
On the Axiomatisation of Branching Bisimulation
Congruence over CCS
Luca Aceto
Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Valentina Castiglioni
Reykjavik University, Iceland

Anna Ingólfsdóttir
Reykjavik University, Iceland

Bas Luttik
Eindhoven University of Technology, The Netherlands

Abstract
In this paper we investigate the equational theory of (the restriction, relabelling, and recursion free
fragment of) CCS modulo rooted branching bisimilarity, which is a classic, bisimulation-based notion
of equivalence that abstracts from internal computational steps in process behaviour. Firstly, we
show that CCS is not finitely based modulo the considered congruence. As a key step of independent
interest in the proof of that negative result, we prove that each CCS process has a unique parallel
decomposition into indecomposable processes modulo branching bisimilarity. As a second main
contribution, we show that, when the set of actions is finite, rooted branching bisimilarity has a
finite equational basis over CCS enriched with the left merge and communication merge operators
from ACP.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Equational basis, Weak semantics, CCS, Parallel composition

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.6

Related Version Technical report version with full proofs: http://arxiv.org/abs/2206.13927 [4]

Funding This work has been partially supported by the project “Open Problems in the Equational
Logic of Processes” (OPEL) of the Icelandic Research Fund (grant No. 196050-051). V. Castiglioni has
been supported by the project “Programs in the wild: Uncertainties, adaptabiLiTy and veRificatiON”
(ULTRON) of the Icelandic Research Fund (grant No. 228376-051).

Acknowledgements We thank the reviewers for their valuable comments that helped us to improve
our contribution.

1 Introduction

This paper is a new chapter in the saga of the axiomatisation of the parallel composition
operator ∥ (also known as “full” merge [12,13]) of the Calculus of Communicating Systems
(CCS) [27]. The saga has its roots in the works [22, 23], in which Hennessy and Milner
studied the equational theory of (recursion free) CCS and proposed a ground-complete
axiomatisation for it modulo strong bisimilarity and observational congruence, two classic
notions of behavioural congruence (i.e., an equivalence relation that is compositional with
respect to the language operators) that allow one to establish whether two processes have the
same observable behaviour [34]. That axiomatisation included infinitely many axioms, which
were instances of the expansion law used to “simulate equationally” the operational semantics
of ∥. Then, Bergstra and Klop showed, in [12], that a finite ground-complete axiomatisation

© Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, and Bas Luttik;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2197-3018
https://orcid.org/0000-0002-8112-6523
https://orcid.org/0000-0001-8362-3075
https://orcid.org/0000-0001-6710-8436
https://doi.org/10.4230/LIPIcs.CONCUR.2022.6
http://arxiv.org/abs/2206.13927
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 On the Axiomatisation of Branching Bisimulation Congruence over CCS

modulo bisimilarity can be obtained by enriching CCS with two auxiliary operators, i.e., the
left merge and the communication merge |, expressing one step in the pure interleaving
and the synchronous behaviour of ∥, respectively. Their result was strengthened by Aceto et
al. in [7], where it is proved that, over the fragment of CCS without recursion, restriction
and relabelling, the auxiliary operators and | allow for finitely axiomatising ∥ modulo
bisimilarity also when CCS terms with variables are considered. Moreover, in [9] that
result is extended to the fragment of CCS with relabelling and restriction, but without
communication. From those studies, we can infer that and | are sufficient to finitely
axiomatise ∥ over CCS modulo bisimilarity. (Henceforth, we only consider the recursion,
restriction and relabelling free fragment of CCS.) Moller showed, in [30,31], that they are
also necessary. He considered a minimal fragment of CCS, including only the inactive
process, action prefixing, nondeterministic choice and interleaving, and proved that, even
in the presence of a single action, bisimilarity does not afford a finite ground-complete
axiomatisation over that language. Moller’s proof technique was then used to show that the
same negative result holds if we replace and | with the so called Hennessy’s merge [21],
which denotes an asymmetric interleaving with communication, or, more generally, with a
single binary auxiliary operator satisfying three assumptions given in [3].

The aforementioned works considered equational characterisations of ∥ modulo strong
bisimilarity. However, a plethora of behavioural congruences have been proposed in the
literature, corresponding to different levels of abstraction from the information on process
execution. Hence, another chapter in the saga consisted in extending the studies recalled above
to the behavioural congruences in van Glabbeek’s linear time-branching time spectrum [15].
The work [5] delineated the boundary between finite and non-finite axiomatisability of ∥
modulo all the congruences in the spectrum.

Our contribution: branching bisimulation congruence. Some information on process
behaviour can either be considered irrelevant or be unavailable to an external observer.
Weak behavioural semantics have been introduced to study the effects of these unobservable
(or silent) actions, usually denoted by τ , on the observable behaviour of processes, each
semantics considering a different level of abstraction. A taxonomy of weak semantics is
given in [17], and studies on the equational theories of various of these semantics have been
carried out over the algebra BCCSP, which consists of the basic operators from CCS and
CSP [24] but does not include ∥ (see, among others, [6, 14, 20, 23, 33]). A finite, ground-
complete axiomatisation of parallel composition modulo rooted weak bisimilarity (also known
as observational congruence [23]) is provided by Bergstra and Klop in [13] over the algebra
ACPτ that includes the auxiliary operators and |. To the best of our knowledge, the only
study on the axiomatisability of CCS’s ∥ over open terms modulo weak congruences is the
negative result from [2], which shows that a class of weak congruences (including rooted
weak bisimilarity) does not afford a finite, complete axiomatisation over the open terms of
the minimal fragment of CCS with interleaving.

In this paper we focus on branching bisimilarity [19], which generalises strong bisimilarity
to abstract away from τ -steps of terms while preserving their branching structure [19, 20],
and its rooted version, which is a congruence with respect to CCS operators.

As a first main contribution, we show that rooted branching bisimilarity affords no finite
ground-complete axiomatisation over CCS. To this end, we adapt the proof-theoretic technique
used by Moller to prove the corresponding negative result for strong bisimilarity. We remark
that, even though the general proof strategy is a natural extension of Moller’s, our proof
requires a number of original, non-trivial technical results on (rooted) branching bisimilarity.

L. Aceto, V. Castiglioni, A. Ingólfsdóttir, and B. Luttik 6:3

In particular, we observe that equational proofs of τ -free equations might involve terms
having occurrences of τ in some intermediate steps (see, e.g., page 175 of Moller’s thesis [30]),
and our proof of the negative result for rooted branching bisimilarity will account for those
uses of τ , thus making our results special for the considered weak congruence. Moreover, as
an intermediate step in our proof, we establish a result of independent interest: we show
that each CCS process has a unique decomposition into indecomposable processes modulo
branching bisimilarity. A similar result was proven in [26], but only for interleaving parallel
composition. Here, we extend this result to the full merge operator, including thus the
possibility of communication between the parallel components.

Having established the negative result, a natural question is whether the use of the
auxiliary operators from [12] can help us to obtain an equational basis for rooted branching
bisimilarity. Hence, as our second main contribution, we consider the language CCSLC,
namely CCS enriched with and |, and we provide a complete axiomatisation for rooted
branching bisimilarity over CCSLC that is finite when so is the set of actions over which
terms are defined. This axiomatisation is obtained by extending the complete axiom system
for strong bisimilarity over CCSLC from [7] with axioms expressing the behaviour of and |
in the presence of τ -actions (from [13]), and with the suitable τ -laws (from [20,23]) necessary
to deal with rooted branching bisimilarity. Specifically, we will see that we can express
equationally the fact that left merge and communication merge distribute over choice (left
merge in one argument, communication merge in both), thus allowing us to expand the
behaviour of the parallel components using only a finite number of axioms, regardless of
their size. A key step in the proof of the completeness result consists in another intermediate
original contribution of this work: the definition of the semantics of open CCSLC terms.

Our contribution can then be summarised as follows:
1. We show that every branching equivalence class of CCS processes has a unique parallel

decomposition into indecomposables.
2. We prove that rooted branching bisimilarity admits no finite equational axiomatisation

over CCS.
3. We define the semantics of open CCSLC terms.
4. We provide a (finite) complete axiomatisation for ∼RBB over CCSLC.

2 Background

Labelled transition systems. As semantic model we consider classic labelled transition
systems [25]. We assume a non-empty set of action names A, and we let A denote the set of
action co-names, i.e., A = {a | a ∈ A}. As usual, we postulate that a = a and a ̸= a for all
a ∈ A. Then, we define Aτ = A ∪ A ∪ {τ}, where τ ̸∈ A ∪ A. Henceforth, we let µ, ν, . . .

range over actions in Aτ , and α, β, . . . range over actions in A ∪ A.

▶ Definition 1 (Labelled Transition System). A labelled transition system (LTS) is a triple
(P, Aτ , −→), where P is a set of processes (or states), Aτ is a set of actions, and −→ ⊆
P × Aτ × P is a (labelled) transition relation.

As usual, we use p
µ−→ p′ in lieu of (p, µ, p′) ∈ −→. For each p ∈ P and µ ∈ A, we write

p
µ−→ if p

µ−→ p′ holds for some p′, and p
µ−↛ otherwise. The initials of p are the actions that

label the outgoing transitions of p, that is, init(p) = {µ ∈ Aτ | p
µ−→}.

CONCUR 2022

6:4 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 1 The SOS rules for CCS operators (µ ∈ Aτ , α ∈ A ∪ A).

µ.t
µ−→ t

t
µ−→ t′

t + u
µ−→ t′

t
µ−→ t′

t ∥ u
µ−→ t′ ∥ u

t
α−→ t′ u

α−→ u′

t ∥ u
τ−→ t′ ∥ u′

The language CCS. We consider the recursion, relabelling and restriction free fragment of
Milner’s CCS [28], which for simplicity we still call CCS, given by the following grammar:

t ::= 0 | x | µ.t | t + t | t ∥ t ,

where x is a variable drawn from a countably infinite set V disjoint from Aτ , and µ ∈ Aτ .
We use the Structural Operational Semantics (SOS) framework [35,36] to equip processes
with an operational semantics. The SOS rules (or inference rules) for the CCS operators
given above are reported in Table 1 (symmetric rules for + and ∥ are omitted).

We shall use the meta-variables t, u, v, w to range over process terms, and write var(t)
for the collection of variables occurring in the term t. We use a summation

∑
i∈{1,...,k} ti to

abbreviate t1+· · ·+tk, where the empty sum represents 0. We call the term tj (j ∈ {1, . . . , k})
a summand of t =

∑
i∈{1,...k} ti if it does not have + as head operator. The size of a term t,

denoted by size(t), is the number of operator symbols in t. A term is closed if it does not
contain any variables. Closed terms, or processes, will be denoted by p, q, r. Moreover, we
omit trailing 0’s from terms. A (closed) substitution is a mapping from process variables to
(closed) terms. Substitutions are extended from variables to terms, transitions, and rules in
the usual way. Note that σ(t) is closed, if so is σ. We let σ[x 7→ p] denote the substitution
that maps the variable x into process p and behaves like σ on all other variables. In particular,
[x 7→ p] denotes the substitution that maps the variable x into process p and behaves like
the identity on all other variables.

The inference rules in Table 1 allow us to derive valid transitions between closed terms.
The operational semantics for our language is then modelled by the LTS whose processes
are the closed terms, and whose labelled transitions are those that are provable from the
SOS rules. Henceforth, we let P denote the set of CCS processes. We remark that whenever
p

µ−→ p′, then size(p) > size(p′).

Branching bisimilarity. Branching bisimilarity is a bisimulation-based behavioural equival-
ence that abstracts away from computation steps in processes that are deemed unobservable,
while preserving their branching structure. The abstraction is achieved by labelling these
computation steps with τ , and giving τ -labelled transitions a special treatment in the defini-
tion of the behavioural equivalence. Preservation of the branching structure is mainly due to
the stuttering nature of branching bisimulation, which guarantees that the behaviour of a
term is preserved in the execution of a sequence of silent steps [19,20].

Let ε−→ denote the reflexive and transitive closure of the transition τ−→.

▶ Definition 2 (Branching bisimilarity). Let (P, Aτ , −→) be a LTS. Branching bisimilarity,
denoted by ∼BB, is the largest symmetric relation over P such that, whenever p ∼BB q, if
p

µ−→ p′, then either:
µ = τ and p′ ∼BB q, or
there are processes q′, q′′ such that q

ε−→ q′′ µ−→ q′, p ∼BB q′′, and p′ ∼BB q′.

L. Aceto, V. Castiglioni, A. Ingólfsdóttir, and B. Luttik 6:5

Table 2 Some axioms for rooted branching bisimilarity.

Some axioms for bisimilarity over CCS:

A0 x + 0 ≈ x P0 x ∥ 0 ≈ x

A1 x + y ≈ y + x P1 x ∥ y ≈ y ∥ x

A2 (x + y) + z ≈ x + (y + z) P2 (x ∥ y) ∥ z ≈ x ∥ (y ∥ z)
A3 x + x ≈ x

Additional axioms for rooted branching bisimilarity over CCS:

TB µ(τ(x + y) + y) ≈ µ(x + y) T1 µτx ≈ µx

Branching bisimilarity satisfies the stuttering property [20, Lemma 2.5]: Assume that
p ∼BB q. Whenever p

τ−→ p1
τ−→ . . .

τ−→ pn and pn ∼BB q, for some n ≥ 1, then pi ∼BB q for
all i = 1, . . . , n − 1.

To guarantee compositional reasoning over a process language, we require a behavioural
equivalence ∼ to be a congruence with respect to all language operators. This consists in
verifying whether, for all n-ary operators f

if ti ∼ t′
i for all i = 1, . . . , n, then f(t1, . . . , tn) ∼ f(t′

1, . . . , t′
n).

It is well known that branching bisimilarity is an equivalence relation [11, 20]. Moreover,
action prefixing and parallel composition satisfy the simple BB cool rule format [18] and
hence ∼BB is compositional with respect to those operators. However, ∼BB is not a congruence
with respect to nondeterministic choice. To remedy this inconvenience, the root condition
is introduced: rooted branching bisimilarity behaves like strong bisimilarity on the initial
transitions, and like branching bisimilarity on subsequent transitions.

▶ Definition 3 (Rooted branching bisimilarity). Rooted branching bisimilarity, denoted by
∼RBB, is the symmetric relation over P such that, whenever p ∼RBB q, if p

µ−→ p′, then there
is a process q′ such that q

µ−→ q′ and p′ ∼BB q′.

It is well known that rooted branching bisimilarity is an equivalence relation [11,20], and
that ∼RBB is a congruence over CCS (see, e.g., [18]).

Equational Logic. An axiom system E is a collection of (process) equations t ≈ u over the
considered language, thus CCS in this paper. An equation t ≈ u is derivable from an axiom
system E , notation E ⊢ t ≈ u, if there is an equational proof for it from E , namely if t ≈ u

can be inferred from the axioms in E using the rules of equational logic.
We assume, without loss of generality, that the substitution rule is only applied on

equations (t ≈ u) ∈ E . In this case, σ(t) ≈ σ(u) is called a substitution instance of an axiom
in E . Moreover, by postulating that for each axiom in E also its symmetric counterpart is
present in E , one may assume that the symmetry rule is never used in equational proofs.

We are interested in equations that are valid modulo some congruence relation ∼ over
terms. The equation t ≈ u is said to be sound modulo ∼ if σ(t) ∼ σ(u) for all closed
substitutions σ. For simplicity, if t ≈ u is sound, then we write t ∼ u. An axiom system is
sound modulo ∼ if, and only if, all of its equations are sound modulo ∼. Conversely, we
say that E is complete modulo ∼ if t ∼ u implies E ⊢ t ≈ u for all terms t, u. If we restrict
ourselves to consider only equations over closed terms then E is said to be ground-complete
modulo ∼. We say that ∼ has a finite, (ground) complete axiomatisation, if there is a finite
axiom system E that is sound and (ground) complete for ∼.

CONCUR 2022

6:6 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Henceforth, we exploit the associativity and commutativity of + and ∥ modulo the
relevant behavioural equivalences. The symbol = will then denote equality modulo A1–A2
and P1–P2 in Table 2.

3 The main results

Our aim is to study the axiomatisability of rooted branching bisimilarity over CCS. Our
investigations produced, as main outcomes, a negative result (Theorem 4) and a positive one
(Theorem 5). In detail, in the first part of the paper we prove the following theorem:

▶ Theorem 4. Rooted branching bisimilarity has no finite equational ground-complete axio-
matisation over CCS.

Given the negative result, it is natural to wonder whether an equational basis for rooted
branching bisimilarity can be obtained if we enrich CCS with some auxiliary operators.
Considering the similarities between ∼RBB and strong bisimilarity, the principal candidates
for this role are the left merge and the communication merge | from [12]. Indeed, we show
that if we add those two operators to the syntax of CCS, then we can obtain a complete
axiomatisation of rooted branching bisimilarity over the new language, denoted by CCSLC.
The desired equational basis is given by the axiom system ERBB, which is presented fully
in Table 7 in Section 10. ERBB is an extension of the complete axiom system for strong
bisimilarity over CCSLC from [7] with axioms expressing the behaviour of left merge and
communication merge in the presence of τ -actions (taken from [13]), and with the suitable
τ -laws necessary to deal with rooted branching bisimilarity (taken from [20,23]).

Formally, our second main contribution consists in a proof of the following theorem:

▶ Theorem 5 (Completeness). Let t, u be CCSLC terms. If t ∼RBB u, then ERBB ⊢ t ≈ u.

We will also argue that this axiomatisation is finite when so is the set of actions. Hence,
when A is finite, CCSLC modulo ∼RBB is finitely based, unlike CCS.

Considering the amount of technical results that we will need to fulfil our objectives,
we devote Section 4 to a presentation of the proof strategy that we will apply to obtain
Theorem 4. Sections 5–7 then present the formalisation of the ideas discussed in that section.
Similarly, in Section 8 we give a high-level description of the approach that we will follow to
prove Theorem 5. The technical development of the proof is then reported in Sections 9–10.

4 Proof strategy for Theorem 4

In this section we present the proof strategy we will apply to obtain Theorem 4.
Our proof follows the so-called proof-theoretic approach to non-finite-axiomatisability

results, whose use in the field of process algebra stems from [30–32], where Moller proved
that CCS modulo strong bisimilarity is not finitely based. In the proof-theoretic approach,
the idea is to identify a specific property of terms parametric in n ≥ 0, say Pn, and show
that if E is an arbitrary finite axiom system that is sound with respect to ∼RBB, then Pn is
preserved by provability from E when n is “large enough”. Next, we exhibit an infinite family
of equations {en | n ≥ 0} over closed terms that are all sound modulo ∼RBB, but are such that
only one side of en satisfies Pn, for each n ≥ 0. In particular, this implies that whenever n is
“large enough” then the sound equation en cannot be proved from E . Since E is an arbitrary
finite sound axiom system, it follows that no finite sound axiomatisation can prove all the
equations in the family {en | n ≥ 0} and therefore no finite sound axiomatisation is ground
complete for CCS modulo modulo ∼RBB.

L. Aceto, V. Castiglioni, A. Ingólfsdóttir, and B. Luttik 6:7

The choice of Pn and the family of equations. In [30–32] Moller applied the proof method
sketched above to prove that strong bisimilarity has no finite, complete axiomatisation over
CCS. The key idea underlying this result is that, since ∥ does not distribute over + in either
of its arguments modulo strong bisimilarity, then no finite, sound axiom system can “expand”
the initial behaviour of process a ∥

∑n
i=1 ai (where ai = aai−1 for each i = 1, . . . , n, with

a0 = 0) when n is large.
Since, by definition, rooted branching bisimilarity behaves exactly like strong bisimilarity

on the first step, and parallel composition does not distribute over choice in either of its
arguments, modulo ∼RBB, it is natural to exploit a similar strategy to prove Theorem 4. In
detail, we will consider, for each n ≥ 2, the process pn =

∑n
i=2 aa≤i, where a≤i =

∑i
j=1 aj

for each i = 2, . . . , n. Then, for each n ≥ 2, the property Pn will consist in having a summand
rooted branching bisimilar to the process a ∥ pn, and we will show that, when n is large
enough, Pn is an invariant under provability from an arbitrary finite, sound axiom system
(Theorem 18). Hence, the sound equation en : a ∥ pn ≈ apn +

∑n
i=2 a(a ∥ a≤i) cannot be

derived from E because its right-hand side has no summand that is rooted branching bisimilar
to a ∥ pn, unlike its left-hand side. Therefore no finite sound axiom system can prove the
infinite family of equations {en | n ≥ 2}, yielding the desired negative result.

In proving that Pn is invariant under provability, one pivotal ingredient will be the
fact that processes pn and a≤i, for n ≥ 2 and i ∈ {2, . . . , n}, are indecomposable. The
existence of a unique parallel decomposition into indecomposable processes modulo branching
bisimilarity over CCS with interleaving parallel composition was studied in [26]. In Section 6,
we extend the result from [26] to the full merge operator, thus including communication
(Proposition 16).

The choice of n. The choice of a sufficiently large n plays a crucial role in proving that Pn

is an invariant under provability from a finite, sound axiom system E (Theorem 18). The
key step in that proof deals with the case in which p ≈ q is a substitution instance of an
equation in E (Proposition 20), i.e., p = σ(t), q = σ(u), and t ≈ u ∈ E for some terms t, u and
closed substitution σ. In this case, assuming that n > size(t), we can prove that if p = σ(t)
satisfies Pn then this is due to the behaviour of σ(x) for some variable x. In order to reach
this conclusion, in Section 5, we study how the behaviour of closed instances of terms may
depend on the behaviour of the closed instances of variables occurring in them. Moreover,
we one can show that if t ≈ u is sound modulo rooted branching bisimilarity and x occurs in
t, then it occurs also in u. Hence, we can infer that σ(x) triggers in σ(u) the same behaviour
that it induced in σ(t), and thus that q = σ(u) satisfies Pn.

5 Decomposing the semantics of terms

In the proofs to follow, we shall sometimes need to establish a correspondence between the
behaviour of open terms and that of their closed instances. In detail, we are interested in the
correspondence between a transition σ(t) µ−→ p, for some term t, closed substitution σ, action
µ, and process p, and the behaviour of t and that of σ(x), for each variable x occurring in t.
The simplest case is a direct application of the operational semantics in Table 1.

▶ Lemma 6. For all terms t, t′, substitution σ, and µ ∈ Aτ , if t
µ−→ t′ then σ(t) µ−→ σ(t′).

Let us focus now on the role of variables. A transition σ(t) µ−→ p may also derive from
the initial behaviour of some closed term σ(x), provided that the collection of initial moves
of σ(t) depends, in some formal sense, on that of the closed term substituted for the variable

CONCUR 2022

6:8 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 3 Inference rules for the transition relation ℓ−→ρ (µ ∈ Aτ , α ∈ A ∪ A).

(a1)
x

(x)−−→µ xµ

(a2)
t

ℓ−→ρ c

t + u
ℓ−→ρ c

(a3)
t

ℓ−→ρ c

t ∥ u
ℓ−→ρ c ∥ u

(a4)
t

(x)−−→α c u
(y)−−→α c′

t ∥ u
(x,y)−−−→τ c ∥ c′

(a5)
t

(x)−−→α c u
α−→ u′

t ∥ u
(x)−−→ α,τ c ∥ u′

(a6)
t

α−→ t′ u
(x)−−→α c

t ∥ u
(x)−−→ α,τ t′ ∥ c

x. In this case, we say that x triggers the behaviour of t. To fully describe this situation, we
introduce an auxiliary transition relation over open terms. The notion of configuration over
terms, which stems from [8], will play an important role in their definition.

The presence of communication in CCS entails a complex definition of the semantics of
configurations. In particular, it is necessary to introduce a fresh set of variables VAτ

= {xµ |
x ∈ V, µ ∈ Aτ }, disjoint from V, and terms. Intuitively, the symbol xµ denotes that the
closed term substituted for an occurrence of variable x has begun its execution (expressed
in terms of a µ-action), and it contributes thus to triggering the behaviour of the term
in which x occurs (see Example 8 below). Moreover, we also need to introduce special
labels and subscripts for the auxiliary transitions over configurations, which will be of the
form c

ℓ−→ρ c′. Briefly, the label ℓ is used to keep track of the variables that trigger the
transition c

ℓ−→ρ c′. The subscript ρ, instead, will allow us to correctly define the semantics
of communication: it will allow us to distinguish a τ -action directly performed by (the term
substituted for) a variable x (transition c

(x)−−→τ c′, with ρ = τ), from a τ -action resulting
from the communication of x with a subterm of the configuration (transition c

(x)−−→α,τ c′,
with ρ = α, τ , where α is the action performed by the term substituted for x).

CCS configurations are defined over the set of variables VAτ
and CCS terms.

▶ Definition 7. The collection of CCS configurations, denoted by C, is given by:

c ::= xµ | t | c ∥ c , where t is a term, and xµ ∈ VAτ
.

The auxiliary transitions of the form ℓ−→ρ are then formally defined via the inference rules
in Table 3, where we omitted the symmetric rules to (a2), (a4), (a5) and (a6). We have that
ρ ∈ Aτ ∪ ((A ∪ A) × {τ}), whereas the label ℓ can be either of the form (x) or (x, y), for
some variables x, y ∈ V. Given a variable x and a label ℓ, we write x ∈ ℓ if x occurs in ℓ.

The distinguished variables xµ allow us to keep track of which variable and action trigger
the behaviour of the term, and they also allow us to present substitutions in an intuitive
fashion. As explained in the following example, it is precisely because of substitutions (and
communication) that we need to make the action µ explicit in xµ.

▶ Example 8. Let x ∈ V and consider the term x ∥ x. By rules (a1) and (a4) in Table 3,
we have that x ∥ x

(x,x)−−−−→τ xα ∥ xα because x
(x)−−→α xα and x

(x)−−→α xα. Hence, given any
substitution σ such that σ(x) α−→ p1 and σ(x) α−→ p2, for some terms p1, p2, we want to be
able to correctly infer that σ(x) ∥ σ(x) τ−→ p1 ∥ p2. Since the two occurrences of x, xα and xα,
can be distinguished by the subscripts, the substitution σ[xα 7→ p1, xα 7→ p2](xα∥xα) = p1∥p2
is well-defined. Without the subscripts, it would not have been possible to correctly define
the substitution σ on the configuration c that is the target of x ∥ x

(x,x)−−−−→τ c.

L. Aceto, V. Castiglioni, A. Ingólfsdóttir, and B. Luttik 6:9

▶ Lemma 9. Let t be term and σ be a closed substitution. Let x, y ∈ V.
1. For any µ ∈ Aτ , if σ(x) µ−→ p, for some process p, and t

(x)−−→µ c, for some configuration
c ∈ C, then σ(t) µ−→ σ[xµ 7→ p](c).

2. For any α ∈ A ∪ A, if σ(x) α−→ p, for some process p, and t
(x)−−→α,τ c, for some

configuration c ∈ C, then σ(t) τ−→ σ[xα 7→ p](c).
3. For any α ∈ A ∪ A, if σ(x) α−→ px, σ(y) α−→ py, for some processes px, py, and t

(x,y)−−−→τ

c ∈ C, for some configuration c, then σ(t) τ−→ σ[xα 7→ px, yα 7→ py](c).

Lemma 9 shows how the auxiliary transitions can be used to derive the behaviour of σ(t)
from those of the variables in t. We are now interested in analysing the converse situation:
we show how a transition σ(t) µ−→ p can stem from transitions of the term t and of the
process σ(x), for x ∈ var(t). We limit ourselves to present the case of silent actions σ(t) τ−→ p

as it requires a detailed analysis. The case of transitions labelled with observable actions is
simpler and therefore omitted.

▶ Lemma 10. Let t be a term, σ be a closed substitution, and p be a process. If σ(t) τ−→ p,
then one of the following holds:
1. There is a term t′ s.t. t

τ−→ t′ and σ(t′) = p.
2. There are a variable x, a process q, and a configuration c s.t. σ(x) τ−→ q, t

(x)−−→τ c, and
σ[xτ 7→ q](c) = p.

3. There are a variable x, a process q, and a configuration c s.t., for some α ∈ A ∪ A,
σ(x) α−→ q, t

(x)−−→α,τ c, and σ[xα 7→ q](c) = p.
4. There are variables x, y, processes qx, qy and a configuration c s.t., for some α ∈ A ∪ A,

σ(x) α−→ qx, σ(y) α−→ qy, t
(x,y)−−−→τ c, and σ[xα 7→ qx, yα 7→ qy](c) = p.

6 Unique parallel decomposition

As explained in Section 4, our approach for establishing that Pn is invariant under equational
proofs relies on processes having a unique parallel decomposition modulo ∼BB.

▶ Definition 11 (Parallel decomposition modulo ∼BB). A process p is indecomposable if
p ̸∼BB 0 and p ∼BB p1 ∥p2 implies p1 ∼BB 0 or p2 ∼BB 0, for all processes p1 and p2. A parallel
decomposition of a process p is a finite multiset *p1, . . . , pk+ of indecomposable processes
p1, . . . , pk such that p ∼BB p1 ∥ · · · ∥ pk. We say that p has a unique parallel decomposition
if p has a parallel decomposition *p1, . . . , pk+ and for every other parallel decomposition
*p′

1, . . . , p′
ℓ+ of p there exists a bijection f : {1, . . . , k} → {1, . . . , ℓ} such that pi ∼BB p′

f(i) for
all 1 ≤ i ≤ k.

To prove that processes have a unique parallel decomposition we shall exploit a general
result stating that a partial commutative monoid has unique decomposition if it can be
endowed with a weak decomposition order that satisfies power cancellation [26]; we shall define
and explain the notions below. Note that, in view of axioms P0–P2, which are (also) sound
modulo ∼BB, the set of processes P modulo ∼BB is a commutative monoid with respect to the
binary operation naturally induced by ∥ on ∼BB-equivalence classes and the ∼BB-equivalence
class of 0 as identity element. We permit ourselves a minor abuse in notation and use → to
(also) denote the binary relation {(p, q) | ∃µ. p

µ−→ q}, and proceed to argue that → induces
a weak decomposition order satisfying power cancellation on the commutative monoid of
processes modulo ∼BB.

CONCUR 2022

6:10 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Given any process p and n ≥ 1, let pn denote the n-fold parallel composition p ∥ pn−1,
with p0 = 0. We first state some properties of the reflexive-transitive closure →∗ of →:

▶ Proposition 12. The relation →∗ is an inversely well-founded partial order on processes
satisfying the following properties:
1. For every process p there exists a process p′ such that p →∗ p′ ∼BB 0.
2. For all processes p, p′ and q, if p →∗ p′, then p ∥ q →∗ p′ ∥ q and q ∥ p →∗ q ∥ p′.
3. For all processes p, q and r, if p ∥ q →∗ r, then there exist p′ and q′ such that p →∗ p′,

q →∗ q′ and r = p′ ∥ q′.
4. For all processes p and q, if p →∗ qn for all n ∈ N, then q ∼BB 0.

The following lemma is a direct consequence of the definition of branching bisimilarity.

▶ Lemma 13. For all processes p, p′ and q, if p ∼BB q and p →∗ p′, then there exists q′ such
that q →∗ q′ and p′ ∼BB q′.

By this lemma we can define a binary relation ⪯ on P/∼BB, the set of ∼BB-equivalence
classes of processes, by stating that [p]∼BB ⪯ [q]∼BB if, and only if, there exists p′ ∈ [p]∼BB

such that q →∗ p′ (here [p]∼BB and [q]∼BB denote the ∼BB-equivalence classes of p and q,
respectively). The following result is then a straightforward corollary of Proposition 12.

▶ Corollary 14. The relation ⪯ is a weak decomposition order on P/∼BB, namely:
1. it is well-founded, i.e., every non-empty subset of P/∼BB has a ⪯-minimal element;
2. the identity element [0]∼BB of P/∼BB is the least element of P/∼BB with respect to ⪯, i.e.,

[0]∼BB ⪯ [p]∼BB for all p ∈ P;
3. it is compatible, i.e., for all p, q, r ∈ P if [p]∼BB ⪯ [q]∼BB , then [p ∥ r]∼BB ⪯ [q ∥ r]∼BB ;
4. it is precompositional, i.e., for all p, q, r ∈ P we have that [p]∼BB ⪯ [q ∥ r]∼BB implies

[p]∼BB = [q′ ∥ r′]∼BB for some [q′]∼BB ⪯ [q]∼BB and [r′]∼BB ⪯ [r]∼BB ; and
5. it is Archimedean, i.e., for all p, q ∈ P we have that [pn]∼BB ⪯ [q]∼BB for all n ∈ N implies

that [p]∼BB = [0]∼BB .

According to [26, Theorem 34] it now remains to prove that ⪯ satisfies power cancellation.
The weak decomposition order ⪯ on the commutative monoid of processes modulo ∼BB

satisfies power cancellation if for every indecomposable process p and for all processes q and
r such that [p]∼BB ̸≺ [q]∼BB , [r]∼BB , for all k ∈ N, we have that [pk ∥ q]∼BB = [pk ∥ r]∼BB implies
[q]∼BB = [r]∼BB .

▶ Proposition 15. The weak decomposition order ⪯ on the commutative monoid of processes
modulo ∼BB satisfies power cancellation.

We have now established that ⪯ is a weak decomposition order on the commutative
monoid of processes modulo ∼BB that satisfies power cancellation. Thus, with an application
of [26, Theorem 34] we get the following unique parallel decomposition result.

▶ Proposition 16. Every process in P has a unique parallel decomposition.

In what follows, we shall make use of the following direct consequence of Proposition 16.

▶ Corollary 17. If p ∥ r ∼BB q ∥ r, then p ∼BB q.

L. Aceto, V. Castiglioni, A. Ingólfsdóttir, and B. Luttik 6:11

7 Nonexistence of a finite axiomatisation

We devote this section to proving Theorem 4. Following the strategy sketched in Section 4,
we introduce a particular family of equations on which we will build our negative result:

pn =
n∑

i=2
aa≤i (n ≥ 2)

en : a ∥ pn ≈ apn +
n∑

i=2
a(a ∥ a≤i) (n ≥ 2).

It is easy to check that each equation en, for n ≥ 2, is sound modulo rooted branching
bisimilarity (as, in particular, it is sound modulo strong bisimilarity).

In order to prove Theorem 4, we proceed to show that no finite collection of equations
over CCS that are sound modulo rooted branching bisimilarity can prove all of the equations
en (n ≥ 2) from the family given above. Formally, for each n ≥ 2, we consider the property
Pn: having a summand rooted branching bisimilar to a ∥ pn. Then, we prove the following:

▶ Theorem 18. Let E be a finite axiom system over CCS that is sound modulo ∼RBB, let n

be larger than the size of each term in the equations in E, and let p, q be closed terms such
that p, q ∼RBB a ∥ pn. If E ⊢ p ≈ q and p satisfies Pn then so does q.

The crucial step in the proof of Theorem 18 is delivered by the proposition below, which
ensures that the property Pn (n ≥ 2) is preserved by the closure under substitutions of
equations in a finite, sound axiom system. Proposition 20 is proved by means of the technical
results provided so far, and the notion of 0-factor of a term:

▶ Definition 19. We say that a term t has a 0 factor if it contains a subterm of the form
t′ ∥ t′′, and either t′ ∼RBB 0 or t′′ ∼RBB 0.

▶ Proposition 20. Let t ≈ u be an equation over CCS terms that is sound modulo ∼RBB. Let
σ be a closed substitution with p = σ(t) and q = σ(u). Suppose that p and q have neither 0
summands nor 0 factors, and p, q ∼RBB a ∥ pn for some n larger than the sizes of t and u. If
p satisfies Pn, then so does q.

Theorem 18 shows the property Pn to be an invariant under provability from finite sound
axiom systems. As the left-hand side of equation en, i.e., the term a ∥ pn, satisfies Pn, whilst
the right-hand side, i.e., the term apn +

∑n
i=2 a(a ∥ a≤i), does not, we can conclude that the

infinite collection of equations en (n ≥ 2) cannot be derived from any finite, sound axiom
system. Hence, Theorem 4 follows.

8 Towards a positive result

We now proceed to study the role of the auxiliary operators left merge () and communication
merge (|) from [12] in the axiomatisation of parallel composition modulo ∼RBB. We will show
that by adding them to CCS we can obtain a complete axiomatisation of rooted branching
bisimilarity over the new language. This axiomatisation is finite if so is Aτ .

We denote the language obtained by enriching CCS with and | by CCSLC:

t ::= 0 | x | µ.t | t + t | t ∥ t | t t | t | t , (CCSLC)

where x ∈ V, and µ ∈ Aτ . The SOS rules for the CCSLC operators are given by the rules in
Table 1 plus those reported in Table 4.

CONCUR 2022

6:12 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 4 Additional SOS rules for CCSLC operators (µ ∈ Aτ , α ∈ A ∪ A).

t
µ−→ t′

t u
µ−→ t′ ∥ u

t
α−→ t′ u

α−→ u′

t | u
τ−→ t′ ∥ u′

To obtain the desired completeness result, we consider the axiom system ERBB (see Table 7
in Section 10), obtained by extending the complete axiom system for strong bisimilarity
over CCSLC from [7] with axioms expressing the behaviour of and | in the presence of
τ -actions (from [13]), and with the suitable τ -laws (from [20, 23]) necessary to deal with
rooted branching bisimilarity. Then, we adjust the semantics of configurations given in
Section 5 to the CCSLC setting, and we use it to extend the definition of rooted branching
bisimilarity to open CCSLC terms (Definition 24). Usually, a behavioural equivalence ∼ is
defined over processes and is then possibly extended to open terms by saying that t ∼ u

iff σ(t) ∼ σ(u) for all closed substitutions σ. However, we adopt the same approach of,
e.g., [10, 16, 29], and present the definition of ∼RBB directly over configurations. We will
show in Section 9 that the two approaches yield the same equivalence relation over terms
(Theorem 25). Finally, we apply the strategy used in [10] to obtain the completeness of the
axiomatisation of prefix iteration with silent moves modulo rooted branching bisimilarity:
1. We identify normal forms for CCSLC terms (Definition 27) and show that each term can

be proven equal to a normal form using ERBB (Proposition 28).
2. We establish a relationship between ∼BB and derivability in ERBB (Proposition 29).
3. We show that for all terms t, u, if t ∼RBB u, then ERBB ⊢ t ≈ u (Theorem 5).

9 Rooted branching bisimilarity over terms

In this section we discuss the decomposition of the semantics of CCSLC terms, and the
extension of the definition of (rooted) branching bisimilarity to open CCSLC terms.

The first step towards our completeness result consists in providing a semantics for open
CCSLC terms. To this end, we need to extend the semantics of configurations given in
Section 5. For the sake of readability, we present the syntax of CCSLC configurations and
the inference rules for variables and summations, even though they are identical to the
corresponding ones presented in Section 5 for CCS. However, we omit the explanations on
the roles of labels ℓ, ρ, and variables xµ, as those can be found in Section 5. In particular,
the use of variables xµ ∈ VAτ

(as explained in Example 8) remains unchanged.

▶ Definition 21 (CCSLC configuration). The collection of CCSLC configurations, denoted by
CLC, is given by:

c ::= xµ | t | c ∥ c , where t is a CCSLC term, and xµ ∈ VAτ
.

The auxiliary transitions of the form ℓ−→ρ are formally defined via the inference rules
in Table 5, where we omitted the rules (a′

1) and (a′
2) for prefixing and choice (which are

identical to, respectively, rules (a1) and (a2) in Table 3) the symmetric rules to (a′
2), (a′

4),
(a′

5) and (a′
6), as well as the rules for ∥. We remark that Lemma 10 can be easily extended

to CCSLC to show how a transition σ(t) µ−→ p can stem from transitions of the CCSLC term
t and of the process σ(x), for x ∈ var(t).

Since VAτ
is disjoint from V, we also need to introduce auxiliary rules for the special

configuration xµ ∈ VAτ
. These are identified by a proper label xµ on the transition and

reported in Table 6 as rules (c1) and (c2). To conclude our analysis of the decomposition

L. Aceto, V. Castiglioni, A. Ingólfsdóttir, and B. Luttik 6:13

Table 5 Inference rules for the transition relation ℓ−→ρ (µ ∈ Aτ , α ∈ A ∪ A).

(a′
3)

t
ℓ−→ρ c

t u
ℓ−→ρ c ∥ u

(a′
4)

t
(x)−−→α c u

(y)−−→α c′

t | u
(x,y)−−−→τ c ∥ c′

(a′
5)

t
(x)−−→α c u

α−→ u′

t | u
(x)−−→ α,τ c ∥ u′

(a′
6)

t
α−→ t′ u

(x)−−→α c

t | u
(x)−−→ α,τ t′ ∥ c

Table 6 Inference rules completing the operational semantics of CCSLC configurations (µ ∈ Aτ).

(c1)
xµ

xµ−−→ xµ

(c2)
c1

xµ−−→ c′
1

c1 ∥ c2
xµ−−→ c′

1 ∥ c2
(c3)

c1
µ−→ c′

1

c1 ∥ c2
µ−→ c′

1 ∥ c2
(c4)

c1
ℓ−→ρ c′

1

c1 ∥ c2
ℓ−→ρ c′

1 ∥ c2

of the semantics of terms, we then need to extend the transition relations µ−→ and ℓ−→ρ

to configurations. This is done by rules (c3) and (c4) in Table 6, where their symmetric
counterparts have been omitted. Let

ξ
↠ range over the possible transitions over configurations,

i.e.,
ξ
↠ can be either µ−→, ℓ−→ρ, or xµ−−→. The operational semantics of CCSLC configurations is

then given by the LTS whose states are configurations in CLC, whose actions are in Aτ ∪V∪VAτ
,

and whose transitions are those that are provable from the rules in Tables 1, 4, 5, and 6.
Following the same approach of, e.g. [10,16,29], we now present the definitions of branching

and rooted branching bisimulation equivalences directly over configurations.

▶ Definition 22 (Branching bisimulation over configurations). A symmetric relation R over
CLC is a branching bisimulation iff whenever c1 R c2, if c1

ξ
↠ c′

1 then:
either

ξ
↠ = τ−→ and c′

1 R c2,
or c2

ε−→ c′′
2

ξ
↠ c′

2 for some c′′
2 , c′

2 such that c1 R c′′
2 and c′

1 R c′
2.

Two configurations c1, c2 are branching bisimilar, denoted by c1 ∼BB c2, iff there exists a
branching bisimulation R such that c1 R c2.

The definition of ∼BB given in Definition 22 yields the same equivalence relation over
configurations that we would have obtained with the standard approach, i.e., by defining
c1 ∼BB c2 iff σ(c1) ∼BB σ(c2) for all closed substitutions σ.

▶ Theorem 23. For all configurations c1, c2 ∈ CLC it holds that c1 ∼BB c2 iff σ(c1) ∼BB σ(c2)
for all closed substitutions σ.

The approach for ∼BB can be extended in a straightforward manner to ∼RBB.

▶ Definition 24 (Rooted branching bisimilarity over configurations). Let c1, c2 ∈ CLC. We say
that c1 and c2 are rooted branching bisimilar, denoted by c1 ∼RBB c2, iff:

if c1
ξ
↠ c′

1 then c2
ξ
↠ c′

2 for some c′
2 such that c′

1 ∼BB c′
2;

if c2
ξ
↠ c′

2 then c1
ξ
↠ c′

1 for some c′
1 such that c′

1 ∼BB c′
2.

▶ Theorem 25. For all c1, c2 ∈ CLC it holds that c1 ∼RBB c2 iff σ(c1) ∼RBB σ(c2) for all closed
substitutions σ.

CONCUR 2022

6:14 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Table 7 Equational basis modulo rooted branching bisimilarity.

Equational basis modulo strong bisimilarity: EB

A0 x + 0 ≈ x C0 0 | x ≈ 0
A1 x + y ≈ y + x C1 x | y ≈ y | x

A2 (x + y) + z ≈ x + (y + z) C2 (x | y) | z ≈ x | (y | z)
A3 x + x ≈ x C3 (x + y) | z ≈ x | z + y | z

C4 αx | βy ≈ τ(x ∥ y) if α = β

L0 0 x ≈ 0 C5 αx | βy ≈ 0 if α ̸= β

L1 µx y ≈ µ(x ∥ y) C6 (x y) | z ≈ (x | z) y

L2 (x y) z ≈ x (y ∥ z) C7 x | y | z ≈ 0
L3 x 0 ≈ x

L4 (x + y) z ≈ x z + y z P x ∥ y ≈ x y + y x + x | y

Additional axioms for ∼RBB: ERBB = EB ∪ {T B, T L}

TB µ(τ(x + y) + y) ≈ µ(x + y) TL x τy ≈ x y

Derivable axioms

D1 x ∥ y ≈ y ∥ x DT1 µτx ≈ µx

D2 (x ∥ y) ∥ z ≈ x ∥ (y ∥ z) DT2 x (τ(y + z) + y) ≈ x (y + z)
D3 (x y) | (z w) ≈ (x | z) (y ∥ w) DT3 τx | y ≈ 0
D4 x ∥ 0 ≈ x

10 The equational basis

We now present the complete axiomatisation for rooted branching bisimilarity over CCSLC.
In [20] it was proved that if we consider the fragment BCCS of CCS (i.e., the fragment

consisting only of 0, variables, prefixing, and choice), then a ground-complete axiomatisation
of rooted branching bisimilarity over BCCS is given by E0∪{TB}, where E0 = {A0,A1,A2,A3}
from Table 2 (also reported in Table 7), and axiom TB is in Table 7. Informally, TB reflects
that if executing a τ -step does not discard any observable behaviour, then it is redundant.
In [7] it was proved that the axiom system EB given in Table 7, is a complete axiomatisation of
bisimilarity over CCSLC. Starting from these works, we now study a complete axiomatisation
for ∼RBB. Our aim is to show that the axiom system ERBB = EB ∪ {TB,TL} presented in
Table 7 is a complete axiomatisation of rooted branching bisimilarity over CCSLC.

If executing a τ -move does not resolve a choice within a parallel component, then it will
also not resolve a choice of the parallel composition; axiom TL expresses a similar property
of rooted branching bisimilarity for left merge. Interestingly, by combining TL and TB, it is
possible to derive, as shown below, equation DT2 in Table 7, which is the equation for the
left merge corresponding to TB.

x (τ(y + z) + y)
(TL)
≈ x τ(τ(y + z) + y)

(TB)
≈ x τ(y + z)

(TL)
≈ x (y + z).

In Table 7 we report also some other equations that can be derived from ERBB, and that are
useful in the technical development of our results. We refer the reader interested in the
derivation proofs of D1–D3 and DT3 to [7]. Notice that DT1 corresponds essentially to the
substitution instance of TB in which y is mapped to 0.

L. Aceto, V. Castiglioni, A. Ingólfsdóttir, and B. Luttik 6:15

First of all, it is immediate to prove the soundness of ERBB modulo ∼RBB.

▶ Theorem 26 (Soundness). The axiom system ERBB is sound modulo ∼RBB over CCSLC.

To obtain the desired completeness result, we apply the same strategy used in [10] that
consists in the three steps discussed in Section 8.

Let us proceed to the first step: identifying normal forms for CCSLC terms.

▶ Definition 27 (Normal forms). The set of normal forms over CCSLC is generated by the
following grammar:

S ::= µ.N | x N | (x | α) N | (x | y) N

N ::= 0 | S | N + N

where x, y ∈ V, µ ∈ Aτ and α ∈ A ∪ A. Normal forms generated by S are also called simple
normal forms and are characterised by the fact that they do not have + as head operator.

▶ Proposition 28. For every term t there is a normal form N such that ERBB ⊢ t ≈ N .

We can then proceed to prove that branching bisimilar terms can be proven equal to
rooted branching bisimilar terms using the axiom system ERBB.

▶ Proposition 29. For CCSLC terms t, u, if t ∼BB u then ERBB ⊢ µ.t ≈ µ.u, for any µ ∈ Aτ .

The completeness of the axiom system ERBB then follows from Proposition 28 and Proposi-
tion 29. Notice that axioms L1 and TB are actually axiom schemata that both generate |Aτ |
axioms. Similarly, the schema C4 generates 2|A| axioms, and C5 generates 2|A| × (2|A| − 1)
axioms. Hence, ERBB is finite when so is the set of actions.

▶ Theorem 5 (Completeness). Let t, u be CCSLC terms. If t ∼RBB u, then ERBB ⊢ t ≈ u.

11 Concluding remarks

In this paper we have shown that the use of auxiliary operators, such as the left merge and
communication merge, is crucial to obtain a finite, complete axiomatisation of the CCS
parallel composition operator modulo rooted branching bisimilarity. Indeed, rooted branching
bisimilarity does not afford a finite, complete axiomatisation over CCS without the auxiliary
operators (our negative result), whereas CCS with the auxiliary operators added does have
such a finite complete axiomatisation modulo rooted branching bisimilarity (our positive
result).

A natural direction for future research is the extension of our results to other weak
congruences from the spectrum [17]. The infinite family of equations used in the proof of
our negative result (Theorem 4) is the same as that used by Moller to prove that CCS does
not afford a finite complete axiomatisation of strong bisimilarity [32]. Our proof that the
parametric property Pn is preserved by provability from every collection of equations that
are bounded in size by n and that are sound with respect to rooted branching bisimilarity
refines Moller’s proof that Pn is preserved by provability if the equations are required to
be sound with respect to strong bisimilarity. Our next goal will be to identify the weakest
congruence ∼ in the spectrum that includes strong bisimilarity and for which provability
from a collection of sound equations that are sound with respect to ∼ preserves Pn. It will
then follow that CCS does not afford a finite complete axiomatisation for all congruences
including strong bisimilarity and included in ∼.

CONCUR 2022

6:16 On the Axiomatisation of Branching Bisimulation Congruence over CCS

Regarding extensions of the positive result, we will focus on three weak congruences,
namely rooted η-bisimilarity (∼RηB), rooted delay bisimilarity (∼RDB), and rooted weak bisim-
ilarity (∼RWB), and provide complete axiomatisations for them. We are confident that the
axiomatisation for ∼RηB can be obtained by exploiting a proof technique from [10] based on
the notion of saturation. It should then be established that ∼RηB coincides with ∼RBB on the
class of η-saturated terms. Hence, if we can show that each term is provably equal to an
η-saturated term using the axiom system for ∼RηB, the completeness of the considered axiom
system then directly follows from that for ∼RBB we provided in this paper.

The quest for complete axiomatisations for ∼RDB and ∼RWB will require a different approach,
as these equivalences are not preserved by the communication merge operator. For instance,
we have that τ.a ∼RWB τ.a + a, but τ.a | a.b ̸∼RWB (τ.a + a) | a.b. Regarding ∼RDB, similar
observations can be made (see [18] for more details). The complete axiomatisation for
observational congruence [23] (and thus rooted weak bisimilarity) over ACPτ presented
in [13] includes the axiom

τ.x | y ≈ x | y. (TC)

Similarly, in [1, 21] it was argued that in order to reason compositionally, and obtain an
equational theory of CCS modulo observational congruence, it is necessary to define the
operational semantics of communication merge in terms of inference rules of the form

t
α=⇒ t′ u

α=⇒ u′

t | u
τ=⇒ t′ ∥ u′

where we use µ=⇒ as a short-hand for the sequence of transitions ε−→ µ−→ ε−→. This means
that in order for | to preserve ∼RWB (and/or ∼RDB), we need to consider a sequence of weak
transitions as a single step. Clearly, since | is an auxiliary operator that we introduce
specifically to obtain finite axiomatisations, its semantics can be defined in the most suitable
way for our purposes, i.e., so that it is consistent with the considered congruence relation.
However, it is also clear that if we modify the semantics of one operator in CCSLC, then we
are working with a new language. In particular, some axioms that are sound modulo strong
bisimilarity (and thus also modulo ∼RBB) over CCSLC become unsound modulo rooted weak
bisimilarity over the new language: this is the case of axioms C6 and C7 in Table 7. As a
consequence, we cannot exploit the completeness of the axiomatisation for rooted branching
bisimilarity to derive complete axiomatisations for rooted weak bisimilarity and rooted delay
bisimilarity, but we must provide new axiomatisations for them and prove their completeness
from scratch. Hence, we leave as future work the quest for complete axiomatisations for
∼RWB and ∼RDB over (recursion, relabelling, and restriction free) CCS with left merge and
communication merge.

References
1 Luca Aceto. On “Axiomatising Finite Concurrent Processes”. SIAM J. Comput., 23(4):852–863,

1994. doi:10.1137/S0097539793243600.
2 Luca Aceto, Elli Anastasiadi, Valentina Castiglioni, Anna Ingólfsdóttir, and Bas Luttik. In

search of lost time: Axiomatising parallel composition in process algebras. In Proceedings of
LICS 2021, pages 1–14. IEEE, 2021. doi:10.1109/LICS52264.2021.9470526.

3 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. Are two
binary operators necessary to finitely axiomatise parallel composition? In Proceedings of CSL
2021, volume 183 of LIPIcs, pages 8:1–8:17, 2021. doi:10.4230/LIPIcs.CSL.2021.8.

https://doi.org/10.1137/S0097539793243600
https://doi.org/10.1109/LICS52264.2021.9470526
https://doi.org/10.4230/LIPIcs.CSL.2021.8

L. Aceto, V. Castiglioni, A. Ingólfsdóttir, and B. Luttik 6:17

4 Luca Aceto, Valentina Castiglioni, Anna Ingolfsdottir, and Bas Luttik. On the axiomatisation
of branching bisimulation congruence over ccs, 2022. doi:10.48550/ARXIV.2206.13927.

5 Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, Bas Luttik, and Mathias R. Pedersen.
On the axiomatisability of parallel composition: A journey in the spectrum. In Proceedings of
CONCUR 2020, volume 171 of LIPIcs, pages 18:1–18:22, 2020. doi:10.4230/LIPIcs.CONCUR.
2020.18.

6 Luca Aceto, David de Frutos-Escrig, Carlos Gregorio-Rodríguez, and Anna Ingólfsdóttir.
Axiomatizing weak simulation semantics over BCCSP. Theor. Comput. Sci., 537:42–71, 2014.
doi:10.1016/j.tcs.2013.03.013.

7 Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. A finite equational base for
CCS with left merge and communication merge. ACM Trans. Comput. Log., 10(1):6:1–6:26,
2009. doi:10.1145/1459010.1459016.

8 Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Sumit Nain. Bisimilarity is not finitely
based over BPA with interrupt. Theor. Comput. Sci., 366(1-2):60–81, 2006. doi:10.1016/j.
tcs.2006.07.003.

9 Luca Aceto, Anna Ingólfsdóttir, Bas Luttik, and Paul van Tilburg. Finite equational bases for
fragments of CCS with restriction and relabelling. In Proceedings of IFIP TCS 2008, volume
273 of IFIP, pages 317–332, 2008. doi:10.1007/978-0-387-09680-3_22.

10 Luca Aceto, Rob J. van Glabbeek, Wan Fokkink, and Anna Ingólfsdóttir. Axiomatizing prefix
iteration with silent steps. Inf. Comput., 127(1):26–40, 1996. doi:10.1006/inco.1996.0047.

11 Twan Basten. Branching bisimilarity is an equivalence indeed! Inf. Process. Lett., 58(3):141–
147, 1996. doi:10.1016/0020-0190(96)00034-8.

12 Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X.

13 Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes with abstraction.
Theor. Comput. Sci., 37:77–121, 1985. doi:10.1016/0304-3975(85)90088-X.

14 Taolue Chen, Wan Fokkink, and Rob J. van Glabbeek. Ready to preorder: The case of weak
process semantics. Inf. Process. Lett., 109(2):104–111, 2008. doi:10.1016/j.ipl.2008.09.003.

15 Rob J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In
Proceedings of CONCUR ’90, volume 458 of Lecture Notes in Computer Science, pages 278–297,
1990. doi:10.1007/BFb0039066.

16 Rob J. van Glabbeek. A complete axiomatization for branching bisimulation congruence of
finite-state behaviours. In Proceedings of MFCS’93, volume 711 of Lecture Notes in Computer
Science, pages 473–484, 1993. doi:10.1007/3-540-57182-5_39.

17 Rob J. van Glabbeek. The linear time - branching time spectrum II. In Proceedings of
CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 66–81, 1993. doi:
10.1007/3-540-57208-2_6.

18 Rob J. van Glabbeek. On cool congruence formats for weak bisimulations. Theor. Comput.
Sci., 412(28):3283–3302, 2011. doi:10.1016/j.tcs.2011.02.036.

19 Rob J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation
semantics (extended abstract). In IFIP Congress, pages 613–618, 1989.

20 Rob J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation
semantics. J. ACM, 43(3):555–600, 1996. doi:10.1145/233551.233556.

21 Matthew Hennessy. Axiomatising finite concurrent processes. SIAM J. Comput., 17(5):997–
1017, 1988. doi:10.1137/0217063.

22 Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency. In
Proceedings of ICALP 1980, volume 85 of Lecture Notes in Computer Science, pages 299–309,
1980. doi:10.1007/3-540-10003-2_79.

23 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137–161, 1985. doi:10.1145/2455.2460.

24 Tony Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

CONCUR 2022

https://doi.org/10.48550/ARXIV.2206.13927
https://doi.org/10.4230/LIPIcs.CONCUR.2020.18
https://doi.org/10.4230/LIPIcs.CONCUR.2020.18
https://doi.org/10.1016/j.tcs.2013.03.013
https://doi.org/10.1145/1459010.1459016
https://doi.org/10.1016/j.tcs.2006.07.003
https://doi.org/10.1016/j.tcs.2006.07.003
https://doi.org/10.1007/978-0-387-09680-3_22
https://doi.org/10.1006/inco.1996.0047
https://doi.org/10.1016/0020-0190(96)00034-8
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/j.ipl.2008.09.003
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/3-540-57182-5_39
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/j.tcs.2011.02.036
https://doi.org/10.1145/233551.233556
https://doi.org/10.1137/0217063
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1145/2455.2460

6:18 On the Axiomatisation of Branching Bisimulation Congruence over CCS

25 Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384,
1976. doi:10.1145/360248.360251.

26 Bas Luttik. Unique parallel decomposition in branching and weak bisimulation semantics.
Theor. Comput. Sci., 612:29–44, 2016. doi:10.1016/j.tcs.2015.10.013.

27 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

28 Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice
Hall, 1989.

29 Robin Milner. A complete axiomatisation for observational congruence of finite-state behaviors.
Inf. Comput., 81(2):227–247, 1989. doi:10.1016/0890-5401(89)90070-9.

30 Faron Moller. Axioms for Concurrency. PhD thesis, Department of Computer Science,
University of Edinburgh, July 1989. Report CST-59-89. Also published as ECS-LFCS-89-84.

31 Faron Moller. The importance of the left merge operator in process algebras. In Proceedings
of ICALP ‘90, volume 443 of Lecture Notes in Computer Science, pages 752–764, 1990.
doi:10.1007/BFb0032072.

32 Faron Moller. The nonexistence of finite axiomatisations for CCS congruences. In Proceedings
of LICS ’90, pages 142–153, 1990. doi:10.1109/LICS.1990.113741.

33 Rocco De Nicola and Matthew Hennessy. Testing equivalence for processes. In Proceedings
of ICALP 1983, volume 154 of Lecture Notes in Computer Science, pages 548–560, 1983.
doi:10.1007/BFb0036936.

34 David M. R. Park. Concurrency and automata on infinite sequences. In Proceedings of
GI-Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183, 1981.
doi:10.1007/BFb0017309.

35 Gordon D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

36 Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebraic Methods
Program., 60-61:17–139, 2004.

https://doi.org/10.1145/360248.360251
https://doi.org/10.1016/j.tcs.2015.10.013
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(89)90070-9
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1109/LICS.1990.113741
https://doi.org/10.1007/BFb0036936
https://doi.org/10.1007/BFb0017309

	1 Introduction
	2 Background
	3 The main results
	4 Proof strategy for Theorem 4
	5 Decomposing the semantics of terms
	6 Unique parallel decomposition
	7 Nonexistence of a finite axiomatisation
	8 Towards a positive result
	9 Rooted branching bisimilarity over terms
	10 The equational basis
	11 Concluding remarks

