢ =~ u is derivable from an axiom
system &, notation £ F ¢ & u, if there is an equational proof for it from &, namely if ¢t ~ u
can be inferred from the axioms in &£ using the rules of equational logic.

We assume, without loss of generality, that the substitution rule is only applied on
equations (t &~ u) € £. In this case, o(t) = o(u) is called a substitution instance of an axiom
in £. Moreover, by postulating that for each axiom in £ also its symmetric counterpart is
present in £, one may assume that the symmetry rule is never used in equational proofs.

We are interested in equations that are valid modulo some congruence relation ~ over
terms. The equation t &~ u is said to be sound modulo ~ if o(t) ~ o(u) for all closed
substitutions o. For simplicity, if ¢ ~ u is sound, then we write ¢ ~ u. An axiom system is
sound modulo ~ if, and only if, all of its equations are sound modulo ~. Conversely, we
say that & is complete modulo ~ if t ~ w implies £ F t ~ u for all terms ¢, u. If we restrict
ourselves to consider only equations over closed terms then &£ is said to be ground-complete
modulo ~. We say that ~ has a finite, (ground) complete axiomatisation, if there is a finite
axiom system & that is sound and (ground) complete for ~.

6:5

CONCUR 2022

6:6

On the Axiomatisation of Branching Bisimulation Congruence over CCS

Henceforth, we exploit the associativity and commutativity of + and || modulo the
relevant behavioural equivalences. The symbol = will then denote equality modulo A1-A2
and P1-P2 in Table 2.

3 The main results

Our aim is to study the axiomatisability of rooted branching bisimilarity over CCS. Our
investigations produced, as main outcomes, a negative result (Theorem 4) and a positive one
(Theorem 5). In detail, in the first part of the paper we prove the following theorem:

» Theorem 4. Rooted branching bisimilarity has no finite equational ground-complete azio-
matisation over CCS.

Given the negative result, it is natural to wonder whether an equational basis for rooted
branching bisimilarity can be obtained if we enrich CCS with some auxiliary operators.
Considering the similarities between ~ggp and strong bisimilarity, the principal candidates
for this role are the left merge [l and the communication merge | from [12]. Indeed, we show
that if we add those two operators to the syntax of CCS, then we can obtain a complete
axiomatisation of rooted branching bisimilarity over the new language, denoted by CCSyc.
The desired equational basis is given by the axiom system &ggg, which is presented fully
in Table 7 in Section 10. &ggp is an extension of the complete axiom system for strong
bisimilarity over CCSyc from [7] with axioms expressing the behaviour of left merge and
communication merge in the presence of 7-actions (taken from [13]), and with the suitable
7-laws necessary to deal with rooted branching bisimilarity (taken from [20,23]).

Formally, our second main contribution consists in a proof of the following theorem:

» Theorem 5 (Completeness). Let t,u be CCSpc terms. If t ~gpp u, then Eppp F t = u.

We will also argue that this axiomatisation is finite when so is the set of actions. Hence,
when A is finite, CCSy,c modulo ~ggp is finitely based, unlike CCS.

Considering the amount of technical results that we will need to fulfil our objectives,
we devote Section 4 to a presentation of the proof strategy that we will apply to obtain
Theorem 4. Sections 57 then present the formalisation of the ideas discussed in that section.
Similarly, in Section 8 we give a high-level description of the approach that we will follow to
prove Theorem 5. The technical development of the proof is then reported in Sections 9-10.

4 Proof strategy for Theorem 4

In this section we present the proof strategy we will apply to obtain Theorem 4.

Our proof follows the so-called proof-theoretic approach to non-finite-axiomatisability
results, whose use in the field of process algebra stems from [30-32], where Moller proved
that CCS modulo strong bisimilarity is not finitely based. In the proof-theoretic approach,
the idea is to identify a specific property of terms parametric in n > 0, say P,,, and show
that if £ is an arbitrary finite axiom system that is sound with respect to ~pgp, then P, is
preserved by provability from & when n is “large enough”. Next, we exhibit an infinite family
of equations {e, | n > 0} over closed terms that are all sound modulo ~ggg, but are such that
only one side of ¢, satisfies P,,, for each n > 0. In particular, this implies that whenever n is
“large enough” then the sound equation e,, cannot be proved from £. Since £ is an arbitrary
finite sound axiom system, it follows that no finite sound axiomatisation can prove all the
equations in the family {e, | n > 0} and therefore no finite sound axiomatisation is ground
complete for CCS modulo modulo ~ggp.

L. Aceto, V. Castiglioni, A. Ingolfsdottir, and B. Luttik

The choice of P,, and the family of equations. In [30-32] Moller applied the proof method
sketched above to prove that strong bisimilarity has no finite, complete axiomatisation over
CCS. The key idea underlying this result is that, since || does not distribute over + in either
of its arguments modulo strong bisimilarity, then no finite, sound axiom system can “ezxpand”
the initial behaviour of process a || Y1, a’ (where a’ = aa’~! for each i = 1,...,n, with
a® = 0) when n is large.

Since, by definition, rooted branching bisimilarity behaves exactly like strong bisimilarity
on the first step, and parallel composition does not distribute over choice in either of its
arguments, modulo ~ggg, it is natural to exploit a similar strategy to prove Theorem 4. In
detail, we will consider, for each n > 2, the process p, = > ., aa<?, where a<' = Zj-:l a’
for each i = 2,...,n. Then, for each n > 2, the property P,, will consist in having a summand
rooted branching bisimilar to the process a || p,, and we will show that, when n is large
enough, P, is an invariant under provability from an arbitrary finite, sound axiom system
(Theorem 18). Hence, the sound equation ¢, : a | p, = ap, + > ., a(a || a=") cannot be
derived from & because its right-hand side has no summand that is rooted branching bisimilar
to a || pn, unlike its left-hand side. Therefore no finite sound axiom system can prove the
infinite family of equations {e, | n > 2}, yielding the desired negative result.

In proving that P, is invariant under provability, one pivotal ingredient will be the
fact that processes p, and a=‘, for n > 2 and i € {2,...,n}, are indecomposable. The
existence of a unique parallel decomposition into indecomposable processes modulo branching
bisimilarity over CCS with interleaving parallel composition was studied in [26]. In Section 6,
we extend the result from [26] to the full merge operator, thus including communication
(Proposition 16).

The choice of n. The choice of a sufficiently large n plays a crucial role in proving that P,
is an invariant under provability from a finite, sound axiom system £ (Theorem 18). The
key step in that proof deals with the case in which p = ¢ is a substitution instance of an
equation in £ (Proposition 20), i.e., p = o(t), ¢ = o(u), and t = u € £ for some terms ¢, u and
closed substitution o. In this case, assuming that n > size(t), we can prove that if p = o(¥)
satisfies P, then this is due to the behaviour of o(z) for some variable . In order to reach
this conclusion, in Section 5, we study how the behaviour of closed instances of terms may
depend on the behaviour of the closed instances of variables occurring in them. Moreover,
we one can show that if t ~ u is sound modulo rooted branching bisimilarity and z occurs in
t, then it occurs also in u. Hence, we can infer that o(z) triggers in o(u) the same behaviour
that it induced in o(t), and thus that ¢ = o(u) satisfies P,,.

5 Decomposing the semantics of terms

In the proofs to follow, we shall sometimes need to establish a correspondence between the
behaviour of open terms and that of their closed instances. In detail, we are interested in the
correspondence between a transition o(t) £ p, for some term ¢, closed substitution o, action
1, and process p, and the behaviour of ¢ and that of o(z), for each variable x occurring in t.
The simplest case is a direct application of the operational semantics in Table 1.

» Lemma 6. For all terms t,t', substitution o, and p € A,, if t Y5 t' then o(t) < o(t').

Let us focus now on the role of variables. A transition o(t) -+ p may also derive from
the initial behaviour of some closed term o(x), provided that the collection of initial moves
of o(t) depends, in some formal sense, on that of the closed term substituted for the variable

6:7

CONCUR 2022

6:8 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 3 Inference rules for the transition relation L),, (b€ A, a € AU A).

t£> c ti> c
(a1) @ (a2) ? as) ————— :
T =25, T, t+u—,c tlu—,c|u
()t—%c N t e uw S)tinf’ 2N
a4 as a6
tu- e ¢ tlu - on el tlu-Lsa t e

x. In this case, we say that z triggers the behaviour of t. To fully describe this situation, we
introduce an auxiliary transition relation over open terms. The notion of configuration over
terms, which stems from [8], will play an important role in their definition.

The presence of communication in CCS entails a complex definition of the semantics of
configurations. In particular, it is necessary to introduce a fresh set of variables V4. = {z,, |
z eV, ue A}, disjoint from V, and terms. Intuitively, the symbol z, denotes that the
closed term substituted for an occurrence of variable « has begun its execution (expressed
in terms of a p-action), and it contributes thus to triggering the behaviour of the term
in which z occurs (see Example 8 below). Moreover, we also need to introduce special
labels and subscripts for the auxiliary transitions over configurations, which will be of the
form ¢ _12_>p c’. Briefly, the label £ is used to keep track of the variables that trigger the

transition ¢ L>p c’. The subscript p, instead, will allow us to correctly define the semantics
of communication: it will allow us to distinguish a 7-action directly performed by (the term

substituted for) a variable x (transition ¢ ﬁn ¢, with p = 7), from a T-action resulting

from the communication of x with a subterm of the configuration (transition c¢ ﬂ)aﬂ, d,
with p = «, 7, where « is the action performed by the term substituted for).
CCS configurations are defined over the set of variables V4_ and CCS terms.

» Definition 7. The collection of CCS configurations, denoted by C, is given by:
cu=wx, | t | cllec, wheretisaterm, and x, € V. .

The auxiliary transitions of the form 4 » are then formally defined via the inference rules
in Table 3, where we omitted the symmetric rules to (az), (a4), (as) and (ag). We have that
p € A U((AUA) x {r}), whereas the label £ can be either of the form (z) or (z,y), for
some variables x,y € V. Given a variable x and a label ¢, we write z € £ if x occurs in /.

The distinguished variables x,, allow us to keep track of which variable and action trigger
the behaviour of the term, and they also allow us to present substitutions in an intuitive
fashion. As explained in the following example, it is precisely because of substitutions (and
communication) that we need to make the action p explicit in .

» Example 8. Let x € V and consider the term z || . By rules (a;) and (a4) in Table 3,

z,T T T .
we have that z || z L—ln Zo || 7 because x in Zo and x Q)a zw. Hence, given any

substitution o such that o(z) — p; and o(z) = ps, for some terms pi, p2, we want to be
able to correctly infer that o(x) || o(x) — py || p2. Since the two occurrences of z, ,, and 7,
can be distinguished by the subscripts, the substitution o[z, — p1, 25 — p2](a||za) = p1||P2
is well-defined. Without the subscripts, it would not have been possible to correctly define

the substitution o on the configuration ¢ that is the target of z || = ﬂn c.

L. Aceto, V. Castiglioni, A. Ingolfsdottir, and B. Luttik

» Lemma 9. Let t be term and o be a closed substitution. Let x,y € V.

1. For any p € A, if o(x) £ p, for some process p, and t ﬂm ¢, for some configuration
c€C, then o(t) 25 oz, — pl(c).

2. For any a € AUA, if o(x) = p, for some process p, and t ﬂ),)m ¢, for some

configuration ¢ € C, then o(t) — o[za — p](c).

3. For any o € AU A, if o(z) = pa, o(y) =, py, for some processes py,py, and t (=), -

c € C, for some configuration c, then o(t) — o[Ta > Pa, Yz = pyl(c).

Lemma 9 shows how the auxiliary transitions can be used to derive the behaviour of o (¢)
from those of the variables in t. We are now interested in analysing the converse situation:
we show how a transition o(t) -+ p can stem from transitions of the term ¢ and of the
process o(z), for € var(t). We limit ourselves to present the case of silent actions o (t) — p
as it requires a detailed analysis. The case of transitions labelled with observable actions is
simpler and therefore omitted.

» Lemma 10. Let t be a term, o be a closed substitution, and p be a process. If o(t) — p,
then one of the following holds:
1. There is a term t' s.t. t = t' and o(t') = p.

2. There are a variable x, a process q, and a configuration c s.t. o(x) — q, t ﬂn ¢, and

alzr = q](c) = p. o
3. There are a variable x, a process q, and a configuration c s.t., for some a € AU A,

olx) 2 q, t ﬂmﬁ ¢, and olxs — q](c) = p.

4. There are variables x,y, processes ¢, qy and a configuration c s.t., for some o € A UA,

o(x) 5 ¢a, a(y) 2 qy, t %T ¢, and o[To — Gz, Yz — qyl(c) = p.

6 Unique parallel decomposition

As explained in Section 4, our approach for establishing that P, is invariant under equational
proofs relies on processes having a unique parallel decomposition modulo ~pgg.

» Definition 11 (Parallel decomposition modulo ~gg). A process p is indecomposable if
p % 0 and p ~pg p1 || p2 implies p1 ~pp 0 or pa ~pg 0, for all processes p1 and p2. A parallel

decomposition of a process p is a finite multiset |p1,...,prS of indecomposable processes
D1y, Dk Such that p ~pg p1 || -+ || pk. We say that p has a unique parallel decomposition
if p has a parallel decomposition |p1,...,pr| and for every other parallel decomposition

Wwh,....p,S of p there exists a bijection f:{1,...,k} — {1,...,¢} such that p; ~gg p’f(i) for
alll <i<k.

To prove that processes have a unique parallel decomposition we shall exploit a general
result stating that a partial commutative monoid has unique decomposition if it can be
endowed with a weak decomposition order that satisfies power cancellation [26]; we shall define
and explain the notions below. Note that, in view of axioms P0-P2, which are (also) sound
modulo ~gg, the set of processes P modulo ~gg is a commutative monoid with respect to the
binary operation naturally induced by || on ~gg-equivalence classes and the ~pg-equivalence
class of 0 as identity element. We permit ourselves a minor abuse in notation and use — to
(also) denote the binary relation {(p,q) | Ip. p RN q}, and proceed to argue that — induces
a weak decomposition order satisfying power cancellation on the commutative monoid of
processes modulo ~pgg.

6:9

CONCUR 2022

6:10

On the Axiomatisation of Branching Bisimulation Congruence over CCS

Given any process p and n > 1, let p" denote the n-fold parallel composition p || p"~1,
with p® = 0. We first state some properties of the reflexive-transitive closure —* of —:

» Proposition 12. The relation —* is an inversely well-founded partial order on processes

satisfying the following properties:

1. For every process p there exists a process p’ such that p —* p’ ~gg 0.

2. For all processes p, p’ and q, if p =* p', thenp||q—=*p' ||q and q||p—=*q| P

3. For all processes p, q and r, if p|| q —* r, then there exist p' and ¢’ such that p —* p/,
qg—=*q andr=p|¢.

4. For all processes p and q, if p —* ¢" for alln € N, then q ~pg 0.
The following lemma is a direct consequence of the definition of branching bisimilarity.

» Lemma 13. For all processes p, p' and q, if p ~ps q and p —* p’, then there exists ¢’ such
that g —* ¢’ and p' ~gs q'.

By this lemma we can define a binary relation < on P /~gg, the set of ~gp-equivalence
classes of processes, by stating that [p]
such that ¢ —* p’ (here [p]~,, and [q]
respectively). The following result is then a straightforward corollary of Proposition 12.

~gs 3 (@]~ if, and only if, there exists p' € [p]y,

denote the ~pgg-equivalence classes of p and gq,

~BB

» Corollary 14. The relation < is a weak decomposition order on P /~gg, namely:

[ury

. it is well-founded, i.e., every non-empty subset of P/~pp has a <-minimal element;

2. the identity element [0]~,, of P/~gp is the least element of P /~gp with respect to =<, i.e.,
[0]p; =X [P)~gs for allp € P;
3. it is compatible, i.e., for all p,q,r € P if [plg X [@lugs, then [l 7]y 2 (@] 7]

~BB —

~BB

4. it is precompositional, i.e., for all p,q,r € P we have that [pluy = [q || 7]~y implies
Pl = (4" | 7']~es for some [¢]ngy = [dlngy and [1'] gy = [r]ngy; and

5. it is Archimedean, i.e., for all p,q € P we have that [p"]~,, =< [¢]
that [p]~g, = [0]

~BB

for all n € N implies

~BB

~BB *

According to [26, Theorem 34] it now remains to prove that < satisfies power cancellation.
The weak decomposition order < on the commutative monoid of processes modulo ~gg
satisfies power cancellation if for every indecomposable process p and for all processes ¢ and
7 such that [plu, # [@l~m; [T~ for all k& € N, we have that [p* || g]~,, = [p* || 7]~ implies

[4]~es = [P)ss-

» Proposition 15. The weak decomposition order < on the commutative monoid of processes
modulo ~gg satisfies power cancellation.

We have now established that < is a weak decomposition order on the commutative
monoid of processes modulo ~gp that satisfies power cancellation. Thus, with an application
of [26, Theorem 34] we get the following unique parallel decomposition result.

» Proposition 16. FEvery process in P has a unique parallel decomposition.

In what follows, we shall make use of the following direct consequence of Proposition 16.

» Corollary 17. Ifp| r ~gs q | r, then p ~gpp q.

L. Aceto, V. Castiglioni, A. Ingolfsdottir, and B. Luttik

7 Nonexistence of a finite axiomatisation

We devote this section to proving Theorem 4. Following the strategy sketched in Section 4,
we introduce a particular family of equations on which we will build our negative result:

n
Pn = Zaagi (n>2)
i=2
n
en: allpn ~ apn+ Y ala|a=) (n>2).
=2

It is easy to check that each equation ¢,, for n > 2, is sound modulo rooted branching
bisimilarity (as, in particular, it is sound modulo strong bisimilarity).

In order to prove Theorem 4, we proceed to show that no finite collection of equations
over CCS that are sound modulo rooted branching bisimilarity can prove all of the equations
¢n, (n > 2) from the family given above. Formally, for each n > 2, we consider the property
P,.: having a summand rooted branching bisimilar to a || p,. Then, we prove the following:

» Theorem 18. Let £ be a finite axiom system over CCS that is sound modulo ~ggg, let n
be larger than the size of each term in the equations in &, and let p,q be closed terms such
that p,q ~reg a || prn. If EF p &~ q and p satisfies P, then so does q.

The crucial step in the proof of Theorem 18 is delivered by the proposition below, which
ensures that the property P, (n > 2) is preserved by the closure under substitutions of
equations in a finite, sound axiom system. Proposition 20 is proved by means of the technical
results provided so far, and the notion of 0-factor of a term:

» Definition 19. We say that a term t has a 0 factor if it contains a subterm of the form
t' || t”, and either t' ~gpp O or t” ~pgg 0.

» Proposition 20. Let t =~ u be an equation over CCS terms that is sound modulo ~gps. Let
o be a closed substitution with p = o(t) and ¢ = o(u). Suppose that p and q have neither 0
summands nor 0 factors, and p,q ~gpp a || pn, for some n larger than the sizes of t and u. If
p satisfies Py, then so does q.

Theorem 18 shows the property P, to be an invariant under provability from finite sound
axiom systems. As the left-hand side of equation e, i.e., the term a || p,, satisfies P,,, whilst
the right-hand side, i.e., the term ap, + > i, a(a || a=*), does not, we can conclude that the
infinite collection of equations e, (n > 2) cannot be derived from any finite, sound axiom
system. Hence, Theorem 4 follows.

8 Towards a positive result

We now proceed to study the role of the auxiliary operators left merge (I) and communication
merge (|) from [12] in the axiomatisation of parallel composition modulo ~ggg. We will show
that by adding them to CCS we can obtain a complete axiomatisation of rooted branching
bisimilarity over the new language. This axiomatisation is finite if so is A,.

We denote the language obtained by enriching CCS with [l and | by CCSpc:

o= O|a|pt|t+t|t]t]ele]|e]|t, (CCSre)

where x € V, and u € A,. The SOS rules for the CCSy,¢ operators are given by the rules in
Table 1 plus those reported in Table 4.

6:11

CONCUR 2022

6:12

On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 4 Additional SOS rules for CCSy.c operators (1 € A-, a € AU A).

t tS Y w

tlhu 25t || u tlu-"t ||

To obtain the desired completeness result, we consider the axiom system Egpp (see Table 7
in Section 10), obtained by extending the complete axiom system for strong bisimilarity
over CCSp¢ from [7] with axioms expressing the behaviour of |l and | in the presence of
T-actions (from [13]), and with the suitable 7-laws (from [20,23]) necessary to deal with
rooted branching bisimilarity. Then, we adjust the semantics of configurations given in
Section 5 to the CCSy,¢ setting, and we use it to extend the definition of rooted branching
bisimilarity to open CCSp¢ terms (Definition 24). Usually, a behavioural equivalence ~ is
defined over processes and is then possibly extended to open terms by saying that t ~ u
iff o(t) ~ o(u) for all closed substitutions o. However, we adopt the same approach of,
e.g., [10,16,29], and present the definition of ~gpp directly over configurations. We will
show in Section 9 that the two approaches yield the same equivalence relation over terms
(Theorem 25). Finally, we apply the strategy used in [10] to obtain the completeness of the
axiomatisation of prefix iteration with silent moves modulo rooted branching bisimilarity:
1. We identify normal forms for CCSp¢ terms (Definition 27) and show that each term can

be proven equal to a normal form using Egpp (Proposition 28).

2. We establish a relationship between ~gg and derivability in &g (Proposition 29).
3. We show that for all terms ¢, u, if ¢ ~gpp u, then Epp F t ~ u (Theorem 5).

9 Rooted branching bisimilarity over terms

In this section we discuss the decomposition of the semantics of CCSp¢ terms, and the
extension of the definition of (rooted) branching bisimilarity to open CCSp¢ terms.

The first step towards our completeness result consists in providing a semantics for open
CCSrc terms. To this end, we need to extend the semantics of configurations given in
Section 5. For the sake of readability, we present the syntax of CCSyc configurations and
the inference rules for variables and summations, even though they are identical to the
corresponding ones presented in Section 5 for CCS. However, we omit the explanations on
the roles of labels ¢, p, and variables x,,, as those can be found in Section 5. In particular,
the use of variables z,, € V4. (as explained in Example 8) remains unchanged.

» Definition 21 (CCSc configuration). The collection of CCSLc configurations, denoted by
Crc, is given by:

cu=1x, | t | clle, wheretisa CCSrc term, and x, € V4, .

The auxiliary transitions of the form 4 » are formally defined via the inference rules
in Table 5, where we omitted the rules (a}) and (a}) for prefixing and choice (which are
identical to, respectively, rules (a;) and (az) in Table 3) the symmetric rules to (aj), (a}),
(a%) and (ag), as well as the rules for ||. We remark that Lemma 10 can be easily extended
to CCSrc to show how a transition o(t) - p can stem from transitions of the CCSp¢ term
t and of the process o(z), for z € var(¢).

Since V4, is disjoint from V), we also need to introduce auxiliary rules for the special
configuration z, € V4,. These are identified by a proper label z, on the transition and
reported in Table 6 as rules (¢;) and (c2). To conclude our analysis of the decomposition

L. Aceto, V. Castiglioni, A. Ingolfsdottir, and B. Luttik

Table 5 Inference rules for the transition relation L),, (b€ Ar, a € AUA).

4
t—,c

tlhu i>p0||u

() D w Wy () Do u () RGN
4 5 6
tluE e -l tlu-sn t e

Table 6 Inference rules completing the operational semantics of CCSyc configurations (u € A;).

Tu oy By £ ’
€1 — ¢ 1 — 1 —pC
(c1) (c2

Cg)

— T Y, € T
Ty — Ty crllea —= ¢ |l e cillea — ¢y e2 c1llea =, i | e

of the semantics of terms, we then need to extend the transition relations -+ and i)p
to configurations. This is done by rules (c3) and (¢4) in Table 6, where their symmetric

13 . . .
counterparts have been omitted. Let —» range over the possible transitions over configurations,
. 3 . . . L
i.e., = can be either £, Lp, or —5. The operational semantics of CCSy,¢ configurations is
then given by the LTS whose states are configurations in Cr,¢, whose actions are in A, UVUV 4 _,
and whose transitions are those that are provable from the rules in Tables 1, 4, 5, and 6.

Following the same approach of, e.g. [10,16,29], we now present the definitions of branching
and rooted branching bisimulation equivalences directly over configurations.
» Definition 22 (Branching bisimulation over configurations). A symmetric relation R over
3
Crc 1s a branching bisimulation iff whenever ¢; R co, if ¢ — ¢} then:
. 3 T
either = = — and ¢} R ca,
£
or ¢y —» clf = ¢y for some ¢, cy such that ¢ Rcly and ¢} R ch.
Two configurations c1,co are branching bisimilar, denoted by c¢i ~gp c2, iff there exists a
branching bisimulation R such that ¢y R co.

The definition of ~gp given in Definition 22 yields the same equivalence relation over
configurations that we would have obtained with the standard approach, i.e., by defining
c1 ~pp C2 iff o(c1) ~pp o(cg) for all closed substitutions o.

» Theorem 23. For all configurations c1,cs € Crc it holds that ¢1 ~gp ¢o iff o(c1) ~pg o(c2)
for all closed substitutions o.

The approach for ~pp can be extended in a straightforward manner to ~ggp.

» Definition 24 (Rooted branching bisimilarity over configurations). Let ¢1,co € Crc. We say
that ¢y and co are rooted branching bisimilar, denoted by c¢1 ~grpp C2, iff:
3 3
if 1 = ¢ then co = ¢ for some ¢ such that ¢} ~pp ch;
. 3 3
if co = ¢y then ¢y — ¢} for some ¢} such that ¢} ~pp ch.

» Theorem 25. For all ¢1,¢co € Cro it holds that ¢; ~gpg ¢o iff o(c1) ~gs 0(c2) for all closed
substitutions o.

6:13

CONCUR 2022

6:14 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 7 Equational basis modulo rooted branching bisimilarity.

Equational basis modulo strong bisimilarity: &

A0 z+0=z co 0|z~0

Al z4y~y+ax Cl z|ly=mylz

A2 (z4+y)+zrz+(y+2) 2 (z|ly |lz=z]|(y]2)

A3 xR 03 (z+4vy) |lzrax|z4+y|=
C4 ax|By=t(z|y) ifa=48

Lo Olz~0 Cs ax|By~0 ifa#fB

L1 pxlly =~ p(e||ly) 6 (zly) |z~ (z]2)Ly

L2 (zly)lz=zl(y| 2) C7T zlylz=0

L3 zlO0o~z

L4 (z4+ylz=zlz4+ylz P zlly=zly+ylaet+z|y

Additional axioms for ~pgg: Ergs = & U {T'B, TL}

B wu(t(z+y)+vy) =~ ulz+y) TL zlry=~zly

Derivable axioms

DI zlly=yl=x DT1 pre = ux

D2 (@lly)lzrel () T2 ol (r(y+2) +y) ~ ol (y+2)
D3 (zly) | Llw)=(z]|2)L(y| w) DT3 71z |y=~0

D4 z|O0=z

10 The equational basis

We now present the complete axiomatisation for rooted branching bisimilarity over CCSpc.

In [20] it was proved that if we consider the fragment BCCS of CCS (i.e., the fragment
consisting only of 0, variables, prefixing, and choice), then a ground-complete axiomatisation
of rooted branching bisimilarity over BCCS is given by £&oU{TB}, where & = {A0,A1,A2,A3}
from Table 2 (also reported in Table 7), and axiom TB is in Table 7. Informally, TB reflects
that if executing a 7-step does not discard any observable behaviour, then it is redundant.
In [7] it was proved that the axiom system &g given in Table 7, is a complete axiomatisation of
bisimilarity over CCSy,¢. Starting from these works, we now study a complete axiomatisation
for ~gpg. Our aim is to show that the axiom system &g = & U {TB,TL} presented in
Table 7 is a complete axiomatisation of rooted branching bisimilarity over CCSyc.

If executing a 7-move does not resolve a choice within a parallel component, then it will
also not resolve a choice of the parallel composition; axiom TL expresses a similar property
of rooted branching bisimilarity for left merge. Interestingly, by combining TL and TB, it is
possible to derive, as shown below, equation DT2 in Table 7, which is the equation for the
left merge corresponding to TB.

(TL) (TB) (TL)
zl(rly+2)+y) = zlr(rly+2)+y) = =zlrt(y+2) = zl(y+2).

In Table 7 we report also some other equations that can be derived from Eggg, and that are
useful in the technical development of our results. We refer the reader interested in the
derivation proofs of D1-D3 and DT3 to [7]. Notice that DT1 corresponds essentially to the
substitution instance of TB in which y is mapped to 0.

L. Aceto, V. Castiglioni, A. Ingolfsdottir, and B. Luttik

First of all, it is immediate to prove the soundness of &g modulo ~gpp.
» Theorem 26 (Soundness). The aziom system Egpp is sound modulo ~ggg over CCSrc.

To obtain the desired completeness result, we apply the same strategy used in [10] that
consists in the three steps discussed in Section 8.
Let us proceed to the first step: identifying normal forms for CCSy,¢ terms.

» Definition 27 (Normal forms). The set of normal forms over CCSpc is generated by the
following grammar:

Se:=uN | zULN | (@|a)LN | (z]ylLN
N:=0 | S | N+N

where x,y €V, 1 € Ay and o € AU A. Normal forms generated by S are also called simple
normal forms and are characterised by the fact that they do not have + as head operator.

» Proposition 28. For every term t there is a normal form N such that Eggp -t ~ N.

We can then proceed to prove that branching bisimilar terms can be proven equal to
rooted branching bisimilar terms using the axiom system Eggp.

» Proposition 29. For CCSpc terms t,u, if t ~pp u then Eppp b .t =~ pu, for any p € A-.

The completeness of the axiom system Eggp then follows from Proposition 28 and Proposi-
tion 29. Notice that axioms L1 and TB are actually axiom schemata that both generate |A; |
axioms. Similarly, the schema C4 generates 2|.A| axioms, and C5 generates 2|.4| x (24| — 1)
axioms. Hence, &ppp is finite when so is the set of actions.

» Theorem 5 (Completeness). Let t,u be CCSpc terms. If t ~gpp u, then Eppp bt ~ u.

11 Concluding remarks

In this paper we have shown that the use of auxiliary operators, such as the left merge and
communication merge, is crucial to obtain a finite, complete axiomatisation of the CCS
parallel composition operator modulo rooted branching bisimilarity. Indeed, rooted branching
bisimilarity does not afford a finite, complete axiomatisation over CCS without the auxiliary
operators (our negative result), whereas CCS with the auxiliary operators added does have
such a finite complete axiomatisation modulo rooted branching bisimilarity (our positive
result).

A natural direction for future research is the extension of our results to other weak
congruences from the spectrum [17]. The infinite family of equations used in the proof of
our negative result (Theorem 4) is the same as that used by Moller to prove that CCS does
not afford a finite complete axiomatisation of strong bisimilarity [32]. Our proof that the
parametric property P, is preserved by provability from every collection of equations that
are bounded in size by n and that are sound with respect to rooted branching bisimilarity
refines Moller’s proof that P, is preserved by provability if the equations are required to
be sound with respect to strong bisimilarity. Our next goal will be to identify the weakest
congruence ~ in the spectrum that includes strong bisimilarity and for which provability
from a collection of sound equations that are sound with respect to ~ preserves P,,. It will
then follow that CCS does not afford a finite complete axiomatisation for all congruences
including strong bisimilarity and included in ~.

6:15

CONCUR 2022

6:16

On the Axiomatisation of Branching Bisimulation Congruence over CCS

Regarding extensions of the positive result, we will focus on three weak congruences,
namely rooted n-bisimilarity (~rys), rooted delay bisimilarity (~ppg), and rooted weak bisim-
ilarity (~gup), and provide complete axiomatisations for them. We are confident that the
axiomatisation for ~g,p can be obtained by exploiting a proof technique from [10] based on
the notion of saturation. It should then be established that ~p,g coincides with ~ggg on the
class of n-saturated terms. Hence, if we can show that each term is provably equal to an
n-saturated term using the axiom system for ~g,g, the completeness of the considered axiom
system then directly follows from that for ~ppp we provided in this paper.

The quest for complete axiomatisations for ~gpg and ~pyg will require a different approach,
as these equivalences are not preserved by the communication merge operator. For instance,
we have that 7.a ~pyg 7. + a, but 7.a | @.b gy (7.0 + a) | @.b. Regarding ~ppg, similar
observations can be made (see [18] for more details). The complete axiomatisation for
observational congruence [23] (and thus rooted weak bisimilarity) over ACP, presented
in [13] includes the axiom

Tr|ly~zly. (TC)

Similarly, in [1,21] it was argued that in order to reason compositionally, and obtain an
equational theory of CCS modulo observational congruence, it is necessary to define the
operational semantics of communication merge in terms of inference rules of the form

=t u=

tlu=t|

where we use == as a short-hand for the sequence of transitions ——-»—+. This means
that in order for | to preserve ~pyp (and/or ~gpg), we need to consider a sequence of weak
transitions as a single step. Clearly, since | is an auxiliary operator that we introduce
specifically to obtain finite axiomatisations, its semantics can be defined in the most suitable
way for our purposes, i.e., so that it is consistent with the considered congruence relation.
However, it is also clear that if we modify the semantics of one operator in CCSy,c, then we
are working with a new language. In particular, some axioms that are sound modulo strong
bisimilarity (and thus also modulo ~ggg) over CCSy,¢ become unsound modulo rooted weak
bisimilarity over the new language: this is the case of axioms C6 and C7 in Table 7. As a
consequence, we cannot exploit the completeness of the axiomatisation for rooted branching
bisimilarity to derive complete axiomatisations for rooted weak bisimilarity and rooted delay
bisimilarity, but we must provide new axiomatisations for them and prove their completeness
from scratch. Hence, we leave as future work the quest for complete axiomatisations for
~pup and ~ppp over (recursion, relabelling, and restriction free) CCS with left merge and
communication merge.

—— References

1 Luca Aceto. On “Axiomatising Finite Concurrent Processes”. SIAM J. Comput., 23(4):852-863,
1994. do0i:10.1137/S0097539793243600.

2 Luca Aceto, Elli Anastasiadi, Valentina Castiglioni, Anna Ing6lfsdéttir, and Bas Luttik. In
search of lost time: Axiomatising parallel composition in process algebras. In Proceedings of
LICS 2021, pages 1-14. IEEE, 2021. doi:10.1109/LICS52264.2021.9470526.

3 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ing6lfsdéttir, and Bas Luttik. Are two
binary operators necessary to finitely axiomatise parallel composition? In Proceedings of CSL
2021, volume 183 of LIPIcs, pages 8:1-8:17, 2021. doi:10.4230/LIPIcs.CSL.2021.8.

https://doi.org/10.1137/S0097539793243600
https://doi.org/10.1109/LICS52264.2021.9470526
https://doi.org/10.4230/LIPIcs.CSL.2021.8

L. Aceto, V. Castiglioni, A. Ingolfsdottir, and B. Luttik

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Luca Aceto, Valentina Castiglioni, Anna Ingolfsdottir, and Bas Luttik. On the axiomatisation
of branching bisimulation congruence over ccs, 2022. doi:10.48550/ARXIV.2206.13927.
Luca Aceto, Valentina Castiglioni, Anna Ing6lfsdéttir, Bas Luttik, and Mathias R. Pedersen.
On the axiomatisability of parallel composition: A journey in the spectrum. In Proceedings of
CONCUR 2020, volume 171 of LIPIcs, pages 18:1-18:22, 2020. doi:10.4230/LIPIcs.CONCUR.
2020.18.

Luca Aceto, David de Frutos-Escrig, Carlos Gregorio-Rodriguez, and Anna Ingolfsdéttir.
Axiomatizing weak simulation semantics over BCCSP. Theor. Comput. Sci., 537:42-71, 2014.
doi:10.1016/j.tcs.2013.03.013.

Luca Aceto, Wan Fokkink, Anna Ingélfsdéttir, and Bas Luttik. A finite equational base for
CCS with left merge and communication merge. ACM Trans. Comput. Log., 10(1):6:1-6:26,
2009. doi:10.1145/1459010.1459016.

Luca Aceto, Wan Fokkink, Anna Ingolfsdottir, and Sumit Nain. Bisimilarity is not finitely
based over BPA with interrupt. Theor. Comput. Sci., 366(1-2):60-81, 2006. doi:10.1016/j.
tcs.2006.07.003.

Luca Aceto, Anna Ingdélfsdéttir, Bas Luttik, and Paul van Tilburg. Finite equational bases for
fragments of CCS with restriction and relabelling. In Proceedings of IFIP TCS 2008, volume
273 of IFIP, pages 317-332, 2008. doi:10.1007/978-0-387-09680-3_22.

Luca Aceto, Rob J. van Glabbeek, Wan Fokkink, and Anna Ingélfsdéttir. Axiomatizing prefix
iteration with silent steps. Inf. Comput., 127(1):26-40, 1996. doi:10.1006/inco.1996.0047.
Twan Basten. Branching bisimilarity is an equivalence indeed! Inf. Process. Lett., 58(3):141—
147, 1996. doi:10.1016/0020-0190(96)00034-8.

Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109-137, 1984. doi:10.1016/S0019-9958(84)80025-X.
Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes with abstraction.
Theor. Comput. Sci., 37:77-121, 1985. doi:10.1016/0304-3975(85)90088-X.

Taolue Chen, Wan Fokkink, and Rob J. van Glabbeek. Ready to preorder: The case of weak
process semantics. Inf. Process. Lett., 109(2):104-111, 2008. doi:10.1016/j.ipl.2008.09.003.
Rob J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In
Proceedings of CONCUR ’90, volume 458 of Lecture Notes in Computer Science, pages 278297,
1990. doi:10.1007/BFb0039066.

Rob J. van Glabbeek. A complete axiomatization for branching bisimulation congruence of
finite-state behaviours. In Proceedings of MFCS’93, volume 711 of Lecture Notes in Computer
Science, pages 473-484, 1993. doi:10.1007/3-540-57182-5_39.

Rob J. van Glabbeek. The linear time - branching time spectrum II. In Proceedings of
CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 66—81, 1993. doi:
10.1007/3-540-57208-2_6.

Rob J. van Glabbeek. On cool congruence formats for weak bisimulations. Theor. Comput.
Sci., 412(28):3283-3302, 2011. doi:10.1016/j.tcs.2011.02.036.

Rob J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation
semantics (extended abstract). In IFIP Congress, pages 613—618, 1989.

Rob J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation
semantics. J. ACM, 43(3):555-600, 1996. doi:10.1145/233551.233556.

Matthew Hennessy. Axiomatising finite concurrent processes. SIAM J. Comput., 17(5):997—
1017, 1988. doi:10.1137/0217063.

Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency. In
Proceedings of ICALP 1980, volume 85 of Lecture Notes in Computer Science, pages 299-309,
1980. doi:10.1007/3-540-10003-2_79.

Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137-161, 1985. doi:10.1145/2455.2460.

Tony Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

6:17

CONCUR 2022

https://doi.org/10.48550/ARXIV.2206.13927
https://doi.org/10.4230/LIPIcs.CONCUR.2020.18
https://doi.org/10.4230/LIPIcs.CONCUR.2020.18
https://doi.org/10.1016/j.tcs.2013.03.013
https://doi.org/10.1145/1459010.1459016
https://doi.org/10.1016/j.tcs.2006.07.003
https://doi.org/10.1016/j.tcs.2006.07.003
https://doi.org/10.1007/978-0-387-09680-3_22
https://doi.org/10.1006/inco.1996.0047
https://doi.org/10.1016/0020-0190(96)00034-8
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/j.ipl.2008.09.003
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/3-540-57182-5_39
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/j.tcs.2011.02.036
https://doi.org/10.1145/233551.233556
https://doi.org/10.1137/0217063
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1145/2455.2460

6:18

On the Axiomatisation of Branching Bisimulation Congruence over CCS

25

26

27

28

29

30

31

32

33

34

35

36

Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371-384,
1976. doi:10.1145/360248.360251.

Bas Luttik. Unique parallel decomposition in branching and weak bisimulation semantics.
Theor. Comput. Sci., 612:29-44, 2016. doi:10.1016/j.tcs.2015.10.013.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice
Hall, 1989.

Robin Milner. A complete axiomatisation for observational congruence of finite-state behaviors.
Inf. Comput., 81(2):227-247, 1989. doi:10.1016/0890-5401(89)90070-9.

Faron Moller. Azioms for Concurrency. PhD thesis, Department of Computer Science,
University of Edinburgh, July 1989. Report CST-59-89. Also published as ECS-LFCS-89-84.
Faron Moller. The importance of the left merge operator in process algebras. In Proceedings
of ICALP ‘90, volume 443 of Lecture Notes in Computer Science, pages 752-764, 1990.
doi:10.1007/BFb0032072.

Faron Moller. The nonexistence of finite axiomatisations for CCS congruences. In Proceedings
of LICS 90, pages 142-153, 1990. doi:10.1109/LICS.1990.113741.

Rocco De Nicola and Matthew Hennessy. Testing equivalence for processes. In Proceedings
of ICALP 1983, volume 154 of Lecture Notes in Computer Science, pages 548-560, 1983.
doi:10.1007/BFb0036936.

David M. R. Park. Concurrency and automata on infinite sequences. In Proceedings of
GI-Conference, volume 104 of Lecture Notes in Computer Science, pages 167-183, 1981.
doi:10.1007/BFb0017309.

Gordon D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebraic Methods
Program., 60-61:17-139, 2004.

https://doi.org/10.1145/360248.360251
https://doi.org/10.1016/j.tcs.2015.10.013
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(89)90070-9
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1109/LICS.1990.113741
https://doi.org/10.1007/BFb0036936
https://doi.org/10.1007/BFb0017309

Non-Deterministic Abstract Machines

Malgorzata Biernacka
Institute of Computer Science, University of Wroctaw, Poland

Dariusz Biernacki
Institute of Computer Science, University of Wroctaw, Poland
Serguei Lenglet

Université de Lorraine, Nancy, France

Alan Schmitt
INRIA, Rennes, France

—— Abstract

We present a generic design of abstract machines for non-deterministic programming languages, such

as process calculi or concurrent lambda calculi, that provides a simple way to implement them. Such
a machine traverses a term in the search for a redex, making non-deterministic choices when several
paths are possible and backtracking when it reaches a dead end, i.e., an irreducible subterm. The
search is guaranteed to terminate thanks to term annotations the machine introduces along the way.

We show how to automatically derive a non-deterministic abstract machine from a zipper
semantics — a form of structural operational semantics in which the decomposition process of a term
into a context and a redex is made explicit. The derivation method ensures the soundness and
completeness of the machines w.r.t. the zipper semantics.

2012 ACM Subject Classification Theory of computation — Abstract machines

Keywords and phrases Abstract machines, non-determinism, lambda-calculus, process calculi
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.7

Related Version Extended Version: https://hal.inria.fr/hal-03545768v2

Funding This work is partially funded by PHC Polonium and by the National Science Centre of
Poland under grant no. 2019/33/B/ST6,/00289.

Acknowledgements We thank the anonymous reviewers for their comments.

1 Introduction

Abstract machines, i.e., first-order tail-recursive transition systems for term reduction, such
as SECD [29], CEK [13], and the KAM [28], are a traditional and celebrated artifact in
the area of programming languages based on the A-calculus. They serve both as a form
of operational semantics [12,13,29] and an implementation model [26,33] of programming
languages, but they also play a role in other areas, e.g., in proof theory [28], higher-order
model checking [41], or cost models [1]. They are used as an implementation model also in
concurrent languages [16,18,34,37,46], in particular to study distribution [4,19-21,24,38].

Since in general designing a new abstract machine is a serious undertaking, several
frameworks supporting mechanical or even automatic derivations of abstract machines from
other forms of semantics have been developed [2,7,23,44]. However, these frameworks assume
a language that satisfies the unique decomposition property [7,11], which entails that at each
step one specific redex is selected, and thus the language follows a deterministic reduction
strategy. This property does not hold in non-deterministic languages such as process calculi
(or even in the A-calculus without a fixed reduction strategy) and the existing methodology
cannot be applied. Existing machines for non-deterministic languages are ad-hoc and may
not be complete, i.e., not all reduction paths of the language can be simulated by the
corresponding abstract machine [16,18,20,34,46].

© Malgorzata Biernacka, Dariusz Biernacki, Serguei Lenglet, and Alan Schmitt;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).

Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 7; pp. 7:1-7:24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2022.7
https://hal.inria.fr/hal-03545768v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

Non-Deterministic Abstract Machines

This work presents a generic framework for the definition of complete abstract machines
that implement a non-deterministic reduction relation in a systematic way. The idea is to go
through a term to find a redex without following a specific strategy, picking arbitrarily a
subterm when several are available — e.g., going left or right of an application in A-calculus.
The two main ideas are: (1) the machine should not remain stuck when it chooses a subterm
which cannot reduce — in such a case we make it backtrack to its last choice; (2) the machine
should not endlessly loop searching for redexes in subterms which cannot reduce — the
machine annotates the subterms which are normal forms to prevent itself from visiting them
again.

Non-deterministic machines designed in this way can be complex even for small languages,
therefore we show how to generate them automatically from an intermediary zipper semantics.
This semantics, inspired by Huet [25], is a form of structural operational semantics (SOS) [40]
that remembers the current position in a term by building a context, i.e., a syntactic
object that represents a term with a hole [14]. This format of semantics makes it explicit
how a term is decomposed into a context and a redex, and thus it can be seen as a non-
deterministic counterpart of the decomposition function in (deterministic) context-based
reduction semantics [10,15]. While deterministic reduction semantics is directly implementable
and the corresponding abstract machine can be viewed (roughly) as its optimization [11],
non-deterministic reduction semantics, even when expressed as a zipper semantics, requires
non-trivial instrumentation to become implementable in a complete way. Deriving the non-
deterministic abstract machine (NDAM) from the zipper semantics consists exactly in such
an instrumentation with the backtracking mechanism and normal-form annotations. We show
how to derive an NDAM from an arbitrary zipper semantics that satisfies minimal conditions,
and we prove that the resulting NDAM is sound and complete w.r.t. the semantics. Our
approach applies in particular to process calculi, for which the abstract machines defined so
far were ad-hoc and usually not complete.

The contributions of this paper are: (1) a generic design of sound and complete, non-
deterministic abstract machines which cannot get stuck or infinitely loop in a redex search, (2)
with a systematic derivation procedure from an intermediary format, called zipper semantics.
The resulting machine is an implementation of the non-deterministic source language.

We illustrate our method on the A-calculus without a fixed reduction strategy and on
a minimal process calculus HOcore [31], respectively in Sections 2 and 3. We then give a
derivation procedure of an NDAM from an arbitrary zipper semantics in Section 4. We
discuss related work in Section 5 and future work in Section 6. The appendix contains further
examples, including the zipper semantics and abstract machine of HO [42] that extends
HOcore with name restriction. An extended version [6] contains the proofs missing from the
paper. An implementation of the derivation procedure is also available [5].

2 Lambda-calculus

As a warm-up example, we present the zipper semantics and the corresponding NDAM for
the A-calculus with no fixed reduction strategy.

2.1 Syntax and Context-based Reduction Semantics

We let ¢, s range over A-terms. We denote application with an explicit operator @ to annotate
it later on. We represent a context E as a list of elementary contexts called frames §.

t,su=x | At | t@s Fu=Ax | @t | t@ E,F,G:=e | §:E

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

init appL appR appA appf

s I I s,E
t L,app t t Mapp t S Mapp s t Mapp t t i_’lam '
t —>55 t/ tQs Eapp t/ tQs E’app S/ Azt E’app t/ tQs E)app t/

lamf3

E
Mot 2 E[t{s/z}]
Figure 1 Zipper semantics for the A-calculus.

Because it is more convenient for the definition of the machine, we interpret contexts inside-
out [12]: the head of the context is the innermost frame. The definition of plugging a term
in a context E[t] is therefore as follows:

o[t]2t (a:E)[t]2EDxt] (as:E){] 2Etas] (s@:E)[t] £E[sat]

We write t{s/x} for the capture-avoiding substitution of « by s in ¢, and define the context-
based reduction semantics —s of the A-calculus by the following rule

E[(Az.t) @s] —s E[t{s/z}]

which can be read declaratively: if we find a redex in a context E built according to the
given grammar of contexts, then we can reduce. This format of semantics does not make it
apparent how to decompose a term to find a redex. On the other hand, structural operational
semantics offers another common semantic format that makes it more explicit how to navigate
in a term to find a redex, but it does not store the traversed path.

2.2 Zipper Semantics

A first step towards an abstract machine is to make explicit the step-by-step decomposition of
a term into a context and a redex. To this end, we propose zipper semantics, a combination
of SOS and reduction semantics. Like a regular SOS, a zipper semantics goes through a term
looking for a redex using structural rules, except the current position in the term is made
explicit with a context as in reduction semantics.

The zipper semantics for the A-calculus is defined in Figure 1. It looks for a -redex while
constructing the surrounding context E at the same time. The decomposition happens in the
rules applL, appR, and appA, where we search for a redex by descending into the appropriate
subterm of a given term. Each of these rules corresponds to a frame, with init initiating the
search by setting the context to e.

These rules actually look for the application at the root of the S-redex; checking that
an application £ @ s is indeed a S-redex is done by the rule appf3. It relies on an auxiliary
transition ¢ ﬂ’lam ', which checks that its source is indeed a A-abstraction. In that case, we
can f-reduce with rule lamf3. We can see that computation only occurs in the axiom; the
other rules are simply propagating the result unchanged.

One may wonder why we need the rules appf3 and lamf3 while a single axiom
(Ax.t)as Eapp E[t{s/x}] is enough to recognize a (-redex. The reason is that we re-
strict ourselves to patterns discriminating only the head constructor of a term, to remain
close to an abstract machine where the decomposition of a term occurs only one operator at
a time.

7:3

CONCUR 2022

7:4

Non-Deterministic Abstract Machines

We prove that the zipper semantics and reduction semantics coincide in Appendix A.

» Example 1. To illustrate further how to recognize a redex one operator at a time, suppose
we restrict the argument of the S-redex to a value v ::= x | Az.t, so that E[(Ax.t) Qv] —s

E[t{v/x}]. In such a case, we would need an extra transition s RN , checking that s is a
value. The rule lam would be replaced by the rule lamp" below.

lamB"’

z,t,E

/ var lam”
s ——, t

x

At 2ty 2 E[{y/a}] Ayes 225, E[t{y.s/z)]

2.3 Non-Deterministic Abstract Machine

Design principles. Zipper semantics describes how to decompose a term into a redex and a
context, but it is not yet an implementation, as it does not explain what to do when several
rules can be applied, like appL, appR, and appf. The NDAM simply picks one of them, and
backtracks if it reaches a dead-end. We present how we implement this backtracking and how
it can be derived from the zipper rules, before giving the formal definition of the NDAM.

The decomposition at work in the zipper semantics rules can be turned into machine
steps: we see the change of focus occurring in the source term between the conclusion and
the premise. We introduce a machine mode for each transition kind (here, app and lam), and
the rules applL, appR, and appf are translated to the following forward machine steps, with |
separating the term from the context:

Qs |Eyapp = (t]Qs::E)app Q5[Eapp — (s[t@::E)app (tQ5[Eapp — {t]5,E)iam

We see why interpreting the context inside-out is convenient: focusing on ¢ in E[t @ s] amounts
to pushing the frame @ s on top of E. It is the same as decomposing the term as (@ s:: E)[t]:
the innermost constructor becomes the topmost one in the context.

The resulting machine is non-deterministic as three different steps can be taken from the
configuration (t @ s | E),pp. Unlike typical deterministic machines, it does not implement a
strategy and does not choose, e.g., to always go left of an application as in the KAM [28].
A consequence is that the machine can make a wrong choice, i.e., focus on a term which
cannot reduce, like a variable. In such cases, we want the machine to backtrack to the last
configuration for which a choice had to be made, and no further. To do so, we record the
applied rules in a stack m. When we reach a term which cannot reduce, we switch to a
backtracking mode (here, bapp) where we can “unapply” a rule.

t@s;m|E)app — (trapplum|@s:E)app
<37;7T|E>app = <7T;‘r‘E>bapp
(appL:mit|@s::Edpapp — t@Q 557 | E)app

The machine may try other rules on t@s, e.g., to find a redex in s. However, it should
not try applL again, as the backtracking step implies there is no redex in ¢. We refer to
backtracking steps like the last one as backward, and to steps like the middle one as switching.
The backward step is simply the reverse of the corresponding forward step.

We prevent the machine from choosing a previously explored path by annotating the root
operator of an already tested subterm. An annotation ¢ @2PP s means that ¢ @ s has already
been tried for Eapp transitions and is a normal form for it. Similarly, a term annotated lam

is a normal form w.r.t. LEnam (it is not a A-abstraction). A term can be annotated with
both app and lam, for instance if it is a variable.

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

The machine can take a forward step only if the term in focus has not been already tested.

For t @ s, we try appL (resp. appR) only if ¢ (resp. s) is not annotated app, and appf only
if t is not annotated lam. If none of the steps applies because of the annotations, then all
possible rules have been tried and t @ s is a normal form for app: the machine backtracks
and annotates the term accordingly. In what follows, ¥ represents an annotation set.

(@57 | Eapp = (527 PP By
Q% 557 | E)app > (13t @R} g | By if no other step applies

Switching steps are of two kinds: either the language construct does not have a forward step
for a given mode (like a variable in the app mode), or all possible rules have been tried for
the construct. They both can be derived from the zipper semantics by looking at which rule
can be applied to each construct. This derivation is made easier by the constraint that the
decomposition occurs one operator at a time in zipper rules. If we allowed for more complex
patterns such as (Az.t) @ s, we would have to create a switching step for the terms not fitting
this pattern, like x @ s, and enumerating these anti-patterns would be more difficult [27].

Finally, because we store the annotations of a term in its root operator, we need to
remember them when a forward step removes the operator, to be able to restore them when
we backtrack. We do so in the stack 7.

Q% 557 | Epapp — (ti(appL, X) i | @5 EDapp
{(appL,B) =3t | @5 Edpapp — (tQ% 557 | E)app

In this simple example we could do without the stack because the contexts encode precisely
the rules that have been applied along the way. In general, however, a single context cannot
always reflect the derivation tree, as we can see in the HO7m example (Appendix C).

The next example illustrates how annotations work, and also that they may no longer
hold after reduction. Therefore they should be erased before searching for the next redex.

» Example 2. Let Q 2 (A\9z.29 Q9 x9) Q9 (\Dz.2< Q9 79). We show a possible machine
run for this term, where we label forward and backward steps with the rule they apply or
unapply, and switching steps with a constant t. For readability, we write only the term
under focus.

The machine may first go left and under the A-abstraction.

L appA
Q.. Dapp T (@D @D 2D |y

At that point, it may test whether the application is a S-redex. Since it is not the case, it
backtracks, annotating the variable in function position.

@2 @2 2P| aop P2 (2| a2, (M @D 2P|,

From there, it necessarily tests the other possibilities appL and appR (in no predefined order),
and fails in both cases.

<xlam @Q x@ ‘ . .>app IaPPL }LI*aPPL appR LN —appR <${app,lam}@®xapp ‘ . .>app

Then it can only backtrack to reconstruct the A-abstraction on the left, and then the whole
term.

T —appA
<x{appylam}@®$app | T, —aPPA, </\®x_${app,lam}@appxapp |.

- Dapp - Dapp

T, el <()\appxhx{app,lam}@appxapp) Q@9 (\Pz.2% @9 29| .. Dapp

7:5

CONCUR 2022

7:6 Non-Deterministic Abstract Machines

()25 — (t3init| @)app
Q% 57| Eapp — <t (appL, X) 7| @5 Eapp if app ¢ an(t)
Q% 557 | Epapp — (55 (appR,X) s [t @ E)apyp if app ¢ an(s)
Q% 57| Eapp — <t (appB, X) :: 7| 8, EDam if lam ¢ an(t)
OFwt 37 | E)app = (¢ (appA, Z) 27 | Az i E)app if app ¢ an(t)

s Eapp = (3672 | EDpapp otherwise

(init; t | papp — {Enf
{(appL, X) w3t | @s 1 Edpapp — (¢ Q% 557 | Edapp
{(appR,X) 35|t @ :: Edpapp — (t@% 557 | Edapp
{(appPB,) =3t | 8, Edplam — ¢ Q% 557 | Edapp
((appA,) it | Az Epapp > NZ2t 57| Eapp

NPzt 8, E)am — (E[t{s/2}]|Dss
& s, Eyjam — (5 gotam | 3, EDblam otherwise

Figure 2 Non-Deterministic Abstract Machine for the A-calculus.

The machine can then look for a redex in the A-abstraction on the right, and it would result
in the same annotations as for the one on the left, not necessarily generated in the same order.
It can also rightfully recognize the term as a [-redex, with the sequence »ﬂm, the
last step performing the reduction. After the reduction, we should also erase the remaining
annotations. If we do not erase them, the result of the reduction would be

((NPz.29 @2 z9)alPP (A 1.29 Q2 D) |.. Dapp

and the app annotation would wrongfully signal the term as a normal-form, preventing it
from being reduced. Erasing all the remaining annotations ensures the machine finds the next
redex, but a finer, language-specific analysis would erase only the problematic annotations.
We leave such an optimization as a future work.

a

Formal definition. We let o range over annotations, 3 over annotation sets, and denote
the empty set by . We extend the A-calculus syntax as follows:

a = app | lam tysu=a> | NPzt | t@Q%s

We write an(t) for the annotation set at the root of ¢, e.g., an(t @ s) 2%, We write £ for
its extension with « so that an(t¥%) = an(t) u {«}. We write [t| for the erasure of ¢, where
all the annotation sets in ¢ are made empty.

The syntax of contexts uses annotated terms, and plugging returns an annotated term
where the annotation sets of the context operators are empty: e.g., (Az:: E)[¢] 2 E[\ z.t].
Plugging is used only after a reduction step, where all the annotation sets are erased anyway.

We let p range over rule names and 7 over rule stacks, defined as 7 ::= init | (p,X):: 7.
The definition of the machine for the A-calculus is given in Figure 2.

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

A forward configuration (t;m|E), (with m € {app,lam}) discriminates on (the root
operator of) t to apply a rule of the zipper semantics. For an inductive rule, it results in
a change of focus and an extension of the stack, on which we record the applied rule and
the annotation set of the root operator. Taking such a step is possible only if the new term
under focus is not a normal form. A special case of forward step is the initial one from {t),s
which does not have a side-condition, as we assume the annotation sets of ¢ to be empty.

The S-reduction happens in the first transition of the lam mode. Backtracking is no
longer necessary so we drop the stack. We reconstruct the entire term, and switch to the
initial mode to search for a new redex starting from the root of the new term. We erase all
annotations, as they may no longer be valid, as illustrated by Example 2.

If a forward configuration cannot apply a rule, we switch to the corresponding backward
mode, annotating t in the process: these are the two “otherwise” steps. A backward
configuration {(m;t|E)py inspects the stack 7 to unapply the rule at its top. While a
backward step restores the configuration of the corresponding forward step, the term contains
more annotations after a backward step than before taking the forward step: in (m;¢|E)pm,
we have m € an(t) by construction. The annotations prevent the machine from reapplying a
rule it just unapplied. The normal form mode {t)ss signals that the term cannot reduce.

A machine run starts with an initial configuration {t),s where all the annotation sets of ¢
are empty. The semantics of the machine is given by these configurations: if (t),s —1 ()56
such that the sequence —* does not go through another initial configuration, then t —, t'.
Similarly, if (¢),s —T {t'Dns, then |t'| =t and ¢ is a normal form. We state the correspondence
and termination theorems independently from the source zipper semantics in Section 4.

3 HOcore

We consider a minimal process calculus called HOcore [31], which can be seen as an extension
of the A-calculus with parallel composition.

3.1 Syntax and Semantics

We let a, b range over channel names, X, Y over process variables, and we define the syntax
of processes as follows.

PQR:=X]0[P|Q | aX).P |alP)

The process 0 is the inactive process, P || @ runs P and @ in parallel, and a communication
may happen between an input a(X).P and an output a{Q) that run in parallel. The
communication is asynchronous because a message output does not have a continuation [43];
we discuss the synchronous case in Remark 3. In spite of its minimal number of constructors,
HOcore is Turing-complete [31].

The semantics of process calculi is usually presented either with a structural congruence
relation which reorders terms to make redexes appear, bringing input and output processes
together, or with a labeled transition system which preserves the structure of the term [43].
Instead, we present it first as a reduction semantics with explicit contexts, as in Section 2.1,
which makes it easier to come up with (or translate into) the corresponding zipper semantics.

We define frames as § ::= || P | P|| and plugging as follows.

J[PIEZP (|Q=EJ[PI2E[P|Q] (Q=E)P]ZE[Q|PF]

7:7

CONCUR 2022

7:8

Non-Deterministic Abstract Machines

init parL parOutL parOutR
. = E o.LE, ¢ R,E,P
P —par P, Vi HQ—’Par P, s P 4Q’out P/ Q — out P/
/ E E E
P 25 P P || Q —>par P’ P || Q —>par P’ P || Q — par P’
outParL outln inParL
= F,S,E i P,E,F
P HQ ,S,E,R out P/ R ¢,S,a,PEF n P/ R ”Q G,S,a,PE, n P/ ()
S S
F,S,E,R _ F,S,E,R G,S,a,P,EF
Pl|Q —=ou P w(Py ———>q P’ R|Q ———, P
inComL
b=a

G,L,a,P,EF (s)

b(X).R in E[F[0] || G[R{P/X}]]

Figure 3 Output-first Zipper Semantics for HOcore.

A redex is a parallel composition with an input on one side and an output on the same
name on the other side, both surrounded with contexts. The general formulation of such
communication sites in a program can be expressed with the following reduction semantics,
where we write P{Q/X} for the capture-avoiding substitution of X by @ in P:

E[F[a{@)] || G[a(X).P]] —s E[F[0] || G[P{Q/X}]]
E[G[a(X).P] | F[a(@)]] —s E[G[P{Q/X}] [| F[O]]

3.2 Zipper Semantics

Finding an HOcore redex requires us to recognize three constructs (parallel composition
along with output and input on a shared name) and build the contexts E, F, and G. The first
step is to find the parallel composition; once the communicating processes P || Q are found,
the communication rules of typical LTSs for process calculi [31,42,43] have two premises
looking for the output and the input in P and @ respectively. To be closer to an abstract
machine, we sequentialize the search by looking for the output first (while constructing F)
and then the input (with G) — the opposite choice would produce a completely symmetric
semantics. Figure 3 presents such an output-first zipper semantics, where we omit the
symmetric versions of the rules marked with the symbol (s). The resulting semantics is close
to complementary semantics [32], where the communication is also sequentialized.

The transition Epar is looking for the parallel composition while building E: it proceeds

as Eapp in the A-calculus. Once we find the parallel composition, we look for the output
either on the left or on the right with respectively rules parOutL and parOutR. We record
the side we pick with a parameter S ::= £ | R. For example, in rule parOutL, we look for
an output in P on the left (£), remembering that we should later search for a corresponding
input in Q. We also initialize the context F surrounding the output with e and remember E
as the context enclosing the whole redex.

The transition Mout decomposes its source process to find an output, building F
at the same time: the other parameters S, E, and R remain unchanged during the search.
When we find the output a(P) (rule outln), we look for a corresponding input in R using
Min, which builds the context G during the search. Once we find an input on a, we
compute the result of the communication, which depends whether the output is on the left

(rule inComL) or on the right (omitted rule inComR).

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

(P)zs — (P;init| ®)par

(P|I" Qi |Epar — (P (parl, T) i ||| Q:: Epar if par ¢ an(P)
(P H2 Q| E)par — (P (parOutL, X) i | o, L, E, Qout if (out, |Q|) ¢ an(P)
(P Q7| Edpar — (Q; (parOutR, L) :: | o, R, E, Phoue if (out, |P]) ¢ an(Q)
(P57 | Eypar = (5 PP | EDppar otherwise
(init; P | yppar —> (Phns
{(parL, %) :: 73 P ||| Q:: Epppar = (P [|¥ Qi 7| EDpar
(P|[ZQ;7|F,S,E, Ryou — (P (outParl,X) 7| | Q::F,S,E, Rbowe if (out, |R|) ¢ an(P)
(@ {(P);7|F,8,E, Ryout — (R; (outln,) :: 7| 0, S,a, P,E, Fiy if (in,a) ¢ an(R)
(P;7|F,8,E, RYout — (m; P°CIEV|F S E, Rypout otherwise
{(parOutL, %) ::m; P | e, L, E, Qpout — (P ||” Q57| EDpar
{(parOutR,) :: 75 Q | 8, R, E, Phpout — (P || Q57| E)par
{(outParL,®)::7; P||| Q ::F, S, E, Ropout — (P||” Q;7|F,S,E, Rdout

(R|I”Q;7|G,S,a, P,E,Fyn — (R;(inParl,X) 7 ||| Q:: G, S, a, P,E, F, if (in,a) ¢ an(R)
WP (X).R;7|G, L, a, P,E,Fin — {E[F[0] || G[R{P/X}]]|Dzs ifa=10
W (X).R;7|G, R, a, P,E,Fyi, — (E[G[R{P/X}] || F[O]]|>s ifa=10
(R;7|G,S,a, P,E,F) — (1; R°M™ |G, S, a, P,E, Fyin otherwise

{(outln,X) ::7; R| e, 8, a, P,E,Fhyin — (@ (P);7|F,S,E, R)ou
{(inParL,) 75 R||| Q= G, S, a, P,E,Fhyin — (R||* Q7| G, S, a, P,E,Fy,

Figure 4 Non-Deterministic Abstract Machine for HOcore.

We prove the correspondence between the two semantics in Appendix B.

» Remark 3 (Synchronous communication). For a synchronous calculus with an output a(P)Q,
the rule outln would pass the continuation ¢ as an argument of the input transition in. The
continuation @) would then be plugged into F in the axioms inComL and inComR.

» Remark 4 (Left-first search). After finding the communicating processes P || @, we could
always go left (in P). When we find an output or input in P, we look for its complement
in Q. A right-first search is also possible. We present the left-first zipper semantics and its

machine in Appendix B; such an approach does not scale to HOw, as explained in Remark 22.

3.3 Non-Deterministic Abstract Machine

We derive the HOcore NDAM from its zipper semantics along the same principles as for the
A-calculus: each rule of the semantics corresponds to a forward step and a backward step,

and when no forward step applies to a configuration, we switch to a backward configuration.
The difference is in the normal-form annotations: in A-calculus, to be a normal form w.r.t.

s,E E .
——am OF —,pp does not depend on the arguments s and E. In HOcore, being a normal form

depends on some of the arguments in the input and output transitions.

7:9

CONCUR 2022

7:10

Non-Deterministic Abstract Machines

For example, in a process (a(0) || 5{0)) || @, we may look into Q for an input on a or on b.
If @ does not contain an input on «a, then annotating it with the mode in would prevent from
searching in @ for an input on b. We therefore include the name in the annotation, marking
the root operator of @) with (in, a), meaning that @) cannot do an input on a. If it also cannot
do an input on b, then its root operator will be annotated with both (in,a) and (in, b).

With outputs the problem is similar, but not completely symmetric. Let P, ;, = a{0) || 5{0),
and consider a process (P, || @) || B. We may try to find a communication between P, ; and

Q first. If) does not contain an input on a or b, then P, ; is a normal form w.r.t. the output
oL || R::e,Q

search transition out; but a communication between P, ; and R is still possible.
As a result, we annotate the root operator of P, ; with (out, @), meaning that the outputs of

P, are not complemented by the inputs in (). Such an annotation does not prevent trying

. . .y e, Lo R
to make P, ; and R communicate, which would correspond to the transition uout.

As before, ¥ ranges over annotation sets, and |P| is the erasure of P, the annotated
process with empty annotation sets. The syntax of annotations and processes is as follows.

o= par | (out,|P|) | (inya) P.Q,R:= X% | 0% | PIZQ | a®(X).P | a(P)

Substitution and plugging are extended to annotated processes as expected. The definition
of the machine is given in Figure 4. The process P in an annotation (out, |P|) — as in the side
conditions in the par-transitions — is erased, because normal forms are defined with respect
to the zipper semantics transitions, where processes are not annotated. Apart from richer
annotations, the definition of the machine follows the principles of Section 2.3. Note that the
“otherwise” step for the input mode includes the operators that are not parsed in that mode,
but also the inputs on a name distinct from a.

4 Derivation of the Abstract Machine

We show how to derive an abstract machine from a zipper semantics under some conditions.
To this end, we specify zipper semantics as a transition system [22], a framework used to
describe rule formats.

4.1 Zipper Semantics as a Transition System

Given an entity e, we write € for a possibly empty sequence (ey,...,e,) for some n. We
assume a set 8 of sorts ranged over by s, denoting the entities of the language (contexts,
names, etc), and which includes the sort ¢ of terms that are reduced. For each sort s, let Oy
be the signature of s, i.e., a set of operators, each having a typing § — s. In particular, we
let op range over the operators of the terms O;. We also assume a set F of auxiliary functions
that are used to build terms, like term substitution or context plugging, each of type § — ¢.

For each s, we assume an infinite set V; of rule variables, denoted by vs, ws, or v, w if the
sort does not matter. The set &, of rule entities of sort s, ranged over by e, fs (or e, f if we
ignore the sort), are the entities built out of the signature O, extended with rule variables.
We define &; inductively so that V, € &;, and for all o € O, of signature (sq,...,s,) — s and
(es; € €,)ie1..n for some n, we have o(eg,, ..., es,) € E;. A special case are term entities ey,
which can also be built out of auxiliary functions in F. We write rv(e;) for the set of rule
variables of eg; es is ground if rv(es) = .

A rule substitution ¢ is a sort-respecting mapping from rule variables to rule entities.
It should not be confused with the substitution -{-/-} which may exist for terms and is
considered an auxiliary function in F. We write vo for the application of ¢ to v, and eo — for
its extension to rule entities, defined in the expected way. A ground entity e is an instance
of ¢’ if there exists o such that ¢'o = e.

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

toy outinL choiceBad choiceOk rec
pE pr g HOEEeP b rE p pEQ pr puxp/xy S P
PE P wpyEER P PrQS P P+QEL P px.pE pr

Figure 5 Rules for variants of HOcore.

Given some rule variables ¥, we write P(?) for a decidable predicate on ¥. We assume a
set M of modes, denoted by m, such that each mode is associated with a sequence sy, giving
the sorts of its arguments. The set M includes the initial mode zs with no argument.

A transition is a predicate e; im €,, where e; and e, are respectively the source and
the target. We consider only three kinds of rule: inductive (whose names are ranged over
with p), axiom, and initial, of the following respective shapes.

(3 i>m/ V¢ P(TE) P P() (0 i>m Wt init
op(®) S vy op(d) S et Ve s W

£

I

We extend the notion of set of rule variables rv and the application of a substitution to
transitions and rules.

An inductive rule has only one premise, and may have side-conditions, represented by P,
on some of the variables @ occurring in the rule. The modes m and m’ may be distinct or
not, and the sequences € and f should be rule entities of sorts respectively s, and $y/. The
sources and targets of the transitions are terms; in the conclusion, the source term is of

the form op(?), enforcing that a rule can only pattern-match the head operator of the term.

Both targets should be the same term variable, meaning that an inductive rule is simply

passing along the result. Computation occurs in axioms, where the target can be any term.

An initial rule defines the initial mode zs. The source of the conclusion is a variable, so
an initial rule does not perform any pattern-matching. An initial rule is just a means to
set up the arguments of another mode m (such that m # zs). A zipper semantics is a triple
(8,0,R) where R is a finite set of zipper rules with exactly one initial rule. The associated
semantics on terms is defined by —.

4.2 Derivable Zipper Semantics

Not every zipper semantics can be turned into an NDAM. Some conditions have to be
satisfied for the transformation to be possible and to ensure termination.

The first one is that the rules of the semantics must be constructive w.r.t. the machine,
meaning that the entities in its premise are constructed from the ones in the conclusion.
Indeed, the abstract machine searches for redexes with forward steps by going from the
conclusion to the premise of a rule. As a result, a rule like toy in Figure 5 cannot be turned
into a machine step, as the machine would have to guess the name a. We forbid such a rule
by requiring that in each inductive rule of the zipper semantics, the rule variables of the
premise are included in the rule variables of the conclusion.

f ~
et —m vy P(W 7 :
» Definition 5. ——— (@) is machine constructive if rv(es Lm/) Ul € rv(op(D) Sm).

0p<5) i’m Ut

7:11

CONCUR 2022

7:12

Non-Deterministic Abstract Machines

The other constraint is that the rules must be reversible to allow for backtracking: it
should be possible to reconstruct the entities in the conclusion from the ones in the premise.
We say a rule is reversible if it cannot have two different instances with the same premise.
For example, we could make the input search in HOcore less verbose, by combining the
contexts E and F in a single context, like in the rule outlnL in Figure 5. In E[R || F[0]], the
input process is plugged into the context ||F[0]::E, that we build in rule outlnlL, instead
of keeping E and F separate as in Figure 3. However, to unapply the rule outlnL, we need
to uniquely decompose a context as || F[0] :: E, which is not possible as soon as there are
several occurrences of 0 in F[0]: the rule outInL is not reversible. We give a simple sufficient
criterion for a rule to be reversible.

f ~
€t —m v P(w : 7
» Lemma 6. — " ' > (@) is reversible if we have rv(op(V) Sm) S rv(e; i>m/), and

Op(ff) —m Ut

the auziliary functions used to build the entities in e; and f are injective.

The first condition states that the rules variables of the conclusion have to be included in
those of the premise. Indeed, if we forget an entity between the conclusion and the premise,
like @ in the rule for choice choiceBad in Figure 5, then we have no information to restore @
when backtracking. Instead, it should be kept in an extra argument of the zipper semantics,
like the stack € in the rule choiceOk in Figure 5. The stack 6 is useful only for backtracking
and not to define the semantics of the language, as it is simply thrown away when we apply
an axiom. Any rule forgetting entities between its conclusion and premise can be made
reversible using this principle [39)].

Finally, we want the machine to always terminate when searching for a redex. Consider
for instance the rec rule for a recursion operator in Figure 5. The corresponding machine
would infinitely loop with ©X.X. Indeed, the forward step of this rule changes focus from
the source of the conclusion to the source of the premise, but these two terms are equal when
P = X. To avoid this, we require the zipper semantics to be well-founded.

» Definition 7. A zipper semantics is well-founded if there exists a well-founded size { such

r I ~
€ —m’ U P(w F &
that for all inductive rules ——— (), we have ¢(e} LN ve) < Cer Sm vy).

e
€t 7m Ut

In the calculi of this paper, each rule either focuses on a subterm or it changes mode
(like in rule outln in HOcore). We therefore define an ordering on modes such that m > m’
if the derivation of m depends on m’; e.g., we have zs > app > lam in A-calculus, and
zs > par > out > in in HOcore and HO7. The size we consider is then the lexicographic
ordering composed of the ordering on modes followed by the subterm ordering on the source
term of the transition. This size works as long as we have no cyclic dependencies in modes
and only congruence rules within each mode. It rules out unconstrained recursion, but we
can still adapt it for guarded recursion, where the recursion variable occurs only after an
input, as in 4X.a(Y).(X ||Y). In the premise of the rec rule, the p operator itself becomes
guarded, so the number of recursion operators at toplevel strictly decreases.

The semantics of Figures 1, 3, and 9 are machine constructive well-founded, and revers-

ible (they satisfy Lemma 6). Henceforth, we assume the zipper semantics to be machine
constructive, reversible, and well-founded.

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

I ~ (op(vs, ®)im |Dm = ledlls (p,vs) 57| P
G P@) it o(m!,) ¢ an(jled) and P(@)
op(¥) —m vt Up.vs) i fledl | Pom > (op(vs, D) i 7| Em
Vg im wy <7it>zs — <Ut pinit | f>m
P Gnit; v | fom = (Vens
P(w)

% (op(vs,)i | Em = ([lecl| Das if P(w)
op(V) —m e

Figure 6 Forward and backward steps generated from a zipper semantics rule.

4.3 Machine Derivation

Annotations. The machine annotates terms which cannot do certain transitions, to forbid
repeated tries which would lead to an infinite loop. The arguments of the transition may
play a role in whether the term is a normal form or not: in HOcore an output a{P) is a

... TFSE
normal form w.r.t. the output transition SER

out if R cannot receive the message on a, so

L _ . G,S,a,E,F
the annotation is (out,|R|). Similarly an input ¢

in depends on the name a.

The arguments kept in the annotation are the ones either taking part in the reduction,
like R in the output case, or in side-conditions, like a in the input case. Given a mode m
with arguments &, its annotation ¢(m, ¢) is defined as (m, f) where f = & are the arguments
occurring either in side-conditions or source terms of the rules defining m. Repeating this for

each mode of a zipper semantics, we define the annotation function ¢ of the semantics.

Annotated terms. Let (8,0,R) be a zipper semantics with annotation function ¢. We
extend 8 with the sort of annotation sets sy, for which we assume the usual operators on
sets. The machine is built on a signature A which replaces the signature for terms O; with
annotated terms, so that for all op € O; of type (s1,...,8,) — t for some n, we have a
corresponding operator op € A; of type (ss, $1,...,8n) — t.

We let a range over annotated terms 2y, built out of A, V;, and a single rule variable for
annotation sets vs: one variable is enough, as at most one annotation set occurs in a given
machine step. Given an annotated term a = op(es,€), we write an(a) for its annotation
set ex. Given a term e; € &, its annotated version, written ||e;||, is inductively defined so
that ||vs|| = vs and |op(€)|| = op(vs, ﬂ;ﬂ) Given an annotated term a € 2y, its erasure |a]
produces a term with empty annotation sets, inductively defined so that |vs| = vs and

lop(es:,)| = op(, [e]).-

Machine steps. The syntax of rule stacks 7 is given by 7 ::=init | (p,X):: 7. We denote
configurations {a;7|&m as forward, a special case being initial ones {a),s. Backward
configurations are of the form {(7;a|&)pm Wwith normal-form ones {a).s as a subcase.
Figure 6 presents the forward and backward steps generated from an inductive rule p,
an initial rule init, and an axiom. The forward step for an inductive rule goes from the
conclusion to the premise, while the backward step goes in the opposite direction. Terms are
extended with the rule variable for annotated sets vs:. The initial rule case is the same as the
inductive one but simpler, as there is no side-condition: the annotated sets of the term v; in
{viy,s are assumed to be empty. We can see that the annotations are erased after applying
an axiom, as we end up with (| ||e¢|| |zs. There is no backward step associated to axioms.

7:13

CONCUR 2022

7:14

Non-Deterministic Abstract Machines

What remains are the switching steps when we realize that the current mode m does
not apply to the term op(vy,?) we reduce. These are the “otherwise” steps in Figures 2
and 4, which actually cover different cases. The first possibility is that op does not have a
rule applying to it in the mode m. For such cases, we add a step

(op(vs, 0) i 7 | E)m — (i op(vs L {d(m, €)}, D) [om

When going to a backward configuration, we extend the annotation set of the operator with
the current annotation.

T N
61 - . ’P W
The other case is that no rule —— % ° (W)

z p; for op in the mode m applies,

Op(?)) —m Ut
because either the premise or the side condition do not hold. If the machine has already
checked that the premise fails, then ei has been annotated with ¢(m;, f;). The corresponding
switching step is therefore

(op(vs,3) 7| = (3 0plvs 0 0(m, 01,9) [Do i /A (0ms, Fo) € an(lefl}) v ~Pi(@))

Equivalence. The equivalence between the zipper semantics and its derived NDAM is proved
in the research report [6]; we state here the main results. We let T' (resp. A) range over
(resp. annotated) ground terms. For all T, we write ||T||2 for the corresponding annotated
term with empty annotations sets. For all A, we write |A| for A where all annotations sets
are made empty; there exists an unique 7 such that |A| = ||T||¢. We call a search path a
sequence of machine steps —* which does not go through an initial configuration. Search
paths are finite, and result either in an initial or a normal-form configuration.

» Theorem 8. For all T, there exists n such that any search path starting from {||T||? Yz
is of size at most n. For all mazximal search paths {||T||9)z —7 ¢, either ¢ = {||T"||% s for
some T', or ¢ = (A)ns for some A with |A| = ||T|2.

We write — T —,; T” when there exists a zipper semantics derivation ended with T —,s T".
Search paths correspond to derivations in the following way.

» Theorem 9. For all T, T’, and A,
b T —gs T' iff there exists a search path {||T||2) =T {|T"(|? Vus;
T is a normal form iff there exists a search path {||T||9 s —* (Adns with |A| = | T||?.

5 Related Work

The zipper semantics of the process calculi are inspired by complementary semantics [32],
a format dedicated to bisimulation proofs. In both semantics, the derivation tree of two
communicating processes is sequentialized. The difference is in the transition labels, which
should be as minimal as possible in complementary semantics to keep the bisimulation proofs
simple, while ours are detailed enough to be able to reconstruct the whole term.

Typical abstract machines for deterministic languages based on the A-calculus are in
refocused form [11]; such machines continue term decomposition from the contraction site.
They have been shown to be uniformly derivable from the underlying reduction semantics
by a refocusing method [7,44], and the correctness of the derivation hinges on the unique
decomposition property. NDAMs do not have this property, and after contracting a redex they
completely reconstruct the term. An optimization similar to refocusing for non-deterministic
languages appears more challenging in general. Another common feature of abstract machines
for the A-calculus is an efficient implementation of substitution with environments [8]. The

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt 7:15

use of environments is orthogonal to the derivation of NDAMs: if the source zipper semantics
uses environments, then so does its derived NDAM. We consider substitution-based zipper
semantics in this paper because they are simpler than environment-based ones.

Process algebras have been implemented in various frameworks ranging from rewriting
logic [45] to biological systems [35], including dedicated implementations and abstract
machines [4,16,18-21,24, 34, 37,38,46]. These implementations are ad-hoc and calculus-
specific, and only some of them are complete [4,19,21,24,37,38]. We believe we can handle
most of these calculi in our framework in a uniform and complete way. However, the resulting
implementation would be “single-threaded”, while the distribution of processes is a concern of
previous machines [19], especially for calculi with localities [4,20, 21,24, 38]. Considering the
many different models of distribution, making our machine distributed requires significantly
more work, especially if we want to remain generic and complete.

Our use of backtracking evokes reversible calculi [9,47], where one can revert communica-
tion steps, not necessarily in the order they were taken, as long as the causality between
them is preserved. The concerns are different, though: in reversible calculi it is to keep
enough information to track causality [30,39], while here it is to control backtracking to
avoid infinite searches. As a result, we store less information in machine configurations, but
the annotations we use to prevent loops would not be typically needed in the other setting.

6 Conclusion

We present a generic design of abstract machines for non-deterministic languages. The
machine looks for a redex in the term, making arbitrary choices when several paths are
possible, and backtracks when it reaches a subterm which cannot reduce. The machine
annotates such subterms to avoid trying them again, preventing infinite search. An NDAM
is automatically derived from zipper semantics, a form of SOS in which the decomposition
process of a term into a context and a redex is made explicit. The machine is sound and
complete w.r.t. the zipper semantics. The derivation procedure has been implemented in
OCaml [5]. The presented methodology is readily applicable to other non-deterministic
calculi not shown in this paper, such as concurrent lambda calculi, with communication via
channels or via futures [3,17,36].

An improvement of the current design would be to keep as many annotations as possible
after reducing, in order to prune redundant search. Another optimization would be to find a
way to manage annotations that would generically enable refocusing.

Finally, we would like to derive the zipper semantics from a more commonly used format,
such as reduction semantics or SOS. An appropriate starting point should be able to express
the different families of non-deterministic languages, such as concurrent A-calculi or process
calculi. A multi-hole context-based reduction semantics could be such a starting point.

—— References

1 Beniamino Accattoli and Giulio Guerrieri. Abstract machines for open call-by-value. Sci.
Comput. Program., 184, 2019.

2 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional corres-
pondence between evaluators and abstract machines. In Proceedings of the 5th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 27-29
August 2003, Uppsala, Sweden, pages 8-19. ACM, 2003.

3 Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. On the concurrent computational
content of intermediate logics. Theor. Comput. Sci., 813:375-409, 2020. doi:10.1016/j.tcs.
2020.01.022.

CONCUR 2022

https://doi.org/10.1016/j.tcs.2020.01.022
https://doi.org/10.1016/j.tcs.2020.01.022

7:16

Non-Deterministic Abstract Machines

10

11

12

13

14

15

16

17

18

19

Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani. An abstract machine for the
kell calculus. In Martin Steffen and Gianluigi Zavattaro, editors, Formal Methods for Open
Object-Based Distributed Systems, 7th IFIP WG 6.1 International Conference, FMOODS 2005,
Athens, Greece, June 15-17, 2005, Proceedings, volume 3535 of Lecture Notes in Computer
Science, pages 31-46. Springer, 2005.

Matgorzata Biernacka, Dariusz Biernacki, Serguei Lenglet, and Alan Schmitt. Non-
deterministic abstract machines. Implementation available at https://gitlab.inria.fr/
skeletons/ndam/.

Matgorzata Biernacka, Dariusz Biernacki, Serguei Lenglet, and Alan Schmitt. Non-
deterministic abstract machines. Technical Report 9475, Inria, 2022. available at https:
//hal.inria.fr/hal-03545768.

Malgorzata Biernacka, Witold Charatonik, and Klara Zielinska. Generalized refocusing: From
hybrid strategies to abstract machines. In Dale Miller, editor, 2nd International Conference on
Formal Structures for Computation and Deduction, FSCD 2017, September 3-9, 2017, Oxford,
UK, volume 84 of LIPIcs, pages 10:1-10:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2017.

Malgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines.
ACM Trans. Comput. Log., 9(1):6, 2007.

Vincent Danos and Jean Krivine. Reversible communicating systems. In Philippa Gardner
and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory, 15th International
Conference, London, UK, August 31 - September 3, 2004, Proceedings, volume 3170 of Lecture
Notes in Computer Science, pages 292-307. Springer, 2004.

Olivier Danvy. From reduction-based to reduction-free normalization. In Pieter W. M. Koop-
man, Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional Programming,
6th International School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lectures,
volume 5832 of Lecture Notes in Computer Science, pages 66-164. Springer, 2008.

Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. FElectron. Notes Theor.
Comput. Sci., 59(4):358-374, 2001.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with
PLT Redex. The MIT Press, 2009.

Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-machine, and
the A-calculus. In Martin Wirsing, editor, Formal Description of Programming Concepts -
III: Proceedings of the IFIP TC 2/WG 2.2 Working Conference on Formal Description of
Programming Concepts - III, Ebberup, Denmark, 25-28 August 1986, pages 193—222. North-
Holland, 1987.

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci., 103(2):235-271, 1992.

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci., 103(2):235-271, 1992.

Fabrice Le Fessant. JoCaml: conception et implémentation d’un langage a agents mobiles.
PhD thesis, Ecole polytechnique, 2001.

Cormac Flanagan and Matthias Felleisen. The semantics of future and an application. J.
Funct. Program., 9(1):1-31, 1999. doi:10.1017/s0956796899003329.

Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In Hans-
Juergen Boehm and Guy L. Steele Jr., editors, Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented
at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages 372-385.
ACM Press, 1996.

Philippa Gardner, Cosimo Laneve, and Lucian Wischik. The fusion machine. In Lubos Brim,
Petr Jancar, Mojmir Kretinsky, and Antonin Kucera, editors, CONCUR 2002 - Concurrency
Theory, 13th International Conference, Brno, Czech Republic, August 20-23, 2002, Proceedings,
volume 2421 of Lecture Notes in Computer Science, pages 418-433. Springer, 2002.

https://gitlab.inria.fr/skeletons/ndam/
https://gitlab.inria.fr/skeletons/ndam/
https://hal.inria.fr/hal-03545768
https://hal.inria.fr/hal-03545768
https://doi.org/10.1017/s0956796899003329

M

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

Florence Germain, Marc Lacoste, and Jean-Bernard Stefani. An abstract machine for a
higher-order distributed process calculus. FElectron. Notes Theor. Comput. Sci., 66(3):145-169,
2002.

Paola Giannini, Davide Sangiorgi, and Andrea Valente. Safe ambients: Abstract machine and
distributed implementation. Sci. Comput. Program., 59(3):209-249, 2006.

Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Inf. Comput., 100(2):202-260, 1992.

John Hannan and Dale Miller. From operational semantics for abstract machines. Math.
Struct. Comput. Sci., 2(4):415-459, 1992.

Daniel Hirschkoff, Damien Pous, and Davide Sangiorgi. An efficient abstract machine for safe
ambients. J. Log. Algebraic Methods Program., 71(2):114-149, 2007.

Gérard P. Huet. The zipper. J. Funct. Program., 7(5):549-554, 1997.

Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware: The
spineless tagless G-machine. J. Funct. Program., 2(2):127-202, 1992.

Claude Kirchner, Radu Kopetz, and Pierre-Etienne Moreau. Anti-pattern matching. In
Rocco De Nicola, editor, Programming Languages and Systems, 16th European Symposium on
Programming, ESOP 2007, Held as Part of the Joint European Conferences on Theory and
Practics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings,
volume 4421 of Lecture Notes in Computer Science, pages 110-124. Springer, 2007.
Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 20(3):199-207, 2007.

Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308—
320, 1964.

Ivan Lanese and Doriana Medic. A general approach to derive uncontrolled reversible semantics.
In Igor Konnov and Laura Kovacs, editors, 31st International Conference on Concurrency
Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume
171 of LIPIcs, pages 33:1-33:24. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.
Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt. On the expressiveness and
decidability of higher-order process calculi. In Proceedings of the Twenty-Third Annual IEEE
Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA,
pages 145-155. IEEE Computer Society, 2008.

Serguei Lenglet, Alan Schmitt, and Jean-Bernard Stefani. Characterizing contextual equival-
ence in calculi with passivation. Inf. Comput., 209(11):1390-1433, 2011.

Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.
Technical report 117, INRIA, 1990.

Luis M. B. Lopes, Fernando M. A. Silva, and Vasco Thudichum Vasconcelos. A virtual machine
for a process calculus. In Gopalan Nadathur, editor, Principles and Practice of Declarative
Programming, International Conference PPDP’99, Paris, France, September 29 - October 1,
1999, Proceedings, volume 1702 of Lecture Notes in Computer Science, pages 244—260. Springer,
1999.

Urmi Majumder and John H. Reif. Design of a biomolecular device that executes process
algebra. Nat. Comput., 10(1):447-466, 2011.

Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus with
futures. Theor. Comput. Sci., 364(3):338-356, 2006. doi:10.1016/j.tcs.2006.08.016.
Andrew Phillips and Luca Cardelli. A correct abstract machine for the stochastic pi-calculus.
In Concurrent Models in Molecular Biology, 2004.

Andrew Phillips, Nobuko Yoshida, and Susan Eisenbach. A distributed abstract machine for
boxed ambient calculi. In David A. Schmidt, editor, Programming Languages and Systems,
13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint Furopean
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 -
April 2, 2004, Proceedings, volume 2986 of Lecture Notes in Computer Science, pages 155—170.
Springer, 2004.

Tain C. C. Phillips and Irek Ulidowski. Reversing algebraic process calculi. J. Log. Algebraic
Methods Program., 73(1-2):70-96, 2007.

7:17

CONCUR 2022

https://doi.org/10.1016/j.tcs.2006.08.016

7:18

Non-Deterministic Abstract Machines

40 Gordon D. Plotkin. A structural approach to operational semantics. Technical Report FN-19,
DAIMI, Department of Computer Science, Aarhus University, Aarhus, Denmark, September
1981.

41 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. Inf.
Comput., 239:340-355, 2014.

42 Davide Sangiorgi. Bisimulation in higher-order process calculi. In Ernst-Riidiger
Olderog, editor, Programming Concepts, Methods and Calculi, Proceedings of the IFIP
TC2/WG2.1/WG2.2/WG2.8 Working Conference on Programming Concepts, Methods and Cal-
culi (PROCOMET ’94) San Miniato, Italy, 6-10 June, 199/, volume A-56 of IFIP Transactions,
pages 207-224. North-Holland, 1994.

43 Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile processes. Cambridge
University Press, 2001.

44 Filip Sieczkowski, Malgorzata Biernacka, and Dariusz Biernacki. Automating derivations of
abstract machines from reduction semantics: - A generic formalization of refocusing in Coq. In
Jurriaan Hage and Marco T. Morazén, editors, Implementation and Application of Functional
Languages - 22nd International Symposium, IFL 2010, Alphen aan den Rijn, The Netherlands,
September 1-8, 2010, Revised Selected Papers, volume 6647 of Lecture Notes in Computer
Science, pages 72—88. Springer, 2010.

45 Prasanna Thati, Koushik Sen, and Narciso Marti-Oliet. An executable specification of
asynchronous pi-calculus semantics and may testing in maude 2.0. Electron. Notes Theor.
Comput. Sci., 71:261-281, 2002.

46 David Turner. The Polymorphic Pi-calculus: Theory and Implementation. PhD thesis, University
of Edinburgh, 1995.

47 TIrek Ulidowski, Ivan Lanese, Ulrik Pagh Schultz, and Carla Ferreira, editors. Reversible
Computation: Extending Horizons of Computing - Selected Results of the COST Action
I1C1405, volume 12070 of Lecture Notes in Computer Science. Springer, 2020.

A Lambda-calculus

We prove the correspondence between the zipper and reduction semantics.

» Lemma 10. For allt i’E»mm t', we have E[t @ s] —s t'.

For all t Eapp t', we have E[t] - t'.
Proof. The first item is by definition, and the second one is proved by induction on the
derivation of ¢ Eapp t’. The base case is appf3, where we conclude using the first item.

For the recursive case, suppose we apply appL: we have t @ s Eapp t’ because t @s—::E>app .

By induction, we have (@ s::E)[t] — t/, i.e., E[t @ s] —s t’, as wished. The other cases are
similar. <

» Theorem 11. For allt —,t', we have t — .

For completeness, we need E[(Az.t")@s] —s E[t"{s/z}] implies E[(Ax.t") @ s] —s
E[t"{s/x}]. First, we notice that Az.t” —siE—nam E[t"{s/x}] holds by definition of —SLE—nam.
With appf, we get (Az.t”)@s Eapp E[t"{s/x}]. To conclude, we use the following result.

» Lemma 12. For allt Eapp t', we have E[t] >app t'.

Proof. We proceed by induction on E. There is nothing to prove for o. If E = Az :: E/, then
¢ 202E, ot implies Az.t —>,pp ¢’ by app), from which we deduce E/[Az.t] >, ¢/ by the
induction hypothesis , i.e., E[t] —>app ', as wished. The proof is similar in the remaining
cases. <

» Theorem 13. For allt —t', we have t —,5 t'.

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

init parL parCom
) Q:E o [,
P —par P’ Vi H—’Par P’ (5) P —Q’Ieft P’
/ E E
P =P P”Q_’parpl PHQ_’parP/
leftParL leftOut leftln
p |Q::FER e P, R e.a,PEF - P, R e a,X,PEF oot P,
S
F.E,R _ F,E,R F.E,R
P||Q —= st P’ WPy ——efe P’ a(X).P —— s P’
inParL
R | Q::G,a,PEF P inCom
n (s)
G,a,P,E,F G,a,P,E,F
R||Q ==, P a(X).R ==, E[F[0] || G[R{P/X}]]
outParL
R | Q::G,a,X,PE,F e P outCom
S
G,a,X,P,EF _ G,a,X,P,EF
R H Q -a—.’out Pl a<R> -a—.’out E[F[P{R/X}] H G[O]]

Figure 7 Left-first Zipper Semantics for HOcore.

B HOcore

The output-first zipper semantics is equivalent to reduction semantics in the following way.

» Lemma 14. For all R M»;n R', there ewists R" such that either we have R' =

E[F[0] || G[R"{P/X}]] if S = L or R' = E[G[R"{P/X}]||F[0]] if S = R.

For all P =225, P', we have either E[F[P] || R] —w P' if S = £ or E[R || F[P]] —vs
P ifS=R.

For all P 2, P, we have E[P] = P'.

Each result is proved by induction on the zipper derivation.
» Theorem 15. For all P —,5 P’, we have P —, P’.

The reverse implication relies on the following results about contexts in zipper semantics.

G,S,a,P,E,F e S,a,PEF
_— _—

» Lemma 16. For all R
For all P wout P’, we have F[P]
For all P 5., P, we have E[P] *>po P'.

in R, we have G[R]
¢ S.ER P!
out .

in R

Suppose R —,s R’ with R = E[F[a{(Q)] || G[a(X).P]]; the proof is similar in the sym-
metric case. We have a(X).P SLoQRF,
deduce Gla(X).P] ZE2PEE R We get a(Qy 2HEEOLF]
. _ . L.E.G[a(X).P] ;. . s i
ie., Fla{Q)] ——————.i R’ with the second item. With rule parOutL, we obtain
Fla{Q)] || G[a(X).P] E»,Dar R’, from which we can conclude using the last item.

in R', and by the first item of Lemma 16, we
out R by rule outln,

» Theorem 17. For all P —, P’, we have P —,5 P’.

7:19

CONCUR 2022

7:20 Non-Deterministic Abstract Machines

<P>zs land <P ;init ‘ .>par

(P|I” Q7| E)par — (P (parl, X) ::m | || Q :: Edpar if par ¢ an(P)

P Qi7|Edpar — (Q (parR, %) i | P | :: EDpar if par ¢ an(Q)

(P|I” Q7| E)par — (P (parCom,) :: 7 | o, E, QDiete if (left, |Q|) ¢ an(P)
(P57 |Eypar = (75 PP | EDppar otherwise

<init i P | .>bpar = <P>nf
parl, 2) 73 P ||| Q :: Edbpar — (P ||” Q7 | Edpar
{parR,) =3 Q| P || :: Edbpar — (P || Q7 | Edpar

(P ||E Q;m|F,E, Ryt — (P (leftParl, X) :: 7| || Q :: F, E, R)ieft if (left, |R|) ¢ an(P)
(P Q;7|F,E, Ryer — (Q; (leftParR, X) :: | P || :: F, E, R)iest if (left, |R|) ¢ an(Q)
(if (

@{(P);7|F,E, Ryt — (R; (leftOut, X) :: 7 | o, a, P, E, F)i, in,a) ¢ an(R)
(a®(X).P;7|F,E, R)ere — (R; (leftin, X)) :: 7 | o, 0, F, E, X, Pdout if (out,a) ¢ an(R)
(P;7|F,E, Ryere — (3 PP | E) Rypiese otherwise

{(parCom, X) :: 75 P | &, E, Qpiert > (P || Q3 7 | EDpar
((leftParL,X) ::70; P ||| Q :: F, E, Rbpiesc — (P ||” Q7| F, E, R)iett
((leftParR,2) ::7; Q| P || =: F, E, R)piere — (P ||” Q7 | F, E, R)iert

(R HE Q;7|G,a, P,E,F)in — (R;(inParL,X) :: 7| || Q :: G, a, P,E,Fin if (in,a) ¢ an(R)
(R|”Q;7|G,a, P,E,Fi, — (Q; (inParR,X) :: 7| R|| :: G, a, P, E, Fhin if (in,a) ¢ an(Q)
(@®(X).R;7 |G, a, P,E,Fyin — {[E[F[0] || G[R{P/X }]]|)zs
(R;7|G,a, P,E,Fyn — (m; RY™ |G, a, P, E, Fpin otherwise

((leftOut, X2) :: 75 R | @, a, P, E, F)pin — (@ (P); 7 | F, E, R)iett
((inPar,X) =15 R| || Q:: G, a, P,E, Fin — (R||” Q7| G, a, P,E,Fhn,
{(inParR, %) :: 15 Q| R|| :: G, a, P,E,Fhpin — (R||” Q7| G, a, P,E,Fh,

Figure 8 Left-first NDAM for HOcore.

The left-first semantics for HOcore is given in Figure 7. The par transition is going through
the process to find the parallel composition at the root of the communication redex, building
the context E surrounding the redex at the same time. Finding the parallel composition
triggers the Mneft transition, which looks for an input or an output in the process on the
left, while building the context F and remembering E and the process on the right R. If we
G,a,P,E,F

in (rule leftOut),

otherwise we look for an output using out (rule leftln). These two transitions
are building the context G and use the remaining arguments to compute the results of the

find an output, we look for an input on the same name in R using
G,a,X,P,E,F
—_—

communication (rules inCom and outCom).
The corresponding NDAM is in Figure 8, except for the out and bout modes, which are
symmetric to the in and bin modes.

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

C HOw

We present the zipper semantics of HO7, an extension of HOcore with name restriction. The
main difficulty is that the evaluation contexts surrounding the communicating processes can
be themselves modified by the reduction.

C.1 Syntax and Semantics

We add name restriction to HOcore processes and frames.
P,Q,R:=... | va.P Fu=...] va

To remain close to HOcore, the calculus of this section is asynchronous: outputs a{P) do not
have a continuation, unlike the original HO7 [42], Adding continuations would not be an
issue as pointed out in Remark 3.

The scope of a in va.P is restricted to P, so that a communication on a is possible inside
P only. For instance, the process a(X).X || va.a{0) cannot reduce, because the name a is
restricted to the process on the right. In general, a process E[a({P)] or E[a(X).P] cannot
communicate on a if E captures a. To check this, we compute the set of names bound by E,
written bn(E), as follows.

bn(e) 2 & bn(|| P::E) 2 bn(E)
bn(va::E) 2 {a} U bn(E) bn(P || ::E) £ bn(E)

Name restriction does not forbid the communication on unrestricted names, but the scope
of restricted names has to be enlarged to prevent them from escaping their delimiter. For
example, we have

b(X).(X [0)) || va.(ba(Y).Y) [G(0)) —s
va.(a(Y).Y [[%0) 0] a0))

The scope of a has been extended to include the receiving process on b. This phenomenon
is known as scope extrusion. To reflect it at the level of contexts, we define an operation
extr(E) which returns a pair of contexts (E;,Es) such that E, contains the binding frames,
while E; contains the remaining frames. We assume free names to be distinct from bound
names using a-conversion if necessary, to avoid capture during extrusion.

extr(IE) = (El,Eg) extr(]E) = (EhEg)

extr(va::E) 2 (Ey,va: E,) extr(|| P::E) £ (|| P::Eq, Eyp)

extr(s) = (s,9)

extr(IE) = (El, Eg)

extr(P || E) £ (P||:Ey1, Es)

We define the reduction semantics —s of HOm as follows, assuming a ¢ bn(FF) u bn(G) and
extr(IF) = (Fh]FQ).

E[F[a{@)] || G[a(X).P]] = E[F:[F1[0] | G[P{Q/X }]]]
E[G[a(X).P] || F[a{@)]] = E[F2[G[P{Q/X}] || F1[0]]]

7:21

CONCUR 2022

Non-Deterministic Abstract Machines

parNu parL parOutL

init
. / va::E / Q:=E / e, 0 LEQ /
P —par P P > par P P > par P P >out P

S
/ E E E
P—, P va.P —pa P’ P H Q —>par P’ P H Q —>par P

parOutR

,,RE,P /
Q out P

E
P”Q_’parpl

outParL outNu
Q::F,F2,S,E,R Fqi,0b::Fy,S,E,R
P ” 1 2 out P/ P 1 2

s
F1,F2,S,E R (F1,F5,S,E R
SREBOr T ot P N

/

out P
/

out P

PlQ

outln
R ¢,S,a,P,EFq,Fo

in P/ (1¢ bn(IFg)

6<P> FI’F%SJE’R out P/

inParL inNu
Q::G,S,a,PEF,,Fo vb::G,S,a,P,EF,F
R in P’ R i P a#b

G,S,a, PEF; Fs (5) CSaPEFLF: o
e —_—

in P’ vb.R

R[Q

inComL

a=>b
G,C,a,PEF, Fs (5)

b(X).R in E[F2[F,[0] || G[R{P/X}]]]

Figure 9 Zipper Semantics for HOm.

C.2 Zipper Semantics and NDAM

We present the zipper semantics of HO7 in Figure 9. The out and in transitions differ from
HOcore as they carry two contexts F; and Fs: as in the reduction semantics, F; collects the
parallel compositions (rules outParL and outParR) while Fy collects the name restrictions
(rule outNu).

Checking that the name a on which the communication happens is not captured by Fy or
G is not done the same way in the out and in transitions, because the transitions themselves
are not completely symmetric. In the input transition, we already know the name a, so we
simply verify that the names bound by G differ from a on the fly in rule inNu. We cannot do
the same in rule outNu, because we do yet not know a at this point. We know a when we
find the output (rule outln), so we check here that Fy does not capture it.

We first prove that zipper semantics implies reduction semantics.

» Lemma 18. For all transitions R w»in R, there exists R” such that R’ =

E[Fs[F,[0] | GIR"{P/X}]]] if S = L and R' = E[F2[G[R"{P/X}]||F.[0]]] if S =R.

For all transitions P Mout P’ and F such that extr(F) = (Fy,F3), we have
E[F[P]||R] —w P if S = L and E[R||F[P]] = P’ if S = R.

For all P Epar P’ we have E[P] — P'.

M. Biernacka, D. Biernacki, S. Lenglet, and A. Schmitt

(P)ys — (P5init | &)pa

(P Q7| Eppar — (P (parl,X) =7 | | Q = Epar if par ¢ an(P)
(P Qim | E)par — (Q (parR,X) i | P :: EDpar if par ¢ an(Q)
WPa.Pi7|Eypar > (P (parNu, %) =i 7 | va = E)pay if par ¢ an(P)
(P|” Q7| E)par — (P (parOutL,X) 7| e, 0, L, E, Qout if (out,|Q|,) ¢ an(P)
(P|®Qim|E)par = (Q; (parOutR, %) :: | o, 0, R, E, Pyoye if (out,|P|,) ¢ an(Q)

(P57 |E)par — {5 PV | EDppar otherwise

{init; P | @)ppar — {Pnf
((parL, 3) 575 P (| Q5 By > (P11 Q37| Eppar
{(parR,2) =73 Q| P || :: Edppar — (P ||¥ Q7 | EDpar
{(parNu,) :: 73 P |va:: E)ppar — (v=a. P57 | EDpar

(P|*Q;7m|F1,Fo, S, E, Ryour — (P (outParl,¥) ||| Q::F1,Fo, S, E, R)out
if (out,|R|,F2) ¢ an(P)
(P Q;7|F1,F2,S,E, Ryous — (Q; (outParR, X) :: 7w | P || : Fy, Fa, S, E, R)out
if (out, |R|,F2) ¢ an(Q)
Wa.P;7|F1,Fa, 8, E, R)out — (P (outNu,X) :: 7 | Fy,va::Fy, S, E, R)out
if (out, |R|,va.F2) ¢ an(P)
(@=(P);7|F1,Fa, S, E, R)ous — (R; (outln,¥) ::7 | e, S,a, P,E, Fy,Foi,
if (in,a) ¢ an(R),a ¢ bn(F2)
(P;m|F1,F2,8,E, Ryou > (i PYOHED | Fy Fy S, E, R)bou

otherwise

{(parOutL,X):: ;P |e 0 L E Q out — (P ||Z Q57| E)par

{(parOutR, X) ::m; Q| », 8, R, E, Phpout — (P ||¥ Q7 | Edpar
{(outParL,X) : w5 P ||| Q ::F1,Fa, S, E, Rdpout — (P ||* Q7 |F1,Fy, S, E, R)out
{(outParR, %) :m; Q| P | ::F1,Fa, S, E, Ropout — (P ||¥ Q7 |F1,Fa, S, E, Rdout
{(outNu, ¥) ::7; P|F1,va::Fy, S, E, Rpout — (v=a.P;m|F1,Fa, S, E, Rdout

Figure 10 Non-Deterministic Abstract Machine for HOn— parallel and output modes.

Proof. We sketch the proof of the second item, the others are easy. The proof is by induction

on the derivation of the out transition. We assume & = L, the case S = R is similar. In
0,a,5,P" E,F1,Fy
%0, T2

the base case (rule outln), we have P = a(P”) and R in P’, which implies

P’ = E[F,[F,[0] | G[R"{P"/X}]]] for some R” by the first item.

Suppose we are in the case of rule outNu, and let F such that extr(F) = (Fq,Fsq).

Then P = va.P” and P” Mout P’. By induction, for all F’ such that

extr(F") = (Fy,va::Fs), we have E[F'[P"] || R] — P’. But since extr(F) = (Fy,F3), we

7:23

CONCUR 2022

7:24

Non-Deterministic Abstract Machines

(R ||Z Q;im|G,S,a, PL,E,F,Foyin — (R; (inParl, X)) ||| Q = G, S, a, P,E,F1, Fao)iy
if (in,a) ¢ an(R)
(R|ZQ;7|G,S,a,P,E,Fi,Fodi, — (Q; (inParR,X) ::w | R | : G, S, a, P, E, F1, Fa)i
if (in,a) ¢ an(Q)
W¥b.R;7|G,S,a, P,E,Fy,Fo)in — (R; (inNu,X) i |vh:: G, S, a, P,E,Fy, Fohi,
if (in,a) ¢ an(R),b # a
b*(X).R:7|G, L,a,P,E,F1,Fa)in — {E[F2[F1[0] | G[R{P/X }]]|)2s
ifa=0»5
b*(X).R;7|G, R, a, P,E,F1,Fa)in — (E[F2[G[R{P/X}] || F1[0]]]])zs
ifa=0»5
(R;m|G,S8,a,P,E,Fy,Fo)i — (m; R°" |G, S, a, P,E,Fyi, Fo)uin

otherwise

{(outln,¥) ;R |e,S, a, P,E,Fy,Fodpin — (@ (P);7|F1,Fy, S, E, R)out
{(inParL,2) =71 R||Q G, S,a, P,E,F1,Fodpin — (R|¥ Q57| G, S, a, P,E,Fy, Fo)i,
{(inParR, %) =13 Q| R : G, S, a, P,E,F1,Fodpin — (R||¥ Q7| G, S, a, P,E,Fy,Fo)in

((inNu,Z) =5 R|vb:: G, S, a, P,E,F1,Fodpin — PR |G, S, a, P,E,F1,Fo)in

Figure 11 Non-Deterministic Abstract Machine for HO7— input mode.

have extr(va::F) = (Fi,va::Fy) by definition, so by the induction hypothesis, we obtain
E[(va.F)[P"] || R] — P’. This is the same as E[F[va.P"] || R] — P’, but va.P” = P, so
we get the expected result. The cases of rules outParL and outParR are similar. <

» Theorem 19. For all P —,5 P’, we have P — P'.

The proof of the reverse implication follows the same strategy as in HOcore, using the
following result.

G,S,a,P.E,F,F> ¢.5,a,P,E,F,Fy
Ikt ikt Tt N

» Lemma 20. For all R
For all p TUE2SBE,
r.
For all P 5., P, we have E[P] *>p, P'.

in R, we have G[R] in R
oo SER

out P’ and F such that extr(F) = (F1,Fs), we have F[P] ———"5,,;

» Theorem 21. For all P —,; P’, we have P —,; P'.

» Remark 22. The zipper semantics for HO7 cannot be written in the left-first style (Remark 4)
because of scope extrusion. After finding the communicating processes P || @), we search for
an output or input in P. Because we do not know the operator in advance, we do not know
if we should decompose the context surrounding it to account for scope extrusion.

While writing the zipper semantics for HOn requires some care, the corresponding NDAM
is as expected (cf. Figures 10 and 11). A difference with HOcore is the side-conditions in
the outln and inNu rules, which are added to the step. If the side-condition is not met, the
“otherwise” step applies and we switch to the backward mode bout. The side-condition also
makes the output mode annotation become (out, |R|,F3): a process a(P) is a normal form
w.r.t. output if Fo captures a, so being a normal form in this mode depends on Fs.

Slimming down Petri Boxes: Compact Petri Net
Models of Control Flows

Victor Khomenko &

School of Computing, Newcastle University, Newcastle upon Tyne, UK

Maciej Koutny &
School of Computing, Newcastle University, Newcastle upon Tyne, UK

Alex Yakovlev &

School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, UK

—— Abstract

We look at the construction of compact Petri net models corresponding to process algebra expressions

supporting sequential, choice, and parallel compositions. If “silent” transitions are disallowed, a
construction based on Cartesian product is traditionally used to construct places in the target Petri
net, resulting in an exponential explosion in the net size. We demonstrate that this exponential
explosion can be avoided, by developing a link between this construction problem and the problem of
finding an edge clique cover of a graph that is guaranteed to be complement-reducible (i.e., a cograph).
It turns out that the exponential number of places created by the Cartesian product construction
can be reduced down to polynomial (quadratic) even in the worst case, and to logarithmic in the
best (non-degraded) case. As these results affect the “core” modelling techniques based on Petri
nets, eliminating a source of an exponential explosion, we hope they will have applications in Petri
net modelling and translations of various formalisms to Petri nets.

2012 ACM Subject Classification Theory of computation — Concurrency

Keywords and phrases Petri net, Petri box, cograph, edge clique cover, control flow, static construc-
tion, local construction, interface graph, Burst automata, composition

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.8

1 Introduction

Petri nets have a special place among modelling formalisms due to their simplicity of
semantics, intuitive graphical notation, and the possibility of capturing behaviours concisely
without making subsequent processing (e.g., formal verification or synthesis) undecidable.
This has led to the abundance of software tools for Petri nets, and to extensive use of Petri
nets both as a modelling formalism and as an intermediate representation to which a model
that was initially expressed in a different formalism is translated, e.g., to utilise efficient
formal verification techniques and tools. In fact, developing translations from various process
algebras and other formalisms to Petri nets has been a hot research topic for the past four
decades, see e.g., [2, 5, 9, 12].

The possibility to create concise models is often the key advantage of Petri nets over
simpler formalisms like Finite State Machines (FSMs). Indeed, it is generally accepted that one
is likely to encounter the exponential state space explosion [13] during, e.g., formal verification
— this problem is believed to be fundamental (unless P=PSPACE), and mitigating this explosion
using heuristics has been a hot research topic for many years. However, encountering an
exponential explosion already during the modelling stage would be unfortunate and indicative
of problems in modelling techniques or even the formalism itself.

However, as we observed in [8], a naive translation of even simple control flows to Petri
nets may lead to an exponential explosion in the Petri net size. As a motivating example, [8]
considers Burst Automata (BA) [3] — a formalism with applications in the area of asynchronous
? Victor Khomenko,.MaCiej Koutny,' and Alex Yakovlev;

5v icensed under Creative Commons License CC-BY 4.0
33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 8; pp. 8:1-8:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:victor.khomenko@ncl.ac.uk
https://orcid.org/0000-0001-6422-2006
mailto:maciej.koutny@ncl.ac.uk
https://orcid.org/0000-0003-4563-1378
mailto:alex.yakovlev@ncl.ac.uk
https://orcid.org/0000-0003-0826-9330
https://doi.org/10.4230/LIPIcs.CONCUR.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

é<o/

Figure 1 A Burst Automata specification of the C-element and an FSM expressing its interleaving
semantics. A C-element waits for both inputs to switch to 1 (actions 4] and iJ) before switching its
output to 1 (action o)
switching its output to 0 (action o7). It is assumed that the environment fulfills its part of the
contract, i.e. each input switches only once before the output switches.

, and then waits for both inputs to switch to 0 (actions i¢; and i;) before

circuits design. Intuitively, Burst Automata are similar to FSMs, except that their arcs are
labelled not by single actions but by sets of actions (“bursts”) which fire concurrently. One can
define the interleaving semantics of Burst Automata by allowing the actions in a burst to fire
in any order, which results in the usual FSM, see the example in Figure 1. When developing
a translation between two formalisms, some kind of behavioural equivalence between the
models is required, e.g., language equivalence or bisimulation of the corresponding FSMs. As
Burst Automata are a very simple FSM-like formalism, it would be reasonable to expect that
translating them to Petri nets would be quite simple and efficient.

However, developing a compact translation from Burst Automata to Petri nets is more
complicated than one could expect — in particular, efficiently expressing a choice between
several bursts of concurrent transitions is not trivial in Petri nets. In [3] a language-preserving
linear size translation is proposed, that prefixes each burst with a silent “fork” transition
and then uses another “join” transition after the burst to detect completion. Unfortunately,
there are situations when this translation is unacceptable. First of all, silent transitions
turn a deterministic model into a non-deterministic one, which is often undesirable (e.g.,
non-determinism cannot be directly implemented physically, say in an asynchronous logic
circuit [4]). Second, language equivalence may be too weak (e.g., it does not preserve
branching time temporal properties or even deadlocks), and prefixing bursts with silent
transitions breaks not only strong but also weak bisimulation, see Figure 2.

To preserve strong bisimulation, the following Cartesian Product Construction (x-
construction) is traditionally used, see e.g., [1, 2, 5, 14]. To express a choice between

several bursts (i.e., sets of concurrent transitions) By, Bs, ..., By, this construction would
create a set of places corresponding to tuples in By X By X --- X B,,, so that a place cor-
responding to a tuple (by,...,b,) is connected to each transition b; occurring in the tuple.
This means that the number of created places is |By| - |Bz| - ... |By], i.e., the Petri net size

is exponential in the number of bursts. For example, [3] developed two translations from
Burst Automata to Petri nets based on x-construction, which preserve either weak or strong
bisimulation. However, in contrast to the linear size translation of [3] (that does not preserve
even weak bisimulation), they may result in an exponentially large Petri net.

In [8] we proposed an alternative to x-construction, that uses at most quadratic (in
the total size of all bursts) number of places to express a choice between bursts, thereby
reducing the size of Burst Automata to Petri net translation from exponential [3] down to
polynomial. Furthermore, in some cases a logarithmic number of places is sufficient, yielding
a double-exponential reduction compared with x-construction. The technique was based

V. Khomenko, M. Koutny, and A. Yakovlev

O O

Figure 2 A Burst Automaton with singleton bursts, so coinciding with the FSM expressing
its interleaving semantics (left); its Petri net translation prefixing each burst with a silent “fork”
transition (middle); the reachability graph (Fsm) of this Petri net (right). Note that the two FSMs
are language-equivalent but not weakly bisimilar.

on showing the equivalence between the modelling problem of expressing a choice between
bursts of concurrent events and the problem of finding an edge clique cover of a complete
multipartite graph.

In this paper, we generalise the technique of [8] to arbitrary control flows which are built
from atomic actions using choice, concurrency, and sequencing operators. In particular, a
polynomial translation of such control flows to Petri nets is possible, that preserves strong
bisimulation (in fact, it guarantees the isomorphism of reachability graphs, which is an even
stronger equivalence). The developed technique allowed us to further improve the translation
of Burst Automata to Petri nets proposed in [8] by handling the sequence operator better,
see Figure 3. The developed Petri net translation is compositional — this is ensured by
augmenting Petri Box Algebra [2] with the notion of interface graphs (superseding the entry
and exit places of Petri boxes) in a way that allowed us to import many results from Petri
Box Algebra into the new framework.

Since the proposed construction affects the “core” modelling techniques for Petri nets
and because the choice, concurrency, and sequencing operators are included in most process
algebras and other formalisms for behavioural modelling, we believe it will have many
applications. In particular, translations from various formalisms to Petri nets relying on the
x-construction can be significantly improved by using the proposed construction instead,
eliminating thus a source of an exponential explosion.

The proposed construction is based on the observation that the problem of “gluing” two
Petri boxes sequentially is equivalent to finding an edge clique cover of a certain complement-
reducible graph (cograph) where some of the edges are already considered as “covered”; with
the number of created places corresponding to the number of cliques in the cover. This results
in an interesting optimisation problem that is in NP and likely NP-complete. In practice, the
optimality is usually not required, and one can use simple approximations which yield useful
lower and upper bounds — it is easy to see that at most polynomial (quadratic) number of
cliques are always sufficient, which yields a polynomial Petri net.

2 Setting the scene

In this section, we describe a “bare bones” process algebra for expressing control flows, which
can be regarded as a core fragment shared by many existing process algebras. We also discuss
some basic notions related to Petri nets and clique covers of undirected graphs.

8:3

CONCUR 2022

8:4

Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

2.1 Models of concurrency
2.1.1 “Bare bones” process algebra

Consider a “bare bones” process algebra, where expressions are constructed from a finite

“||” concurrency, and “;” (sequencing).

alphabet of actions using operators “J” (choice),
This algebra allows one to model acyclic control flows. It is very simple and, in fact,
most existing process algebras build on it, by adding more features and operators (e.g.,
communication and recursion).

One can then define the semantics of such expressions, e.g., using Finite State Machines,
which can be exponential in the size of the expression due to concurrency, e.g., the FSMs for
expressions of the form ay ||az || ... || an would contain 2™ states.

One might hope that using Petri nets instead of FSMs would cope with the exponential
explosion, i.e., that a polynomial translation from this process algebra to Petri nets is possible.
However, as observed in [8], this is not trivial. In fact, the traditional x-construction for
modelling a choice between several “bursts” of concurrent actions creates an exponential
number of places. For example, consider expressions of the form

(CL11H Haln)DD(amlﬂ ||amn)

representing a choice between m “bursts” each containing n concurrent actions. The x-
construction creates m™ places to express this in a Petri net, which is exponential in the
length of the above expression.

In this paper, we demonstrate that a polynomial bisimulation-preserving translation to
Petri nets is indeed possible for any “bare bones” process algebra expressions. In fact, the
isomorphism of reachability graphs (which is a stronger equivalence than strong bisimulation)
holds for the developed translation.

2.1.2 Petri nets

We focus on safe (i.e., at most one token per place) Petri nets, which are often used for
modelling control flows. For a safe Petri net, the total number of tokens in its initial marking
cannot exceed the number of places, so we can define its size as the total number of places,
transitions, and arcs, disregarding the initial marking. Note that the size of a Petri net is
dominated by its arcs, except the uninteresting degraded case when there are many isolated
nodes.

In this paper, the set of transitions is usually given (e.g., when translating a model from
some other formalism to Petri nets, the transitions often correspond to the occurrences of
actions in that model), and the objective is to express the intended behaviour using small
numbers of places and arcs. Note that having a small number of places is often desirable for
formal verification as they correspond to state variables, and having a small number of arcs
is desirable as they dominate the Petri net size.

2.2 Graphs

We consider undirected graphs with no parallel edges and no self-loops. For simplicity, a
graph ({v}, () comprising a single vertex v and no edges will be denoted just by v.

2.2.1 Edge clique covers

A clique in a graph is a set of vertices which are pairwise connected by edges. A clique is
called mazimal (or max-clique) if it is not a subset of any other clique. In what follows,
maxCL(Q) is the set of all the max-cliques of an undirected graph G.

V. Khomenko, M. Koutny, and A. Yakovlev

A set of cliques in a graph form an edge clique cover (ECC) if, for every edge, there is at
least one clique that contains both endpoints of this edge. The number of cliques in an ECC
is called its size. Note that, given an ECC, one can expand each clique in it to some maximal
one, without increasing the size of the ECC. The minimum possible size of an ECC of a graph
G is the edge clique cover number (a.k.a. intersection number) of G, and will be denoted
ecc(@).

2.2.2 Complete multipartite graphs

A graph is called multipartite if its vertices are partitioned into several sets in such a way
that there are no edges between vertices in the same part. A multipartite graph is complete
if for every pair of vertices from different parts there is an edge connecting them. A complete
multipartite graph with the parts of sizes t; <ty < --- <t,, will be denoted K, +,...+

n

2.2.3 Cographs

Complement-reducible graphs (cographs) [10] can be recursively defined as follows: (i) a single
vertex graph is a cograph; (ii) the complement of a cograph is a cograph; (iii) the disjoint
union of cographs is a cograph. Intuitively, for every cograph G with more than one vertex,
either G or its complement G is not connected. One can easily show that any complete
multipartite graph is a cograph.

The join operation G;—G> consists of forming the disjoint union G; W G5 and then
adding an edge between every vertex of G; and every vertex of G5. One can see that one can
reformulate the above definition of cographs so that it uses the join instead of the complement.
Indeed, it is easy to see that G;—Gy = G; WGy, i.e., join can be expressed via disjoint
union and complementation. Similarly, one can express the complementation via disjoint
union and join for cographs by repeatedly applying the following rewriting rules:

v
G

Giy Gy =

|
e

3 Sequential composition and edge clique covers

In this section we informally present the underlying idea of the proposed construction,
and illustrate it on a simple example from [8] of modelling a fragment of a BA shown in
Figure 3(top-left) as a Petri net. There, a BA state with incoming bursts {i1,i2} and {iz}
and outgoing bursts {01, 02}, {03, 04}, and {05, 0g, 07} should be modelled as a set of Petri
net places, assuming that the actions occurring in bursts are modelled as transitions with
the corresponding names. More generally, we consider control flows constructed from atomic
actions using sequential, choice, and parallel compositions. Such control flows can be naturally
to represented by acyclic safe Petri nets (though there are interesting “unnatural” Petri net
representations with cycles, see e.g., Section 4.3). The technique illustrated by the translation
of this BA fragment can be applied recursively, and thus naturally generalises to such control
flows.

In Petri nets modelling control flows, places have the dual role of enforcing both sequencing
of transitions and choice between transitions. Indeed, let ¢; and t5 be two transitions connected
to the same place p:

8:5

CONCUR 2022

8:6 Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

i1 ,iZ\\ /3
03,04\ 05,06,07

01,02

Figure 3 An example of bisimulation-preserving BA to Petri net translation: (top-left) a BA state
with its incoming and outgoing bursts; (top-centre) Petri net translation [8] of incoming bursts — the
maximal incoming burst size is two, so two places are created; (top-right) Petri net translation [8]
of outgoing bursts — ecc(Kz,2,3) = 6 places are created; (middle) the combined Petri net [8] — the 12
places correspond to pairs in {p1,p2} X {q1,...,q6}; (bottom) the improved construction presented
in this paper — the 6 places correspond to an ECC of (i1 Wiz)—iz— (01Wo2)— (03Wo4) — (05 WosWor)
with the edges of (i1 Wi2)—is being optional to cover.

If the connections are of the form ¢; — p — ¢35 then p enforces sequencing of these

transitions, as to can fire only after ¢;.

If the connections are of the form p — t; and p — t5 then p enforces the choice between

these transitions, as only one of them can fire.

If the connections are of the form ¢; — p and t5 — p then there is a choice between these

transitions (as otherwise the Petri net would be unsafe), but this choice is enforced not

by p but by some other place.
Note that ¢; and t2 are not concurrent if they are connected to the same place.

In our example, there is a choice between the incoming bursts {i1,i2} and {iz} but
it is enforced not by state s of the BA (or the places corresponding to s in the Petri net
translation) but elsewhere. There is a choice between outgoing bursts {01, 02}, {03,04}, and
{05, 06,07}, and it is enforced by s (and the corresponding places in the Petri net translation).

V. Khomenko, M. Koutny, and A. Yakovlev

Moreover, the sequencing between these incoming and outgoing bursts is enforced by s (and
the corresponding places in the Petri net translation). Note also that there is sequencing
within neither incoming nor outgoing bursts, which leads to the following notion.

A set of transitions T is called non-sequential if no two distinct transitions in it are
sequential. In other words, there may be choices between some transitions in such a set,
and the transitions in any subset of T' are concurrent as long as this subset contains no two
transitions which are in the choice relationship. In our example, the set of incoming transitions
{41,142, 13} and the set of outgoing transitions {01, 02, 03, 04, 05, 06, 07} are non-sequential. The
behaviour of T' can be viewed as a collection of maximal such sets of concurrent transitions.
One can represent the choice relation between transitions in 7" as a graph G(T') (that will be
later formalised in the notion of interface graphs) where the vertices are the transitions of T
and there is an edge between two vertices iff the corresponding transitions are in the choice
relationship.

Consider now two disjoint non-empty non-sequential sets of transitions, 77 and 75, which
are to be composed sequentially. In the example shown in Figure 3(top-left),

Ty = {i1,ig, i3}
G(TY) = (i1 Wis)—is
T, = {o1,02,03,04,05,06,07}
G(TQ) = (01 @02)—(03 604)—(05 H’JOﬁ U:JO7) .

The task is now to add places “between” transitions in 77 and T, and connected to the
transitions in 77 by transition—place arcs, and to transitions in 75 by place—transition arcs,
so that:
the behaviours of T} and T5 are composed sequentially, i.e., none of the transitions in 75
can fire until a maximal concurrent set of transitions in T} fires;
the choices between transitions in T are enforced (no need to enforce the choices between
transitions in 77 — this is done elsewhere).

Consider now a place p connected to some set of transitions C' C Ty UT5 (the directions of
arcs can be easily inferred). The key observation is that C' must be a clique in G(T1)—G(T3),
as otherwise the resulting behaviour will be wrong. Indeed, for the sake of contradiction,
suppose t,t' € C but there is no edge in G(T;)—G(T3) connecting ¢t and ¢’. Then these
transitions are either both in 77 or both in T5, as otherwise there would be an edge between
them. If these transitions are both in 77, they are concurrent and both produce a token on p,
resulting in an unsafe Petri net; e.g., in our example i; and is are concurrent and including
them both into C' would result in p being unsafe. If ¢,¢' € T then p creates a choice between
them, even though they were meant to be concurrent, thus changing the intended behaviour;
e.g., in our example 0 and 05 are concurrent, and including them both into C would result
in p creating a choice between them.

Furthermore, though we consider acyclic control flows, in practice they are often just
fragments of a higher level control flow that may contain cycles, which means the constructed
acyclic Petri net will be a fragment of a larger Petri net that may contain cycles. This means
the constructed Petri net should be “reusable”, i.e., executable in a cycle without breaking
the safeness of Petri net or introducing deadlocks. We now argue that in such a case C' must
be a max-clique in G(T1)—G(T3).

First, we show that reusability implies C' ¢ Ty and C' ¢ T5. Indeed, if C C T; then p
has no outgoing arcs — besides being useless as it will never affect the enabledness of any
transitions, p also accumulates tokens and an attempt to reuse this Petri net will result in
unsafeness. If C' C T5 then p has no incoming arcs and so cannot obtain a new token — even
if it contains a token initially, the Petri net fragment cannot be reused as this can introduce
a deadlock.

8:7

CONCUR 2022

8:8

Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

Now, for the sake of contradiction, suppose C' is not maximal, i.e., it can be expanded to
a larger clique by adding ¢. If ¢ € T then firing ¢ means none of the transitions in CNTy # ()
can fire, as each of them is in choice relationship with ¢, in which case p does not obtain
a token and transitions in C' N Ty # @ will not be able to fire, which changes the intended
behavior. If t € Ty then firing ¢ means none of the transitions in C N T, # @ can fire, as each
of them is in choice relationship with ¢, in which case the token in p cannot be consumed and
the Petri net is not reusable as this would introduce unsafeness. Hence, C' is a max-clique in
G(T1)—G(T»); note that this implies C ¢ Ty and C ¢ Tb.

We have now established that every constructed place must correspond to some max-clique
in G(T1)—G(T3). The question now is how to select a set of such places sufficient to express
the desired behavior, which can be reformulated as a question of selecting a sufficient number
of max-cliques in G(T1)—G(T»). One can observe that this problem is similar to the well
known problem of computing an edge clique cover of G(T})—G(Tz), except that covering
the edges in the induced subgraph G(T7) is optional. (Note that any edge clique cover can
be easily extended to one containing only max-cliques, without increasing the number of
cliques.) Indeed, suppose (¢,t') is an edge of G(T1)—G(T»):

If t,t' € T} then t and t’ are in the choice relationship but this is enforced elsewhere, so it

is not necessary (and not possible) to enforce it by adding a place p with the arcs t — p

and ¢’ — p; on the other hand, there is no harm having such a place, e.g., both ¢ and #’

can be in the same max-clique that also covers other edges of G(T1)—G(Tz). Hence, it

is optional to cover the edge (t,t').

If t,#' € T, then t and ¢’ are in the choice relationship and this must be enforced by

having a place p with the arcs p — ¢t and p — ’. Hence, it is necessary to cover the edge

(t,t).

If t € T1 and t' € T, then t must fire before ¢’ and this must be enforced by having a

place p with the arcs t — p and p — t. Hence, it is necessary to cover the edge (¢,t').

This version of the edge clique cover problem will be called partial edge cliqgue cover
problem (PECCP). It is a natural extension of the standard edge clique cover problem (ECCP),
in fact some state-of-art ECCP algorithms, e.g., [6], start from an empty cover and keep
adding cliques one-by-one until all edges are covered; hence, at the intermediate stages of
the computation, the problem is equivalent to PECCP, with the edges covered by previously
added cliques becoming optional to cover. This means that many existing ECCP algorithms
can be adapted to solve PECCP.

Note that PECCP is trivially in NP. Moreover, since ECCP is NP-complete for general
graphs and is a special case of PECCP, it follows that PECCP is NP-complete for general
graphs. However, for control flows constructed from atomic actions using sequential, choice,
and parallel compositions, the graphs on which PECCP is solved are guaranteed to be
cographs, which is a very restricted subclass of graphs, with many NP-complete problems
(e.g., computing a clique of maximal cardinality) becoming polynomial when restricted to
this class. However, to our knowledge, the question whether ECCP or PECCP is NP-complete
on cographs is still open. Note also that for modelling control flows the optimality is not
required, so fast heuristic algorithms computing small but not necessarily smallest covers
would be sufficient — in fact, the trivial ECC covering each edge by a separate clique already
avoids the exponential explosion due to the x-construction.

Coming back to our example, our previous method described in [8] creates 12 places. It
handles incoming and outgoing bursts separately; for the incoming bursts the number of
created places corresponds to the maximal input burst cardinality (2 in our example, see
Figure 3(top-centre)), and for the outgoing bursts the places correspond to ECC of G(T3),

V. Khomenko, M. Koutny, and A. Yakovlev

i.e., (01 Woa)— (03 Woy)— (05 W o Wo7) in our example. For BAs G(T») is guaranteed to be
a multipartite graph, K32 3 in this case — it has an ECC of size 6, i.e., 6 places are created,
see Figure 3(top-right). Then a variant of X-construction is used to enforce the sequencing of
incoming and outgoing bursts, which results in 2-6 = 12 places, as shown in Figure 3(middle).
Though the construction in [8] yields a polynomial BA to Petri net translation, the trans-
lation presented in this paper significantly improves it. For this example, G(T1)—G(T2) =
(11 Wig)—iz— (01 Wo2)— (03 W 0o4) — (05 W 0g W 07), with the edges of the induced subgraph
(i1 Wig)—is being optional to cover. Solving PECCP yields a cover with 6 cliques, and the
corresponding Petri net fragment with 6 places is shown in Figure 3(bottom).

4 Slimming down Box Algebra

Box Algebra [2] provided a generic process-algebraic syntax together with a compositional
translation to a class of Petri nets called (Petri) bozes. The algebra has several concrete
incarnations, including ccs [11] and TCSP [7]. Here we are only interested in a small fragment
of Box Algebra corresponding to the “bare bones’ process algebra, in order to focus on
the salient aspect of control flow in nets constructed from three fundamental composition
operators. In particular, we omit all communication and synchronisation aspects.

Process expressions, or box expressions, are derived from the syntax

E :=a | E;E | EQE | E|E (1)

where a is an atomic action. Since we deal only with control flows and actions do not have
any special semantics (e.g., communication), we can assume that no action occurs more than
once in any box expression we consider. Intuitively, a denotes a process which can execute
atomic action a and terminate, F ; F' denotes sequential composition of two processes, £ [1F
denotes choice composition, and F || F' denotes parallel composition.

The semantics of box expressions is given through a translation into Petri nets, called
bozes. For the simple syntax (1), each place can be uniquely identified by its input and output
transitions, and 7y will denote a place with input transitions U and output transitions W,
i.e., there is an arrow from transition ¢ to my w iff ¢t € U, and there is an arrow from my w
to transition ¢ iff t € W.

A bor is a pair N = (P,T), where P(= Py) is a finite set of places (local states) and
T(= Ty) is a disjoint finite set of transitions (actions) such that, for every transition t € T,
there is a place myw € P with t € W.

The flow relation of N (represented by arrows) is implicit and can be recovered from the
sets indexing places: the input and output places of a transition ¢t € T are respectively given
by pren(t) = {myw € P |t € W} and postn(t) ={myw € P |t € U}.

Associating boxes with box expressions is done compositionally, through the box(-)
mapping, by combining their entry and exit places to reflect the intended control flow of
execution, where the entry places N¢ of a box N have the form mg w € P, and the exit
places V* have the form 7y o € P. The internal places N " are all the remaining places of N.
Intuitively:

box(E || F) is obtained simply by placing box(E) and box(F') side by side.

box(E O F) is obtained by placing box(E) and box(F) side by side and then gluing each

entry place of box(F) with each entry place of box(F'), effectively creating the product

box(E)® x box(F)¢, and similarly for the exit places.

box(E ; F') is obtained by placing box(E) above box(F') and then gluing each exit place of

box(E) with each entry place of box(F'), effectively creating the product box(E)* x box(F')e.

8:9

CONCUR 2022

8:10

Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

The above procedure will be referred to as the x-construction. Formally, the box correspond-
ing to a given box expression is defined recursively as follows:

box(a) = ({72 (0} Ta},0} {a})

bOX(E ” F) = (Pbox yU Pbox(F) T)
box(FOF) = (EUPUX T)

box(E;F) = (box(E)*UPUZUbox(F),T)

where T = Thox(g) U Thox(r), P = box(E)' U box(F)', and:

E = {mguuw | 7oy €box(E)*Amgw € box(F)%}
X = {myuwe | 7uz € box(E)Amw,e € box(F)*}
I = {muw | 7,z € box(E) A g w € box(F)°}.

(2)

Markings (global states) of a box N = (P,T) we consider are sets of places. The default
initial marking is N¢. A transition ¢t € T is enabled at marking M if prey(t) < M. It then
can be fired leading to the marking M’ = M — pren(t) + postn(t), and we denote this by
M[t)nyM'. An overall behaviour of N is given by its reachability graph defined as a labelled
directed graph RG(N) = (R, A, N®), where R are the reachable markings of N (i.e., the least
set containing N¢ and such that if M € R and M[t)yM’ then M’ € R), and A contains all
labelled arcs (M, t, M) such that M € R and M[t)yM'.

To formulate a central semantical result of this paper — a full (local) characterisation of
successful slimming down of compositionally defined boxes — we need two more notions. The
local conflict and local causality of N are two relations on transitions given respectively by:

ConfilN) = {(t,u) €T xT |pren(t)Nprey(u) # 2}

Caused(N) = {(t,u) € T x T | posty(t) Npren(u) # &}. 3)

Intuitively, these two relations capture the dual role of Petri net places in enforcing both
choice and causality between transitions.

» Proposition 1. Let I be a box expression derived from the syntax (1), and N = (P, Tyox(k))
be a box such that P C Pyox(E)-

Then RG(N) and RG(box(E)) are isomorphic reachability graphs if and only if Confi(N) =
Confli(box(E)) and Caused(N) = Caused(box(E)).

Proposition 1 means that we can safely delete places from box(FE) iff the local conflict and
local causality relations on the transitions are retained. Note that such a property does
not hold in general — in either direction — not even for boxes which are safe and acyclic.
Indeed, let N = box(a;b;c), and let N’ be N with an added place 74}, {c}. Then RG(N) is
isomorphic to RG(N'), but

Caused(N'") = Caused(N) W {(a,c)} .

As a complementary example, let N = box((ab);c), and let N’ be N with an added place
T{b},{c}- Then

Confi(N) = Confi(N') and Caused(N) = Caused(N') ,

but RG(N) is not isomorphic to RG(N') as in RG(N') one cannot “execute’ a followed by c.
Our goal now becomes that of finding criteria for identifying possibly largest sets of such
“safe deletions” characterised by Proposition 1, and thus transferring the slimming down
problem from semantic to algorithmic setting. What is more, we aim at developing a “static”
approach to slimming, i.e., one that does not require looking into the behaviour of boxes.

V. Khomenko, M. Koutny, and A. Yakovlev

4.1 Interface graphs

In this section, we introduce and investigate a novel concept in the area of Petri boxes which
aims at capturing different ways in which local conflict and local causality can arise. We start
by introducing efficient (quadratic) representation of the entry and exit places of box(E)
without going through the expensive (exponential) process of applying the Xx-construction.

For each box expression E derived from the syntax (1), let G% and G%, be undirected
interface graphs defined recursively as follows:

Ge = a Gy, = a

GEE;F = GeE CTYXE;F = G}‘ (4)
vor = Gy—Gh bor = Gh—Gr
pir = GpYGr Grip = GpWGE

Note that the vertices of G, and G%; are transitions of box(E), and that inteface graphs are
cographs. For example,

GlalyDosle) = Glagp e
_ e
= allb— €
= (aWb)—c
GlapyDepae) = Gae
= dWe.

» Proposition 2. For box expression E derived from the syntax (1),

box(E)® {rz.ci | Cl € maxCL(G%)}
box(E)* = {mcie | Cl € mazCL(G%)} .

Hence the entry places of box(E) can be identified with the set of all max-cliques of G%;, and
similarly for the exit places. As a result, by Proposition 1, removing some entry places from
box(E) without changing the overall behaviour is the same as choosing an edge covering
of G% by max-cliques (and the best result is therefore obtained by taking a minimal edge
covering of G, by max-cliques).

A similar observation holds for the internal places:

» Proposition 3. If 7 is a set of internal places as in Eq. (2), derived during the x-
construction, then:

T = {TCIN Ty), Cl Ty | C1L € mazCL(G—G%)} -

4.2 New construction

“Some people want it to happen.
Some wish it would happen.
Others make it happen” Michael Jordan on healthy dieting

We now introduce an alternative to the x-construction, for a box expression H derived
from the syntax (1). Formally, a slimming of H is any box N derived from box(H), in the
following way:

The places in box(H)® are replaced by {mz.c; | Cl € CL}, where CL is any minimal edge

covering of G%; by max-cliques.

8:11

CONCUR 2022

8:12

Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

Set Z of internal places as in Eq. (2) corresponding to every sub-expression of the form
FE; F within H is replaced by

{WClmeox(E)vclmeox(F) | CleCLy,

where CL is any minimal edge covering of G,—G$% by max-cliques, with the edges

within its subgraph G%, being optional to cover.

The places in box(H)* are deleted.
Note also that there is no need to generate at all the sets box(H)®, box(H)* and Z, and only
operate on graphs and their covers to derive the places of N. The proposed (non-deterministic)
construction is therefore truly static and local.

» Proposition 4. Let E be a box expression derived from the syntaz (1) and N be a slimming
of E. Then the following hold:
1. RG(N) and RG(box(E)) are isomorphic reachability graphs.
2. If N' = (P, Toox(p)) is a box such that P C Pyoy(E) and |P| < |Py|, then RG(N') and
RG(box(E)) are not isomorphic reachability graphs (and not even language equivalent).
The above is a key result validating the proposed way of deleting places from the composite
boxes, and demonstrating its local optimality in the sense that deleting any remaining place
will change the behaviour (note that there are other reasonable notions of optimality, see
below). As was explained before, computing an optimal slimming is equivalent to solving
PECCP on a cograph — to our knowledge it is still an open question whether this problem is
NP-complete. Having said that, in practice, one does not need minimal covers and heuristic
approximations yield good solutions (even trivial covers yield polynomial boxes contrasting
with the exponential x-construction). Note also that Proposition 4 can be lifted to other
control flow operators of the Box Algebra, e.g., iteration.

4.3 No global optimality

The construction proposed in this paper achieves local optimality in terms of the number of
places, as well as a guaranteed polynomial (in the length of the box expression) size of the
overall Petri net, as opposed to the original x-construction that is exponential. Furthermore,
in cases like

(a1]|61) O ... O(an || bn) ,

the number of created places can be as low as logarithmic — a double-exponential reduction
w.r.t. the X-construction.

This naturally raises the question whether the proposed construction is globally optimal,
i.e., whether for a given box expression, a safe Petri net with the minimum possible number
of places is always constructed. Unfortunately the answer turns out to be negative. In fact,
the number of places is not even asymptotically optimal. We demonstrate this using the
following very simple example.

Consider the box expression a ; ... ;an,, for which the proposed construction generates a
Petri net with n places (denoted p;, for i = 1,...,n), such that there are arcs from a; to p;11,
fori=1,...,n—1, and from p; to a;, for i = 1,...,n. Moreover, p; is initially marked.

Observe that at most one of these places contains a token, and so the reachable markings
of this Petri nets can be compactly encoded using only a logarithmic number of places, e.g.,
using the following construction. For simplicity, we assume that n = (k%) for some even k,
i.e., n is the number of subsets of size k/2 of {1,...,k}. We denote these subsets Py,..., P,
(the order can be chosen arbitrarily). Note that k ~ log, n as one can check (using, e.g.,

wolframalpha.com) that

wolframalpha.com

V. Khomenko, M. Koutny, and A. Yakovlev

k
. logyn _ logy (k/2)
lim = lim ————=1
k—+oo k k—+o00 k

Consider now a Petri net with the transitions a;, i = 1,...,n, and k places numbered 1 to
k. One can now interpret P, ..., P, as subsets of the set of places of this Petri net. These
places and transitions are connected so that there are arcs from a; to each place in P;yq, for
i=1,...,n—1, and from each place in P; to a;, for i =1,...,n. Moreover, the places in P;

are initially marked. One can easily see that this Petri net has the expected behaviour, but
only k£ ~ log, n rather than n places.

5 Conclusions

In this paper, we observed that the x-construction traditionally used for composing, e.g.,
Petri boxes, is sub-optimal and causes an exponential explosion in the size of Petri nets that
can be avoided. We showed the equivalence between this modelling problem and the problem
of finding an ECC of a cograph, where the covering of some edges is considered optional. This
allowed us to develop a polynomial Petri net translation of arbitrary control flows built from
atomic actions using the sequential, choice, and parallel compositions.

These results affect the “core” modelling techniques based on Petri nets and eliminate
a source of exponential explosion when modelling control flows, and in translations from
various process algebras and other formalisms to Petri nets.

—— References

1 Eike Best, Raymond R. Devillers, and Jon G. Hall. The box calculus: a new causal algebra
with multi-label communication. In Grzegorz Rozenberg, editor, Advances in Petri Nets 1992,
The DEMON Project, volume 609 of Lecture Notes in Computer Science, pages 21-69. Springer,
1992. doi:10.1007/3-540-55610-9_167.

2 Eike Best, Raymond R. Devillers, and Maciej Koutny. Petri net algebra. Monographs in
Theoretical Computer Science. An EATCS Series. Springer, 2001.

3 A. Chan, Danil Sokolov, Victor Khomenko, David Lloyd, and Alex Yakovlev. Burst automaton:
Framework for speed-independent synthesis using burst-mode specifications. submitted, 2021.

4 Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Alex Yakovlev.
Logic Synthesis for Asynchronous Controllers and Interfaces. Springer, 2002.

5 Ursula Goltz and Alan Mycroft. On the relationship of CCS and Petri nets. In Jan Paredaens,
editor, Automata, Languages and Programming, 11th Colloquium, Antwerp, Belgium, July
16-20, 1984, Proceedings, volume 172 of Lecture Notes in Computer Science, pages 196—208.
Springer, 1984.

6 Jens Gramm, Jiong Guo, Falk Hiiffner, and Rolf Niedermeier. Data reduction and exact
algorithms for clique cover. ACM J. Experimental Algorithmics, 13, 2009.

7 C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

8 Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Avoiding exponential explosion in
Petri net models of control flows. In Proc. Petri Nets’22, Lecture Notes in Computer Science.
Springer, 2022. accepted paper.

9 Victor Khomenko, Roland Meyer, and Reiner Hiichting. A polynomial translation of pi-calculus
FCPs to safe Petri nets. Log. Methods Comput. Sci., 9(3), 2013.

10 H. Lerchs. On cliques and kernels. Tech. Report, Dept. of Comp. Sci., Univ. of Toronto, 1971.

11 Robin Milner. A Calculus of Communicating Systems. Springer, 1980.

8:13

CONCUR 2022

https://doi.org/10.1007/3-540-55610-9_167

8:14

Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

12

13

14

A

Ernst-Ridiger Olderog. Operational Petri net semantics for CCSP. In Grzegorz Rozenberg,
editor, Advances in Petri Nets 1987, covers the 7th Furopean Workshop on Applications and
Theory of Petri Nets, Ozford, UK, June 1986, volume 266 of Lecture Notes in Computer
Science, pages 196-223. Springer, 1986.

Antti Valmari. The state explosion problem. In Wolfgang Reisig and Grzegorz Rozenberg,
editors, Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are based
on the Advanced Course on Petri Nets, held in Dagstuhl, September 1996, volume 1491 of
Lecture Notes in Computer Science, pages 429-528. Springer, 1996.

Rob J. van Glabbeek and Ursula Goltz. Refinement of actions in causality based models. In
J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg, editors, Stepwise Refinement
of Distributed Systems, Models, Formalisms, Correctness, REX Workshop, Mook, The Nether-
lands, May 29 - June 2, 1989, Proceedings, volume 430 of Lecture Notes in Computer Science,
pages 267-300. Springer, 1989. doi:10.1007/3-540-52559-9_68.

Additional notions and notations

Let N = (P,T) be a box.

B

If a transition ¢ € T is enabled at marking M, we denote t € enabledy (M).

A marking M’ is reachable from marking M if there are markings My, ..., My (k < 0)
and transitions t1,...,t; such that My = M, M; = M’, and

Mo[lf1>NM1 - Mkfl[thMk.

Moreover, if My = N¢© then o = t; ...t is a firing sequence of N (we denote this by
o € fseq(N)) and My, is a reachable marking of N (we denote this by M}, € reach(N)).

Two transitions ¢ # u € T are in conflict if there is a place p = my,w € P such that
t,u € W (we denote this by (t,u) € cfly(p)), and ¢ directly causes u if there is a place
p=myw € P such that t € U and u € W (we denote this by (¢,u) € csdy(p)). Moreover,
for a set of places P’ C P:

cfin (P U{cﬂN)|pe P} and csdy(P U{cst |pe P}

Proof of Proposition 1

» Lemma 5. Let E be a box expression derived from the syntax (1), N =box(E), t € T,
and (Ne Z)M()[t1>NM1 N Mkfl[tk>NMk,l

1.
2.
3.
4,

N is safe box (i.e., each reachable marking is a set of places).?
N* is a marking reachable from My, and enabledy(N*) = @.
postn (t;) Npostn(t;) = @ and t; # tj, forall1 <i<j<k.
If My Npren(t) # & then:
there is 1 < i < k such that t € enabledy (M), or
there is a marking M reachable from My, such that t € enabledy (M).

Proof. Different parts follow by induction on the structure of a box expression (see also [2]).

<

1 Hence t; ... ti is a firing sequence of N.
2 Hence we can use set notation when dealing with the semantics of composite boxes.

https://doi.org/10.1007/3-540-52559-9_68

V. Khomenko, M. Koutny, and A. Yakovlev

We then proceed with the proof proper, using the same notations as in the formulation
of Proposition 1. We first observe that N¢ = box(£)¢ N P as well as cflyox (g (P) = cfiy (p)
and ¢sdpox(r)(p) = csdn(p), for every p € P. Hence cflyo(p)(Poox(m)) = cfly(P) and
csdpox(E) (Poox(E)) = csdn (P). Moreover, if

box(E)®[t1)box(E)y M1 - - - Mi—1[tk)box(E) Mk

then Ne[t1)n(M1NP)...(Mg—1 N P)[ty)n(My N P) since N is a subnet of box(E) with the
same set of transitions (*).

We then observe that fseq(IN) = fseq(box(E)). Indeed, the (D) inclusion follows from (*).

If the (C) inclusion does not hold, then there is t; ... 15t € fseq(IN) \ fseq(box(E)) such that
t1...1; € fseq(box(E)). Thus (also by (*)) there are markings Mo, ..., M, such that

(box(E)® =)Mo [t1)box(z) M1 - - - Mg —1[tk)box() Mk
(Ne :)Mg n P[t1>N(M1 N P) c.. (Mk—l N P)[tk>N(Mk n P)

We have, t € enabledy (M), N P)\enabledyoyg)(My). Hence there is p = my,w € prepom)(t)\
pren (t) such that My (p) = 0. On the other hand, since prey(t) # @ and t € enabled (M N
P), prepox(g)(t) N M), # . Hence, by Lemma 5(4), one of the following two cases holds:

Case 1: There is 1 < i < k such that ¢ € enabledpox(p)(M;) and so p € M;. Then there
is i < j < k such that p € prepox(r)(tj). By ¢fin(P) = cfloox(m) (FPoox(r)), there is peP
such that My (p') = 1 and p’ € prepox(m) (t) N Prevox(p) (v). However, by Lemma 5(1), this
means that p’ must have been filled with a token twice along the firing sequence 1 ...,
contradicting Lemma 5(3).

Case 2: There is a marking M reachable from M}, such that ¢ € enabledpoy(g)(M). This
means p € M, and there is u € U which is executed when reaching M from Mj. Then
(u,t) € csdyoy(m)(p), and 50, by csdpoyx(g)(P) = c8dpox(E)(Poox(E)), there is p’ € P such that
(u,t) € csdyox(my(p'). Thus p’ € Mj.. As a result, p’ must have received a token twice along a
firing sequence of box(FE) leading to M, contradicting Lemma 5(3).

Hence fseq(N) = fseq(box(E)) (**). Moreover, by (*), if ¢ and ¢’ are firing sequences

leading in box(E) to the same marking, then they also lead to the same marking in N.

Suppose then that o and ¢’ are firing sequences leading in N to the same marking. Then,
by Lemma 5(2), they can be extended by the same ¢ to yield firing sequences oo’ and
o’'c” leading to the marking N*. Thus, by (**), 06" and o’'¢” lead to some markings M
and M’ in box(FE). If, for example, 0" # box™ then, by Lemma 5(2), it can be extended by
a nonempty o’’’ to lead to box(E)*. However, contradicting (*), ¢’ cannot be fired from
N*. Hence, M = M’ and so o and ¢’ lead to the same marking in box(E). This and the
deterministic nature of RG(box) and RG(N) means that the two reachability graphs are
isomorphic.

C Proofs of Propositions 2 and 3

Proposition 2 follows by a straightforward induction on the structure of E. Propositions 3
follows directly from the definitions and Proposition 2.

D Proof of Proposition 4

We first shows that interface graphs are what we need to have in order to characterise local
conflict and causalities.

8:15

CONCUR 2022

8:16 Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

» Lemma 6. Let E and F be box expressions derived from the syntax (1) with disjoint sets

of actions. Then:
Confli(box(E ; F))
Caused(box(E; F))

Confli(box(EO F))

Caused(box(E O F))

Confi(box(E || F))
Caused(box(E || F))

Confl(box(E)) U Confl(box(F))

Caused(box(E)) U Confi(box(F))U

{{tvu} € Tbox(E) X Tbox(F) | {t7u} € edge(GE‘iG%)}
Confi(box(E)) U Confi(box(F'))U

{{t7u} € Tbox(E) X Tbox(F) | {t7u} € edge(GeE_G%)}
Caused(box(E)) U Caused(box(F))

Confi(box(E)) U Confi(box(F'))

Caused(box(E)) U Caused(box(F))

Proof. The result follows directly from the definitions. |

We then proceed with the proof proper, using the same notations as in the formulation of

Proposition 4. The first part follows directly from Proposition 1(<=), Propositions 2 and 3,

and Lemma 6. The second part follows from the minimality of covers used in the construction

of N and Proposition 1(=

On the Sequential Probability Ratio Test in Hidden
Markov Maodels

Oscar Darwin
Department of Computer Science, Oxford University, UK

Stefan Kiefer
Department of Computer Science, Oxford University, UK

—— Abstract

We consider the Sequential Probability Ratio Test applied to Hidden Markov Models. Given two
Hidden Markov Models and a sequence of observations generated by one of them, the Sequential

Probability Ratio Test attempts to decide which model produced the sequence. We show relationships
between the execution time of such an algorithm and Lyapunov exponents of random matrix systems.
Further, we give complexity results about the execution time taken by the Sequential Probability
Ratio Test.

2012 ACM Subject Classification Theory of computation — Random walks and Markov chains;
Mathematics of computing — Stochastic processes; Theory of computation — Logic and verification

Keywords and phrases Markov chains, hidden Markov models, probabilistic systems, verification
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.9
Related Version Full Version: https://arxiv.org/abs/2207.14088

Acknowledgements The authors thank anonymous referees for valuable suggestions.

1 Introduction

A (discrete-time, finite-state) Hidden Markov Model (HMM) (often called labelled Markov
chain) has a finite set @ of states and for each state a probability distribution over its possible
successor states. Every state is associated with a probability transition over a successor state
and an emitted letter (observation). For example, consider the following HMM:

b

le-O0WiBO=

b

win

a

wlnN

W=

In state ¢;, the probability of emitting a and the next state being also ¢; is %, and the
probability of emitting b and the next state being ¢, is % An HMM is typically viewed as
a producer of a finite or infinite word of emitted observations. For example, starting in ¢,

the probability of producing a word with prefix aba is % . % - %, whereas starting in ¢s, the
probability of aba is % . % - % The random sequence of states is considered not observable

(which explains the term hidden in HMM).

HMMs are widely employed in fields such as speech recognition (see [28] for a tutorial),
gesture recognition [6], signal processing [10], and climate modeling [1]. HMMs are heavily
used in computational biology [14], more specifically in DNA modeling [8] and biological
sequence analysis [13], including protein structure prediction [22] and gene finding [3]. In
computer-aided verification, HMMs are the most fundamental model for probabilistic systems;
model-checking tools such as Prism [23] or Storm [12] are based on analyzing HMMs efficiently.

© Oscar Darwin and Stefan Kiefer;
oY licensed under Creative Commons License CC-BY 4.0
33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 9; pp. 9:1-9:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5016-014X
https://orcid.org/0000-0003-4173-6877
https://doi.org/10.4230/LIPIcs.CONCUR.2022.9
https://arxiv.org/abs/2207.14088
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

On the Sequential Probability Ratio Test in Hidden Markov Models

One of the most fundamental questions about HMMs is whether two initial distributions
are (trace) equivalent, i.e., generate the same distribution on infinite observation sequences.
In the example above, we argued that (the Dirac distributions on) the states gi, g2 are not
equivalent. The equivalence problem is very well studied and can be solved in polynomial
time using algorithms that are based on linear algebra [29, 25, 31, 9]. The equivalence
problem has applications in verification, e.g., of randomised anonymity protocols [20].

Equivalence is a strong notion, and a natural question about nonequivalent distributions
in a given HMM is how different they are. For initial distributions 71,72 on the states of
the HMM, let us write P, , P, for the induced probability measure on infinite observation
sequences; i.e., Pr (E), for a measurable event E C X¢| is the probability that the random
infinite word w € X“ produced starting from 7; is in E. Then, the total variation distance
between P, ,P,, is defined as

d(mi,m3) = sup {|Px (E) — Pr,(E)| | measurable £ C ¥¢}.

This supremum is a maximum; i.e., there always exists a “maximizing event” E C »% with
d(my,ma) = Pr (E) — Pr,(E). In these terms, initial distributions 71,2 are equivalent if and
only if d(mq,m2) = 0. The total variation distance was studied in more detail in [7]. There it
was shown that the problem whether d(m;,m5) = 1 holds can also be decided in polynomial
time. Call distributions m,my distinguishable if d(m1,m2) = 1. Distinguishability was used
for runtime monitoring [21] and diagnosability [4, 2] of stochastic systems.

Distributions 71, w2 that are distinguishable (i.e., d(71,m2) = 1) can nevertheless be “hard”
to distinguish. In our example above, (the Dirac distributions on) ¢1, g2 are distinguishable.
If we replace the transition probabilities %, % in the HMM by % —&, % + €, respectively, states
q1, g2 remain distinguishable for every e > 0, although, intuitively, the smaller € > 0 the
more observations are needed to define an event F such that P, (E) — P, (FE) is close to 1.

To make this more precise, for initial distributions 71,75, a word w € ¥* and n € N

consider the likelihood ratio
Py (0, X%)

Ly(w) = P, (w,59)

where w,, denotes the length-n prefix of w. In the example above, we argued that
Pg, (abax®) = 1 - 2. 2 and Py, (abaX®) = 2 - % - &. Thus, for any word w starting with
aba we have L, (w) = 2. We consider the likelihood ratio L, as a random variable for
every n € N. It turns out more natural to focus on the log-likelihood ratio In L,,. One can
show that the limit lim, o, In L,, € [—00, o0] exists P, -almost surely and P,,-almost surely
(see, e.g., [7, Proposition 6]). In fact, if w1, 7o are distinguishable, then lim, . In L,, = co
holds P, -almost surely and lim,,_,o In L,, = —o0 holds P,,-almost surely. This suggests
the “average slope”, lim, . %ln L, of increase or decrease of In L,, as a measure of how
distinguishable two distinguishable distributions 7y, 7 are.

The log-likelihood ratio plays a central role in the sequential probability ratio test
(SPRT) [32], which is optimal [33] among sequential hypothesis tests (such tests attempt
to decide between two hypotheses without fixing the sample size in advance). In terms of
an HMM and two initial distributions 71,72, the SPRT attempts to decide, given longer
and longer prefixes of an observation sequence w € X“, which of 7y, 72 is more likely to
emit w. The SPRT works as follows: fix a lower and an upper threshold (which determine
type-I and type-II errors); given increasing prefixes of w keep track of In L, (w), and when
the upper threshold is crossed output 71 and stop, and when the lower threshold is crossed
output m and stop. Again, it is natural to assume that the average slope of increase or
decrease of In L,, determines how long the SPRT needs to cross one of the thresholds.

0. Darwin and S. Kiefer

If the average slope lim,, o % In L,, exists and equals a number ¢ with positive probability,
we call £ a likelihood exponent. The term is motivated by a close relationship to Lyapunov
exponents, which characterise the growth rate of certain random matrix products. As the
most fundamental contribution of this paper, we show that the average slope exists almost
surely and that any HMM with m states has at most m? + 1 likelihood exponents.

The rest of the paper is organised as follows. In Section 3 we exhibit a tight connection
between the SPRT and likelihood exponents; i.e., the time taken by the SPRT depends on
the likelihood exponents of the HMM. This connection motivates our results on likelihood
exponents in the rest of the paper. In Section 4 we prove complexity results concerning
the probability that the average slope equals a particular likelihood exponent. In Section 5
we show that the average slope exists almost surely and prove our bound on the number
of likelihood exponents. Further, we show that the likelihood exponents can be efficiently
expressed in terms of Lyapunov exponents. In Section 6 we show that for deterministic
HMMs one can compute likelihood exponents in polynomial time. We conclude in Section 7.

2 Preliminaries

We write N for the set of non-negative integers. For d € N we write [d] = {1,...,d}. For a
finite set @, vectors u € R? are viewed as row vectors, and their transpose (a column vector) is
denoted by p". The norm ||| is assumed to be the Iy norm: ||u| = > qeq ltql- We write 0,1
for the vectors all whose entries are 0, 1, respectively. For ¢ € @, we denote by e, € {0, 1}9
the vector with (e;), = 1 and (ey)y = 0 for ¢’ # g. A matrix M € [0,1]9%9 is stochastic if
IT = MTT. We often identify vectors p € [0,1]9 such that ||u| = 1 with the corresponding
probability distribution on Q. For p € [0,00)% we write supp(u) := {q € Q | g > 0}.

For a finite alphabet ¥ and n € N we denote by X7, ¥* 3 the sets of length-n words,
finite words, infinite words, respectively. For w € %% we write w,, for the length-n prefix
of w.

A Hidden Markov Model (HMM) is a triple H = (Q, X, ¥) where @ is a finite set of
states, Y is a set of observations (or “letters”), and the function W : ¥ — [0, 1]9*@ specifies
the transitions such that) s ¥(a) is stochastic. A Markov chain is a pair (Q,T') where Q
is a finite set of states and T € [0,1]9*? is a stochastic matrix. A Markov chain (Q,T) is
naturally associated with its directed graph (Q, {(¢,7) | Ty,» > 0}), and so we may use graph
concepts, such as strongly connected components (SCCs), in the context of a Markov chain.
Trivial SCCs are considered SCCs. The embedded Markov chain of an HMM (Q, X, ¥) is the
Markov chain (@, .5, ¥(a)). We say that an HMM is strongly connected if the graph of
its embedded Markov chain is.

» Example 1. The HMM from the introduction is the triple H = ({q1,¢2}, {a, b}, ¥) with
1 2 12

U(a) = <8 2) and U(b) = <(1) 8) The embedded Markov chain is ({q1, g2}, (ff g))
3 3 3 3

Fix an HMM H = (Q, X, ¥) for the rest of the section. We extend ¥ to the mapping

U2 — [0,1]9%9 with ¥(ay ---a,) = ¥(ay)-...-¥(a,) and ¥(e) = I, where ¢ is the empty

word and T the Q x Q identity matrix. We call a finite sequence v = goa1q1 -+ - angn € Q(XQ)*

a path and v(XQ)¥ a cylinder set and an infinite sequence gpaigiasgs - -+ € Q(XQ)% a run.

To H and an initial probability distribution © € [0,1]9 we associate the probability space
(Q(XQ)¥,5*,P,) where G* is the o-algebra generated by the cylinder sets and P, is the
unique probability measure with P (qoaiqi - -+ angn(2Q)¥) = g [11; Y(ai)g, ,,q- As the
states are often irrelevant, for £ C ¥¢ and E1 := {qoa1q1a2q2 -+ | a1az--- € E} € §* we
view also E as an event and may write P (FE) to mean P, (E?). In particular, for w € ¥* we

9:3

CONCUR 2022

9:4

On the Sequential Probability Ratio Test in Hidden Markov Models

have P, (wX¥) = ||7¥(w)||. For E C X% we write 15 for the indicator random variable with
1g(w)=1ifw e F and 1g(w) =0if w & E. By E, we denote the expectation with respect
to P,. If 7 is the Dirac distribution on state ¢, then we write E,.

A Markov chain (Q,7T) and an initial distribution ¢ € [0,1]9 are associated with a
probability measure P, on measurable subsets of Q“; the construction of the probability
space is similar to HMMSs, without the observation alphabet 3.

Let (Q,%,¥) be an HMM and let 71, 2 be two initial distributions. The total variation
distance is d(m1,m2) := suppregs [Pr, (£) — P, (E)|. This supremum is actually a maximum
due to Hahn’s decomposition theorem; i.e., there is an event E C 3¢ such that d(my,) =
P (E) — Pr,(E). We call m; and my distinguishable if d(my,m2) = 1. Distinguishability is
decidable in polynomial time [7].

Let m; and mo be initial distributions. For n € N, the likelihood ratio L, is a random

= [m¥wu)ll “Baged on results from [7] we have the following

variable on X% given by L, (w) = EXXTCSIIN

lemma.

» Lemma 2. Let w1, mo be initial distributions.
1. lim, 0o Ly, exists Pr,-almost surely and lies in [0, 00).

2. limy 00 Ly =0 P, -almost surely if and only if m1 and mo are distinguishable.

» Example 3. We illustrate convergence of the likelihood ratio using an example from [24]
where the authors use HMMSs to model sleep cycles. They took measurements of 51 healthy
and 51 diseased individuals and using electrodes attached to the scalp, they read electrical
signal data as part of an electroencephalography (EEG) during sleep. They split the signal
into 30 second intervals and mapped each interval onto the simplex A3 = {(xq, 72,23, 24) €
[0,1]* | Zle x; = 1}. For each individual this results in a time series of points in A3.
They modelled this data using two HMMs, each with 5 states, for healthy and diseased
individuals using a numerical maximum likelihood estimate. Each state is associated with a
probability density function describing the distribution of observations in A3. We describe
in [11] how we obtained from this an HMM #H = (@, X, ¥) with (finite) observation alphabet
¥ ={ay,...,as} and two initial distributions 71, s corresponding to healthy and diseased
individuals, respectively. Using the algorithm from [7] one can show that 7 and my are
distinguishable.

We sampled runs of H started from 7 and 75 and plotted the corresponding sequences
of In L,,. We refer to each of these two plots as a log-likelihood plot; see Figure 1.

log-likelihood
log-likelihood

120 L " N
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

number of observations number of observations

Figure 1 The two images show two log-likelihood plots of sample runs produced by 71 and 73,
respectively.

0. Darwin and S. Kiefer

By Lemma 2.2 it follows that In L,, converges P, -a.s. (almost-surely) to co and Py,-a.s.

to —oo. This is affirmed by Figure 1. Both log-likelihood plots also appear to follow a
particular slope. This suggests that we can distinguish between words produced by 71 and 9
by tracking the value of In L,, to see whether it crosses a lower or upper threshold. This is
the intuition behind the Sequential Probability Ratio Test (SPRT).

3 Sequential Probability Ratio Test

Fix an HMM H = (Q, %, ¥) for the rest of the paper. Given initial distributions 1, w9 and
error bounds «, 8 € (0,1), the SPRT runs as follows. It continues to read observations and
computes the value of In L,, until In L,, leaves the interval [A, B], where A := In 125 and
B:=1In I_Ta If In L,, < A the test outputs “m2” and if In L,, > B the test outputs “m”. We
may view the SPRT as a random variable SPRT, g : ¥ — {m, m2, 7}, where ? denotes that
the SPRT does not terminate, i.e., In L,, € [A, B] for all n. We have the following correctness

property.

» Proposition 4. Suppose w1 and mo are distinguishable. Let «, 8 € (0,1). By choosing

A=In1%5 and B =1In 5%, we have Pr, (SPRT,,3 = m2) < o and Pr,(SPRT 4,3 = m) < S.

1—
B
In the following we consider the SPRT with respect to the measure P,,. This is without

loss of generality as there is a dual version of the SPRT, say SPRT with L,, = 1/L,, instead
of Ly, such that SPRT 3 , = SPRT, g. Define the stopping time

Nop = min{neN|InL, ¢ [A,B]} € NU{oo}.

We have that N, g is monotone decreasing in the sense that for o < o’ and 8 < 8’ we have
No,g > Ny gr. When 71 and 7 are distinguishable, N, g is Pr,-a.s. finite by Lemma 2.2.

3.1 Expectation of N,z

Consider the two-state HMM where p; # po.

pie G M-mib paC () D M-pa):b

(The Dirac distributions of) s; and s are distinguishable. Further, the increments In L, 11 —
In L,, are independent and identically distributed (i.i.d.) and 0 > Eg,[In Ly41 — InLy] =
p2 In ;j—; +(1—p2)In % =: (. Intuitively as £ gets more negative, the HMMs become more
different.! Indeed, Wald [32] shows that the expected stopping time Eg, [N,] and ¢ are

inversely proportional:

l1-a _ _o
R (1

This Wald formula cannot hold in general for (multi-state) HMMs. The increments In L,, 11 —

In L,, need not be independent and Ey,[In L,,+1 — In L,] can be different for different n.

Further, |In L,,41 — In L, | can be unbounded; cf. [21, Example 6].

! In fact, £ is the KL-divergence of the distributions fi, f2 where f;(a) = p; and f;(b) =1 —p; fori =1,2.

9:5

CONCUR 2022

9:6

On the Sequential Probability Ratio Test in Hidden Markov Models

Nevertheless, in Figure 1 we observed that In L,, appears to decrease linearly (on the 7o
plot). Indeed, we show in Theorem 8 below that the limit lim,, % In L,, exists Pr,-almost
surely. Intuitively it corresponds to the average slope of the log-likelihood plot for 5. In the
two-state case, there is a simple proof of this using the law of large numbers:

n—1
.1 .1
nhﬁngo - InL, = nhﬁrréo - ;[ln Liyi—InL] =E4[InL; —InLo] =€ Pr,-a.s.

The number £ is called a likelihood exponent, as defined generally in the following definition.

» Definition 5. For initial distributions 71,7, a number £ € [—00,0] is a likelihood exponent
if Pry (limy o0 = In L, = £) > 0.

By Lemma 2.1 we have P, (lim,,—, oo % InL, >0)=0,as P, (lim,— 0 L, < 00) = 1. Hence,
we may restrict likelihood exponents to [—o00,0]. We write Ay, -, C [—00,0] for the set of
likelihood exponents for my, 7o and define A := UM7T2 Ay, x5 ie., A depends only on the
HMM H. For £ € A we define the event E; = {lim, % InL, =(}.

» Example 6. In the case of Example 3 we have Ay, -, = {{} where the slope of the right

hand side of Figure 1 suggests that { ~ — 1080000 = —0.008.

» Example 7. Even for fixed 71, m2 there may be multiple likelihood exponents. Consider
the following HMM with initial Dirac distributions 7m; = e, and 7y = e,,.

1
a 50

1 3
sa 2b
b

Wl

b

win

1
2

We observe two different likelihood exponents depending on the first letter produced. If

the first letter is a then In L, 11 — In L,, are i.i.d. for n > 1 and lim,, %ln L, = %ln }/Lg +
%ln f%’ = %ln% =: / like the two-state example above. If the first letter is b then L, %

for all n > 1 and lim,,_, %ln L, =0. Thus, Ay, -, = {{,0} and P, (E¢) = P, (Ep) = %
The following theorem is perhaps the most fundamental contribution of this paper.

» Theorem 8. For any initial distributions my, 7o the limit lim,, o %hl L,, exists Pr,-almost
surely. Furthermore, we have |A| < |Q]? + 1.

It follows from a stronger theorem, Theorem 23, which we prove in Section 5.

Returning to the SPRT, we investigate how lim,,_, % In L,, influences the performance
of the SPRT for small o and 5. Intuitively we expect a steeper slope in the likelihood plot
(cf. Figure 1) to lead to faster termination. In the two-state case, Wald’s formula (1) becomes

fIniz® +(1-F)Ini%; Ina

Es, [Na,ﬁ] = 7 ~ 7 (as a,f— 0)7 (2)

where we use the notation ~ defined as follows. For functions f, g : (0, 00) x (0,00) — (0, 00)
we write “f(z,y) ~ g(x,y) (as z,y — 0)” to denote that for all € > 0 there is § > 0 such
that for all z,y € (0,d) we have f(x,y)/g(z,y) =[1 —¢&,1+¢].

In Theorem 9 below we generalise Equation (2) to arbitrary HMMs. Indeed a very similar
asymptotic identity holds. In the case that A = {¢} and ¢ € (—00,0) we have E, [N, g] ~ 22
as «, 8 — 0. If |[A| > 1 then we condition our expectation on lim,, %ln L,.

0. Darwin and S. Kiefer

» Theorem 9 (Generalised Wald Formula). Let ¢ be a likelihood exponent and let w1 and o
be initial distributions.

1
1. If ¢ € (—00,0) then E,, [Na,ﬁ | Eg] ~ % (as a, f — 0).
2. If £ =0 then there exist a, 3 > 0 such that E, [Naﬁ | Eg} = 00.
3. If { = —c0 then sup E, [Na”@ | Eg} < 00.
a,f3

The theorem above pertains to the expectation of N, g. In the next subsection we give
additional information about the distribution of N, g, further strengthening the connection
between N, g and likelihood exponents.

3.2 Distribution of IV, s
3.2.1 Likelihood Exponent 0

» Example 10. We continue with Example 7 to illustrate the second case in Theorem 9.

By picking a = i,ﬁ = i the thresholds for the SPRT are A = ln% and B = In3. If the

first letter is b, then In L,, = ln% for all n > 1, thus never crosses the SPRT bounds and

lim,, o0 %ln L,, = 0. Hence with probability % the SPRT fails to terminate and N, 3 = 0.

It follows that Pr,(Ep) = & and E,,[N, s | Eo] = 0o and, thus, Er,[N, 5] = cc.

The second part of Theorem 9 says that the expectation of IV, g conditioned under Ej is
infinite. The following proposition strengthens this statement. Conditioning under Ej, the
probability that N, g is infinite converges to 1 as o, 3 — 0. Recall that N, g is monotone
decreasing. It follows that {Ny g =00} C{Nypg=o0}if a <a' and g < .

» Proposition 11. The following two equalities hold up to P,,-null sets:
E, = {nlggoLn > 0} = U {Nap = o0}
a,B>0
Thus, lima g0 Pr, (Na,g = 00) = Pr, (Ep).

» Corollary 12 (using Lemma 2.2). Initial distributions m and mo are distinguishable if and
only if Pr,(Eo) =0 if and only if Pry(Ny g < 00) =1 holds for all o, 8 > 0.

3.2.2 Likelihood Exponent —oco

» Example 13. Consider now a modification of Example 7 where state s3 has the b loop
removed.
a la

1
=-a
s Yo =5 3o O b

W=
[
(=l

2p

3
The likelihood exponents are —oo and £ := 3 1In 8 so that A = {—o0,¢}. Also, P, (F_) =
Ps,(E¢) = 1. Up to P,,-null sets the events E_o, bX* and ba*bX* are equal. The event

ba*bX“ represents the right chain producing an observation which the left chain cannot
produce, causing the SPRT to terminate for any «, 3. Therefore conditioned on E_,, the

random variable N, 3 — 1 is bounded by a geometric random variable with parameter %

Hence sup,, 5 Er, [Na,ﬂ | E_Oo] <142

We define the stopping time N, = min{n € N | L,, = 0}. Note that sup, 5 No s < N since
{L, =0} C{L, < ﬁ} for all «, 8. By the following proposition, the reverse inequality
also holds.

9:7

CONCUR 2022

9:8

On the Sequential Probability Ratio Test in Hidden Markov Models

» Proposition 14. The events E_o and {L, = 0 for somen} are equal. Thus,
sup,, g Na,g = N1 and limy g0 Pr,(Nag < 00) = P, (E_oo)-

Applying this to Example 13, we obtain sup,, 3 Er, [Na”g | E_oo] =3.

3.2.3 Likelihood Exponent in (—oo, 0)

Conditioned on E; where ¢ € (—00,0), Theorem 9 states that N, g scales with mTa in
expectation. The following result shows that this relationship also holds P.,-almost surely.

» Proposition 15. Let ¢ € A and assume £ € (—00,0). We have

Pr, (Nas ~ IDT
In fact, we prove the first part of Theorem 9 using Proposition 15. If there were a
bound M € N such that P,,-a.s. % < M, the first part of Theorem 9 would follow from
Proposition 15 by the dominated convergence theorem. However this is not the case in
general. Instead we show in [11] that the set of random variables {ivfni |0<a,B<1}
is uniformly integrable with respect to the measure P, and then use Vitali’s convergence

theorem.

(asa,ﬁ%O)‘Eg) = 1.

» Example 16. Recall Example 3, where A = {¢}. Figure 2 demonstrates the asymptotic

4

10 =10 s

9

8
E 7
&
> 6
=]
& 5
i
B
a 4
E
E 3t ’

5 E;{./

1 S

0 L . L L

0 200 400 600 800 1000

value of -In(a)

Figure 2 The time taken by the SPRT for 0 < —lna = —In 8 < 1000.

relationship in Proposition 15. Each of the 50 lines correspond to a sample run and we
record the value of N, g for 0 < —Ina = —In 3 < 1000. From the figure we estimate f% as

% = 125. This coincides with the estimate given in Example 6.

We conclude from this section that the performance of the SPRT, in terms of its termina-
tion time N, g, is tightly connected to likelihood exponents. This motivates our study of
likelihood exponents in the rest of the paper.

4 Probability of E,

In this section we aim at computing P, (E,) for a likelihood exponent ¢. We show the
following theorem.

0. Darwin and S. Kiefer

» Theorem 17. Given an HMM and initial distributions mwy, T,

1. one can compute Pr,(E_o) and Pr,(Ep) in PSPACE;

2. one can decide whether Pr,(Ey) =0 (i.e., 0 & Ay, ,) in polynomial time;

3. deciding whether Pr,(Eo) = 1, whether Pr,(E_«) =0, and whether Pr,(F_») =1 are
all PSPACE-complete problems.
The following example illustrates the construction underlying the PSPACE upper bound.

» Example 18. Consider another adaption of Example 7.
a a %a
a
Y= 3o O b
b

1
3

Wl
PN
Y

(=

1 1
30 “

N

If the first letter produced by sy is b, then L,, = % for all n € N. If the first two letters are ab,
then Ly = % and L,, = 0 for n > 2. If the first two letters are aa, then s5 € supp(es, ¥(aaw))
for all w € ¥*, and therefore, up to a Pz, ,-null set, L, > 0 holds for all n € N, which
implies (using Proposition 14) that there is £ € (—o00,0) such that lim,,_ o %ln L, = /. Thus,
Ag, 5, = {—00,¢,0}.

The likelihood ratio L, is 0 if and only if supp(m; ¥ (w,)) = 0. In order to track the
support of ;¥ (w,,), we consider the left part of the HMM as an NFA with s; as the initial
state and its determinisation as shown in the DFA below.

Almost surely, s, produces a word that drives this DFA into a bottom SCC, which then
determines lim,, oo % In L,: concretely, the bottom SCC {{s5}, {s2, s5}} is associated with ¢,
the bottom SCC {(} with —oo, and the bottom SCC {{s3}} with 0.

In general, the observations need not be produced uniformly at random but by an HMM.
Therefore, in the following construction, we also keep track of the “current” state of the
HMM which produces the observations. For S C @ and a € X, define §(S,a) := {¢' € Q |
Jg € S:¥(a),, > 0}. Define the Markov chain B := (29 x Q,T) where

Tisansha) = 9, W(a)gg -
5(S,a)=5"

Given initial distributions 71,72 on @Q as before, define an initial distribution ¢ on 2¢ x @ by
t((supp(m1),q)) := (m2)q. Intuitively, the left part S of a state (S, ¢) tracks the support of
m1U(wy,), and the right part ¢ tracks the current state of the HMM that had been initialised
at a random state from my. The following lemma states the key properties of this construction.

» Lemma 19. Consider the Markov chain B = (29 x Q,T) defined above.

1. Every bottom SCC of B is associated with a single likelihood exponent; i.e., for every
bottom SCC C C 29 x Q there is {(C) € [—00,0] such that for any initial distribution
m1 € [0,1]9 and any state g» € Q with (supp(m1),q2) € C we have Ay, ., = {£(C)}.

9:9

CONCUR 2022

9:10

On the Sequential Probability Ratio Test in Hidden Markov Models

2. Let (S,q) € C for a bottom SCC C. If S = 0 then ({(C) = —oo; otherwise, if e,
and the uniform distribution on S are not distinguishable then €(C) = 0; otherwise
2(C) € (—0,0).

3. We have P, (E;) = P, ({visit bottom SCC C with £(C) = {}).

All parts of the lemma rely on the observation that lim,,_, % In L,, depend only on the

support of m; and on the support of 5. The first part of the lemma follows from Lévy’s 0-1

law. We use this lemma for the proof of Theorem 17.1.

Proof sketch for Theorem 17.1. The Markov chain B from Lemma 19 is exponentially big
but can be constructed by a PSPACE transducer, i.e., a Turing machine whose work tape
(but not necessarily its output tape) is PSPACE-bounded. This PSPACE transducer can
also identify the bottom SCCs. For each bottom SCC C, the PSPACE transducer also
decides whether ¢(C) = —oo or ¢(C) € (—00,0) or ¢(C) = 0, using Lemma 19.2 and the
polynomial-time algorithm for distinguishability from [7]. Finally, to compute P,,(E_)
and P, (Ep), by Lemma 19.3, it suffices to set up and solve a linear system of equations for
computing hitting probabilities in a Markov chain. This system can also be computed by
a PSPACE transducer. Since linear systems of equations can be solved in the complexity
class NC, which is included in polylogarithmic space, one can use standard techniques for
composing space-bounded transducers to compute P, (F_) and P, (FEy) in PSPACE. <«

Proof of Theorem 17.2. Immediate from Corollary 12 and the polynomial-time decidability
of distinguishability [7]. <

Towards a proof of Theorem 17.3, we use the mortality problem, which asks, given a finite
set of states @, a finite alphabet X, and a function ® : ¥ — {0,1}9*?, whether there exists
a word w € ¥* such that ®(w) is the zero matrix. The mortality problem can be viewed
as a special case of the NFA non-universality problem (given an NFA does it reject some
word?). Like NFA universality, the mortality problem is PSPACE-complete [19].

Concerning P, (F_s) (cf. Theorem 17.3), we actually show a stronger result, namely
that any nontrivial approximation of P, (F_) is PSPACE-hard. The proof is also based
on the mortality problem.

» Proposition 20. There is a polynomial-time computable function that maps any instance
of the mortality problem to an HMM and initial distributions my, 7o so that if the instance is
positive then Pr,(E_o) =1 and if the instance is negative then Pr,(E_o) = 0. Thus, any
nontrivial approxzimation of Pr,(F_) is PSPACE-hard.

Proof. Let (Q,X, ®) be an instance of the mortality problem. If there is ¢ € @ that indexes
a zero row in) v
can assume without loss of generality that) s, ®(a) has no zero row. Construct an HMM
(Q,%,¥) so that ®(a) and ¥(a) have the same zero pattern for all @ € . Define 7; as a
uniform distribution on Q. Define w5 as a Dirac distribution on a fresh state that emits
letters from 3 uniformly at random. Thus, if (Q, X, ®) is a positive instance of the mortality
problem then P, (E_) = 1, and if (Q, 3, ®) is a negative instance then P, (F_) =0. <«

®(a), remove the row and column indexed by ¢ in all ®(a). Thus, we

The proof that deciding whether P, (Ey) = 1 is PSPACE-hard is similarly based on
mortality.

0. Darwin and S. Kiefer

5 Representing Likelihood Exponents

In the following we show that one can efficiently represent likelihood exponents in terms
of Lyapunov exponents. The definition of Lyapunov exponents is based on the following
definition.

» Definition 21. A matrix system is a triple M = (Q, X, V) where Q is a finite set of states,
>l is a finite set of observations, and ¥ : ¥ — RQSQ specifies the transitions. (Note that an
HMM is a matriz system.) A Lyapunov system is a pair S = (M, p) where M = (Q, %,)
is a matriz system and p € (0,1]% is a probability distribution with full support, such that the

directed graph (Q, E) with E = {(q,7) | Y_,cx, Yq.r(a) > 0} is strongly connected.

We can identify the probability distribution p from this definition with the single-state
HMM ({s},X,¥,) where ¥,(a)s s = p(a) for all @ € ¥. In this way, p produces a random
infinite word from . The following lemma is known from [26].

» Lemma 22 ([26]). Let ((Q, %, ¥), p) be a Lyapunov system. Then there is A € R such that,
forallq € Q, P,-a.s., either e,¥(w,,) = 0 for somen € N or the limit lim,, o L1n[|eq ¥ (wy)||
exists and equals A.

For a Lyapunov system S we call A(S) = X from the lemma the Lyapunov exponent defined
by §. We prove the following theorem, which implies Theorem 8.

» Theorem 23. Given an HMM (Q, %, V) we can compute in polynomial time 2K < 2|Q|?
Lyapunov systems Si,8%,83,83,...,8k,S% such that for any initial distributions 71, the
limit lim,, oo %ln L,, exists Pr,-a.s. and lies in

A C {00} U{A(S]) = A(ST), -+ AMSk) — A(SK)}-
In particular, the HMM (Q, X, ¥) has at most |Q|* + 1 likelihood exponents.

In the rest of the section we provide more details on the construction underlying The-
orem 23. As an intermediate concept (between the given HMM and the Lyapunov systems
from Theorem 23) we define generalized Lyapunov systems.

First, for two matrix systems M; = (Q1,%,¥1) and My = (Q2, X, U) with finite
Q1,Q2,% and transitions ¥y, Uy : ¥ — RggQ we define the directed graph G, m, =
(Q1 X Qs, E) such that there is an edge from (g1, q2) to (r1,r2) if there is a € ¥ with
Uy(a)g,,ry >0 and ¥o(a)g,r, > 0.

A generalized Lyapunov system is a triple S = (M, H,C) where M = (Q1,%, V) is a
matrix system and H = (Q2, X, Us) is a strongly connected HMM and C C @1 X Q3 is a
bottom SCC of G aq,%. Given a generalized Lyapunov system, one can efficiently compute
an “equivalent” Lyapunov system:

> Lemma 24. Let S = ((Q1,%,¥1),(Q2, %, Us),C) be a generalized Lyapunov system.

1. There is A\ € R, henceforth called \(S), such that, for all 71 € [0,00)9" and all prob-
ability distributions m € [0,1]92 with supp(m;) x supp(mz) C C, we have P,,-a.s. that
either m Uy (wy,) = 0 for some n € N or the limit lim,_, o0 %ln |1 U1 (wy)|| exists and
equals A\(S).

2. One can compute in polynomial time a Lyapunov system S’ such that A(S) = A(S').
Let H = (Q,%,¥) be an HMM. Let R C @ x @ be a (not necessarily bottom) SCC of

the graph Gy % such that Qr = {¢2 € Q | 31 € Q : (q1,92) € R} is a bottom SCC of

the graph of) .5, ¥(a). We call such R a right-bottom SCC. Clearly there are at most

9:11

CONCUR 2022

9:12

On the Sequential Probability Ratio Test in Hidden Markov Models

|Q|? right-bottom SCCs. Towards Theorem 23 we want to define, for each right-bottom
SCC R, two generalized Lyapunov systems Sk, S%. Intuitively, S}, and S% correspond to
the numerator and the denominator of the likelihood ratio, respectively.

For a function of the form ® : & — R®*Q and P C Q we write Qp:X— RP*P for the
function with ®p(a)(q,7) = ®(a)(q,r) for all a € ¥ and ¢,r € P; i.e., ®|p(a) denotes the
principal submatrix obtained from ®(a) by restricting it to the rows and columns indexed
by P.

Define ¥'(a,r)q, = ¥(a)y, for all @ € ¥ and ¢,r € Q. Then (Q,X x Q,¥’) is an
HMM, which is similar to H, but which emits, in addition to an observation from X,
also the next state. Since Qg is a bottom SCC of the graph of) .y ¥(a), the HMM
Ho := (Qr, X X Qr, \IITQR) is strongly connected. This HMM Hs will be used both in Sk
and in S%.

Next, define ¥ : (2 x Q) — [0, 1](@*@)*x(@%Q) py

\Il(a,rg)(q17q2)7(rmz) = U(a)g,,, forallaeX® and ¢,q2,7m1,7m2 € Q.

Now define S}, := (M, Ha, C1), where M! := (R, X x QR,EU%) and Ct == {((q1, ¢2),q2) |
(¢1,92) € R}. Finally, denoting by R’ C Qr x Qr the SCC of the graph Gy 3 that
contains the “diagonal” vertices (¢,q) € Qr x Qg, define S = (M? Ha,C?), where
M? = (R',% x Qr, V¥ |r) and C? := {((q1,42),¢2) | (q1,92) € R'}.

For sets U,V C Q x Q let U —¢g,, ,, V denote that there are u € U and v € V such
that v is reachable from u in G'3;,2.. We are ready to state the following key technical lemma:

» Lemma 25. Given an HMM (Q,%, V), let R C 29%9 be the set of its right-bottom SCCs,
and, for R € R, let Sk, S% be the generalized Lyapunov systems defined above. Then, for
any initial distributions mwy, mo, the limit lim, o %ln L,, exists Pr,-a.s. and lies in

{—00} U{A(SR) — A(SE) | R € R, supp(m) X supp(m2) —a,,., R}
Thus, A, ry, € {—00} U{X(SL) — A(S%) | R € R, supp(m1) x supp(mz) —ran R}

Proof sketch. Let 1,75 be initial distributions. Very loosely speaking, we show in the
appendix that on Pr,-almost every run w there is a right-bottom SCC R which “traps”
“most” of the mass of m1¥(w,) and mo¥(wy,). This can be made meaningful and formal using
(the cross-product systems) Sk, S%. We then show that on P,,-almost every such run w, for
both 7 = 1,2, the limit lim,,_, o %ln |7 W (w,)| exists and equals A(S%) (or TP (w,,) = 0 for

some n). It follows that

lim llnLn = lim l1I1M _
n—oo N n—oo N ||7r2\IJ(wn)||

ASg) = MSR) - <

With Lemma 25 at hand, the proof of Theorem 23 is easy:

Proof of Theorem 23. As argued before, the set R of right-bottom SCCs of the given HMM
has at most |Q|? elements. These right-bottom SCCs R and the associated generalized
Lyapunov systems S, S% can be computed in polynomial time. By Lemma 25 we have
A = Uy, py Ari o © {00} U {A(Sk) — A(S%) | R € R}. By Lemma 24.2, for each R € R
one can compute in polynomial time an equivalent Lyapunov system. <

Theorem 23 allows us to represent the likelihood exponents of an HMM in terms of
Lyapunov exponents. In general, approximating or even computing Lyapunov exponents is
hard, but there are practical approximation algorithms using convex optimisation [27, 30].

0. Darwin and S. Kiefer

6 Deterministic HMMs

In Sections 4 and 5 we have seen that the problems of representing/computing likelihood
exponents and of computing their probabilities tend to be computationally difficult. In
this section we study deterministic HMMs and show that this subclass leads to tractable
problems. An HMM (Q, X, U) is deterministic if, for all a € X, all rows of ¥(a) contain at
most one non-zero entry. Thus, for all ¢ € @ and w € ¥*, we have |supp(e,¥(w))| < 1.

A useful observation is that the Markov chain B = (2% x Q,T), which was defined before
Lemma 19 and can be exponential in general, has only quadratic size in the deterministic
case if we restrict it to the part that is reachable from initial Dirac distributions.

» Example 26. Consider the deterministic HMM (Q, X, ¥) in Figure 3(a). Let m = eq,

wIN
S
L=
Q
winN
win ' =
W=

Figure 3 Cross-product constructions for a deterministic HMM.

and my = e4, (the latter is indicated by an arrow pointing to ¢»). Then the relevant (i.e.,

reachable from ({q1}, ¢2)) part of B is shown in Figure 3(b). Let us add back the observations
that gave rise to the transitions in B, and for simplicity drop the set brackets in the left
component of states. We obtain the HMM in Figure 3(c). With this HMM we may keep track
of the exact likelihood ratio. For example, suppose that the word aba is emitted, so that
Ly = H:ig;i% = 1 and supp(eq, ¥(aba)) = {2} and supp(eq, ¥(aba)) = {q1}. Suppose the
next letter is b (which is the case with probability %) Then Ly arises from L3 by multiplying
b)

i Pag,0(
with Ty as (D)

have In Ly = In L3 + In 2. This motivates the Markov chain shown in Figure 3(d), where
the transitions outgoing from a state (r1,r2) are labelled by the log-likelihood ratio of their
corresponding probabilities in the HMM. The Markov chain has stationary distribution (2, 1)
By the strong ergodic theorem for Markov chains, we obtain (the irrational number)

= 2, and the supports are switched again. In terms of log-likelihoods, we

limg oo 2Ly = (24 +fm2) +3(§m2+2mL) = Jm2+2ml=—4m2.

33/

9:13

CONCUR 2022

9:14

On the Sequential Probability Ratio Test in Hidden Markov Models

In general there may again be several likelihood exponents, including —oco and 0. For the
rest of the section, let H = (Q, X, ¥) be a deterministic HMM. Motivated by Example 26,
define an HMM A = ((Q x Q) U sy ,%, V), where s, is a fresh state, and

A v
3= {ln(a)q”1 € [—00,00)
\P(a)q'z,TQ

\i}<a)(q17qz)7(rl~,r2) = Z{\I}(a)tmﬂ"z
\i/(_oo)(thz)nsl = Z{‘I/(a)qz,rz

~

W(=00)s, s, = 1.

a € Za q1,71,92,72 € Q» \Il<a)q2,7“2 7& 0} U {—OO}

v r
aEZ:&zln(a)ql’l} for 4 # —oo
\I/(a’)thﬂ"z

GET, 12 €Q: Y, eq W@y =0}

Note that the embedded Markov chain of A is similar to the Markov chain B from
Lemma 19: states ({q1},q2) in B are called (¢1,¢2) in A, the states (), q) in B are subsumed
by the state s; of A, and the states (5, ¢) in B with |S| > 1 are not represented in 4. The
observations in ¥ C [—00, 00) track the log-likelihood ratio.

» Example 27. Consider the HMM H on the left, with initial distributions 7; = e4, and
Ty = €q,. The part of A reachable from (g1, g2) is shown on the right:

1
ia RS \L L2
b

Here we have Ar, », = {—00,0} with Pr,(E_w) = Pr,(Ep) = 3.

=

Denote by A the embedded Markov chain of A. Let C' C @ x Q be a non-{s; } bottom
SCC of A. Let p € [0,1]¢ denote the stationary distribution of the restriction of A on C.
Define the vector v € RY of average observations by v(,, r,) = Y .cs ||e(h,r2)\i/(&)|\ - a.
By the strong ergodic theorem for Markov chains, the average observation in C' equals
pvT =: £(C). Extend this definition by ¢({s,}) := —oo. Then we have the following lemma.

» Lemma 28. Let m = e,, and my = e, be initial distributions. For the Markov chain A
define 1 == e(q, 4,)- We have Pr,(E;) = P,({visit bottom SCC C with £(C) = £}).

The proof is essentially the same as in Lemma 19.3. This gives us the following result.

» Theorem 29. Given a deterministic HMM (Q, X, V) with initial Dirac distributions 71, 7o,
one can compute in polynomial time

1. Ay, =, as a set of expressions of the form >, x;Iny; where x;,y; € Q, and

2. Pry,(Ey) for each such £ € Ary r,.

Proof sketch. The theorem follows mostly from Lemma 28, with the slight complication that
for part 2 we have to check numbers of the form). x;Iny; (where z;,y; € Q) for equality.
But this can be done in polynomial time as shown in [15]. <

7 Conclusions

We have shown that the performance of the SPRT is tightly connected with likelihood
exponents. These numbers are related to Lyapunov exponents and can be viewed as a
distance measure between HMMs. We have shown that the number of likelihood exponents
is quadratic in the number of states. The associated computational problems tend to be

0. Darwin and S. Kiefer

complex (PSPACE-hard), but become tractable for deterministic HMMs. In our work we did
not make any ergodicity assumptions on the HMMs, unlike in earlier works from mathematics
and engineering such as [18, 5, 16, 17]. Efficient approximation of likelihood exponents, in
theory or praxis, remains an open problem.

—— References

1

10

11

12

13

14

15

16

17

P. Ailliot, C. Thompson, and P. Thomson. Space-time modelling of precipitation by using a
hidden Markov model and censored Gaussian distributions. Journal of the Royal Statistical
Society, 58(3):405-426, 2009.

S. Akshay, H. Bazille, E. Fabre, and B. Genest. Classification among hidden Markov models. In
Proceedings of the Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 150 of LIPIcs, pages 29:1-29:14. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.29.

M. Alexandersson, S. Cawley, and L. Pachter. SLAM: Cross-species gene finding and alignment
with a generalized pair hidden Markov model. Genome Research, 13:469-502, 2003.

N. Bertrand, S. Haddad, and E. Lefaucheux. Accurate approximate diagnosability of stochastic
systems. In Proceedings of Language and Automata Theory and Applications (LATA), volume
9618 of Lecture Notes in Computer Science, pages 549-561. Springer, 2016. doi:10.1007/
978-3-319-30000-9_42.

B. Chen and P. Willett. Detection of hidden Markov model transient signals. IEEE Transactions
on Aerospace and Electronic Systems, 36(4):1253-1268, 2000. doi:10.1109/7.892673.

F.-S. Chen, C.-M. Fu, and C.-L. Huang. Hand gesture recognition using a real-time tracking
method and hidden Markov models. Image and Vision Computing, 21(8):745-758, 2003.

T. Chen and S. Kiefer. On the total variation distance of labelled Markov chains. In Proceedings
of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 33:1-33:10, Vienna, Austria, 2014.

G.A. Churchill. Stochastic models for heterogeneous DNA sequences. Bulletin of Mathematical
Biology, 51(1):79-94, 1989.

C. Cortes, M. Mohri, and A. Rastogi. L, distance and equivalence of probabilistic automata.
International Journal of Foundations of Computer Science, 18(04):761-779, 2007.

M.S. Crouse, R.D. Nowak, and R.G. Baraniuk. Wavelet-based statistical signal processing
using hidden Markov models. IEEE Transactions on Signal Processing, 46(4):886-902, April
1998.

O. Darwin and S. Kiefer. On the sequential probability ratio test in hidden Markov models,
2022. arXiv:2207.14088.

C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. A Storm is coming: A modern probabilistic
model checker. In Proceedings of Computer Aided Verification (CAV), pages 592-600. Springer,
2017.

R. Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1998.

S.R. Eddy. What is a hidden Markov model? Nature Biotechnology, 22(10):1315-1316, October
2004.

K. Etessami, A. Stewart, and M. Yannakakis. A note on the complexity of comparing
succinctly represented integers, with an application to maximum probability parsing. ACM
Trans. Comput. Theory, 6(2):9:1-9:23, 2014. doi:10.1145/2601327.

C.-D. Fuh. SPRT and CUSUM in hidden Markov models. The Annals of Statistics, 31(3):942—
977, 2003. doi:10.1214/a0s/1056562468.

E. Grossi and M. Lops. Sequential detection of Markov targets with trajectory estimation. IEEE
Transactions on Information Theory, 54(9):4144-4154, 2008. doi:10.1109/TIT.2008.928261.

9:15

CONCUR 2022

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.29
https://doi.org/10.1007/978-3-319-30000-9_42
https://doi.org/10.1007/978-3-319-30000-9_42
https://doi.org/10.1109/7.892673
http://arxiv.org/abs/2207.14088
https://doi.org/10.1145/2601327
https://doi.org/10.1214/aos/1056562468
https://doi.org/10.1109/TIT.2008.928261

9:16

On the Sequential Probability Ratio Test in Hidden Markov Models

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

B.-H. Juang and L. R. Rabiner. A probabilistic distance measure for hidden Markov models.
ATET Technical Journal, 64(2):391-408, 1985. doi:10.1002/j.1538-7305.1985.tb00439.x.
J.-Y. Kao, N. Rampersad, and J. Shallit. On NFAs where all states are final, initial, or both.
Theoretical Computer Science, 410(47):5010-5021, 2009. doi:10.1016/j.tcs.2009.07.049.
S. Kiefer, A.S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Language equivalence
for probabilistic automata. In Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV), volume 6806 of LNCS, pages 526-540. Springer, 2011.

S. Kiefer and A.P. Sistla. Distinguishing hidden Markov chains. In Proceedings of the 31st
Annual Symposium on Logic in Computer Science (LICS), pages 66-75, New York, USA, 2016.
ACM.

A. Krogh, B. Larsson, G. von Heijne, and E.L.L. Sonnhammer. Predicting transmembrane
protein topology with a hidden Markov model: Application to complete genomes. Journal of
Molecular Biology, 305(3):567-580, 2001.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In Proceedings of Computer Aided Verification (CAV), volume 6806 of LNCS, pages
585-591. Springer, 2011.

R. Langrock, B. Swihart, B. Caffo, N. Punjabi, and C. Crainiceanu. Combining hidden Markov
models for comparing the dynamics of multiple sleep electroencephalograms. Statistics in
medicine, 32, August 2013. doi:10.1002/sim.5747.

A. Paz. Introduction to Probabilistic Automata (Computer Science and Applied Mathematics).
Academic Press, Inc., Orlando, FL, USA, 1971.

V.Yu. Protasov. Asymptotics of products of nonnegative random matrices. Functional Analysis
and Its Applications, 47:138-147, 2013.

V.Yu. Protasov and R.M. Jungers. Lower and upper bounds for the largest Lyapunov
exponent of matrices. Linear Algebra and its Applications, 438(11):4448-4468, 2013. doi:
10.1016/j.1aa.2013.01.027.

L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

M.P. Schiitzenberger. On the definition of a family of automata. Information and Control,
4(2):245-270, 1961.

D. Sutter, O. Fawzi, and R. Renner. Bounds on Lyapunov exponents via entropy accumula-
tion. IEEE Transactions on Information Theory, 67(1):10-24, 2021. doi:10.1109/TIT.2020.
3026959.

W.-G. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM J. Comput., 21(2):216-227, April 1992.

A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics,
16(2):117-186, 1945. doi:10.1214/aoms/1177731118.

A. Wald and J. Wolfowitz. Optimum character of the sequential probability ratio test. The
Annals of Mathematical Statistics, 19(3):326-339, 1948. URL: http://www. jstor.org/stable/
2235638.

https://doi.org/10.1002/j.1538-7305.1985.tb00439.x
https://doi.org/10.1016/j.tcs.2009.07.049
https://doi.org/10.1002/sim.5747
https://doi.org/10.1016/j.laa.2013.01.027
https://doi.org/10.1016/j.laa.2013.01.027
https://doi.org/10.1109/TIT.2020.3026959
https://doi.org/10.1109/TIT.2020.3026959
https://doi.org/10.1214/aoms/1177731118
http://www.jstor.org/stable/2235638
http://www.jstor.org/stable/2235638

Parameter Synthesis for Parametric Probabilistic
Dynamical Systems and Prefix-Independent

Specifications
Christel Baier

Technische Universitdt Dresden, Germany

Simon Jantsch
Technische Universitiat Dresden, Germany

Engel Lefaucheux
University of Lorraine, CNRS, Inria,
LORIA, Nancy, France

David Purser
University of Warsaw, Poland

Florian Funke

Technische Universitat Dresden, Germany

Toghrul Karimov

Max Planck Institute for Software Systems,
Saarland Informatics Campus,
Saarbriicken, Germany

Joél Ouaknine!

Max Planck Institute for Software Systems,
Saarland Informatics Campus,
Saarbriicken, Germany

Markus A. Whiteland

University of Liege, Belgium

James Worrell
Department of Computer Science,
University of Oxford, UK

—— Abstract

We consider the model-checking problem for parametric probabilistic dynamical systems, formalised

as Markov chains with parametric transition functions, analysed under the distribution-transformer
semantics (in which a Markov chain induces a sequence of distributions over states).

We examine the problem of synthesising the set of parameter valuations of a parametric Markov
chain such that the orbits of induced state distributions satisfy a prefix-independent w-regular
property.

Our main result establishes that in all non-degenerate instances, the feasible set of parameters is
(up to a null set) semialgebraic, and can moreover be computed (in polynomial time assuming that
the ambient dimension, corresponding to the number of states of the Markov chain, is fixed).

2012 ACM Subject Classification Theory of computation — Logic and verification

Keywords and phrases Model checking, parametric Markov chains, distribution transformer semantics
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.10

Funding This work was funded by DFG grant 389792660 as part of TRR 248 — CPEC (see

perspicuous-computing.science).

1 Introduction

The algorithmic analysis of Markov chains, in particular by means of model checking, is a
central topic in probabilistic verification [7]. It is in fact fairly common to consider parametric
Markov chains (PMCs), in which probabilities are given not as explicit numbers but rather
as functions of certain parameters. One is then interested in the set of parameters giving rise
to a Markov chain that meets a certain specification.

Markov chains are typically analysed under one of two standard semantics: the path
semantics considers the set of all possible control-state trajectories, weighted by relevant
probabilities, whereas the distribution-transformer semantics views the Markov chain as a

1 Also affiliated with Keble College, Oxford as emmy.network Fellow.

© Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joél Ouaknine,
B David Purser, Markus A. Whiteland, and James Worrell;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 10; pp. 10:1-10:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5321-9343
https://orcid.org/0000-0001-7301-1550
https://orcid.org/0000-0003-1692-2408
https://orcid.org/0000-0002-9405-2332
https://orcid.org/0000-0003-0875-300X
https://orcid.org/0000-0003-0031-9356
https://orcid.org/0000-0003-0394-1634
https://orcid.org/0000-0002-6006-9902
https://orcid.org/0000-0001-8151-2443
https://doi.org/10.4230/LIPIcs.CONCUR.2022.10
https://perspicuous-computing.science
http://emmy.network/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Parameter Synthesis for Parametric Probabilistic Dynamical Systems

single sequence of distributions over control states; this sequence is the orbit of the initial
distribution under the repeated application of the underlying stochastic linear transformation.
In this paper we focus exclusively on the second modelling paradigm, viewing Markov chains
as special instances of linear dynamical systems (LDS). We consider parametric Markov
chains, in which probabilities are given by rational functions over a set of parameters. Such
parameters might account for uncertainties in the environment or in the exact values of the
probabilities at hand, etc. Given a particular specification, we are interested in computing
the set of all parameter valuations such that the resulting concrete Markov chains meets the
specification. More precisely: Given a parametric Markov chain M over set of parameters
X, i.e., a (parametric) matric M and initial distribution 7 (see Definition 3), as well as
a specification o, compute the set of parameter instantiations p € RX for which the orbit
(m- M[p]™")n>0 of M satisfies ¢.

Our properties are specified with respect to the characteristic word of a Markov chain,
which describes the orbit of the Markov chain relative to a set of targets. Given a Markov
chain (Q, M, 7) and a partition of the space [0,1]9 = Ty U --- U T}, the characteristic word
is the infinite word w € {1,...,k}* such that w; = j if and only if 7 - M* € T;. For a
parametric Markov chain, each admissible valuation of the parameters p € R¥ induces a
concrete characteristic word wp]. In this case we call w : RX — {1,... K} the parametric
characteristic word of the parametric Markov chain.

The model-checking problem asks, given a specification ¢ over {1,...,k} (typically
specified in LTL, MSO, or simply as an automaton), whether the characteristic word w
satisfies ¢, denoted by w |= ¢. In the parametric setting, we are interested in the set of
parameters D, = {p € R¥ | wlp] = p}.

We consider w-regular prefiz-independent specifications, i.e., (intuitively speaking) prop-
erties that are invariant under finitely many changes to w (see Section 2.4 for the formal
definition). The Ultimate Positivity Problem [22] is an example of a prefix-independent
property: it asks whether the orbit is eventually trapped inside a certain target (chosen to be
the region where a particular quantity is always positive). Other examples include repeatedly
revisiting a target, since such a property only depends on any infinite suffix of w, regardless
of the initial prefix. On the other hand, reachability is not a prefix-independent property.
Note that LTL properties starting with “eventually always” or “always eventually” define
prefix-independent properties (see [4]), although we do not limit ourselves to LTL properties.

Consider a parametric Markov chain with parametric characteristic word w and a prefix-
independent specification ¢. The set D, = {p € R | w[p] = ¢} of feasible parameters
can be a highly complex object. Nevertheless, one of our main results is that, assuming
the specification is non-degenerate (a fairly mild technical condition), D, differs from a
semialgebraic set by a null set (a set of Lebesgue measure zero), and moreover we can
compute this semialgebraic set (in polynomial time assuming that the ambient dimension,
corresponding to the number of states of the Markov chain, is fixed). More precisely, we
show how to synthesise a semialgebraic set D’ contained in the full set of feasible parameters
such that Dy = D, \ D’ is a null set.

Before going into the details of our construction, we show that the restriction to prefix-
independent specifications is indeed necessary. Dropping it may lead to situations in which
the set of feasible parameters is not semialgebraic, even up to a null set, as the following
example shows.

» Example 1 (A prefix-dependent property). Consider the parametric Markov chain depicted
in Figure la, with the single parameter p. Let us denote by (I,r, s) a distribution over @,
with [, r, s denoting the probability in states g1, qgr, gs respectively. Consider the following

C. Baier et al.
S
0.1p ClqL
1-p
& & gs
o o
r
1-p
0.1p 4R m=(1,0,0)

(a) Parametric Markov chain with parameter p. (b) The partition of Dist(Q) into B, L, R, O.

O R

L | R,LR
T T

[T T
T

I
I
p=0 p=0.5 p=1

(c) Satisfying parameters (green), denoting whether
7 - M[p]™ first hits L, R, or O after B.

Figure 1 A Markov chain, a partition, and the parameter satisfying the prefix-dependent property
B until L.

partition of Dist(Q) (the set of probability distributions over @) into the sets B, L, R, O,
defined by: B = {(I,r,s) | s <0.5},0 = {(l,r,s) | s > 09}, L ={(l,r,s) | I > rand 0.5 <
s <09} R={(rs)]|05<s<0.9andr > 1} (see Figure 1b). Observe that the limit
distribution of the Markov chain is equal to (0,0, 1) for every concrete parameter p € (0,1),
which is in O but not in the boundary between any of the sets B, L, R, O.

Define the LTL formula ¢ = B U L. It requires that the orbit should be in B until L is
reached. Let the initial distribution be = = (1,0,0), which means that the orbit starts in B.
At each step some probability “moves” to the state qg, and therefore from some point on
the orbit reaches L, R or O. We are interested in the parameter values p for which the first
region reached after B is L in the characteristic word w]p].

For n > 0, let I(n),r(n), s(n) denote the probability of being at state qr,, gr, qs, respect-
ively, after step n. First observe that s(n) = 1 — p™. Therefore, for each n > 0 there exists a
non-empty interval P, of parameters p such that the predicate s(n) € (0.5,0.9) is satisfied
for the first time at step n in w(p]. Observe that P; and P; are disjoint and disconnected for
i # j. Next, observe that for every value of p, I(n) > r(n) is satisfied precisely if n is even.
And for all n there is a continuous region in [0, 1] such that 1 — p™ < 0.5.

From the preceding arguments we then see that the set of all parameters that satisfy ¢ is
precisely [J;cn P2i- These regions are depicted in Figure 1c. However, a semialgebraic set
can always be represented as a finite union of connected components?. But D, = Uien Pei
has infinitely many disconnected components with positive measure. This shows that no
semialgebraic set D’ exists which has the same measure as D, and such that for all p € D’
we have w(p] = ¢.

2 If S is a semialgebraic set, C' C S is connected if for every z,y € C, intuitively, z can reach y without
leaving C'. Formally, there exists a continuous semialgebraic function f : [0,1] — S such that f(0) =z
and f(1) =y [8, Section 3.2].

10:3

CONCUR 2022

10:4

Parameter Synthesis for Parametric Probabilistic Dynamical Systems

G oOp

D
S
qo | |
— —
1-p
42 D 2p
7= (1,0,0)

Figure 2 Example Parametric Markov chain with parameter p.

In Appendix A we give a second example, which shows that reachability properties also do
not have semialgebraic feasibility sets (up to a null set).

Let us consider another example, highlighting how we can use the limit distribution of an
aperiodic Markov chain to decide prefix-independent properties.

» Example 2 (Ultimate Positivity). Consider the parametric Markov chain, depicted in
Figure 2, with a single parameter p. The system represented by the diagram is a Markov
chain for p € [0,0.5] and has constant structure for all for p € (0,0.5) (that is, each edge
either exists for all p in the interval, or for none).

Consider the property that the probability distribution in states ¢; is eventually above
0.4 and g2 is eventually above 0.55. We are interested in the set of parameters D = {p €
[0,0.5] | 3N € NVn > N. 7 - M[p]™ > (0,0.4,0.55)}.

The limit distribution of the Markov chain is (0, %, 21_;31;). Hence D, up to a null set,
corresponds to the interval (0,0.5)N{p | é:gi > 040 {p | é:gg > 0.55} = (%, i) Moreover

2 1

all parameters in the interval (13,) satisfy the property.

1.1 Related work

The papers [18, 19] introduce the logic iLTL to specify LTL-definable properties of the
orbit of a Markov chain, where atomic propositions correspond to half-spaces. The authors
devise a model-checking procedure which assumes that the Markov chain is aperiodic and
diagonalisable, and that the unique limit distribution, which exists due to the aperiodicity
condition, does not lie on the boundary of any of the half-spaces used to define the property.
The paper [19] also presents case studies in the areas of software reliability and medicine.
Our work extends these previous works in three directions: we consider parametric Markov
chains, we allow the Markov chains to be periodic, and we allow semialgebraic sets as atomic
propositions. Due to new difficulties that arise in the parametric setting we do not cover full
LTL, rather we handle arbitrary prefix-independent w-regular properties.

Agrawal et al. [1] consider the model-checking problem of Markov chains under the
distribution-transformer semantics, where the target sets are specified as intervals on each
component. They also remark that full w-regular model checking will not be possible in
general, and instead they consider whether an approximation of the trajectory satisfies a

property.

C. Baier et al. 10:5

In [17], a related problem for Markov decision processes (MDPs) is studied. The orbit of
an MDP is not fixed but depends on the scheduler, and this additional feature often leads to
undecidability. Several restrictions on schedulers and specifications are studied [17] under
which decidability can be achieved. [10] considers a restriction on the MDP.

Markov chains under the distribution-transformer semantics are a special case of LDS.
Presumably one is interested in expressive specifications, e.g., those that are specifiable in
LTL or MSO. Unfortunately, even simple reachability queries for LDS are known to be
extremely challenging [11], and the attendant hardness propagates to Markovian dynamical
systems as well [2].

Baier et al. [5] showed that parametric point-to-point reachability, which asks whether
there exist parameter choices under which a given state distribution is reachable, is decidable
only for a single parameter, and Skolem-hard for two or more parameters. The problem is
well-known to be decidable in polynomial time for LDS [16] (and thus for non-parametric
Markov chains). We circumvent this limitation, allowing us to consider an arbitrary number
of parameters, by synthesising, up to a null set, the set of parameter choices for which an
arbitrary prefix-independent property holds (rather than reachability of a single point target).

Model checking prefix-independent properties on diagonalisable LDS is decidable [3]
(see also [22] for Ultimate Positivity specifically). However, in general, the decidability
status of the Ultimate Positivity Problem is a major open question — in fact, decidability of
Ultimate Positivity for LDS of dimension 6 would entail major breakthroughs in number
theory as it would solve certain longstanding open problems in Diophantine approximation
of transcendental numbers that are widely believed to be hard [21].

Typically, only very few border cases are particularly difficult, and thus in the parametric
setting such border cases amount to a null set which we can exclude. This is the case for all
but degenerate instances in which all of the parameter valuations lead to such hard border
cases. It is therefore necessary to impose a technical restriction on the expressible targets in
order to exclude these degenerate instances.

The problem of model checking parametric Markov chains with respect to the standard
trace semantics has been considered extensively [12, 20, 14, 6, 13]. In this setting one can
express properties such as “the set of traces reaching a certain state has probability above
A7, which can be described using standard logics such as PCTL [15, 7]. This semantics does
not allow specifying properties such as “the probability of being in state s; is eventually
larger than the probability of being in state s3”, which can be expressed by the properties
we consider.

2 Preliminaries

2.1 Parametric Markov chains

Given a set of variables X, we denote the field of rational functions over X with base field Q
by Q(X). We denote the set of all probability distributions over @ by Dist(Q).

» Definition 3. A parametric Markov chain (PMC) is a tuple M = (Q, X, M,), where
Q is a finite set of states;
X is a finite set of variables, here typically called parameters;
M € Q(X)9*9 is the parametrised transition matrix;
m € Dist(Q) is an initial distribution.

Given a concrete instantiation p € R¥ of the parameters X, we denote by M|p] € R@*?
the matrix Mp]ss = M .(p), provided that M, ,(p) is defined for every s,t € Q. That is,
M]p] is the concrete transition function obtained by replacing in M every occurrence of a

CONCUR 2022

10:6

Parameter Synthesis for Parametric Probabilistic Dynamical Systems

parameter v € X by the value assigned to v in p. We call p € RX admissible if M|p] is a
probabilistic transition function, i.e., 0 < M[pls, < 1forall s,t € Q, and > ;.o M[pls: =1
for all s € Q. The Markov chain induced by the parameter value p will be denoted by
M(p] = (Q, M[p],n). Finally, we remark that parametrised initial distributions can be
encoded in our framework by adding a single state to the Markov chain that is visited only
once at the beginning. The probabilities associated with the outgoing edges of the new start
state are then used to simulate the parametrised initial probabilities.

2.2 The topological structure of a PMC

Throughout the paper we will use structural arguments about the underlying graph (or
topological structure) of a Markov chain (@, M, m), which is defined as (@, {(s,t) | M5 > 0}).
For a parametric Markov chain (Q, X, M,) we consider the main structure (Q,{(s,t) |
Ip . M[pls: # 0}). That is, we only keep the entries of M that are not identically zero. We
will show that the main structure matches the structure of M|[p] almost everywhere (that is,
everywhere except possibly on a set with null measure). This means that w.l.o.g. we can
assume that the given PMC has a constant topological structure. We begin by recalling
a well-known fact which is immediate from the observation that a non-zero polynomial is
non-zero almost everywhere (see, e.g., [9]).

» Lemma 4. Any non-zero rational function f € Q(X) is almost everywhere defined and
non-zero.

» Lemma 5 (Constant topological structure). Let D C RX be the set of parameters defined as
D = {p | p is admissible and M[p] has the main structure}. Then RX \ D has null measure.

Proof. Observe that

RX\ D= U {p | My is not well-defined at p} U
S,teQ
U {p| the structure of M[p] differs from the main structure at (s,t)}
s,teQ

which is a finite union of sets of measure zero. Hence RX \ D also has a null measure. <«

Henceforth we define D to be the set described above.

We recall some basic structural notions about Markov chains. These descriptions also
apply to the main structure of a parametric Markov chain. We say a collection of states
C C @ is strongly connected if there is a path from any state to another in the restriction of
the underlying graph of M to C. We only refer to (maximally) strongly connected components
(SCCs), that is, SCCs for which there does not exists s € @ such that CU {s} is also strongly
connected. A singleton state with no self loops and no other path to itself is considered its
own SCC. Given an SCC C, its period is the greatest common divisor of the lengths of cycles
in C. A SCC is called aperiodic if its period is 1, and otherwise it is called periodic. We say
that a SCC C is a bottom SCC, or recurrent, if for all s € C, My =0 for all ' € Q \ C.
That is, no probability is lost from C. If C is not recurrent, it is called transient.

A Markov chain is aperiodic if all of its SCCs are aperiodic (and otherwise periodic) and
recurrent if all its SCCs are recurrent. If the Markov chain consists of only one recurrent SCC
then the Markov chain is said to be irreducible. As these properties are structural, depending
only on the matrix M of M = (Q, X, M, r), we may say M is aperiodic or irreducible.

C. Baier et al.

2.3 Semialgebraic targets

A set T C R? is semialgebraic if it is a finite Boolean combination of sets specified by a
polynomial inequality. That is, 7" can be obtained from sets of the form {x € R? | f(x) a0}
for some <1 € {>, <, >, <, =} using finitely many union and intersection operations. In fact,
without loss of generality we can assume the sets to be of the form {x € R? | f(z) > 0}
for > € {>,>}. Written in disjunctive normal form, with A corresponding to N and V
corresponding to U, we can write 1" as Ule ﬂé;l {z € R?| fi;(x) >;; 0}. Note that many
restricted classes of target sets, such as singleton points and Boolean combinations of linear
inequalities (e.g., polyhedra, halfspaces, and cones) are all examples of semialgebraic sets.

We will be considering the semialgebraic targets 71, ..., 7T} within the universe of U =
Dist(Q) € R¥, which will be endowed with the subspace topology with respect to the usual
Euclidean topology on R?. In this topology, a vector (i.e., a probability distribution) z is
in the interior T° of a target T if and only if there exists € > 0 such that B.(z)NU C T,
where B, (z) is the e-ball around z in R?. We will be particularly interested in points on the
boundary of T'. The boundary of T', denoted 0T, is the set of all limit points of 7" in U that
are not in the interior of 7. That is, 9T = T \ T°, where T is the closure of T in U.

We denote by vol(D) the Lebesgue measure of a measurable set D C RX. Recalling that
a vector v lies on the boundary of T if v € 9T, we say that a parametrised vector (v[p])pen
is contained within the boundary of T' if v[p] € 9T for all p € D. Given a parametrised
vector, we will often be interested in the quantity vol({p € D | v[p] € 9T'}).

2.4 Prefix-independent model checking

Let {T4,...,T:} be a partition of the ambient space Dist(Q) and ¥ = {1,...,k}. Recall that
properties over the predicates T1, ..., Ty are modelled by the subsets of ¥“. An w-regular
property P is prefiz-independent if for every infinite word w and every finite word u acting
as a prefix, w € P <= wuw € P. For such a property P it holds that for every w,w’ € ¥
that can be obtained from one another through finitely many insertions and deletions,
weEP < weP3

Given a property ¢ over X, we say a Markov chain M satisfies ¢, denoted M = ¢,
when the characteristic word of the Markov chain with respect to the targets Ti,..., Tk
satisfies . In this paper we assume the property to be given as an w-automaton (e.g., a
non-deterministic Biichi automaton) over . Then, one can check whether a given ultimately
periodic word is accepted by such an automaton. This is done by checking non-emptiness on
the automaton built by the product construction on the given automaton and an automaton
for the ultimately periodic word. Properties given in other specification languages such
as LTL or MSO can be handled by first creating an equivalent non-deterministic Biichi
automaton, provided that the input property is prefix-independent.

2.5 Problems: synthesising parameters

First, we consider the set of parameters such that the sequence of distributions of the resulting
Markov chain is ultimately trapped inside one of the target sets (“the positive set”). This
is the parametric analogue of the well-known Ultimate Positivity Problem [22] (with the
halfspace generalised to arbitrary semialgebraic set). Formally, we consider the following
problem:

3 To see this, consider the common suffix v such that w = wv and w’ = uw'v and then observe that
weEP < vEP < uveEP.

10:7

CONCUR 2022

10:8

Parameter Synthesis for Parametric Probabilistic Dynamical Systems

» Problem 6 (Ultimate Positivity on PMCs). Given a PMC M = (Q,X,M,7) and a
semialgebraic set T C Dist(Q), and letting D C R be the set of admissible parameter
instantiations that give rise to the main structure, synthesise the set of feasible parameters
{peD| INeNVn>N.7-Mp|" € T}.

Since the set of parameters could give rise to concrete instances which are hard, we do not
synthesise the full set of feasible parameters exactly, but rather compute a semialgebraic subset
that differs from the full set by a null set. In particular all of the parameter valuations in the
set we compute give rise to an ultimately positive instance. If the computed semialgebraic
set is non-empty, one can be sure that there does exist a parameter choice satisfying the
property, and that such a parameter valuation can be computed. However, if the set is empty,
then one cannot be sure that there does not exists a choice; but in this case one would know
that even if there is such a parameter choice, there are “not too many choices”.

In Theorem 9 of Section 3 we compute this set for aperiodic recurrent finite-state
parametric Markov chains, before generalising the result to periodic Markov chains in
Theorem 13 in Section 4.

Being ultimately trapped inside a semialgebraic set is a prefix-independent property.
Next, we generalise the problem to any prefix-independent property.

» Problem 7 (Prefix-independent model checking on PMCs). Given

a PMC M = (Q,X, M,),

semialgebraic sets Ty, ..., Ty which form a partition of Dist(Q), and

a prefiz-independent property ¢ over Ty, ..., Ty,
and letting D C RX be the set of admissible parameter instantiations that give rise to
the main structure, synthesise the set of the feasible parameters, i.e., those satisfying p:

{peD| M|}

In Theorem 15 of Section 5 we compute a semialgebraic subset of the feasible parameters
differing up to a null set for the prefix-independent model checking problem.

3 Synthesising satisfying parameters for Ultimate Positivity in
aperiodic and irreducible PMCs

Let M = (Q, X, M, 7) be an aperiodic and irreducible Markov chain. It is well-known that
any such Markov chain has a unique stationary distribution and that this distribution is also
the unique limit distribution. In our case this means that for every choice of parameters
p € D there is a unique probability distribution p[p] € Dist(Q) such that plp] - M[p] = p[p].
The fact that M is irreducible implies that p[p] will be strictly positive in each entry. The
following lemma assures that this distribution is also a rational function in X and can be
effectively computed.

» Lemma 8. Given an aperiodic and irreducible PMC M = (Q, X, M,x), let D C R¥ be
the set of admissible parameters leading to the main structure of M. There exists a unique
parametric limit distribution p € Q(X)? such that lim,, . 7 - M[p]™ = u[p] for all p € D.
Furthermore, p can be effectively computed.

Proof. The stationary distribution u : D — Dist(Q) is the unique solution of the linear
equation system p[p] - M[p] = u[p] in probability distributions. Hence p can be computed by
performing Gaussian elimination on the system pu[p]- M[p] = p[p] followed by a normalisation
step. This shows that every entry u[p]s of p[p] is a rational function in p. <

C. Baier et al.

We now establish the main theorem of our paper, showing how to compute a semialgebraic
set of parameters which, up to a null set, equals the set of admissible parameters satisfying
Ultimate Positivity. Our approach relies on the assumption that the volume of limit
distributions lying on the boundary of a target T is null, that is, vol({p € D | p[p] € 0T}) = 0.
We say that an instance of Problem 6 is degenerate if vol({p € D | u[p] € 0T}) > 0. If one
considers only half-spaces as target sets, our requirement of non-degeneracy corresponds
exactly to the third condition of [19, Theorem 1], which tackles the corresponding model-
checking question for non-parametric Markov chains.

To see why such an assumption is strictly needed we show that, without this assumption,
Problem 6 is as hard as ultimate positivity. That is, one would need to answer potentially
intractable instances of the Ultimate Positivity Problem. Consider the following scenario.
There is a single parameter p and all of its instantiations lead to the same non-parametric
Markov chain M. For any Markov chain M, such a parametric Markov chain M|[p] can
easily be constructed. Recall that the Ultimate Positivity Problem for stochastic matrices
asks whether there exists N such that for all n > N, it holds that (7 - M™), > 1/2, for a
given stochastic matrix M, an initial vector m and a state s [2]. Ultimate Positivity Problem
for stochastic matrices can be easily expressed as an Ultimate Positivity Problem for PMCs
(Problem 6). Then, the answer to the non-parametric Ultimate Positivity instance is yes if
and only if the measure of parameters satisfying the formula is 1 (and in case the answer is
no, the computed semialgebraic set will be empty, having measure zero). The decidability
status of the Ultimate Positivity Problem is a major open question. However, it is solvable if
the limit distribution of M in state s is not zero. Our non-degeneracy assumption essentially
excludes the currently intractable cases of this problem.

» Theorem 9. Consider a non-degenerate instance of Problem 6, in which the following are
given:
an aperiodic and irreducible PMC M = (Q, X, M,), for which D C RX is the semial-
gebraic set of admissible parameter values that give rise to the main structure,
the parametric limit distribution pu € Q(X)? such that lim, o 7 - M[p]™ = plp] for all
pe D, and
a semialgebraic set T = Ule ﬂéf:l {z € Dist(Q) | fij(z)>i; O}, for which vol({p € D |
ulp) € 0T'}) = 0.
Then a semialgebraic set DY, contained in Dy = {p € D | AN € NVn > N. 7 - M[p|” € T}
but differing from Dr only by a null set, can be effectively computed.

Proof. Since for all p € D, we have lim, . M [p]" = p[p] then for all p € D such that
w[p] € T° it holds that there exists N such that for all n > N, #M|[p]™ € T. Clearly,
if p € D is such that ulp] ¢ T, then the sequence of distributions of M|p] is eventually
outside of T'. Tt remains to consider the case where u[p] € OT. Since by our assumption
vol({p € D | u[p] € 9T}) = 0 it holds that Dy differs from D7 = {p € D | p[p] € T°} by
only a null set. Therefore it suffices to show how to compute a representation for D..

The set D/, is a semialgebraic set, for which an implicit representation in the first
order theory of the reals can be found in polynomial time. To see this, observe that
D ={peRX |peDATJy.y=ulp] Ay € T°}, with also D semialgebraic. The set T°
is itself a semialgebraic set, which can easily be seen by specification in the theory of the
realsas {x € U | Je >0 .Vz €U, |z—2| <e = z €T} (recall from Section 2.3 that
U = Dist(Q) is the universe of probability distributions over Q). Finally, z € T can be
expressed in the theory of the reals by asserting that \/f:1 /\él fij(x) >i; 0 where f; ;>;; 0
are the polynomial inequalities defining 7. This concludes the proof in case one is satisfied

10:9

CONCUR 2022

10:10

Parameter Synthesis for Parametric Probabilistic Dynamical Systems

with the set D/, represented in the first order theory of the reals. In case an explicit form
is required, quantifier elimination can be used to compute D/, as boolean combination of
polynomial inequalities, i.e., of the form {z € R¥ | A, V; 9ij(x) >i; 0} [23, Theorem 1.2]. <

» Remark 10. Since the Lebesgue measure is complete (i.e., every subset of a null set is
measurable), it follows from the second part of Theorem 9 that the set Dr is Lebesgue
measurable and hence Problem 6 is well-defined.

» Remark 11. Observe that it is decidable whether the instance is degenerate. This amounts
to asking whether vol({p € D | u[p] € 9T'}) = 0, which is the case if and only if the interior
of the set is empty. The set Dor = {p € D | u[p] € 0T} is semialgebraic, thus the interior
D3 is also semialgebraic, for which one can test emptiness.

Secondly, we note that degenerate instances are somewhat unlikely. Recall the limit
distribution is a rational function. Should the limit distribution coincide with the boundary
of T for a positive volume of points then the function must essentially correspond with one of
the polynomials defining a boundary of T'. If the difference is zero with positive measure then
by Lemma 4 the difference is the zero function, and we conclude that they must be the same
function. This would seem to indicate that the target had been constructed adversarially
with a priori knowledge of the limit distribution.

3.1 Complexity

Together Lemma 8 (which shows how to compute p using Gaussian elimination) and The-
orem 9 produce, up to a null set, the set of parameters of M satisfying ultimate positivity
for a target T in the case that M is an irreducible and aperiodic PMC. We now consider the
complexity of this reduction.

In general, the number of terms of a rational functions one gets from applying Gaussian
elimination over the field of rational functions may become exponential. However, for a
fixed number of parameters the parametrised stationary distribution p (from Lemma 8)
can be computed in polynomial time using fraction-free Gaussian elimination [6] (thus the
representation of p needs at most polynomial space).

It is then straightforward to see that the implicit representation, given as a sentence
in the first order theory of the reals, can be found in polynomial time. We consider the
complexity of computing the explicit representation in the following lemma and observe that
this is polynomial time for fixed Markov chains M.

» Lemma 12. The explicit representation of D7 can be found in time p(x)o(|XHQ|2), where
p is a polynomial in the size of the inputs M = (Q, X, M, x), u, and T (represented by x).

Proof. Consider an implicit description of a semialgebraic set given by a sentence in the theory
of the reals of the form {y € R’ | Q121 € R™ ...Q,z, € R™P(B(y,7),..., Bn(y,z))},
where Q; # Q11 are quantifiers in {3,V}, P is a Boolean formula in m variables and
the B;’s are polynomial inequalities of degree at most d in variables from x1,...,z, and
integer coefficients of bit-size at most L. Define K = ZH::1 n, and Ko = 0 + Z:Zl Ng-
By Theorem 1.2 of L23] the explicit description can be found from the implicit description
using Lo(l)(md)Qo(w
formula P.

K1 many arithmetic operations and (md)%? evaluations of the Boolean

The formula described in Theorem 9 implicitly uses inequalities on rational functions,
with rational coefficients. Observe that this can be converted to polynomial inequalities
with integer coefficients, e.g., f(z)/g(x) >0 <= g(x) # 0 A f(x)g(x) > 0. Then, rational
coefficients can be removed by multiplying through by the lem of denominators.

C. Baier et al.

In the proof of Theorem 9, the implicit representation of D/ is constructed in polynomial
time by suitably describing the set in the first order theory of the reals, in time polynomial
in the sizes of M,y and T. Let g(x) be such a polynomial. We observe that the resulting
representation has bounded quantifier alternation. In particular, composing the descriptions
of Dy and T° into a single formula, the description has free parameters p € D (thus £ = |X]|)
and quantification of the form Jy € Dist(Q),e > 0,Vz € Dist(Q) followed by a Boolean
combination of polynomial inequalities. Hence, there are two blocks of quantifiers (w = 2),
of size ny = |Q| + 1 and ny = |Q|. The degree d of the polynomials and the number of such
polynomial inequalities m are polynomial in the same parameters to describe T and pu. Let
u(zx) be such a polynomial.

Since |P] is at most ¢(x), the Boolean formula can be evaluated in linear time, i.e., ¢(x).

Thus the conversion to explicit representation using the procedure of Renegar thus takes
O(u(z)°X11@P) g(2)) many operations. But O(u(z)°XN1Q"g(2)) = O(p(x)°IXIIQP) for
some larger polynomial p(x) (assuming |X| # 0 and |@| # 0), which concludes the proof. <

Recall that when | X]| is fixed then p can be computed in time polynomial in M, then the
size of x is itself polynomial. Further, when the size of |Q]| is fixed, then the procedure is
polynomial time in the size of M and T and polynomial in T’ when M is fixed (the parametric
Markov chain may be considered fixed when the chain is given but the problem needs to be
considered for several possible targets).

4 The limit distribution of periodic Markov chains with transient
states

We have observed that we can compute the parametric stationary distribution for aperiodic
and irreducible PMCs. Next, we show how to drop both of these restrictions by handling
periodicity and transient states.

4.1 Managing periodicity

We observe that we can assume that the matrix is aperiodic for all parameters by considering
subsequences. Recall that we can assume that the topological structure of M = (Q, X, M,)
is constant. When a Markov chain is periodic with period H we have that M is aperiodic.
We consider H many parametric Markov chains M"® = (Q, X, M™ « - M[p|") for each
h € {0,..., H —1}, each leading to the parametric orbit (- M [p]"(M [p]*)"),,. Each Markov
chain M has the same aperiodic update matrix M [p]” but a different starting point
7 - M[p]". For reachability questions, we can simply analyse each subsequence independently,
although we must suitably interleave the results if considering more general properties.

4.2 Managing transient states

Secondly, we consider transient states, that is, the states outside of a bottom strongly
connected component. Let us assume M = (Q, X, M, n) is an aperiodic Markov chain.
We know from the standard literature that the limit probability for any transient state is
zero. However, we must decide how much of the total weight which started in a transient
state ultimately reaches each of the bottom strongly connected components and weight the
respective stationary distributions accordingly.

We are interested in the absorption probability of each bottom SCC. We consider a new
(parametric) Markov chain (Q', X, N,) where each BSCC C is reduced to a single, aperiodic,
absorbing state gc. Let B = {b¢ | C is a bottom SCC.}, F' = {¢q € Q | ¢ is transient} and

10:11

CONCUR 2022

10:12

Parameter Synthesis for Parametric Probabilistic Dynamical Systems

Q' = F U B, the set of transient states and the new representative bottom states. Let
N € Q(X)9*Q" be defined such that N, , = M, 4 if q,¢ are in F, N, . = dogee Mo
Nbc,bc =1 and Nbc,q’ =0if q’ 75 bc.

We compute absorbing probabilities a € Q(X)QIXB7 where a4, is the probability of
reaching bottom state bc starting in state q. Note that this is parametric in variables X.
To compute a, we solve the linear equation system, where for each b € B we require
that ap, b, = 1 (every bottom SCC is absorbing), agzp. = 0 if ¢ cannot reach be, and
Agbe = D yer Na,gaq pe if ¢ can reach be.

We can also compute the limit distribution u€ for each bottom strongly connected
component C in isolation, this is the stationary distribution as computed in Lemma 8. We can
then reweight these stationary distributions according to the probability which reaches each
bottom SCC using the absorbing probabilities. For a bottom strongly connected component
C, the limit distribution of state s € C, is {[p]s = (3_,cq TqalPlg,be + 2 4ec 74) 1 [p)s, when
the initial distribution is 7. For states not in any bottom strongly connected component,
s € F, we have ¢[p]s = 0. Note that ¢ is also a rational function, since it is simply the product
and sums of functions found by Gaussian elimination.

4.3 Managing periodic Markov chains with transient states

We now induce a limit distribution for each of the H aperiodic Markov chains (M) 1

found in Section 4.1. For each such chain, the matrix is M[p]¥, and we assume the stationary
distributions ;€ for each bottom SCC C (this does not depend on h). However, we must
consider the limit distribution for each of the H starting points we consider. That is the
initial distribution is 7 - M[p]" for each h € {0,...,H — 1}. Thus for each subsequence,
distinguished by h, we can compute a unique limit distribution, where

Ol = | 3 - Mpl)galplose + S (- M), | 1€lple for s € €, and

qeQ’ qeC

(M pls =0 for s transient,

such that lim,, o (M [p]™)" (7 - M[p]") = ¢M[p] for all p € D.

4.4 Ultimate Positivity in the general case

Using the limit distribution established in this section, we now complete the proof of ultimate
Positivity for periodic Markov chains with transient states.

» Theorem 13. Consider a non-degenerate instance of Problem 6, in which the following
are given:
M = (Q, X, M,n) is a PMC with period H, for which D C RX is the semialgebraic set
of admissible parameter values that give rise to the main structure,
H parametric limit distributions (") € Q(X) for h € {0,...,H — 1} such that
lim,, 00 (M [p]™)* (7 - M[p]") = ¢M[p] for all p € D.
a semialgebraic set T = Ule ﬂéle {z € Dist(Q) | fij(x)>;; 0}, such that, for all limit
distributions (¢M)=!, we have vol({p € D | tM[p] € 6T}) = 0.
Then a semialgebraic set Dy, contained in Dy ={p€ D | AN e NVn > N. 7w - M[p|" € T}
but differing from Dp only by a null set, can be effectively computed.

C. Baier et al.

Proof. Ultimate Positivity requires that 3N € N.Vn > N.xr - M[p|® € T. Since we have
split the orbit into H subsequences, we require that all of these subsequences eventually
enter and remain inside T. That is there exists N € N such that for all h € {0,...,H}
and all n > N we have 7 - M[p|"(M[p]")* € T. To compute a set D} as required,
we use Theorem 9 on the limit distribution ¢(®). This gives us a set D}, contained in
{peD| 3N eNVn>N.7m Mp]"(M[p|?)" € T}, but of the same measure as Dy, for
each h. Then, the set D7, = [, ¢ {0, T} Dj, satisfies the requirements which concludes the
proof. |

» Remark 14. In the case M is aperiodic but not irreducible then the complexity result
of Section 3.1 also applies. Note that in general the period H may be exponential, thus
the periodic case requires consideration of exponentially many subsequences, for which the
matrix of the system is M¥ , which could be much larger than M.

5 Synthesising satisfying parameters for prefix-independent model
checking

Finally we show how to compute a set with volume equivalent to the parameters which
induce a Markov chain satisfying a prefix-independent property.

Consider semialgebraic targets T7,. .., Ty which partition Dist(Q). That is T, N T; = 0
for i # j and Dist(Q) =Ty U--- U T}.

We generalise the notion of degenerate instances to multiple targets. We say that an
instance is non-degenerate if the the volume of any of the limit distributions lying on the
boundary of any of the targets is zero. That is, vol({p € D | " [p] € dT;}) = 0 for each T;
and "), This allows us to be sure that every subsequence is eventually inside one of the
targets, for all but a null-set of parameters.

» Theorem 15. Consider a non-degenerate instance of Problem 7, in which the following
are given:
M = (Q, X, M,r) is a PMC, with period H, for which D C RX is the semialgebraic set
of admissible parameter values that give rise to the main structure,
H parametric limit distributions (") € Q(X) for h € {0,..., H — 1} such that
limy, 00 (M [p))" (7 - M[p]") = £M[p] for all p € D,
T1,..., Tk are semialgebraic targets partitioning Dist(Q) such that, for all limit distribu-
tions ((MYE=L " and all targets T;, we have vol({p € D | {Mp] € IT;}) = 0, and
p 1s a prefiz-independent w-reqular property over Ty, ..., T}.
Then, a semialgebraic set D/, contained in Dy, = {p € D | Mp] = ¢}, but differing from
D, only by a null set, can be effectively computed.

Proof. We know that any aperiodic Markov chain M will eventually converge to its limit
distribution ¢, that is, for any e for sufficiently large n we have |7 M™ — £| < e. So if the limit
distribution is not on the boundary of a target, eventually the Markov chain stays inside the
target or outside the target.

Hence, for all but a null set of p € D and each h € {0,..., H — 1}, we have that the orbit
7Mp]"(M[p]H)™ enters, and stays in, exactly one of Ty, ..., T} from some point on. Given
p, we can determine this final target by checking in which set 71, ..., T} the point £ [p]
lies. Then, since 7M [p]"(M[p]H)™ is stationary from some point on, we have that every
Hth character of the characteristic word of M[p| w.r.t. T1,..., T} is fixed, and therefore the
characteristic word is eventually periodic.

10:13

CONCUR 2022

10:14

Parameter Synthesis for Parametric Probabilistic Dynamical Systems

We consider each of the possible k¥ periodic words describing the limit behaviour. That
is, we consider w® for a word w € {1,...,k} ie., w repeated infinitely many times. For all
but a null set of parameters, the resulting characteristic word must have such a suffix. We
can model check each such word, and decide if the word satisfies the property ¢ by asking
whether w is accepted by the automaton representing ¢.

We discard the parameter values leading to a periodic suffix which does not satisfy the
specification ¢. However, for each periodic word w that does satisfy o, we compute D!, C D
which, up to a null set, represents the parameters leading to this word. Fix w € {1,... k}.
We compute, up to a null set, the set of parameters for which the periodic word of M|p]
matches w at each position. Using Theorem 9 on limit distribution ¢(") and target Tw,
compute the set D, , € D, D} , ={pe D| 3N e NVn> N.x- Mp|"(M[p|")" € Ty, }.
To represent the whole word, we take intersection, that is let Dy, = (N,eqo, . g—13 Dio -

Finally, we compute D, = Uwe{l,...7k}H ot wo k=g D,,, which is contained in D, (the set
of parameters for which the PMC satisfies the property ¢), and differs from D, by at most
a null set. <

—— References

1 Manindra Agrawal, S. Akshay, Blaise Genest, and P. S. Thiagarajan. Approximate verification
of the symbolic dynamics of markov chains. J. ACM, 62(1):2:1-2:34, 2015. doi:10.1145/
2629417.

2 S. Akshay, Timos Antonopoulos, Joél Ouaknine, and James Worrell. Reachability problems
for Markov chains. Inf. Process. Lett., 115(2):155-158, 2015. doi:10.1016/3.ip1.2014.08.013.

3 Shaull Almagor, Toghrul Karimov, Edon Kelmendi, Joél Ouaknine, and James Worrell.
Deciding w-regular properties on linear recurrence sequences. Proc. ACM Program. Lang.,
5(POPL):1-24, 2021. doi:10.1145/3434329.

4 Tomés Babiak, Mojmir Kfetinsky, Vojtéch Rehak, and Jan Strejéek. LTL to Biichi Automata
Translation: Fast and More Deterministic. In Cormac Flanagan and Barbara Konig, editors,
Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, pages 95-109, Berlin, Heidelberg, 2012. Springer. doi:10.1007/978-3-642-28756-
5_8.

5 Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian
Luca, Joél Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. The orbit
problem for parametric linear dynamical systems. In Serge Haddad and Daniele Varacca,
editors, 82nd International Conference on Concurrency Theory, CONCUR 2021, volume
203 of LIPIcs, pages 28:1-28:17. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021.
doi:10.4230/LIPIcs.CONCUR.2021.28.

6 Christel Baier, Christian Hensel, Lisa Hutschenreiter, Sebastian Junges, Joost-Pieter Ka-
toen, and Joachim Klein. Parametric Markov chains: PCTL complexity and fraction-
free Gaussian elimination. Information and Computation, 272:104504, June 2020. doi:
10.1016/3.1¢.2019.104504.

7 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

8 Saugata Basu, Richard Pollack, and Marie-Franpise Roy. Semi-algebraic sets. In Algorithms
in Real Algebraic Geometry, pages 83-99. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
do0i:10.1007/3-540-33099-2_4.

9 Richard Caron and Tim Traynor. The zero set of a polynomial. Technical report, WSMR
report 05-02, 2005.

10 Rohit Chadha, Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha, and YoungMin
Kwon. Model checking mdps with a unique compact invariant set of distributions. In
Eighth International Conference on Quantitative Evaluation of Systems, QEST 2011, Aachen,
Germany, 5-8 September, 2011, pages 121-130. IEEE Computer Society, 2011. doi:10.1109/
QEST.2011.22.

11 Ventsislav Chonev, Joél Ouaknine, and James Worrell. The polyhedron-hitting problem. In
Proceedings of the twenty-sizth annual ACM-SIAM symposium on Discrete algorithms, pages
940-956. SIAM, 2014.

https://doi.org/10.1145/2629417
https://doi.org/10.1145/2629417
https://doi.org/10.1016/j.ipl.2014.08.013
https://doi.org/10.1145/3434329
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.4230/LIPIcs.CONCUR.2021.28
https://doi.org/10.1016/j.ic.2019.104504
https://doi.org/10.1016/j.ic.2019.104504
https://doi.org/10.1007/3-540-33099-2_4
https://doi.org/10.1109/QEST.2011.22
https://doi.org/10.1109/QEST.2011.22

C. Baier et al.

12

13

14

15

16

17

18

19

20

21

22

23

A

Conrado Daws. Symbolic and Parametric Model Checking of Discrete-Time Markov Chains.
In Zhiming Liu and Keijiro Araki, editors, Theoretical Aspects of Computing — ICTAC
2004, Lecture Notes in Computer Science, pages 280-294, Berlin, Heidelberg, 2005. Springer.
do0i:10.1007/978-3-540-31862-0_21.

Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk, Harold
Bruintjes, Joost-Pieter Katoen, and Erika Abrahdm. PROPhESY: A PRObabilistic ParamEter
SYnthesis Tool. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verific-
ation, Lecture Notes in Computer Science, pages 214-231, Cham, 2015. Springer International
Publishing. doi:10.1007/978-3-319-21690-4_13.

Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability for
parametric Markov models. International Journal on Software Tools for Technology Transfer,
13(1):3-19, January 2011. doi:10.1007/s10009-010-0146-x.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512-535, September 1994. doi:10.1007/BF01211866.

Ravindran Kannan and Richard J. Lipton. Polynomial-time algorithm for the orbit problem.
J. ACM, 33(4):808-821, 1986. doi:10.1145/6490.6496.

Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha, and YoungMin Kwon. Reasoning
about MDPs as Transformers of Probability Distributions. In 2010 Seventh International
Conference on the Quantitative Evaluation of Systems, pages 199-208, September 2010. doi:
10.1109/QEST.2010.35.

YoungMin Kwon and Gul Agha. Linear Inequality LTL (iLTL): A Model Checker for Discrete
Time Markov Chains. In Jim Davies, Wolfram Schulte, and Mike Barnett, editors, Formal
Methods and Software Engineering, Lecture Notes in Computer Science, pages 194-208, Berlin,
Heidelberg, 2004. Springer. doi:10.1007/978-3-540-30482-1_21.

YoungMin Kwon and Gul Agha. Verifying the Evolution of Probability Distributions Governed
by a DTMC. IEEE Transactions on Software Engineering, 37(1):126-141, January 2011.
doi:10.1109/TSE.2010.80.

Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. Parametric probabilistic
transition systems for system design and analysis. Formal Aspects of Computing, 19(1):93-109,
March 2007. doi:10.1007/s00165-006-0015-2.

Joél Ouaknine and James Worrell. Positivity problems for low-order linear recurrence
sequences. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 201/, pages 366-379. STAM, 2014. doi:
10.1137/1.9781611973402.27.

Joél Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear recurrence
sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias,
editors, Automata, Languages, and Programming — 41st International Colloquium, ICALP
2014, volume 8573 of Lecture Notes in Computer Science, pages 330-341. Springer, 2014.
d0i:10.1007/978-3-662-43951-7_28.

James Renegar. On the computational complexity and geometry of the first-order theory
of the reals, part I: introduction. preliminaries. the geometry of semi-algebraic sets. the
decision problem for the existential theory of the reals. J. Symb. Comput., 13(3):255-300,
1992. d0i:10.1016/30747-7171(10)80003-3.

Reachability properties may fail to have semialgebraic feasible sets

We have shown how to compute, for prefix-independent specifications, the feasible parameters

up to a null set, whilst carefully circumventing hard instances. Example 1 demonstrates

that our approach will not extend in general to properties that depend on the prefix of the

characteristic word. However, the property considered (B U L) appears more complicated
than a reachability property. In this section we give a parametric Markov chain for which the
set of parameters satisfying a reachability property cannot be represented as a semialgebraic

set, even up to a null set.

10:15

CONCUR 2022

https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/s10009-010-0146-x
https://doi.org/10.1007/BF01211866
https://doi.org/10.1145/6490.6496
https://doi.org/10.1109/QEST.2010.35
https://doi.org/10.1109/QEST.2010.35
https://doi.org/10.1007/978-3-540-30482-1_21
https://doi.org/10.1109/TSE.2010.80
https://doi.org/10.1007/s00165-006-0015-2
https://doi.org/10.1137/1.9781611973402.27
https://doi.org/10.1137/1.9781611973402.27
https://doi.org/10.1007/978-3-662-43951-7_28
https://doi.org/10.1016/S0747-7171(10)80003-3

10:16

Parameter Synthesis for Parametric Probabilistic Dynamical Systems

Let M be the 2-parameter Markov chain with states (g7, q1, g2, g3, ¢s) depicted in Figure 3a.
For convenience we restrict the parameters to D = {(a,b) | @ > 3,b > 2}. The initial
distribution of M is (1,0,0,0,0), the limit distribution is (0,0,0,0,1) and after n > 0 steps
the probability of being in states qi, go,q3 is %2”%1, %47},1 , ézw%ﬂ respectively. Let T =
{(u, z,y, z,w) % — % + %Z < 0} be the semialgebraic target?. Observe that the specification
is non-degenerate. We will show that the set Dy = {(a,b) € D | In.7 - M"[(a,b)] € T} is
not semialgebraic, even up to a null set.

By definition of T it holds that (a,b) € Dy if and only if the linear recurrence sequence
Uy = 4™ — 2"a + b is negative for some n. Hence

Dr = [J{(@b) 4" —2"a+b< 0} = | J{(a,b)| b<2"a—4").
neN neN

By analysing the family of inequalities above we can show that the set Dr is a polytope with
infinite vertices {(3-2",2-4™) | n € N}, as depicted in Figure 3b. To prove the desired result,
assume for contradiction that there exists semialgebraic S C Dp such that the measure of
Dp \ S is null. As Dy is open, it follows that Dy C Interior(Closure(S)). On the other
hand, inspecting the accumulation points of Dp yields the reverse containment, so that
Dr = Interior(Closure(S)), whence Dy itself is semialgebraic. Finally, observe that we can
write the set of vertices V' = {(3-27,2-4") | n € N} as the set of all points on the boundary
of Dp that cannot be expressed as a convex combination of two distinct points in D \ Dr.

That is,
V ={x € Closure(Dr) \ Dy | =Jy,z € D\ Dr.y ZzA3IX € (0,1).2 = Ay + (1 — N)z}.

This in turn makes V' a semialgebraic set. However V' is an infinite discrete set, and as such
has infinitely many distinct connected components, contradicting a well-known property
enjoyed by semialgebraic sets.

1/2

b (linear scale)

q3 D 1/4 3 @ (linear scale) 32

(a) Markov chain with parameters p = (a, b). (b) Parameters (green) for which 7 - M[p]™ hits T.

Figure 3 A parametric Markov chain M and the parameter set satisfying reachability in 7.

4 One can write T = {(u, z,y, z,w) | %xy —2yz+ 6222 < 0} in order to make the inequality a polynomial.

Anytime Guarantees for Reachability in
Uncountable Markov Decision Processes
Kush Grover =

Technische Universitdt Miinchen, Germany

Jan Kretinsky &

Technische Universitdt Miinchen, Germany

Tobias Meggendorfer = a

Institute of Science and Technology Austria, Wien, Austria

Maximilian Weininger &
Technische Universitdt Miinchen, Germany

—— Abstract

We consider the problem of approximating the reachability probabilities in Markov decision processes
(MDP) with uncountable (continuous) state and action spaces. While there are algorithms that, for
special classes of such MDP, provide a sequence of approximations converging to the true value in
the limit, our aim is to obtain an algorithm with guarantees on the precision of the approximation.

As this problem is undecidable in general, assumptions on the MDP are necessary. Our main
contribution is to identify sufficient assumptions that are as weak as possible, thus approaching the
“boundary” of which systems can be correctly and reliably analyzed. To this end, we also argue why
each of our assumptions is necessary for algorithms based on processing finitely many observations.

We present two solution variants. The first one provides converging lower bounds under weaker
assumptions than typical ones from previous works concerned with guarantees. The second one
then utilizes stronger assumptions to additionally provide converging upper bounds. Altogether, we
obtain an anytime algorithm, i.e. yielding a sequence of approximants with known and iteratively
improving precision, converging to the true value in the limit. Besides, due to the generality of our
assumptions, our algorithms are very general templates, readily allowing for various heuristics from
literature in contrast to, e.g., a specific discretization algorithm. Our theoretical contribution thus
paves the way for future practical improvements without sacrificing correctness guarantees.

2012 ACM Subject Classification Mathematics of computing — Markov processes; Mathematics of
computing — Continuous mathematics; Computing methodologies — Continuous models

Keywords and phrases Uncountable system, Markov decision process, discrete-time Markov control
process, probabilistic verification, anytime guarantee

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.11
Related Version Full Version: https://arxiv.org/abs/2008.04824 [17]

Funding Kush Grover: The author has been supported by the DFG research training group GRK
2428 ConVeY.

Mazximilian Weininger: The author has been partially supported by DFG projects 383882557
Statistical Unbounded Verification (SUV) and 427755713 Group-By Objectives in Probabilistic
Verification (GOPro).

1 Introduction

The standard formalism for modelling systems with both non-deterministic and probabilistic
behaviour are Markov decision processes (MDP) [43]. In the context of many applications such
as cyber-physical systems, states and actions are used to model real-valued phenomena like
position or throttle. Consequently, the state space and the action space may be uncountably

© Kush Grover, Jan Kfretinsky, Tobias Meggendorfer, and Maximilian Weininger;
oY licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).

Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 11; pp. 11:1-11:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kush.grover@in.tum.de
https://orcid.org/0000-0003-4575-1302
mailto:jan.kretinsky@in.tum.de
https://orcid.org/0000-0002-8122-2881
mailto:tobias.meggendorfer@ist.ac.at
https://tobias.meggendorfer.de
https://orcid.org/0000-0002-1712-2165
mailto:maxi.weininger@tum.de
https://orcid.org/0000-0002-0163-2152
https://doi.org/10.4230/LIPIcs.CONCUR.2022.11
https://arxiv.org/abs/2008.04824
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

infinite. For example, the intervals [a,b] x [c,d] C R? can model a safe area for a robot to
move in or a set of available control inputs such as acceleration and steering angle. This
gives rise to MDP with uncountable state- and action-spaces (sometimes called controlled
discrete-time Markov process [51, 52] or discrete-time Markov control process [11, 28]), with
applications ranging from modelling a Mars rover [10, 24], over water reservoir control [36]
and warehouse storage management [38], to energy control [51], and many more [41].

Although systems modelled by MDP are often safety-critical, the analysis of uncountable
systems is so complex that practical approaches for verification and controller synthesis are
usually based on “best effort” learning techniques, for example reinforcement learning. While
efficient in practice, these methods guarantee, even in the best case, convergence to the true
result only in the limit, e.g. [40], or for increasingly precise discretization, e.g. [51, 32]. In line
with the tradition of learning and to make the analysis more feasible, the typical objectives
considered for MDP are either finite-horizon [37, 3] or discounted properties [18, 53, 25],
together with restrictive assumptions. Note that when it comes to approximation, discounted
properties effectively are finite-horizon. In contrast, ensuring safety of a reactive system or a
certain probability to satisfy its mission goals requires an unbounded horizon and reduces
to optimizing the reachability probabilities. Moreover, the safety-critical context requires
reliable bounds on the probability, not an approximation with unknown precision.

In this paper, we provide the first provably correct anytime algorithm for (unbounded)
reachability in uncountable MDP. As an anytime algorithm, it can at every step of the
execution return correct lower and upper bounds on the true value. Moreover, these bounds
gradually converge to the true value, allowing approximation up to an arbitrary precision.
Since the problem is undecidable, the core of our contribution is identifying sufficient
conditions on the uncountable MDP to allow for approximation.

Our primary goal is to provide conditions as weak as possible, thereby pushing towards
the boundary of which systems can be analyzed provably correctly. To this end, we do not
rely on any particular representation of the system. Nonetheless, for classical scenarios, and,
in particular, for finite MDP, our conditions are mostly satisfied trivially.

Our secondary goal is to derive the respective algorithms as an extension of value iteration
(VI) [29, 43], while avoiding drawbacks of discretization-based approaches. VI is a de
facto standard method for numerical analysis of finite MDP, in particular with reachability
objectives, regarded as practically efficient and allowing for heuristics avoiding the exploration
of the complete state space, e.g. [9]. Interestingly, even for finite MDP, anytime VI algorithms
with precision guarantees are quite recent [9, 19, 4, 44, 22]. Previous to that, the most
used model checkers could return arbitrarily wrong results [19]. Providing VI with precision
guarantees for general uncountable MDP is thus worthwhile on its own. Finally, while
discretization is conceptually simple, we prefer to provide a solution that avoids the need
to introduce arbitrary boundaries through gridding the whole state space and, moreover,
instead utilizes information from one “cell” of the grid in other places, too.

To summarize, while algorithmic aspects form an important motivation, our primary
contribution is theoretical: an explicit and complete set of generic assumptions allowing for
guarantees, disregarding practical efficiency at this point. Consequently, while our approach
lays foundations for further, more tailored approaches, it is not to be seen as a competitor to
the existing practical, best-effort techniques, as these aim for a completely different goal.

Our Contribution. In this work, we provide the following;:

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

Section 3: A set of assumptions that allow for computing converging lower bounds on
the reachability probability in MDP with uncountable state and action spaces. We
discuss in detail why they are weaker than usual, necessary, and applicable to typically
considered systems. With these assumptions, we extend the standard (convergent but
precision-ignorant) VI to this general setting.

Section 4: An additional set of assumptions that yield the first anytime algorithm, i.e.
with provable bounds on the precision/error of the result, converging to 0. We combine
the preceding algorithm with the technique of bounded real-time dynamic programming
(BRTDP) [39] and provide also converging upper bounds on the reachability probability.

Section 5: A discussion of theoretical extensions and practical applications.

Related work. For detailed theoretical treatment of reachability and related problems on
uncountable MDP, see e.g. [52, 11]. Reachability on uncountable MDP generalizes numerous
problems known to be undecidable. For example, we can encode the halting problem of
(probabilistic) Turing machines by encoding the tape content as real value. Similarly, almost-
sure termination of probabilistic programs (undecidable [33]) is a special case of reachability
on general uncountable MDP (see e.g. [16]). As precise reachability analysis is undecidable
even for non-stochastic linear hybrid systems [26], many works turn their attention to more
relaxed notions such as §-reachability, e.g. [48], and/or employ many assumptions.

In order to obtain precision bounds, we assume that the value function, mapping states
to their reachability probability, is Lipschitz continuous (and that we know the Lipschitz
constant). This is slightly weaker than the classical approach of assuming Lipschitz continuity
of the transition function (and knowledge of the constant), e.g. [2, 49]. In particular, these
assumptions (i) imply our assumption (as we show in [17, App. B.2.1]) and (ii) are used even
in the simpler settings of finite-horizon and discounted reward scenarios [5, 2, 49, 51] or even
more restricted settings to obtain practical efficiency, e.g. [35]. In contrast to our approach,
they are not anytime algorithms and require treatment of the whole state space.

To provide context, we outline how continuity is used (explicitly or implicitly) in related
work and mention their respective results. Firstly, [25, 47] assume Lipschitz continuity, but
not explicit knowledge of the constant. In essence, these approaches solve the problem by
successively increasing internal parameters. The parameters then eventually cross a bound
implied by the Lipschitz constant, yielding an “eventual correctness”. In particular, they
provide “convergence in the limit” or “probably approximately correct” results, but no bounds
on the error or the convergence rate; these would depend on knowledge of the constant.

Secondly, [18, 40, 2, 49, 51] (and our work) assume Lipschitz continuity and knowledge
of the constant. Relying on the constant being provided externally, these works derive
guarantees. Previously, the guarantees given are weaker than our convergent anytime bounds:
Either convergence in the limit [40] or a bound on a discretization error, relativized to
sub-optimal strategies [18] or bounded horizon [2, 49, 51].

Several of the above mentioned works employ discretization [18, 2, 49, 51]. This method

is quite general, but obtaining any bounds on the error requires continuity assumptions [1].

Further, there are works that use other assumptions: [23, 24] use reinforcement learning
methods to tackle reachability and more general problems, without any continuity assumption.
However, they do not provide any guarantees. See [53] for a detailed exposition of similar
approaches. Assuming an abstraction is given, abstraction and bisimulation approaches,
e.g. [21, 20], provide guarantees, but only on the lower bounds. With significant assumptions
on the system’s structure, symbolic approaches [37, 54, 45, 14] may even obtain exact
solutions.

11:3

CONCUR 2022

11:4

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

2 Preliminaries

In this section, we recall basics of probabilistic systems and set up the notation. As usual, N
and R refer to the (positive) natural numbers and real numbers, respectively. For a set S, 1g
denotes its characteristic function, i.e. 1g(x) =1 if x € S and 0 otherwise. We write S* and
S¥ to refer to the set of finite and infinite sequences comprising elements of S, respectively.

We assume familiarity with basic notions of measure theory, e.g. measurable set or
measurable function, as well as probability theory, e.g. probability spaces and measures [8].
For a measure space X with sigma-algebra X x, II(X) denotes the set of all probability
measures on X. For a measure p € II(X), we write 4(Y) = [1y du to denote the mass of a
measurable set Y € Yx (also called event). For two probability measures p and v, the total
variation distance is defined as dry (p,v) := 2 - supy ¢y, [u(Y) — v(Y)|. Some event happens
almost surely (a.s.) w.r.t. some measure y if it happens with probability 1. We write supp(u)
to denote the support of the probability measure .

» Remark 1. It is surprisingly difficult to give a well-defined notion of support for measures
in general. Intuitively, supp(u) describes the “smallest” set which p assigns a value of 1.
However, this is not well-defined for general measures. We discuss these issues and a proper
definition in [17, App. E]. Throughout this work, similar subtle issues related to measure
theory arise. For the sake of readability, these are mostly delegated to footnotes or the
appendix of the full version [17], and readers may safely skip over these points.

We work with Markov decision processes (MDP) [43], a widely used model to capture both
non-determinism and probability. We consider uncountable state and action spaces.

» Definition 2. A (continuous-space, discrete-time) Markov decision process (MDP) is a
tuple M = (S, Act, Av, A), where S is a compact set of states (with topology Ts and Borel o-
algebra Yg = B(Tg)), Act is a compact set of actions (with topology Tact and Borel o-algebra
Yact = B(Tact)), Av: S = Zae \ {0} assigns to every state a non-empty, measurable, and
compact set of available actions, and A: S x Act — II(S) is a transition function that for
each state s and (available) action a € Av(s) yields a probability measure over successor
states (i.e. a Markov Kernel). An MDP is called finite if |S| < oo and |Act] < cc.

See [43, Sec. 2.3] and [6, Chp. 9] for a more detailed discussion on the technical considerations
arising from uncountable state and action spaces. Note that we assume the set of available
actions to be non-empty. This means that the system can never get “stuck” in a degenerate
state without successors. Markov chains are a special case of MDP where |Av(s)| =1 for all
s € 8, i.e. a completely probabilistic system without any non-determinism. Our presented
methods thus are directly applicable to Markov chains as well.

Given a measure p € II(X) and a measurable function f: X — R mapping elements of a
set X to real numbers, we write u(f) := [f(z)dp(z) to denote the integral of f with respect
to pu. For example, A(s,a)(f) denotes the expected value Ey . a(s,q)f(8) of f: .S — R over
the successors of s under action a. Moreover, abusing notation, for some set of state S’ C S
and function Av’: S" — Act, we write S’ x Av' = {(s,a) | s € S',a € Av'(s)} to denote the
set of state-action pairs with states from S’ under Av’.

An infinite path in an MDP is some infinite sequence p = sjaissas--- € (S x Av)¥,
such that for every i € N we have s;11 € supp(A(s;,a;)). A finite path (or history)
0= 81018203 ...8, € (S X Av)* x S is a non-empty, finite prefix of an infinite path of length
lo| = n, ending in state s, denoted by last(p). We use p(i) and (%) to refer to the i-th state
in an (in)finite path. We refer to the set of finite (infinite) paths of an MDP M by FPaths
(Paths). Analogously, we write FPathspy s (Pathsag,s) for all (in)finite paths starting in s.

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

In order to obtain a probability measure, we first need to eliminate the non-determinism.
This is done by a so-called strategy (also called policy, controller, or scheduler). A strategy
on an MDP M = (S, Act, Av, A) is a function 7: FPathsy; — II(Act), s.t. supp(w(o)) C
Av(last(p)). The set of all strategies is denoted by I n¢. Intuitively, a strategy is a “recipe”
describing which step to take in the current state, given the evolution of the system so far.

Given an MDP M, a strategy w € [1x4, and an initial state sy, we obtain a measure on
the set of infinite paths Paths, which we denote as Pr}, , . See [43, Sec. 2] for further
details. Thus, given a measurable set A C Pathsyq, we can define its maximal probability
starting from state sg under any strategy by Prf\‘jfjs() [A] := sup,cp,, Pri.s, [A]- Depending on
the structure of A it may be the case that no optimal strategy exists and we have to resort
to the supremum instead of the maximum. This may already arise for finite MDP, see [12].

For an MDP M = (S, Act,Av,A) and a set of target states T C S, (unbounded)
reachability refers to the set OT = {p € Pathsy | Ji € N. p(i) € T}, i.e. all paths which
eventually reach 7. The set ¢7" is measurable if T is measurable [51, Sec. 3.1], [52, Sec. 2].

Now, it is straightforward to define the maximal reachability problem of a given set of
states. Given an MDP M, target set T, and state sy, we are interested in computing the
maximal probability of eventually reaching T, starting in state sg. Formally, we want to
compute the value of the state so, defined as V(so) := Prigf’ [0T] = sup e, Privs, [0T]-
This state value function satisfies a straightforward fixed point equation, namely

V(s)=1 ifseT V(8) = SUP,e av(s) A8, a)(V) otherwise. (1)

Moreover, V is the smallest fixed point of this equation [6, Prop. 9.8, 9.10], [52, Thm. 3].
In our approach, we also deal with values of state-action pairs (s,a) € S x Av, where
V(s,a) := A(s,a)(V). Intuitively, this represents the value achieved by choosing action a in
state s and then moving optimally. Clearly, we have that V(s) = sup,e 4,(5) V(5,a). See [15,
Sec. 4] for a discussion of reachability on finite MDP and [52] for the general case.

In this work, we are interested in approzimate solutions due to the following two reasons.
Firstly, obtaining precise solutions for MDP is difficult already under strict assumptions and
undecidable in our general setting.(!) We thus resort to approximation, allowing for much
lighter assumptions. Secondly, by considering approximation we are able to apply many
different optimization techniques, potentially leading to algorithms which are able to handle
real-world systems, which are out of reach for precise algorithms even for finite MDP [9].

We are interested in two types of approximations. Firstly, we consider approximating
the value function in the limit, without knowledge about how close we are to the true value.
This is captured by a semi-decision procedure for queries of the form Prj‘jﬁs[OT] > ¢ for a
threshold ¢ € [0, 1]. We call this problem ApproxLower. Secondly, we consider the variant
where we are given a precision requirement £ > 0 and obtain e-optimal values (I, u), i.e.
values with V(sg) € [l,u] and 0 < u — 1 < e. We refer to this variant as ApproxBounds.

3 Converging Lower Bounds

In this section, we present the first set of assumptions, enabling us to compute converging
lower bounds on the true value, solving the ApproxLower problem. In Section 3.1, we discuss
each assumption in detail and argue on an intuitive level why it is necessary by means of

WFor example, one can encode the tape of a Turing machine into the binary representation of a real
number and reduce the halting problem to a reachability query.

11:5

CONCUR 2022

11:6

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

counterexamples. With the assumptions in place, in Section 3.2 we then present our first
algorithm, also introducing several ideas we employ again in the following section.

Our assumptions and algorithms are motivated by value iteration (VI) [29], which we
briefly outline. In a nutshell, VI boils down to repeatedly applying an iteration operator to a
value vector v,. For example, the canonical value iteration for reachability on finite MDP
starts with vo(s) =1 for all s € T" and 0 otherwise and then iterates

Un+1(5) = maXaEAct(s)Zs,esA(sa a, S/) : Un(sl) (2)

for all s ¢ T. The vector v,, converges monotonically from below to the true value for all states.
We mention two important points. Firstly, the iteration can be applied “asynchronously”.
Instead of updating all states in every iteration, we can pick a single state and only update
its value. The values v,, still converge to the correct value as long as all states are updated
infinitely often. Secondly, instead of storing a value per state, we can store a value for each
state-action pair and obtain the state value as the maximum of these values. Both points
are a technical detail for finite MDP, however they play an essential role in our uncountable
variant. See [17, App. A.1] for more details on VI for finite MDP.

In the uncountable variant of Equation (2), v is a function, Act(s) is potentially uncount-
able, and the sum is replaced by integration. As in this setting the problem is undecidable,
naturally we have to employ some assumptions. Our goal is to sufficiently imitate the essence
of Equation (2), obtaining convergence without being overly restrictive. In particular, we
want to (i) represent (an approximation of) v, using finite memory, (ii) safely approximate
the maximum and integration, and (iii) select appropriate points to update v,,.

3.1 Assumptions

Before discussing each assumption in detail, we first put them into context. As we argue in
the following, most of our assumptions typically hold implicitly. Still, by stating even basic
computability assumptions in a form as weak as possible, we avoid “hidden” assumptions,
e.g. by assuming that the state space is a subset of R?. Two of our assumptions are more
restrictive, namely Assumption C: Value Lipschitz Continuity (Section 3.1.3) and,
introduced later, Assumption D: Absorption (Section 4.1.2). However, they are also
often used in related works, as we detail in the respective sections. Moreover, in light of
previous results, the necessity of restrictive assumptions is to be expected: Computing
bounds is hard or even undecidable already for very restricted classes. Aside from the
discussion in the introduction, we additionally mention two further cases. In the setting
of probabilistic programs (which are a very special case of uncountable MDP), deciding
almost sure termination for a fixed initial state (which is a severely restricted subclass
of reachability on uncountable MDP without non-determinism) is an actively researched
topic with recent advances, see e.g. [30, 31], and shown to be II3-complete [33], i.e. highly
undecidable. In [27] and the references therein, the authors present (un-)decidability results
for hybrid automata, which are a special case of uncountable MDP without any stochastic
dynamics (flow transitions can be modelled as actions indicating the delay). As such, it is to
be expected that the general class of models we consider has to be pruned very strictly in
order to hope for any decidability results.

» Remark 3. As already mentioned, we want to provide assumptions which are as general as
possible. Importantly, we avoid (unnecessarily) assuming any particular representation of the
system. Our motivation is to ultimately identify the boundary of what is necessary to derive
guarantees. While our assumptions are motivated by VI and built around Equation (2), we

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

note that being able to represent the state values and evaluate (some aspect of) the transition
dynamics intuitively are a necessity for any method dealing with such systems. We do not
claim that our framework of assumptions is the only way to approach the problem, instead
we provide arguments why it is a sensible way to do so.

3.1.1 A: Basic Assumptions (Asm. Al1-A4)

We first present a set of basic computability assumptions (A1-A4). These are essential,
since for uncountable systems even the simplest computations are intractable without any
assumptions. More specifically, such systems cannot be given explicitly (due to their infinite
size), but instead have to be described symbolically by, e.g., differential equations. Thus, we
necessarily require some notion of computability and structural properties for each part of
this symbolic description. And indeed, each assumption essentially corresponds to one part
of the MDP description (Metric Space to S x Act, Maximum Approximation to Av,
Transition Approximation to A, and Target Computability to T'). They are weak and
hold on practically all commonly considered systems (see [17, App. B.1]). In particular, finite
MDP and discrete components are trivially subsumed by considering the discrete metric.
Al: Metric Space S and Act are metric spaces with (computable) metrics dg and d e,
respectively, and d is a compatible(?) metric on the space of state-action pairs S x Av,
A2: Maximum Approximation For each state s and computable Lipschitz f : Av(s) — [0, 1],
the value max,e 4(s) f(a) can be under-approximated to arbitrary precision.
A3: Transition Approximation For each state-action pair (s,a) and Lipschitz g : S — [0, 1]
which can be under-approximated to arbitrary precision, the successor expectation
A(s,a){g) can be under-approximated to arbitrary precision.

A4: Target Computability The target set T' is decidable, i.e. we are given a computable
predicate which, given a state s, decides whether s € T'.

We denote the approximations for A2 and A3 by APPROX<, i.e. given a pair (s,a) and func-

tions f, g as in the assumptions, we write (abusing notation) APPROX<(max,ecay(s) f(a),€)

and APPROX<(A(s,a){g),¢e) for approximation of the respective values up to precision ¢, i.e.

0 < maxXge an(s) f(@) — APPROX < (maXqe ay(s) f(a),€) < € and analogous for A(s,a)(g). Note

that A2 and A3 are satisfied if we can sample densely in Av(s) and approximate A(s,a).

3.1.2 B: Sampling (Asm. B.VI)

As there are uncountably many states, we are unable to explicitly update all of them at
once and instead update values asynchronously. Moreover, as there may also be uncountably
many actions, we instead store and update the values of state-action pairs. Together, we
need to pick state-action pairs to update. We delegate this choice to a selection mechanism
GETPAIR, an oracle for state-action pairs. We allow for GETPAIR to be “stateful”, i.e. the
sampled state-action pair may depend on previously returned pairs. This is required in,
for example, round-robin or simulation-based approaches. We only require a basic notion
of fairness in order to guarantee that we do not miss out on any information. Note the
additional identifier . VI (value iteration) on the assumption name; later on, a similar, but
weaker variant (B.BRTDP) is introduced.

@For two pairs (s,a) and (s,a’) we have that k- dact(a,a’) < dx((s,a), (s,a’)) < K - dact(a,a’) for some
constants k, K > 0, analogous for dg, achieved by, e.g. dx ((s,a), (s’,a’)) == ds(s,s’) + dact(a,a’).

11:7

CONCUR 2022

11:8

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

B.VI: State-Action Sampling Let S¢ = {last(p) | o0 € FPathsp} the set of all reachable
states. Then, for any € > 0, s € S°, and a € Av(s) we have that GETPAIR eventually
yields a pair (s',a’) with dx ((s,a), (s',a’)) < & and o7y (A(s,a), A(s',a')) < € a.5.3)

Essentially, this means that GETPAIR provides a way to “exhaustively” generate all behaviours

of the system up to a precision of . This fairness assumption is easily satisfied under usual

conditions. For example, if S x Av is a bounded subset of R?, we can randomly sample points
in that space or consider increasingly dense grids. Alternatively, if we can sample from the
set of actions and from the distributions of A, GETPAIR can be implemented by sampling
paths of random length, following random actions. Note that we can view the procedure as

a “template”: Instead of requiring a concrete method to acquire pairs to update, we leave

this open for generality; we discuss implications of this in Sections 5.1 and 5.3.

The requirement on total variation may seem unnecessary, especially given that we will
also assume continuity. However, otherwise we could, for example, miss out on solitary
actions which are the “witnesses” for a state’s value: suppose that Av(s) = [0,1] and A(s, 0)
moves to the goal, while A(s,a) just loops back to s. Only selecting actions close to a =0
w.r.t. the product metric is not sufficient to observe that we can move to the goal. Note that
this would not be necessary if we assumed continuity of the transition function — selecting
“nearby” actions then also yields “similar” behaviour.

3.1.3 C: Lipschitz Continuity

Finally, we present our already advertised continuity assumption. For simplicity, we give it
in its strict form and discuss relaxations later in Section 5.2. Intuitively, Lipschitz continuity
allows us to extrapolate the behaviour of the system from a single state to its surroundings.
C: Value Lipschitz Continuity The value functions V(s) and V(s, a) are Lipschitz continuous

with known constants C's and Cyx, i.e. for all s,s' € S and a € Av(s),a’ € Av(s") we have

V(s) = V(s)| < Cs - ds(s, s") V(s,a) = V(s',d')| < Cx - dx((s,a), (s',d))

This requirement may seem quite restrictive at first glance. Indeed, it is the only one in this
section to not usually hold on “standard” systems. However, in order to obtain any kind of
(provably correct) bounds, some notion of continuity is elementary, since otherwise we cannot
safely extrapolate from finitely many observations to an uncountable set. The immediately
arising questions are (i) why Lipschitz continuity is necessary compared to, e.g., regular or
uniform continuity, and (ii) why knowledge of the Lipschitz constant is required. For the first
point, note that we want to be able to extrapolate from values assigned to a single state to
its immediate surroundings. While continuity means that the values in the surroundings do
not “jump”, it does not give us any way of bounding the rate of change, and this rate may
grow arbitrarily (for example, consider the continuous but not Lipschitz function sin(%) for
x > 0). So, also relating to the second point, without knowledge of the Lipschitz constant,
regular continuity and Lipschitz continuity are (mostly) equivalent from a computational
perspective: The function does not have discontinuities, but we cannot safely estimate the
rate of change in general. To illustrate this point further, we give an intuitive example.

<3)Technically, it is sufficient to satisfy this property on any subset of S¢ which only differs from it up
to measure 0. More precisely, we only require that this assumption holds for S = supp(Prf\‘f? S), ie.
the set of all reachable paths with non-zero measure. We omit this rather technical notion and the
discussion it entails in order to avoid distracting from the central results of this work.

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

Y

0.25 0.5 0.75 S

Figure 1 The value function of Example 4, showing that knowledge of the constant is important.

» Example 4. We construct an MDP with a periodic, Lipschitz continuous value function,
as illustrated in Figure 1 and formally defined below. Intuitively, for a given period width w
(e.g. 0.25) and a periodic function f (e.g. a triangle function), a state s between 0 and w
moves to a target or sink with probability f(s). All larger states s > w transition to s — w
with probability 1. The value function thus is periodic and Lipschitz continuous, see Figure 1
for a possible value function and [17, App. B.2.3] for a formal definition.

For a finite number of samples, we can choose f and w such that all samples achieve a
value of 1. Nevertheless, we cannot conclude anything about states we have not sampled yet:
Without knowledge of the constant, we cannot extrapolate from samples.

We note the underlying connection to the Nyquist-Shannon sampling theorem [46, Thm. 1].
Intuitively, the theorem states that, for a function that contains no frequencies higher than
W it is completely determined by giving its ordinates at a series of points spaced 0.5 - W
apart. If we know the Lipschitz constant, this gives us a way of bounding the “frequency”
of the value function, and thus allows us to determine it by sampling a finite number of
points. On the other hand, without the Lipschitz constant, we do not know the frequency
and cannot judge whether we are “undersampling”.

Since we do not assume any particular representation of the transition system, we cannot
derive such constants in general. Instead, these would need to be obtained by, e.g., domain
knowledge, or tailored algorithms. As in previous approaches [18, 40, 2, 49, 51], we thus
resort to assuming that we are given this constant, offloading this (highly non-trivial) step.
Recall that Lipschitz continuity of the transition function implies Lipschitz continuity of the
value function (see [17, App. B.2.1]), but can potentially be checked more easily.

3.2 Assumptions Applied: Value Iteration Algorithm

Before we present our new algorithm, we explain how our assumptions allow us to lift VI
to the uncountable domain. Contrary to the finite state setting, we are unable to store
precise values for each state explicitly, since there are uncountably many states. Hence, the
algorithm exploits the Lipschitz-continuity of the value function as follows. Assume that we
know that the value of a state s is bounded from below by a value [, i.e. V(s) > I. Then, by
Lipschitz-continuity of V, we know that the value of a state s’ is bounded by I —dg(s, s') - Cs.
More generally, if we are given a finite set of states Sampled with correct lower bounds
L: Sampled — [0, 1], we can safely extend these values to the whole state space by

L(S) ‘= MaXs/cSampled (E(S/) —Cgs - ds(s, SI)) .

Since V(s) > E(s) for all s € Sampled, we have V(s) > L(s) for all s € S, i.e. L() is a valid
lower bound. We thus obtain a lower bound for all of the uncountably many states, described
symbolically as a combination of finitely many samples. See Figure 2 for an illustration.
This is sufficient to deal with Markov chains, but for MDPs we additionally need to take
care of the (potentially uncountably many) actions. Recall that value iteration updates
state values with the maximum over available actions, v,41(8) = maXgea(s) A(S, @) (V).

11:9

CONCUR 2022

11:10

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

Figure 2 Example of the function extension on the set [0,2] with a Lipschitz constant of Cg = 1.
Dots represent stored valugs in L, while the solid line represents the extrapolated function L. Note
that it is possible to have L(s) < L(s), as seen in the graph.

Algorithm 1 The Value Iteration (VI) Algorithm for MDPs with general state- and action-spaces.

Input: ApproxLower query with threshold &, satisfying A1-A4, B.VI and C.
Output: yes, if V(sg) > &.

1: Sampled < 0,t + 1 > Initialize
2: while APPROX<(L(so), PRECISION(t)) < ¢ do

3: (s,a) < GETPAIR > Sample state-action pair
4: if s € T then E(s,)1 > Handle target states
5: else E(s,a) < APPROX<(A(s,a)(L), PRECISION(t)) > Update L
6 Sampled + Sampled U {(s,a)}, t +t+1

7: return yes

This is straightforward to compute when there are only finitely many actions, but in the
uncountable case obtaining L(s) = sup,e a,(s) L(s, @) is much more involved. We apply the
idea of Lipschitz continuity again, storing values for a set Sampled of state-action pairs
instead of only states. We bound the value of every state-action pair by

L(s,a) := max(y q)eSampled (E(s', a') —d«((s,a),(s',a")) - CX) (3)

Observe that L(s,a) is computable and Lipschitz-continuous as well, so by Maximum
Approximation we can approximate the bound of any state, i.e. L(s) = max,ecay(s) L(5, a),
based on such a finite set of values assigned to state-action pairs. (Recall that Awv(s) is
compact and L(s,a) continuous, hence the maximum is attained.) Consequently, we can
also under-approximate A(s,a)(L) by Transition Approximation. To avoid clutter, we
omit the following two special cases in the definition of L(s,a): Firstly, if Sampled = (), we
naturally set L(s,a) = 0. Secondly, if all pairs (s’,a’) are too far away for a sensible estimate,
i.e. if Equation (3) was yielding L(s,a) < 0, we also set L(s,a) to 0.

We present VI for MDPs with general state- and action-spaces in Algorithm 1. It
depends on PRECISION(t), a sequence of precisions converging to zero in the limit, e.g.
PRECISION(t) = % The algorithm executes the main loop until the current approximation of
the lower bound of the initial state L(sp) = max,eay(sy) L(S0,a) exceeds the given threshold
. Inside the loop, the algorithm updates state-action pairs yielded by GETPAIR. For target
states, the lower bound is set to 1. Otherwise, we set the bound of the selected pair to an
approximation of the expected value of L under the corresponding transition. Here is the
crucial difference to VI in the finite setting: Instead of using Equation (2), we have to use
Equation (3) and APPROX<, the approximations that exist by assumption, see Section 3.1.1.
Since PRECISION(t) converges to zero, the approximations eventually get arbitrarily fine.
The procedure PRECISION(t) may be adapted heuristically in order to speed up computation.
For example, it may be beneficial to only approximate up to 0.01 precision at first to quickly
get a rough overview. We show that Algorithm 1 is correct, i.e. the stored values (i) are
lower bounds and (ii) converge to the true values in [17, App. E.1]. Here, we only provide a
sketch, illustrating the main steps.

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

» Theorem 5. Algorithm 1 is correct under Assumptions A1-A4, B.VI, and C, i.e. it
outputs yes iff V(s) > €.

Proof sketch. First, we show that Li(s) < Li11(s) < V(s) by simple induction on the step.
Initially, we have L;(s) = 0, obviously satisfying the condition. The updates in Lines 4 and 5
both keep correctness, i.e. Liy1(s) < V(s), proving the claim.

Since L; is monotone as argued above, its limit for t — oo is well defined, denoted by L.
By State-Action Sampling, the set of accumulation points of s; contains all reachable
states S®. We then prove that L., satisfies the fixed point equation Equation (1). For this, we
use the second part of the assumption on GETPAIR, namely that for every (s,a) € S® x Av
we get a converging subsequence (s, , at,) where additionally A(s,,ay,) converges to A(s, a)
in total variation. Intuitively, since infinitely many updates occur infinitely close to (s, a), its
limit lower bound L (s, a) agrees with the limit of the updates values limg_, o0 A(St,,, at,){Lt,)-
Since L, satisfies the fixed point equation and is less or equal to the value function V, we
get the result, since V is the smallest fixed point. |

4 Converging Upper Bounds

In this section, we present the second set of assumptions, allowing us to additionally
compute converging upper bounds. With both lower and upper bounds, we can quantify the
progress of the algorithm and, in particular, terminate the computation once the bounds
are sufficiently close. Therefore, instead of only providing a semi-decision procedure for
reachability, this algorithm is able to determine the maximal reachability probability up to a
given precision. Thus, we obtain the first algorithm able to handle such general systems with
guarantees on its result. We again present our assumptions together with a discussion of their
necessity (Section 4.1), and then introduce the subsequent algorithm and prove its correctness
(Section 4.2). As expected, obtaining this additional information also requires additional
assumptions. On the other hand, quite surprisingly, we can use the additional information of
upper bounds to actually speed up the computation, as discussed in Section 5.3.

As before, our approach is inspired by algorithms for finite MDP, in this case by Bounded
Real-Time Dynamic Programming (BRTDP) [39, 9]. BRTDP uses the same update equations
as VI, but iterates both lower and upper bounds. A major contribution of [9] was to solve
the long standing open problem of how to deal with end components. These parts of the
state space prevent convergence of the upper bounds by introducing additional fixpoints of
Equation (1). We direct the interested reader to [17, App. A.2] for further details on BRTDP
and insights on the issue of end components. In the uncountable setting, these issues arise as
well alongside several other, related problems, which we discuss in Section 4.1.2.

4.1 Assumptions

The basic assumptions A1-A4 as well as Lipschitz continuity (Assumption C) remain
unchanged. For Maximum Approximation (A2) and Transition Approximation (A3),
we additionally require that we are able to over-approximate the respective results. The re-
spective assumptions are denoted by A5 and A6, respectively, and both over-approximations
by APPROX>. Further, we only require a weakened variant of State-Action Sampling,
now called Assumption B.BRTDP instead of Assumption B.VI. Finally, there is the new
Assumption D called Absorption, addressing the aforementioned issue of end components.

11:11

CONCUR 2022

11:12

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

4.1.1 B: Weaker Sampling (Asm. B.BRTDP)

We again assume a GETPAIR oracle, but, perhaps surprisingly, with weaker assumptions.
Instead of requiring it to return “all” actions, we only require it to yield “optimal” actions,
respective to a given state-action value function. We first introduce some notation. Intuitively,
we want GETPAIR to yield actions which are optimal with respect to the upper bounds
computed by the algorithm. However, these upper bounds potentially change after each
update. Thus, assume that f,: S x Av — [0,1] is an arbitrary sequence of computable,
Lipschitz continuous, (point-wise) monotone decreasing functions, assigning a value to each
state-action pair, and set F = (f1, f2,...). For each state s € S, set

Avr(s) :={a € Av(s) | Ve > 0. VN € N. 3n > N. maxycay(s)fn(s,a’) — fn(s,a) < e},

i.e. actions that infinitely often achieve values arbitrarily close to the optimum of f,. Let
S$ = {last(o) | 0 € FPathspqs, N (S x Avz)* x S} be the set of all states reachable using
these optimal actions.®) Essentially, we require that GETPAIR samples densely in S% X Avr.
B.BRTDP: State-Action Sampling For any £ > 0, F as above, s € S% and a € Avg(s) we
have that GETPAIR a.s. eventually yields a pair (s',a’) with dx((s,a), (s',a’)) < € and
drv(A(s,a),A(s',d)) <e.
While this new variant may seem much more involved, it is weaker than its previous variant,
since Avz(s) C Av(s) for each s € S and thus also S C SO. As such, it also allows for
more practical optimizations, which we briefly discuss in Section 5.3.

4.1.2 D: Absorption

We present our most specific assumption. While it is not needed for correctness, we require it
for convergence of the upper bounds to the value and thus for termination of the algorithm.
D: Absorption There exists a known and decidable set R (called sink) such that V(s) =0

for all s € R. Moreover, for any s € S and strategy 7 we have Pri [0(T'U R)] = 1.
Intuitively, the assumption requires that for all strategies, the system will eventually reach a
target or a goal state; in other words: It is not possible to avoid both target and sink infinitely
long. Variants of this assumption are used in numerous settings: On MDP, it is similar to the
contraction assumption, e.g. [6, Chp. 4]; in stochastic game theory (a two-player extension
of MDP) it is called stopping, e.g. [13]; and, using terms from the theory of the stochastic
shortest path problem, we require all strategies to be proper, see e.g. [7].

This assumption already is important in the finite setting: There, Absorption is equiva-
lent to the absence of end components, which introduce multiple solutions of Equation (1).
Then, a VI algorithm computing upper bounds can be “stuck” at a greater fixpoint than the
value and thus does not converge [9, 19]. Any procedure using value iteration thus either
needs to exclude such cases or detect and treat them. Aside from end components, which are
the only issue in the finite setting, uncountable systems may feature other complex behaviour,
such as Zeno-like approaching the target closer and closer without reaching it.

Unfortunately, even just detecting these problems already is difficult. For the mentioned,
restricted setting of probabilistic programs, almost sure termination is I13-complete [33]. Yet,
universal termination with goal set T'U R is exactly what we require for Absorption. So,
already on a restricted setting (together with a given guess for R), we cannot decide whether
the assumption holds, let alone treat the underlying problems. Thus, we decide to exclude
this issue and delegate treatment to specialized approaches.

®As in Section 3, we simplify the definition of Sy_. slightly in order to avoid technical details.

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

Algorithm 2 The BRTDP algorithm for MDPs with general state- and action-spaces.

Input: ApproxBounds query with precision ¢, satisfying A1-A6, B.BRTDP, C and D.
Output: e-optimal values (I, u).

1: Sampled < 0, t + 1 > Initialize
2: while APPROX> (U(so), PRECISION(t)) — APPROX< (L(so), PRECISION(t)] > € do

3: s,a < GETPAIR > Sample stat-action pair
4: if s € T then i_\(s7 1 > Handle special cases
5: else if s € R then U(s,)« 0

6: else > Update upper and lower bounds
7: U(s,a) < APPROX>(A(s,a)(U), PRECISION(t))

8: E(s,a) < APPROX<(A(s,a)(L), PRECISION(t))

9: Sampled « Sampled U {(s,a)}, t +t+1
10: return (L(so),U(so))

In summary, while this assumption is indeed restrictive, it is the key point that allows us
to obtain convergent upper bounds and thus an anytime algorithm. As argued above, an
assumption of this kind seems to be necessary to obtain such an algorithm in this generality.

» Remark 6. These problems do not occur when considering finite horizon or discounted
properties, which are frequently used in practice. For details on treating finite horizon
objectives, see [17, App. C.1]. Discounted reachability with a factor of v < 1 is equivalent to
normal reachability where at each step the system moves into a sink state with probability
(1 —). Absorption is trivially satisfied and our methods are directly applicable.

4.2 Assumptions Applied: The Convergent Anytime Algorithm

With our assumptions in place, we are ready to present our adaptation of BRTDP to the
uncountable setting. Compared to VI, we now also store upper bounds, again using Lipschitz-
continuity to extrapolate the stored values. In particular, together with the definitions of
Equation (3) we additionally set

U(s,a) = rnin(s’ﬂ’)ESampIed (U<5/7a/) + dx((S, Cl), (Slaa/)) : Ox) .

We also set U(s,a) =1 if either Sampled = @) or the above equation would yield U(s,a) > 1.

We present BRTDP in Algorithm 2. It is structurally similar to BRTDP in the finite
setting (see [17, App. A.2]). The major difference is given by the storage tables U and L used
to compute the current bounds U and L, again exploiting Lipschitz continuity. As before, the
central idea is to repeatedly update state-action pairs given GETPAIR. If GETPAIR yields
a state of the terminal sets T and R, we update the stored values directly. Otherwise, we
back-propagate the value of the selected pair by computing the expected value under this
transition. Moreover, we again require that PRECISION(t) converges to zero. Note that the
algorithm can easily be supplied with a-priori knowledge by initializing the upper and lower
bounds to non-trivial values. Moreover, in contrast to VI, this algorithm is an anytime
algorithm, i.e. it can at any time provide an approximate solution together with its precision.

Despite the algorithm being structurally similar to the finite variant of [9], the proof of
correctness unsurprisingly is more intricate due to the uncountable sets. We again provide
both a simplified proof sketch here and the full technical proof in [17, App. E.2].

11:13

CONCUR 2022

11:14

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

» Theorem 7. Algorithm 2 is correct under Assumptions A1-A6, B.BRTDP, C and D,
and terminates with probability 1.

Proof sketch. We again obtain monotonicity of the bounds, i.e. Li(s,a) < Lip1(s,a) <
V(s,a) < Uir1(s,a) < Ui(s,a) by induction on t, using completely analogous arguments.
By monotonicity, we also obtain well defined limits U, and L. Further, we define the
difference function Diff;(s,a) = Ui(s,a) — Li(s, a) together with its state based counterpart
Diffy(s) and its limit Diff ,(s). We show that Diff ,(sg) = 0, proving convergence. To
this end, similar to the previous proof, we prove that Diff . satisfies a fixed point equation
on S¢ (see B.BRTDP), namely Diff(s) = A(s,a(s))(Diffo.) where a(s) is a specially
chosen “optimal” action for each state satisfying Diff (s,a(s)) = Diff o (s). Now, set
Diff, = max_ $9 Diff o (s) the maximal difference on S and let SO be the set of witnesses
obtaining Diff,. Then, A(s, a(s), S?) = 1: If a part of the transition’s probability mass would
move to a region with smaller difference, an appropriate update of a pair close to (s, a(s))
would reduce its difference. Hence, the set of states SO is a “stable” subset of the system
when following the actions a(s). By Absorption, we eventually have to reach either the
target T or the sink R starting from any state in S?. Since Diff o (s) = 0 for all (sampled)
states in T'U R and Diff o, satisfies the fixed point equation, we get that Diff (s) = 0 for all
states SO and consequently Diff o (s0) = 0. <

5 Discussion

5.1 Relation to Algorithms for Finite Systems and Discretization

Our algorithm directly generalizes the classical value iteration as well as BRTDP for finite
MDP by an appropriate choice of GETPAIR. In value iteration, it proceeds in round-robin
fashion, enumerating all state-action pairs. Note that the algorithm immediately uses the
results of previous updates, corresponding to the Gauf-Seidel variant of VI; to exactly obtain
synchronous value iteration, we would have to slightly modify the structure for saving the
values. In BRTDP, GETPAIR simulates paths through the MDP and we update only those
states encountered during the simulation.

Approaches based on discretization through, e.g., grids with increasing precision, es-
sentially reduce the uncountable state space to a finite one. This is also encompassed by
GETPAIR, e.g. by selecting the grid points in round robin or randomized fashion. However,
our algorithm has the following key advantages when compared to classical discretization.
Firstly, it avoids the need to grid the whole state space (typically into cells of regular sizes).
Secondly, in discretization, updating the value of one cell does not directly affect the value in
other cells; in contrast in our algorithm, knowledge about a state fluently propagates to other
areas (by using Equation (3)) without being hindered by (arbitrarily chosen) cell boundaries.

5.2 Extensions
We outline possible extensions and augmentations of our approach to showcase its versatility.
Discontinuities. Our Lipschitz assumption C actually is slightly stronger than required.

We first give an example of a system exhibiting discontinuities and then describe how our
approach can be modified to deal with it. More details are in [17, App. C.2].

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

» Example 8. Consider a robot navigating a terrain with cliffs, where falling down a cliff
immediately makes it impossible to reach the target. There, states which are barely on the
edge may still reach the goal with significant probability, while a small step to the side results
in falling down the cliff and zero probability of reaching the goal.

To solve this example, one could model the cliff as a steep but continuous slope, which would
make our approach still possible. Unfortunately, this might not be very practical, since the
Lipschitz constant then is quite large.

However, if we know of discontinuities, e.g. the location of cliffs in the terrain the robot
navigates, both our algorithms can be extended as follows: Instead of requiring V to be
continuous on the whole domain, we may assume that we are given a (finite, decidable)
partitioning of the state set S into several sets S;. We allow the value function to be
discontinuous along the boundaries of .S; (the cliffs), as long as it remains Lipschitz-continuous
inside each S;. We only need to slightly modify the assumption on GETPAIR by requiring
that for any state-action pair (s,a) with s € S; we eventually get a nearby, similarly behaving
state-action pair (s',a’) of the same region, i.e. s’ € S;. While computing the bounds of a
particular state-action pair, e.g. U(s,a), we first determine which partition S; the state s
belongs to and then only consider the stored values of states inside the region S;.

Linear Temporal Logic. In [9], the authors extend BRTDP to LTL queries [42]. Several
difficulties arise in the uncountable setting. For example, in order to prove liveness conditions,
we need to solve the repeated reachability problem, i.e. whether a particular set of states is
reached infinitely often. This is difficult even for restricted classes of uncountable systems,
and impossible in the general case. In particular, [9] relies on analysing end components,
which we already identified as an unresolved problem. We provide further insight in [17,
App. C.3]. Nevertheless, there is a straightforward extension of our approach to the subclass
of reach-avoid problems [50] (or constrained reachability [52]), see [17, App. C.4].

5.3 Implementation and Heuristics

For completeness, we implemented a prototype of our BRTDP algorithm to demonstrate
its effectiveness. See [17, App. D] for details and an evaluation on both a one- and two-
dimensional navigation model. Our implementation is barely optimized, with no delegation
to high-performance libraries. Yet, these non-trivial models are solved in reasonable time.
However, since we aim for assumptions that are as general as possible, one cannot expect
our generic approach perform on par with highly optimized tools. Our prototype serves as
a proof-of-concept and does not aim to be competitive with specialized approaches. We
highlight again that the goal of our paper is not to be practically efficient in a particular,
restricted setting, but rather to provide general assumptions and theoretical algorithms
applicable to all kinds of uncountable systems.

Aside from several possible optimizations concerning the concrete implementation, we
suggest two more general directions for heuristics:

Adaptive Lipschitz constants. As an example, suppose that a robot is navigating mostly
flat land close to its home, but more hilly terrain further away. The flat land has a smaller
Lipschitz constant than the hilly terrain, and thus here we can infer tighter bounds. More
generally, given a partitioning of the state space and local LlprhltZ constants for every
subset, we use this local knowledge when computing L and U instead of using the global
Lipschitz constant, which is the maximum of all local ones. See [17, App. C.2] for details.

11:15

CONCUR 2022

11:16

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

GetPair-heuristics. In Section 3.1.2, we mentioned two simple implementations of GETPAIR.
Firstly, we can discretize both state and action space, yielding each state-action pair in the
discretization for a finite number of iterations, choosing a finer discretization constant, and
repeating the process until convergence. Assuming that we can sample all state-action pairs
in the discretization, this method eventually samples arbitrarily close to any state-action pair
in S x Av and thus trivially satisfies the sampling assumption. This intuitively corresponds
to executing interval iteration [19] on the (increasingly refined) discretized systems. Note
that this approach completely disregards the reachability probability of certain states and
invests the same computational effort for all of them. In particular, it invests the same
amount of computational effort into regions which are only reached with probability 10~%°
as in regions around the initial state sg.

Thus, a second approach is to sample a path through the system at random, following
random actions. This approach updates states roughly proportional to the probability of
being reached, which already in the finite setting yields dramatic speed-ups [34].

However, we can also use further information provided by the algorithm, namely the
upper bounds. As mentioned in [9], following “promising” actions with a large upper bound
proves to be beneficial, since actions with small upper bound likely are suboptimal. To extend
this idea to the general domain, we need to apply a bit of care. In particular, it might be
difficult to select exactly from the optimal set of actions, since already arg max,¢ 4,(s) U(s, a)
might be very difficult to compute. Yet, it is sufficient to choose some constant £ > 0 and
over-approximate the set of £&-optimal actions in a given state, randomly selecting from this
set. This over-approximation can easily be performed by, for example, randomly sampling
the set of available actions Av(s) until we encounter an action close to the optimum (which
can approximate due to our assumptions). By generating paths only using these actions,
we combine the previous idea of focussing on “important” states (in terms of reachability)
with an additional focus on “promising” states (in terms of upper bounds). This way, the
algorithm learns from its experiences, using it as a guidance for future explorations.

More generally, we can easily apply more sophisticated learning approaches by interleaving
it with one of the above methods. For example, by following the learning approach with
probability v and a “safe” method with probability 1 — v we still obtain a safe heuristic, since
the assumption only requires limit behaviour. As such, we can combine our approach with
existing, learning based algorithm by following their suggested heuristic and interleave it with
some sampling runs guided by the above ideas. In other words, this means that the learning
algorithm can focus on finding a reasonable solution quickly, which is then subsequently
verified by our approach, potentially improving the solution in areas where the learner is
performing suboptimally. On top, the (guaranteed) bounds identified by our algorithm can
be used as feedback to the learning algorithm, creating a positive feedback loop, where both
components improve each other’s behaviour and performance.

6 Conclusion

In this work, we have presented the first anytime algorithm to tackle the reachability
problem for MDP with uncountable state- and action-spaces, giving both correctness and
termination guarantees under general assumptions. The experimental evaluation of our
prototype implementation shows both promising results and room for improvements.

On the theoretical side, we conjecture that Assumption D: Absorption can be
weakened if we complement it with an automatic procedure that finds and treats problematic
parts of the state space of a certain kind, similar to the collapsing approach on finite MDP

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

[19, 9]. Note that as the general problem is undecidable, some form of Absorption will
remain necessary. On the practical side, we aim for a more sophisticated tool, applying our
theoretical foundation to the full range of MDP, including discrete discontinuities. Moreover,

we want to combine the tool with existing ways of identifying the Lipschitz constant.

—— References

1

10

11

12

13

14

15

Alessandro Abate, Saurabh Amin, Maria Prandini, John Lygeros, and Shankar Sas-
try. Computational approaches to reachability analysis of stochastic hybrid systems. In
HSCC, volume 4416 of Lecture Notes in Computer Science, pages 4—17. Springer, 2007.
doi:10.1007/978-3-540-71493-4_4.

Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini. Approximate
model checking of stochastic hybrid systems. FEur. J. Control, 16(6):624—641, 2010. doi:
10.3166/ejc.16.624-641.

Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic reachability
and safety for controlled discrete time stochastic hybrid systems. Automatica, 44(11):2724-2734,
2008. doi:10.1016/j.automatica.2008.03.027.

Christel Baier, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wunderlich.
Ensuring the reliability of your model checker: Interval iteration for Markov decision processes.
In CAV (1), volume 10426 of Lecture Notes in Computer Science, pages 160-180. Springer,
2017.

Dimitri Bertsekas. Convergence of discretization procedures in dynamic programming. I[EEE
Transactions on Automatic Control, 20(3):415-419, 1975.

Dimitri P Bertsekas and Steven Shreve. Stochastic optimal control: the discrete-time case,
1978.

Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path problems.
Math. Oper. Res., 16(3):580-595, 1991. doi:10.1287/moor.16.3.580.

Patrick Billingsley. Probability and Measure, volume 939. John Wiley & Sons, 2012.

Tomés Brazdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretinsky,
Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision
processes using learning algorithms. In ATVA, volume 8837 of Lecture Notes in Computer
Science, pages 98-114. Springer, 2014. doi:10.1007/978-3-319-11936-6_8.

John L. Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan, David E. Smith,
and Richard Washington. Planning under continuous time and resource uncertainty: A
challenge for AI. CoRR, abs/1301.0559, 2013. arXiv:1301.0559.

Debasish Chatterjee, Eugenio Cinquemani, and John Lygeros. Maximizing the probability
of attaining a target prior to extinction. Nonlinear Analysis: Hybrid Systems, 5(2):367—-381,
2011.

Krishnendu Chatterjee, Zuzana Kretinskd, and Jan Kretinsky. Unifying two views on multiple
mean-payoff objectives in Markov decision processes. Logical Methods in Computer Science,
13(2), 2017. doi:10.23638/LMCS-13(2:15)2017.

Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203-224, 1992.
d0i:10.1016/0890-5401(92)90048-K.

Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, and Richard Washington. Dynamic
programming for structured continuous Markov decision problems. In UAI pages 154-161.
AUALI Press, 2004. URL: https://dslpitt.org/uai/displayArticleDetails. jsp?mmnu=1&
smnu=2&article_id=1102&proceeding_id=20.

Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Automated
verification techniques for probabilistic systems. In SFM, volume 6659 of Lecture Notes in
Computer Science, pages 53—113. Springer, 2011. doi:10.1007/978-3-642-21455-4_3.

11:17

CONCUR 2022

https://doi.org/10.1007/978-3-540-71493-4_4
https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.1016/j.automatica.2008.03.027
https://doi.org/10.1287/moor.16.3.580
https://doi.org/10.1007/978-3-319-11936-6_8
http://arxiv.org/abs/1301.0559
https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.1016/0890-5401(92)90048-K
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1102&proceeding_id=20
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1102&proceeding_id=20
https://doi.org/10.1007/978-3-642-21455-4_3

11:18

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34

Hongfei Fu and Krishnendu Chatterjee. Termination of nondeterministic probabilistic programs.
In VMCAI volume 11388 of Lecture Notes in Computer Science, pages 468—490. Springer,
2019. doi:10.1007/978-3-030-11245-5_22.

Kush Grover, Jan Kretinsky, Tobias Meggendorfer, and Maximilian Weininger. Anytime
guarantees for reachability in uncountable markov decision processes. CoRR, abs/2008.04824,
2020. arXiv:2008.04824.

Carlos Guestrin, Milos Hauskrecht, and Branislav Kveton. Solving factored MDPs
with continuous and discrete variables. In UAI pages 235-242. AUAI Press,
2004. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&
article_id=1113&proceeding_id=20.

Serge Haddad and Benjamin Monmege. Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci., 735:111-131, 2018. doi:10.1016/j.tcs.2016.12.003.

Sofie Haesaert, Sadegh Soudjani, and Alessandro Abate. Temporal logic control of general
Markov decision processes by approximate policy refinement. In ADHS, volume 51(16) of
IFAC-PapersOnLine, pages 73-78. Elsevier, 2018. doi:10.1016/j.ifacol.2018.08.013.
Sofie Haesaert, Sadegh Esmaeil Zadeh Soudjani, and Alessandro Abate. Verification of general
Markov decision processes by approximate similarity relations and policy refinement. SIAM J.
Control and Optimization, 55(4):2333-2367, 2017. doi:10.1137/16M1079397.

Arnd Hartmanns and Benjamin Lucien Kaminski. Optimistic value iteration. In CAV (2),
volume 12225 of Lecture Notes in Computer Science, pages 488-511. Springer, 2020.
Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained
neural fitted g-iteration. In AAMAS, pages 2012-2014. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2019. URL: http://dl.acm.org/citation.cfm?
1d=3331994.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Certified reinforcement
learning with logic guidance. CoRR, abs/1902.00778, 2019. arXiv:1902.00778.

William B. Haskell, Rahul Jain, Hiteshi Sharma, and Penggian Yu. A universal empirical
dynamic programming algorithm for continuous state MDPs. IEEE Trans. Automat. Contr.,
65(1):115-129, 2020. doi:10.1109/TAC.2019.2907414.

Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? In STOC, pages 373-382. ACM, 1995.

Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable about
hybrid automata? J. Comput. Syst. Sci., 57(1):94-124, 1998. doi:10.1006/jcss.1998.1581.
Onésimo Herndndez-Lerma and Jean B Lasserre. Discrete-time Markov control processes:
basic optimality criteria, volume 30. Springer Science & Business Media, 2012.

Ronald A Howard. Dynamic programming and Markov processes. John Wiley, 1960.
Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. New approaches for almost-sure
termination of probabilistic programs. In Program. Lang. and Sys., volume 11275 of Lecture
Notes in Computer Science, pages 181-201. Springer, 2018. doi:10.1007/978-3-030-02768-1_
11.

Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady.
Modular verification for almost-sure termination of probabilistic programs. Proc. ACM
Program. Lang., 3(O0OPSLA):129:1-129:29, 2019. doi:10.1145/3360555.

Manfred Jaeger, Peter Gjgl Jensen, Kim Guldstrand Larsen, Axel Legay, Sean Sedwards, and
Jakob Haahr Taankvist. Teaching stratego to play ball: Optimal synthesis for continuous
space MDPs. In ATVA, volume 11781 of Lecture Notes in Computer Science, pages 81-97.
Springer, 2019. doi:10.1007/978-3-030-31784-3_5.

Benjamin Lucien Kaminski and Joost-Pieter Katoen. On the hardness of almost-sure termina-
tion. In MFCS, volume 9234 of Lecture Notes in Computer Science, pages 307-318. Springer,
2015. doi:10.1007/978-3-662-48057-1_24.

Jan Kretinsky and Tobias Meggendorfer. Of cores: A partial-exploration framework for Markov
decision processes. In CONCUR, volume 140 of LIPIcs, pages 5:1-5:17. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.5.

https://doi.org/10.1007/978-3-030-11245-5_22
http://arxiv.org/abs/2008.04824
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1113&proceeding_id=20
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1113&proceeding_id=20
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.ifacol.2018.08.013
https://doi.org/10.1137/16M1079397
http://dl.acm.org/citation.cfm?id=3331994
http://dl.acm.org/citation.cfm?id=3331994
http://arxiv.org/abs/1902.00778
https://doi.org/10.1109/TAC.2019.2907414
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1145/3360555
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5

K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Ratan Lal and Pavithra Prabhakar. Bounded verification of reachability of probabilistic
hybrid systems. In QEST, volume 11024 of Lecture Notes in Computer Science, pages 240-256.
Springer, 2018. doi:10.1007/978-3-319-99154-2_15.

Bernard F Lamond and Abdeslem Boukhtouta. Water reservoir applications of Markov decision
processes. In Handbook of Markov decision processes, pages 537-558. Springer, 2002.

Lihong Li and Michael L. Littman. Lazy approximation for solving continuous finite-horizon
MDPs. In AAAI pages 1175-1180. AAAI Press / The MIT Press, 2005. URL: http:
//www.aaai.org/Library/AAAT/2005/aaai05-186.php.

Masoud Mahootchi. Storage system management using reinforcement learning techniques and
nonlinear models. PhD thesis, University of Waterloo, 2009.

H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In ICML,
volume 119 of ACM International Conference Proceeding Series, pages 569-576. ACM, 2005.
doi:10.1145/1102351.1102423.

Francisco S. Melo, Sean P. Meyn, and M. Isabel Ribeiro. An analysis of reinforcement
learning with function approximation. In ICML, volume 307 of ACM International Conference
Proceeding Series, pages 664-671. ACM, 2008. doi:10.1145/1390156.1390240.

Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary problems. Springer,
2006.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46-57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.

Tim Quatmann and Joost-Pieter Katoen. Sound value iteration. In CAV (1), volume 10981
of Lecture Notes in Computer Science, pages 643-661. Springer, 2018.

Scott Sanner, Karina Valdivia Delgado, and Leliane Nunes de Barros. Symbolic dynamic
programming for discrete and continuous state MDPs. In UAI pages 643-652. AUAI
Press, 2011. URL: https://dslpitt.org/uai/displayArticleDetails. jsp?mmnu=1&smnu=
2&article_id=2223&proceeding_id=27.

Claude Elwood Shannon. Communication in the presence of noise. Proceedings of the IRE,
37(1):10-21, 1949.

Hiteshi Sharma, Mehdi Jafarnia-Jahromi, and Rahul Jain. Approximate relative value learning
for average-reward continuous state MDPs. In UAI page 341. AUAI Press, 2019. URL:
http://auvai.org/uai2019/proceedings/papers/341.pdf.

Fedor Shmarov and Paolo Zuliani. Probreach: verified probabilistic delta-reachability for
stochastic hybrid systems. In HSCC, pages 134-139. ACM, 2015.

Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. Adaptive gridding for abstraction and
verification of stochastic hybrid systems. In QEST, pages 59-68. IEEE Computer Society,
2011. doi:10.1109/QEST.2011.16.

Sean Summers and John Lygeros. Verification of discrete time stochastic hybrid systems: A

stochastic reach-avoid decision problem. Automatica, 46(12):1951-1961, 2010. doi:10.1016/j.

automatica.2010.08.006.

Tlya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro Abate. Quantitative
automata-based controller synthesis for non-autonomous stochastic hybrid systems. In HSCC;
pages 293-302. ACM, 2013. doi:10.1145/2461328.2461373.

Ilya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro Abate. Quantitative
model-checking of controlled discrete-time Markov processes. Inf. Comput., 253:1-35, 2017.
doi:10.1016/j.ic.2016.11.006.

Hado van Hasselt. Reinforcement learning in continuous state and action spaces. In Rein-
forcement Learning, volume 12 of Adaptation, Learning, and Optimization, pages 207-251.
Springer, 2012. doi:10.1007/978-3-642-27645-3_7.

11:19

CONCUR 2022

https://doi.org/10.1007/978-3-319-99154-2_15
http://www.aaai.org/Library/AAAI/2005/aaai05-186.php
http://www.aaai.org/Library/AAAI/2005/aaai05-186.php
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1145/1390156.1390240
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1002/9780470316887
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2223&proceeding_id=27
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2223&proceeding_id=27
http://auai.org/uai2019/proceedings/papers/341.pdf
https://doi.org/10.1109/QEST.2011.16
https://doi.org/10.1016/j.automatica.2010.08.006
https://doi.org/10.1016/j.automatica.2010.08.006
https://doi.org/10.1145/2461328.2461373
https://doi.org/10.1016/j.ic.2016.11.006
https://doi.org/10.1007/978-3-642-27645-3_7

11:20 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

54

Luis Gustavo Rocha Vianna, Scott Sanner, and Leliane Nunes de Barros. Continuous real time
dynamic programming for discrete and continuous state MDPs. In 2014 Brazilian Conference
on Intelligent Systems, BRACIS 201/, Sao Paulo, Brazil, October 18-22, 201/, pages 134-139.
IEEE Computer Society, 2014. doi:10.1109/BRACIS.2014.34.

https://doi.org/10.1109/BRACIS.2014.34

Checking Timed Biichi Automata Emptiness Using
the Local-Time Semantics

Frédéric Herbreteau =
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

B. Srivathsan &
Chennai Mathematical Institute, India
CNRS IRL 2000, ReLaX, Chennai, India

Igor Walukiewicz &
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

—— Abstract

We study the Biichi non-emptiness problem for networks of timed automata. Standard solutions
consider the network as a monolithic timed automaton obtained as a synchronized product and build
its zone graph on-the-fly under the classical global-time semantics. In the global-time semantics, all
processes are assumed to have a common global timeline.

Bengtsson et al. in 1998 have proposed a local-time semantics where each process in the network
moves independently according to a local timeline, and processes synchronize their timelines when
they do a common action. It has been shown that the local-time semantics is equivalent to the
global-time semantics for finite runs, and hence can be used for checking reachability. The local-time
semantics allows computation of a local zone graph which has good independence properties and is
amenable to partial-order methods. Hence local zone graphs are able to better tackle the state-space
explosion due to concurrency.

In this work, we extend the results to the Biichi setting. We propose a local zone graph
computation that can be coupled with a partial-order method, to solve the Biichi non-emptiness
problem in timed networks. In the process, we develop a theory of regions for the local-time
semantics.

2012 ACM Subject Classification Theory of computation — Verification by model checking

Keywords and phrases Timed Biichi automata, local-time semantics, zones, abstraction, partial-order
reduction

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.12

Funding Frédéric Herbreteau: ANR, project Ticktak (ANR-18-CE40-0015)
Igor Walukiewicz: ANR project Ticktac (ANR-18-CE40-0015)

1 Introduction

Timed automata [2] are a popular model for real-time systems. Typically, systems are
modeled as a network of timed automata that communicate with each other via synchronizing
actions. We are interested in verifying Biichi properties of such models: does there exist
a run of the network that executes transitions from a given set infinitely often? This is
called the Biichi non-emptiness problem. Model checking LTL specifications can be reduced
to the Biichi non-emptiness problem. Moreover, verifying Biichi properties can be useful
in trouble-shooting the model under consideration, for example, a typo in the benchmark
CSMA /CD protocol model was discovered through a Biichi property verification [18]. Recent
works go even further and consider synthesis questions for Biichi timed automata [3, 8].
Existing algorithms for the Biichi non-emptiness problem view the network as a single
timed automaton obtained by a synchronized product, and build the so-called zone graph of
this product automaton on-the-fly [29, 28, 25, 23, 18]. The main challenge lies in guaranteeing

© Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 12; pp. 12:1-12:24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:fh@labri.fr
https://orcid.org/0000-0002-1029-2356
mailto:sri@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
mailto:igw@labri.fr
https://orcid.org/0000-0001-8952-7201
https://doi.org/10.4230/LIPIcs.CONCUR.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

the termination of the zone graph computation. This is achieved through a finite abstraction
of the zone graph that preserves the Biichi property. The aim of course is to get as
small a graph as possible. This has been the central subject of study in timed automata
verification [11, 7, 4, 21, 20]. As a matter of fact, new abstraction methods are usually first
studied in the context of reachability verification and then lifted to the Biichi setting. In
this paper, we continue this trend by extending a recent work on abstractions based on the
local-time semantics [15], to the Biichi non-emptiness problem.

The local-time semantics for timed automata networks was proposed by Bengtsson et
al. [5] with the aim of applying partial-order reduction methods that can exploit the network
representation of the model to build a smaller zone graph. In the local-time semantics, each
process in the network moves independently according to its local timeline which contrasts
with the standard semantics where time elapses synchronously in all the processes. When
processes perform a shared action, they synchronize their local timelines. This semantics gives
good independence properties: for instance, if a and b are actions performed by processes
P, and Py, an execution (a,2)(b, 1) means a happens when the local time of P, is 2 and b
happens when local time of P, is 1. There is no “happens-before” between (a,2) and (b, 1).
The local-time semantics leads to a local-zone graph computation in which performing ab
or ba from a local-zone leads to the same local-zone. This diamond property is essential
for applying partial-order reduction methods. In [15] we have proposed abstractions for the
local zone graph that can be coupled with partial-order methods to solve the reachability
problem. Extending these methods to the Biichi non-emptiness problem, poses certain
technical questions and requires some adaptations of the setting. We settle these issues here.

1.1 Contributions

The first question is whether the local-time semantics is sound for Biichi runs: does existence
of an infinite Biichi run in the local-time semantics ensure existence of an infinite Biichi run in
the usual global-time semantics? Surprisingly, we answer in the affirmative without any extra
assumption. This said, let us remark that this is not true if one allows invariants in states.
The solution is significantly different from the soundness argument used for reachability
where the last valuation of a local run needs to be synchronized.

The next question is whether the local-zone graph is sound for Biichi runs: does an infinite
Biichi run in the local-zone graph ensure existence of an infinite Biichi run in the local-time
semantics. For every finite prefix, we can get a finite run in the local-time semantics. But the
question of whether these prefixes can be glued together to form an infinite run is non-trivial.
The same question arises in the global-time semantics as well, and there the solution makes a
crucial use of Alur-Dill regions [2]. For the local-time semantics, there is no known notion of
a region equivalence. We have shown [15] that in general, there can be no finite time-abstract
bisimulation for the local-time semantics and proposed to restrict attention to a class of
networks called bounded spread networks. Every network can be converted to a bounded
spread network at the cost of reducing concurrency. In this work, we develop a finite region
equivalence over the local-time semantics for bounded spread networks.

Finally, we prove that the combination of the abstraction from [15] and partial-order
reduction can be suitably applied on the local-zone graph to solve the Biichi non-emptiness
problem. For the argument to work we need to assume that the network is deterministic.
This is usually not a strong assumption, as a network can be made deterministic by renaming
actions. The proof of correctness appropriately combines the guarantees known over finite
runs and the region machinery developed above.

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

We remark that we do not propose here a concrete POR method. Instead, we consider
a POR method as an oracle that assigns a subset of edges to be explored from each node
of the local-zone graph. Our work can be seen as a theoretical development that allows to
plug in any POR method which is correct for the Biichi problem on untimed networks, to
timed networks. Most recent works in the POR literature consider a very special case where
every process is acyclic and has at most one outgoing action in every state [1, 33, 9, 22]. As
a further work we would like to have equally efficient methods for more general settings as
considered in works on stubborn/ample/persistent sets [30, 27, 13, 32].

1.2 Related Work

The early abstraction methods studied for timed automata depended on the maximum
constant appearing in the automaton [11, 7]. These abstractions were extended to Biichi
runs by Tripakis et al. [29, 28]. Later, superior abstractions were proposed based on the
maximum constant L occurring in lower bound guards (x > ¢,z > ¢) and the maximum
constant U occurring in upper bound guards (x < ¢,z < ¢) [4]. Li [25] showed that these
LU abstractions can be used to solve Biichi non-emptiness problem.

An abstraction method comes with an operator a that can be applied on zones Z. For
reachability, it is enough to check a(Z) C a(Z’) (called a subsumption) to discard further
exploration from Z and continue from Z’. On the other hand, for Biichi non-emptiness, we
need to check for equality a(Z) = a(Z’). Subsumptions are instrumental in reducing the
size of the graph obtained. For the Biichi problem, a restricted usage of subsumption is
possible [23, 18]. However, the gains due to this restricted subsumption are less pronounced in
the Biichi setting as compared to the gains achieved for reachability. There is even a concrete
argument to support this statement: deciding Biichi non-emptiness starting from a zone
graph with subsumption is PSPACE-hard [18]. The moral is that graphs computed for the

Biichi problem are in general expected to be much larger than the reachability counterparts.

In this situation it is even more interesting to use POR to reduce their size.

POR techniques have been applied for the reachability problem, but over the zone graph
computed using the standard global-time semantics. There is much less independence in the
global-time zone graph and the POR method needs to be restricted accordingly. Therefore
some approaches limit the POR methods to parts where independent actions occur in zero
time [26, 24, 6], and other approaches discover which actions remain independent either
statically [10] or dynamically [17].

1.3 Outline of the Paper

In the next section we introduce networks of timed automata and their local-time semantics.

Standard global-time semantics is a special case of the local-time semantics. We define the
Biichi non-emptiness problem over the global-time semantics. In Section 3 we show that
for the Biichi non-emptiness problem it is sound to use the local-time semantics instead of

the global one. We also recall local-zones, local-zone graphs and their properties from [15].

In Section 4, we develop a theory of regions for the local-time semantics. We employ the
concept of a bounded spread network from [15], and show that for such networks the number

of regions is finite if we have a bound on the constants used in the guards of the transitions.

Finally, in Section 5 we recall the abstraction operation ag . from [15], introduce an abstract
notion of a POR method based on a source function, and show how to obtain a finite
abstract local-zone graph where we can use a POR method while retaining soundness and
completeness for Biichi runs. Missing proofs are presented in appendices.

12:3

CONCUR 2022

12:4

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

2 Preliminaries

We write R, R>g and N for the set of reals, non-negative reals and natural numbers,
respectively. We will write 2° for the power set of a set S. Let X be a set of real valued
variables. A constraint over X is described by the grammar: ¢ := x#tc | ¢ A ¢, where z € X
ceNand # € {<,<,=,>,>}. Let ®(X) denote the set of all constraints over X.

A network of timed automata N is a tuple (A1, Aa, ..., Ag) of k timed automata, each
A; is called a process or a component of the network. Let Proc = {1,...,k} denote the set
of process identifiers. Process A; is given by (Q;, ¢!, %, X;, A;) consisting of a finite set
Q; of states, an initial state ¢!"** € @, a finite alphabet of actions ¥;, a finite set of clocks
X;, and a finite set of transitions A; C Q; x ¥; x ®(X;) x 2% x Q.

Transitions in A; are of the form (p,a, g, R,q) where p and g are the source and target
of the transition, a € ¥; is the action, g € ®(X;) is a guard over local clocks X;, and
R C X, is the set of local clocks of X; that are reset along the transition. We assume that
QiNQ; =0 and X; N X; = (for all distinct pairs i,j € {1,...,k}. We define ¥ := Uilf i,
X = U=} X, and Q == [['=} Qi. For a € X, we write dom(a) := {i € {1,...,k} | a € 3}
For ¢ = (q1,...,qx) in Q, we write ¢(7) for g;.

We say that N is deterministic if for every component A; and for every action a, there
is at most one local transition (p,a, g, R, q) from every local state p € Q;. We will assume
deterministic networks in Section 5.

There are two ways to describe the semantics of a network: one in which all the components
share a common timeline (global-time semantics), and another where each of them work
with a local timeline (local-time semantics). We define the local-time semantics and view
global-time semantics as a special case.

2.1 Local-Time Semantics

Fix a network A" = (Ay,..., A;) for the rest of the section. We assume that each A; has a
special clock t; called the reference clock of process A;. Intuitively, it represents the local
time of process A;. Let T = {t1,...,tx} denote the set of all reference clocks. A valuation
v: X UT — R is a function that maps each variable in X UT to a real number under the
condition that v(¢;) > v(z;) for all x; € X;. The value v(z;) represents the local time at
process A; when z; was last reset. This explains why we require v(¢;) > v(z;). The value
of clock z; is then obtained as v(t;) — v(x;). This semantics that keeps reset time points
instead of clock ages has previously been introduced in [12] in the global-time setting. In the
rest of the document, we use the notation v(xz — y) for v(z) — v(y). The semantics relies on
two operations.

The first one is a local-time elapse. Given a valuation v, a delay §; € R and a process
i, the valuation v +; §; describes a local delay of §; units at process i. It is given by
(v 4+ 8)(t;) = v(t;) + 0; and (v +; 6;)(z) = v(z) for all other variables x. Notice that
((v +; 0;) +; 6;) is the same as ((v +; ;) +; 0;): the order in which we sum the local delays
does not matter. We extend this notion to a tuple A := (d1,...,d;) € RE of delays, one for
each process: v + A is the valuation v +1 §1 +9 0o - -+ +5 Ok. -

The next operation is clock reset. In the local-time interpretation, resetting a clock
x; € X; amounts to updating its value to the local-time of 7 given by t;. Given valuation v,
and a set of clocks R C X, we write v[R] to be the valuation obtained as (v[R])(x) = v(t;)
when z € RN X; for some i € {1,...,k} and v[R](x) = v(x) otherwise. Valuation v is said
to satisfy a constraint z#c for x € X; if v(t; — x)#c. We write v = (z#c) in this case. A
valuation satisfies a conjunction of constraints ¢1 A ¢ if v = ¢ and v | @a.

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

A configuration of a network is a pair (¢g,v) where ¢ € @ and v is a valuation. Recall
that we have defined @ to be the product of the local states @);. A valuation v is said to be
ingtial if v(z) = v(y) for all z,y € X UT: all timelines are synchronized and the constraint
x = 0 holds for every clock. A configuration (g,v) is initial if ¢ = (¢i", ..., ¢i"") and v is
an initial valuation.

There are two kinds of transitions between configurations: local delays and action
transitions. From a configuration (g,v) there is a local delay transition (g, v) 2, (g, v+ A)
for each A € RE . For each b € X, a b-transition is a tuple {(q;,b, g;, Ri, 4;) }icdom(p) of local
transitions one from each process in its domain. From (gq,v), we have an action transition
(¢,v) LN (¢',v") if there exists a b-transition {(g:,b, gi, Ri, ;) }icdom(s) Such that:

source states match: ¢(i) = g; for all ¢ € dom(b),

valuation satisfies guard: v |= g; for all i € dom(b),

all processes in dom(b) are synchronized: v(t;) = v(t;) for all 4,5 € dom(b),
iedom(v) Tl
target states are reached: ¢'(7) = ¢} if ¢ € dom(b) and ¢'(¢) = ¢(i) otherwise.

resets are performed: v = v[|J

The important point is that when a common action is performed, the local times of all the
processes in its domain are the same.

We will write (g, v) ab, (¢’, ") for (q,v) ENLN (¢’,v"), alocal delay A transition followed

by an action b. Observe that A is determined by v and v’ because 6, = v'(t,) —v(t,) where t,, is
. P Ag,b Aq,b
the reference clock of process p. A run is an infinite sequence (qg, v9) —=— (q1,v1) —— - - -
of transitions starting from an initial configuration (gg,vg). A finite run is defined similarly:
0,b0 1,b1

(go,v0) BN (g1,v1) Lob, (Gn,vn) Loy (g,,v}). Observe that finite runs have a final

delay. We write (g, v) T (¢’,v") to say that there is a finite run on a sequence of actions o.

2.2 The Biichi Non-Emptiness Problem

Global-time semantics is a local-time semantics restricted to synchronized valuations. A
valuation v is said to be synchronized if v(t,) = v(ty) for all processes p, g. This implies that in

every delay (d1,...,0;) that is part of the global-time semantics, we have §; = dg = - - = Jj.

The global-time semantics obtained this way is the usual semantics that is used in tools and
studies that involve networks of timed automata. To make a distinction, we refer to runs in

the local-time semantics as local runs and runs in the global-time semantics as global runs.

Clearly, a global run is also a local run.

» Definition 1 (Biichi non-emptiness problem). Given a network N and a set of actions
F C X, decide if N has a global run with infinitely many occurrences of actions from F.

In the case of finite runs, the correspondence between local and global semantics is
well-known. Indeed there is a local run to a configuration (¢, v) with a synchronized valuation
v if and only if there exists a global run to (¢, v) that follows the same transitions, although
in a different order. This is captured by the notion of independent actions and traces.

» Definition 2 (Independence). Two actions a,b € ¥ are said to be independent if dom(a) N
dom(b) = 0. Two sequences of actions u,w € * are trace equivalent, u ~ w, if one of them
can be obtained from the other by permuting adjacent independent actions.

» Lemma 3 ([16]). Let v,v' be synchronized valuations, and let (q,v) -—» (¢',v') be a local
run. Then there exists a global run (q,v) =+ (¢',v') such that u ~ w.

12:5

CONCUR 2022

12:6

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

» Remark 4. Putting Biichi conditions on transitions makes them trace invariant which is
important if we want to do partial-order methods: if v has infinitely many actions from F,
then so does every w ~ u, which may not be true with Biichi conditions on states.

Moreover, the local-time semantics enjoys a very nice property: any two independent
actions commute as stated by the following lemma.

» Lemma 5 (Diamond property). [16] Let a,b € ¥ with dom(a) N dom(b) = 0. If (q,v) --»
(¢',v") then (q,v) be, (¢,).

Observe that this commutation property does not hold in the global-time semantics since
delays are synchronous in all processes. Our motivation for using local time over global
time comes from the fact that local time allows to reorder the actions in a run, hence using
partial-order reduction techniques becomes possible.

3 Biichi Runs in the Local-Time Semantics

In this section, we show that using the local-time semantics is sound for the Biichi emptiness
problem. Hence the local-time semantics looks appealing as it enables to use partial-order
reduction techniques. However, verification algorithms cannot work directly from the state-
space of the network as it is uncountable. We will then introduce the local zone graph as a
symbolic representation of the state-space of timed networks in the local time semantics.

3.1 The Local-Time Semantics is Sound

When state-reachability is considered the soundness of the local-time semantics follows
from Lemma 3. However, it is based on the notion of independence, Definition 2, that is
not adequate for infinite runs. The point is that for infinite runs we may need an infinite
number of permutations to get w from u. The more general definition refers to partial orders
defined by runs. These partial orders are often called traces. The other obstacle in repeating
Lemma 3 is that the lemma refers to runs ending in synchronized valuations, while for infinite
runs we do not have final valuations. For these two reasons the soundness argument is more
involved than that of reachability.

We start with an intuition and an illustrating example. To get a global run from a local run,
the natural idea would be to re-order the events based on the time-stamps. For example, if
we have a finite sequence (a, 2)(b,1)(c, 3)(a, 2.5)(b, 1.5) where the number represents the local
time when the action occurred, then we get a reordered sequence (b, 1)(b, 1.5)(a, 2)(a, 2.5)(c, 3).
It can then be argued that this sequence has a global run where each clock can be delayed
up to the next action to be read. For the case of infinite runs, consider the following example
that consists of two processes A and B.

A H@D($<1),a B: *>®D(y:1),b,{y}

Consider an infinite local run:

1 1 1 1 1

Y (b1 4= (b2) ... S =Y (b)) -
(a,3) (1) (a5 + 5) (1:2) =+ (a5 +7 -+ 22) (0)
Notice that all the a actions happen before global time 1, and b actions start from 1. Therefore,
a re-ordering of the events based on the time-stamps gives an infinite sequence of a’s “followed
by” an infinite sequence of b’s. This does not correspond to a global run. However, if a was
accepting, we have a global run (a, %)(a, % + 2%) -+ that is accepting. Similarly, if b was

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

accepting, we have a global run (b,1)(b,2)---. In each of these runs, the other process plays
no role except for elapsing time. Observe that the absence of state invariants is crucial here
as the infinite sequence of b’s would not be feasible in the global time semantics if state g of
process A had invariant (z < 1).

In general, when we have a local run, we can reorder it based on timestamps to get a
sequence which may have a block of infinite events (say between 0 and 1), followed by another
block of events (say between 1 and 2), and so on. However, the processes that participate
infinitely often in some block do not participate in the future blocks. This means there can
be only finitely many such blocks. Moreover, if the original run is Biichi accepting, then
there is some block (along with some events in blocks before it) that gives a global run which
is Biichi accepting. We formalize this intuition below.

For an infinite sequence w € “ we define a trace of w as a labelled partial order
T, = (N, Ay, 1) where A\, (i) = w;, and <, the smallest transitive relation such that i <, j

if dom(w;) N dom(w;) # 0 and i < j. Observe that <, is reflexive.

» Definition 6. Two infinite runs u,w € X are trace equivalent, u ~ w, if the traces T,
and Ty, are isomorphic

We extend this notion to runs. Consider a local run
A b A b A
o = (qo,v0) = (qo,v}) = (q1,v1) = (q1,v]) = (g2, v2) —> -

A trace of o is a labelled partial order T, = (N, \,, <,) where A, (i) = (g;, v}, b;), and as

before <, the smallest transitive relation such that ¢ <, j if dom(b;) Ndom(b;) # 0 and i < j.

Observe that we take valuation v} in the label as it ensures that b; is enabled in (g;, v}).

To connect local and global time semantics we will rearrange actions depending on their
local time. We use 6, (i) for the local time of execution of action b; in the trace o; it is
given by 0, (i) = v}(t,) where p € dom(b;). Recall that by definition of an action transition,

!

vi(p) = vi(q) for all p,q, € dom(b;).

> Lemma 7. Ifi <, j then 0,(i) < 0,(j).

A trace prefix T' of a trace T, is a restriction of T, to some <,-downward closed subset
of N. A linearization of a trace T, is a bijection f : N — N such that if f(i) <, f(j) then

1 < j. This means that the order of elements in a linearization should respect the order in 7.
Observe that the sequence given by f should use all elements of Ty, because f is bijective.

The next lemma says that every linearization yields a local run.
» Lemma 8. For every T' a prefiz of T,, every linearization f of T' gives a local run.

The next result states the desired soundness property of the local-time semantics with
respect to the global semantics. As every global run is a local run, one direction of the
proposition is easy. The other side consists in finding a prefix of T, from which we can build
a global run as explained in the example above.

» Proposition 9. Consider a network of timed automata N'. There is a Biichi local run of
N iff there is a Biichi global run of N.
3.2 Local-Zone Graphs

Thanks to Proposition 9, we know that we can safely use the local-time semantics to detect
Biichi runs. However, we cannot solve the Biichi non-emptiness problem by an exploration
of the state-space of timed automata as it is uncountable. Algorithms for timed automata

12:7

CONCUR 2022

12:8

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

work with sets of configurations sharing the same discrete state. We copy this approach to
our setting. To start off, we lift operations on individual valuations to sets of valuations. For
a set of local valuations W, define:

local-elapse(W) := {v+ A |v e W, A e RE 1,

W/[R] := {v[R] | v € W}, for a set of clocks R C X.

Wng:={v|vk g} for a guard g.
Next, the transition relation on configurations can be lifted to sets. We write (¢, W) LN
(¢, W') when there exists a b-transition {(gi, b, gi, R, ;) }icdom(s) Such that:

source states match: ¢(i) = ¢; for all i € dom(b),

target states are reached: ¢'(i) = ¢} for all i € dom(b) and ¢’ (i) = ¢(i) otherwise,

W' = local-elapse(Ws) where Wy = W) [Upedom(b) R, with W7 =W n (/\pedom(b) gp A

Ntp =14 | p,q € dom(b)}), and W’ is not empty.

We will call == a symbolic transition. We write (g, W) Dala, (Gn, W) if there is a sequence

of symbolic transitions (q, W) =2 (g1, W1) -+ - =2 (gn, Wh).

Local-zones are special sets of valuations that occur naturally while computing the
reachable configurations. A local-zone is a set of valuations described by a conjunction of
constraints of the form x — y#c where 2,y € X UT, ¢ € Z and # € {<,<}. Local-zones
can be efficiently represented using Difference Bound Matrices (DBMs). It can be shown
that for a local-zone Z, the sets local-elapse(Z), Z[R] and Z N g (intersection with guard)
are local-zones [5, 16]. This leads to the definition of a local-zone graph that captures the
reachable configurations of a network.

» Definition 10 (Local-zone graph LZG(N)). The local-zone graph LZG(N) of a network N
is a transition system whose nodes are of the form (q,Z) where q is a state of the network,
and Z is a local-zone. The initial node is (qo, Zy) with Zy = local-elapse(Vy) where Vy is the
set of initial valuations (given by the local-zone Ay yexur®—y = 0) and qo = (¢, ..., ¢i").

The transitions are given by the symbolic transition relation (q, Z) = (¢',2).

The next lemma relates transitions over valuations and zones. Proof follows from the
definition of symbolic transitions. If Z = local-elapse(Z) then Z is time-elapsed.

» Lemma 11. For every network of timed automata and every action b:
b
pre-property: If (¢,v) --+ (¢',v") and v € Z for some time-elapsed local-zone Z then
(¢,2) N (¢',Z") and v' € Z' for some local-zone Z'.

post-property: If (¢, 2) LN (¢',Z") and V' € Z' for local-zones Z,Z’, then (q,v) LN (¢',v")
for some v € Z.

The initial zone is time-elapsed. By definition of the symbolic transition, every zone
reachable by = transitions is also time-elapsed. Using this observation along with the pre-
and post-properties of Lemma 11, we get the following theorem.

» Theorem 12 ([16, 5]). For a given network N, there is a run of N reaching a state q iff
there is a path in LZG(N) from the initial node to a node (q,Z).

This shows soundness and completeness of the local-zone graph with respect to state
reachability. In particular, soundness follows from the post-property and completeness follows
from the pre-property. Interestingly, these two properties are not sufficient to show soundness
for infinite runs. In other words, does an infinite run in the local-zone graph imply existence
of an infinite run in the local-time semantics? From the post-property, each prefix of the
infinite run in the local-zone graph leads to corresponding finite local-time run in the network.
However the problem of forming an infinite run from these prefixes is non-trivial.

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

In the global-time settings, the proof of soundness crucially relies on Alur&Dill’s finite
region bisimulation. However, there is no finite abstraction that is sound, complete and
that preserves all runs on the local zone graph [15]. This last property is crucial to apply
partial-order reduction techniques. In the next section, we consider a subclass of timed
networks for which we can define a finite region abstraction in the local-time settings.

4 A Region Equivalence for Bounded Spread Valuations

In this section we recall the notion of bounded spread networks of timed automata [15]. We

—D

then define a region equivalence =7, for such networks.

4.1 Bounded Spread Networks

We consider networks of timed automata where every feasible sequence of actions can be
done with bounded desynchronisation between the processes.

» Definition 13. Let D € N. A valuation v is said to have spread D if |v(t, —ty)] < D

A A .
for all processes p,q. A run (qo,vo) Lobo, (q1,v1) A0 s spread D if v; and v; + A;

Aog,bo

have spread D for all i > 0. A network N has spread D if for every run (qo,vo) ——

A1, . AfLb AL
(qi,v1) == ..., there exists a D-spread run (qo,vo) —=— (q1,v1) —=— --- over the

same sequence of actions, but with possibly different delays.

It has been shown that every network can be converted into a D spread network for any
arbitrary D > 1, by adding extra synchronizations [15]. Moreover, for D-spread networks it
is possible to get a finite abstraction of the local zone graph, by making use of simulations.

4.2 A Finite Region Bisimulation

A time-abstract simulation relation on the local semantics is a reflexive and transitive
relation between configurations having the same control state. Two conditions need to
be satisfied when (¢,v) < (g,v): (1) for every local delay A there exists A’ such that
(g, v+ A) < (q,v"+A"), and (2) for every transition (g, v) LN (q1,v1) there exists a transition
(g,v") LN (g1,v}) such that (g1,v1) < (q1,v]). When A = A’ we simply call 5 a simulation
relation. For technical convenience, we will use (time-abstract) simulation relations that do
not rely on the control state and depend only on the valuations. Hence we will write it as
v X v, a relation over valuations and use its straightforward extension to configurations:
(¢,v) < (¢g,v") if v < v'. The relation < is a (time-abstract) bisimulation relation if both <
and <! are (time-abstract) simulation relations.

The region equivalence of Alur and Dill [2] is a fundamental concept in the global-time
semantics that leads to a finite region automaton recognizing the untimed behaviour of
the system. This has been cornerstone of several decidability results for timed automata.
In the global-time semantics two valuations are made region equivalent with respect to a
constant M if for every clock, the values given by the two valuations lie in one of the intervals
[0],(0,1),[1],...,[M],(M,o0) and the ordering of fractional parts of clocks less than M is
the same in both valuations. In the local-time setting, there is an additional challenge. While
in the global-time semantics, when a clock goes beyond M, its actual value is irrelevant, it is
not the case in the local-time semantics. Indeed, if the difference ¢, —t, > M we cannot
forget the actual value, since ¢, can elapse some local time and bring the difference ¢, — ¢,
to something lesser than M. This is a fundamental difference between the two semantics,

12:9

CONCUR 2022

12:10

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

and this is the basic reason that leads to the result of [15] that there is no finite simulation
for the local-time semantics. This is why we need to restrict to D-spread valuations v
where |v(t, —t,)| < D. We show that with this restriction there is an adequate notion of a
region equivalence. We proceed in two steps: first we define when two local valuations are
“close-enough”, next we factor in the maximum constant M and bounded spread D to get a
finite time abstract bisimulation. Some of these results appear in [14].

For x € R, we write |z] for the greatest integer that is lesser than or equal to z.
We will write {z} for z — |x], the fractional part of = starting from [z|. For example,
[4.2] =4,{4.2} =0.2 and |—4.2] = —5,{—4.2} = 0.8. Notice that 0 < {z} < 1 for all z € R.

» Definition 14. For local valuations v and v', we define v ~* v’ if for all pairs of clocks
x,y € XUT (including reference clocks), we have |v(x —y)| = [v'(x —y)].

Notice that the above definition does not explicitly make use of {v(z — y)}. Some
relation between fractional values gets derived through the definition. For example, suppose
v(x —y) =1, then v(y — x) is —1. This will ensure v'(z —y) = 1 and v'(y — z) = —1. But if
v(z —y) = 1.5, then v(y — z) = —1.5, and in particular |v(y — z)] = |v'(y — z)] = —2. This
will say that 1 < v'(z —y) < 2 and —2 < v'(y — x) < —1. We will precisely derive some
useful properties later. Before that, we modify the definition to account for the maximum
constant.

» Definition 15 ((M, D)-equivalence). Let M : X — NU{—o00} be a bounds function mapping
each process clock to a non-negative constant or —oo when the value of the clock is irrelevant.
Let D € N denote a spread. For a local valuation v, let Bounded(v) = U, e procttp} U {7 €
X, | v(t, —x) < M(z)}. Notice that Bounded(v) contains all the clocks that have a value
below bound M in v as well as all reference clocks.

Two D-spread local valuations v,v’ are (M, D)-equivalent, denoted as v =2 o', if

- M
Bounded(v) = Bounded(v’)
vig =* V'|g where vig and v'|g denote the valuations v and v’ restricted to clocks in
B = Bounded(v).
For a D-spread valuation v, we write [v]2 to denote the equivalence class of v under =2 and
refer to it as the (M, D)-region of v.

Intuitively, the above definition says that v =2 v’ if the bounded part of v and v’ are
close enough. This is in the same spirit as in the global-time semantics. Now the goal is to
show that =P is a time-abstract bisimulation. The most difficult part is to prove that for all
local delays A, there exist local delays A’ such that v + A =2 o' + A’. This is shown in the
next lemma. We denote by i>p a delay of § time units in process Ap.

!

» Lemma 16. Let v =* v'. For every local delay v i>p u, there exists a &' such that

v’ 6—>p u where u ~* u'.

The next task is to show that if M is appropriately chosen, the =2 equivalence also
preserves actions. We say that a network N conforms to bounds function M if every
constraint & ~ ¢ in N satisfies ¢ < M(z).

» Lemma 17. Let v,v’ be D-spread valuations such that v =2 v'. Let N be a network that
conforms to M. For every action transition (gq,v) LN (q1,v1) we have (q,v") N (q1,v})
such that vi =2 v].

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

» Corollary 18. Let N be a network that conforms to M and let v =2 v' be D-spread
valuations. For every (q,v) NI (q1,v1) such that v+ A is D-spread, there exists a A’
such that v' + A’ is D-spread and (q,v") NN (q1,v]) with vy =2 v].

The corollary shows that =% is a time-abstract bisimulation on the local semantics

restricted to D-spread configurations. This also motivates the following definition of a region
graph obtained as a quotient of the =% equivalence. Recall that the initial valuations are
_D

given by {v | v(z) = v(y) for all clocks z,y}. Hence by definition of =2 equivalence all of
them fall in one equivalence class.

» Definition 19 ((M, D)-region graph). Let N be a network. A node of an (M, D)-region
graph of N is of the form (q,[v]2) where q is a state of N and v is a D-spread valuation.
There is a transition (q, [v]Y) LN (g1, [n1]%) if (q,v) LN (q1,v1) for some local delay A
such that v+ A is D-spread. The initial node is (qo, [vo]%,) where vy is any initial valuation
and qq 1s the tuple of initial states.

» Theorem 20. Let N be a network that conforms to bounds function M. Then:

0,bo

For every D-spread local run (qo, vo) Losbo, (q1,v1) -+, there exists a run (qo, [vo]%) LN
(q1,[v1]%) -+ in the (M, D)-region graph.

For every run (qo, [vo]%)) Lo, (q1,[v1]5) -+ in the (M, D)-region graph, there exists a

D-spread local run (qo,v() Lobo, (q1,v1) -+ such that vj € [v;]%, for alli > 0.

The (M, D)-region graph is finite.

5 Abstraction and Partial-Order Reduction for Biichi Runs

The goal of this section is to make use of the local zone graph (Definition 10) for solving the
Biichi non-emptines problem. We will start by showing that the local zone graph LZG(N)
is sound and complete for infinite runs of bounded spread networks (Proposition 21). This
is only the beginning because: (i) the local zone graph is still potentially infinite, and (ii)
the statement does not talk about partial-order reduction. In the next step we introduce a
quasi-abstraction ag Lu» and a partial-order approach. Then, we show that their combination
maintains correctness for Biichi runs.

» Proposition 21. Let N be a D-spread network. There is an infinite D-spread local run

Aq,by

(go,vo) Lobo, (q1,v1) —= -+ in N iff there is an infinite path (qo, Zo) Lo, (g1, 21) LI
in LZG(N).

Proof. Left-to-right direction follows from the pre-property of local zone graph, Lemma 11.

We focus on the right-to-left direction.
Let S; be the set of all D-spread valuations u; € Z; such that there is a D-spread run as
below leading to u;:

AG b Al by Ay by
(qo,u0) —=—= (qu,u1) —=>— -+ ———— (qi, ;)

with ug an initial local valuation. The set S; need not contain all D-spread valuations of
Z;. Consider some D-spread valuation v of Z;. Due to the post-property, it has some run
leading to it, not necessarily D-spread. As the network is D-spread, there is a corresponding
D-spread run over the same sequence of actions. However this run may not end up in the
same valuation v.

12:11

CONCUR 2022

12:12

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

Let us come back to the D-spread run given above. Due to the pre-property of local
zones, we have uy € Zy for all 0 < k <1i. As A is D-spread, S; is indeed non-empty, for all
1 > 0. In fact, each uy in the above run belongs to Sj as the prefix with actions bg - - by_1 is
a D-spread run leading to (gx, ug). Therefore, for every u;+1 € S;41, there exists a u; € S;
such that (g;, u;) TN (Git1,uit1) for some local delay Al

Construct a graph with nodes (i, g, [u;]%,) for each u; € S;. Add an edge (4, g, [us]%) —
G+ 1, qiv1, [wir1]%) if (qi, us) NN (¢i+1,ui+1). Due to the discussion in the previous
paragraph, every node has a predecessor. Moreover, by Theorem 20, there are finitely many
(M, D)-regions, so this graph is finitely branching. Hence there is an infinite path in this
graph. This path corresponds to an infinite path in the (M, D)-region graph. Thanks to
Theorem 20, this can be instantiated into an infinite D-spread local run |

5.1 Abstractions and Partial-Order Methods

We recall some notions from [15]. A quasi-abstraction a is a function that maps each zone
Z to a set of valuations a(Z) such that a(a(Z)) = a(Z). A finite quasi-abstraction function
ag Lo has been studied in the context of reachability [15]. It is based on a preorder relation
between local valuations.

» Definition 22 (The <7, -preorder). Let L : X — {— oo} UNand U : X — {—oco} UN be
two functions. For two valuations v and v', we say v <5, v if:
v(ty, —tq) = V'(tp — tq) for all processes p,q
for all processes p and all x € X,

v(t, —x) < U(zx) implies v'(t, —x) < v(t, —),
v(t, —x) < L(x) implies v'(t, — z) > v(t, — x),
v(t, — x) > L(x) implies v'(t, — x) > L(z)

Notice that if v is a D-spread valuation and if v <%, v/, valuation v’ is also D-spread.
Here is a known result about <%,. We say that a network N conforms to bound functions L
and U if for every process clock « we have L(x) > ¢ for every lower bound guard z > ¢,z > ¢
occurring in N, and U(z) > ¢ for every upper bound guard x < ¢,z < ¢ in N.

» Lemma 23 ([15]). Let N be a D-spread network that conforms to given LU bounds. The
<%, pre-order is a simulation on the local semantics of N': if v <%, v and (q,v) N (q1,v1)

ALb
then (g,v") == (q1,v}) and vy X7, v].
The <73, relation is now lifted to zones, but restricted to D-spread valuations.

» Definition 24 (a2, -quasi-abstraction). For a zone Z, we define spreadp,(Z) = {v € Z |
v has spread D}. We define a2 (Z) = {v | I’ € spread,(Z) such that v <3, v'}.

The ag L, operator can be used to give a finite abstraction of the local zone graph LZG(N),
by truncating exploration of Z if a2, (Z) C a2, (Z’) and continuing the exploration from
Z'. The operation a2, (Z) C a2, (Z’) is known as subsumption in the literature [23, 18].
For Biichi non-emptiness, subsumptions cannot be used directly since we need to find
cycles [23, 18]. We will define an abstraction of the local zone graph that makes use of
equality with respect to a2, . Notice that the equality a2, (Z) = a2, (Z’) can be checked
efficiently in time O((| X |+ |T])?) [15]. We will first present our view of partial-order methods
and then combine this with the a2, operator in our new abstraction of the local zone graph.

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

We describe a generic approach to partial-order methods on local zone graphs. Then our
main result will say that once we have a method that works on LZG(N'), we can use the
same method on a finite abstraction of LZG(N) obtained using ag Lu-

We formalize what it means to have a partial-order method on LZG(N) using a notion
of a source function. Let enabled(g, Z) denote the set of actions b € ¥ that are enabled from

the node (g, Z), i.e. such that there exists an edge (¢, Z) LN (¢', Z") for some (¢', Z").

» Definition 25. A source function for a timed network N is a function src: Q x P(X) —
P(X). An action b is source enabled in (q,Z) if b € src(q,enabled(q, Z)). A source path is
a path taking only source enabled actions. A source function is trace faithful if for every
node (q, Z) of LZG(N), and an infinite path u from (q, Z) in LZG(N) there is a source path
w ~u from (g, Z) in LZG(N).

Obeserve that this definition of a source function allows to store some information in the

state (like which process moved just before, etc.). Indeed such information is important for
certain partial-order reduction approaches.

5.2 Local Zone Graph with Abstraction and Partial-Order

We are now in a position to define a local zone graph for the Biichi non-emptiness problem.

This zone graph will use ag L for finiteness and an arbitrary source function for partial-order
reduction.

» Definition 26 (eLZG[;;"*(N)). Let N be a D-spread network conforming to a given
LU-bounds. Let src : Q x P(X) — P(X) be a trace faithful source function. The graph
eLZG7;;(N) is a subset of nodes and edges of LZG(N') together with some new edges called
equality edges. Fach node is labeled either covered or uncovered. The graph must satisfy the
following conditions:

The initial node of LZG(N') belongs to the graph.
For every uncovered node (q,Z) of eLZG[;;"*(N) and for every b € src(q, enabled(Z))
the transition (¢, Z) % (¢, Z') present in LZG(N) should be in eLZG*(N).

For every covered node (g, Z') there exists an uncovered node (q, Z) with a2, (Z) =

a2, (Z'); moreover there is an explicit equality edge (¢, Z) —¢ (¢, Z') in eLZG; " (N).

Every node of the graph is reachable from the initial node by a path of = edges.

We write ~ to mean a, possibly empty, sequence of equality edges followed by LN edge.

Similarly ~> stands for a sequence of = edges possibly with equality edges in between.

Let M be defined as M (z) = max(L(x),U(zx)) for every process clock z. The next lemma
gives a useful property of the ag Lu abstraction which entails that the above local zone graph
is a finite object.

» Lemma 27. For every zone Z, the abstraction o (Z) is a union of (M, D)-regions. The
graph eLZGP:**(N) is finite for D-spread networks N .

LU

Our goal is to show soundness and completeness of eLZGT;7"(N) for Biichi non-emptiness.

We have already seen in Proposition 21 that LZG(N) is sound and complete. Therefore we
will now relate paths in LZG(N') with paths in eLZG7; " (N).

12:13

CONCUR 2022

12:14

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

5.2.1 Soundness

For soundness, we want to show that every infinite path in eLZG?;*"*(N) corresponds to
an infinite path in LZG(N). The main difficulty in the argument comes from equality
edges. Consider two reachable nodes (g1, Z1) and (g1, Z}) such that a2, (Z1) = a2, (Z]).
Let us say there is an equality edge (q1,21) —e (q1,2]). Hence, eLZGL;"¢(N) does not
contain paths from (g1, Z;). We must thus show that for every path from (g1, Z;) in LZG(N)
there is a similar path from (qy, Z1). One may guess that as <}, is a simulation, for every

(ql,Zl) (g2, Z2), we have (ql,Zl) (g2, Z5) with a2, (Z]) = aZ,,(Z5). But this is not

true. Notice that the a2 <rv operator restricts to D-spread valuations. So it can say nothing
about the other valuations of Z; and Z; and these non D-spread valuations may lead to
D-spread valuations in Zs and Z5. We have no control on such valuations just by using the
fact that <%, is a simulation. Nevertheless, we are able to show soundness of eLZG?,, (N),
albeit with a more involved reasoning that additionally uses the fact that A is a D-spread

system and the network N is deterministic.
» Lemma 28. Let N be a deterministic D-spread network conformz’ng to LU -bounds. Let
(q1,Z1) be a node reachable from (qo, Zo), namely (qo, Zo) == (q1, Z1) for some o1 € L.
Let (q1, Z1) be a reachable node of LZG(N) that satisfies a2, (Z1) = a2, (Z]).

For every finite or infinite sequence of transitions oo: if (q1, Z1) == in LZG(N), then

(q1,2)) 2= in LZG(./\/). Moreover, z'f o9 1s finite then enabled(qq, Z3) = enabled(qa, Z4),
where (q1, Z1) == (g2, Z2) and (q1, Z1) == (g2, Z5).

Proof. Suppose o5 is finite. Consider the sequence (qo, Zo) == (q1, Z1) == (ga, Z2). By post-

property, there exists a local run (g, vo) 71, (g1,v1) 22, (g2,v2) with vy € Zy,v1 € Z; and
vy € Zo. As N is D-spread, we can assume this run to be D-spread. Thus, vy € spread(Z1).
As a2, (Z1) = aB,,(Z]), there exists v] € spreadp(Z]) such that vy <}, v}. Hence
there exists a run (ql7 v) 72 (g2, v5). By pre-property, there exists a sequence of symbolic
transitions (q1, Z}) == (g2, Z3).
If o9 is infinite, then the above argument says that for every finite prefix o3 of o5 there is a
sequence (qg, Z4) ==. Since N is deterministic, the local zone graph LZG(N) is deterministic.

Hence we get the presence of the infinite path o9 from (go, Z4), that is, (qg, Z5) 2

For the last statement consider (¢1,21) == (g2, Z2) and (q1, Z}) == (ga, Z5). Say b is

enabled from (g2, Z2). Using the first statement of the lemma o9b is possible from (g1, Z1),
thus b is possible from (g2, Z5), as the transition system is deterministic. The case of b from
(g2, Z4) is the same by exchanging the roles of Z; and ZJ. <

» Lemma 29. Let N be a deterministic D-spread network that conforms to a bounds
LU -bounds.

Let (q0, Zo) 5 (¢, Z2) %5 (g, Z) be a path in eLZGP:"*(N) which could potentially contain
equality edges. Then, there exists an infinite D-spread local run over the sequence o,(0c)“.

5.2.2 Completeness

We now move on to showing that the graph that is computed is complete for Biichi non-
emptiness. Recall that covered nodes and successors via actions that are outside the src are
not explored in eLZGZ;7"*. We will now make use of Lemma 28 to show that source paths in
LZG(N) are preserved in eLZGfif” (N). Later, for the final result, we will use the fact that
sre is trace faithful.

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

» Lemma 30. Let N be a D-spread network that conforms to a bounds function LU. Let
(go, Zo) LN (q1,721) L be an infinite source path in LZG(N). Then there is an infinite path

b, by . sre
(90, Zo0) ~> (q1, Z1) ~> - -+ in eLZG;"(N).

» Theorem 31. Let N be a deterministic D-spread network that conforms to LU -bounds and
let F be a set of accepting actions. Then, there is an infinite global run visiting F infinitely
often, iff there is a reachable cycle in eLZG?,(N) containing an edge over an action in F'.

Proof. By Proposition 9, there is an infinite global run visiting F' infinitely often iff there
is an infinite local run visiting F infinitely often. Since N is D-spread, there is an infinite
D-spread run with the same sequence of actions. Therefore it remains to prove that there is
a D-spread local run visiting F infinitely often iff there is a reachable cycle in eLZG7,, (N)
with an action in F.

Suppose there is such a local run. Proposition 21 says that there is an infinite Biichi path
in LZG(N) from (go, Zo). Since the source function is assumed to be trace faithful, there
is a source path that visits F' infinitely often. Lemma 30, gives us a Biichi source path in
eLZG?:2(N). The eLZG7;"*(N) graph is finite (Lemma 27). Hence the infinite path leads
to a cycle. As the infinite path contains F' infinitely often, the cycle contains an action in F'.

For the other direction, suppose there is a reachable cycle containing F' in eLZG, ;" (N).
Lemma 29 gives a D-spread local run with the same sequence of actions and control states.

Hence, this local run visits F' infinitely often. |

6 Conclusions

We have developed a setting allowing to use partial-order methods for solving the Biichi
non-emptiness problem for timed systems. Partial-order methods exploit commutation of
independent actions. This is why we use local-time semantics for networks of timed automata.
For a given network N we define a finite local-zone graph eLZGT;7"*(N) such that there is a
Biichi run in NV if there is a Biichi path in eLZG7;7"¢(N). Moreover, if we have a partial order
method that works on the, potentially infinite, local-zone graph LZG(N/), this method can be
used for exploring eLZG7;"(N). We find this a satisfying formulation since in eLZG7;"*(N)
independent actions do not necessarily commute, due to equality edges.

We did not present here a concrete partial-order method that can be used in our setting.
In principle, any ample/persistent /stubborn set method can be used to calculate what we
call here source sets. These methods become quite complicated when dealing with infinitary
conditions, and these complications limit the efficiency of partial-order reductions. As a first
step, it would be reasonable to assume some structural properties, like may-termination [31],
but we do not have a satisfying solution at this point.

We did not address the question of Zeno runs. Often one is not just interested in existence
of a Biichi run but also wants it to be non-Zeno, that is, a run where time diverges. While
there is no consensus on what kind of infinite runs can be considered realistic, it is rather clear
that Zeno runs are not realistic. It is always possible to convert a network to a strongly non-
Zeno network [29] and encode the non-Zeno requirement in a Biichi condition. Sometimes
this construction can produce a blow-up than can be alleviated with more complicated
approach [19]. It remains to be seen if this construction can be adapted to the local-time
semantics.

12:15

CONCUR 2022

12:16

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

—— References

1

10

11

12

13

14

15

16

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Source sets:
A foundation for optimal dynamic partial order reduction. J. ACM, 64(4):25:1-25:49, 2017.
doi:10.1145/3073408.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183—
235, 1994. doi:10.1016/0304-3975(94)90010-8.

Etienne André, Jaime Arias, Laure Petrucci, and Jaco van de Pol. Iterative bounded synthesis
for efficient cycle detection in parametric timed automata. In Jan Friso Groote and Kim Guld-
strand Larsen, editors, Tools and Algorithms for the Construction and Analysis of Systems -
27th International Conference, TACAS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Luzembourg City, Luzembourg, March 27 -
April 1, 2021, Proceedings, Part I, volume 12651 of Lecture Notes in Computer Science, pages
311-329. Springer, 2021. doi:10.1007/978-3-030-72016-2_17.

Gerd Behrmann, Patricia Bouyer, Kim Guldstrand Larsen, and Radek Peldnek. Lower and
upper bounds in zone-based abstractions of timed automata. Int. J. Softw. Tools Technol.
Transf., 8(3):204-215, 2006.

Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial order reductions for
timed systems. In CONCUR, volume 1466 of Lecture Notes in Computer Science, pages
485-500, 1998.

Frederik Meyer Bgnneland, Peter Gjgl Jensen, Kim Guldstrand Larsen, Marco Muniz, and
Jiri Srba. Stubborn set reduction for two-player reachability games. Log. Methods Comput.
Sci., 17(1), 2021. URL: https://lmcs.episciences.org/7278.

Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods Syst. Des.,
24(3):281-320, 2004.

Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier, and Ocan Sankur. Robust
controller synthesis in timed biichi automata: A symbolic approach. In Isil Dillig and Serdar
Tasiran, editors, Computer Aided Verification - 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in
Computer Science, pages 572-590. Springer, 2019. doi:10.1007/978-3-030-25540-4_33.
Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman. Value-centric dynamic
partial order reduction. Proc. ACM Program. Lang., 3(OOPSLA):124:1-124:29, 2019. doi:
10.1145/3360550.

Dennis Dams, Rob Gerth, Bart Knaack, and Ruurd Kuiper. Partial-order reduction techniques
for real-time model checking. Formal Aspects Comput., 10(5-6):469-482, 1998. doi:10.1007/
s001650050028.

Conrado Daws and Stavros Tripakis. Model checking of real-time reachability properties using
abstractions. In TACAS, volume 1384 of Lecture Notes in Computer Science, pages 313-329.
Springer, 1998.

Laurent Fribourg. A closed-form evaluation for extended timed automata. Technical report,
CNRS and Ecole Normale Supérieure de Cachan, 1998.

Patrice Godefroid and Pierre Wolper. A partial approach to model checking. Inf. Comput.,
110(2):305-326, 1994. doi:10.1006/inco.1994.1035.

R. Govind. Partial-order reduction for timed systems. PhD thesis, Université de Bordeaux,
France and Chennai Mathematical Institute, India (cotutelle), 2021.

R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Abstractions for the
Local-time Semantics of Timed Automata: a Foundation for Partial-order Methods. To appear
at 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2022. URL:
https://hal.archives-ouvertes.fr/hal-03644039.

R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Revisiting local time
semantics for networks of timed automata. In CONCUR, volume 140 of LIPlcs, pages
16:1-16:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019.

https://doi.org/10.1145/3073408
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-030-72016-2_17
https://lmcs.episciences.org/7278
https://doi.org/10.1007/978-3-030-25540-4_33
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1007/s001650050028
https://doi.org/10.1007/s001650050028
https://doi.org/10.1006/inco.1994.1035
https://hal.archives-ouvertes.fr/hal-03644039

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Henri Hansen, Shang-Wei Lin, Yang Liu, Truong Khanh Nguyen, and Jun Sun. Diamonds are
a girl’s best friend: Partial order reduction for timed automata with abstractions. In CAV,
volume 8559 of Lecture Notes in Computer Science, pages 391-406. Springer, 2014.

Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz. Why liveness
for timed automata is hard, and what we can do about it. ACM Trans. Comput. Log.,
21(3):17:1-17:28, 2020.

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient emptiness check for timed
biichi automata. Formal Methods Syst. Des., 40(2):122-146, 2012.

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Lazy abstractions for timed
automata. In CAV, volume 8044 of Lecture Notes in Computer Science, pages 990-1005.
Springer, 2013.

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. Inf. Comput., 251:67-90, 2016. doi:10.1016/j.ic.2016.07.004.

Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor Vafeiadis. Truly
stateless, optimal dynamic partial order reduction. Proc. ACM Program. Lang., 6(POPL),
January 2022. doi:10.1145/3498711.

Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard, Kim Guldstrand Larsen,
and Jaco van de Pol. Multi-core emptiness checking of timed biichi automata using inclusion
abstraction. In CAV, volume 8044 of Lecture Notes in Computer Science, pages 968—-983.
Springer, 2013.

Kim G. Larsen, Marius Mikucionis, Marco Muiiz, and Jir{ Srba. Urgent partial order reduction
for extended timed automata. In Dang Van Hung and Oleg Sokolsky, editors, Automated
Technology for Verification and Analysis - 18th International Symposium, ATVA 2020, Hanot,
Vietnam, October 19-23, 2020, Proceedings, volume 12302 of Lecture Notes in Computer
Science, pages 179-195. Springer, 2020. doi:10.1007/978-3-030-59152-6_10.

Guangyuan Li. Checking timed biichi automata emptiness using lu-abstractions. In FORMATS,
volume 5813 of Lecture Notes in Computer Science, pages 228—242. Springer, 2009.

Jesper B. Mgller, Jakob Lichtenberg, Henrik Reif Andersen, and Henrik Hulgaard. Fully
symbolic model checking of timed systems using difference decision diagrams. Electron. Notes
Theor. Comput. Sci., 23(2):88-107, 1999. doi:10.1016/51571-0661(04)80671-6.

Doron A. Peled. All from one, one for all: on model checking using representatives. In
Costas Courcoubetis, editor, Computer Aided Verification, 5th International Conference, CAV
’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in
Computer Science, pages 409-423. Springer, 1993. doi:10.1007/3-540-56922-7_34.
Stavros Tripakis. Checking timed biichi automata emptiness on simulation graphs. ACM
Trans. Comput. Log., 10(3):15:1-15:19, 2009.

Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed Biichi automata
emptiness efficiently. Form. Methods Syst. Des., 26(3):267-292, 2005.

Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz Rozenberg,
editor, Advances in Petri Nets 1990 [10th International Conference on Applications and
Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings], volume 483 of Lecture Notes
in Computer Science, pages 491-515. Springer, 1989. doi:10.1007/3-540-53863-1_36.
Antti Valmari. Stop it, and be stubborn! ACM Trans. Embed. Comput. Syst., 16(2):46:1-46:26,
2017. doi:10.1145/3012279.

Antti Valmari and Henri Hansen. Stubborn set intuition explained. Trans. Petri Nets Other
Model. Concurr., 12:140-165, 2017. doi:10.1007/978-3-662-55862-1_7.

Naling Zhang, Markus Kusano, and Chao Wang. Dynamic partial order reduction for relaxed
memory models. In David Grove and Stephen M. Blackburn, editors, Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015, pages 250-259. ACM, 2015. doi:10.1145/2737924.2737956.

12:17

CONCUR 2022

https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1145/3498711
https://doi.org/10.1007/978-3-030-59152-6_10
https://doi.org/10.1016/S1571-0661(04)80671-6
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1145/3012279
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1145/2737924.2737956

12:18

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

A Appendix for Section 3

» Lemma 8. For every T' a prefiz of T,, every linearization f of T' gives a local run.

Proof. We will suppose that 7" is infinite. For finite 7" the argument is essentially the same.
Consider a linearization of a prefix of T, given by a 1-1 function f : N — N. This means
that rng(f) is <,-downwards closed: if j € rng(f) and ¢ <, j then i € rng(f). We construct
a local run:

Af0)broy - Apaybr)
) Sre2@, () Drete,

(@t (0)> V1(0) df(1); V(1)

In order to state the invariant we define a function flast(i, p) giving the last action before
1 with an action of process p: flast(i,p) = f(I) where [the largest number strictly smaller
than i with by an action of p; we keep flast(i, p) undefined if there is no such /. Recall that
a state ¢ = (¢, ...,q") is a tuple of states of component processes. We use ¢” for the p-th
component of ¢. The invariants are:

for every process p, cj?(i) = q;)last(i,p)—&-l or q‘?(i) = ¢} if flast(i, p) undefined.

for every process p, vs(;)(tp) = 0(f(4)) if p € dom(by(;); otherwise v (t,) = 0(flast(i, p))

or Uy (tp) = vo(tp) if flast(i,p) is not defined.

for every x # t, a clock of process p: if flast(i,p) is defined then vy (x) = v(z)

where v(2) = Vfast(i,p)[R] and R are resets of bast(i,py; if flast(i,p) not defined then

V(i) () = vo(z).
We set qroy = qro) and Uso)(tp) = 0(f(0)) for p € dom(bsy) and vsg)(tp) = vo(tp)
otherwise. Finally, we set vy = vo(z) for all other clocks. This satisfies the invariant as
bf(o) is <-minimal action.

Suppose that we have constructed a run up to (cjf(i),ﬁf(i)). The invariants guarantee
that for every process p € dom(bs(;)) we have:

- _ P

OBIIOR

Vrey(tp) = vy (tp) and Vg () = vy() () for every clock x of p.
Since by(;y is enabled from (g (;), vy (;)) this shows that it is also enabled from (Gz), Vfi))-

Consider (Gs(), Vf()) M (qv,vp). We need to show that g, = Gf(;4+1) and that there is A
giving vp + A = 0(f(i + 1)).

We start with g,. Take a process p € dom(bs(;)) then flast(i + 1,p) = f(i) and we get
q = qfiast(i-{-l,p)-{-l' For p ¢ dom(by(;)), we have g = (j?(i) = q]%ast(i,p)—i—l = q%ast(i—&-l,p)-ﬁ-l'
The last equality is because flast(i,p) = flast(i + 1,p) when p & dom(bys(;)).

Now we look at reference clocks t,. If p € dom(bs(;)) \ dom(bs41y) then we have
vp(ty) = 0(f(i)) = 0(flast(i,p)) as required. If p & dom(bys;y) U dom(bs(it1)) then vy(t,) =
0(flast(i,p)) = O(flast(i + 1,p)). If p € dom(bsiy1)) then vy(t,) = O(fast(i + 1,p)) <
8(f(i+ 1)) so we take §, = 0(f(i + 1)) — vs(tp) to reestablish the invariant.

Finally, to check the third invariant take a clock x # t, of a process p. Recall that
vy = V() [Rp] where Ry, are resets of action by(;). If p € dom(bs(;)) then v in the invariant
is vy(;)[R] because flast(i + 1,p) = f(i). This is as required. If p & dom(bs(;)) then
flast(i + 1,p) = flast(i,p) and vy(x) = Vy(;), so we are done in this case too.

Hence, we have prolonged the run to (41, U¢@i+1)) and all invariants are satisfied. By
induction we obtain the desired local run corresponding to a linearization f. <

» Proposition 9. Consider a network of timed automata N. There is a Biichi local run of
N iff there is a Biichi global run of N.

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Proof. Since a global run is also a local run, one direction is easy.

For the other direction, let us take a local run with infinitely many occurrences of actions
from F', and construct a global run. Recall that 6(¢) is the time of the execution of action b;,
namely v;(t,) for p € dom(b;). Consider an order ¢ < j when (i) < 6(j) or 6(i) = 6(j) and
1< J.

This order is a linear order <, and moreover if 7 < j then it is not the case that j <1
(Lemma 7). Yet the linear order < may not have type w meaning that it can be a transfinite
sequence. We find a prefix T of T, such that < is a linearization of T of type w and T has
infinitely many occurrences of actions from F.

Before doing this let us see how this gives us a desired global run. The <-linearization of
some prefix T of T, gives us a local run (Lemma 8):

A b Af
o = (qo;v0) = (go,vg) == (q1,v1) —> -~

with 8(0) < (1) < ---. We define v;(t,) = 0(¢) for all process p and v;(x) = v;(z) for all
other clocks z. Clearly all ¥} are synchronized valuations. We claim that

_\ 0 _/\ b _ .6 _
0= (QOv'UO) = (CIOW(/)) = (QhUl) = ((J1,UI1) .

is a global run (where §; = 0(i) — (i — 1), and ¥;41 is determined by v} and resets of
b;). For this we verify that every transition (g;, v}) LN (¢it1,Vit1) AN (Qit1,0;,) exists.
We know (g;,v}) LN (Gi+1,vi+1). We also have by assumption that v;(t,) = (i) = v}(t,)
for all p € dom(b;), as well as v;(z) = v}(z) for all clocks x that are not reference clocks.
Hence (g;, v}) LN (git1,vp) exists. We have vp(z) = v;41(x) for all clocks that are non-
reference clocks. Additionally vy (¢,) = v}(t,) = 6(4) for every process p. Hence, if we take
diy1 = 0(i + 1) — 0(i) we get vj,; = vp + ;41 as required. Repeating this reasoning we
construct a desired run.

We come back to the problem of finding a desired linearization. If < gives a linearization
of T, of type w then we are done. Otherwise, consider the set I = {i : ¢ has finitely many <
—smaller elements}. We have that < is an order of type w on I. Moreover I is a <,-downward
closed as it is impossible to have j <, i and ¢ < j at the same time. If I contains infinitely
many occurrences of actions from F' then I defines a prefix we are looking for. Otherwise
N\ I is infinite and there are infinitely many actions from F in N\ I. Consider the set of
processes P, such that there is an action b € N\ I with p in its domain. For every p € P
find the <-smallest j, € N\ I such that p € dom(b;,). We claim that there are finitely
many ¢ € I with 7 <, j,. Indeed i 4, j, implies ¢ < j in the standard order on natural
numbers. Let Iy contain all such i for all p € P. We claim that for i € I'\ Iy we have i 4, j
for every j € N\ I. Hence Ip U (N\ I) is a prefix of T,,. Moreover, it contains infinitely
many occurrences of actions from F since I contains only finitely many of those and N has
infinitely many. If <-linearization of Iy U (N '\ I) has type w then we are done. If not then
we repeat the argument. Observe that this time we have fewer processes such that there are
infinitely many actions involving the process (none of the processes involved in actions from
I\ Iy are there). Thus the argument must terminate giving us the desired prefix. |

B Appendix for Section 4

» Lemma 32. For all x € R\ Z, we have {—x} =1 — {x}.

12:19

CONCUR 2022

12:20

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

Proof. We have z = |z] + {2z} and —a = |—z]| + {—z}. Therefore —(|z] + {z}) =
|—z| + {—z}. Secondly, |—z| = —|z| — 1 for all z € R\ Z. Plugging this into the previous
equation gives the required conclusion. |

» Lemma 33. For z,y,z € R such that z —x € R\ Z, we have {z — z} < {z —y} iff
-yl =l -2+ [z -y]+1

Proof.

rT—Y=Tr—2+z—yY
=lr -2+ -yl +{z -z +{z -y}
=le—z+le—yl+1-{z-ap+{z -y}

This gives the statement of the lemma. <

» Lemma 34. Letx,y,z € R, such that {x—z} > 0 and {y—2z} > 0. Then, {x—2z} < {y—=z}
iff{z -2} = {z -y}

Proof. Follows by using {r —z} =1—{z—=a}and {y — 2} =1 —{z — y} (Lemma 32). <«

» Lemma 35. Let v =* v'. Then, for variables z,y,z € X U X', we have {v(z — x)} <

{o(z —y)} iff {v'(z —2)} < {v'(z —y)}
Proof. Follows from Lemma 33 and Definition 14. <

!

» Lemma 16. Let v =* v'. For every local delay v —6—>p u, there exists a &' such that

v’ Lp u’ where u ~* u'.
Proof. We assume that 0 < d < 1. If § > 1 then we can decompose it into its integral part

and fractional part and repeat the reasoning.
We divide the variable differences into three sets:

Ct={t,—z|ze X\ {tp}}
C={z—tp, | ze X\ {tp}}
C'={z—y|z,ye X\ {t}}

A local delay of § increases the value of differences in C'*, decreases the ones in C~ and
leaves the C? differences unaltered. Consider an element ¢ € Ct. Based on the relation
between § and 1 — {v(¢)}, its value either stays in the same integer interval, or moves to the
next integer point, or to the next integer interval. A symmetric change happens in C~. We
now make this idea more precise.

u(ty —z) =v(ty —2)+96

= oty — 2)] +{v(tp —2)} + 0

=, —2)|+1—{v(z—1tp,)}+6 when v(t, —2) #0
u(z—t,) =v(z—1t,) =9

= vz =) +{v(z —tp)} =4

From the above calculations, we observe some properties:

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

When {v(t, — 2)} # 0:

lulty = 2)] = |v(t, = 2)] + 1iff 6 > {v(z = 1,)} (1)
lu(z = tp)] = [v(z = tp)] = 1iff 6 > {v(z — 1)} (2)

Note that the difference in the inequalities (> in (1) and > in (2)) is expected, since for
any ¢ € R we have |—z] = —|z] if {#} =0, and |—z] = —|z] — 1 otherwise. Among the
ordering of fractional parts of differences in C'~ for v, consider (21 — t,), (22 — t,,) that are
consecutive in this ordering such that {v(z; —t,)} < ¢ < {v(22 —tp)}. Replace {v(z1 —tp,)}
with 0 if no such z; exists, and replace {v(zz — ¢,)} with 1 if no such z, exists.

We now propose a ¢’ as required. From Lemmas 34 and 35, we know that the fractional
parts of differences in C~ are ordered in the same way in v and v'. We take any ¢ with
{V'(z1 —tp)} <& < {v/(22 —t},)}, such that in addition ¢’ = {v'(z1 —tp)} if 6 = {v(z1 —t,)}.
Let v/ =o' + §’. Since we started with v =* v/, from (1) to (4) we get u ~* v’ <

The following lemma shows that =2 equivalence is preserved by choosing appropriate

local delays.

» Lemma 36. Let v,v’ be D-spread valuations such that v =2 v'. For every local delay A
such that v+ A is D-spread, there exists a local delay A" such that v' + A’ is D-spread and
v+ A=+ A

- M
Proof. Let A = {0, }pcproc. We can break the local delay A into a sequence of local delays

%% -+ happening one process at a time. Therefore it is sufficient to prove the lemma
for a local delay of one process, say ¢, at process p.

=b o', By definition, we have
Bounded(v) = Bounded(v’) and v 5 &* v'| g, where B = Bounded(v). From Lemma 16, for
every local delay &), there exists a delay 4, such that (v +,dp)|5 ~* (V' 4 0;,)| 5. Clocks
outside B are unbounded both in v 4, ¢, and v’ +, 51'9. Finally, we are interested only in
delays 6, such that v 4, 0, is D-spread. Since all the reference clocks are present in B, we
have | (v +p 8p)(tr — ts)] = [(v' +, 0,)(t — ts)]. This shows that v+, §;, is D-spread. All
these observations lead to v+, d, =5, v +, 0,,. <

Consider the given valuations v,v’ which satisfy v

» Lemma 17. Let v,v' be D-spread valuations such that v =" v'. Let N be a network that

conforms to M. For every action transition (q,v) N (g1,v1) we have (q,v") N (g1,v7)
such that vi =2, v].

Proof. As (gq,v) LN (q1,v1), we have v(t, —t,) = 0 for all p,q € dom(b). Since v =5 v/, we
also have v'(t, —t,) = 0 for p, ¢ € dom(b). Secondly, v satisfies the guard g present in the b-
transition. As A conforms to M, every constraint in g is of the form z < ¢,z < corz > ¢,z >
¢ with 0 < ¢ < M(x). Hence, by definition of v = v’, valuation v’ satisfies g too. This shows
that b is enabled at (g, v’). Finally, resetting R from v sets differences ¢, —x with x € X, N R
to 0. It does not change the values of differences between reference clocks. Hence both
[R]v and [R]v" are D-spread. Moreover, Bounded([R](v)) = Bounded(v) U R, which equals
Bounded(v') U R and hence Bounded([R]v’). We need to show that [R](v)|5, ~* [R](V')|p,
where B; = Bounded([R]v). So, we need to show that |[[R](v)(z —y)| = [[R](V')(z —y)].

12:21

CONCUR 2022

12:22

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

This is direct when both z,y € R, or when both z,y ¢ R. Suppose = € R,y ¢ R. We have
[Rlv(x —y) = v(t, —y) when z € X,,. Since t, and y are already in Bounded(v), we have
lv(t, —y)] = |V (tp, —y)| and hence |[R](v)(z —y)] = |[R](v')(x —y)|. Symmetric reasoning
works when = ¢ R,y € R. <

» Theorem 20. Let N be a network that conforms to bounds function M. Then:
For every D-spread local run (qo, vo) LN (q1,v1) - -, there exists a run (qo, [vo]%) LN
(q1,[11]%) -+ in the (M, D)-region graph.
For every run (qo, [vo]%)) LN (g1, [11]%) -+ in the (M, D)-region graph, there exists a

0o

D-spread local run (qo,v() Losbo, (q1,v]) -~ such that v} € [v;]% for all i > 0.
The (M, D)-region graph is finite.

Proof.
Follows from definition of region graph.
Given a transition (g;, [v;]%)) N (Git1, [Vit1])), for every valuation u; € [v;]%)), there is a
transition (g;, u;) LN (Git1,Uitr1) with w;4q1 € [v;41]2. This holds due to Corollary 18
and is sufficient to extract a run starting from some arbitrary initial configuration.
We claim that an (M, D) region is specified by the following information:
a subset B C Upe Proc Xp of bounded clocks,
for every process clock = € X, that is bounded, whether t, —z =core—-1<t,—z <e
forc€{0,...M(z)} and e € {1,..., M(2)},
for every pair of reference clocks t,,t,, whether ¢, —t;, =core—1<t, —t, <e for
ce{-D,....,D}andee{-D+1,...,D}
for a pair of bounded process clocks z,y € B, whether t —y=core— 1<z —y<e
force {-M(z)—-D,...,M(y)+ D} andee {-M(z) —D+1,... M(y) + D}.

The claim gives a finite bound on the number of regions. It remains to prove the claim.
Consider an (M, D)-region [v]5. We have Bounded(v) = Bounded(v’) for every valuation
v" € [v]y. Hence the set B in the first item above is given by Bounded(v). The next
three items follow from v,g &~* v'|p and noticing the bounds on the differences: we
have 0 < v(t, —z) < M(z) for x € BN X, by definition of bounded clocks; we have
—D < w(t, —tq) < D since v has spread D; finally for =,y € B, we have v(z —y) <
v(z —t,) +v(t, —tg) + v(ty — y) assuming = € X,,y € X,. Now, we use the inequalities:
—M(z) <v(x—1ty,) <0, =D < v(t, —t,) < D and 0 < v(ty, —y) < M(y) to get
—M(z) — D <wv(x—y) < M(y)+ D. <

C Appendix for Section 5

» Lemma 37. Let N be a deterministic D-spread network conforming to LU -bounds. For
every path of the form (o, Zo) % (a1, Z}) —e (a1, 71) 2> (g2, Z) in eLZGE;™(N) there

exists a path (q1, Z}) 2= (qo, Zb) in LZG(N).

Proof. Since (¢1,Z1) is a node of eLZG7;;"(N), it is reachable from (qo, Zp), and so is
(q1,77). Since C‘QLU(ZI) = aQw(Z{), Lemma 28 gives us a path (q1, Z7) = (g2, Z%) in
LZG(N). <

» Lemma 29. Let N be a deterministic D-spread network that conforms to a bounds
LU -bounds.

Let (qo, Zo) <5 (¢, Z) %5 (¢, Z) be a path in eLZGL:*"(N') which could potentially contain
equality edges. Then, there exists an infinite D-spread local run over the sequence o,(c.)“.

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Proof. Let M be defined as M (x) = max(L(z), U(z)) for every process clock z. Let k € N be
larger than the number of (M, D)-regions. Consider the finite path in eLZG?,(N) obtained
by the sequence o,(c.)*. By repeated use of Lemma 37, there is a path o,(0.)* in LZG(N).

By post-property of LZG(N), there is a local run (go,vo) LN (g,v1) 7 (q,v2) N

- =< (q,vk41). As N is D-spread, this run can be assumed to be D-spread. Due to
Theorem 20, there is a path o,(c.)* in the (M, D)-region graph: (qo, [v0]2,) 22 (¢, [01]2) 25
- 2% (q,[vk41]2). As k is larger than the number of regions, there exist i, such that
[v;]2 = [v;]2. This gives a path o,0i~!
is a cycle, which can be iterated infinitely often. Hence there is a path o,(0¢)* in the region
graph. By Theorem 20, there is an infinite local run over the sequence o,(0.)¥, whose

intermediate valuations are all D-spread. |

ol ~io**+1=J in the region graph where the part ¢~

» Lemma 30. Let N be a D-spread network that conforms to a bounds function LU. Let
(g0, Zo) Lo, (q1,Z1) 2 be an infinite source path in LZG(N'). Then there is an infinite path

b, b . sre
(90, Zo) ~> (q1, Z1) ~> - -+ in eLZG ;™ (N).

Proof. Let w; = b;b;y1 By induction on i we construct a path in eLZGZ;""(N)

b bi
(90, Zo) ~> (a1, Z1) -+ ~> (4, Z))
such that in LZG(N) there is a path

(gi, Z}) LS (Gi+1,Zi11) itz (¢i+2,Z,5)... and enabled(q;, Z;) = enabled(g;, Z;).
The second item implies that the later path is a source path in LZG(N).

If (gi, Z!) is not covered in eLZG7;7™ then the induction step is direct.

If (gi, Z)) is covered in eLZG[; ™ then there exists (q;, Z!) —e (¢, Z)) with (¢, Z))
uncovered and a2, (Z]) = a2, (Z]'). As (i, Z]') is reachable from (qo, Zo) in LZG(N) by

b;
the definition of eLZG?,;:™, we can use Lemma 28. The lemma gives us a path (¢;, Z/) =—=

(Qit1, ij_'ll) LE-N (Qita, Z?j_‘%) ... such that enabled(g;, Z}) = enabled(g;, Z;H). Thus we

also have enabled(g;, Z;) = enabled(g;, Z;H). We can prolong the finite prefix (go, Zo) o,
bi, bi, 1
(a1, 21) - ~> (@i, Z0) by (a1, Z]) —ve (a5, Z]) == (i1, Zi40)- «

The local zone graph eLZG[; " (N) is finite. We will prove that for every zone Z, the
abstraction a2, (Z) is a union of (M, D)-regions. To prove this statement, we will need
to reason about canonical representations of zones. Zones are typically represented using
Difference-Bound-Matrices (DBMs) or distance graphs [21]. We will use the distance graph
representation for our analysis. A constraint — y < ¢ of the zone is represented as an edge
y =% 2. An arithmetic over weights of (<, ¢) can be suitably defined (see [21], [15]) for more
details. A canonical graph is one where the shortest path from y to z is given by the direct
edge y — x. We will write Z, to denote the weight of the ¥y — = edge in the canonical
distance graph representing Z.

For convenience of presentation, we define two sets of clocks for a given local valuation v:

L-bounded(v) := T U U {re X, |v(t,—z) <L;}
p€ Proc

U-bounded(v) := T U U {r e X, |v(t, —z) <Uz}
p€ Proc

12:23

CONCUR 2022

12:24

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

Notice that the reference clocks T are present in both L-bounded(v) and U -bounded(v).
Define (v)* := {v' | v 53, v'}. We will now recall the distance graph representation of
(v)* and an important property of the intersection (v)* N Z for some arbitrary zone Z’.

» Definition 38 (Distance graph H" [15]). Let z,y € X UX? be two clocks, possibly reference
clocks. Assume that y # x and y € Xq U {ty} for some process q. The weight of the edge
x — y in the distance graph H" is given by:

(< o(y —) if x € U -bounded(v),
y € L-bounded(v)
(<,0(tq —) + (<,—Ly) if z € U-bounded(v),
y ¢ L-bounded(v), L, # —o0

(S,v(tg — x)) if x € U -bounded(v),
y ¢ L-bounded(v), L, = —o0
(<, 00) otherwise

» Proposition 39. [15] The intersection (v)* N Z is empty iff there are two variables xz,y €
XUT s.t. z € U-bounded(v), L, # —oo when y is a process clock, and Hy, + Z,, < (<,0).

The above proposition gives a simple characterization for when the upward closure of a
valuation v wrt to the <}, simulation does not intersect zone Z. Using this, we can show
that when two valuations belong to the same (M, D)-region, then one of them satisfies this
characterization iff the other does so. Here, we will make use of the fact that our atomic
constraints involve integer constants, and hence all zones that appear in the local zone graph

computation will only involve integer constants.

» Lemma 40. Let L,U and M be bound functions such that for every process clock x, we
have M(x) > L(z) and M(x) > U(x). For every zone Z, the set a%, (spreadp(Z)) is a
finite union of (M, D)-regions.

Proof. We first remark that every valuation in a%, (spread,(Z)) is D-spread. Let v be a
D-spread valuation. We have v € a%, (spread,(2)) iff (v)* N Z is non-empty. Let v =}, v".
We will show that (v)* N Z is empty iff (v/)* N Z is empty. This will prove the lemma. Let
H" and H" be the canonical distance graphs representing (v)* and (v’)* respectively.
From Proposition 39, (v)* N Z is empty iff there exist two variables x,y such that
x € U-bounded(v), and L, # —oc when y is a process clock, such that i}, + Z,, < (<,0).
As z € U-bounded(v), we also have z € Bounded(v), as M(z) = max(L(z),U(x)). Since
v =2 o', we have x € U-bounded(v) iff x € U-bounded(v’). When y € Bounded(v),
we have |Hp | = LH;’;J Since Z,, is of the form (<,c¢) with ¢ an integer, we have
HY, + Zye < (£,0) iff H;’?; + Zye < (<,0). When y ¢ Bounded(v), then in particular, y is
a process clock, y ¢ L-bounded(v) and we have H;, = (<,v(t, —) + (<, —L,) where ¢
is the process containing y. But, ¢, belongs to both Bounded(v) and Bounded(v’). Hence
lv(ty—x)| = |[v'(t—x)| and the lemma follows for this case using the previous argument. <«

Simulations for Event-Clock Automata

S. Akshay =
Department of CSE, Indian Institute of Technology Bombay, Mumbai, India

Paul Gastin &
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
CNRS, ReLaX, IRL 2000, Siruseri, India

R. Govind =
Department of CSE, Indian Institute of Technology Bombay, Mumbai, India

B. Srivathsan &
Chennai Mathematical Institute, India
CNRS, ReLaX, IRL 2000, Siruseri, India

—— Abstract

Event-clock automata are a well-known subclass of timed automata which enjoy admirable theoretical

properties, e.g., determinizability, and are practically useful to capture timed specifications. However,
unlike for timed automata, there exist no implementations for event-clock automata. A main reason
for this is the difficulty in adapting zone-based algorithms, critical in the timed automata setting,
to the event-clock automata setting. This difficulty was studied in [19, 20], where the authors also
proposed a solution using zone extrapolations.

In this paper, we propose an alternative zone-based algorithm, using simulations for finiteness,
to solve the reachability problem for event-clock automata. Our algorithm exploits the G-simulation
framework, which is the coarsest known simulation relation for reachability, and has been recently
used for advances in other extensions of timed automata.

2012 ACM Subject Classification Theory of computation — Timed and hybrid models; Theory of
computation — Quantitative automata; Theory of computation — Logic and verification

Keywords and phrases Event-clock automata, verification, zones, simulations, reachability
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.13
Related Version Full Version: https://arxiv.org/abs/2207.02633

Funding This work was supported by DST/CEFIPRA/INRIA Project EQuaVE.
S. Akshay: Supported in part by DST/SERB Matrics Grant MTR/2018/000744.
Paul Gastin: Partially supported by ANR project Ticktac (ANR-18-CE40-0015).

1 Introduction

Timed automata (TA) [4] are a well-established model for real-time systems and form the
basis for employing model-checking techniques. The most popular property that has been
considered in these systems is control state reachability. Reachability in timed automata
is a well-studied problem and was shown to be decidable (and PSPACE-complete) using
the so-called region construction [4]. This construction was primarily of theoretical interest,
as the number of regions, which are collections of reachable configurations, explodes both
in theory and in practice. On the other hand, timed automata have been implemented in
several tools: UPPAAL [26, 6], KRONOS [10], PAT [29], RED [31], TChecker [21], Theta [30],
LTS-Min [24], Symrob [28], MCTA [25], etc. Most of these tools have a common underlying
algorithm which is an explicit enumeration of reachable configurations stored as zones [7].
Since the late 90s, a substantial effort has been invested in improving zone enumeration
techniques, the common challenge being how to get a sound and complete enumeration while
exploring as few zones as possible.
? S. Akshay, Paul Gz.astin, R. Govinc'i, and B. Srivathsan;

5v icensed under Creative Commons License CC-BY 4.0
33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 13; pp. 13:1-13:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0002-1313-7722
mailto:govindr@cse.iitb.ac.in
https://orcid.org/0000-0002-1634-5893
mailto:sri@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
https://doi.org/10.4230/LIPIcs.CONCUR.2022.13
https://arxiv.org/abs/2207.02633
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2

Simulations for Event-Clock Automata

The more general model checking problem of whether the system represented by TA
A satisfies the specification given by TA B reduces to the language inclusion problem
L(A) C L(B). There are two challenges here: first, the inclusion problem is undecidable in
its full generality, and second, having clocks, though excellent for timed implementations, are
often less than ideal for modeling timed specifications. This has led to the introduction of
event-clocks and the corresponding model of event-clock automaton (ECA) [5]. Event-clock
automata make use of special clocks that track the time since the last occurrence of an event
(history clocks) or the time until the next occurrence of an event (prophecy clocks). On one
hand this makes writing timed specifications more natural. Indeed, the role of prophecy clocks
is in the same spirit as future modalities in temporal logics. This has led to several extensions
of temporal logics with event-clocks [15, 1, 27], which are often used as specification languages
and can be converted into ECA. On the other hand, ECA can be determinized and hence
complemented. Observe that model-checking event-clock specifications over TA models can
be reduced to the reachability problem on the product of the TA with an ECA. This product
contains usual clocks, history clocks and prophecy clocks. The usual clocks can be treated in
the same way as history clocks for the zone analysis. Therefore, if we solve ECA reachability
(with history and prophecy clocks) using zones, we can incorporate usual clocks into the
procedure seamlessly. The bottomline is that the well-motivated problem of model-checking
event-clock specifications over TA models can be reduced to an ECA reachability problem.

Thus, in this paper, we focus on the core problem of building efficient, zone-based
algorithms for reachability in ECA. This problem turns out to be significantly different
compared to zone based reachability algorithms in usual TA, precisely due to prophecy clocks.
Our goal is to align the zone-based reachability algorithms for ECA with recent approaches
for TA that have shown significant gains.

As mentioned earlier, the core of an efficient TA reachability algorithm is an enumeration
of zones, where the central challenge is that naive enumeration does not terminate. One
approach to guarantee termination is to make use of an ezxtrapolation operation on zones:
each new zone that is enumerated is extrapolated to a bigger zone. Any freshly enumerated
zone that is contained in an existing zone is discarded. More recently, a new simulation
approach to zone enumeration has been designed, where enumerated zones are left unchanged.
Instead, with each fresh zone it is checked whether the fresh zone is simulated by an already
seen zone. If yes, the fresh zone is discarded. Otherwise, it is kept for further exploration.
Different simulations have been considered: the LU-simulation [22] which is based on LU-
bounds, or the G-simulation [18], which is based on a carefully-chosen set of constraints.
Coarser simulations lead to fewer zones being enumerated. The G-simulation is currently
the coarsest-known simulation that can be efficiently applied in the simulation approach.
The simulation based approach offers several gains over the extrapolation approach: (1)
since concrete zones are maintained, one could use dynamic simulation parameters and
dynamic simulations, starting from a coarse simulation and refining whenever necessary [23],
(2) the simulation approach has been extended to richer models like timed automata with
diagonal constraints [17, 16], updatable timed automata [18], weighted timed automata [9]
and pushdown timed automata [3]. In these richer models, extrapolation has either been
shown to be impossible [8] or is unknown.

Surprisingly, for ECA, an arguably more basic and well-known model, it turns out that
there are no existing simulation-based approaches. However, an extrapolation approach using
maximal constants has been studied for ECA in [19, 20]. In this work, the authors start by
showing that prophecy clocks exhibit fundamental differences as compared to usual clocks.
To begin with, it was shown that there is no finite time-abstract bisimulation for ECA in

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

general. This is in stark contrast to TA where the region equivalence forms a finite time-
abstract bisimulation. The correctness of extrapolation is strongly dependent on the region
equivalence. Therefore, in order to get an algorithm, the authors define a weak semantics for
ECA and a corresponding notion of weak regions which is a finite time-abstract bisimulation
for the weak semantics and show that the weak semantics is sound for reachability. Building
on this, they define an extrapolation operation for the zone enumeration.

Contributions. Given the advantages of using simulations with respect to extrapolations in
the TA setting described above, we extend the G-simulation approach to ECA. Here are the
technical contributions leading to the result.
We start with a slightly modified presentation of zones in ECA and provide a clean
algebra for manipulating weights in the graph representation for such ECA-zones. This
simplifies the reasoning and allows us to adapt many ideas for simulation developed in
the TA setting directly to the ECA setting.
The G-simulation is parameterized by a set of constraints at each state of the automaton.
We adapt the constraint computation and the definition of the simulation to the context
of ECA, the main challenge being the handling of prophecy clocks.
We give a simulation test between two zones that runs in time quadratic in the number
of clocks. This is an extension of the similar test that exists for timed automata, but now
it incorporates new conditions that arise due to prophecy clocks.
Finally, we show that the reachability algorithm using the G-simulation terminates for
ECA: for every sequence Zy, Z1, . .. of zones that are reachable during a zone enumeration
of an ECA, there exist ¢ < j such that Z; is simulated by Z;. This is a notable difference
to the existing methods in TA, where finiteness is guaranteed for all zones, not only the
reachable zones. In the ECA case, this is not true: we can construct an infinite sequence
of zones which are incomparable with respect to the new G-simulation. However, we show
that finiteness does hold when restricting to reachable zones, and this is sufficient to
prove termination of the zone enumeration algorithm. Our argument involves identifying
some crucial invariants in reachable zones, specially, involving the prophecy clocks.

The fundamental differences in the behaviour of prophecy clocks as compared to usual
clocks constitute the major challenge in developing efficient procedures for the analysis of
ECAs. In our work, we have developed methods to incorporate prophecy clocks alongside
the usual clocks. We prove a surprising property: in all reachable ECA-zones, the constraints
involving prophecy clocks come from a finite set. A direct consequence of this observation
is that the event zone graph of an ECA containing only prophecy clocks (known as Event-
Predicting Automata EPA) is always finite. We wish to emphasize that, in this work, we are
moving a step towards implementability, and at the same time towards more expressivity,
since simulation approaches are amenable to extensions, e.g., with diagonal constraints.

Organization of the paper. Section 2 recalls ECA and describes a slightly modified
presentation of the ECA semantics. Section 3 introduces event zones, event zone graph
and the simulation based reachability framework. Section 4 introduces the new algebra for
representing event zones and describes some operations needed to build the zone graph.
Section 5 introduces the G-simulation for event-clock automata and gives the simulation
test. Section 6 proves finiteness of the simulation when restricted to reachable zones. All the
missing proofs can be found in the full version of the paper [2].

13:3

CONCUR 2022

13:4

Simulations for Event-Clock Automata

2 Event Clock Automata and Valuations

Let X be a finite set of variables called clocks. Let ®(X) denote a set of clock constraints
generated by the following grammar: ¢ =z <dc|c<x | pAg@ wherex € X, c € Z =
Z U {—00,4+00} and <« € {<,<}. The base constraints of the form x < ¢ and ¢ < z will be
called atomic constraints. Constraints © < —oo and +o0o < x are equivalent to false and
constraints —oo < x and x < 400 are equivalent to true.

Given a finite alphabet ¥, we define a set Xy = {a | a € Z} of history clocks and a
set Xp = {E} | a € X} of prophecy clocks. Together, history and prophecy clocks are called
event clocks. In this paper, all clocks will be event clocks, thus we set X = Xy U Xp.

-0 g 0 G

Figure 1 Range of valuations of event clocks. A valuation maps history clocks to R>o U {400}
and prophecy clocks to R<o U {—o0}.

» Definition 1 (Valuation). A waluation of event clocks is a function v: X — R = RU
{—00, 400} which maps history clocks to R>o U {400} and prophecy clocks to R<o U {—o0}.
We say a history clock @, for some a € ¥ is undefined (resp. defined) when v(‘@) = +oo
(resp. v(‘a) < +00) and a prophecy clock d is undefined (resp. defined) when v(@) = —oco
(resp. —oo < v(d)). We denote by V(X) or simply by V the set of valuations over X .

We remark that the history clock and the prophecy clock of an event a are symmetric
notions. In the semantics that we introduce in this paper, history clock ‘@ stores the amount
of time elapsed after seeing the last a, measuring how far ahead in the future we are w.r.t.
the last occurrence of a. Before we see an a for the first time, @ is set to +o0o0. The prophecy
clock @ stores the negative of the amount of time that needs to be elapsed before seeing
the next a. In other words, — @ tells us how far behind in the past we are w.r.t. the next
occurrence of a. If no more a’s are going to be seen, then the prophecy clock of a is set to
—00, i.e., d = —o0. See Figure 1 for a pictorial representation of valuations of event clocks.

Notice that for history (resp. prophecy) clocks, useful constraints use non-negative (resp.
non-positive) constants. Also, @ < 0and 0 < @ are equivalent to false whereas 0 < @
@< o, d <0and —0co < @ are equivalent to true. A constraint c < @ does not imply
that the history clock @ is defined, whereas a constraint @ < ¢ with (€, ¢) # (<, 00) does.
The same applies to prophecy clocks where a constraint ¢ < @ with (¢, <) # (—oc, <) implies
that @ is defined, whereas @ < c does not; in fact, d < —co states that @ is undefined.

)

» Remark 2. In the earlier works on ECA [5, 20], prophecy clocks assumed non-negative
values and decreased along with time. This allowed to write guards on prophecy clocks with
non-negative constants, e.g., @ < 5 means that the next a occurs in at most 5 time units.
In our convention, this would be written as —5 < @. Secondly, an undefined clock (history
or prophecy) was assigned a special symbol L in earlier works. We have changed this to use
—oo and oo for undefined prophecy and history clocks respectively. We adopt these new
conventions as they allow to treat both history clocks and prophecy clocks in a symmetric
fashion, and a clean integration of undefined values when we describe zones and simulations.

We say that a valuation v satisfies a constraint ¢, denoted as v = ¢, if ¢ evaluates to
true, when each variable in ¢ is replaced by its value v(z). We write [@]v to denote the
valuation v’ obtained from v by resetting the history clock @ to 0, keeping the value of other
clocks unchanged. We denote by [@]v the set of valuations v’ obtained from v by setting

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

the prophecy clock a non-deterministically to some value in [—o0, 0], keeping the value of
other clocks unchanged. We denote by v + § the valuation obtained by increasing the value
of all clocks from the valuation v by § € R>o. Not every time elapse may be possible from a
valuation, since prophecy clocks need to stay at most 0. For example, if there are two events
a,b, then a valuation with v(@) = —3 and v(b) = —2 can elapse at most 2 time units.

» Definition 3 (Event-clock automata [5]). An event-clock automaton (ECA) A is given by
a tuple (Q, %, X, T, qo, F), where Q is a finite set of states, ¥ is a finite alphabet of actions,
X is the set of event clocks for X, qo € Q is the initial state, FF C @Q is the set of accepting
states and T C Q X X x ®(X) x Q is a finite set of transitions.
The semantics of an ECA A= (Q,%, X, T, qo, F) is given by a transition system S4 whose
states are configurations (q,v) of A, where ¢ € Q and v is a valuation. A configuration
(g,v) is indtial if ¢ = qo, v(z) = 00 for all x € Xy and —oco < v(x) <0 for allx € Xp. A
configuration (q,v) is accepting if ¢ € F, and v(x) = —o0 for all x € Xp and 0 < v(z) < 00
for all x € Xg. Transitions of S are of two forms:
Delay transition: (q,v) 2 (g,v+9), if (v+0)(z) <0 for allz € Xp.
Action transition: (q,v) 5 (¢, [@)v') if t = (¢,a,9,¢) is a transition in A, v(d) =0,
v e [dw and v = g.
A transition with action a can be taken when the value of the prophecy clock is 0,
then a new value in [—oo, 0] for a is non-deterministically guessed so that the resulting
valuation v’ satisfies the guard g, and finally, the history clock ‘@ is reset to 0.

An ECA is called an event recording automaton (ERA) if it only contains history clocks
and event predicting automaton (EPA) if it only contains prophecy clocks. A run of an

event-clock automaton is a finite sequence of transitions from an initial configuration of S 4.

A run is said to be accepting if its last configuration is accepting. We are interested in the
reachability problem of an event clock automaton. Formally,

» Definition 4 (Reachability problem for ECA). The reachability problem for an event-clock
automaton A is to decide whether A has an accepting run.

Different solutions based on regions and zones have been proposed in [5, 19, 20]. For

ERA, the standard region and zone based algorithms for timed automata work directly.

However, for EPA (and ECA), this is not the case. In fact, [19] show that the standard
region abstraction is not possible, as there exists no finite bisimulation due to the behavior
of prophecy clocks. Also, the standard definition of zones used for timed automata is not
sufficient to handle valuations with undefined clocks. The papers [19, 20] make use of special
symbols 1 and ? for this purpose. In this work, we use a different formulation of zones by
making use of +00 and —co. Instead of using = L (resp. x # L) to state that a clock is
undefined (resp. defined) as in [19, 20], we write 400 < x or z < —oco or (resp. & < 400 or
—oo < z) depending on whether x is a history clock or a prophecy clock. This distinction
between being undefined for history and prophecy clocks plays an important role.

3 Event zones and simulation based reachability

The most widely used approach for checking reachability in a timed automaton is based on
reachability in a graph called the zone graph of a timed automaton [13]. Roughly, zones [7]
are sets of valuations that can be represented efficiently using difference constraints between
clocks. In this section, we introduce an analogous notion for event-clock automata. We
consider event zones, which are sets of valuations of event-clock automata.

13:5

CONCUR 2022

13:6

Simulations for Event-Clock Automata

» Definition 5 (Event zones). An event zone is a set of valuations satisfying a conjunction of
constraints of the form c<x, x <c or x —y < ¢, where x,y € X and ¢ € Z = Z. U {—00,+00}.
Constraints of the form x —y < ¢ are called diagonal constraints. To evaluate such constraints,
we extend addition on real numbers with the convention that (+00) + a = +oo for all « € R
and (—o0) + 8 = —o0, as long as B # +oo. We simply write v(z —y) for v(z) — v(y).

Let W be a set of valuations and ¢ a state. For transition ¢ := (g, a,g,q1), we write
(W) 5 (g, Wh) if Wy = {v1 | (¢,v) 52 (g1,v1) for some 6 € R>o}. As is usual with
timed automata, zones are closed under the time elapse operation. We will show in the next
section that starting from an event zone Z, the successors are also event zones: (g, Z) AN
(q1,Z1) implies Z; is an event zone too. We use this feature to define an event zone graph.

» Definition 6 (Event zone graph). Nodes are of the form (q, Z) where q is a state and Z is
an event zone. The initial node is (qo, Zo) where qo is the initial state and Zy is given by
Naes (00 < @) A (@ <0). This is the set of all initial valuations, which is already closed
under time elapse. For every node (q,Z) and every transition t := (q,a,g,q1) there is a
transition (q, Z) AN (q1,Z71) in the event zone graph. A node (q,Z) is accepting if ¢ € F' and

Z N Zy is non-empty where the final zone Zy is defined by)\, ey, d < —.

Two examples of ECA and their event zone graphs are given in Figure 3 and Figure 4 of
Appendix A.

Similar to the case of timed automata, the event zone graph can be used to decide
reachability. The next lemma follows by a straightforward adaptation of the corresponding
proof [13] from timed automata.

» Proposition 7. The event zone graph of an ECA is sound and complete for reachability.

However, as in the case of zone graphs for timed automata, the event zone graph for an
ECA is also not guaranteed to be finite. We will now define what a simulation is and see
how it can be used to get a finite truncation of the event zone graph, which is still sound
and complete for reachability.

» Definition 8 (Simulation). A simulation relation on the semantics of an ECA is a reflexive,

transitive relation (q,v) =< (g,v") relating configurations with the same control state and (1)
for every (q,v) AN (g,v+9), we have (q,v") AN (g,v" 4+ 96) and (g,v +6) <X (¢,v" +9), (2) for
every transition t, if (q,v) 5 (q1,v1) for some valuation vy, then (g,v’) 5 (q1,v]) for some
valuation vy with (q1,v1) = (q1,v}).

For two event zones Z,7', we say (¢,Z) = (q,Z") if for every v € Z there exists

v’ € Z' such that (q,v) = (q,v"). The simulation =< is said to be finite if for every sequence
(¢1,241), (g2, Z2), ... of reachable nodes, there exists j > i such that (q;, Z;) = (g, Z;).

The reachability algorithm enumerates the nodes of the event zone graph and uses =< to
truncate nodes that are smaller with respect to the simulation.

» Definition 9 (Reachability algorithm). Let A be an ECA and =< a finite simulation for A.
Add the initial node of the event zone graph (qo, Zo) to a Waiting list. Repeat the following
until Waiting list is empty:
Pop a node (q,Z) from the Waiting list and add it to the Passed list.
For every (q,7) 5 (q1,7Z1): if there exists a (q1, Z}) in the Passed or Waiting lists such
that (g1, 21) = (q1, Z1), discard (q1,Z1); else add (q1,Z1) to the Waiting list.
If some accepting node is reached, the algorithm terminates and returns a Yes. Else, it
continues until there are no further nodes to be explored and returns a No answer.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

The correctness of the reachability algorithm follows once again from the correctness of
the simulation approach in timed automata [22]. Moreover, termination is guaranteed when
the simulation used is finite.

» Theorem 10. An ECA has an accepting run iff the reachability algorithm returns Yes.

We have now presented the framework for the simulation approach in its entirety. However,
to make it functional, we will need the following.

1. An eflicient representation for event zones and algorithms to compute successors.

2. A concrete simulation relation < for ECA with an efficient simulation test (¢, Z) < (¢, Z').

3. A proof that < is finite, to guarantee termination of the reachability algorithm.

In the rest of the paper, we show how these can be achieved. To start with, for standard
timed automata, zones are represented using Difference-Bound-Matrices (DBMs) [14]. For
such a representation to work on event zones, we will need to incorporate the fact that
valuations can now take +o0o and —oo. In Section 4, we propose a way to merge +o0o and
—o0 seamlessly into the DBM technology. In the subsequent Section 5, we define a simulation
for ECA based on G-simulation, develop some technical machinery and present an efficient
simulation test. Finally, in Section 6, we deal with the main problem of showing finiteness.
For this, we prove some non-trivial invariants on the event zones that are reachable in ECA
and use them to show a surprising property regarding prophecy clocks. More precisely, we
show that constraints involving prophecy clocks in reachable event zones come from a finite
set depending on the maximum constant of the ECA only.

4 Computing with event zones and distance graphs

We now show that event zones can be represented using Difference-Bound-Matrices (DBMs)
and the operations required for the reachability algorithm can be implemented using DBMs.
Each entry in a DBM encodes a constraint of the form x — y < ¢. For timed automata
analysis, the entries are (<, ¢) where ¢ € R and < € {<, <}, or (4,¢) = (<,00). In our case,
we will need to deal with valuations having +o0o or —oo. For this purpose, we first extend
weights to include (<, —o0) and (<, 00) and define an arithmetic that admits the new entries
in a natural way.

» Definition 11 (Weights). Let C = {(<,—00)} U{(q,¢) | ¢ € RU{oo} and <« € {<,<}},
called the set of weights.
Order. Define (<1,c1) < (<o, c2) when either (1) ¢1 < ca, or (2) ¢c1 = co and <y is <
while <o is <. This is a total order, in particular (<, —o00) < (<,¢) < (<,00) < (<, 00)
for all c € R.
Sum. Let 06,67’77 (41a01)7 (<]2a02) € C with ﬂ 7é (S,OO), 0 ¢ {(S? _00)7 (S’OO)} and
c1,co € R. We define the operation of sum on weights as follows.
(§7OO)+a: (§7OO) (S,—OO)—FB: (§7_OQ) (<7OO)+'7: (<7OO)
(<1,¢1) + (<2,¢2) = (4, ¢1 + ¢2) with <= < if 94 =<9 = < and < = < otherwise.
The intuition behind the above definition of order is that when (<, ¢) < (<, ¢’), the set of

valuations that satisfies a constraint x —y < ¢ is contained in the solution set of x —y <’ ¢/. For
the sum, we have the following lemma which gives the idea behind our choice of definition.

» Lemma 12. Let v be a valuation, x,y,z be event clocks and (<y,c1), (<2,¢2) € C. If
vEx—ydic andv =y — 2< o, then v |Ex — z < ¢ where (4,¢) = (<1, ¢1) + (<2, ¢2).

13:7

CONCUR 2022

13:8

Simulations for Event-Clock Automata

Equipped with the weights and the arithmetic over it, we will work with a graph
representation of zones (as so-called distance graphs), instead of matrices (i.e., DBMs),
since this makes the analysis more convenient. We wish to highlight that our definition
of weights, order and sum have been chosen to ensure that this notion of distance graphs
remains identical to the one for usual TA. As a consequence, we are able to adapt many of
the well-known properties about distance graphs for ECA.

» Definition 13 (Distance graphs). A distance graph is a weighted directed graph, with vertices
being Xp U Xy U {0} where 0 is a special vertex that plays the role of constant 0. Edges are
labeled with weights from C. An edge x = y represents the constraint y — x < c. For a graph
G, we define [G] :={v | v =y —x <c for all edges x =5 y in G}. Further,

The weight of a path in a distance graph G is the sum of the weight of its edges. A cycle

in G is said to be negative if its weight is strictly less than (<,0).

A graph G is said to be in canonical form if it has no negative cycles and for each pair of

vertices x,y, the weight of x — y is not greater than the weight of any path from x to y.

For two graphs G1, Ga, we write min(Gq, Gz) for the distance graph obtained by setting

the weight of each edge to the minimum of the corresponding weights in G1 and Gs.
For an event zone Z, we write G(Z) for the canonical distance graph that satisfies [G(Z)] = Z.
We denote by Z,, the weight of the edge x — y in G(Z).

We will make use of an important property, which has been shown when weights come
from C\ {(<, +00), (<, —00)}, but continues to hold even with the new weights added.

» Lemma 14. For every distance graph G, we have [G] = 0 iff G has a negative cycle.

Successor computation. To implement the computation of transitions (g, Z) 5 (g1, 21)
in an event zone graph, we will make use of some operations on event zones that we define
below. Using distance graphs, we show that these operations preserve event zones, that is,
starting from an event zone and applying any of the operations leads to an event zone again.
Thanks to the algebra over the new weights that we have defined, the arguments are very
similar to the case of standard timed automata.

» Definition 15 (Operations on event zones). Let g be a guard and Z an event zone.
Guard intersection: Z Ag:={v|v € Z andv = g}
Release: [d)Z = UUEZ[E)}U
Reset: [@)Z = {[av | v e Z}
Time elapse: Z ={v+6|ve€ Z,0 €Rxp s.t. v+ F N\,ex @ <0}

A guard g can be seen as yet another event zone and hence guard intersection is just an
intersection operation between two event zones. By definition, for a transition ¢ := (¢, a, g, ¢’)

and a node (g, Z) the successor (q, Z) AN (¢’, Z") can be computed in the following sequence:
_>
7, =20 0<d) Zy:=[d)Z Zs:=ZyNg Zy:=[alZs Z':=27,

As an example, in Figure 2, suppose an action b with guard @ = —1 (7 <—-1A-1Z< 7)
is fired from Zone Z as depicted, applying the above sequence in order gives 21, Zs, Z3, Z,
resulting in the successor zone Z’, as depicted in the figure.

We are now ready to state Theorem 16 that says that the operations on event zones
translate easily to operations on distance graphs and that the successor of an event zone is an
event zone. Except for the release operation [ﬁ], the rest of the operations are standard in
timed automata, but need to be extended to cope with the new weights (<, +00), (<, —00).

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:9

=l sl
IAIA
=T o
([
g 8
| al
yoa
| o o
b ot ot
AR
3 8
=l sl
IAIA
=1 o
([
g 8
=l
SN
| o L
al o
IA HT TT
j:
s wi‘”l I
[I
>Tal ol
A oA STt
o~ ~ I
jiL
o) o e-\L‘:J,o N
o N A
otal sl ot T al
A IA A A
o = = 3 = s

Z Zy Zo Z3 Z A

Figure 2 Successor computation from event zone Z on an action b with guard T =-1.

We show that we can perform all these operations in the new algebra with quadratic
complexity, as in timed automata without diagonal constraints [32].

» Theorem 16. Let Z be an event zone and G be its canonical distance graph. Let g be a
guard. We can compute, in O(|Xp U Xg|?) time, distance graphs G,, [@]G, [@]G and [t
in canonical form, such that Z A g = [G,], [@)Z = [[@]G], [7])Z = [@]G], and Z = [G].

Proof (sketch). The distance graphs G, [@]G, [@]G and T are computed as follows:

Guard intersection: a distance graph G, is obtained from G as follows,
for each atomic constraint = < ¢ in g, replace weight of edge 0 — x with the minimum
of its weight in G and (<, ¢),
for each atomic constraint d <y in g, replace weight of edge y — 0 with the minimum
of its weight in G and (<, —d),
canonicalize the resulting graph.

Release: a distance graph [@]G is obtained from G by

removing all edges involving @ and then

adding the edges 0 & d and @ & 0, and then

canonicalizing the resulting graph.
Reset: a distance graph [@]G is obtained from G by

removing all edges involving ‘@ and then

adding the edges 0 & @ and @ @) 0, and then

canonicalizing the resulting graph.
Time elapse: the distance graph @ is obtained by the following transformation:

if & is defined, i.e., the weight of 0 — % is not (<, 00), then replace it with (<, c0),

if 7 is defined, i.e., the weight of 0 — 7’ is not (<, —o0), then replace it with (<, 0),

canonicalize the resulting graph.
It is not hard to prove that they correspond to the operations on event zones. Other than
canonicalization, it can be easily checked that these operations can be computed in quadratic
time. Though canonicalization is cubic time in general, in each of the special cases above, it
can be implemented in quadratic time. |

5 A concrete simulation relation for ECAs

We fix an event-clock automaton A = (Q, %, X, T, qo, F) for this section. We will define a
simulation relation <4 on the configurations of the ECA. We first define a map G from @ to
sets of atomic constraints. The map G is obtained as the least fixpoint of the set of equations:

G@)={b <00<D [besju |J split(g) Upre(a,G(¢)

(¢,a,9,9')ET

CONCUR 2022

13:10

Simulations for Event-Clock Automata

where split(g) is the set of atomic constraints occurring in g and, for a set of atomic constraints
G, pre(a, @) is defined as the set of constraints in G except those on @ or ‘@. Notice that
constraints in G(q) use the constant 0 and constants used in constraints of A.

Let G be a set of atomic constraints. The preorder =<« is defined on valuations by
v=2gv if Vo € G, V§ >0, v+diEe = V+iFEp.

Notice that in the condition above, we do not restrict § to those such that v+ 4 is a valuation:
we may have v(@) +d > 0 for some a € ¥. This is crucial for the proof of Theorem 17
below. It also allows to get a clean characterizations of the simulation (Lemma 18) which in
turn is useful for deriving the simulation test and in showing finiteness. Based on <& and
the G(gq) computation, we can define a preorder <4 between configurations of ECA A as

(¢,0) 2a (¢ V) if g =¢ and v Zg(g) V"
» Theorem 17. The relation =< 4 is a simulation on the transition system S4 of ECA A.

When G = {p} is a singleton, we simply write <, for ¢ y. The definition of the <¢
simulation above in some sense declares what is expected out of the simulation. Below, we
give a constructive characterization of the simulation in terms of the constants used and the
valuations. For example, if v(?) =3 and @ <5 is a constraint in G, point 2 below says
that all v’ with v/(‘@) < 3 simulate v. The next lemma is a generalization of Lemma 8 from
[18] to our setting containing prophecy clocks and the undefined values +o00 and —oo.

» Lemma 18. Let v,v’ be valuations and G a set of atomic constraints. We have

1. v =g v iff v 2,0 forall p € G.

2. v =Zpae v iffv(z) deor v (z) <wv(x) or (<,¢) = (<,00) or (4,¢) = (<, 00) AV (x) < 0.

3. v =Zeqw v iff eV () orv(z) < V(x) or (¢,<4) = (00, <) or (¢,<) = (00, <) Av(x) < 0.
We now state some useful properties that get derived from Lemma 18.

» Remark 19. Let v,v" be valuations and G a set of atomic constraints.

1. Forallae %,if {0 <@, @ <0} C G and v <g v’ then v(@) =v'(d).

2. Let © <1 ¢; and = <2 ¢p be constraints with (<1,¢1) < (d2,c2) < (<,00) (we say that
x < ¢p is subsumed by x <3 ¢2). If v <06, v/ then v <,q,¢, V.
Indeed, from (<, c2) < (<,00) and v <gqye, v/ we get v/ () < v(z) or v(z) o c2, which
implies v(z) 1 ¢1 since (<1,¢1) < (<2, 2).

3. Let ¢1 <1 and ¢y <2 x be constraints with (c1,<1) < (e2,<2) < (00,<) (we say that
c1 <1 o is subsumed by ¢o <o 7). If v <, q,. v’ then v <. 4,0 V.
Indeed, from (cg,<2) < (00, <) and v <¢,q,2 v We get v(z) < v'(z) or g <z v'(x), which
implies ¢1 <y v'(z) since (c1,<1) < (cg,<2).
The ordering between lower weights is defined by (¢1,<1) < (c2,<2) if ¢1 < ¢o or ¢1 = ¢9,
< = < and <9 = <. We have (Cl,<11) < (02,42) iff (<127 762) < (<11, 701).

Before lifting the simulation to event zones, we present a central technical object that will be

used from time to time in the next set of results.

Distance graph for valuations that simulate a valuation v. For a valuation v, we let
tev = {v € V| v =<5 v'}, i.e, the set of valuations v" which simulate v. We will define a
distance graph, denoted G¢(v), such that [Gg(v)] = Tov. We remark that [Gg(v)] is not
really a zone since it may use constants that are not integers.

We assume that G contains {0 < @, @ < 0| a € 2} so that v <g v’ implies v(@) = v'(@)
for all prophecy clocks @ with a € ¥. We remove from G constraints equivalent to true,
such as r < 00, —3 < Goro< <E, or equivalent to false, such as @ <0oroo< . Also, by

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

Remark 19, we may remove from G constraints that are subsumed by other constraints in G,
while not changing the simulation relation. Hence, for history clocks, we have at most one
upper-bound constraint ‘@ < ¢ with (<,0) < (<,¢) < (<, 00), and at most one lower-bound
constraint ¢ < ‘@ with (0,<) < (¢,<) < (00, <). From now on, we always assume that the
sets G of atomic constraints that we consider satisfy the above conditions.

The definition of the distance graph Gg(v) which defines T4v is based on Lemma 18.

For each prophecy clock 7, we have the edges a w 0and 0 M qd.
For each history clock <E, we have the edge 0 — @ with weight
(<,v('a)) if @ <ce G with (4,¢) < (<,00) and v('a) < ¢,
(<, 00) if we are not in the case above and @ < 0o € G, v(%) < o0,
(<, 00) otherwise.
For each history clock ‘@, we have the edge ‘@ — 0 with weight
(<,—o0) if 0o < @ € G and v(@) = o0, and if we are not in this case:
(q,—c) if ca @ € G with (¢, <) < (00, <) and ¢ < v(%),
(<, —v(‘a)) if ca @ € G with (¢,4) < (00, <) and ¢ dv(‘@),
(<,0) otherwise.
With this definition, while Gg(v) is not in canonical form, it has the desired property:

» Lemma 20. We have v < v iff v’ satisfies all the constraints of Gg(v).

Simulation for event zones and an efficient algorithmic check. Let Z, Z’ be two event
zones and G be a set of atomic constraints. We say that Z is G-simulated by Z’, denoted
Z =g Z', if for all v € Z there exists v € Z’ such that v <g v’. Finally, we define
(¢,Z2) 24 (¢',2") if ¢ = ¢' and Z =gy Z'. In the rest of this section, we show how to
check this relation efficiently. We let |oZ = {v € V | v <¢ v’ for some v' € Z}. Notice that
Z =g 2V it 2 C L2 iff LoZ = a2,

» Lemma 21. For event zones Z,Z', we have Z A¢ Z' iff v € Z with tovN Z' = 0.

To check Z A¢ Z’', we require a valuation v € Z with a witness that t-v N Z’ is empty.
In the language of distance graphs, the witness will be a negative cycle in min(fsv, Z’). We
show that if Tov N Z’ is empty, then there is a small witness, i.e., a negative cycle containing
at most three edges, and belonging to one of three specific forms.

» Lemma 22. Let v be a valuation, Z' a non-empty reachable event zone with canonical

distance graph G(Z') and G a set of atomic constraints. Then, TovN Z' is empty iff there is

a negative cycle in one of the following forms:

1. 0=z = 0 with 0 — z from Gg(v) and © — 0 from G(Z'),

2. 0>y — 0 with0—y from G(Z') and y — 0 from Gg(v), and

3. 0>z =y — 0, with weight of x — y from G(Z') and the others from Gg(v). Moreover,
this negative cycle has finite weight.

Proof. Since Z' # (), the distance graph G(Z’) has no negative cycle. The same holds for
Gg(v) since v € Tov # 0. We know that t,v N Z' = 0 iff there is a (simple) negative cycle
using edges from G (v) and from G(Z'). Since G(Z') is in canonical form, we may restrict to
negative cycles which do not use two consecutive edges from G(Z'). Now all edges of Gg(v)
are adjacent to node 0. Hence, if a simple cycle uses an edge from G(Z’) which is adjacent to
0, it consists of only two edges 0 — x — 0, one from G(Z’) and one from Gg(v). Otherwise,
the simple cycle is of the form 0 — = — y — 0 where the edge x — y is from G(Z’) and
the other two edges are from Gg(v). It remains to show that the two clock negative cycle
0 — x — y — 0 can be considered to have finite weight, i.e., weight is not (<, —00).

13:11

CONCUR 2022

13:12

Simulations for Event-Clock Automata

For the cycle to have weight (<, —00), one of the edges should have weight (<, —o0) and
the others should have a weight different from (<, 00). We will show that for every such
combination, there is a smaller negative cycle with a single clock and 0. Hence we can ignore
negative cycles of the form 0 — 2 — y — 0 with weight (<, —00).

Suppose Z;,, = (<, —00). Then, for every valuation in u € Z', we have u(y) —u(r) < —oo,
which implies u(y) = —oo or u(z) = +oo. If u(x) = +oo for some valuation u € Z’, then the
value of x is +oo for every valuation in Z’. This follows from the successor computation:
initially, hibtory clocks are undefined, and then an action a defines @, and from that point
onwards, @ is always < co. Now, if 2 is not an undefined history clock in Z’, then we
need to have u(y) = —oo for all valuations of Z’. Therefore, either z is a hlstory clock
that is undefined in Z’ or y is a prophecy clock that is undefined in Z’. In the former case,
Zlo = (< —00) and in the latter case Z;, = (<, —00). This gives a smaller negative cycle

00—z % 0or0 —> y — 0 with the remaining edge 0 — 2 or y — 0 coming from G¢g(v),

since by our hypothesis of a negative cycle, these edges have weight different from (<, co).
Suppose the weight of 0 — x is (<, —oc). This can happen only when z is a prophecy clock,

v(r) = —oc and weight of 0 — z is (<, v(x)). Since Z;, # (<, 00), we infer Z;, # (<, 00) by

11 of Lemma 26. Hence 0 % Z—> 0 is also a negative cycle.

Suppose y — 0 has weight (<, —o00). This can happen only when y is a history clock and

v(y) = +o0. Since Z;,, # (<, 00), we obtain Zg, # (<,00) and hence 0 —> S, 4

a negative cycle. |

We now have all the results required to state our inclusion test. Using the above lemma,
and relying on a careful analysis (as shown in the full version [2]), we obtain the following
theorem.

» Theorem 23. Let Z, Z' be non-empty reachable zones, and G a set of atomic constraints
containing d<0and0<d for every prophecy clock d. Then, Z Zc Z' iff one of the
following conditions holds:

1. Z, < Zyo for some prophecy clock x, or for some history clock x with

(x <o00) € G and Z, = (<, —0), or
(x<1¢) €G force N and (<,0) < Zyo + (<1, ¢).
2. Z(’)y < Zyy for some prophecy clock y, or for some history clock y with
(00 <y) € G and Zy, = (<,00), or
(d<2y) € G for d € N and Zj, + (<2, —d) < (<,0)

3. ZJ’E < Zyy and Z.,, is finite for two distinct (prophecy or history) clocks x,y with
(x<1¢),(d<y) € G forc,d €N and (<,0) < Zyo + (<1, ¢) and Zy,, + (<2, —d) < Zzo-
From Theorem 23, we can see that the inclusion test requires iteration over clocks x,y

and checking if the conditions are satisfied by the respective weights.

» Corollary 24. Checking if (q,Z) <4 (¢', Z") can be done in time O(|X|?) = O(|Z]?).

6 Finiteness of the simulation relation

In this section, we will show that the simulation relation < 4 defined in Section 5 is finite, which
implies that the reachability algorithm of Definition 9 terminates. Recall that given an event
clock automaton A, we have an associated map G from states of A to sets of atomic constraints.
Let M = max{|c| | ¢ € Z is used in some constraint of A}, the maximal constant of .A. We
have M € N and constraints in the sets G(g) use constants in {—oco,00} U{c € Z | |c| < M}.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

Recall that the simulation relation <4 was defined on nodes of the event zone graph
EZG(A) by (¢,Z) 24 (¢',Z") if ¢ = ¢’ and Z <g(4) Z'. This simulation relation =< 4 is finite
if for any infinite sequence (q, Zy), (¢, Z1), (g, Z2), . .. of reachable nodes in EZG(.A) we find
i < j with (¢, Z;) 24 (¢, Zs), i.e., Zj Zg(q) Zi- Notice that we restrict to reachable zones in
the definition above. Our goal now is to prove that the relation <4 is finite. The structure
of the proof is as follows.

1. We prove in Lemma 26 that for any reachable node (q, Z) of EZG(A), the distance graph
G(Z) in canonical form satisfies a set of (f) conditions which depend only on the maximal
constant M of A.

2. We introduce an equivalence relation ~p; of finite index on valuations (depending on M
only) and show in Lemma 28 that, if G is a set of atomic constraints using constants in
{c€Z| || < M}U{—00,00} and if Z is a zone such that its distance graph G(Z) in
canonical form satisfies () conditions, then |7 is a union of ~,; equivalence classes.

We start with a lemma which highlights an important property of prophecy clocks in
reachable event zones. This property is essential for the proof of the (1) conditions. The proof
follows from the observation that the property is true in the initial zone, and is invariant
under the zone operations, namely, guard intersection, reset, release and time elapse.

» Lemma 25. Let Z be a reachable event zone. For every valuation v € Z, and for every
prophecy clock T, if —co < v(@) < —M, then v[Z — a] € Z for every —oco < a < —M.

There is no similar version of the above lemma for history clocks. A reset of a history
clock makes its value exactly equal to 0 in every valuation and creates non-trivial diagonal
constraints with other clocks. Moreover repeated resets can generate arbitrarily large diagonal
constraints, for e.g., a loop with guard x = 1 and reset x. This is why simulations are
particularly needed to control history clocks. Notice that in our simulation v <g v’, we have
0(7) = (7) there is no abstraction of the value of prophecy clocks and the simulation
relation by itself does not have any means to show finiteness. However, as we show below,
the reachable zones themselves take care of finiteness with respect to prophecy clocks. The
challenge is then to combine this observation on prophecy clocks along with the non-trivial
simulation happening for history clocks to prove that we still get a finite simulation. This is
the purpose of the above mentioned item 2.

Now, we give the (}) conditions and prove that they are satisfied by distance graphs of
reachable zones. In particular, the (f) conditions imply that the weight of edges of the form
0— 7, 7 — 0and 7 — ¥ belong to the finite set {(<, —00), (<, 0), (<, 00)} U{(g,¢) |
c€ZN—-M <c< M}. For an example, see Figure 4. Thus, we obtain as a corollary that,
for EPA, we do not even need simulation to obtain finiteness.

» Lemma 26. Let (q,Z) be a reachable node in EZG(A) with Z # 0. Then, the distance

graph G(Z) in canonical form satisfies the () conditions:

t1 If Zg = (<,00) then Zy, = (<,00) for ally # 7.

to If Z2o = (<, 00) then for all y # 7, either y is a prophecy clock which is undefined in Z
and Z=, = Zoy = (<, —00) or Zz, € {(<,00), (<, 00)}.

ts If Zzo < (<,00) then (<,0) < Zz < (<, M).

Ta If Zz4g < (<,00) then (<,0) < Zzo < (<, M).

Ts Either Zyy = (<, —00) (Y is undefined in Z), or Zuo + (<, —M) < Zyy for all x # y
(including x = 0).

te Either Zyz = (<, —o00) or (<, —M) < Zyz < (<,0).

T7 Bither Zz € {(<,—00),(<,00),(<,00)} or (<, —M) < Zz5 < (<, M).

13:13

CONCUR 2022

13:14

Simulations for Event-Clock Automata

Proof sketch. {4 follows immediately from {1, {2, {3 and fg, 7 can be inferred from {5 and
the other conditions. So here, we focus on 11, {2, T3 and partially the case of {5, leaving other
details to the full version [2].

For 11, since Z=, = (<,00), there is a valuation v € Z with v(?) = —o00. Therefore,
for every clock y # 7, we have vy — 7) = +00. Since v € Z, it satisfies the constraint on
y — T given by Z,- This is possible only when Z=, = (<, 00).

For to, assume that Z=, = (<, 00) and let y # 7. Consider first the case Zoy = (<, —00),
i.e.,, y is a prophecy clock which is undefined in Z. Then, since G(Z) is in canonical
form, we have Zz, < Zzo + Zo, = (<,00) + (<, —00) = (< —00). The second case
is when Zp, # (<,—o00). This implies Z, # (<,—00) since otherwise we would get
Zoy < Zoz + Z7, = (<, —00). We claim that there is a valuation v € Z with —oo < v(y)
and —oo < v(Z) < —M. Consider the distance graph G’ obtained from G(Z) by setting
the weight of edge y — 0 to min(Z,, (<,00)) and of edge 0 — 2 to min(Zy=z, (<, —M)).
We show that there are no negative cycles in this graph. Since Z # 0, the candidates for
being negative must use the new weight (<, —M) of 0 — 7’ or the new weight (<,c0) of
y — 0 or both. This gives the cycle 0 — 2 — 0 with weight (<, —M) 4+ Z=, = (<, 0) since
Zz = (<,00), the cycle 0 — y — 0 with weight Zy, + (<, 00) which is not negative since
Zoy # (<, —00), and the cycle y — 0 — 7 — y with weight (<, 00) + (<, —M) + Z=,, which
is not negative since Zz, # (<, —00). Since G’ has no negative cycle, Lemma 14 implies
[G’] # 0. Note that [G'] C [G(Z)] = Z. Finally, for all v € G/, we have —oo < v(y) and
—00 < v(7) < —M, which proves the claim. By Lemma 25, v, = v[@ — o] € Z for all
—00 < a < —M. Now, v,(y —) = v(y) — a satisfies the constraint Z=,. We deduce that
Z, is either (<, 00) or (<, 00).

Next, we turn to t3. Suppose Z=, = (<, ¢) for some integer ¢ > M. Then, there exists
a valuation v € Z with v(7) = —c or v(7) = —¢ + 1 depending on whether < is < or <.
Since ¢, M are integers, we get —oo < v(?) < —M. By Lemma 25, v[? — a] € Z for
all —0o < a < —M. In particular, v = v[2 — —c — 1] € Z. For this valuation, we have
v'(Z) = —c — 1. This violates Z-, which says 0 — v/(Z) < ¢, or seen differently, —c < /().

Finally, for {5, if Z;0 = (<, —00) the condition is trivially true. If Z,0 € {(<,00), (<, 00)}
then z is a prophecy clock and t5 follows from fy, T5. Therefore, we assume Z,o = (<, ¢) for
¢ € Z. The left hand side of the condition is Z,0 + (<, —M) = (<,c — M), with ¢ — M € Z.
Let Z, = (<',e) with e € ZU {—o0, +oo}. To show t5 it then suffices to show ¢ — M < e.
This involves more arguments in the same spirit as in {2 case above, and we leave these
technical details to the full version [2]. <

We turn to the second step of the proof and define an equivalence relation of finite
index ~j; on valuations. First, we define ~5; on a, 3 € R = RU {—00,00} by a ~ys 3 if
(e B ac) forall (q,¢) with a € {<,<} and ¢ € {—o0,00} U{d € Z | |d| < M}. In
particular, if o« ~p; 8 then (a0 = —00 <= f = —0) and (o = 00 <= [= o0).

Next, for valuations v1,ve € V, we define vy ~j; v by two conditions: v1(x) ~ps ve(x)
and vy (z) — v1(y) ~an v2(z) — va(y) for all clocks z,y € X. Notice that we use 2M for
differences of values. Clearly, ~,s is an equivalence relation of finite index on valuations.

The next result relates the equivalence relation ~j; and the simulation relation <& when
the finite constants used in the constraints are bounded by M. Recall from Section 5 the
definition of the distance graph Gg(v) for the set of valuations T,v.

» Lemma 27. Let vi,v2 € V be valuations with vi ~p; vo and let G be a set of atomic
constraints using constants in {—oo,00} U {c € Z | |¢| < M}. By replacing the weights
(L v1(x)) (resp. (<, —vi(x))) by (L va(x)) (resp. (<, —v2(x))) in the graph Gg(vi) we
obtain the graph Gg(va).

Next we state the central lemma that says that |5 Z is a union of ~j; equivalence classes.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

» Lemma 28. Let vi,vo € V be valuations with vi ~p; vy and let G be a set of atomic
constraints using constants in {—oo,00}U{c € Z | |¢| < M}. Let Z be a zone with a canonical
distance graph G(Z) satisfying (). Then, v1 € {oZ iff v € Lo Z.

Proof sketch. We will consider two valuations vi, vy such that vy ~pr ve and vy € |oZ
and show that the assumption that vy € | Z leads to a contradiction. Roughly the proof
proceeds as follows. Firstly, vo & |5 Z implies that Tova N Z = 0. Further, recall from
Lemma 22 that if T;v2 N Z =), then we can find a negative cycle C using one edge from
G(Z) and one or two edges from Gg(v2). From Lemma 27, there exists a cycle C; involving
the corresponding edges from G(Z) and Gg(v1). Since Tov1 N Z # B, we know that Cj is
not negative. We will show that this implies that the Cy (which was a witness for emptiness
of T¢ve N Z) also cannot be negative, which leads to a contradiction. The central part of the
proof involves a careful case analysis of the various forms that the cycle Cy can take, using
different { conditions. We detail two cases here. The remaining eight can be found in the
full version [2].

v ? v 7
Cycle Co =0 (£a(2) K 220 0. We have C; =0 (£ (=) 7 220 0.
Let Z=y = (<,¢). Since Cy is negative, we deduce that ¢ # oo. From (f3), we infer
Z=o < (<, M)and 0 < ¢ < M.

Since C} is not negative, we get (<,0) < (<, c+v1 (7)), which is equivalent to —¢ < vy (7).

Using v1 ~pr v2 and 0 < ¢ < M we deduce that —c < 02(7). This is equivalent to
(<,0) < (4,¢+ vy(7)), a contradiction with Cy being a negative cycle.

Cycle C, =0 2oz, o (S—w@) 0. We have C; =0 2oz, (S—u@) 0.

Let Zy= = (<,¢). Since Cy is negative, we deduce that —vy (@) # oo. Using vy ~s va,
we infer —v; (7)) # oco. Since Cy is not negative, we get Zyz # (<, —00). From (i), we
infer (<,—M) < Zy= and —M < ¢ <0.

Since C) is not a negative cycle, we get (<,0) < (4,¢ — v1(Z)), which is equivalent to
vl(?) < ¢. Using v1 ~p v9 and —M < ¢ < 0, we deduce that vg(?) < ¢. This is
equivalent to (<,0) < (4, ¢ — vo(7)), a contradiction with Cy being a negative cycle. <

Finally, from Lemmas 26 and 28, we obtain our main theorem of the section.

» Theorem 29. The simulation relation =<4 is finite.

Proof. Let (g, Zo), (¢, Z1),(q, Z2), ... be an infinite sequence of reachable nodes in EZG(A).

By Lemma 26, for all 4, the distance graph G(Z;) in canonical form satisfies conditions ().

The atomic constraints in G = G(g) use constants in {—oc0,00}U{c € Z | |¢] < M}. From
Lemma 28 we deduce that for all i, |;Z; is a union of ~p/-classes. Since ~js is of finite
index, there are only finitely many unions of ~js-classes. Therefore, we find i < j with
lgZ; = | gZ;, which implies Z; =g Z;. <

Note that the number of enumerated zones is bounded by 2", where r is the number of

regions. This is similar to the exponential blow up that happens in normal timed automata.

Indeed, despite this blow up the interest in zone algorithms is that, at least in the timed
setting, they work significantly better in practice. We hope the above zone-based approach
for ECA will also pave the way for fast implementations for ECA.

7 Conclusion

In this paper, we propose a simulation based approach for reachability in ECAs. The main
difficulty and difference from timed automata is the use of prophecy clocks and undefined
values. We believe that the crux of our work has been in identifying the new representation

13:15

CONCUR 2022

13:16

Simulations for Event-Clock Automata

for prophecy clocks and undefined values. With this as the starting point, we have been able
to adapt the zone graph computation and the G-simulation technique to the ECA setting.
This process required us to closely study the mechanics of prophecy clocks in the zone
computations and we discovered this surprising property that prophecy clocks by themselves
do not create a problem for finiteness.

The final reachability algorithm looks almost identical to the timed automata counterpart
and hence provides a mechanism to transfer timed automata technology to the ECA setting.
The performance benefits observed for the LU and G-simulation-based reachability procedures
for timed automata encourages us to believe that an implementation of our algorithm would
also yield good results, thereby providing a way to efficiently check event-clock specifications
on timed automata models. We also hope that our framework can be extended to other
verification problems, like liveness and to extended models like ECA with diagonal constraints
that have been studied in the context of timeline based planning [11, 12].

—— References

1 S. Akshay, Benedikt Bollig, and Paul Gastin. Event clock message passing automata: a
logical characterization and an emptiness checking algorithm. Formal Methods Syst. Des.,
42(3):262-300, 2013.

2 S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan. Simulations for event-clock automata.
CoRR, abs/2207.02633, 2022.

3 S. Akshay, Paul Gastin, and Karthik R. Prakash. Fast zone-based algorithms for reachability
in pushdown timed automata. In CAV (1), volume 12759 of Lecture Notes in Computer
Science, pages 619-642. Springer, 2021.

4 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

5 Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theor. Comput. Sci., 211(1-2):253-273, 1999.

6 Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Hakansson, Paul Pettersson,
Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In QEST, pages 125-126. IEEE Computer
Society, 2006.

7 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In ACPN
2003, volume 3098 of Lecture Notes in Computer Science, pages 87—124. Springer, 2003.

8 Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods Syst. Des.,
24(3):281-320, 2004.

9 Patricia Bouyer, Maximilien Colange, and Nicolas Markey. Symbolic optimal reachability in
weighted timed automata. In CAV (1), volume 9779 of Lecture Notes in Computer Science,
pages 513-530. Springer, 2016.

10 Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. Kronos: A model-checking tool for real-time systems. In CAV, volume 1427 of Lecture
Notes in Computer Science, pages 546-550. Springer, 1998.

11 Laura Bozzelli, Angelo Montanari, and Adriano Peron. Taming the complexity of timeline-
based planning over dense temporal domains. In FSTTCS, volume 150 of LIPIcs, pages
34:1-34:14. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2019.

12 Laura Bozzelli, Angelo Montanari, and Adriano Peron. Complexity issues for timeline-based
planning over dense time under future and minimal semantics. Theor. Comput. Sci., 901:87-113,
2022.

13 Conrado Daws and Stavros Tripakis. Model checking of real-time reachability properties using
abstractions. In TACAS, volume 1384 of Lecture Notes in Computer Science, pages 313—329.
Springer, 1998.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 197-212. Springer, 1989.

Deepak D’Souza and Nicolas Tabareau. On timed automata with input-determined guards.
In FORMATS/FTRTFT, volume 3253 of Lecture Notes in Computer Science, pages 68—83.
Springer, 2004.

Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in timed automata with
diagonal constraints. In CONCUR, volume 118 of LIPIcs, pages 28:1-28:17. Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2018.

Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal
constraints in timed automata. In CAV (1), volume 11561 of Lecture Notes in Computer
Science, pages 41-59. Springer, 2019.

Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability for updatable timed automata
made faster and more effective. In FSTTCS, volume 182 of LIPIcs, pages 47:1-47:17. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020.

Gilles Geeraerts, Jean-Francois Raskin, and Nathalie Sznajder. Event clock automata: From
theory to practice. In FORMATS, volume 6919 of Lecture Notes in Computer Science, pages
209-224. Springer, 2011.

Gilles Geeraerts, Jean-Frangois Raskin, and Nathalie Sznajder. On regions and zones for
event-clock automata. Formal Methods Syst. Des., 45(3):330-380, 2014.

Frédéric Herbreteau and Gerald Point. TChecker. https://github.com/fredher/tchecker,
v0.2 — April 2019.

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. In LICS, pages 375-384. IEEE Computer Society, 2012.

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Lazy abstractions for timed
automata. In CAV, volume 8044 of Lecture Notes in Computer Science, pages 990-1005.
Springer, 2013.

Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van Dijk.
LTSmin: High-performance language-independent model checking. In TACAS, volume 9035 of
Lecture Notes in Computer Science, pages 692—707. Springer, 2015.

Sebastian Kupferschmid, Martin Wehrle, Bernhard Nebel, and Andreas Podelski. Faster
than UPPAAL? In CAV, volume 5123 of Lecture Notes in Computer Science, pages 552-555.
Springer, 2008.

Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. STTT,
1(1-2):134-152, 1997.

Jean-Francois Raskin and Pierre-Yves Schobbens. The logic of event clocks — decidability,
complexity and expressiveness. J. Autom. Lang. Comb., 4(3):247-282, 1999.

Victor Roussanaly, Ocan Sankur, and Nicolas Markey. Abstraction refinement algorithms for
timed automata. In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages
22-40. Springer, 2019.

Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: towards flexible verification under
fairness. In CAV, volume 5643 of Lecture Notes in Computer Science, pages 709-714. Springer,
20009.

Tamds T6th, Akos Hajdu, Andrés Vords, Zoltdn Micskei, and Istvdn Majzik. Theta: A
framework for abstraction refinement-based model checking. In FMCAD, pages 176-179. IEEE,
2017.

Farn Wang. REDLIB for the formal verification of embedded systems. In ISoLA, pages
341-346. IEEE Computer Society, 2006.

Jianhua Zhao, Xuandong Li, and Guoliang Zheng. A quadratic-time DBM-based successor
algorithm for checking timed automata. Inf. Process. Lett., 96(3):101-105, 2005.

13:17

CONCUR 2022

https://github.com/fredher/tchecker

13:18 Simulations for Event-Clock Automata

A Appendix for Section 3

In Figure 3, we give the event zone graph of the event-clock automaton A; that recognizes
the language {b™a | n > 1} such that there exists some b which occurs exactly one time unit

before a.
b
q0 b b
730 @ =0
T<0 0<% <o
N b a
a—b <0 q0 q1 q2
S e 7:—1_/
b—% <0
Al
b
a
q2
a <0 0<T <o
a
T<0 T=oo T<0 0<% <o
0<% —T<1
_)< %— —
b <0 = T-T<0b-w<o
-5 <0T-% <o

Figure 3 An event-clock automaton and its event zone graph. Missing lower bounds are of the
form —oco < z — y and missing upper bounds are of the form = — y < oo (including y = 0).

Further, Geeraerts et al. [19, 20] showed that there exists no finite time abstract bisimu-
lation relation for the event predicting automaton (EPA) As given in Figure 4. Figure 4 also
depicts the event zone graph of As. Note that, since this is an event predicting automaton,
there are no history clocks. It is easy to see that there are only finitely many distinct
constraints involving the prophecy clocks.

Figure 4 Event predicting automaton for which there exists no finite time abstract bisimulation
and its event zone graph. Missing lower bounds are of the form —oco < x — y and missing upper
bounds are of the form = — y < oo (including y = 0).

History-Deterministic Timed Automata

Thomas A. Henzinger &
IST Austria, Klosterneuburg, Austria

Karoliina Lehtinen &
CNRS, Aix-Marseille University, University of Toulon, LIS, France

Patrick Totzke &=
University of Liverpool, UK

—— Abstract

We explore the notion of history-determinism in the context of timed automata (TA). History-
deterministic automata are those in which nondeterminism can be resolved on the fly, based on the
run constructed thus far. History-determinism is a robust property that admits different game-based
characterisations, and history-deterministic specifications allow for game-based verification without
an expensive determinization step.

We show yet another characterisation of history-determinism in terms of fair simulation, at the
general level of labelled transition systems: a system is history-deterministic precisely if and only if
it fairly simulates all language smaller systems.

For timed automata over infinite timed words it is known that universality is undecidable for
Biichi TA. We show that for history-deterministic TA with arbitrary parity acceptance, timed
universality, inclusion, and synthesis all remain decidable and are EXpPTIME-complete.

For the subclass of TA with safety or reachability acceptance, we show that checking whether
such an automaton is history-deterministic is decidable (in ExPTIME), and history-deterministic TA
with safety acceptance are effectively determinizable without introducing new automata states.

2012 ACM Subject Classification Theory of computation — Formal languages and automata theory

Keywords and phrases Timed Automata, History-determinism, Good-for-games, fair simulation,
synthesis

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.14

Funding Thomas A. Henzinger: This work was supported in part by the ERC-2020-AdG 101020093.
Patrick Totzke: acknowledges support from the EPSRC, project no. EP/V025848/1.

1 Introduction

Automata offer paradigmatic formalisms both for specifying and for modelling discrete
transition systems, i.e. for providing descriptive as well as executable definitions of formal
languages. Given a finite or infinite word, an automaton specifies whether or not the word
belongs to the defined language. Deterministic automata are executable, because the word
can be processed left-to-right, with each transition of the automaton determined by the
current input letter. Descriptive automata allow the powerful concept of nondeterminism,
which yields more succinct or even more expressive specifications.

The notion of history-determinism lies between determinism and nondeterminism. History-
deterministic automata are still executable, provided the execution engine is permitted to
keep a record of all past inputs. Formally, a strategy r (a.k.a. “resolver”) is a function from
finite prefix runs to transitions that suggests for each input word w a specific run r*(w) of
the automaton over w, namely, the run that results from having the function r determine,
after each input letter, the next transition based on the prefix of the word processed so far.
An automaton is history-deterministic if there exists a resolver r so that for every input
word w, the automaton has an accepting run over w iff the specific run r*(w) is accepting.
? Thomas A. Henzinger, Karoliina L'ehtinen, and Patrick Totzke;

5v icensed under Creative Commons License CC-BY 4.0
33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 14; pp. 14:1-14:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:tah@ist.ac.at
mailto:lehtinen@lis-lab.fr
mailto:totzke@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2022.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2

History-Deterministic Timed Automata

The concept of history-determinism was first identified in [21], where it was noted that
for solving graph games, it is not necessary to determinize history-deterministic specifications
of w-regular winning conditions. For this reason, history-deterministic automata were called
“good-for-games”. The term “history-determinism” was first used by [12]. The concept itself
has since been referred to as both “history-determinism” and “good-for-gameness.” Since [9]
recently showed that, in a general context of quantitative automata, the two notions do not
always coincide (specifically: for certain quantitative winning conditions, history-determinism
implies the “good-for-games” property of an automaton, but not vice versa), we follow their
more nuanced terminology and use the term “history-determinism” to denote the existence
of a resolver and “good-for-games” for automata that preserve the winner of games under
composition, as required for solving games without determinization.

There is also a tight link between a variant of the Church synthesis problem, called
good-enough synthesis [2], and deciding history-determinism. Church synthesis asks whether
a system can guarantee that its interaction with an uncontrollable environment satisfies a
specification language for all possible environment behaviours. This model assumes that the
environment is hostile and will, if possible, sabotage the system’s efforts. This pessimistic
view can be counter-productive. In the canonical example of a coffee machine, if the
users (the environment) do not fill in the water container, the machine will fail to produce
coffee. Church synthesis would declare the problem unrealisable: the machine may not
produce coffee for all environment behaviours. In the good-enough synthesis problem, on
the other hand, such failures are acceptable, and we can still return an implementation
that produces coffee (satisfies the specification) whenever the environment behaves in a way
that allows the desired behaviour (fills in the water container). Deciding the good-enough
synthesis problem for a deterministic automaton is polynomially equivalent to deciding
whether a nondeterministic automaton of the same type is history-deterministic [15, 9, 17].
The decidability and complexity of checking history-determinism is therefore particularly
interesting.

In this paper, we study, for the first time, history-determinism in the context of timed
automata. In a timed word, letters alternate with time delays, which are nonnegative real
numbers. The resolver gets to look not only at all past input letters, but also at all past
time delays, to suggest the next transition. We consider timed automata over infinite timed
words with standard w-regular acceptance conditions [3]. For the results of this paper, it
does not matter whether or not the sum of all time delays provided by an infinite input word
is required to diverge.

Our results can be classified into two parts. The first part of our results applies to
all timed automata, and sometimes more generally, to all labelled transition systems. In
this part we are concerned with solving the quintessential verification problem for timed
systems, namely timed language inclusion, in the special case of history-deterministic (i.e.
executable) specifications. Since universality is undecidable for general timed automata,
so is the timed language-inclusion problem for nondeterministic specifications [3]. This
is the reason why much previous work in timed verification has focused on identifying
determinizable subclasses of timed automata, such as event-clock automata [4], and on
studying deterministic extensions of the timed-automaton model, such as deterministic two-
way timed automata [5]. Determinizable specifications can be complemented, thus supporting
the complementation-based approach to language inclusion: in order to check if every word
accepted by the implementation A is also accepted by the specification B, first determinize
and complement B, and then check the intersection with A for emptiness. We show that the
history-determinism of specifications suffices for deciding timed language inclusion, which
demonstrates that determinizability is not required. More precisely, we prove that if A is a
timed automaton and B is a history-deterministic timed automaton, it can be decided in

T. A. Henzinger, K. Lehtinen, and P. Totzke

EXPTIME if every timed word accepted by A is also accepted by B (Corollary 18).

In contrast to the traditional complementation-based approach to language inclusion, the
history-deterministic approach is game-based. Like the complementation-based approach,
the game-based approach is best formulated in the generic setting of labelled transition
systems with acceptance conditions, so-called fair LTS. The acceptance condition of a fair
LTS declares a subset of the infinite runs of the LTS to be fair (a special case is safety
acceptance, which declares all infinite runs to be fair). Given two fair LTS A and B, the
language of A is included in the language of B if for every fair run of A there is a fair run of
B over the same (infinite) word. A sufficient condition for the language inclusion between A
and B is the existence of a fair simulation relation between the states of A and the states
of B, or equivalently, the existence of a winning strategy for player pp in the following
2-player fair simulation game: (i) every transition chosen by player p4 on the state-transition
graph A can be matched by a transition chosen by player pg on the state-transition graph
B with the same label (letter or time delay), and (ii) if the infinite sequence of transitions
chosen by p4 produce a fair run of A, then the matching transitions chosen by pp produce a
fair run of B [20]. Solving the fair simulation game is often simpler than checking language
inclusion; it may be polynomial where language inclusion is not (e.g. in the case of finite
safety or Biichi automata), or decidable where language inclusion is not (e.g. in the case of
timed safety or Biichi automata [28]).

We show that for all fair LTS A and all history-deterministic fair LTS B, the condition
that the language of A is included in the language of B is equivalent to the condition
that A is fairly simulated by B. This observation reduces the language inclusion problem
for history-deterministic specifications to the problem of solving a fair simulation game
between implementation and specification. The solution of fair simulation games depends
on the complexity of the acceptance conditions of A and B, but is often simpler than
the complementation of B, and fair simulation games can be solvable even in the case of
specifications that cannot be complemented. In the concluding Section 7, we conjecture the
existence of such a timed language. The game-based approach to checking language inclusion,
which requires history-determinism, is therefore more general, and often more efficient,
than the traditional complementation-based approach to checking language inclusion, which
usually requires full determinization. Indeed, history-determinism is exactly the condition
that allows the game-based approach to language inclusion: for a given fair LTS B, if it is
the case that B can fairly simulate all fair LTS A whose language is included in the language
of B, then B must be history-deterministic (Theorem 4).

More generally, turn-based timed games for which the winning condition is defined by a
history-deterministic timed automaton are no harder to solve than those with deterministic
winning conditions: the winner of such a timed game can be determined on the product of
the (timed) arena with the automaton specifying the winning condition. We conjecture that
this is the case also for the concurrent timed games of [13] (cf. Section 7). Timed games
have also been defined for the synthesis of timed systems from timed I/O specifications.
Again, we show that the synthesis game of [14] can be solved not only for I/O specifications
that are given by deterministic timed automata, but more generally, for those given by
history-deterministic timed automata (Theorem 20).

The second part of our results investigates the problem of deciding history-determinism for
timed automata and the determinizability of history-deterministic timed automata. In this
part, we have only partial results, namely results for timed safety and reachability automata.
Timed safety automata, in particular, constitute an important class of specifications, as many
interesting timed and untimed properties can be specified by timed safety automata if time is

14:3

CONCUR 2022

14:4

History-Deterministic Timed Automata

required to diverge [18, 19]. We prove that for timed safety automata and timed reachability
automata, it can be decided in EXPTIME if a given timed automaton is history-deterministic
(Theorem 16). Checking history-determinism remains open for more general classes of
timed automata, such as timed Biichi and coBiichi automata. We also show that every
history-deterministic timed safety automaton can be determinized, without increasing the
number of automaton states, but with an exponential increase in the number of transitions
or length of guards (Theorem 9). While the question of determinizability is undecidable
for nondeterministic timed reachability automata [16], it is open for history-deterministic
timed reachability automata and for history-deterministic timed automata with more general
acceptance conditions. Finally, we show that if a timed safety or reachability automaton
is good-for-games (in the sense explained earlier), then the automaton must be history-
deterministic (Theorem 23). This implication is open for more general classes of timed
automata.

Related Work. The notion of history-determinism was introduced independently, with
slightly different definitions, by Henzinger and Piterman [21] for solving games without de-
terminization, by Colcombet [12] for cost-functions, and by Kupferman, Safra, and Vardi [24]
for recognising derived tree languages of word automata. Initially, history-determinism was
mostly studied in the w-regular setting, where these different definitions all coincide [8]. For
some coBiichi-recognisable languages, history-deterministic automata can be exponentially
more succinct than any equivalent deterministic automaton [23], and for Biichi and coBiichi
automata, history-determinism is decidable in polynomial time [6, 23]. For transition-based
history-deterministic automata, minimisation is PTIME [1], while for state-based ones, it is
NP-complete [27]. Recently, the notion has been extended to richer automata models, such
as pushdown automata [25, 17] and quantitative automata [9, 10], where deterministic and
nondeterministic models have different expressivity, and therefore, allowing a little bit of
nondeterminism can, in addition to succinctness, also provide more expressivity.

Paper Structure. After defining preliminary notions we proceed to introduce history-
determinism, and show a new, fair-simulation-based characterisation in Section 3. In Section 4
we demonstrate that history-deterministic TA with safety acceptance are determinizable,
and in Section 5 that one can decide whether a given safety or reachability TA is history-
deterministic. Section 6 considers questions concerning timed games, timed synthesis,
and timed language inclusion and shows that history-determinism coincides with good-for-
gameness for reachability and safety TA.

2 Preliminaries

Numbers, Words. Let N and R>(denote the nonnegative integers and reals, respectively.
For ¢ € Rsq we write |c| for its integer and fract(c) = ¢ — |¢] for its fractional part.

An alphabet ¥ is a nonempty set of letters. X, denotes ¥ U {e}. ¥* and X* denote the
sets of finite and infinite words over X, respectively and %°° = ¥* U %% denotes their union.
The empty word is denoted by ¢, the length of a finite word v is denoted by |v|, and the n-th
letter of a finite or infinite word is denoted by wn] (starting with n = 0).

Labelled Transition Systems, Languages, Fair Simulation. A [abelled transition system
(LTS) is a graph S = (V, X, E) with set V of states and edges E C V x X x V| labelled by
alphabet X. Tt is deterministic if for all (s,a) € V x ¥ there is at most one s’ with s — s’

T. A. Henzinger, K. Lehtinen, and P. Totzke

and complete if for all (s,a) € V x ¥ there is at least one s’ with s - s’. We henceforth
consider only complete LTSs. Together with an acceptance condition Acc C E*“ this can be
used to define languages over X as usual: a word w = lgl; ... € X¥ is accepted from s if
there is a path (also run) p = sg by 51 By sy, that is accepting, i.e., in Ace. The language
L(sp) C X of an initial state sy € V consists of all words for which there exists an accepting
run from sg. We will write s Cy, s’ to denote language inclusion, meaning L(s) C L(s"). The
acceptance condition Acc can be given by a parity condition but does not have to be. We
consider in this paper especially reachability (does the run visit a state in a given target set
T C V?) and safety conditions (does the run always stay in a “safe” region F' C V7). An
LTS together with an accepting condition is referred to as fair LTS [20].

Fair simulations [20] are characterised by simulation games on (a pair of) fair LTSs in
which Player 1 stepwise produces a path from s, and Player 2 stepwise produces an equally
labelled path from s’. Player 2 wins if she produces an accepting run whenever Player 1
does. That is, s is fairly simulated by s’ (write s < s’) iff Player 2 has a strategy in the
simulation game so that, whenever the run produced by Player 1 is accepting then so is the
run produced by Player 2 in response. Fair simulation s < s’ implies language inclusion
L(s) C L(s") but not vice versa.

Timed Alphabets, Words, and LTSs. For any alphabet ¥ let Y7 denote the timed alphabet
{(a,t)|a € £,t € R>0}. A timed word is a finite or infinite word w € (X1)*° consisting of
letters in ¥ paired with distinct non-negative non-decreasing real-valued timestamps. We will

also write dpagdya ... to denote a timed word (a;,t;) € X where tg = dp and t;41 = t;+d;iy1.

Conversely, the duration and the timed word of any sequence in (X UR)® is given inductively
as follows. For any d € R>g, 7 € ¥, a € (ZUR)*, and § € (X UR)> let duration(r) = 0;
duration(d) = d; duration(af) = duration(a) + duration(B); tword(e) = tword(d) = &;
tword(ad) = tword(a); and tword(at) = tword(a)(t, duration(a)). An infinite timed word
of finite duration is called a zeno word. Our results hold whether time must diverge (i.e.,
zeno words are not considered) or not; we note whenever time divergence affects proofs.

A timed LTS is one with edge labels in ¥ W R>q, so that edges labelled by R>¢ (modelling

the passing of time) satisfy the following conditions for all a, 8,7 € V and d,d’ € Rx.

1. (Zero-delay): o 2 o,

2. (Determinism): If « 4, BA« 4, ~ then 8 =+,

3. (Additivity): « 4, B LN ~ then « did, .

The timed language L(s) C X% of a state s consists of all the timed words read along

accepting runs L(s) = tword(L(s)). We write L(S) for the timed language of the initial
state of the LTS S.

Timed Automata. Timed automata are finite-state automata equipped with finitely many
real-valued variables called clocks, whose transitions are guarded by constraints on clocks.
Constraints on clocks C' = {z,y,...} are (in)equalities <n where z € C, n € N and
q € {<,<}. Let B(C) denote the set of Boolean combinations of clock constraints, called
guards. A clock valuation v € R assigns a value v(z) to each clock x € C. We write v |= ¢
if v satisfies the guard g. A timed automaton (TA) 7 = (Q,:,C, A, X, Acc) is given by

@ a finite set of states including an initial state ¢;

> an input alphabet;

C' a finite set of clocks;

14:5

CONCUR 2022

14:6

History-Deterministic Timed Automata

A CQ xB(C)x X x 2% x Q a set of transitions; each transition is associated with a
guard, a letter, and a set of clocks to reset. A transition that reads letter a € ¥ will be
called an a-transition. We assume that for all (s,v,a) € @ x R x ¥ there is at least
one transition (s, g,a,r,s’) € A so that v satisfies g. N
Acc C A¥ an acceptance condition.
Timed automata induce timed LTSs, and can thus be used to define timed languages, as
follows. A configuration is a pair consisting of a control state and a clock valuation. These
can evolve in two ways, as follows. For all configurations (s,v) € Q x RS,

there is a delay step (s,v) <, (s,v +d) for every d > 0, which increments all clocks by d.
there is a discrete step (s,v) — (s',0') if T = (s,g,a,7,8') € A is a transition so that v
satisfies g and v/ = v[r — 0], that is, it maps r to 0 and agrees with v on all other values.

. . . d_d d+d
Naturally, each delay d yields a unique successor configuration and v — — v/ <= v T

for any two d,d’ > 0 and valuations v,v’. So this indeed induces a timed LTS.

Discrete steps, however, are a source of nondeterminism: a configuration may have several
a-successors induced by different transitions whose guards are satisfied. T is deterministic if
its induced LTS is deterministic, which is the case iff for every state s, all transitions from s
have mutually exclusive guards.

A path p = (so,v0) A, (s1,v1) L, (s2,v2) ... is called reduced if it does not contain
consecutive delay steps. It is a run on timed word w € (X7)* if tword(lyly...) = w. The
acceptance condition is lifted to the LTS as expected. Namely, a run is accepting if p € Acc.
This way, the language L(s,v) C 3% of a configuration (s, v) consists of all timed words for
which there exists an accepting run from (s, v). The language of T is L(T) = L((1,0)), the
languages if the initial configuration with state ¢ and all clocks set to zero.

3 History-determinism

Informally, an automaton or LTS is history-deterministic if the non-determinism can be
resolved on-the-fly, based only on the history of the word and run so far. We give two equivalent
definitions, each being more convenient than the other for some technical developments.

» Definition 1 (History-determinism). A fair LTS S = (V, X, E) is history-deterministic
(from initial state so € V) if there is a resolver r : E* x ¥ — E that maps every finite run
and letter a € ¥ to an a-labelled transition such that, for all words w = agay --- € L(sg) the
run p defined inductively for i > 0 by p;+1 dzefpﬂ”(m, ai+1), 1 an accepting run on w from Sq.

Equivalently (from [8] for w-regular automata), a resolver corresponds exactly to a winning
strategy for Player 2 in the following letter game.

» Definition 2 (Letter game). The letter game on a fair LTS S = (V, X, E) with initial state
so € V is played between Players 1 and 2. At turn i:

Player 1 chooses a letter a; € 3.

Player 2 chooses an a; labelled edge 1; € E.
A play is a pair (w, p) where w = agay ... is an infinite word and p = T9T1... IS @ TUN ON W.
A play is winning for Player 2 if either w ¢ L(so) or p is an accepting run on w from sg.

In these and other games we consider, strategies for both players are defined as usual,
associating finite histories (runs) to valid player choices. Now winning strategies for Player 2
in the letter game exactly correspond to resolvers for S and vice-versa.

» Proposition 3. Player 2 wins the letter game on a fair LTS S if and only if S is history-
deterministic.

T. A. Henzinger, K. Lehtinen, and P. Totzke

While history-determinism is known to relate to fair simulation, in the sense that history-
deterministic automata simulate deterministic ones for the same language [21], their relation
has so far not been studied in more details. Below we show that history-determinacy can
equivalently be characterised in terms of fair simulation.

» Theorem 4. For every fair LTS S and initial state q the following are equivalent:
1. S is history-deterministic.
2. For all complete fair LTS S’ with initial state ¢', ¢ Cr, q if and only if ¢ < q.

Proof.

(1) = (2). Fair simulation ¢ < ¢’ trivially implies ¢ C, ¢’ by definition.

For the other implication, assume that ¢ Cy, ¢’. By assumption (1) there exists a resolver,
i.e. a winning strategy in the letter game. Player 2 can win the fair simulation game
by ignoring her opponent’s configuration and moving according to this resolver. By the
completeness assumption on S’, Player 1 can never propose a letter for which there is no
successor in S’. So each player produces an infinite run on the same word w and the run
produced by Player 2 is the same as that produced by the resolver in S’. If w € L(g) then it
is in L(q’") and Player 2’s run accepts. If w ¢ L(q) then Player 2 wins due to the fairness
condition. In both cases she wins the fair simulation game and therefore ¢ < ¢'.

(2) = (1). If condition (2) holds for all complete fair LTSs then ¢ can fairly simulate
the one consisting of a single state with self-loops for all transitions of S whose acceptance
condition contains exactly all accepting runs from g. Then the strategy for Player 2 in the
fair simulation game can be used as a strategy in the letter game. |

4 Expressivity

In this section we show that history-deterministic timed automata with safety acceptance are
determinizable. To do so, we show (in Lemma 8) that these automata have simple resolvers,
which only depend on the equivalence class of the current clock configuration with respect to
the region abstraction. That is to say, the resolver only needs to know the integer part of
clock values (up to the maximal value that appears in clock constraints) and the ordering of
their fractional parts. We can then use such a simple resolver to determinize the automaton
by adding guards that restrict transitions so that the automaton can only take one transition
per region, as dictated by the resolver.
The following is the standard definition of regions (cf. [3], def. 4.3).

» Definition 5 (Region abstraction). Let T = (Q,t,C, A, X, Acc) be a timed automaton and

for any clock x € C let ¢, denote the largest constant in any clock constraint involving x.

Two valuations v,v' € RS, are (region) equivalent (write v ~ ') if all of the following hold.

1. For all x € C either [v(z)] = [V (z)] or both v(x) and V'(x) are greater than c,.

2. Forallz,y € C withv(z) < ¢z and v(y) < ¢y, fract(v(z)) < fract(v(y)) iff fract(v'(x)) <
fract(V'(y)).

3. For all x € C with v(x) < ¢y, fract(v(z)) =0 iff fract(v'(x)) = 0.

Two configurations (q,v) and (¢’ V') are (region) equivalent, write (q,v) ~ (¢',V'), if ¢=¢

and v ~ 1.

» Definition 6 (Run-trees). A run-tree on a timed word u = (ag,to)(a1,t1)... from TA
configuration (sg,vp) s a tree where nodes are labelled by configurations, and edges by
transitions such that

14:7

CONCUR 2022

14:8

History-Deterministic Timed Automata

1. The labels along every branch form a run on u from (sg, 1)

2. It is complete wrt. discrete steps: suppose the path leading towards some node is labelled
by a run p which reads tword(p) = (ag, to) - .. (a;, t;), ends in a configuration (s,v), and
has duration(p) = t;11. Then for every transition T = (s,9,a;+1,7,8') € A with v =g
and so that (s,v) — (s',1'), there is a T-labelled edge to a new node labelled by (s',').

A run-tree is reduced if all its branches are. That is, there are no consecutive delay steps.

Notice that for every initial configuration and timed word, there is a unique reduced run-tree,
all of whose branches are runs on the word (since we have no deadlocks), and vice versa, all
reduced runs on the word appear as branches on the run-tree.

We extend the region equivalence from configurations to run-trees in the natural fashion:
two run-trees are equivalent if they are isomorphic and all corresponding configurations are
equivalent. That is, they can differ only in fractional clock values and the duration of delays.

The following is our key technical lemma.

» Lemma 7. Consider two region equivalent configurations (s,v) ~ (s',1).
For every timed word u there is a timed word v’ so that the reduced run-tree on u from
(s,v) is equivalent to the reduced run-tree on u' from (s',v').

Proof sketch. It suffices to show that for some (not necessarily reduced) run-tree on u from
(s,v) there exists some equivalent run-tree from (s’, 1) as this implies the claim by collapsing
all consecutive delay steps and thus producing the reduced tree on both sides.

We proceed by stepwise uncovering a suitable run-tree from (s,) for ever longer prefixes
of u and constructing a corresponding equivalent run-tree from (s’,7’). The intermediate
finite trees we build have the property that all branches have the same duration. In each
round we extend all current leafs, in both trees, either by
1. all possible non-deterministic successors (for the letter prescribed by the word w), in case

the duration of the branch is already equal to the next time-stamp in u, or

2. one successor configuration due to a delay, which must be the same on all leafs.

For the second case, the delays used to extend the two trees need not be the same because
we only want to preserve region equivalence. Also, the delay chosen for the tree rooted in
(s,v) need not follow the timestamps in u but can be shorter, meaning the run-tree may not
be reduced.. The difficulty lies in systematically choosing the delays to ensure that the two
trees remain equivalent and secondly, that in the limit this procedure generates a run-tree on
the whole word u from (s,). Together this implies the existence of a corresponding word v/’
and a run-tree from (s’,v').

To this end we propose a stronger invariant, namely that the relative orderings of the
fractional values in all leafs are the same on both sides. The delays will be chosen in such
a way as to always increase the maximal fractional clock value among all leafs to the next
higher integer. Due to space constraints full details are deferred to Appendix A. <

We are now ready to show that history-deterministic TA with safety acceptance have
simple resolvers based on the region abstraction.

» Lemma 8. Every history-deterministic TA with safety acceptance has a resolver r that bases
its decision only on the current letter and region. That is, for any letter a € ¥ and any two
finite runs (1,0) == (s,v) and (1,0) 2> (s', ') consistent with r and so that (s,v) ~ (s',V'),
it holds that r(p,a) = r(p’,a).

T. A. Henzinger, K. Lehtinen, and P. Totzke

Proof. Let r be a resolver for a history-deterministic safety TA T.

We now build a resolver that only depends on the region of the current configuration. To
do so, we choose a representative configuration within each region, which will determine the
choice of the resolver for the whole region: For every region R € [Q x RS,]., consider the
configurations that are reached by at least one r-consistent run, and mark one of them mg,
if at least one exists, along with one r-consistent run pp leading to the configuration mpg.

Let v’ be the aspiring resolver that, when reading a letter a, considers the region R of the
current configuration, and follows what r does when reading a after the marked r-consistent
run pr. We set 7/(p,a) = r(pg,a) where R is the final region of the prefix-run p. Note that
r’ is well defined since it always follows transitions consistent with some r-consistent run
and can therefore only visit marked regions.

We claim that 7’ is indeed a resolver. Towards a contradiction, assume that it is not a
resolver, that is, there is some word w € L(T) for which 7’ builds a rejecting run. As 7 is a
safety automaton, we can consider the last configuration (s,) along this run from which the
remaining suffix au of w can be accepted *.

Suppose that p is the prefix of the run built by ' on w, which ends in (s,v) and let
7 = 1r'(p,a) be the a-transition chosen by r’. We know that 7 leads from (s,r) to some
configuration (s’,v’) from where u is not accepted. By definition of r/, there must be a
marked configuration mpg ~ (s,v) reached by some run pgr from which r chooses the same
a-transition 7. By Lemma 7 there must be a word au’ so that the run-tree on au from (s,v)
is equivalent to that on au’ from mpg. This means that au’ € L(mpg) and, as r is a resolver,
there must be an accepting run that begins with a step (mpg) — (my). We derive that
u also has an accepting run from (g, v) that begins with 7, contradicting the assumption
that (q,v) is the last position on the run 7’ built on w so that its suffix can be accepted.
Therefore, v’ is indeed a resolver. |

We can now use the region-based solver to determinize history-deterministic safety TA.
» Theorem 9. FEvery history-deterministic safety TA is equivalent to a deterministic TA.

Proof. Consider a history-deterministic TA 7 = (Q, ¢, C, A, 3, Acc), with a region-based re-
solver (as in Lemma 8) r, and let R be the region graph of 7. Define 7/ = (Q, ¢, C, A’, %, Acc)
where (¢,9 A z,a,X,q") € A’ for z a guard defining a region of R, that is, a guard that
is satisfied exactly by valuations in R, if (¢,¢,a,X,q’) € A is the transition chosen by r
in the region defined by the guard z. In other words, 7' is 7 with duplicated transitions
guarded so that a transition can only be taken from a region from which r chooses that
transition. Observe that 77 is deterministic: the guards describing regions are mutually
exclusive, therefore the guards of any two transitions from the same state over the same
letter have mutually exclusive guards.

As runs of T’ corresponds to a run of 7 with added guards, L(7") C L(T). Conversely,
if w € L(T), then its accepting run consistent with r is also an accepting run in 7", since
each transition along this run, being chosen by r, is taken at a configuration that satisfies
the additional guards in 7. We can therefore conclude that L(7) = L(T"). <

L The fact that a rejecting run produced by a non-resolver must ultimately reach a configuration that
cannot accept the remaining word also holds for TAs over finite words. However, this is not the case for
reachability acceptance, which is why we only state the claim for safety here. Still, we conjecture that
history-deterministic TA with reachability acceptance admit region-based resolvers.

14:9

CONCUR 2022

14:10

History-Deterministic Timed Automata

While this determinization procedure preserves the state-space of the automaton, it
multiplies the number of transitions (or the size of guards) by the size of the region abstraction.
Then, while history-deterministic safety TA are no more expressive than deterministic ones,
they could potentially be exponentially more succinct, when counting transitions and guards.

5 Deciding History-determinism

Recall the letter game characterisation of history-determinism: Player 1 plays timed letters
and Player 2 responds with transitions. Player 2 wins if either the word is not in the language
of the automaton, or her run is accepting. As TA are not closed under complement, it isn’t
clear how to solve this game. Bagnol and Kuperberg [6] introduced token games, which
are easier to solve, but which coincide with the letter game for some types of automata, in
particular for Biichi [6], coBiichi [7] and some quantitative automata [10].

In the k-token game, in addition to providing letters, Player 1 also builds k runs, of
which at least one should be accepting. The fewer runs Player 1 is allowed to use, the more
information he gives Player 2 about the word he will play. We show that the 1 and 2-token
games characterize history-determinism for fair LTSs with safety and reachability acceptance.

» Definition 10 (k-token game [6]). Given a fair LTS S = (V, 3, E) with initial state so € V
and an integer k > 0, the game Gy (S) proceeds in rounds. At each round i:

Player 1 plays a letter a; € &

Player 2 plays a transition 1; in B

Player 1 plays transitions 714, T2 ... T 0 S
This way, Player 1 chooses an infinite word w = apay ... and exactly k runs p; = 7, 0T 17Ti2 - - -
for 1 <i <k, and Player 2 chooses a run p = 1971 The play is winning for Player 1 if
some pj is an accepting run over toag... from so but p is not. Else it is winning for Player 2.

We write Gi(T) to mean the k-token game on the LTS induced by T .

» Remark 11. G(S) and the letter game are determined for any k and fair LTS S for any
Borel-definable acceptance condition [26]. In particular, the letter game is determined for
both safety and reachability TA. Indeed, the winning condition for Player 2 is a disjunction of
the complement of L(B) and of the acceptance condition of B. Then, as long as L(1) is Borel,
by the closure of Borel sets under complementation and disjunction, the letter-game is Borel,
and therefore determined, following Martin’s Theorem [26]. If time is not required to diverge,
then reachability timed languages and safety timed languages are clearly Borel. Since words
in which time diverges are also Borel (they can be seen as the countable intersection of words
where time reaches each unit time), this remains the case when we require divergence.

The next lemma was first stated for finite [6], then for quantitative automata [10]. The
same proof works for all (generally infinite) fair LTSs, and is given again in Appendix B.

» Lemma 12. Given an fair LTS S, if Player 2 wins G2(S) then she wins G (S) for all k.

G1(S) was shown to characterise history-determinism for a number of quantitative
automata in [10]. In Appendix B we show, using similar proof techniques, that this is also
the case for all safety LTSs. The key observation is that for Player 2 to win the letter game,
it suffices that she avoids mistakes. We then show that a winning strategy for her in G1(S)
can be used to build such a strategy.

» Lemma 13. Given a fair LTS S with a safety acceptance condition, Player 2 wins G1(S)
if and only if S is history-deterministic.

T. A. Henzinger, K. Lehtinen, and P. Totzke

This argument does not work for reachability TA: it is no longer enough for Player 2
to avoid bad moves to win; she needs to also guarantee that she will actually reach a final
state. Here, we characterise history-determinism with the 2-token game. However, our proof
requires finite branching in Player 2’s choices, so we can not state it for LTSs in general.

» Lemma 14. Given a finitely branching fair LTS S with a reachability acceptance condition,
Player 2 wins Go(S) if and only if S is history-deterministic.

Proof. If Player 2 wins in the letter game, she wins in G2(S) by ignoring Player 1’s tokens.

Else, since the letter game is determined (Remark 11), Player 1 wins in the letter game
on S with a strategy o. All plays that agree with ¢ must eventually play a good prefix,
that is, a prefix of a timed word of which either all continuations are in L(.S) if time is not
required to diverge, or all non-zeno continuations are in L(S) if time is required to diverge.
At each turn Player 2 has only a finite number of enabled transitions to choose from, because
S is finitely branching. Therefore the strategy-tree for o is finitely branching and by Kénig’s
lemma, there is a bound k such that any play that agrees with ¢ has played a good prefix
after k steps.

We now argue that Player 1 wins in Gy/(S) for a large enough k’. Let &’ be larger than
the number of distinct run prefixes of length k on any word of length k played by o (that is,
at most b¥ where b is the branching degree of S). Then, in G},(S), Player 1 wins by using the
following strategy: he plays the letters according to o and Player 2’s moves and moves his
k' tokens along all possible run prefixes for the first k& moves, and then chooses transitions
arbitrarily. Since after k steps o guarantees that he has played a good prefix, at least one of
his runs built in this manner is accepting.

This strategy is winning: indeed, if Player 2 could beat it with some strategy o', then
she could use ¢’ in the letter game to beat o, a contradiction. From Lemma 12, and the
determinacy of G (S), Player 1 therefore wins G2(S) whenever he wins the letter game. <«

We now consider the problem of deciding whether a given safety or reachability TA is
history-deterministic. We use the observation that the k-token games played on LTSs induced

by TA can be expressed as a timed parity game from [11] played on the (k + 1)-fold product.

» Lemma 15. For all k (given in unary) and timed safety or reachability automata T, the
game G (T) is solvable in EXPTIME.

Proof. Gi(T) is a timed game on an arena consisting of the configuration space of the
product of k + 1 copies of 7. The winning condition consists of a boolean combination of
safety or reachability conditions. Such games can be solved as timed parity games as defined
in [11] in time exponential in the number of clocks ¢ and in k [11, Theorem 3]. Note that [11]
uses concurrent timed parity games, of which turn-based ones are a special case. |

» Theorem 16. Given a safety or reachability TA, deciding whether it is history-deterministic
is decidable in EXPTIME.

Proof. From Lemma 13 and Lemma 14, deciding the history-determinism of a safety or
reachability TA T reduces to solving G1(7T) or Ga(T) respectively, both of which can be
done in EXPTIME, from Lemma 15. |

As explained in the introduction, this also solves the good-enough synthesis problem of
deterministic safety and reachability TA.

14:11

CONCUR 2022

14:12

History-Deterministic Timed Automata

6 Synthesis, Games and Composition

In this section we consider several games played on (LTSs of) timed automata and how they
can be used to decide classical verification problems. We focus on turn-based games, although
our techniques can be generalised to concurrent ones. We first look at language inclusion,
then synthesis, and finally we consider good-for-games timed automata, that is, automata
that preserve the winner when composed with a game and show that good-for-gameness and
history-determinism coincide for both reachability and safety timed automata.

6.1 Language Inclusion and Fair Simulation Games

The connection between history-determinism and fair simulation, established in Theorem 4,
allows to transfer decidability results to history-deterministic TA. Let’s first recall that
simulation checking is decidable for timed automata using a region construction [28]. This
paper precedes the notion of fair simulation (restricting Player 1 to fair runs) and is thus only
applicable for safety conditions. However, the result holds for more general parity acceptance
(for which each state is assigned an integer priority and where a run is accepted if the highest
priority it sees infinitely often is even).

» Theorem 17. Fuir simulation is decidable and EXPTIME-complete for parity timed autom-
ata.

Proof. It suffices to observe that the simulation game can be presented as a timed parity
game, as studied in [11], played on the product of two copies of the automaton. These can be
solved in EXPTIME. A matching lower bound holds even for safety or reachability acceptance
(see Lemma 24 in Appendix C for details).

<

» Corollary 18. Timed language inclusion is decidable and EXPTIME-complete for history-
deterministic TA. More precisely, given a TA S with initial state q and a history-deterministic
TA S’ with initial state q', checking if ¢ Cr ¢’ holds is EXPTIME-complete.

Proof. As B is history-deterministic and by Theorem 4, we have ¢ Cy, ¢’ if, and only if,
q = ¢'. The result follows from Theorem 17. <

6.2 Synthesis Games

We show that as is the case in the regular [21], pushdown [25], cost function [12], and quant-
itative [9] settings, synthesis games with winning conditions given by history-deterministic
TA are no harder to solve than those with for winning condition given by deterministic TA.

» Definition 19 (Timed synthesis game). Given a timed language L C (X x $0)%, the
synthesis game for L proceeds as follows. At turn i:

Player I plays a delay d; and a letter a; € X

Player II plays a letter b; € ¥o.
Player IT wins if dy (Zg)dl (le) € L or if time does not progress. If Player II has a winning
strategy in the synthesis game, we say that L is realisable.

» Theorem 20. Given a history-deterministic timed parity automaton T, the synthesis game
for L(T) is decidable and EXPTIME-complete.

T. A. Henzinger, K. Lehtinen, and P. Totzke

The proof (in Appendix C) follows a similar reduction to one in [25], in which the
nondeterminism of the automaton is moved into Player 2’s output alphabet, forcing her to
simultaneously build a word in the winning condition and an accepting run witnessing this.
Since accepting runs are recognised by deterministic automata, this reduces the problem to
the synthesis problem for deterministic timed automata. The lower bound follows from the
EXPTIME-completeness of synthesis for deterministic TA [14].

The EXPTIME decidability of universality for history-deterministic TA follows both from
the decidability of language inclusion in the previous section and from the decidability of
synthesis: the universality of 7 reduces to deciding the winner of the synthesis game over
{(¥) | w € L(T)}, recognised by a history-deterministic TA if T is history-deterministic.

6.3 Composition with Games

Implicitly, at the heart of these reductions is the notion of composition: the composition
of the game to solve with a history-deterministic automaton for the winning condition
yields an equivalent game with a simpler winning condition. We say that an automaton
is good-for-games if this composition operation preserves the winner of the game for all
games. While history-determinism always implies good-for-gameness, the converse is not
necessarily true. While the classes of history-deterministic and good-for-games automata
coincide for w-regular automata [8], this is not the case for quantitative automata [9], which
can be good-for-games without being history-deterministic. We argue that for reachability
and safety timed automata, good-for-gameness and history-determinism coincide.

» Definition 21 (Timed Games). A timed game (roughly following [14]), consists of an arena
G = (Q,,,C,A}X, L) and is similar to a TA except that Q, which need not be finite, is
partitioned into Q = Q1 W Q2, that is, positions Q1 belonging to Player 1 and positions Q2
belonging to Player 2, and L is a timed language, not an acceptance condition. Furthermore,
an a-transition produces the letter a, rather than reads it. Configurations are defined as for
TA and we assume every configuration to have at least one successor-configuration.

A timed game proceeds in the configuration space of G with Player 1 at each turn i
advancing time with a delay d; € R. Then, from the resulting configuration c;, the owner of
the state of ¢; chooses a transition in A enabled in c;, leading to a transition c;y1 producing
a letter a;. An infinite play is winning for Player 2 if the word dyagdiay ... produced is in L.

» Definition 22 (Composition). Intuitively, the composition of a game G and an automaton
T consists of a game in which the two players play on G while Player 2 must also build,
letter by letter, a run of T on the outcome of the game in G. More formally, given a TA
T and a game G with winning condition L(T), the composition T o G consists of a game
played on the product of the configuration spaces of G and T, starting from the initial state
of both, in which, at each turn i, from a configuration (c;,c}), Player 1 plays a time delay
d; € R, the owner of the current G-state chooses a move in the configuration space of G to a
successor-configuration c;+1, producing a letter a;, and then Player 2 chooses a transition
over (d;,a;) enabled at the current T -configuration ¢, leading to a successor-configuration
Ciy1- The game then proceeds from (ciq1, iy).

Player 2 wins infinite plays if the run built in T is accepting, and loses if it is rejecting
or if she cannot move in the G-component.

Observe that if Player 1 wins in G, then he also wins in 7 o G with a strategy that produces
a word not in L(7) in G, as then Player 2 can not produce an accepting run in 7.

[9, Lemma 7] shows that for (quantitative) automata for which the letter-game is de-
termined, (threshold) history-determinism coincides with good-for-gameness. The lemma
is stated for quantitative automata, where thresholds are relevant; in the Boolean setting,

14:13

CONCUR 2022

14:14

History-Deterministic Timed Automata

it simply states that the determinacy of the letter game implies the equivalence of history-
determinism and good-for-gameness. In our timed setting, a similar argument, combined
with the determinacy of the letter game for safety and reachability TA, gives us the following.

» Theorem 23. Let T be a safety or reachability TA. The following are equivalent:
1. T is history-deterministic.
2. For all timed games G with winning condition L(T), whenever Player 2 wins G, she also

wins T oG.
Proof.

(1) = (2). If T is history-deterministic, the resolver can be used as a strategy in the
T component of 7 o G. When combined with a winning strategy in G that guarantees that
the G-component produces a word in L(7T), the resolver guarantees that the 7-component
produces an accepting run, thus giving the victory to Player 2.

(2) = (1). Towards a contradiction, assume 7T is not history-deterministic, that is, by
determinacy of the letter game from Remark 11, that Player 1 has a winning strategy o in
the letter game. Now consider the game G,, without clocks or guards, in which positions,
all belonging to Player 1, consist of the prefixes of timed words played by o, with moves
w ﬂ) w(t,a). As o is winning for Player 1, all maximal paths in G, are labelled by a timed
word in L(T), so G, is winning for Player 2.

We now argue that Player 1 wins 7 o G, by interpreting Player 2’s moves in the T
component as her moves in the letter game, and choosing moves in G mimicking the letter
dictated by o. Then, if Player 2 could win against this strategy in T o G, she could also
win against ¢ in the letter game by interpreting Player 1’s choices of letters as moves in G,
and responding with the same transition as she plays in the 7 component of 7 o G,. Such a
strategy is a valid strategy in the letter game on 7, and while it might not be winning in
general, it is winning against o, contradicting that ¢ is a winning strategy for Player 1. <«

This proof fails for acceptance conditions beyond safety and reachability, as it isn’t
clear whether timed Biichi and coBiichi automata define Borel sets. If this was the case
then history-deterministic timed automata would be exactly those that preserve winners in
composition with games, as is the case in the w-regular setting.

7 Conclusion

We introduced history-determinism for timed automata and showed that it suffices for solving
important problems that previously required full determinism, in particular, timed language
inclusion, universality and synthesis. We showed that for the important classes of timed
safety and timed reachability automata, history-determinism can be checked (and therefore
good-enough synthesis of deterministic reachability and safety automata can be solved) and
every history-deterministic timed safety automaton can be determinized.

We conjecture that determinizability does not hold for history-deterministic timed coBiichi
automata. Consider the timed coBiichi language “there is a real time t such that for every
nonnegative integer 4, there is a letter a at time ¢ + ¢.” This timed language is recognised by
a history-deterministic coBiichi automaton in which a nondeterministic transition guesses a
“witness time” t after which a occurs at every unit interval, and which allows for an unbounded
number of failed guesses (using the coBiichi condition). To see that this automaton is history-
deterministic, let the resolver repeatedly and deterministically pick the time with the most
previous occurences of a at unit-interval distances. If a timed input word is in the language,
then this resolver will eventually choose a correct witness time and produce an accepting run.

T. A. Henzinger, K. Lehtinen, and P. Totzke

We conjecture that the complement of this language cannot be defined by a (nondetermin-
istic) timed automaton. Informally, a timed automaton would require an unbounded number
of clocks to check that “for all occurrences of a there is a nonnegative integer distance ¢
such that a is not followed by another a after ¢ time units.” If so, this timed language would
separate the classes of deterministic and history-deterministic timed languages.

Let us conclude with another conjecture. We showed that history-deterministic timed
automata are “good” for solving turn-based timed games, where in each turn of the game,
one of the two players chooses a time delay or an action. A more general, concurrent setting
for timed games is presented in [13]. In the concurrent version both players simultaneously
choose permissible pairs of time delays and actions, and the player who has picked the shorter
time delay gets to move. While concurrent games may not be determined, we conjecture
that these concurrent timed games can again be solved by composing the (timed) arena with
the (timed) winning condition, as long as the winning condition is history-deterministic.

—— References

1 Bader Abu Radi and Orna Kupferman. Minimizing gfg transition-based automata. In Inter-
national Colloquium on Automata, Languages and Programming (ICALP). Schloss Dagstuhl —
Leibniz-Zentrum fuer Informatik, 2019.

2 Shaull Almagor and Orna Kupferman. Good-enough synthesis. In Computer Aided Verification
(CAV), volume 12225 of Lecture Notes in Computer Science, pages 541-563. Springer, 2020.

3 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994. doi:10.1016/0304-3975(94)90010-8.

4 Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theoretical Computer Science, 211(1-2):253-273, 1999. doi:10.1016/
S0304-3975(97)00173-4.

5 Rajeev Alur and Thomas A. Henzinger. Back to the future: Towards a theory of timed regular
languages. In 33rd Annual Symposium on Foundations of Computer Science, pages 177-186.
IEEE Computer Society, 1992. doi:10.1109/SFCS.1992.267774.

6 Marc Bagnol and Denis Kuperberg. Biichi Good-for-Games Automata Are Efficiently Re-
cognizable. In Sumit Ganguly and Paritosh Pandya, editors, JARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume
122 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1-16:14, Dagstuhl,
Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
FSTTCS.2018.16.

7 Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michal Skrzypczak. On succinctness
and recognisability of alternating good-for-games automata. CoRR, abs/2002.07278, 2020.
arXiv:2002.07278.

8 Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeterminism to
alternation. In International Conference on Concurrency Theory (CONCUR), volume 140 of
LIPIcs, pages 19:1-19:16, 2019.

9 Udi Boker and Karoliina Lehtinen. History Determinism vs. Good for Gameness in Quantitative
Automata. In Mikotaj Bojanczy and Chandra Chekuri, editors, JARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume
213 of Leibniz International Proceedings in Informatics (LIPIcs), pages 38:1-38:20, Dagstuhl,
Germany, 2021. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik. doi:10.4230/LIPIcs.
FSTTCS.2021.38.

10 Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative
automata. In Patricia Bouyer and Lutz Schroder, editors, JARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 120
139, Cham, 2022. Springer International Publishing. doi:10.1007/978-3-030-99253-8_7.

14:15

CONCUR 2022

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1109/SFCS.1992.267774
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
http://arxiv.org/abs/2002.07278
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1007/978-3-030-99253-8_7

14:16

History-Deterministic Timed Automata

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Timed parity games:
Complexity and robustness. In Franck Cassez and Claude Jard, editors, International Confer-
ence on Formal Modeling and Analysis of Timed Systems (FORMATS), pages 124-140, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
International Colloguium on Automata, Languages and Programming (ICALP), pages 139-150,
2009.

Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariélle Stoelinga.
The element of surprise in timed games. In International Conference on Concurrency Theory
(CONCUR), volume 2761 of Lecture Notes in Computer Science, pages 142—156. Springer,
2003. doi:10.1007/978-3-540-45187-7_9.

Deepak D’souza and P. Madhusudan. Timed control synthesis for external specifications. In
International Symposium on Theoretical Aspects of Computer Science (STACS), pages 571-582.
Springer Berlin Heidelberg, 2002. doi:10.1007/3-540-45841-7_47.

Emmanuel Filiot, Christof Léding, and Sarah Winter. Synthesis from weighted specifications
with partial domains over finite words. In TARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), 2020.

Olivier Finkel. Undecidable problems about timed automata. In International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS), volume 4202 of Lecture Notes
in Computer Science, pages 187-199. Springer, 2006. doi:10.1007/11867340_14.

Shibashis Guha, Ismaél Jecker, Karoliina Lehtinen, and Martin Zimmermann. A Bit of
Nondeterminism Makes Pushdown Automata Expressive and Succinct. In Filippo Bonchi
and Simon J. Puglisi, editors, International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 202 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 53:1-53:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl — Leibniz-Zentrum fir
Informatik. doi:10.4230/LIPIcs.MFCS.2021.53.

T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. In ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 394—406,
1992. doi:10.1109/LICS.1992.185551.

Thomas A. Henzinger, Peter W. Kopke, and Howard Wong-Toi. The expressive power of
clocks. In International Colloguium on Automata, Languages and Programming (ICALP),
volume 944 of Lecture Notes in Computer Science, pages 417-428. Springer, 1995. doi:
10.1007/3-540-60084-1_93.

Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani. Fair simulation. In
International Conference on Concurrency Theory (CONCUR), pages 273-287. Springer Berlin
Heidelberg, 1997.

Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Zoltén
Esik, editor, Computer Science Logic (CSL), pages 395-410, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

Marcin Jurdzinski, Francois Laroussinie, and Jeremy Sproston. Model Checking Probabilistic
Timed Automata with One or Two Clocks. Logical Methods in Computer Science, Volume 4,
Issue 3, September 2008. doi:10.2168/LMCS-4(3:12)2008.

Denis Kuperberg and Michat Skrzypczak. On determinisation of good-for-games automata. In
International Colloquium on Automata, Languages and Programming (ICALP), pages 299-310,
2015.

Orna Kupferman, Shmuel Safra, and Moshe Y Vardi. Relating word and tree automata. Ann.
Pure Appl. Logic, 138(1-3):126-146, 2006. Conference version in 1996.

Karoliina Lehtinen and Martin Zimmermann. Good-for-games w-pushdown automata. Logical
Methods in Computer Science, 18, 2022.

Donald A Martin. Borel determinacy. Annals of Mathematics, 102(2):363-371, 1975.

https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1007/3-540-45841-7_47
https://doi.org/10.1007/11867340_14
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.1109/LICS.1992.185551
https://doi.org/10.1007/3-540-60084-1_93
https://doi.org/10.1007/3-540-60084-1_93
https://doi.org/10.2168/LMCS-4(3:12)2008

T. A. Henzinger, K. Lehtinen, and P. Totzke

27 Sven Schewe. Minimising good-for-games automata is np-complete. In TARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
2020.

28 Serdar Tasiran, Rajeev Alur, Robert P. Kurshan, and Robert K. Brayton. Verifying abstractions
of timed systems. In International Conference on Concurrency Theory (CONCUR), volume
1119 of Lecture Notes in Computer Science, pages 546—562. Springer, 1996. doi:10.1007/
3-540-61604-7_75.

A Expressivity

» Lemma 7. Consider two region equivalent configurations (s,v) ~ (s',v').
For every timed word u there is a timed word v’ so that the reduced run-tree on u from
(s,v) is equivalent to the reduced run-tree on v’ from (s',v').

Proof. It suffices to show that for some (not necessarily reduced) run-tree on u from (s, v)
there exists some equivalent run-tree from (s’,2’) as this implies the claim by collapsing all
consecutive delay steps and thus producing the reduced tree on both sides.

We proceed by stepwise uncovering the run-tree from (s,) for ever longer prefixes of u
and constructing a corresponding equivalent run-tree from (s’,v’). The intermediate finite
trees we build have the property that all branches have the same duration. In each round we
extend all current leafs, in both trees, either by
1. all possible non-deterministic successors (for the letter prescribed by the word w), in case

the duration of the branch is already equal to the next time-stamp in u, or

2. one successor configuration due to a delay, which must be the same on all leafs.
For the second case, the delays used to extend the two trees need not be the same because
we only want to preserve region equivalence. Also, the delay chosen for the tree rooted in
(s,v) need not follow the timestamps in u but can be shorter, meaning the run-tree may not
be reduced.. The difficulty lies in systematically choosing the delays to ensure that the two
trees remain equivalent and secondly, that in the limit this procedure generates a run-tree on
the whole word u from (s,v). Together this implies the existence of a corresponding word u’
and a run-tree from (s',v').

Invariant. To this end we propose a stronger invariant, namely that the relative orderings
of the fractional values in all leafs are the same on both sides. To be precise, let’s reinterpret
a clock valuation as a function v : C x N — {L} U[0,1), that assigns to every clock and
possible integral value either a fractional value between 0 and 1, or L (indicating that the
given clock does not have the given integral value). This way for every clock x there is exactly

one n € N with v(z,n) # L and the image v(C x N) has at most |C| + 1 different elements.

For any ordered set F = {L < f; < fa < -+ < fi} D v(C x N) of fractional values, we can
thus represent v as a function © : C x N — {L,1,...1} that, instead of exact fractional clock
values only yields their index in F' (and maps L — 1).

Consider some run-tree with leafs (g1, v1)(g2, v2) - - - (qiv;) with combined fractional values
F = Uézl v;(C x N), and an equivalent run-tree with leafs (qi,v1)(gh, %) - (qv]) with
combined fractional values F’ = Ui:1 v;(C x N). The two trees are aligned if for all 1 < i <1,
D; = D). Notice that this still allows the two trees to differ on their exact fractional values but
now they must agree on the relative order of all contained clocks on leafs, and in particular
which ones are maximal and therefore the closest to the next larger integer. We will always
select a delay of 1 — max{F} and 1 — max{F"}, respectively, in step 2 above.

14:17

CONCUR 2022

https://doi.org/10.1007/3-540-61604-7_75
https://doi.org/10.1007/3-540-61604-7_75

14:18

History-Deterministic Timed Automata

To show the claim we produce the required run-trees starting in (s,v) ~ (s'v/). These
are in particular two aligned run-trees on the empty word.

Assume two aligned trees as above, where leafs have fractional values F = {1 < f; <
fo<-- < fm}and F' = {f) < fi < --- < fl.}, respectively, and assume that the tree
rooted in (s,v) reads a strict prefix (ag,to), ... (a;, ;) of w.

Case 1: the duration of all branches in the first tree equals t; 1, the timestamp of the
next symbol in u. Then we extend each leaf in both trees by all possible a;1-successors.
This will produce two aligned trees because each leaf configuration in one must be region
equivalent to the corresponding configuration in the other, and therefore satisfies the same
guards, enabling the same a;41-transitions leading to equivalent successors. Note also that
all branches in each tree still have the same duration, as no delay step was taken.

Case 2: the duration of all branches in the first tree is strictly less than ¢;.1. Then
we extend all leafs in the tree from (s,v) by a delay of duration d = 1 — f,, and all
leafs in the other tree by a delay of duration d’ = 1 — f/,. Naturally, this produces
exactly one successor for each former leaf. The sets of new fractional values on leafs are
Ul(p+d)(CxN)={L <0< fi+d< - < fm—1 +d} and for any former leaf (g, 1)

extended by a delay (g, 1) 4, (¢, pp + d), we have

—

filz,n—1) =m <= (p+d)(z,n) =0 (1)
and
pr,n) =i<m < (u+d)(z,n)=i+1<m 2)

Analogous equivalences hold for the corresponding step (g, u’) N (g, ' + d’) on the other

tree. Notice that the two cases above are exhaustive as again, for all x € C there is exactly
one n € N with p(z,n) # L. We aim to show that (1 + d) = (¢’ + d’). Consider any x € C
and n € N. We have that

(m)(m,n)zm L, f(r,n+1)=0
Ll w(z,mn+1)=0

—

T

= (W +d)(z,n)=m
and
(it d)(zn)=i<m < plan)=i+1
) p(z,n)=i+1
PN (u’/—l—\d’)(x,n):i<m

—

It follows that (u+d) = (m’) which means that the two trees are again aligned, as
required.

To see why this procedure produces a run-tree on u (and an equivalent run-tree on some
word u’), observe that there can be at most |F| + 1 many consecutive delay extensions
according to step 2) before all integral clock values are strictly increased. <

B Deciding History-determinism

» Lemma 12. Given an fair LTS S, if Player 2 wins G2(S) then she wins G (S) for all k.

T. A. Henzinger, K. Lehtinen, and P. Totzke

This is the generalisation of [6, Thm 14] (on w-regular automata) to fair LTSs. The
proof is similar to [6], without requiring positional strategies, and identical to that of [10,
Theorem 4] (on quantitative automata), without the quantitative aspects. If Player 2 wins
G2(S) then she obviously wins G1(S), using her G5 strategy with respect to two copies of
Player 1’s single token in G;. We therefore consider below k& > 2.

Let 09 be a winning strategy for Player 2 in G3(.S). We inductively show that Player 2
has a winning strategy o; in G;(.S) for each finite i. To do so, we assume a winning strategy
0i—1 in G;_1(S). The strategy o; maintains some additional (not necessarily finite) memory
that maintains the position of one virtual token in .S, a position in the (not necessarily finite)
memory structure of o;_1, and a position in the (not necessarily finite) memory structure of
09. The virtual token is initially at the initial state of S. Then, the strategy o; then plays as
follows: at each turn, after Player 1 has moved his ¢ tokens and played a letter (or, at the
first turn, just played a letter), it first updates the o;_1 memory structure, by ignoring the
last of Player 1’s tokens, and, treating the position of the virtual token as Player 2’s token in
G;_1(S5), it updates the position of the virtual token according to the strategy o;_1; it then
updates the oo memory structure by treating Player 1’s last token and the virtual token as

Player 1’s 2 tokens in G3(.5), and finally outputs the transition to be played according to .

We now argue that this strategy is indeed winning in G;(S). Since 0;_; is a winning
strategy in G;_1(5), the virtual token traces an accepting run if any of the runs built by the
first ¢ — 1 tokens of Player 1 is accepting. Since o is also winning, the run built by Player 2’s
token is accepting if either the run built by the virtual token or by Player 1’s last token
is accepting. Hence, Player 2’s is accepting whenever one of Player 1’s runs is accepting,
making this a winning strategy in G;(5).

» Lemma 13. Given a fair LTS S with a safety acceptance condition, Player 2 wins G1(.S)
if and only if S is history-deterministic.

Proof. If S is history-deterministic then Player 2 wins G1(S) by using the resolver to choose
her transitions. This guarantees that for all words in L(S) played by Player 1, her run is
accepting, which makes her victorious regardless of Player 1’s run.

For the converse, if Player 2 wins G1(.9), consider the following family of copycat strategies
for Player 1: at first, Player 1 plays ¢ and chooses the same transitions as Player 2; if,
eventually, Player 2 chooses a transition 7 from a configuration c that is not language-maximal,
that is, moves to a configuration ¢’ that does no accept some word w that is accepted by
some other configuration ¢” reachable by some other transition 7/ from ¢, we call such a
move non-cautious, and Player 1 stops copying Player 2 and instead chooses 7/. From there,
Player 1 wins by playing w and an accepting run on w from ¢”. Since Player 2 wins G1(5),
her winning strategy o does not play any non-cautious moves against copycat strategies.

Then, she can use o in the letter-game, by playing as o would play in G1(S) if Player 1
copies her transitions. This guarantees that she never makes a non-cautious move, and, in
particular, never moves out of the safe region of the automaton unless the prefix played by
Player 1 has no continuations in L(,S). This is a winning strategy in the letter-game, so S is
history-deterministic. |

C Synthesis, Games and Composition

» Theorem 20. Given a history-deterministic timed parity automaton T, the synthesis game
for L(T) is decidable and EXpTIME-complete.

14:19

CONCUR 2022

14:20

History-Deterministic Timed Automata

Proof. For the upper bound, we reduce the problem to solving synthesis games for determ-
inistic timed parity automata, which is in EXPTIME [14].

Let T = (5,:,C,A, %, Acc) be a timed automaton. Let T’ be the deterministic timed
automaton (S, ¢, C, A’ ¥ x A, Acc) where:

A/ = {(S’g? (0—7 (87950—7 c? 5/))70’ S’)‘(S’ 97 O—’ C? S/) G A}

In other words, 7" is a deterministic automaton with the state space of T, over the
alphabet ¥ x A, where the transition in the input letter dictates the transition in the
automaton. The language of 77 is the set of words (w, p) such that there is an accepting run
of T over w along the transitions of p.

We now claim that given a history-deterministic automaton 7 with resolver r, Player
IT wins the synthesis game on T if and only if she wins it on 7”. First assume that Player
IT wins the synthesis game for 7 with a strategy s. Then, to win the synthesis game for
T’, at each turn 7, after Player I plays d; and a;, she needs to make two choices: she must
choose both a response letter b; and a transition in 7 over (a;,b;). Given Player I's move
and the (first component of the) word built so far, she can use the strategy s to choose the
response letter b;; this guarantees that the first component of the play is a word accepted
by 7. To choose the transition of 7, she can use the resolver r: given the run p built from
the delays (including d;) and transitions played so far, she plays r(p, (a;,b;)). Since r is a
resolver, this strategy guarantees that the resulting run is accepting, and hence that she wins
the synthesis game on 7.

On the other hand, if Player I wins the synthesis game on 7T, he has a strategy s which
guarantees a play w € (X; x £o)T that is not in the language of 7. He can use the same
strategy in the synthesis game of 7' to guarantee a play (w, p) such that w is not in the
language of T, and by extension (w, p) is not in the language of 77, as there are no accepting
runs over w in 7.

The lower bound follows from the EXPTIME-completeness of synthesis for deterministic
TA [14]. <

Below we demonstrate that fair simulation checking for TA is ExpTIME-hard even for
very simple acceptance conditions.

» Lemma 24. Checking fair simulation between TA is EXPTIME-hard already for reachability
or safety acceptance, or over finite words.

Proof. This can be shown by reduction from countdown games [22], which are two-player
games (Q, T, k) given by a finite set @ of control states, a finite set T C (Q X Nsg X Q) of
transitions, labelled by positive integers, and a target number k£ € N. All numbers are given
in binary encoding. The game is played in rounds, each of which starts in a pair (p,n) where
p € Q and n < k, as follows. First Player 1 picks a number | < k — n, so that at least one
(p,1,p’) € T exists; Then Player 2 picks one such transition and the next round starts in
(p’,n+1). Player 1 wins iff she can reach a configuration (g, k) for some state q.

Determining the winner in a countdown game is EXPTIME-complete [22] and can easily
encoded as a simulation game between two TAs A and B as follows. Let A be the TA with
no clocks and unrestricted (guards are True) self-loops for the two letters a and e; The idea
is that Player 1 proposes [by waiting that long and then makes a discrete a-labelled move.
Then Player 2, currently in some state p can update his configuration to mimic that of the
countdown game, and punish (by going to a winning sink) if Player 1 cheated or the game
should end. To implement this, 5 has two clocks: one to store n — the total time that passed
— and one to store the current [, which is reset in each round.

T. A. Henzinger, K. Lehtinen, and P. Totzke

Suppose Player 1 waits for [units of time and then proposes a. Player 2, currently in
some state p will have

a and e-labelled transitions to a winning state with a guard that verifies that there is no

transition (p, [, p’).

a-labelled transitions to a state p’, with a guard that verifies that a some (p,l,p’) € T

exists, and which resets clock zs.

a, and e-labelled transitions to a winning state guarded by x; > k. This enables Player 2

to win if the global time has exceeded the target k.
The only way that Player 1 can win is by following a winning strategy in the countdown
game and by playing the letter e once B is in a configuration (g, k). Player 2 will not be able
to respond. <

14:21

CONCUR 2022

Decidability of One-Clock Weighted Timed Games
with Arbitrary Weights

Benjamin Monmege &
Aix Marseille Univ, CNRS, LIS, Marseille, France

Julie Parreaux =
Aix Marseille Univ, CNRS, LIS, Marseille, France

Pierre-Alain Reynier &
Aix Marseille Univ, CNRS, LIS, Marseille, France

—— Abstract

Weighted Timed Games (WTG for short) are the most widely used model to describe controller
synthesis problems involving real-time issues. Unfortunately, they are notoriously difficult, and

undecidable in general. As a consequence, one-clock WTG has attracted a lot of attention, especially
because they are known to be decidable when only non-negative weights are allowed. However, when
arbitrary weights are considered, despite several recent works, their decidability status was still
unknown. In this paper, we solve this problem positively and show that the value function can be
computed in exponential time (if weights are encoded in unary).

2012 ACM Subject Classification Software and its engineering — Formal software verification;
Theory of computation — Algorithmic game theory

Keywords and phrases Weighted timed games, Algorithmic game theory, Timed automata
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.15

Related Version Full Version: https://arxiv.org/abs/2207.01608 [21]

Funding This work was partially funded by ANR project Ticktac (ANR-18-CE40-0015) and ANR
project DeLTA (ANR-16-CE40-0007).

1 Introduction

The task of designing programs is becoming more and more involved. Developing formal
methods to ensure their correctness is thus an important challenge. Programs sensitive to
real-time allow one to measure time elapsing in order to take decisions. The design of such
programs is a notoriously difficult problem because timing issues may be intricate, and a
posteriori debugging such issues is hard. The model of timed automata [2] has been widely
adopted as a natural and convenient setting to describe real-time systems. This model
extends finite-state automata with finitely many real-valued variables, called clocks, and
transitions can check clocks against lower /upper bounds and reset some clocks.

Model-checking aims at verifying whether a real-time system modelled as a timed auto-
maton satisfies some desirable property. Instead of verifying a system, one can try to
synthesise one automatically. A successful approach, widely studied during the last decade,
is one of the two-player games. In this context, a player represents the controller, and an
antagonistic player represents the environment. Being able to identify a winning strategy
of the controller, i.e. a recipe on how to react to uncontrollable actions of the environment,
consists in the synthesis of a system that is guaranteed to be correct by construction.

In the realm of real-time systems, timed automata have been extended to timed games [3]
by partitioning locations between the two players. In a turn-based fashion, the player that
must play proposes a delay and a transition. The controller aims at satisfying some w-regular

© Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 15; pp. 15:1-15:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.monmege@univ-amu.fr
https://orcid.org/0000-0002-4717-9955
mailto:julie.parreaux@univ-amu.fr
mailto:pierre-alain.reynier@univ-amu.fr
https://doi.org/10.4230/LIPIcs.CONCUR.2022.15
https://arxiv.org/abs/2207.01608
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

objective however the environment player behaves. Deciding the winner in such turn-based
timed games has been shown to be EXPTIME-complete [18], and a symbolic algorithm
allowing tool development has been proposed [4].

In numerous application domains, in addition to real-time, other quantitative aspects
have to be taken into account. For instance, one could aim at minimising the energy used
by the system. To address this quantitative generalisation, weighted (aka priced) timed
games (WTG for short) have been introduced [8, 5]. Locations and transitions are equipped
with integer weights, allowing one to define the accumulated weight associated with a play.
In this context, one focuses on a simple, yet natural, reachability objective: given some
target location, the controller, that we now call Min, aims at ensuring that it will be reached
while minimising the accumulated weight. The environment, that we now call Max, has the
opposite objective: avoid the target location or, if not possible, maximise the accumulated
weight. This allows one to define the value of the game as the minimal weight Min can
guarantee. The associated decision problem asks whether this value is less than or equal to
some given threshold.

In the earliest studies of this problem, [1, 8] proposed semi-decision procedures to
approximate this value for WT'G with non-negative weights. In addition, [8] identifies
the subclass of strictly non-Zeno cost WTG for which their algorithm terminates. This
approximation is motivated by the undecidability of the problem, first shown in [11]. This
restriction has recently been lifted to WTG with arbitrary weights in [15].

An orthogonal research direction to recover decidability is to reduce the number of clocks
and more precisely to focus on one-clock WTG. Though restricted, a single clock is often
sufficient for modelling purposes. When only non-negative weights are considered, decidability
has been proven in [10] and later improved in [22, 17] to obtain exponential time algorithms.
Despite several recent works, the decidability status of one-clock WTG with arbitrary weights
is still open. In the present paper, we show the decidability of the value problem for this
class. More precisely, we prove that the value function can be computed in exponential time
(if weights are encoded in unary and not in binary).

Before exposing our approach, let us briefly recap the existing results. Positive results
obtained for one-clock WTG with non-negative weights are based on a reduction to so-called
simple WTG, where the underlying timed automata contain no guard, no reset, and the clock
value along with the execution exactly spans the [0, 1] interval. In simple WTG, it is possible
to compute (in exponential time) the whole value function starting at time 1 and going back
in time until 0 [10, 22]. Another technique, that we will not explore further in the present
work, consists in using the paradigm of strategy iteration [17], leading to an exponential-time
algorithm too. A PSPACE lower-bound is also known for related decision problems [16].

More recent works extend the positive results of simple WTG to arbitrary weights [12, 13],
yielding decidability of reset-acyclic one-clock WT'G with arbitrary weights, with a pseudo-
polynomial time complexity (that is polynomial if weights are encoded in unary). It is also
explained how to extend the result to all WT'G where no cyclic play containing a reset may
have a negative weight arbitrarily close to 0. Moreover, it is shown that Min needs memory
to play (almost-)optimally, in a very structured way: Min uses switching strategies, that
are composed of two memoryless strategies, the second one being triggered after a given
(pseudo-polynomial) number & of steps.

The crucial ingredient to obtain decidability for non-negative weights or reset-acyclic
weighted timed games is to limit the number of reset transitions taken along a play. This is
no longer possible in presence of cycles of negative weights containing a reset. There, Min

B. Monmege, J. Parreaux, and P.-A. Reynier

may need to iterate cycles for a number x of times that depends on the desired precision ¢
on the value (to play e-optimally, Min needs to cycle O(1/¢) times, see Example 3). To rule
out these annoying behaviours, we rely on three main ingredients:
As there is a single clock, a cyclic path ending with a reset corresponds to a cycle of
configurations. We define the value of such a cycle, that allows us to identify which player
may benefit from iterating it.
Using the classical region graph construction, we prove stronger properties on the value
function (it is continuous on the closure of region intervals). This allows us to prove that
Max has an optimal memoryless strategy that avoids cycles whose value is negative.
We introduce a partial unfolding of the game, so as to obtain an acyclic WTG, for which
decidability is known. To do so, we rely on the existence of (almost-)optimal switching
strategies for Min, allowing us to limit the depth of exploration. Also we keep track of
cycles encountered and handle them according to their value. Using the previous result
on the existence of a “smart” optimal strategy for Max, we show that this unfolding has
the same value as the original WTG.

The paper is organized as follows: weighted timed games are presented in Section 2. We
then focus on cycles in Section 3. Our unfolding is presented in Section 4, with a sketch of
the main proof. Some of the technical proofs can be found in Appendix, and a long version
is available with all the proofs [21].

2 Weighted timed games

2.1 Definitions

We will consider weighted timed games with a single clock, denoted by x. The valuation of
this clock is a non-negative real number v. On such a clock, transitions of the timed games
will be able to check some interval constraints on the clock, i.e. intervals I of real values with
closed or open bounds that are natural numbers (or +o00). For every interval I = (a,b) we
denote by I = [a, b] its closure.

» Definition 1. A weighted timed game is a tuple (Qmin, QMax, Qs Qu, A, wt, wty) with
Q = Qmin W Quax W Q¢ a finite set of locations split between players Min and Max (in
drawings, locations belonging to Min are depicted by circles and the ones belonging to Max
by squares) and a set of target locations;
Qu C QMmin W Qmax a set of urgent locations where time cannot be delayed;
A a finite set of transitions each of the form q Lhw, q', with q and ¢’ two locations (with
q ¢ Q+), I an interval, w € Z being the weight of the transition, and R being either {x}
when the clock must be reset (depicted by x :=0), or O when it does not;
wt: Q — Z a weight function associating an integer weight with each location: for
uniformisation of the notations, we extend this weight function to also associate with each
transition the weight it contains, i.e. wt (q Lhw, q’) = w;
and wt;: Q; X R>g — R a function mapping each target configuration to a final weight,
where R = R U {—0o0, +c0}.

The addition of final weights in weighted timed games (WTG) is not standard, but we
use it in the process of solving those games: in any case, it is possible to simply map a
given target location to the weight 0, allowing us to recover the standard definitions of the
literature. The presence of urgent locations is also unusual: in a timed automaton with
several clocks, urgency can be modelled with an additional clock w that is reset just before

15:3

CONCUR 2022

15:4

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

entering the urgent location and with constraints u € [0,0] on outgoing transitions. However,
when limiting the number of clocks to one, we regain modelling capabilities by allowing for
such urgent locations. The weight of an urgent location is never used and will thus not be
given in drawings: instead, urgent locations will be displayed with a u inside.

The semantics of a WTG G is defined in terms of an infinite transition system [G] whose
vertices are configurations (¢,v) € @ x R>q. Configurations are split into players according
to the location ¢, and a configuration (g, v) is a target if ¢ € Q. Edges linking vertices will
be labelled by elements of R>o x A, to encode the delay that a player wants to spend in
the current location, before firing a certain transition. For every delay ¢t € R>, transition
0=q LRw, ¢ € A and valuation v, we add a labelled edge (g, v) LN (¢',v) if

v+tel,

v =0if R= {z}, and v/ = v + t otherwise;

and t =0if ¢ € Q.

This edge is given a weight ¢ xwt(q)+wt(d) taking into account discrete and continuous weights.

As usual in related work [1, 8, 9], we will assume that the valuation of the clock z is
bounded by the greatest constant M to appear in guards, and we, therefore, restrict ourselves
to configurations of the form (q,v) € Q x [0, M]. We also suppose the absence of deadlocks
except on target locations, i.e. for each location ¢ € Q\Q: and valuation v € [0, M], there
exist t € R>p and § = ¢ EELUN q" € A such that (q,v) AN (¢’,v"), and no transitions
start from ;. This second restriction is without loss of generality by applying classical
techniques [6, Lemma 5].

We also assume that the final weight functions satisfy a sufficient property ensuring that
they can be encoded in finite space. First, we call regions' of G the set

Regg = {(M;, M;11) |0 <i <k -1} U{{M;} |0<i<k}

where My =0 < M; < --- < My, are all the endpoints of the intervals appearing in the
guards of G (to which we add 0 if needed). Then, we require final weight functions to be
piecewise affine with a finite number of pieces and continuous on each region. More precisely,
we assume that cutpoints and coefficients are rational and given in binary.

We let Wi, Wi and Wy, be the maximum absolute value of weights of locations,
transitions and final functions, i.e.

Wiee = max [wt(q)| Wi = max |wt(d)] Wgn = sup sup [wt; (g, v)|
9€Q 0€A qEQ: s.t. wti(g,")¢{+00,—oo} vel
We also let W be the maximum of W, Wi, and Wr,.

We call path a finite or infinite sequence of consecutive transitions dg, d1, -+ of A, that
we sometimes denote by qq o, Q1 LEN q2 -+ -. We let FPaths be the set of all finite paths. We
let || be the number of transitions in the finite path 7, that we call its length. For a given
transition d, we let |r|s denote the number of occurrences of § in .

We call play a finite or infinite sequence of edges in the semantics of the game that we
denote by (qo, Vo) Lo.do, (q1,11) LZEUN (q2,v2) - -+ A play is said to follow a path if both use
the same sequence of transitions. We let |p| be the length of play, defined as the length
of the path it follows. We let |p|s be the number of occurrences of the transition § in the
finite play p. More generally, for all sets of transitions A, we let |p|4 be the number of

! This is inspired by a construction by Laroussinie, Markey, and Schnoebelen [19], which allows one to
reduce the number of regions with respect to the more usual one of [2] in the case of a single clock.

B. Monmege, J. Parreaux, and P.-A. Reynier

qlv{o} q2’{0}

r=1x:=0;1 =0

qo,{O}

q2

@, {1} q2, {1}

Figure 1 On the left, a WT'G with a cyclic path of weight [—1, 1] containing a reset. Missing

weights are 0. The target location is @, whose final weight function is zero. Location g3 is urgent.

On the right, its closure restricted to locations go, g1, g2 and ©.

occurrences of all transitions from A in the finite play p, i.e. [p|la = > 5c 4 [pls. We let FPlays
be the set of finite plays. For a finite path 7 or a finite play p, we let last(7) and last(p) be
the last location or configuration. We let FPathspax (respectively, FPathsyi,) and FPlaysy,,,
(respectively, FPlaysy;,) be the subset of finite paths or plays whose last element belong to
player Max (respectively, Min).

A finite play p can be associated with a weight that consists in accumulating the weight

of the edges it traverses: if p = (qo, vp) o0, (g1,v1) -+ (qi, Vi), we let

k—1

wts(p) = > (Wt(l) x t; + wt(3;)).

1=0

A maximal play p (either infinite or trapped in a deadlock that is necessarily a target
configuration) is associated with a payoff P(p) as follows: the payoff of an infinite play
(meaning that it never visits a target location) is 400, while the payoff of a finite play,
thus ending in a target configuration (q,v), is wts(p) + wti(q,v). The weight of a finite
path 7 consists of the set of the cumulated weight of all the finite plays that follow m:
wts (7) = {wtx(p) | p following 7}. By [5], the weight of a path is known to be an interval
of values. Moreover, when all the guards along the path are closed intervals, the weight of
the path is also a closed interval.

A cyclic path is a finite path that starts and ends in the same location. A cyclic play is a
finite play that starts and ends in the same configuration: it necessarily follows a cyclic path,
but the reverse might not be true since some non-cyclic plays can follow a cyclic path (if
they do not end in the same clock valuation as the one in which they start).

» Example 2. The cyclic path 7@ = ¢q LEN Q1 LEN qo depicted on the left in Figure 1

0,61 1,55

has a weight between —1 (with the play (go,0) — (¢1,0) —= (¢0,0)) and 1 (with
the play (qo,0) Lo, (q1,1) RLEN (q0,0)), so wtg(m) = [-1,1]. Another cyclic path is

' = qq LN qs3 o, qo which goes via an urgent location. All plays that follow this path are of

the form (g, v) LN (g3, v +1) 007, (go,v +t) with v and v + ¢ less than 1, that all have a
weight 1. Thus wty(7') = {1}.

A strategy aims at giving the recipe of each player. A strategy of Min is a function
o: FPlaysy;, = R>o x A mapping each finite play p whose last configuration belongs to Min
to a pair (¢,0) of delay and transition, such that the play p can be extended by an edge

15:5

CONCUR 2022

15:6

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

labelled with (¢,6). A similar definition holds for strategies 7 of Max. We let Stratmin,g
(respectively, Stratmax,g) be the set of strategies of Min (respectively, Max) in the game G, or
simply Stratyi, and Stratmay if the game is clear from the context: we will always use letters
o and 7 to differentiate from strategies of Min and Max.

A strategy is said to be memoryless if it only depends on the last configuration of the
plays. More formally, Max’s strategy 7 is memoryless if for all plays p and p’ such that
last(p) = last(p’), we have 7(p) = 7(p’).

A play p is said to be conforming to a strategy o (respectively, 7) if the choice made
in p at each location of Min (respectively, Max) is the one prescribed by o (respectively, 7).
Moreover, a finite path 7 is said to be conforming to a strategy o (respectively, 7) if there
exists a finite play following 7 that is conforming to o (respectively, 7).

After both players have chosen their strategies o and 7, each initial configuration (g, v)
gives rise to a unique maximal play that we denote by Play((q,v), o, 7). The value of the
configuration (g, v) is then obtained by letting players choose their strategies as they want,
first Min and then Max, or vice versa since WTG is known to be determined [12]:

Valg(g,v) = supinf P(Play((q, v), o, 7)) = inf sup P(Play((¢, v), o, 7)).

The value of a strategy ¢ of Min (symmetric definitions can be given for strategies 7
of Max) is defined as Valg(q,v) = sup, P(Play((q, 1/),*07 7)). Then, a strategy o* of Min
is optimal if, for all initial configurations (q,v), Valg (¢,v) < Valg(q,v). Because of the
infinite nature of the timed games, optimal strategies may not exist: for example, a player
may want to let time elapse as much as possible, but with a delay ¢ < 1 because of a
strict guard, preventing them to obtain the optimal value. We will see in Example 12
that this situation can even happen when all guards contain only closed comparisons. We
naturally extend the definition to almost-optimal strategies, taking into account small possible
errors: we say that a strategy o* of Min is e-optimal if, for all initial configurations (g, v),
Valg* (q,v) < Valg(q,v) +e¢.

» Example 3. We have seen that in ¢p (on the left in Figure 1), Min has no interest in
following the cycle gq LN q3 o, qo since it has weight {1}. Jumping directly to the target
location via d3 leads to a weight of 1. But Min can do better: from valuation 0, by jumping
to g1 after a delay of t < 1, it leaves a choice to Max to either jump to ¢g; and the target
leading to a total weight of 1 — ¢, or to loop back in ¢y thus closing a cyclic play of weight
—2(1—1t)+1=2¢t—1. If t is chosen too close to 1, the value of the cycle is greater than 1,
and Max will benefit from it by increasing the total weight. If ¢ is chosen as smaller than 1/2,
the weight of the cycle is negative, and Max will prefer to go to the target to obtain a weight
1 — ¢ close to 1, not very beneficial to Min. Thus, Min prefers to play just above 1/2, let say
at 1/2 4+ €. In this case, Max will choose to go to the target with a total weight of 1/2 4 €.
The value of the game, in configuration (qg, 0) is thus Valg(go,0) = 1/2. Not only Min does
not have an optimal strategy (but only e-optimal ones, for every € > 0), but needs memory
to play e-optimally, since Min cannot play ad libitum transition 02 with a delay 1/2 —e: in
this case, Max would prefer staying in the cycle, thus avoiding the target. Thus, Min will
play the transition d; at least 1/4e times so that the cumulated weight of all the cycles is
below —1/2, in which case Min can safely use transition d; still earning 1/2 in total.

2.2 Closure

We first recall more in details the method used to solve WTG in [12], starting with the
(slightly updated presentation of the) construction that consists in enhancing the locations
with regions and closing all guards while preserving the value of the game.

B. Monmege, J. Parreaux, and P.-A. Reynier

» Definition 4. The closure of a WT'G G is the WTG G = (LM;H,LM3X7Lt,Lu,Z, wt, wiy)

where:
L = Lyin® Lvax W Ly with Lyin = QMin X Regga Lyax = QMax X Regg; L= Qt X Regga L,=
Qu X Regg;

T,N17,Ryw
A

for all (¢,I) € L, (q,1)

q Lo o, ¢ €A, and a region I" such that I, N I" # 0, the lower bound of I" is at least
the one of I (to model time elapsing), and I' is equal to I" if R = () and to {0} otherwise:
I, N I" stands for the topological closure of the non-empty interval I, N I";

for all (¢, 1), we have wt(q,I) = wt(q);

for all (q,I) € Ly, forv e I, wty((q,I),v) = wti(q,v) and extend v — wty((g,1),v) by
continuity on I, the closure of the interval I. We may also let Wty ((q,I),v) = +oo for all
v & I, even though we will never use this in the following.

(¢',I') € A if and only if there exist a transition

The following set of configurations is an invariant of the closure (i.e. starting from such
configuration fulfilling the invariant, we can only reach configurations fulfilling the invariant):

configurations ((g, {Mx}), My);

and configurations ((¢, (Mk, Mi+1)),v) with v € [My, Mj11] (and not only in (Mg, My11)

as one might expect).

» Example 5. Figure 1 depicts the closure (left) of the WTG (right) restricted to locations
0, 41,42, and @ (we have seen that g3 is anyway useless).

The closure of the guards allows players to mimic a move in G “arbitrarily close” to M1
in (Mg, Mi41) to be simulated by jumping on Mjy; still in the region (M, My11).

» Lemma 6 ([12]). For all WTG G, (q,1) € Q xRegg and v € I, Valg(q,v) = Valz((q,I),v).

It is also shown in [12] that we can transform an e-optimal strategy of G into an &’-
optimal strategy of G with ¢’ < 2e and vice-versa. Not only the closure construction adds
the capability for a player to play “arbitrarily close” to the border of a region as a new
move, but it also makes the value function more manageable for our purpose. Indeed, as
shown in [12], the mapping v — Valg(¢,v) is continuous over all regions, but there might be
discontinuities at the borders of the regions. The closure construction clears this issue by
softening the borders of each region independently:

» Lemma 7. For all WI'G G and (q,1) € Q x Regg, the mapping v — Valz((q,I),v) is
continuous over I.

In [12], it is also shown that the mapping v — Valg (¢, v) is piecewise affine on each region
where it is not infinite, that the total number of pieces (and thus of cutpoints, in-between
two such affine pieces) is exponential, and that all cutpoints and the value associated to such
a cutpoint are rational numbers. In more recent developments in [13], authors improve the
exponential complexity into pseudo-polynomial (i.e. polynomial in the number of locations
and in the biggest weight W), which we will use in the sequel. Thus, they obtain:

» Theorem 8 ([13]). If G is an acyclic WTG (i.e. that does not contain cyclic path), then for
all locations q, the piecewise affine mapping v — Valg(q,v) is computable in time polynomial
in |Q| and W.

In [13], this result is slightly extended to take into account cyclic paths containing resets

when their weight is either non-negative, or not arbitrarily close to 0.

» Example 9. Notice that the game on the left in Figure 1 does not fulfil this hypothesis:
—e,6)

indeed the play (qo,0) 2med, (q1,1/2—¢) 12teds,

negative and arbitrarily close to 0.

(go,0) is a cyclic play of weight —2¢

15:7

CONCUR 2022

15:8

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

2.3 Contribution

In this work, we use a different technique to push the decidability frontier, and prove that
the value function is computable for all WTG (in particular the one of Figure 1):

» Theorem 10. For all WTG G and all locations g;, the mapping v — Valg(gi,v) is
computable in time exponential in |Q| and Wy, and polynomial in Wioe and W,.

» Remark 11. The complexities of Theorems 8 and 10 would be more traditionally considered
as exponential and doubly-exponential if weights of the WTG were encoded in binary as
usual. In this work, we thus count the complexities as if all weights were encoded in unary
and thus consider W to be the bound of interest. For Theorem 8, the obtained bound is
classically called pseudo-polynomial in the literature.

The rest of this article gives the proof of Theorem 10. We fix a WTG G and an initial
location ¢. We let G = (Lmin, Lmax, Lt, Ly, A, wt, wt;) be its closure. We first use Lemma 6
which allows us to deduce the result by computing the value functions v Vala((qi7 I),v),
for all regions I. Regions I over which v — Valgz((gi, I),) is constantly equal to +00 or —oo
are computable in polynomial-time, as explained in [12]. We, therefore, remove them from G
from now on. We now fix an initial region [; and let ¢ = (g;, I;).

As in the non-negative case [10], the objective is to limit the number of transitions with
a reset taken into the plays while not modifying the value of the game. When all weights are
non-negative, this is fairly easy to achieve since, intuitively speaking, Min has no interest in
using any cycles containing such a transition (since it has non-negative weight and is thus
non-beneficial for Min). The game can thus be transformed so that each transition with a
reset is taken at most once. To obtain a smaller game, it is even possible to simply count the
number of transitions with a reset taken so far in the play and stop the game (with a final
weight +00) in case the counter goes above the number of such transitions in the game. The
transformed game has a polynomial number of locations with respect to the original game,
and is reset-acyclic, which allows one to solve it with a pseudo-polynomial time complexity
(instead of the exponential-time complexity originally achieved in [10, 22]).

The situation is much more intricate in the presence of negative weights since negative
cycles containing a transition with a reset can be beneficial for Min, as we have seen in
Example 3. Notice that this is still true in the closure of the game, as can be checked on the
right in Figure 1. Moreover, some cyclic paths may have an interval of possible weights with
both positive and negative values, making it difficult to determine whether it is beneficial to
Min or not. To overcome this situation, we will consider the point of view of Max, making a
profit from the determinacy of the WT'G. We will show that, in a closed game G, Max can play
optimally with memoryless strategies while avoiding negative cyclic plays. This will simplify
our further study since, by following this strategy, Max ensures that only non-negative cyclic
plays will be encountered, which is not beneficial to Min. Therefore, as in [10], we will limit
the firing of transitions with a reset to at most once. However, we are not able to do it
without blowing up exponentially the number of locations of the games. Instead, along the
unfolding of the game, we need to record enough information in order to know, in case a
cyclic path ending with a reset is closed, whether this cyclic path has a potential negative
weight (in which case Max will indeed not follow it) or non-negative weight (in which case it
is not beneficial for Min to close the cycle). Determining in which case we are will be made
possible by introducing the notion of value of a cyclic path in Section 3. Then, Max has even
an optimal strategy to avoid closing cyclic paths with negative value (which is stronger than
only avoiding creating negative cyclic plays). The unfolding, denoted U, will be defined in
Section 4. In order to prove that it is a game equivalent to G, we will prove that Max can do
as well as in U from G and vice-versa.

B. Monmege, J. Parreaux, and P.-A. Reynier

q1, {0}

<1
—10

Figure 2 On the left, a WTG where Max needs memory to play e-optimally. On the right, its
closure where we merged several transitions by removing unnecessary guards.

3 Controlling negative cycles

One of the main arguments of our proof is that, in the closed game G, Max can play optimally
with memoryless strategies while avoiding negative cyclic plays. As already noticed in [12],
this is not always true in non-closed games: Max may need memory to play e-optimally
without the possibility to avoid some negative cyclic plays.

» Example 12. In the WTG G depicted on the left in Figure 2, we can see that Val(gy,0) = 0,
but Max does not have an optimal strategy, needs memory to play e-optimally, and cannot
avoid negative cyclic plays. Indeed, if at some point the strategy of Max chooses a delay less

than or equal to 1, then Min can always choose d4, and the value of this strategy is —10.

Thus, an optimal strategy for Max always chooses a delay greater than 1. However, Max
must choose a delay closer and closer to 1. Otherwise, if there exists > 0 such that all
delays chosen by the strategy are greater than 1+ 8, Min has a family of strategies with
a value that will tend to —oco by staying longer and longer in the cycle with a weight at
most —f. Thus, Max does not have an optimal strategy, and the e-optimal strategy requires
infinite memory to play with delays closer and closer to 1 (for instance, after the nth round
in the cycle, Max delays £/2™ time units, to sum up, all weights to a value at most —e¢).

Such convergence phenomena needed by Max do not exist in G since all guards are closed
(this is not sufficient alone though) and by the regularity of Val given by Lemma 7.

» Example 13. We consider the closed game depicted on the right in Figure 2. The e-optimal
strategy (with memory) of Max in G translates into an optimal memoryless strategy in G:
in (q1,{0}), Max can delay 1 time unit and jump into the location (qo, (1,2)). Then cyclic
plays that Min can create have a zero weight and are thus not profitable for either player.

To generalise this explanation, we start by defining the value of cyclic paths ending with
a reset in G. Intuitively, the value of this cyclic path is the weight that Min (or Max) can
guarantee regardless of the delays chosen by Max (or Min) during this one.

» Definition 14. We define by induction the value Val”() of a finite path 7 in G from an
initial valuatzon v of the clock: if m has length 0, we let Val”() = 0, otherwise, ™ can be
written Ko—w (with 7' starting in location 1), and we let

Valz/() infto (tth(éo) + Wt(do) + Valé (Tl',)) Zf fo € Lyin
Y(r) = ,
g supy, (towt(ﬁo) + wt(do) + Valé (’/T/)) if Lo € Lax

where tg and V' are such that (€o, V) oo, (€1,0') is an edge of [G]. Then, for a cyclic path
7 of G ending by a transition with a reset, we let Valg(m) = VaI%(w).

15:9

CONCUR 2022

15:10

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

The value of a cyclic path belongs to the interval wty(7) and corresponds to the weight
of a cyclic play that follows this path.

» Example 15. Let m = (go, {0}) LN (q1,(0,1)) 02, (g0, {0}) be the cyclic path of the game
G depicted on the right in Figure 1, for which wts(7) = [~1,1]. To evaluate the value of 7,
Min only needs to choose a delay t; € [0,1] when firing §;, while Max has no choice but to
play a delay 1 — t; when firing 02, generating a finite play p of weight wtx(p) = 2¢t; — 1. We
deduce that Valg(7) = infy, (2¢; — 1) = —1 (when Min chooses t; = 0).

A cyclic path with a negative value ensures that Min can guarantee a cyclic play with a
negative weight that follows it, but there may exist other cyclic plays with a non-negative
weight that follows it. It is exactly those cycles that are problematic for Max since Min can
benefit from them. We now show our key lemma: in the closed game, Max can play optimally
and avoid cyclic paths of negative value.

» Lemma 16. In G (where regions with infinite value had been remote), Max has a memoryless
optimal strategy T such that

1. all cyclic plays conforming to ™™ have a non-negative weight;

2. all cyclic paths ending by a reset conforming to 7™ have a non-negative value.

Sketch of proof. We build upon the fact [8, 7] that the value function Valg: L x R>q —
R is a fixed point (even the greatest one) of the operator F defined as follows: for all
configurations (¢,v) and all mappings X: L x R>g — R, we let

W(& 1/) if £ € Ly
F(X)(,v) = infe , (WE() + twE(€) + X (¢',v')) if £ € Luin

e sy / / :

supeﬂjiw,yl (WE(0) + twE(€) + X (¢',v')) if £ € Lyax

We use this fact to define the memoryless strategy 7*. Indeed, the identity Valz = F(Valg),
applied over configurations belonging to Max suggests a choice of transition and delay to
play almost optimally. As F computes a supremum on the set of possible (transitions and)
delays, this does not directly lead to a specific choice: in general, this would give rise to
e-optimal strategies and not an optimal one. This is where we rely on the continuity of Valz
(Lemma 7) on each closure of region to deduce that this supremum is indeed a maximum.
More precisely, for £ € Lmax, we can write F(Valg)(¢,v) as

max sup (WE(0) + twt(€) + Valg(¢',v")).
e LIy

The guard of transition ¢ is the closure I of a region I € Regg, therefore, ¢ is in a closed
interval J of values such that v + ¢ falls in I. Notice that v/ is either 0 if § contains a reset or
is v +¢: in both cases, this is a continuous function of ¢. Relying on the continuity of Valg,
the mapping ¢ € J — wt(d) + twt(¢) + Valz(¢',v') is thus continuous over a compact set so
that its supremum is indeed a maximum. We thus let the memoryless strategy 7" be such
that, for all configurations (¢, v), 7*(¢,v) is chosen arbitrarily in

argmax argmax (WE(6) + twi(f) + Valg(¢', 1)) (1)
seA t s.t. Z,Vi)é’,u’
The strategy 7* is then extended to finite plays by considering only the last configuration of

the play. We can show that 7* is an optimal strategy that satisfies the two properties of the
lemma. |

B. Monmege, J. Parreaux, and P.-A. Reynier

Figure 3 On the left, a WTG such that its closure on the right contains a cyclic path with a
weight [—1,1] and a value 0. Moreover Max uses the cyclic path to play optimally.

Figure 4 Scheme of the unfolding of a closed game.

Lemma 16 does not allow us to conclude on the decidability of the value problem since
we use the unknown value Valg to define the optimal strategy. However, it will help us in
the final step of the proof (see Appendix A).

As a side note, it is tempting to strengthen Lemma 16-2 so as to ensure that all cyclic
paths ending by a reset conforming to 7* have a non-negative weight (and not only the
value), i.e. an interval of weights entirely included in [0, +00). Unfortunately, this does not
hold, as shown in the following example:

» Example 17. We consider the closed game depicted on the right in Figure 3. Let
™ = (qo,{0}) U (¢1,{0}) LEN (go,{0}) be the cyclic path for which wts(7w) = [-1,1]. To
evaluate the value of 7w, Min and Max need to choose delays t1, 2 € [0,1] when firing §; and

d2. We obtain a set of finite plays p parametrised by ¢; and to of weight wts(p) = —t1 + ta.
We deduce that Valg(m) = inf;, supy, (t2 —t1) = 0 (when Min and Max choose t; =ty = 1).

The optimal strategy of Max does not use the transition 3 and is thus forced to play in
the previous cyclic path (with a non-negative value but with a negative weight): from the
configuration ((go, {0}),0), Min has thus no other choice than playing transition d, after a
delay of 1 unit of time, leading to a value of —1.

4 Unfolding

We now define the partial unfolding of the game G that we need in order to compute Valg,
stopping the unfolding when too many transitions with a reset have been taken or when
the play is too long since the last reset. About the transitions with a reset, when such a
transition is taken for the first time, we go into anew copy of the game, from which, if this

15:11

CONCUR 2022

15:12

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

90 do:x=1;2:=0 q1 (g0,{0})

Shx=1,2:=0

§:x=1lz:=0 (g2, {0) \YH’N})
o3 S:x=0 dix=1,2:=0

- -1
(g0, {1})

@ ©

ix=12:=0

Figure 5 A WTG (left), and a portion of its closure (right) where d5 belongs to a cyclic path of
non-negative value and another cyclic path of negative value.

transition happens to be chosen one more time, we stop the game by jumping into a new
target location. The final weight of this target location is determined by the value of the
cyclic path (ending with a reset) that would have just been closed. If the cyclic path has a
negative value, then we go in a leaf t—(of final weight —oo since this is a desirable cycle for
Min. Otherwise, we go in a leaf t>(of final weight big enough |L|(Wy + M Wiec) + W, (for
technical reasons that will become clear later, we cannot simply put a final weight +00) so
as it remains an undesirable behaviour for Min.

A single transition with a reset can be part of two distinct cyclic paths, one of negative
value and the other of non-negative value, as demonstrated in the following example:

» Example 18. In Figure 5, we have depicted a WTG (left) and a portion of its closure
(right), where 05 is contained in a cyclic path of negative value

(40, {01) 2 (2, {01) 25 (g0, {13) 25 (41, {0}) 2 (g0, {0})

and another cyclic path of non-negative (zero) value
& 8

Thus, knowing the last transition of the cycle is not enough to compute the value of the
cyclic path. Instead, we need to record the whole cyclic path: copying the game (as done
in the non-negative setting [10]) is not enough, our unfolding needs to remember the path
followed so far. Locations of the unfolding are thus finite paths of G.

In order to obtain an acyclic unfolding, we will rely on a property of reset-acyclic WTG,
i.e that do not contain cyclic paths with a transition with a reset. For such WTG, [13] shows
the existence of an e-optimal strategy for Min with a particular shape. This strategy is also
called as switching strategy [14], as defined by the following;:

» Definition 19. A switching strategy o is described by two memoryless strategies o' and o2,
as well as a switching threshold k. The strateqy o then consists in playing strateqy o' until
either we reach a target location or the finite play has a length of at least k', in which case
we switch to strategy o>.

Intuitively, o' aims at reaching a cyclic play with negative weight, while o2 is an attractor
to the target. As a consequence, we can estimate the maximal number of steps needed
by o2 to reach the target. Combining this with the switching threshold &’ we can deduce a
threshold x that upper bounds the number of steps under the switching strategy o to reach
the target. We obtain the following result with an explicit bound & given by the previous
work of [13]. From a combination of their Lemma 5 and Theorem 25, we know that the
switching threshold &’ is in

O (IL] x [Wioc + Wyl L|” x | LIWyy + Wi LI°]) = O (ILI" (Wiae + Wyy))

B. Monmege, J. Parreaux, and P.-A. Reynier

Algorithm 1 Function NEXT that maps pairs (m,d) € FPathsz x A to pairs (7',8") composed of
a finite path 7’ of G (or t>0, OF t<o, OF tyo) and a new transition &’ of the unfolding U.

function NEXT(7,d = {3 LRw, ls): > last(m) =4

1:

2 if {5 € L; then 7’ := 0,

3 else if R = {z} then

4 if |7|s =0then ' :==m-§

5: else {let m =71 -0 7o

6 if Valg(mz - §) > 0 then 7’ 1= t>¢ else 7’ := t<o}

7 else { let m = m - 3 where 7o contains no reset and |m3| is maximal
8 if |mo] = Kk then 7’ ==t elsen’:=7-¢§ }

9

§ = DI > Aproj(¢’) =46
10 return (7', §’)

Then, we let x” be the number of turns taken by o2 to reach the target location, which is
polynomial in the number of locations of the underlying region automaton, thus polynomial
in the number of locations of the game (since there is only one-clock). Overall, this gives a
definition for k as

k=r +r" =0 (IL|"*(Wioc + Wy))
that is polynomial in |Q] (as |L| is polynomial in |Q|) and in W.

» Lemma 20 ([13]). Let G be a reset-acyclic WTG. Min has an e-optimal switching strategy o
such that all plays conforming to o reach the target within k steps. Moreover, k is polynomial
in |Q| and W.

As a consequence, assuming that Min plays almost optimally using a switching strategy,
we can bound the number of steps between two transitions with a reset by x. This property
allows us to avoid incorporating cycles in the unfolding: we cut the unfolding when the play
becomes longer than x since the last seen transition with a reset. In this case, we will jump
into a new target location ty., whose final weight is equal to 400 since it is an undesirable
behaviour for Min.

The scheme of the unfolding is depicted in Figure 4 when the closed game G contains two
transitions with a reset, §; and o, each belonging to several cycles of different values (negative
and non-negative). Inside each grey component, transitions with no reset are unfolded for x
steps by only keeping in the current location the path followed so far. In-between the
components are transitions with a reset. The second time they are visited, the value of the
cycle it closes is computed, and we jump in t<o or t>o depending on the sign of the value.

» Definition 21. The unfolding of G from the initial location ¢; is the (a priori infinite)
WTG U = (L, Liiax> Lts Lty A, wt', wty) with Ly, € FPathsyin, Ly, € FPathsmax, L C
Ly U{t>0,tco,t4oo} Such that

L' = Ly, ¥ Ly W L, and A" are the smallest sets such that ¢; € L' and for all

T € Liyin W Liyax and 0 € A, if NEXT(m,0) = (n’,d") then 7' € L' and §' € A’ (where

NEXT is defined in Algorithm 1);

L, ={me L |last(r) € L,};

for all w ¢ L}, wt'(m) = wt(last(m));

for all w € L}, for all v,

wty(m,v) = wty(m,v) ifm € Ly wty (t>0,v) = |L|(We + M Wiee) + Wein

wt} (t<o,v) = —00 Wt} (t oo, V) = +00.

15:13

CONCUR 2022

15:14

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

A target location is reached when the length between two resets is too long or when
a transition with a reset would appear two times. Moreover, the length of a path in the
location that is not a target, given by the application of NEXT, strictly increases. This allows
us to show that U is a finite and acyclic WTG as expected.

» Lemma 22. U is an acyclic WTG with a finite set of locations of cardinality exponential
in |Q| and Wr.

Furthermore, in U, as we showed in G, in Lemma 16, Max can play optimally with a
memoryless strategy. Note that, unlike in G, there exist no cyclic paths in I: however,
we can check the positivity of the “cyclic plays” in-between two occurrences of the same
transition containing a reset when we jump in t>o.

101
» Lemma 23. In U, Max has a memoryless optimal strategy T such that if p = p1 foo,

105
P2 1202, (t>0,0) s conforming to 7" with Aproj(d]) = Aproj(d3) a transition with a reset

of x, then wts(po ﬂ) (t>0,0)) > 0.

The property on the weight of plays that reach t>(is guaranteed by the structure of I.
Indeed, as U is acyclic, we know that the value of the path followed by a play ending in t>q
is non-negative. That would no longer be the case if we would have defined U with grey
components containing cyclic paths without reset, since the value of cyclic path do not
compose, as demonstrated by the following example.

» Example 24. In the WTG G depicted in Figure 5, we can see that Val((qo, {0}) LI
(¢1,{0}) REN (g0, {0})) = 0: Min and Max must delay 1 in each location, and Val®((go, {0}) s,
(¢2,{0}) LIN (g0, {1})) = 0. However, when we composed these two cyclic path, we obtain
that Val((qo, {0}) 2 (g2, {0}) = (g0, {1}) > (@1, {0}) = (q0, {0})) = —1.

Now, as in Lemma 16, 7* is defined with argmax on transitions and delays. Thus, to
obtain a play ending in t>(with a non-negative weight, we constrain Max to play the value
of the cycle that reached t>(by assigning it a finite final weight.

Finally, the most difficult part of the proof is to show that the unfolding preserves the
value. Remember that we have fixed an initial location ¢ = (g¢;, I;) to build U.

» Theorem 25. For all v € I;, Vala(ﬁi,y) = Valy (¢4, v).
Before proving Theorem 25, we show how this helps prove our main result.

Proof of Theorem 10. Remember (by Lemma 6) that we only need to explain how to
compute v — Valg((g;, fi),v) over ;. By Theorem 25, this is equivalent to computing
v+ Valy((g, I;),v) over I;. We now explain why this is doable.

First, the definition of U is effective: we can compute it entirely, making use of Lemma 22
showing that it is a finite WTG. The only non-trivial part is the determination of Valg(m2 -)
in Algorithm 1 to determine in which target location we jump. Since 75 - § is a finite path,
we can apply Theorem 8 to compute the value of the corresponding game, which is exactly
the value Va|§(7r2 -§). The complexity of computing the value of a path is polynomial in the
length of this path (that is exponential in |Q| and W4, by Lemma 22) and polynomial in |Q)|
and W (notice that weights of G are the same as the ones in G): this is thus of complexity
exponential in |Q| and W, and polynomial in Wi, and Wy,. Since U has an exponential
number of locations with respect to |@Q] and W, the total time required to compute U is
exponential with respect to |Q| and W, and polynomial with respect to Wioe and Wr,.

B. Monmege, J. Parreaux, and P.-A. Reynier

i Id x Aproj
roj
o N .y
Rso X A FPIays§ FPlays;; —— R>¢ X A’
> - >
d A

Id x NEXT

Figure 6 Scheme showing the links between the different objects defined for the proof of
Theorem 25 where FPlays;], is the set of finite plays of U avoiding target locations t>o and t<o.

Lemma 22 ensures that I is acyclic, so we can apply Theorem 8 to compute the value
mapping v — Valy((g, I;),v) as a piecewise affine and continuous function. It requires a
complexity polynomial in the number of locations of U, and in Wise, Wi, and W, (since
weights of U all come from G). Knowing the previous bound on the number of locations of U,
this complexity translates into an exponential time complexity with respect to |Q| and W,
and polynomial with respect to Wi, and Wr,. |

The proof of Theorem 25 splits into two inequalities. We prove in Appendix A that
Valg(4i,v) < Valy(4i,v), i.e. that Max can guarantee to always do at least as good in U as
in G. We thus show that for an optimal strategy 7z in G (defined by Lemma 16), there
exists a strategy 7 in U such that for all plays p conforming to 74, there exists a play
conforming to 7z with a weight at most the weight of p. As it is depicted in Figure 6, the
strategy 7 is defined via a projection of plays of U in G: we use the mapping NEXT to send
back transitions of A to A’.

We then prove in Appendix B that Valg(¢;,v) > Valy(4;,v), i.e. Max can guarantee to
always do at least as good in G as in U. We thus show that for an optimal strategy 7
in U (defined by Lemma 23), there exists a strategy Tg in G such that for the unique play p
conforming to 75 and the switching strategy (see Definition 19), there exists a play conforming
to 7y with a weight at most the weight of p. As depicted in Figure 6, the strategy TG is
defined via a function ® that puts plays of G in . Intuitively, this function removes all
cyclic plays ending with a reset from plays in G.

5 Conclusion

We solve one-clock WTG with arbitrary weights, an open problem for several years. We
strongly rely on the determinacy of the game, taking the point of view of Max, instead of
the one of Min as was done in previous work with only non-negative weights. We also use
technical ingredients such as the closure of a game, switching strategies for Min, and acyclic
unfoldings. Regarding the complexity, our algorithm runs in exponential time (with weights
encoded in unary), which does not match the known PSPACE lower bound with weights in
binary [16]. Observe that this lower bound only uses non-negative weights. This complexity
gap deserves further study. Our work also opens three research directions. First, as we unfold
the game into a finite tree, it would be interesting to develop a symbolic approach that shares
computation between subtrees in order to obtain a more efficient algorithm. Second, playing
stochastically in WTG with shortest path objectives has been recently studied in [20]. One
could study an extension of one-clock WT'G with stochastic transitions. In this context, Min
aims at minimizing the expectation of the accumulated weight. Third, the analysis of cycles
that we have done in the setting of one-clock WTG can be an inspiration to identify new
decidable classes of WT'G with arbitrarily many clocks.

15:15

CONCUR 2022

15:16

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

—— References

1

10

11

12

13

14

Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In Proceedings of the 31st International Colloguium on Automata, Languages
and Programming (ICALP’04), volume 3142 of LNCS, pages 122—133. Springer, 2004. doi:
10.1007/978-3-540-27836-8_13.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994. doi:10.1016/0304-3975(94)90010-8.

Eugene Asarin and Oded Maler. As soon as possible: Time optimal control for timed automata.
In Hybrid Systems: Computation and Control, volume 1569 of LNCS, pages 19-30. Springer,
1999. doi:10.1007/3-540-48983-5_6.

Gerd Behrmann, Agnés Cougnard, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen, and Didier Lime. Uppaal-tiga: Time for playing games! In Werner Damm and
Holger Hermanns, editors, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV 2007), volume 4590 of LNCS, pages 121-125. Springer, 2007. doi:
10.1007/978-3-540-73368-3_14.

Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson, Judi Romijn,
and Frits Vaandrager. Minimum-cost reachability for priced time automata. In International
Workshop on Hybrid Systems: Computation and Control, pages 147-161. Springer, 2001.
doi:10.1007/3-540-45351-2_15.

Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of the
expressive power of silent transitions in timed automata. Fundamenta Informaticae, 36(2-
3):145-182, 1998. doi:10.3233/FI-1998-36233.

Patricia Bouyer. Erratum to the FSTTCS’04 paper “optimal strategies in priced timed game
automata”. Personal Communication, 2016.

Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies in
priced timed game automata. In Kamal Lodaya and Meena Mahajan, editors, FSTTCS 2004:
Foundations of Software Technology and Theoretical Computer Science, pages 148-160, Berlin,
Heidelberg, 2005. Springer. doi:10.1007/978-3-540-30538-5_13.

Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in weighted
timed games. In Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR’15), volume 42 of Leibniz International Proceedings in Informatics, pages 311-324.
Leibniz-Zentrum fiir Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.311.

Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost optimal
strategies in one clock priced timed games. In S. Arun-Kumar and Naveen Garg, editors,
FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science, pages
345-356, Berlin, Heidelberg, 2006. Springer. doi:10.1007/11944836_32.

Thomas Brihaye, Véronique Bruyere, and Jean-Francois Raskin. On optimal timed strategies.
In Paul Pettersson and Wang Yi, editors, Formal Modeling and Analysis of Timed Systems,
pages 49-64, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi:10.1007/11603009_5.
Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Mon-
mege. Simple priced timed games are not that simple. In Proceedings of the 35th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’15), volume 45 of LIPIcs, pages 278-292. Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.278.

Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege.
One-clock priced timed games with negative weights. Research Report 2009.03074, arXiv,
2021.

Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. Pseudopolyno-
mial iterative algorithm to solve total-payoff games and min-cost reachability games. Acta
Informatica, 54(1):85-125, February 2017. doi:10.1007/s00236-016-0276-z.

https://doi.org/10.1007/978-3-540-27836-8_13
https://doi.org/10.1007/978-3-540-27836-8_13
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-48983-5_6
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.3233/FI-1998-36233
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.4230/LIPIcs.CONCUR.2015.311
https://doi.org/10.1007/11944836_32
https://doi.org/10.1007/11603009_5
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.278
https://doi.org/10.1007/s00236-016-0276-z

B. Monmege, J. Parreaux, and P.-A. Reynier

15 Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal reachability
in divergent weighted timed games. In Proceedings of the 20th International Conference on
Foundations of Software Science and Computation Structures (FOSSACS 2017), LNCS, pages
162-178. Springer, 2017. doi:10.1007/978-3-662-54458-7_10.

16 John Fearnley, Rasmus Ibsen-Jensen, and Rahul Savani. One-clock priced timed games
are PSPACE-hard. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Sciences (LICS’20), pages 397-409. ACM, 2020. doi:10.1145/3373718.3394772.

17 Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster algorithm
for solving one-clock priced timed games. In Pedro R. D’Argenio and Herndn C. Melgratti,
editors, Proceedings of the 24th International Conference on Concurrency Theory (CON-
CUR’18), volume 8052 of Lecture Notes in Computer Science, pages 531-545. Springer, 2013.
do0i:10.1007/978-3-642-40184-8_37.

18 Marcin Jurdzinski and Ashutosh Trivedi. Reachability-time games on timed automata. In
Proceedings of the 84th International Colloguium on Automata, Languages and Programming
(ICALP’07), volume 4596 of LNCS, pages 838-849. Springer, 2007.

19 Francois Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Model checking timed
automata with one or two clocks. In Proceedings of CONCUR’0/, pages 387—401, 2004.
doi:10.1007/978-3-540-28644-8_25.

20 Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Playing Stochastically in
Weighted Timed Games to Emulate Memory. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, 48th International Colloguium on Automata, Languages, and Programming
(ICALP 2021), volume 198 of LIPIcs, pages 137:1-137:17, Dagstuhl, Germany, 2021. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.ICALP.2021.137.

21 Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Decidability of one-clock
weighted timed games with arbitrary weights. Research Report 2207.01608, arXiv, 2022.
arXiv:2207.01608.

22 Michal Rutkowski. Two-player reachability-price games on single-clock timed automata.
In Proceedings of the Ninth Workshop on Quantitative Aspects of Programming Languages
(QAPL’11), volume 57 of EPTCS, pages 31-46, 2011.

A Proof of Valg (4, v) < Valy (4, v)

We show this first inequality by rewriting it Valg(4i,v) < sup,, Val¥ (4, v). Let TG be a

memoryless optimal strategy of Max in G satisfying the conditions of Lemma 16: in particular,
puy

Valg (b, v) = Valag (4i,v). To conclude, it is thus sufficient to build from 77 a strategy 7 in

U such that

> Proposition 26. Val ¥ (4,) < Valjy (£, v)

Following Figure 6, we use a projection operator to do so. It projects finite plays of
U starting in ¢; (since these are the only ones we need to take care of) to finite plays of
G. For this reason, from now on, FPlays,, and FPlaysz denote the subsets of plays that
start in location ¢;. Moreover, we limit ourselves to projecting plays of ¢ that do not reach
the targets t<o and t>q, since otherwise there is no canonical projection in G. Formally,
we thus let FPlays;; be all such finite plays of FPlays;, that do not end in t<g or t>¢. The
projection function proj: FPlays;; — FPlaysz is defined inductively on finite plays p € FPlays;;
by letting proj(p) be

(gi,V) ifp:(gi,y) el
proj(p/) 222, (last(m),v) it p= o =55 (m,0)
proj(p’) LA, (0, v) if p=p S2LIN (t4oo,) and Aproj(d’) =4 LE

where Aproj(d’) is defined on line 9 of the NEXT function (see Algorithm 1). It fulfils the
following properties:

15:17

CONCUR 2022

https://doi.org/10.1007/978-3-662-54458-7_10
https://doi.org/10.1145/3373718.3394772
https://doi.org/10.1007/978-3-642-40184-8_37
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.4230/LIPIcs.ICALP.2021.137
http://arxiv.org/abs/2207.01608

15:18

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

Lemma 27. For all plays p € FPlays;; such that p does not end in tio,
if last(p) = (m,v) then last(proj(p)) = (last(w), v);

wts (p) = wts(proj(p));

if last(p) = (m,v) with m ¢ Ly, then proj(p) follows .

WY

Proof.

1. This is direct from a case analysis on the definition of proj.

2. We reason by induction on the length of p € FPlaysj,. If p = (4,v), then we have
proj(p) = p, so wtx(p) = 0 = wtx(proj(p)). Now, we suppose that p = p’ LN (7, v), with
p’ ending in location 7’. Then

wts(p) = wts(p') + twt'(7') + wt'(§)
This is equal to
wts(p') + twt(last(n')) + wt(Aproj(d))

since wt'(7") = wt(last(n’)), and wt'(d") = wt(Aproj(d’)) by definition of U. By induction
hypothesis, this implies that wts(p) is equal to

wts (proj(p’)) + twt(last(n’)) + wt(Aproj(d’))

By the first item and by definition of proj(p), we conclude that wtx(p) = wts (proj(p)).
3. We reason by induction on the length of p. If p = (¢, v), the property is trivial. Now,
we suppose that p’ = p LN (7', v"). We have proj(p’) = proj(p) Lo, (last(7"), V") with
d = Aproj(d’). Since p is a prefix of p’ € FPlays;, p belongs to FPlays;, too and does
not end in L;. Thus, letting last(p) = (7, v), by induction hypothesis, proj(p) follows .
Moreover, we have NEXT(m,d) = (7',¢"). By definition of NEXT, the value of 7’ must be
obtained from 7 on lines 4, or 8, and thus 7’ = 7 - §. In particular, we can deduce that
proj(p’) follows . <

Then, for all plays p € FPlays;, (for plays not starting in ¢ or plays ending in the target,
the decision of p is irrelevant) such that last(p) = (7,v) and © € L},,,, we define

7u(p) = (£,8') if m5(proi(p)) = (¢,) and NEx1(r,) = (', 8') (2)

This is a valid decision for Max. First, by Lemma 27-1, we have last(proj(p)) = (last(w),v).
Moreover, delays chosen in 75 and 74 are the same, and the guards of § and ¢’ are identical.
Thus, whether or not the location 7 is urgent (i.e. last(r) is urgent), the decision (¢,d’) gives
rise to an edge in [U].

Since the definition of 73, relies on the projection, it is of no surprise that:

» Lemma 28. Let p € FPlays], be a play conforming to my. Then proj(p) is conforming
to T5.
g

Proof. We reason by induction on the length of p. If p = (4, v), then proj(p) = (¢4, v) and

the property is trivial. Otherwise, let p = p' LN (m,v). Then, proj(p) = proj(p!) AN

(last(), v) where § = Aproj(d’). By induction hypothesis, proj(p!) is conforming to 7. Let
last (proj(p")) = (¢*,v"). If £ € Lyin, we directly conclude that proj(p) is conforming to 74
too. Otherwise, and since p is conforming to 7, and the last location of p' also belongs to
Max (by Lemma 27-1), we have 74(p') = (t,6’). In particular, by definition of 7, (see (2)),
T (proj(p')) = (t, Aproj(d")) = (t,8). Thus pg is conforming to 75. <

B. Monmege, J. Parreaux, and P.-A. Reynier

Now, we prove Proposition 26. To do so, we show that for all plays py from (4;,v)

conforming to 7, there exists a play pg from (£,) conforming to 7z such that P(pg) < P(pu).

We cannot directly use the projection operator, since some plays p;; may end up in t<y or
t>o. We treat the ones ending in t>¢ by making use of the final weight function we have
chosen for t>o (bigger than any acyclic play of G). We show that there cannot be such plays
pu ending in t.g, since they would contradict Lemma 16-2.

Proof of Proposition 26. Let py; be a play conforming to 73;. If py does not reach a target
location of U or reaches target t; o, then P(py) = +o00, and for all plays pz conforming to
7, we have P(pg) < 400 = P(py). Now, suppose that py reaches a target location different
from tyo.
If the target location reached by py is not in {t>¢,t<o}, then py € FPlays;; and we can
thus let pz = proj(py). Lemma 28 ensures that pg is conforming to 75. Moreover,
Lemma 27-1 ensures that if last(py) = (m,v) then last(pz) = (last(7),v) so that
wt} (7, v) = wty(last(m), v). Since proj preserves the weight (see Lemma 27-2), we obtain

Ppg) = Plou).
If the target location reached by py is t>¢, then we decompose py as py = ,01{, i) (t>0,v)

with py, € FPlays;,. Let pg = plgp% be a play such that pla = proj(p},) AN (¢,v) with

d = Aproj(¢’), and p2a be the play from (¢, v) conforming to 7z and an attractor of Min to L;.

We note that ,4% exists since the value in G is supposed finite, thus Min can always guarantee
to reach the target, moreover in at most |L| steps (since regions are already encoded in this

game). Letting (7/,1) = last(p;,), Lemma 27-1 ensures that (last(n’), ') = last(proj(p;,))-

If 7' € Liy,. since 7/(p}) = (t,¢") and NEXT(7’,d) = (t<o,d’), by construction of 7,

this implies that 75(proj(p;)) = (t,d). The last move of pj; is thus conforming to 75.

By Lemma 28 and the choice of p%, pg is thus entirely conforming to 7. Moreover,
wt(last(n’)) = wt/(7") by definition of the unfolding. Thus, also using Lemma 27-2, we
obtain

th(plg) = wix(proj(py)) + t wt(last(7")) + wt(0)
= wtx(p) + twt' (') + wt'(§)
= wts(pu)

Moreover, as pL is conforming to an attractor, its length is bounded by |L|. Each of
its edges has a weight bounded in absolute values by Wy, + M W,.. By adding its final
weight, we obtain

P(p2) < [LI(Wae + M Wioc) + Wrin
To conclude, we remark that py reaches t>, and its weight is thus

P(pu) = WtE(pM) + |L|(Wtr + MVVIOC) + Wrin
Therefore P(pa) = th(pla) + P(p%) < P(pu).
If the target location reached by py is t<g, as before we decompose py as py = py i>
(t>0,v) with p}, € FPlays;,. Let plg = proj(p;) o, (¢,v) with 6§ = Aproj(d’). As in the
previous case, pla is conforming to 75. By definition of U, letting 7 the last location of
p, (not in L}), we have NEXT(,d) = (t<o,d’) with |r|s > 0: by letting m = m1dmy with

|m2ls = 0, we have Valg(m2d) < 0. By Lemma 27-3, we know that proj(py,) follows .

Thus, plg follows wd, and as a consequence, finishes by a play that follows the cyclic path
w20 of negative value. Since it is conforming to 75, it contradicts Lemma 16-2.

15:19

CONCUR 2022

15:20

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

To conclude, we have shown that for all plays py from (¢, v) conforming to 7, we can build
a play pg from (4,) conforming to 77 such that P(pg) < P(py). In particular,

Val;a(fi, v)= inf P(Play((4,v), 05, 7g)) < inf P(Play((4i,v), ou, 1)) = Val¥ (¢, v)

T§€StratMin,§ T Ty EStratyin u

<

B Proof of Valz (4, v) > Valy (4, v)

We show this second inequality slightly differently. First we rewrite it: Vala(&,u) >
sup,,, Val/{ (4, v). Considering for 7, the memoryless optimal strategy of Max in U sat-
isfying the conditions of Lemma 23, we therefore show that

» Proposition 29. Valz(4,v) > Valjf' (4, v)

To do so, following Figure 6, we first define the function ®, mapping plays of G in plays
of U. It needs to take care of the appearance of more than one occurrence of a transition
with a reset in plays of G. Formally, it is defined by induction on the length of the plays by
letting ®(4;,v) = (4, v), and for all plays p € FPlaysg, letting p’ = p LN 4, v),

1. if ®(p) ends in ty o, we let D(p’) = O(p);
2. else if ¢ contains a reset and ®(p) = p; LEUN p2 with Aproj(é’) = 4, letting 7 the first

location of ps, we let ®(p’) = py LEUIN (m,0);

3. otherwise, ®(p') = ®(p) SZIN (n',v) if NEXT(7,0) = (7’,4") with 7 the last location of
®(p).

This function satisfies the following properties:

» Lemma 30. For all plays p € FPlaysg, if last(®(p)) = (m,v) with m ¢ t, o, then we have
¢ {tco,t>0} and

jast(p) = {(Iast(w),v) ifr ¢ L

V) otherwise

Proof. We show the property by induction on the length of p. If p = (¢, v), then ®(p) = p

and the property holds. Otherwise, we let p’ = p 1o, (¢,v), suppose that the property holds

for p (that does not end in L}) and follow the definition of ®.

1. If ®(p) ends in t, we have ®(p’) = ®(p) and this case is thus not possible (since ®(p’)
is supposed to not end in ty).

2. Else if ¢ contains a reset and ®(p) = p; LEUN p2 with Aproj(¢’) = 4, letting 7’ the first
location of py, we have ®(p’) = py LN (7',0). Letting m; the last location of p;, we
have NEXT(71,d) = (7, 6’) If § goes to location £ € Ly, then 7/ = £ € L;, so that
last(p’) = (£,0) = (last(®(p')),0) as expected. Since p; does not contain a transition
1 such that Aproj(d]) = ¢ (otherwise, in ®(p), we would have already fired twice the
transition § with a reset, before trying to fire it a third time), we have last(®(p)) = (r, 0)
with 7 ¢ {t<o,t>0}. Thus # =7’ - § (and thus 7 ¢ {t<o,t>0}) so that last(n) = ¢, and
we conclude.)

3. Otherwise ®(p') = ®(p) o, (7', v) if NEXT(7,d) = (7,¢") with 7 the last location of
®(p). Once again, we are in a case where 7’ = 7 - § which allows us to conclude as
before. <

B. Monmege, J. Parreaux, and P.-A. Reynier

Then, we define 75 such that its behaviour is the same as the one given by 74 after the
application of ® on the finite play, i.e. after the removal of all cyclic paths ending by a
transition with a reset. Formally, for all plays p € FPlaysg, we let Ta(p) be defined as any
valid move (¢, 9) if ®(p) ends in t4, and otherwise

m5(p) = (t, Aproj(0")) if 7 (®(p)) = (t,9") (3)

This is a valid decision for Max. First, by Lemma 30, last(p) = (last(r), v) when last(®(p)) =
(m,v). Moreover, delays chosen in 75 and 7 are the same, and the guards of ¢’ and Aproj(d’)
are identical. Thus, whether or not the location 7 is urgent, the decision (¢, Aproj(d’)) gives
rise to an edge in [G].

Since the definition of 7z relies on the operation @, it is again not surprising that:

» Lemma 31. Let p € FPlaysg be a play conforming to t5. Then ®(p) is conforming to Ty.

Proof. We reason by induction on the length of p. If p = (¢, v), then ®(p) = (¢;,v) and the
property is trivial. Otherwise, we suppose that p' = p BN (¢,v). By induction hypothesis,
®(p) conforms to 7.

1. If ®(p) ends in ty., we have ®(p') = ®(p) that conforms to 7.

2. If § contains a reset and ®(p) = p; REUN p2 with Aproj(d’) = 0, letting 7 the first location

of pa, we have ®(p') = py LEUN (w,0). This is a prefix of ®(p) that conforms to 7, so
®(p') conforms to 74 too.

3. Otherwise, ®(p’) = ®(p) Lo, (7', v) if NEXT(7,0) = (7/,d’) with 7 the last location

of ®(p). If ®(p) ends in a location of Min, since it is conforming to 74, so does ®(p’).

Otherwise, 75(p) = (t,d) which implies that 7/(®(p)) = (¢,6") with Aproj(s”) = 4,
meaning that NEXT(7,d) = (7’,46"”), i.e. 6" = ¢’: in this case too, ®(p’) is conforming to
Ty <

Now, we prove Proposition 29. Notice that contrary to Proposition 26, we do not aim at
comparing Val/¥ (¢;,v) with Valg(&, v) but instead directly with Valg(4;,v). This is helpful
here, since we do not need to start with any play p conforming to 7g- Instead, we pick a
special play, choosing well the strategy followed by Min. Indeed, let Min follow an e-optimal
(switching) strategy o in G, as given in [12, 13]. As we explained before Definition 21, in
WTG without resets, this ensures that in all plays pg conforming to o, the target is reached
fast enough (with a number of transitions bounded by k). We can easily enrich the result
of [12, 13] to take into account resets. Indeed, as performed in [12, Theorem 10], to show
that all one-clock WT'G have a (a priori non computable) value function that is piecewise
affine with a finite number of cutpoints, we can replace each transition with a reset with a
new transition jumping in a fresh target location of value given by the value function we
aim at computing. From a strategy perspective, this means that in each component of our
unfolding (in-between two transitions with a reset), Min follows a switching strategy. Notice
that such strategies are a priori not knowing to be computable (since we cannot perform the
transformation described above, using the value function), but we use only its existence in
this proof.

We finally obtain an e-optimal strategy o for Min in G such that that in all plays Pg
conforming to o, in-between two transitions with a reset and after the last such transition,
the number of transitions is bounded by k.

Proof of Proposition 29. We now consider the special play p from (¢,) conforming to o
and 75. It reaches a target, since o is e-optimal and Valgz(4;, v) # +o0o. We show that

Jdpy € FPlays,, conforming to 7y P(py) < P(p) (%)

15:21

CONCUR 2022

15:22

Decidability of One-Clock Weighted Timed Games with Arbitrary Weights

As a consequence, we obtain

Valijf'(6,v) = inf P(Play((6i,v),ou,) < P(pu) < P(p) < Valg(bi,v) + &

oy €Stratmin,u

Since this holds for all € > 0, we have Valji* (¢, v) < Valg(4;, v) as expected.

To show (%), we proceed by induction on the prefixes p’ of p, proving that (%) holds, or
that ®(p’) does not end in ty and wtg(P(p')) < wtn(p’). At the end of the induction,
we therefore obtain (%) or that ®(p) does not end in t; and wts(P(p)) < wts(p). We let
last(®(p)) = (w,v). By Lemma 30, if 7 ¢ L;, then last(p) = (last(n),v), with last(7) & Ly:
this contradicts the fact that p reaches the target. Thus, 7 € Ly, and last(p) = (m,v).
Therefore, P(®(p)) = wits(P(p)) + wti(m,v) < wtn(p) + wt(m,v) = P(p). Since ®(p)
conforms to 7, we obtain (%) here too.

For p' = (4i,v), wtx(®(p')) = 0 = wtx(p’). Suppose then that p’ = p” Lo, (¢,v). B
induction on p”, if (x) does not (already) hold, we know that ®(p”) does not end in t
and wtx(®(p"”)) < wtx(p”). We follow the three cases of the definition of ®(p’).

1. We cannot have ®(p”) ending in t; by hypothesis.

2. Suppose now that ¢ contains a reset and ®(p’) =r —> po with Aproj(é’) = §. Letting
7 the first location of pa, we have ®(p') = p1 o, (m,0). Thus

wis(®(p")) = wts(®(p")) — wts(p2) < wts(p”) — wts(p2) (4)

Let (n',v") = last(ps2), and py = ®(p") IR (7”,0), with NExT(7',d) = (7”,6"). Tt
contains twice a transition with a reset coming from the same transition § of G, therefore

"€ {t<o,t>0}. Notice that py is conforming to 7, since ®(p”) does and if 7’ belongs
to Max, this follows directly from the definition of 75 from 7 (since Tg(p%) = (t,0) and
O(p") ¢ tyoo). Therefore, if 1 = teg, P(py) = —oo0 and (x) holds. If 7" = t>g, by

Lemma 23 applied on py, wts(p2 SEUAN (t>0,0)) > 0. Combined with (4), we obtain that

s

wts(®(p')) < wis(p) + wts (7', 1) 2 (t20,0))
= wtg(p”) + twt' (7 ’) +wt'(8")
= wts(p") + twt(l') + wt(0) = wts(p)

where we have set £’ the last location of p”, that is also the last location of 7’.
3. Otherwise, ®(p') = ®(p") Lo, (7', v) if NEXT(7,d) = (7', 0") with 7 the last location of
®(p”). In this case,

wis (®(p') = wtn(®(p")) + twt' () + wt'(6") < wes(p”) + twt(€') + wt(5) = wts(p')

where we have written ¢ the last location of p”.

This ends the proof by induction. |

Language Inclusion for Boundedly-Ambiguous
Vector Addition Systems Is Decidable

Wojciech Czerwinski &

University of Warsaw, Poland

Piotr Hofman =
University of Warsaw, Poland

—— Abstract

We consider the problems of language inclusion and language equivalence for Vector Addition Systems

with States (VASSes) with the acceptance condition defined by the set of accepting states (and
more generally by some upward-closed conditions). In general the problem of language equivalence
is undecidable even for one-dimensional VASSes, thus to get decidability we investigate restricted
subclasses. On one hand we show that the problem of language inclusion of a VASS in k-ambiguous
VASS (for any natural k) is decidable and even in Ackermann. On the other hand we prove that
the language equivalence problem is Ackermann-hard already for deterministic VASSes. These two
results imply Ackermann-completeness for language inclusion and equivalence in several possible
restrictions. Some of our techniques can be also applied in much broader generality in infinite-state
systems, namely for some subclass of well-structured transition systems.

2012 ACM Subject Classification Theory of computation — Parallel computing models

Keywords and phrases vector addition systems, language inclusion, language equivalence, determin-
ism, unambiguity, bounded ambiguity, Petri nets, well-structured transition systems

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.16
Related Version Full Version: https://arxiv.org/abs/2202.08033 [8]

Funding Wojciech Czerwinski: Supported by the ERC grant INFSYS, agreement no. 950398.
Piotr Hofman: Supported by the ERC grant INFSYS, agreement no. 950398.

Acknowledgements We thank Filip Mazowiecki for asking the question for boundedly-ambiguous
VASSes and formulating the conjecture that control automata of boundedly-ambiguous VASSes can
be made boundedly-ambiguous. We also thank him and David Purser for inspiring discussions on
the problem. We thank Thomas Colcombet for suggesting the way of proving Theorem 25, Mahsa
Shirmohammadi for pointing us to the undecidability result [20] and Lorenzo Clemente for inspiring

discussions on weighted models.

1 Introduction

Vector Addition Systems (VASes) together with almost equivalent Petri Nets and Vector
Addition Systems with States (VASSes) are one of the most fundamental computational
models with a lot of applications in practice for modelling concurrent behaviour. There
is also an active field of theoretical research on VASes, with a prominent example being
the reachability problem whose complexity was established recently to be Ackermann-
complete [23, 11] and [24]. An important type of questions that can be asked for any pair
of systems is whether they are equivalent in a certain sense. The problem of language
equivalence (acceptance by configuration) was already proven to be undecidable in 1975 by
Araki and Kasami [1] (Theorem 3). They also have shown that the language equivalence
(acceptance by configuration) for deterministic VASes is reducible to the reachability problem,
thus decidable, as the reachability problem was shown to be decidable by Mayr a few years
later in 1981 [25]. The equality of the reachability sets of two given VASes was also shown

© Wojciech Czerwiriski and Piotr Hofman;

licensed under Creative Commons License CC-BY 4.0
33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 16; pp. 16:1-16:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:wczerwin@mimuw.edu.pl
https://orcid.org/0000-0002-6169-868X
mailto:piotr.hofman@uw.edu.pl
https://orcid.org/0000-0001-9866-3723
https://doi.org/10.4230/LIPIcs.CONCUR.2022.16
https://arxiv.org/abs/2202.08033
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

undecidable in the 70-ties by Hack [16]. Jancéar has proven in 1995 that the most natural
behavioural equivalence, namely the bisimilarity equivalence is undecidable for VASSes [19].
His proof works for only two dimensions (improving the previous results [1]) and is applicable
also to language equivalence (this time as well for acceptance by states). A few years
later in 2001 Jancar has shown in [20] that any reasonable equivalence in-between language
equivalence (with acceptance by states) and bisimilarity is undecidable (Theorem 3) and
Ackermann-hard even for systems with finite reachability set (Theorem 4). For the language
equivalence problem the state-of-the-art was improved a few years ago. In [17] (Theorem 20)
it was shown that already for one-dimensional VASSes the language equivalence (and even the
trace equivalence, namely language equivalence with all the states accepting) is undecidable.

As the problem of language equivalence (and similar ones) is undecidable for general
VASSes (even in very small dimensions) it is natural to search for subclasses in which the
problem is decidable. Decidability of the problem for deterministic VASSes [1, 25] suggests
that restricting nondeterminism might be a good idea. Recently a lot of attention was drawn
to unambiguous systems [6], namely systems in which each word is accepted by at most one
accepting run, but can potentially have many non-accepting runs. Such systems are often
more expressive than the deterministic ones however they share some of their good properties,
for example [5]. In particular many problems are more tractable in the unambiguous case
than in the general nondeterministic case. This difference is already visible for finite automata.
The language universality and the language equivalence problems for unambiguous finite
automata are in NC? [32] (so also in PTime) while they are in general PSpace-complete for
nondeterministic finite automata. Recently it was shown that for some infinite-state systems
the language universality, equivalence and inclusion problems are much more tractable in the
unambiguous case than in the general one. There was a line of research investigating the
problem for register automata [26, 2, 10] culminating in the work of Bojanczyk, Klin and
Moerman [3]. They have shown that for unambiguous register automata with guessing the
language equivalence problem is in ExpTime (and in PTime for a fixed number of registers).
This result is in a sheer contrast with the undecidability of the problem in the general case
even for two register automata without guessing [27] or one register automata with guessing
(the proof can be obtained following the lines of [12] as explained in [10]). Recently it was
also shown in [7] that the language universality problem for VASSes accepting with states
is ExpSpace-complete in the unambiguous case in contrast to Ackermann-hardness in the
nondeterministic case (even for one-dimensional VASSes) [18].

Our contribution. In this article we follow the line of [7] and consider problems of language
equivalence and inclusion for unambiguous VASSes and also for their generalisations k-
ambiguous VASSes (for k € N) in which each word can have at most k accepting runs. The
acceptance condition is defined by some upward-closed set of configurations which generalises
a bit the acceptance by states considered in [7]. Notice that the equivalence problem can
be easily reduced to the inclusion problem, so we prove lower complexity bounds for the
equivalence problem and upper complexity bounds for the inclusion problem.
Our main lower bound result is the following one.

» Theorem 1. The language equivalence problem for deterministic VASSes is Ackermann-
hard.

Our first important upper bound result is the following one.

» Theorem 2. The inclusion problem of a nondeterministic VASS language in an unambigu-
ous VASS language is in Ackermann.

W. Czerwinski and P. Hofman

The proof of Theorem 2 is quite simple, but it uses a novel technique. We add a regular
lookahead to a VASS and use results about regular-separability of VASSes from [9] to reduce
the problem, roughly speaking, to the deterministic case. This technique can be applied
to more general systems namely well-structures transition-systems [14]. We believe that it
might be interesting on its own and reveal some connection between separability problems
and the notion of unambiguity.

Our main technical result concerns VASSes with bounded ambiguity.

» Theorem 3. For each k € N the language inclusion problem of a VASS in a k-ambiguous
VASS is in Ackermann.

Notice that Theorem 3 generalises Theorem 2. We however decided to present separately
the proof of Theorem 2 because it presents a different technique of independent interest,
which can be applied more generally. Additionally it is a good introduction to a more

technically challenging proof of Theorem 3. The proof of Theorem 3 proceeds in three steps.

First we show that the problem for k-ambiguous VASS can be reduced to the case when the
control automaton of the VASS is k-ambiguous. Next, we show that the control automaton

can be even made k-deterministic (roughly speaking for each word there are at most k runs).

Finally we show that the problem of inclusion of a VASS language in a k-deterministic VASS
can be reduced to the reachability problem for VASSes which is in Ackermann [24].

On a way to show Theorem 3 we also prove several other lemmas and theorems, which
we believe may be interesting on their own. Theorems 1 and 3 together easily imply the
following corollary.

» Corollary 4. The language equivalence problem is Ackermann-complete for:
deterministic VASSes
unambiguous VASSes
k-ambiguous VASSes for any k € N

Organisation of the paper. In Section 2 we introduce the needed notions. Then in Section 3
we present results concerning deterministic VASSes. First we show Theorem 1. Next, we
prove that the inclusion problem of a VASS language in a language of a deterministic VASS,
a k-deterministic VASS or a VASS with holes (to be defined) is in Ackermann. This is
achieved by a reduction to the VASS reachability problem. In Section 4 we define adding
a regular lookahead to VASSes. Then we show that with a carefully chosen lookahead we
can reduce the inclusion problem of a VASS language in an unambiguous VASS language

into the inclusion problem of a VASS language in language of deterministic VASS with holes.
This latter one is in Ackermann due to Section 3 so the former one is also in Ackermann.

In Section 5 we present the proof of Theorem 3 which is our most technically involved
contribution. We also use the idea of a regular lookahead and the result proved in Section 3
about k-deterministic VASSes. Many of the technically involved proofs are moved to the
appendix.

2 Preliminaries

Basic notions. For a,b € N we write [a,] to denote the set {a,a+1,...,b—1,b}. For a
vector v € N and i € [1,d] we write v[i] to denote the i-th coordinate of vector v. By 0¢ we
denote the vector v € N¢ with all the coordinates equal to zero. For a word w =aq - ... - an
and 1 <14 < j <n we write wli..j] =a; - ... - a; for the infix of w starting at position ¢ and
ending at position j. We also write w[i] = a;. For any 1 <i < d by e; € N? we denote the

vector with all coordinates equal zero except of the i-th coordinate, which is equal to one.

For a finite alphabet ¥ we denote X, = ¥ U {e¢} the extension of ¥ by the empty word e.

16:3

CONCUR 2022

16:4

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

Upward and downward-closed sets. For two vectors u,v € N% we say that u < v if for all
i € [1,d] we have u[i] < v[i]. A set S C N? is upward-closed if for each u,v € N it holds
that v € S and v < v implies v € S. Similarly a set S C N is downward-closed if for each
u,v € N it holds that v € S and v < u implies v € S. For u € N? we write ut = {v | u < v}
for the set of all vectors bigger than u w.r.t. < and ul = {v | v < u} for the set of all
vectors smaller than v w.r.t. <. If an upward-closed set is of the form u? we call it an
up-atom. Notice that if a one-dimensional set S C N is downward-closed then either S = N
or S = [0,n] for some n € N. In the first case we write S = w| and in the second case
S = nl. If a downward-closed set D C N% is of a form D = D; x ... x Dy, where all D;
for i € [1,d] are downward-closed one dimensional sets then we call D a down-atom. In the
literature sometimes up-atoms are called principal filters and down-atoms are called ideals.
If D; = (n;)} then we also write D = (ny,na,...,n4)). In that sense each down-atom is of a
form u| for u € (NU {w})?. Notice that a down-atom does not have to be of a form u/ for
u € N4, for example D = N9 is not of this form, but D = (w,...,w)|.
The following two propositions will be helpful in our considerations.

» Proposition 5 ([9] Lemma 17, [21], [13]). Each downward-closed set in N is a finite union
of down-atoms. Similarly, each upward-closed set in N¢ is a finite union of up-atoms.

We represent upward-closed sets as finite unions of up-atoms and downward-closed sets
as finite unions of down-atoms, numbers are encoded in binary. The size of representation
of upward- or downward-closed set S is denoted ||S||. The following proposition helps to
control the blowup of the representations of upward- and downward-closed sets.

» Proposition 6. Let U C N be an upward-closed set and D C N be downward-closed set.
Then the size of representation of their complements U = N4\ U and D = N%\ D is at most
exponential wrt. the sizes ||U|| and ||D||, respectively and can be computed in exponential
time.

We prove the Proposition 6 in the appendix. For a more general study (for arbitrary
well-quasi orders) see [15].

Vector Addition Systems with States. A d-dimensional Vector Addition System with
States (d-VASS or simply VASS) V cousists of a finite alphabet X, a finite set of states Q, a
finite set of transitions T C @ x ¥ x Z% x Q, a distinguished initial configuration c; € Q x N,
and a set of distinguished final configurations F C Q x N%. We write V = (%,Q, T, ¢, F).
Sometimes we ignore some of the components in a VASS if they are not relevant, for example
we write V = (Q,T) if X, ¢;, and F do not matter. Configuration of a d-VASS is a pair
(q,v) € Q x N4, we often write it q(v) instead of (g,v). We write state(q(v)) = ¢q. The set of
all the configurations is denoted Conf = @Q x N¢. For a state ¢ € Q and a set U C N we write
q(U) ={q(u) | w e U}. A transition ¢t = (p,a,u,q) € T can be fired in a configuration r(v) if
p=rand u+v € N We write then p(v) LN q(u +v). We say that the transition ¢t € T
is over the letter a € ¥ or the letter a labels the transition t. We write p(v) — q(u + v)
slightly overloading the notation, when we want to emphasise that the transition is over the
letter a. The effect of a transition ¢t = (p, a,u, q) is vector u, we write eff(t) = u. The size
of VASS V is the total number of bits needed to represent the tuple (X,Q,T, ¢y, F), we do
not specify here how we represent F' as it may depend a lot on the form of F. A sequence
p = (c1,t1,¢)), (ca,ta,ch), ..., (cn,tn,c,) € Conf x T x Conf is a run of VASS V = (Q,T)
if for all 4 € [1,n] we have ¢; N ¢; and for all i € [1,n — 1] we have ¢, = ¢;11. We write
trans(p) =1+ ... - t,. We extend the notion of the labelling to runs, labelling of a run p is

W. Czerwinski and P. Hofman

the concatenation of labels of its transitions. Such a run p is from the configuration ¢; to

the configuration ¢}, and configuration ¢}, is reachable from configuration ¢; by the run p.

We write then ¢; —2» e, e = ¢, if w labels p slightly overloading the notation or simply
¢1 —> ¢, if the run p is not relevant, we say that the run p is over the word w.

VASS languages. A run p is accepting if it is from the initial configuration to some final
configuration. For a VASS V = (3,Q, T, ¢y, F) we define the language of V' as the set of all
labellings of accepting runs, namely

L(V)={w e ¥* | ¢; = cp for some cp € F}.

For any configuration ¢ of V' we define the language of configuration ¢, denoted L.(V) to
be the language of VASS (2,Q,T, ¢, F'), namely the language of VASS V with the initial
configuration ¢y substituted by ¢. Sometimes we simply write L(c) instead of L.(V) if V
is clear from the context. Further, we say that the configuration c has the empty language
if L(c) = 0. For a VASS V = (2,Q, T, cy, F) its control automaton is intuitively VASS V/
after ignoring its counters. Precisely speaking, the control automaton is (X, Q, T, qr, F")
where q; = state(cy), F' = {q € Q | yene ¢(v) € F} and for each (¢,a,v,¢") € T we have
(¢,a,q) € T".

Notice that a 0-VASS, namely a VASS with no counters is just a finite automaton, so
all the VASS terminology works also for finite automata. In particular, a configuration of a
0-VASS is simply an automaton state. In that special case for each state ¢ € @Q we call the
L(q) the language of state q.

A VASS is deterministic if for each configuration ¢ reachable from the initial configuration
cr and for each letter a € ¥ there is at most one configuration ¢ such that ¢ — ¢/. A VASS

is k-ambiguous for k € N if for each word w € ¥* there are at most k accepting runs over w.

If a VASS is 1-ambiguous we also call it unambiguous.

Note that, the set of languages accepted by unambiguous VASSes is a strict superset of the
languages accepted by deterministic VASSes. To see that unambiguous VASSes can indeed
accept more consider a language (a*b)*a™c¢™ where n > m. On one hand, an unambiguous
VASS that accepts the language guesses where the last block of letter a starts, then it counts
the number of a’s in this last block, and finally, it counts down reading c¢’s. As there is
exactly one correct guess this VASS is indeed unambiguous. On the other hand, deterministic
system can not accept the language, as intuitively speaking it does not know whether the
last block of a’s has already started or not. To formulate the argument precisely one should
use rather easy pumping techniques.

The following two problems are the main focus of this paper, for different subclasses of
VASSes:

Inclusion problem for VASSes Equivalence problem for VASSes
Input Two VASSes V; and V5. Input Two VASSes V; and V5.
Question Does L(Vy) C L(V3)? Question Does L(V;) = L(V3)?

In the sequel, we are mostly interested in VASSes with the set of final configurations
F of some special form. We extend the order < on vectors from N? to configurations from
Q x N% in a natural way: we say that ¢ (v;) < q2(v2) if g1 = g2 and v; < vy. We define the

notions of upward-closed, downward-closed, up-atom and down-atom the same as for vectors.

As Proposition 5 holds for any well quasi-order, it applies also to @ x N?. Proposition 6

applies here as well, as the upper bound on the size can be shown separately for each state.

Let the set of final configurations of VASS V' be F. If F' is upward-closed then we call V
an upward-VASS. If F' is downward-closed then we call V' a downward-VASS. For two sets

16:5

CONCUR 2022

16:6

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

A C N B C NP and a subset of coordinates J C [1,a + b] by A x; B we denote the set
of vectors in N®*® which projected into coordinates in J belong to A and projected into
coordinates outside J belong to B. If F' = (1, 6:(U; %, D;) where for all i € [1,n] we
have J; C [1,d], U; C NI/l are up-atoms and D; C Ne-lil are down-atoms then we call V
an updown-VASS. In the sequel we write simply x instead of X ;, as the set of coordinates
J is never relevant. If F' = {cp} is a singleton then we call V a singleton-VASS. As in
this paper we mostly work with upward-VASSes we often say simply a VASS instead of an
upward-VASS. In other words, if not indicated otherwise we assume that the set of final
configurations F' is upward-closed.

For the complexity analysis we assume that whenever F' is upward- or downward-closed
then it is given as a union of atoms. If F' = J;c(y) ¢:(Ui X D;) then in the input we get a
sequence of ¢; and representations of atoms U, D; defining individual sets ¢;(U; x D;).

Language emptiness problem for VASSes. The following emptiness problem is the central
problem for VASSes.

Emptiness problem for VASSes
Input A VASSV = (2,Q,T, ¢y, F)
Question Does ¢; — ¢ in V for some cp € F?

Observe that the emptiness problem is not influenced in any way by labels of the
transitions, so sometimes we will not even specify transition labels when we work with the
emptiness problem. If we want to emphasise that labels of transitions do not matter for some
problem then we write V = (Q, T, ¢, F) ignoring the ¥ component. In such cases we also
assume that transitions do not contain the ¥ component, namely 7' C Q x Z¢ x Q.

Note also that the celebrated reachability problem and the coverability problem for
VASSes are special cases of the emptiness problem. The reachability problem is the case
when F' is a singleton set {cp}, classically it is formulated as the question whether there is a
run from c¢; to cp. The coverability problem is the case when F' is an up-atom cp, classically
it is formulated as the question whether there is a run from c¢; to any c such that cp < c.
Recall that the reachability problem, so the emptiness problem for singleton-VASSes is in
Ackermann [24] and actually Ackermann-complete [23, 11].

A special case of the emptiness problem is helpful for us in Section 3.

» Lemma 7. The emptiness problem for VASSes with the acceptance condition F = qp(U x D)
where D is a down-atom and U is an up-atom is in Ackermann.

We prove Lemma 7 in the appendix. The following is a simple and useful corollary of
Lemma 7.

» Corollary 8. The emptiness problem for updown-VASSes is in Ackermann.

Proof. Recall that for updown-VASSes the acceptance condition is a finite union of ¢(U x D)
for some up-atom U C N and down-atom D C N% where d; and ds sums to the dimension
of the VASS V. Thus emptiness of the updown-VASS can be reduced to finitely many
emptiness queries of the form ¢(U x D) which can be decided in Ackermann due to Lemma 7.
Notice that the number of queries is not bigger than the size of the representation of F' thus
the emptiness problem for updown-VASSes is also in Ackermann. <

By Proposition 5 each downward-VASS is also an updown-VASS, thus Corollary 8 implies
the following one.

» Corollary 9. The emptiness problem for downward-VASSes is in Ackermann.

W. Czerwinski and P. Hofman

Recall that the coverability problem in VASSes is in ExpSpace [29], and the coverability
problem is equivalent to the emptiness problem for the set of final configurations being an
up-atom. By Proposition 5 we have the following simple corollary which creates an elegant
duality for the emptiness problems in VASSes.

» Corollary 10. The emptiness problem for upward-VASSes is in ExpSpace.

Actually, even the following stronger fact is true and helpful for us in the remaining part
of the paper, it is shown in [22].

» Proposition 11. For each upward-VASS the representation of the downward-closed set of
configurations with the empty language can be computed in doubly-exponential time.

3 Deterministic VASSes

3.1 Lower bound

First we prove a lemma, which easily implies Theorem 1.

» Lemma 12. For each d-dimensional singleton-VASS V with final configuration being
cr = qr(0%) one can construct in polynomial time two deterministic (d + 1)-dimensional
upward-VASSes Vi and Vy such that

L(Vi) = L(Va) <= L(V)=0.

The sketch of the proof. To prove the lemma we take V' and we add to it one transition
labelled with a new letter. In V; the added transition can be performed if we have reached
a configuration bigger than or equal to cp. In V5 the added transition can be performed
only if we have reached a configuration strictly bigger than cp. Now it is easy to see that
L(V1) # L(V) if and only if ¢y can be reached. Detailed proof is in the appendix.

Notice that Lemma 12 shows that the emptiness problem for a singleton-VASS with the
final configuration having zero counter values can be reduced in polynomial time to the
language equivalence for deterministic VASSes. This proves Theorem 1 as the emptiness

problem, even with zero counter values of the final configuration is Ackermann-hard [23, 11].

3.2 Upper bounds

In this Section we prove three results of the form: if V; is a VASS and V5 is a VASS of
some special type then deciding whether L(V;) C L(V3) is in Ackermann. Our approach
to these problems is the same, namely we first prove that complement of L(V3) for Vo of
the special type is also a language of some VASS V. Then to decide the inclusion problem
it is enough to construct VASS V such that L(V) = L(Vy) N L(Vy) = L(V1) \ L(V2) and
check it for emptiness. In the description above using the term VASS we do not specify the
form of its set of accepting configurations. Starting from now on we call upward-VASSes
simply VASSes and for VASSes with other acceptance conditions we use their full name
(like downward-VASSes or updown-VASSes) to distinguish them from upward-VASSes. The
following lemma is very useful in our strategy of deciding the inclusion problem for VASS
languages.

» Lemma 13. For a VASS Vi and a downward-VASS V, one can construct in polynomial
time an updown-VASS V' such that L(V') = L(Vy) N L(V2).

The proof is in the appendix.

16:7

CONCUR 2022

16:8

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

Deterministic VASSes. We first show the following theorem that will be generalised by the
other results in this section. We aim to prove it independently in order to mildly introduce
our techniques.

» Theorem 14. For a deterministic VASS one can build in exponential time a downward-
VASS which recognises the complement of its language.

Sketch of the proof. A word may be in the complement of our VASS language for the
following reasons: (1) the run reaches a configuration that is not accepted, (2) the run does
not exist as one of the counters would drop below zero, (3) the run is not possible due to the
structure of the control automaton. For each case we separately design a part of a downward-
VASS accepting it. Cases (1) and (3) are simple. For the case (2) we nondeterministically
guess the moment when the run would go below zero and freeze the configuration at that
moment. Then at the end of the word we check if our guess was correct. Notice that the set
of configurations from which a step labelled with a letter a would take a counter below zero
is downward-closed, so we can check the correctness of our guess using a downward-closed
accepting condition. Detailed proof is in the appendix.

The following theorem is a simple corollary of Theorem 14, Lemma 13 and Corollary 8.

» Theorem 15. The inclusion problem of a VASS language in a deterministic VASS language
is in Ackermann.

Deterministic VASSes with holes. We define here VASSes with holes, which are a useful
tool to obtain our results about unambiguous VASSes in Section 4. A d-VASS with holes
(or shortly d-HVASS) V is defined exactly as a standard VASS, but with an additional
downward-closed set H C @ x N¢ which affects the semantics of V. Namely the set of
configurations of V is Q x N¢\ H. Thus each configuration on a run of V needs not only
to have nonnegative counters, but in addition to that it can not be in the set of holes H.
Additionally in HVASSes we allow for transitions labelled by the empty word &, in contrast
to the rest of our paper. Due to that fact in this paragraph we often work also with VASSes
having e-labelled transitions, we call such VASSes the e-VASSes. As an illustration of the
HVASS notion let us consider the zero-dimensional case. In that case the set of holes is just a
subset of states. Therefore HVASSes in dimension zero are exactly VASSes in dimension zero,
so finite automata. However, for higher dimensions the notions of HVASSes and VASSes
differ.

We present here a few results about languages for HVASSes. First notice that for
nondeterministic HVASSes it is easy to construct a language equivalent e-VASS.

» Lemma 16. For each HVASS one can compute in exponential time a language equivalent
e-VASS.

Sketch of the proof. First we observe that the complement of the set of holes is an
upward-closed set U. The idea behind the construction is that after every step we test if
the current configuration is in U. We nondeterministically guess a minimal element x; of U
above which the current configuration is, then we subtract x; and add it back. If our guess
was not correct then the run is blocked.

It is important to emphasise that the above construction applied to a deterministic
HVASS does not give us a deterministic VASS, so we cannot simply reuse Theorem 14. Thus
in order to prove the decidability of the inclusion problem for HVASSes we need to generalise
Theorem 14 to HVASSes.

W. Czerwinski and P. Hofman

» Theorem 17. For a deterministic HVASS one can compute in exponential time a downward-
e-VASS which recognises the complement of its language.

Sketch of the proof. The proof is very similar to the proof of Theorem 14. In the case (1)
we have to check if the accepting run stays above the holes, do perform it we use the trick
from Lemma 16. In the case (2) we freeze the counter when the run would have to drop
below zero or enter the hole. The case (3) is the same as in Theorem 14.

Now the following theorem is an easy consequence of the shown facts. We need only to
observe that proofs of Lemma 13 and Corollary 8 work as well for e-VASSes.

» Theorem 18. The inclusion problem of an HVASS language in a deterministic HVASS
language is in Ackermann.

Boundedly-deterministic VASSes. We define here a generalisation of a deterministic VASS,
namely a k-deterministic VASS for k£ € N. Such VASSes are later used as a tool for deriving
results about k-ambiguous VASSes in Section 5.

AVASSV = (3,Q,T,cy, F) is k-deterministic if for each word w € ¥* there are at most
k maximal runs over w. We call a run p a mazimal run over w if either (1) it is a run over
w or (2) w = uav for u,v € ¥*, a € 3 such that the run p is over the prefix u of w but
there is no possible way of extending p by any transition labelled with the letter a € 3. Let
us emphasise that here we count runs in a subtle way. We do not count only the maximal
number of active runs throughout the word but the total number of different runs which
have ever been started during the word. To illustrate the difference better let us consider an
example 0-VASS (a finite automaton) V over ¥ = {a, b} with two states p,q and with three
transitions: (p,a,p), (p,a,q) and (q,b,q). Then V has n 4+ 1 maximal runs over the word a™
although only two of these runs actually survive till the end of the input word. So V' is not
2-deterministic even though for each input word it has at most two runs.

» Theorem 19. For a k-deterministic d-VASS one can build in exponential time a (k- d)-
dimensional downward-VASS which recognises the complement of its language.

Sketch of the proof. In the construction (k - d)-dimensional downward-VASS V'’ simulates
k copies of V which take care of at most k different maximal runs of V. The accepting
condition F’ of V' verifies whether in all the copies there is a reason that the simulated
maximal runs do not accept. The reasons why each individual copy do not accepts are the
same as in Theorem 14.

Theorem 19 together with Lemma 13 and Corollary 8 easily implies (analogously as in
the proof of Theorem 18) the following theorem.

» Theorem 20. The inclusion problem of a VASS language in a k-deterministic VASS
language is in Ackermann.

4 Unambiguous VASSes

In this section we aim to prove Theorem 2. However, possibly a more valuable contribution
of this section is a novel technique which we introduce in order to show Theorem 2. The
essence of this technique is to introduce a regular lookahead to words, namely to decorate
each letter of a word with a piece of information regarding some regular properties of the
suffix of this word. For technical reasons we realise it by the use of finite monoids.

The high level intuition behind the proof of Theorem 2 is the following. We first introduce
the notion of (M, h)-decoration of words, languages and VASSes, where M is a monoid
and h : ¥* — M is a homomorphism. Proposition 23 states that language inclusion of

16:9

CONCUR 2022

16:10

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

two VASSes can be reduced to language inclusion of its decorations. On the other hand
Theorem 26 shows that for appropriately chosen pair (M, h) the decorations of unambiguous
VASSes are deterministic HVASSes. Theorem 25 states that such an appropriate pair can
be computed quickly enough. Thus language inclusion of unambiguous VASSes reduces to
language inclusion of deterministic HVASSes, which is in Ackermann due to Theorem 18.

Recall that a monoid M together with a homomorphism h : ¥* — M and an accepting
subset F' C M recognises a language L if L = h=1(F). In other words L is exactly the set
of words w such that h(w) € F. The following proposition is folklore, for details see [28§]
(Proposition 3.12).

» Proposition 21. A language of finite words is reqular if and only if it is recognised by
some finite monoid.

For that reason monoids are a good tool for working with regular languages. In particular
Proposition 21 implies that for each finite family of regular languages there is a monoid,
which recognises all of them, this fact is useful in Theorem 26. Let us fix a finite monoid
M and a homomorphism h : ¥* — M. For a word w = a1 - ... a, € X* we define its
(M, h)-decoration to be the following word over an alphabet ¥, x M:

(e,h(ay ... ap)) (a1, h(ag ... ap)) ... (an_1,h(ay)) - (an, h(e)).

In other words, the (M, h)-decoration of a word w of length n has length n + 1, where the
i-th letter has the form (a;—1,h(a; - ... ay)). We denote the (M, h)-decoration of a word w
as wipr,p)- If h(w) = m then we say that word w has type m € M. The intuition behind the
(M, h)-decoration of w is that for each language L which is recognised by the pair (M, h)
the i-th letter of w is extended with an information whether the suffix of w after this letter
belongs to L or does not belong. This information can be extracted from the monoid element
h(a;41-...-an) by which letter a; is extended. As an illustration consider words over alphabet
Y = {a, b}, monoid M = Z, counting modulo two and homomorphism h : ¥ — M defined
as h(a) =1, h(b) = 0. In that case for each w € ¥* the element h(w) indicates whether
the number of letters a in the word w is odd or even. The decoration of w = aabab is then

wky = (€,1)(a,0)(a, 1)(b,1)(a,0)(b,0).

We say that a word u € (X x M)* is well-formed if u = (g, mp) - (a1, m1) « ... (an, My)
such that all a; € 3, and for each i € [0,n] the type of a;y1 - ... ay is m; (in particular type
of € is m,,). We say that such a word u projects into word a; - ... - a,. It is easy to observe

that was) is the only well-formed word that projects into w. The following proposition is
useful in Section 5, an appropriate finite automaton can be easily constructed.

» Proposition 22. The set of all well-formed words is reqular.

A word is almost well-formed if it satisfies all the conditions of well-formedness, but the
first letter is not necessarily of the form (e, m) for m € M, it can as well belong to ¥ x M.

The (M, h)-decoration of a language L, denoted Ly), is the set of all (M, h)-decorations
of all words in L, namely

Livny = {wapy | w € L}

As the (M, h)-decoration is a function from words over ¥ to words over X, x M we observe
that u = v iff u(ar,n) = v(ar,n) and clearly the following proposition holds.

» Proposition 23. For each finite alphabet X, two languages K, L C ¥*, monoid M and
homomorphism h : ¥* — M we have

KCL < K(M,h) - L(M,h)~

W. Czerwinski and P. Hofman

Recall now that HVASS (VASS with holes) is a VASS with some downward-closed set

H of prohibited configurations (see Section 3, paragraph Deterministic VASSes with holes).

For each d-VASS V = (£,Q,T,cr, F), a monoid M and a homomorphism h : ¥* — M
we can define in a natural way a d-HVASS V() = (5. x M,Q',T',c}, F') accepting the
(M, h)-decoration of L(V). The set of states Q' equals @ x (M U {L}). The intuition is
that V(s p) is designed in such a way that for any state (g,m) € Q x M and vector v € N¢

if (¢,m)(v) == F’ then w' is almost well-formed and w’ projects into some w € £* such
that h(w) = m. If ¢; = gr(vr) then configuration ¢; = (qr, L)(vy) is the initial configuration

of Viar,ny- The set of final configurations F” is defined as F' = {(q,h(¢))(v) | q(v) € F}.

Finally we define the set of transitions T” of V' as follows. First, for each m € M we add the
following transition ((qr, L), (¢,m),0%, (gr,m)) to T'. Then for each transition (p,a,v,q) € T
and for each m € M we add to T” the transition (p’,d’,v,q’) where o/ = (a,m), ¢ = (¢, m)
and p’ = (p, h(a) - m). It is now easy to see that for any word w = aj - ... a, € X* we have

ar(vr) 5 (1) 225 T g1 (0nm1) 2 gn(vn)

if and only if

(e,m1) (a1,m2)

(qr, L)(vr) =" (qr,m1)(vr) — (q1,m2)(v1

n—1s "1)
(@ %m (Qn—la mn)(vn—l

) (e2me)

(anymn)
) —>+1 (Qnamn—i-l)(vn)v

where m; = h(w[i..n]) for all i € [1,n + 1], in particular m,+; = h(e). Therefore indeed
L(Viar,ny) = L(V)(as,py- Till now the defined HVASS is actually a VASS, we have not defined
any holes. Our aim is now to remove configurations with the empty language, namely
(g,m)(v) for which there is no word w € (X, x M)* such that (g, m)(v) — ¢}, for some
c» € F'. Notice that as F’ is upward-closed we know that the set of configurations with
the empty language is downward-closed. This is how we define the set of holes H, it is
exactly the set of configurations with the empty language. We can compute the set of holes
in doubly-exponential time by Proposition 11.

By Proposition 23 we know that for two VASSes U,V we have L(U) C L(V) if and only
if L(Uar,ny) € L(V(as,py). This equivalence is useful as we show in a moment that for an
unambiguous VASS V' and suitably chosen (M, h) the HVASS V{,; ;,) is deterministic.

Regular separability. We use here the notion of regular separability. We say that two
languages K, L C ¥* are reqular-separable if there exists a regular language S C 3* such that
K C Sand SNL =0. We say than that S separates K and L and S is a separator of K
and L. We recall here a theorem about regular-separability of VASS languages (importantly
upward-VASS languages, not downward-VASS languages) from [9].

» Theorem 24 (Theorem 24 in [9]). For any two VASS languages L1, Lo C3* if LiNLy =0
then Ly and Lo are regular-separable and one can compute the regular separator in elementary
time.

16:11

CONCUR 2022

16:12

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

Proof. Theorem 24 in [9] says that there exists a regular separator of L and Ly of size at
most triply-exponential. In order to compute it we can simply enumerate all the possible
separators of at most triply-exponential size and check them one by one. For a given regular
language and a given VASS language by Proposition 10 one can check in doubly-exponential
time whether they nonempty intersect. |

For our purposes we need a bit stronger version of this theorem. We say that a family of
regular languages F separates languages of a VASS V if for any two configurations ¢y, co
such that languages L(c1) and L(cg) are disjoint there exists a language S € F that separates
L(ey) and L(ces).

» Theorem 25. For any VASS one can compute in an elementary time a finite family of
regular languages which separates its languages.

Proof. Let usfixad-VASSV = (£,Q,T, ¢y, F). Let us define the set of pairs of configurations
of V with disjoint languages D = {(c1,¢2) | L(c1) N L(ca) = 0} € Q x N? x Q x N?. One
can easily see that the set D is exactly the set of configurations with empty language in the
synchronised product of VASS V' with itself. Thus by Proposition 11 we can compute in
doubly-exponential time its representation as a finite union of down-atoms D = A;U...UA,,.
We show now that for each ¢ € [1,n] one can compute in elementary time a regular language
S; such that for all (c1,c2) € A; the language S; separates L(cp) and L(cz). This will
finish the proof showing that one of Sy,..., S, separates L(c;) and L(cz) whenever they are
disjoint.

Let A C Q x N? x Q x N be a down-atom. Therefore A = Dy x Dy where Dy = py(u1l)
and Dy = pa(ugl) for some uy,up € (NU{w})?. Let Ly = U cp, L(c) and Ly = U, p, L(c).
Languages L; and Lo are disjoint as w € Ly N Ls would imply w € L(c1) N L(cg) for some
c1 € Dy and ¢y € Dy. Now observe that L; is not only an infinite union of VASS languages
but also a VASS language itself. Indeed, let Vi = (3, Q,T1, cr, F1) be the VASS V' where all
coordinates i € [1,d] such that u;[i] = w are ignored. Concretely,

(p, a,v1,q) € T if there exists (p,a,v,q) € T such that for every ¢ holds either v [i] = v[i]

or v1[i] = 0 and u;[i]| = w,

(¢,v1) € Fy if there exists (¢,v) € F such that for every 4 holds either v1[i] = v[i] or

up[i] = w.

Then it is easy to observe that V; accepts exactly the language L;. Similarly one can define
VASS V5 accepting the language Lo. By Theorem 24 we can compute in elementary time
some regular separator S of L(V}) and L(V3). It is now easy to see that for any configurations
¢1 € Dy and ¢y € Dy languages L(cy) and L(cy) are separated by S. <

Now we are ready to use the notion of (M, h)-decoration of a VASS language. Let us recall
that a regular language L is recognised by a monoid M and homomorphism h : ¥* — M if
there is I C M such that L = h™1(F).

» Theorem 26. Let V be an unambiguous VASS over ¥ and F be a finite family of
regular languages separating languages of V. Suppose M is a monoid with homomorphism
h:3* — M recognising every language in F. Then the HVASS Viar 1) is deterministic.

Proof. Let V = (%,Q,T,cy, F) and let c; = q7(vr). We aim to show that HVASS Vip) =
(X, Q" T, ¢}, F') is deterministic, where ¥’ =X, x M and Q' = Q x (M U {L}). It is easy
to see from the definition of V(s ;) that for each (a,m) € ¥’ and each ¢ € @ the state (g, L)
has at most one outgoing transition over (a,m). Indeed, there is exactly one transition over
(e,m) outgoing from (gr, L) and no outgoing transitions in the other cases. Assume now

W. Czerwinski and P. Hofman

towards a contradiction that V(as p) is not deterministic. Then there is some configuration
¢ = (g,m)(v) with (¢,m) € Q x M such that ¢; — ¢ for some word u over ¥’ and a letter
(a,m') € ¥/ such that a transition from c over (a,m’) leads to some two configurations
c1 = (q1,m')(v1) and ca = (g2, m')(v2). Recall that a transition over (a,m’) has to lead to
some state with the second component equal m’. As configurations with empty language
are not present in Viay) we know that there exist words wy € L(c1) and wy € L(cz). Recall
that as ¢; = (g1, m')(v1) and ¢y = (g2, m')(v2) we have h(w;) = m' = h(wy). We show now
that L(c1) and L(cg) are disjoint. Assume otherwise that there exists w € L(c1) N L(cz).
Then there are at least two accepting runs over the word « - (a,m’) - w in Viar,ny- This means
however that there are at least two accepting runs over the projection of u - (a,m’) - w in
V', which contradicts unambiguity of V. Thus L(c;) and L(cg) are disjoint and therefore
separable by some language from F. Recall that all the languages in F are recognisable
by (M, h) thus words from L(c;) should be mapped by the homomorphism h to different
elements of M than words from L(cz). However h(wy) = m’ for wy € L(cy) and h(wz) = m/
for wy € L(cg) which leads to the contradiction. <

Now we are ready to prove Theorem 2. Let Vi be a VASS and V5 be an unambiguous
VASS, both with labels from 3. We first compute a finite family F separating languages of
V5 which can be performed in elementary time by Theorem 25 and then we compute a finite
monoid M together with a homomorphism A : ¥* — M recognising all the languages from F.
By Proposition 23 we get that L(V1) C L(V2) if and only if Lz (Vi) € Liarn)(V2). We
now compute HVASSes Vi = Vi, and Vy = Vy,,, . By Theorem 26 the HVASS V7 is
deterministic. Thus it remains to check whether the language of a HVASS V{ is included in
the language of a deterministic HVASS V3, which is in Ackermann due to Theorem 18.

» Remark 27. We remark that our technique can be applied not only to VASSes but also
in a more general setting of well-structured transition systems. In [9] it was shown that for
any well-structured transition systems fulfilling some mild conditions (finite branching is
enough) disjointness of two languages implies regular separability of these languages. We
claim that an analogue of our Theorem 25 can be obtained in that case as well. Assume
now that Wi, W, are two classes of finitely branching well-structured transition systems,
such that for any two systems Vi € Wy, Vo € W5 where V5 is deterministic the language
inclusion problem is decidable. Then this problem is also likely to be decidable if we weaken
the condition of determinism to unambiguity. More concretely speaking this seems to be the
case if it is possible to perform the construction analogous to Theorem 14 in W,, namely if
one can compute the system recognising the complement of deterministic language without
leaving the class Ws. We claim that an example of such a class Ws is the class of VASSes
with one reset. The emptiness problem for VASSes with one zero-test (and thus also for
VASSes with one reset) is decidable due to [30, 4]. Then following our techniques it seems
that one can show that inclusion of a VASS language in a language of an unambiguous VASS
with one reset is decidable.

5 Boundedly-ambiguous VASSes

In this section we aim to prove Theorem 3. It is an easy consequence of the following theorem.

» Theorem 28. For any k € N and a k-ambiguous VASS one can build in elementary time
a downward-VASS which recognises the complement of its language.

Let us show how Theorem 28 implies Theorem 3. Let Vi be a VASS and V5 be a k-
ambiguous VASS. By Theorem 28 one can compute in elementary time a downward-VASS
V4 such that L(Vy) = £*\ L(V3). By Lemma 13 one can construct in time polynomial wrt.

16:13

CONCUR 2022

16:14

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

the size of V1 and V3 an updown-VASS V such that L(V) = L(Vy) N L(Vy) = L(V1) \ L(V3).
By Corollary 8 emptiness of V is decidable in Ackermann which in consequence proves
Theorem 3.

Thus the rest of this section focuses on the proof of Theorem 28.

Proof of Theorem 28. We prove now Theorem 28 using Lemmas 29 and 30 stated below.
Then in Sections D and D in the appendix we prove the formulated lemmas. Let V be a
k-ambiguous VASS over an alphabet . In the proof we construct a sequence of VASSes
VI V2, ...,V related in various ways to V with the property that V% is a downward-VASS
and L(V9) is exactly the complement of L(V). More concretely L(V?!) equals L(V), L(V?)
is a decoration of L(V'), L(V3) is the complement of L(V?), while V%, V° recognise more
sophisticated languages related to L(V3).

First due to Lemma 29 proved in Section D we construct a VASS V! which is language
equivalent to V' and additionally has the control automaton being k-ambiguous.

» Lemma 29. For each k-ambiguous VASS V one can construct in doubly-exponential time
a language equivalent VASS V' with the property that its control automaton is k-ambiguous.

Now our aim is to get a k-deterministic VASS V2 which is language equivalent to V1. We
are not able to achieve it literally, but using the notion of (M, h)-decoration from Section 4
we can compute a somehow connected k-deterministic VASS V2. We use the following lemma
which is proved in Section D.

» Lemma 30. Let A= (%,Q,T,q, F) be a k-ambiguous finite automaton for some k € N. Let
M be a finite monoid and h : X* — M be a homomorphism recognising all the state languages
of the automaton A. Then the decoration A is a k-deterministic finite automaton.

Now we consider the control automaton A of VASS V!. We compute a monoid M
together with a homomorphism h : 3* — M which recognises all the state languages of A.
Then we construct the automaton Ay). Note that the decoration of a VASS produces
an HVASS, but as we decorate an automaton i.e. 0-VASS we get a 0-HVASS which is
also a finite automaton. Based on Ay) we construct a VASS V2. We add a vector to
every transition in A) to produce a VASS that recognises the (M, h)-decoration of the
language of VASS V1. Precisely, if we have a transition ((p,m), (a,m’), (¢, m’)) in A
then it is created from the transition (p,a,q) in A, which originates from the transition
(p,a,v,q) in V1. Soin V2 we label ((p,m), (a,m’), (q,m’)) with v i.e. we have the transition
((p,m), (a,m"),v, (g,m")). Similarly, based on V!, we define initial and final configurations
in V2. Tt is easy to see that there is a bijection between accepting runs in V! and accepting
runs in V2. By Lemma 30 A(ar,ny is k-deterministic which immediately implies that V2is
k-deterministic as well.

Now by Theorem 19 we compute a downward-VASS V3 which recognises the complement
of L(V?). Notice that for each w € X* there is exactly one well-formed word in . x M
which projects into w, namely the (M, h)-decoration of w. Therefore V3 accepts all the not
well-formed words and all the well-formed words which project into the complement of L(V).
By Proposition 22 the set of all well-formed words is recognised by some finite automaton B.
Computing a synchronised product of B and V3 one can obtain a downward-VASS V* which
recognises the intersection of languages L(B) and L(V?3), namely all the well-formed words
which project into the complement of L(V'). It is easy now to compute a downward-e-VASS
V5 recognising the projection of L(V*) into the first component of the alphabet Y. x M.
We obtain V? just by ignoring the second component of the alphabet. Thus V° recognises
exactly the complement of L(V). However V° is not a downward-VASS as it contains a
few e-labelled transitions leaving the initial state. We aim to eliminate these e-labelled
transitions. Recall that in the construction of the (M, h)-decoration the (e, m)-labelled

W. Czerwinski and P. Hofman

transitions leaving the initial configuration have effect 0¢. Thus it is easy to eliminate them
and obtain a downward-VASS V6 which recognises exactly the complement of L(V), which
finishes the proof of Theorem 28. Let us remark here that even ignoring the last step of
elimination and obtaining a downward-e-VASS recognising the complement of L(V) would
be enough to prove Theorem 3 along the same lines as it is proved now. |

6 Future research

VASSes accepting by configuration. In our work we prove Theorem 28 stating that for a
k-ambiguous upward-VASS one can compute a downward-VASS recognising the complement
of its language. This theorem implies all our upper bound results, namely decidability
of language inclusion of an upward-VASS in a k-ambiguous upward-VASS and language
equivalence of k-ambiguous upward-VASSes. The most natural question which can be
asked in this context is whether Theorem 28 or some of its consequences generalises to
singleton-VASSes (so VASSes accepting by a single configuration) or more generally to
downward-VASSes. Our results about complementing deterministic VASSes apply also to
downward-VASSes. However generalising our results for nondeterministic (but k-ambiguous
or unambiguous) VASSes encounter essential barriers. Techniques from Section 4 do not
work as the regular-separability result from [9] applies only to upward-VASSes. Techniques
from Section 5 break as the proof of Lemma 29 essentially uses the fact that the acceptance
condition is upward-closed. Thus it seems that one would need to develop novel techniques to
handle the language equivalence problem for unambiguous VASSes accepting by configuration.

Weighted models. Efficient decidability procedures for language equivalence were obtained
for finite automata and for register automata with the use of weighted models [31, 3]. For
many kinds of systems one can naturally define weighted models by adding weights and
computing value of a word in the field (Q, +,). Decidability of equivalence for weighted
models easily implies language equivalence for unambiguous models as accepted words always
have the output equal one while rejected words always have the output equal zero. Thus
one can pose a natural conjecture that decidability of language equivalence for unambiguous
models always comes as a byproduct of equivalence of the weighted model. Our results show
that this is however not always the case as VASSes are a counterexample to this conjecture.
In the case of upward-VASSes language equivalence for unambiguous models is decidable.
However equivalence for weighted VASSes is undecidable as it would imply decidability of
path equivalence (for each word both systems need to accept by the same number of accepting
runs) which is undecidable for VASSes [20].

Unambiguity and separability. Our result from Section 4 uses the notion of regular-
separability in order to obtain a result for unambiguous VASSes. This technique seems to
generalise for some other well-structured transition systems. It is natural to ask whether
there is some deeper connection between the notions of separability and unambiguity which
can be explored in future research.

—— References

1 Toshiro Araki and Tadao Kasami. Some decision problems related to the reachability problem
for Petri nets. Theor. Comput. Sci., 3(1):85-104, 1976.

2 Corentin Barloy and Lorenzo Clemente. Bidimensional linear recursive sequences and uni-
versality of unambiguous register automata. In Proceedings of STACS 2021), volume 187 of
LIPIcs, pages 8:1-8:15. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, 2021.

16:15

CONCUR 2022

16:16 Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Mikolaj Bojanczyk, Bartek Klin, and Joshua Moerman. Orbit-finite-dimensional vector spaces
and weighted register automata. In Proceedings of LICS 2021, pages 1-13. IEEE, 2021.
Rémi Bonnet. The reachability problem for vector addition system with one zero-test. In
Proceedings of MFCS 2011, volume 6907 of Lecture Notes in Computer Science, pages 145—157.
Springer, 2011.

Michagl Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.
Int. J. Found. Comput. Sci., 24(7):1099—11167 2013. doi:10.1142/S0129054113400339.
Thomas Colcombet. Unambiguity in automata theory. In Proceedings of DCFS 2015, pages
3-18, 2015.

Wojciech Czerwinski, Diego Figueira, and Piotr Hofman. Universality problem for unambiguous
VASS. In Proceedings of CONCUR 2020, pages 36:1-36:15, 2020.

Wojciech Czerwinski and Piotr Hofman. Language inclusion for boundedly-ambiguous vector
addition systems is decidable. CoRR, abs/2202.08033, 2022. arXiv:2202.08033.

Wojciech Czerwinski, Slawomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan
Kumar, and Prakash Saivasan. Regular separability of well-structured transition systems. In
Proceedings of CONCUR 2018, volume 118 of LIPIcs, pages 35:1-35:18. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2018.

Wojciech Czerwinski, Antoine Mottet, and Karin Quaas. New techniques for universality in
unambiguous register automata. In Proceedings of ICALP 2021, volume 198 of LIPIcs, pages
129:1-129:16. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021.

Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In Proceedings of FOCS 2021, pages 1229-1240, 2021.

Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3):16:1-16:30, 2009.

L.E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. American Journal of Mathematics, 35((4)):413-422, 1913.

Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63-92, 2001.

Jean Goubault-Larrecq, Simon Halfon, Prateek Karandikar, K. Narayan Kumar, and Philippe
Schnoebelen. The Ideal Approach to Computing Closed Subsets in Well-Quasi-orderings, pages
55-105. Springer International Publishing, Cham, 2020.

Michel Hack. The equality problem for vector addition systems is undecidable. Theor. Comput.
Sci., 2(1):77-95, 1976.

Piotr Hofman, Richard Mayr, and Patrick Totzke. Decidability of weak simulation on one-
counter nets. In Proceedings of LICS 2013, pages 203-212. IEEE Computer Society, 2013.
Piotr Hofman and Patrick Totzke. Trace inclusion for one-counter nets revisited. In Proceedings
of RP 2014, volume 8762 of Lecture Notes in Computer Science, pages 151-162. Springer,
2014.

Petr Jancar. Undecidability of bisimilarity for Petri nets and some related problems. Theor.
Comput. Sci., 148(2):281-301, 1995.

Petr Jancar. Nonprimitive recursive complexity and undecidability for petri net equivalences.
Theor. Comput. Sci., 256(1-2):23-30, 2001.

M. Kabil and M. Pouzet. Une extension d’'un théoreme de P. Jullien sur les 4ges de mots.
RAIRO — Theoretical Informatics and Applications — Informatique Théorique et Applications,
26(5):449-482, 1992.

Ranko Lazic and Sylvain Schmitz. The ideal view on Rackofl’s coverability technique. Inf.
Comput., 277:104582, 2021. doi:10.1016/j.ic.2020.104582.

Jéréome Leroux. The reachability problem for petri nets is not primitive recursive. In Proceedings
of FOCS 2021, pages 1241-1252, 2021.

Jéréme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In Proceedings of LICS 2019, pages 1-13. IEEE, 2019.

https://doi.org/10.1142/S0129054113400339
http://arxiv.org/abs/2202.08033
https://doi.org/10.1016/j.ic.2020.104582

W. Czerwinski and P. Hofman

25 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proceedings
of STOC 1981, pages 238-246, 1981.

26 Antoine Mottet and Karin Quaas. The containment problem for unambiguous register
automata. In Proceedings of STACS 2019, pages 53:1-53:15, 2019.

27 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403-435, 2004.

28 Jean-Eric Pin. Syntactic semigroups. In Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages, Volume 1: Word, Language, Grammar, pages 679-746.
Springer, 1997.

29 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor.
Comput. Sci., 6:223-231, 1978.

30 Klaus Reinhardt. Reachability in Petri nets with inhibitor arcs. FElectron. Notes Theor.
Comput. Sci., 223:239-264, 2008.

31 Marcel Paul Schiitzenberger. On the definition of a family of automata. Inf. Control.,
4(2-3):245-270, 1961.

32 Wen-Guey Tzeng. On path equivalence of nondeterministic finite automata. Inf. Process. Lett.,
58(1):43-46, 1996.

A Missing proofs from Section 2

We recall the statement of Proposition 6.

Proposition 6. Let U C N be an upward-closed set and D C N? be downward-closed set.
Then the size of representation of their complements U = N4\ U and D = N\ D is at most
exponential wrt. the sizes ||U|| and || D||, respectively and can be computed in exponential
time.

Proof of Proposition 6. Here we present only the proof for the complement of the upward-
closed set U as the case for downward-closed sets follows the same lines. Let U = u;TUusTU
...Uuyp?T. Then

U=N\U=N\ (u1tUugtU...Uu,t)
= (NT\ w; 1) N (N upt) N ..o (NN wpt).

Thus in order to show that ||U]|| is at most exponential wrt. ||U|| we need to face two
challenges. The first one is to show that representation of (N¢\ ut) for u € N¢ is not too big
wrt. size of u and the second one is to show that the intersection of sets (N¢\ u1) does not
introduce too big blowup.

Let us first focus on the first challenge. Let |u| be the biggest value that appear in u i.e.
|u| = max{uli] : i € [1,d]}. We claim that if v € N?\ ut and v[i] > |u| for i € [1,d] then
v+ e; € N9\ ut. Indeed, if v € N9\ ut then there is j € [1,d] such that v[j] < u[j]. Of
course i # j, s0 v + ¢; # u and thus v + e; € N?\ uf. But this means that if o € (NU {w})?
such that 9/ C N\ uf and ¢ is maximal (namely its entries cannot be increased without
violating 9] C N9\ ut) then 9 € ([0, |u|] U {w})¢. Thus there are only exponentially many
possibilities for © and the representation of N¢ \ u1 is at most exponentially bigger than the
representation of u.

Let us face now the second challenge. Let 1,92 € ([1,|u]] U {w})?. Observe that
v € 01) N ool if and only if v[i] < 01[i] and v[i] < 09[d] for all ¢ € [1,d]. But this means
that if & € (NU {w})? and o) C 91 N 0] is maximal then & € ([0, |u|] U {w})?. Thus the
representation of N\ U is also only at most exponentially bigger than the representation
of U.

In order to compute the representation of U one can simply check for all & € ([0, |u|]u{w})?
whether 9 C N4\ U. <

16:17

CONCUR 2022

16:18

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

We recall the statement of Lemma 7.

Lemma 7. The emptiness problem for VASSes with the acceptance condition F' = ¢z (U x D)
where D is a down-atom and U is an up-atom is in Ackermann.

Proof of Lemma 7. We provide a polynomial reduction of the problem to the emptiness
problem in singleton-VASSes which is in Ackermann. Let V = (Q, T, cr,qr(U x D)) be a
d-VASS with up-atom U C N and down-atom D C N? such that d; +dy = d. Let U = u?
for some u € N4 and let D = v] for some v € (NU {w})92. Let us assume wlog of generality
that dy = dy + dp such that for i € [1,dy] we have v[i] = w and for i € [dy + 1, d2] we have
v[i] € N. Let a d-VASS V' be the VASS V slightly modified in the following way. First we
add a new state ¢} and a transition (¢r,0¢, ¢}). Next, for each dimension i € [1,d;] we add
a loop in state ¢f (transition from ¢} to ¢j) with the effect —e;, namely the one decreasing
the dimension i, these are the dimensions corresponding to the up-atom U. Similarly for
each dimension i € [d; + 1,d; + dy] we add in ¢ a loop with the effect —e;, these are
the unbounded dimensions corresponding to the down-atom D. Finally for each dimension
i € [d1 +dy +1,d] we add in ¢} a loop with the effect e; (notice that this time we increase
the counter values), these are the bounded dimensions corresponding to the down-atom D.
Let the initial configuration of V' be ¢; (the same as in V) and the set of final configurations
F' of V' be the singleton set containing ¢} (u, (0%, v[dy + 1], ..., v[dy + dp])). Clearly V' is
a singleton-VASS, so the emptiness problem for V'’ is in Ackermann. It is easy to see that
the emptiness problem in V' and in V' are equivalent which finishes the proof. <

B Missing proofs from Section 3.1

We recall the statement of Lemma 12.

Lemma 12. For each d-dimensional singleton-VASS V with final configuration being cp =
qr(0%) one can construct in polynomial time two deterministic (d + 1)-dimensional upward-
VASSes V7 and V5 such that

L) = L(V2) <= L(V) =0.

Proof of Lemma 12. For a given V = (Q, T, ¢y, cp) we construct V; = (X =T U {a},QU
{q}?}le U {t1}, C/qu/F‘(Od+1T))7 and Vo = (¥ =T U{a},QU {qu}vT/ U {ta}, Cllvq%‘(od+l1\))‘
Notice, V7 and V5 are pretty similar to each other and also to V. Both V; and V5 have
the same states as V' plus one additional state ¢=. Notice that the alphabet of labels of
V1 and V5 is the set of transitions T of V' plus one additional letter a. For each transition
t = (p,v,q) € T of V we create a transition (p,t,v’,q) € T’ where

for each i € [1,d] we have v'[i] = v[i]; and

V[d+ 1] =v[1] 4+ ...+ v|[d],
so v is identical as v on the first d dimensions and on the last (d + 1)-th dimension it keeps
the sum of all the others. Notice that transitions in 7" are used both in V; and in V5.

We also add one additional transition ¢; to V; and one t; to V5. To V5 we add a new
a-labelled transition from g to ¢ with the effect equal 09+ for the additional letter a. To V5
we also add an a-labelled transition between gp and ¢f, but with an effect equal (04, —1). This
—1 on the last coordinate is the only difference between V; and V5. The starting configuration
in both V4 and V, is ¢; = qs(x1, 2, . . . 24, Zle x;) where ¢; = qr(x1,22,...2q). The set of
accepting configurations is the same in both V3 and Va, namely it is ¢/ (09+11) . Notice that
both V7 and V5 are deterministic upward-VASSes, as required in the lemma statement.

W. Czerwinski and P. Hofman

Now we aim to show that L(Vy) = L(V3) if and only if L(V) = (. First observe that
L(V4) D L(Va). Clearly if w € L(V2) then w = ua for some u € T*, where T is the set of
transitions of V. For any word ua € L(V;) we have

;= qr(v) == qp(v — eat1)
in V5. But, then we have also
¢; = qr(v) = qp(v)

in V1. Thus ua € L(V4).

Now we show that, if L(V) # 0, so ey — qr(0%) in V then L(V;) # L(Vz). Let
the run p of V be such that ¢; 25 ¢r(0?) and let u = trans(p) € T*. Then clearly
;% qr(091) & ¢ (091) and wa € L(V;). However ua € L(Vz) as the last coordinate on
the run of V5 over ua corresponding to p would go below zero and this is the only possible
run of V5 over ua due to determinism of V5.

It remains to show that if L(V) = 0, so ¢c; -4 qr(0%) in V, then L(V;) C L(Vz). Let
w € L(V}). Then w = ua for some u € T*. Let ¢; % ¢ in V; such that trans(p) = u. As
ua € L(V}) we know that ¢ = gr(v). However as c; —/ qr(09) in V we know that v # 09+1.
In particular v[d + 1] > 0. Therefore w = ua € L(V3) as the last transition over a may
decrease the (d + 1)-th coordinate and reach an accepting configuration. This finishes the
proof. <

C Missing proofs from Section 3.2

We recall the statement of Lemma 13.

Lemma 13. For a VASS V; and a downward-VASS V5 one can construct in polynomial
time an updown-VASS V such that L(V) = L(Vy) N L(V3).

Proof of Lemma 13. We construct V as the standard synchronous product of V; and V5.
The set of accepting configurations in V' is also the product of accepting configurations in V3
and accepting configurations in Va, thus due to Proposition 5 a finite union of ¢(U x D) for
a state ¢ of V, an up-atom U and a down-atom D. |

We recall the statement of Theorem 14.

Theorem 14. For a deterministic VASS one can build in exponential time a downward-VASS
which recognises the complement of its language.

Proof of Theorem 14. Let V = (2,Q, T, cr, F) be a deterministic d-VASS. We aim at con-
structing a d-dimensional downward-VASS V’ such that L(V’) = L(V). Before constructing
V' let us observe that there are three possible scenarios for a word w to be not in L(V'). The
first scenario (1) is that the only run over w in V finishes in a non-accepting configuration.
Another possibility is that there is even no run over w. Namely for some prefix va of w
where v € £* and @ € ¥ we have ¢; — ¢ for some configuration ¢ but there is no transition
from c over the letter a as either (2) a possible transition over a would decrease some of the
counters below zero, (3) there is no such transition possible in V in the state of c.

We are ready to describe VASS V' = (X,Q’,T", ¢}, F'). Roughly speaking it consists of
|T|+|X| + 1 copies of V. Concretely the set of states @’ is the set of pairs @ x (TUXU{-}).
Let ¢; = ¢qr(vr). Then let ¢f € Q" be defined as ¢; = (g7, —) and we define the initial

16:19

CONCUR 2022

16:20

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

configuration of V' as ¢} = ¢;(vr). The set of accepting configurations F = Fy U Fo U F3
is a union of three sets F;, each set F; for i € {1,2,3} is responsible for accepting words
rejected by VASS V' because of the scenario (i) described above. We successively describe
which transitions are added to 7" and which configurations are added to F’ in order to
appropriately handle various scenarios.

We first focus on words fulfilling the scenario (1). For states of a form (¢, —) the VASS
V' is just as V. Namely for each transition (p,a,v,q) € T we add (p’,a,v,q") to T' where
p = (p,—) and ¢’ = (¢,—). We also add to F’ the following set F; = {(¢,—)(v) | ¢(v) € F}.
It is easy to see that words that fulfil scenario (1) above are accepted in V' by the use of
the set Fi. The size of the description of Fj is at most exponential wrt. the size of the
description of F' by Proposition 6.

Now we describe the second part of V’ which is responsible for words rejected by V
because of the scenario (2). The idea is that we guess when the run over w is finished. For
each transition t = (p,a,v,q) € T we add (p’,a,0%,¢’) to T' where p’ = (p, —) and ¢’ = (q,1).
The idea is that the run reaches the configuration in which the transition ¢ cannot be fired.
Now we have to check that our guess is correct. In the state (g,t) for ¢t € T no transition
changes the configuration. Namely for each ¢’ = (¢,t) € Q@ x T and each a € ¥ we add to T”
transition (¢’,a,0%,q’). We add now to F’ the set Iy = {(q,t)(v) | v + eff(t) & N?}. Notice
that Fy can be easily represented as a polynomial union of down-atoms. It is easy to see
that indeed V' accepts by F» exactly words w such that there is a run of V' over some prefix
v of w but reading the next letter would decrease one of the counters below zero.

The last part of V' is responsible for the words w rejected by V' because of the scenario
(3), namely w has a prefix va such that there is a run over v € ¥* in V but then in the
state of the reached configuration there is no transition over the letter a € 3. To accept
such words for each state p €) and letter a € ¥ such that there is no transition of a form
(p,a,v,q) €T for any v € N¢ and ¢ € Q we add to T” transition ((p, —),a, 0%, (p,a)). In each
state p’ = (p,a) € Q x ¥ we have a transition (p’,b,0%,p’) for each b € ¥. We also add to F'
the set 3 = {(p,a)(v) | v € N? and there is no (p,a,u,q) € T for u € N? and ¢q € Q}. Size
of F3 is polynomial wrt. T

Summarising V/ with the accepting downward-closed set F' = F; U Fy U F3 indeed satisfies
L(V'") = L(V), which finishes the construction and the proof. <

We recall the statement of Lemma 16.

Lemma 16. For each HVASS one can compute in exponential time a language equivalent
e-VASS.

Proof of Lemma 16. Let V = (X,Q,T,q;(vr), F, H) be a d-HVASS with the set of holes
H. We aim at constructing a d-VASS V' = (3,Q’,T", ¢}, F') such that L(V) = L(V'). By
Proposition 6 we can compute in exponential time an upward-closed set of configurations
U= (Q x N9\ H. In order to translate V into a d-VASS V' intuitively we need to check
that each configuration on the run is not in the set H. In order to do this we use the
representation of U as a finite union U = Uie[l’k} ¢i(u;1) for ¢; € Q and u; € N¢. Now for
each configuration ¢ on the run of V' the simulating VASS V' needs to check that ¢ belongs
to g;i(u;T) for some ¢ € [1,k]. That is why in V” after every step simulating a transition of V'
we go into a testing gadget and after performing the test we are ready to simulate the next
step. For that purpose we define @' = (Q x {0,1}) U {r1,...,rr}. The states in @ x {0}
are the ones before the test and the states in @ x {1} are the ones after the test. States
r1,...,7 are used to perform the test. The initial configuration ¢/ is defined as (gz, 0)(vy)

W. Czerwinski and P. Hofman

and set of final configurations is defined as F' = {(¢,1)(v) | ¢(v) € F}. For each transition
(p,a,v,q) in T we add a corresponding transition ((p,1),a, v, (g,0)) to T". In each reachable
configuration (g,0)(v) the VASS V' nondeterministically guesses for which i € [1, k] holds
gi(u;) = ¢(v) (which guarantees that indeed ¢(v) € U). In order to implement it for each
q € Q and each i € [1, k] such that ¢ = state(r;) we add two transitions to T7”: the one from
(¢,0) to r; subtracting u;, namely ((¢,0),e, —u;,7;) and the one coming back and restoring
the counter values, namely (74, ¢, u;, (g,1)). It is easy to see that (¢,0)(v) — (g, 1)(v) if and
only if ¢(v) € U, which finishes the proof. <

We recall the statement of Theorem 17.

Theorem 17. For a deterministic HVASS one can compute in exponential time a downward-
e-VASS which recognises the complement of its language.

Proof of Theorem 17. The proof of Theorem 17 is very similar to the proof of Theorem 14
so we only sketch the key differences. Let V be a deterministic HVASS and let H C @ x N? be
the set of its holes. Let U = (Q x N¢)\ H, by Proposition 6 we know that U = Uiep a @i (uit)
for some states ¢; € Q and vectors u; € N, and additionally ||U]| is at most exponential wrt.
the size ||H]||.

The construction of V' recognising the complement of L(V') is almost the same as in the
proof of Theorem 14, we need to introduce only small changes. The biggest changes are in
the part of V' recognising words rejected by V' because of scenario (1). We need to check
that after each transition the current configuration is in U (so it is not in any hole from H).
We perform it here in the same way as in the proof of Lemma 16. Namely we guess to which
¢i(u;T) the current configuration belongs and check it by simple VASS modifications (for
details look to the proof of Lemma 16). The size of this part of V' can have a blowup of at
most size of U times, namely the size can be multiplied by some number, which is at most
exponential wrt. the size ||H]|.

In the part recognising words rejected by V' because of scenario (2), we need only to
adjust the accepting set F5. Indeed, we need to accept now if we are in a configuration
(p,t)(v) € Q x T such that v+t & N? or v +t € H (in contrast to only v + ¢ ¢ N in the
proof of Theorem 14). This change does not introduce any new superlinear blowup.

Finally the part recognising words rejected by V because of scenario (3) does not need
adjusting at all. It is not hard to see that the presented construction indeed accepts the
complement of L(V') as before. The constructed downward-VASS V” is of at most exponential
size wrt. the size V as explained above, which finishes the proof. |

We recall the statement of Theorem 18.

Theorem 18. The inclusion problem of an HVASS language in a deterministic HVASS
language is in Ackermann.

Proof of Theorem 18. Let V; = (3,Q1,Th,ct, Fi, Hy) be a di-HVASS with holes H; C
Q1 x N4 and let Vo = (%,Qq, Tz, %, Fa, Hy) be a deterministic do-HVASS with holes
Hy C Q3 x N2, By Lemma 16 an e-VASS V] equivalent to V; can be computed in
exponential time. By Theorem 17 a downward-e-VASS V3 can be computed in exponential
time such that L(V3y) = ¥*\ L(V2). It is enough to check now whether L(V{) N L(Vy) = 0.
By Lemma 13 (extended to e-VASSes) one can compute an updown-e-VASS V such that
L(V) = L(V{) N L(V4). Finally by Corollary 8 (also extended to e-VASSes) the emptiness
problem for updown-e-VASSes is in Ackermann which finishes the proof. <

16:21

CONCUR 2022

16:22

Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

We recall the statement of Theorem 19.

Theorem 19. For a k-deterministic d-VASS one can build in exponential time a (k - d)-
dimensional downward-VASS which recognises the complement of its language.

Proof of Theorem 19. Before starting the proof let us remark that it would seem natural
to first build a (k - d)-VASS equivalent to the input k-deterministic d-VASS and then apply
construction from the proof of Theorem 14 to recognise the its complement. However, it
is not clear how to construct a (k- d)-VASS equivalent to k-deterministic d-VASS, thus we
compute directly a VASS recognising the complement of the input VASS language.

Let V = (£,Q,T,cr, F) be a k-deterministic d-VASS. We aim to construct (k - d)-
dimensional downward-VASS V' = (3,Q’,T", ¢}, F’) such that L(V') = £* \ L(V). Also in
this proof we strongly rely on the ideas introduced in the proof of Theorem 14. The idea
of the construction is that V' simulates k copies of V which take care of different maximal
runs of V. Then the accepting condition F”’ of V' verifies whether in all the copies there is a
reason that the simulated maximal runs do not accept.

Recall that for a run there are three scenarios in which it is not accepted: (1) it reaches
the end of the word, but the reached configuration is not accepted, (2) at some moment it
tries to decrease some counter below zero, and (3) at some moment there is no transition
available over the input letter. In the proof of Theorem 14 it was shown how a VASS can
handle all the three reasons. In short words: in case (1) it simulates the run till the end of
the word and then checks that the reached configuration is not accepting and in cases (2)
and (3) it guesses the moment in which there is no valid transition available and keeps this
configuration untouched till the end of the run when it checks by the accepting condition
that the guess was correct. We only sketch how the downward-VASS V' works without
stating explicitly its states and transitions. It starts in the configuration ¢} which consists
of k copies of ¢;. Then it simulates the run in all the copies in the same way till the first
moment when there is a choice of transition. Then we enforce that at least one copy follows
each choice, but we allow for more than one copy to follow the same choice. In the state
of V' we keep the information which copies are following the same maximal run and which
have already split. Each copy is exactly as in the proof of Theorem 14, it realises one of
the scenarios (1), (2) or (3). As we know that V' is k-deterministic we are sure that all the
possible runs of V' can be simulated by V' under the condition the V’ correctly guesses which
copies should simulate which runs. If guesses of V/ are wrong and at some point it cannot
send to each branch a copy then the run of V' rejects. At the end of the run over the input
word w VASS V' checks using the accepting condition F’ that indeed all the copies have
simulated all the possible maximal runs and that all of them reject. It is easy to see that F’
is a downward-closed set, as roughly speaking it is a product of k downward-closed accepting
conditions, which finishes the proof. <

D Missing proofs from Section 5

The proofs from this section are available only in the arxiv version of this paper because of
the space limitation. Please check https://arxiv.org/pdf/2202.08033.pdf.

https://arxiv.org/pdf/2202.08033.pdf

Complexity of Coverability in Depth-Bounded
Processes

A. R. Balasubramanian 24
Technische Universitat Miinchen, Germany

—— Abstract
We consider the class of depth-bounded processes in m-calculus. These processes are the most
expressive fragment of m-calculus, for which verification problems are known to be decidable. The
decidability of the coverability problem for this class has been achieved by means of well-quasi
orders. (Meyer, IFIP TCS 2008; Wies, Zufferey and Henzinger, FoSSaCS 2010). However, the precise
complexity of this problem has not been known so far, with only a known EXPSPACE-lower bound.

In this paper, we prove that coverability for depth-bounded processes is F,-complete, where F,
is a class in the fast-growing hierarchy of complexity classes. This solves an open problem mentioned
by Haase, Schmitz, and Schnoebelen (LMCS, Vol 10, Issue 4) and also addresses a question raised
by Wies, Zufferey and Henzinger (FoSSaCS 2010).

2012 ACM Subject Classification Theory of computation — Problems, reductions and completeness;
Theory of computation — Distributed computing models

Keywords and phrases w-calculus, Depth-bounded processes, Fast-growing complexity classes
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2022.17

Funding A. R. Balasubramanian: Supported by funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

Acknowledgements I am grateful to the reviewers and Prof. Javier Esparza for their useful comments

and suggestions.

1 Introduction

The m-calculus [21, 22] is a well-known formalism for describing concurrent message-passing
systems admitting unbounded process creation and mobility of agents. Intuitively speaking,
a configuration of such a system is a graph in which each vertex is a process labelled by
its current state and there is an edge between two processes if they share a channel using
which they can pass messages. The flexibility of m-calculus lies in the fact that processes
can transmit the names of channels using channels themselves, allowing reconfiguration of
channels using process definitions itself. Due to its immense expressive power, all interesting
verification problems quickly become undecidable for w-calculus processes.

Consequently, research on m-calculus has been focused on finding fragments for which
certain problems are decidable. The most expressive fragment of w-calculus for which some
verification problems still remain decidable is the class of depth-bounded processes [20].
Intuitively, depth-bounded processes are those in which the length of simple paths in the
set of reachable configurations is bounded by a constant. It is known that depth-bounded
processes can be viewed as well-structured transition systems (WSTS) [20]. This implies
that the coverability problem for such systems is decidable [20, 27]. Intuitively, coverability
consists of deciding if a given system can reach a configuration where some process is in an
error state.

However, despite the positive decidability results known regarding this problem, the
exact complexity of this problem has remained open so far. To the best of our knowledge,
only an EXPSPACE-hardness result is known for this problem [27]. In this paper, we

© A. R. Balasubramanian;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Stawomir Lasota, and Anca Muscholl; Article No. 17; pp. 17:1-17:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:bala.ayikudi@tum.de
https://arbalan96.github.io/
https://orcid.org/0000-0002-7258-5445
https://doi.org/10.4230/LIPIcs.CONCUR.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2

Complexity of Coverability in Depth-Bounded Processes

provide complexity-theoretic completeness results for this problem. More specifically, we
prove that the coverability problem for depth-bounded processes is F,-complete, where
F.,is a complexity class in the fast-growing hierarchy of complexity classes [24]. This is a
hierarchy of complexity classes which allows for a finer classification of problems that do not
admit any elementary-time algorithms, i.e., problems which do not have algorithms whose
running times can be upper bounded by a fixed tower of exponentials in the input size. In
particular, our result proves that the coverability problem for depth-bounded processes is not
primitive-recursive and indeed is harder than even problems complete for the Ackermann
complexity class.

The complexity-theoretic classification of problems which are non-elementary has attracted
a lot of attention in the recent years, with various techniques developed for proving both
lower and upper bounds [13, 6, 25, 24, 1, 23, 8, 19, 7, 18]. While these results are obviously
negative from a tractability perspective, understanding the precise complexity of a problem
may help us to solve it in practice by reducing it to other well-studied problems for which
tools and heuristics have been developed, like the satisfiability problem for weak S1S or
the Petri net reachability problem [3, 12, 15, 4, 5, 16, 10]. The fast-growing hierarchy is of
great assistance in this task. Adding new complete problems for classes in this hierarchy can
help us prove hardness results for other problems in the future, without having to resort to
coming up with reductions from scratch, i.e., from Turing machines or counter machines.

Our result significantly improves upon the existing lower bound of EXPSPACE-hardness,
which is inherited from the coverability problem for Petri nets. Further, it settles a conjecture
raised by Hasse, Schmitz and Schnoebelen (Section 8.3 of [17]) and also addresses a question
raised by Wies, Zufferey and Henzinger (Section 5 of [27]).> To prove the lower bound, we
introduce a new model of computation called nested counter systems with levels, which (in a
manner) simplifies the already existing model of nested counter systems [8], while preserving
the hardness of that model.

The techniques used in this paper are similar to the ones presented in [2], in order to prove
F.,-completeness for parameterized coverability of bounded-depth broadcast networks. While
some of the ideas between these two papers are similar, there are some differences between
the models considered in these two papers. First, as the name suggests, broadcast networks
allow for a process to broadcast to its set of neighbors, whereas processes in m-calculus
interact in a manner akin to rendez-vous communication. One might expect that there is a
drop in complexity when the communication mechanism goes from broadcast to rendez-vous.
For instance, as mentioned in [11], coverability for networks with (unrestricted) broadcast
communication is Ackermann-complete, while the same problem for rendez-vous networks
is (only) EXPSPACE-complete. Our result suggests that this drop in complexity need
not always be the case. Further, in broadcast networks, there is no process creation nor
dynamic reconfiguration of channels, whereas m-calculus has both. Finally, for the lower
bound construction in this paper, we also need to prove depth-boundedness of any reachable
configuration in the process constructed for the reduction, whereas no such property needs
to be proven for the lower bound construction for broadcast networks. We also believe that
the newly introduced model of nested counter systems with levels (whose hardness we prove
by using ideas from [2]), makes the proof of the lower bound for m-calculus cleaner when
compared with giving a direct reduction from nested counter systems as was done in [2].

1 The version of the problem that the authors of [27] consider does not assume that a bound on the depth
of the process is given as part of the input, whereas in our setting we take this to be the case, in order
to prove the upper bound. However, our lower bound result does not require this assumption.

A. R. Balasubramanian

2 Preliminaries

We first present the syntax and the semantics of the version of w-calculus that we will use .
The definitions here are taken from the ones given in [27].

2.1 The m-calculus

We assume that there is a countable collection of names (denoted by x,y, ...) and a countable
collection of process identifiers (denoted by A, B,...). Each name and identifier has an
associated arity in N. We use boldface letters like x,y to denote (possibly empty) vectors over
names and denote substitution of names by [x/y], i.e., if x =x1,...,2, and y = y1,...,Yn,
then [x/y] denotes a mapping in which each y; is mapped to x; and every other name is
mapped to itself.

A process term (or simply a term) P is either the unit process 0, or a parameterized process
identifier A(x), or any term obtained by the standard operations of parallel composition
Py | Py, external choice 71 - Py + 72 - P and name restriction (va)P;. Here P; and P, are
themselves terms and 7; and 7y are prefixes which can either be an input prefiz z(y) or an
output prefix Z(y) or the empty string. All parameter vectors occuring in a parameterized
process identifier or a prefix must respect the arity of the names and identifiers. A thread
is a term of the form A(x). We use I and ¥ to denote (indexed) parallel composition and
external choice. We further use (vx) to denote (vz1)(ves)... (ve,) where X = 1,...,Zy.
The application of a substitution of names o to a term P, denoted by o(P), is defined in the
usual way.

An occurrence of a name z in a term P is called free if it is not below a (vx) or an input
prefix y(z). We let £n(P) denote the set of free names of P. A bound name of P is a name
of P which is not free. We say that P is closed if £n(P) =). We use the usual structural
congruence relation P = @) on process terms, i.e., P = @ if P is syntactically equal to @
upto renaming and reordering of bound names, associativity and commutativity of parallel
composition and external choice, elimination of units ((P | 0) = P, (v2)0 = 0) and scope
extrusion ((vz)(P | Q)= (vz)P | Q if = ¢ £n(Q)).

A configuration is a closed term of the form (vx) (IL;crA;(x;)). A process P is a pair
(I,€&) where I is an initial configuration and £ is a set of parametric equations of the form
A(x) = P where A is an identifier and P is a term such that 1) every identifier in P is
defined by exactly one equation in € and 2) if A(x) = P is an equation, then fn(P) C {x}.
We assume that all the equations are given in the following form:

A =Y m (i) | T 45(xy)

el JjE€J;

Operational semantics

Let P = (I,€&) be a process. We define a transition relation on the set of configurations using
£ as follows. Let P and @ be configurations. Then P — @ iff the following conditions are
satisfied:

P = (ru)(AW) | B(w) | P,

The defining equation of A in £ is of the form A(x) = z(x).(vx")(M) + M’,

The defining equation of B in & is of the form B(y) = y(y').(vy”)(N) + N’,

o=|[v/x,w/y,w/x' zs/x",25/y"] where z4,zp are fresh names and w’ is the set of

names assigned to y’ under the mapping [w/y].

o(x) = o(y) and

Q = (vu,24,25)(0(M) | (N) | P')

17:3

CONCUR 2022

17:4

Complexity of Coverability in Depth-Bounded Processes

We denote such a step by P M Q@ or simply by P — @. We can then define

the reachability relation = as the reflexive and transitive closure of —. We say that a
configuration P is reachable in P iff T = P. We further say that P is coverable if P = (vx)P’
and there exists Q = (vx)(P’ | R) such that I = Q. The coverability problem is to decide if
a given configuration P is coverable in a given process P.

Depth-bounded processes

We now define the class of depth-bounded processes. The nesting of restrictions nest of a
term P is defined inductively as follows: nest(0) = nest(A(x)) = nest(mwy - Py + ma - P3) =0,
nest((vx)P) = 1 + nest(P) and nest(P; | Py) = max{nest(P;),nest(P2)}. The depth of a
term P is the minimal nesting of restrictions of terms in the congruence class of P:

depth(P) := min{nest(Q) : Q = P}

» Definition 1. A set of configurations C is called k-depth-bounded if the depth of all
configurations in C is at most k. C is called depth-bounded if there is some k such that it is
k-depth-bounded. A process P is called (k-)depth-bounded if its set of reachable configurations
is (k-)depth-bounded.

» Example 2. The following example intuitively demonstrates a system in which there is
one “level 0” thread which can spawn “level 1” threads by using a “New1” thread. Then,
each level 1 thread can itself spawn “level 2”7 threads by using their own “New?2” threads.

LevelO(x) = z().Level0(z) Newl(x) = z().((vy)(Newl(x) | Levell(z,y) | New2(y)))
Levell(x,y) = y().Levell(xz,y) New2(y) = y().(vz)(New2(y) | Level2(y, z) | New3(z)))

Level2(y, z) = Z().Level2(y, z) New3(z) = z().New3(z)

Suppose we set I = (va)(LevelO(z) | Newl(z)). Then the following is a valid run:

I — (vz)(LevelO(z) | Newl(z) | (vy)(Levell(z,y) | New2(y)))
|

— (vx)(LevelO(z) | Newl(z) | (vy)(Levell(z,y) | New2(y) | (vz)(Level2(y, z) | New3(z))))

We note that the depth of the last configuration in this run is 3. Indeed, we can show
that the depth of any reachable configuration from I is at most 3. Later on, we will see that
some of the ideas behind this example are relevant to our lower bound construction.

Our main theorem of the paper is that,
» Theorem 3. The coverability problem for depth-bounded processes is F,-complete.

Here, we assume that the input consists of a process P and a number k such that P
is k-depth-bounded. Further, F
complexity classes [24]. Due to lack of space, we do not define it here. The lower bound

, 15 a complexity class in the fast-growing hierarchy of
behind this theorem is accomplished by giving a log-space reduction from a F.,-hard problem.
The upper bound is obtained by using results on the length of controlled bad sequences over
a suitable well-quasi ordering.

We first explain the proof of the lower bound. To do this, we first introduce a model
called nested counter systems with levels (NCSL) and show that the coverability problem
for this model is F,-hard. We then give a reduction from this problem to the coverability
problem for depth-bounded processes, thereby proving the lower bound of Theorem 3.

A. R. Balasubramanian

3 Nested counter systems with levels (NCSL)

We now introduce a new model of computation called nested counter systems with levels
(NCSL) and prove F. -hardness of coverability for this model. NCSL are closely related to
the so-called nested counter systems (NCS) [8]. Indeed, in Section 4, we will recall NCS and
prove the hardness result for NCSL by giving a reduction from the coverability problem for
NCS.

Before describing NCSL in a formal manner, we give some intuition. A k-NCSL is
a generalisation of a usual counter system with higher-order counters. Intuitively, a 1-
dimensional counter is a usual counter which can add or subtract 1. A 2-dimensional counter
can add or subtract 1-dimensional counters, a 3-dimensional counter can add or subtract
2-dimensional counters and so on. A k-NCSL can produce up to k-dimensional counters
and then manipulate these counters using “local” rules, i.e., rules which update at most 2
counters at a time. Later on, we will consider the NCS model [8], which allows to update
mutliple counters in a single step.

Formally, a k-nested counter system with levels (k-NCSL) is a tuple N/ =
(Q,00,...,0k_1,0r) where @ is a finite set of states and each ¢, is a set of level-l rules
such that §; C U1§i§j§2(Qi x 7). We further enforce that if [= k then 6; C Q x Q. The
set Car of configurations of N is defined to be the set of all labelled rooted trees of height at
most k, with labels from the set Q.

The operational semantics of N is defined in terms of the following transition relation
—C Cy % Cy on configurations: Let 7 := ((qo, - - -, i), (40, - - -, 4;)) € & be a level-l rule with
I <kand0<1i<j<1 Wesay that a configuration C can move to the configuration C’
using the rule 7 (denoted by C' 2 C”) if there is a node vy at depth | in C with label qo and
the following holds.

Creation. Suppose r = ((¢0), (¢}, ¢q1)). Then C’ is obtained from C by changing the

label of vy to g, creating a new vertex v, with label ¢] and adding it as child