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Abstract
One-Counter Nets (OCNs) are finite-state automata equipped with a counter that is not allowed
to become negative, but does not have zero tests. Their simplicity and close connection to various
other models (e.g., VASS, Counter Machines and Pushdown Automata) make them an attractive
model for studying the border of decidability for the classical decision problems.

The deterministic fragment of OCNs (DOCNs) typically admits more tractable decision problems,
and while these problems and the expressive power of DOCNs have been studied, the determinization
problem, namely deciding whether an OCN admits an equivalent DOCN, has not received attention.

We introduce four notions of OCN determinizability, which arise naturally due to intricacies
in the model, and specifically, the interpretation of the initial counter value. We show that in
general, determinizability is undecidable under most notions, but over a singleton alphabet (i.e., 1
dimensional VASS) one definition becomes decidable, and the rest become trivial, in that there is
always an equivalent DOCN.
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1 Introduction

One-Counter Nets (OCNs) are finite-state machines equipped with an integer counter that
cannot decrease below zero and cannot be explicitly tested for zero.

OCNs are closely related to several computational models: they are a test-free syntactic
restriction of One-Counter Automata – Minsky Machines with only one counter. If counter
updates are restricted to ±1, they are equivalent to Pushdown Automata with a single-letter
stack alphabet. In addition, over a singleton alphabet, they are the same as 1-dimensional
Vector Addition Systems with States.

An OCN A over alphabet Σ accepts a word w ∈ Σ∗ from initial counter value c ∈ N if
there is a run of A on w from an initial state to an accepting state in which the counter,
starting from value c, does not become negative. Thus, for every counter value c ∈ N the
OCN A defines a language L(A, c) ⊆ Σ∗.

OCNs are an attractive model for studying the border of decidability of classical decision
problems. Indeed – several problems for them lie delicately close to the decidability border.
For example, OCN universality is decidable [16], whereas parameterized-universality (in
which the initial counter is existentially quantified) is undecidable [2].

As is the case with many computational models, certain decision problems for deterministic
OCNs (OCNs that admit a single legal transition for each state q and letter σ), denoted
DOCNs, are computationally easier than for nondeterministic OCNs (e.g., inclusion is
undecidable for OCNs, but is in NL for DOCNs [16]. Universality is Ackermannian for
OCNs, but is in NC for DOCNs [2]). While decision problems for DOCNs have received some
attention, the determinization problem for OCNs, namely deciding whether an OCN admits
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18:2 Determinization of One-Counter Nets

an equivalent DOCN, has (to our knowledge) not been studied. Apart from the theoretical
interest of OCN determinization, which would yield a better understanding of the model, it
is also of practical interest: OCNs can be used to model properties of concurrent systems, so
when an OCN can be determinized, automatic reasoning about correctness becomes easier.

OCN Determinization

Recall that the language L(A, c) of an OCN A depends on the initial counter c, so A
essentially defines a family of languages. Thus, it is not clear what we mean by “equivalent
DOCN”. We argue that the definition of determinization depends on the role of the initial
counter c. To this end, we identify four notions of determinization for an OCN A, as follows.

In 0-Det, we ask whether there is a DOCN D such that L(A, 0) = L(D, 0).
In ∃-Det, we ask whether there exist c ∈ N and a DOCN D such that L(A, c) = L(D, 0).
In ∀-Det, we ask whether for every c ∈ N, there is a DOCN D such that L(A, c) = L(D, 0).
In Uniform-Det, we ask whether there is a DOCN D such that for every c ∈ N we have
L(A, c) = L(D, c).

The motivation for each of the problems depends, intuitively, on the interpretation of the
initial counter, and on the stage at which the equivalent DOCN is computed, as we now
demonstrate.

Consider an OCN modelling an access-control handler, where the counter corresponds to
the number of access requests in a queue. Since the controller is deployed with an empty
queue, an equivalent DOCN would need to be equivalent only on an initial 0 counter, so
we would want to solve 0-Det.
Consider an OCN modelling resource handler, where the counter corresponds to the
available resources. When searching for a deterministic controller, we may initialize it
with some fixed amount of resources to start with, hence ∃-Det is suitable.
Now consider the task of devising an OCN for the resource handler above, so that it can
be deployed in many different concrete settings as a DOCN, but where each setting has
its own amount of available initial resources. In order to design a single OCN that can
be determinized to appropriate DOCNs, we would want to solve ∀-Det.
Finally, Uniform-Det is of interest in any setting that is exactly modelled as an OCN,
but needs to be determinized, e.g., when the resource handler above needs to be deployed
but the initial resources depend on the system’s load.

Paper Organization and Contribution

In this paper, we study the decidability of the determinization problems derived from the
four notions. In Section 3 we examine the relation between the notions, and demonstrate that
no pair of them coincide. In Section 4 we show that 0-Det,∃-Det, and ∀-Det are generally
undecidable. For Uniform-Det, we are not able to resolve decidability, but we do show an
Ackermannian lower bound.

In order to recover some decidability, we turn to the fragment of OCNs over a singleton
alphabet (1-dimensional VASS). There, we show that 0-Det,∃-Det, and ∀-Det become trivial
(i.e., they always hold), whereas Uniform-Det becomes decidable. We conclude with a
discussion and future work in Section 6.

Technically, our undecidability results for general alphabets use reductions from two
different models – one from the model of Lossy Counter Machines [23, 27], and one from
a careful analysis of recent results about OCNs [2]. For the singleton-alphabet case, the
decidability of Uniform-Det requires some machinery from the theory of low-dimensional
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VASS and Presburger Arithmetic, as well as some basic linear algebra and number theory.
Our main contribution in this part is the introduction and analysis of the Minimal Counter
Relation (MCR) – a sequence characterizing the minimal counter needed to accept each
length of words. We characterize Uniform-Det using this sequence, and we suspect this
sequence may prove useful in other contexts.

Related Work

The determinization problem we consider in this work assumes that the deterministic target
model is also that of OCNs. An alternative approach to simplifying a nondeterministic
OCN is to find an equivalent deterministic finite automaton, if one exists. This amounts
to deciding whether the language of an OCN is regular. This problem was shown to be
undecidable for OCNs in [32]. Interestingly, the related problem of regular separability was
shown to be in PSPACE in [10]. A related result in [11] describes a determinization procedure
for “unambiguous blind counter automata” over infinite words, to a Muller counter machine.

From a different viewpoint, determinization is a central problem in quantitative models,
which can be thought of as counter automata where the counter value is the output, rather
than a Boolean language acceptor. The decidability of determinization for Tropical Weighted
Automata is famously open [9, 20] with only partial decidable fragments [20, 21]. A slightly
less related model is that of discounted-sum automata, whose determinization has intricate
connections to number theory [7].

Determinization of computational models is closely related to various notions of semantic
equivalence. The three main concepts scrutinized in this regard are, from most restrictive to
least restrictive: bisimulation, simulation and trace inclusion. Each of the three notions has
strong and weak variants. Strong bisimulation was shown to be PSPACE-complete both for
OCNs and OCAs [5, 6], while weak bisimulation was shown to be undecidable [23]. Conversely,
trace inclusion, both weak and strong, is undecidable both for OCNs and OCAs [15, 31].
Finally, simulation, both weak and strong, is undecidable for OCAs [17], but decidable for
OCNs [1, 18, 19, 28, 30].

2 Preliminaries

A one-counter net (OCN) is a finite automaton whose transitions are labelled both by letters
and by integer weights. Formally, an OCN is a tuple A = ⟨Σ, Q, s0, δ, F ⟩ where Σ is a finite
alphabet, Q is a finite set of states, s0 ∈ Q is the initial state, δ ⊆ Q× Σ × Z ×Q is the set
of transitions, and F ⊆ Q are the accepting states. We say that an OCN is deterministic if
for every s ∈ Q, σ ∈ Σ, there is at most one transition (s, σ, e, s′) for some e ∈ Z and s′ ∈ Q.

For a transition t = (s, σ, e, s′) ∈ δ we define eff(t) = e to be its (counter) effect.
A path in the OCN is a sequence π = (s1, σ1, e1, s2)(s2, σ2, e2, s3) . . . (sk, σk, ek, sk+1) ∈ δ∗.

Such a path π is a cycle if s1 = sk+1, and is a simple cycle if no other cycle is a proper
infix of it. We say that the path π reads the word σ1σ2 . . . σk ∈ Σ∗. The effect of π is
eff(π) =

∑k
i=1 ei, and its nadir, denoted nadir(π), is the minimal effect of any prefix of π

(note that the nadir is non-positive, since eff(ϵ) = 0).
A configuration of an OCN is a pair (s, v) ∈ Q×N comprising a state and a non-negative

integer. For a letter σ ∈ Σ and configurations (s, v), (s′, v′) we write (s, v) σ−→ (s′, v′) if there
exists d ∈ Z such that v′ = v + d and (s, σ, d, s′) ∈ δ.

A run of A from initial counter c on a word w = σ1 · · ·σk ∈ Σ∗ is a sequence of
configurations ρ = (q0, v0), (s1, v1), . . . , (sk, vk) such that v0 = c and for every 1 ≤ i ≤ k

it holds that (si−1, vi−1) σi−→ (si, vi). Since configurations may only have a non-negative
counter, this enforces that the counter does not become negative.

CONCUR 2022



18:4 Determinization of One-Counter Nets

Note that every run naturally induces a path in the OCN. For the converse, a path π

induces a run from initial counter c iff c ≥ −nadir(π) (indeed, the minimal initial counter
needed for traversing a path π is exactly −nadir(π)). We extend the definitions of effect and
nadir to runs, by associating them with the corresponding path.

The run ρ is accepting if sk ∈ F , and we say that A accepts w with initial counter c if
there exists an accepting run of A on w from initial counter c. We define L(A, c) = {w ∈ Σ∗ :
A accepts w with initial counter c}, and we define the complement of a language L(A, c) to
be L(A, c) = Σ∗ \ L(A, c). Observe that OCNs are monotonic – if A accepts w from counter
c, it also accepts it from every c′ ≥ c. Thus, L(A, c) ⊆ L(A, c′) for c′ ≥ c.

3 OCN Determinization

In this section we examine the relationship between the four determinization notions. For
brevity, we use the same term for the decision problems and the properties they represent,
e.g., we say “A is 0-Det” if A has an equivalent DOCN under 0-Det.

We first examine how the definitions compare in their strictness:

▶ Observation 1. Consider an OCN A. If A is Uniform-Det, then A is ∀-Det, if A is
∀-Det, then A is 0-Det, and if A is 0-Det, then A is ∃-Det.

Next, we prove that none of the definitions coincide. Following Observation 1, it suffices to
prove the following.

▶ Lemma 2. There exist OCNs A,B, C such that A is ∃-Det but not 0-Det, B is 0-Det but
not ∀-Det, and C is ∀-Det but not Uniform-Det.

Proof (sketch). The OCNs A,B, C are depicted in Figure 1. We demonstrate the intuition
on C, see Appendix A.1 for the complete proof. To show that C is ∀-Det, we observe that for
initial counter 0, we can omit the (#,−1) transition, thus obtaining an equivalent DOCN.
For initial counter c ≥ 1 we have that L(C, c) = # · {σ1, σ2}∗ is regular and thus has a DOCN.

We claim C is not Uniform-Det. An equivalent DOCN D with k states, starting from
initial counter 0, must accept the word #σk+1

1 σk+1
2 . It is easy to show that upon reading

σk+1
2 it must make a negative cycle. This, however, causes some word of the form #σk+1

1 σm
2

not to be accepted even with counter 1, which means L(D, 1) ̸= L(C, 1). ◀

N : σ1, 0

σ2, 1

σ3,−1

σ1, 1

σ2, 0

σ3,−1

(a) Gadget OCN N .

N
#,−5#, 0

σ1, 0

σ2, 0

σ3, 0

(b) ∃-Det but not 0-Det.

N
#,−1

(c) 0-Det but not ∀-Det.

#,−1#, 0
σ1, 0

σ2, 0

σ1, 1

σ2,−1

(d) ∀-Det but not Uniform-Det.

Figure 1 Examples separating the determinization notions.
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4 Lower Bounds for Determinization

In this section we prove lower bounds for the four determinization decision problems. We
show that 0-Det, ∀-Det, and ∃-Det are undecidable, while for Uniform-Det we show an
Ackermannian lower bound, and its decidability remains an open problem.

We start by introducing Lossy Counter Machines (LCMs) [23, 27], from which we will
obtain some undecidability results. Intuitively, an LCM is a Minsky counter machine, whose
semantics are such that counters may arbitrarily decrease at each step. Formally, an LCM is
M = ⟨Loc,Z,∆⟩ where Loc = {ℓ1, . . . , ℓm} is a finite set of locations, Z = (z1, . . . , zn) are n
counters, and ∆ ⊆ Loc × OP(Z) × Loc, where OP(Z) = Z × {++,−−,= 0?}.

A configuration of M is ⟨ℓ,a⟩ where ℓ ∈ Loc and a = (a1, . . . , an) ∈ NZ. There is a
transition ⟨ℓ,a⟩ → ⟨ℓ, b⟩ if there exists op ∈ OP and either:

op = ck++ and bk ≤ ak + 1 and bj ≤ aj for all j ̸= k, or
op = ck−− and bk ≤ ak − 1 and bj ≤ aj for all j ̸= k, or
op = ck= 0? and bk = ak = 0 and bj ≤ aj for all j ̸= k.

Since we only require ≤ on the counter updates, the counters nondeterministically decrease
at each step.

A run of M is a finite sequence ⟨ℓ1,a1⟩ → ⟨ℓ2,a2⟩ → . . . → ⟨ℓr,ar⟩. Given a config-
uration ⟨ℓ,a⟩, the reachability set of ⟨ℓ,a⟩ is the set of all configurations reachable from
⟨ℓ,a⟩ via runs of M. In [27], it is shown that the problem of deciding whether the reach-
ability set of a configuration is finite, is undecidable. A slight modification of this problem
(see Appendix A.2) yields the following.

▶ Lemma 3. The following problem, dubbed 0-Finite-Reach, is undecidable: Given an
LCM M and a location ℓ0, decide whether the reachability set of ⟨ℓ0, (0, . . . , 0)⟩ is finite.

4.1 Undecidability of 0-Det

We show that 0-Det is undecidable using a reduction from 0-Finite-Reach. Intuitively,
given an LCM M and a location ℓ0, we construct an OCN A that accepts, from initial
counter 0, all the words that do not represent runs of M from ⟨ℓ0, (0, . . . , 0)⟩.

In order for the OCN A to verify the illegality of a run, it guesses a violation in it. Control
violations, i.e., illegal transitions between locations, are easily checked. In order to capture
counter violations, A must find a counter whose value in the current configuration is smaller
than in the next iteration (up to ±1 for ++ and −− commands). This, however, cannot be
done by an OCN, since intuitively an OCN can only check that the later number is smaller,
by first incrementing the counter and then decrementing it. To overcome this, we encode
runs in reverse, as follows.

Consider an LCM M = ⟨Loc,Z,∆⟩ with Loc = {ℓ1, . . . , ℓm} and Z = (z1, . . . , zn). We
encode a configuration ⟨ℓ, (a1, . . . , an)⟩ over the alphabet Σ = Loc ∪ Z as ℓ · za1

1 · · · zan
n ∈ Σ∗.

We then encode a run by concatenating the encoding of its configurations.
For a word w = σ1 · · ·σk ∈ Σ∗, let wR = σk · · ·σ1 be its reverse, and for a language

L ⊆ Σ∗, define its reverse to be LR = {wR : w ∈ L}.
We now define LM,ℓ0 = {w ∈ Σ∗ : w encodes a run of M from ⟨ℓ0, (0, . . . , 0)⟩}.
We are now ready to describe the construction of A.

▶ Lemma 4. Given an LCM M and a location ℓ0, we can construct an OCN A such that
L(A, 0) = LR

M,ℓ0
.

Proof sketch: We construct A such that it accepts a word w iff wR does not describe a run
of M from ⟨ℓ0, (0, . . . , 0)⟩.

CONCUR 2022



18:6 Determinization of One-Counter Nets

As mentioned above, A reads w and guesses when a violation would occur, where control
violations are relatively simple to spot, by directly encoding the structure of M in A.

In order to spot counter violations, namely two consecutive configurations ⟨ℓ, (a1, . . . , an)⟩
and ⟨ℓ′, (a′

1, . . . , a
′
n)⟩ such that some a′

i is too large compared to its counterpart ai (how
much larger is “too large” depends on M’s transitions), A reads a configuration ℓ · za1

1 · · · zan
n

and increments its counter to count up to ai, if it guesses that zi is the counter that violates
the transition. Assume for simplicity that the command in the transition does not involve
counter zi, then upon reading the next configuration ℓ′ · zb1

1 · · · zbn
n , A decrements its counter

while reading zi, so that the counter value is ai − bi. Then, A takes another transition with
counter value −1. Since the configuration is reversed, if this is indeed a violation, then
ai > bi (since the counters are lossy), so ai − bi − 1 ≥ 0, and A accepts. Otherwise, ai ≤ bi,
so this run of A cannot proceed.

In Appendix A.3 we give the complete details of the construction. ◀

The correctness of the construction is proved in the following lemma.

▶ Lemma 5. Consider an LCM M and a location ℓ0, and let A be the OCN constructed in
Lemma 4. Then (M, ℓ0) is in 0-Finite-Reach iff A is 0-Det.

Proof sketch: Assume the reachability set of ⟨ℓ0, (0 . . . 0)⟩ is finite under M. Then there
exists an upper bound M ∈ N of all counter values in all legal runs of M from ⟨ℓ0, (0 . . . 0)⟩.
A’s behaviour can then be fully captured by a DFA D with the set of all states of the form
⟨ℓ, a1 . . . ak, b1 . . . bk⟩ such that ℓ is a state in M, k the number of counters, the values of
a1 . . . ak represent counter values of the “current” configuration already fully known, and
the values of b1 . . . bk represent counter values of the “previous” configuration, that D is
in the process of accumulating. In addition, all values of a1 . . . ak, b1 . . . bk are bounded by
M . by assigning the only accepting state of D as qf = ⟨ℓ0, 0 . . . 0, 0 . . . 0⟩, and addressing
several minor technical nuances, we can conclude L(D) = L(A, 0), therefore both L(A, 0)
and L(A, 0) are regular. Specifically, A is 0-Det.

As for the other direction, assume the reachability set of ⟨ℓ0, (0 . . . 0)⟩ under M is infinite,
and assume by way of contradiction that A has a deterministic equivalent D′. Note that for
every word u ∈ Σ∗, the run of D′ does not end due to the counter becoming negative, since
we can always concatenate some λ ∈ Σ∗ such that uλ does not correspond to a run, and is
hence accepted by D′, so the run on u must be able to continue reading λ.

Since the reachability set of ⟨ℓ0, (0 . . . 0)⟩ is infinite, there exists a counter of M, w.l.o.g
z1, that can take unbounded values (in different runs). Let w be a word corresponding to
a run of M that ends with the value of z1 being N for some large N . We can then write
w = a∗

k · · · aN
1 ℓa

∗
k · · · aN ′

1 ℓ′ρ, such that ρ represents the reverse of a legal prefix of a run of M.
D′ necessarily goes through a cycle β when reading aN

1 . We pump the cycle k times until
the word obtained, w′, represents an illegal run due to the difference between N + k · |β|
and N ′. w′ should then be accepted, but is in fact rejected, either due to the run ending
successfully in the same non accepting state as w, or halting ahead of time due to a counter
violation. Either way, that is a contradiction.

In Appendix A.4 we give the formal construction of D, and a detailed correctness proof. ◀

Combining Lemmas 4 and 5, we conclude the following.

▶ Theorem 6. 0-Det is undecidable for OCNs over a general alphabet.



S. Almagor and A. Yeshurun 18:7

4.2 Undecidability of ∀-Det and of ∃-Det

The undecidability of ∀-Det follows from that of 0-Det.

▶ Theorem 7. ∀-Det is undecidable.

Proof. We show a reduction from 0-Det. Given an OCN A = ⟨Σ, Q, s0, δ, F ⟩, we con-
struct an OCN B = ⟨Σ′, Q′, q0, δ

′, F ′⟩ as illustrated in figure 2. Formally, the states of
B are Q′ = Q ∪ {q0, qAll}, the initial state is q0, its alphabet is Σ′ = Σ ∪ {#} such
that # /∈ Σ, its accepting states are F ′ = F ∪ {qAll}, and its transition relation is
∆′ = ∆ ∪ {(q0,#,−1, qAll), (q0,#, 0, s0)} ∪ {(qAll, σ, 0, qAll) : σ ∈ Σ′}.

We claim that A is 0-Det iff B is ∀-Det. For the first direction, assume A is 0-Det. Thus,
L(B, 0) = # · L(A, 0) has an equivalent DOCN. Since L(B, k) = #Σ′∗ (which has a DOCN)
for all k ≥ 1, B is ∀-Det.

Conversely, assume A is not 0-Det. Since the transition (q0,#,−1, qAll) cannot be taken
by B with initial counter value 0, L(B, 0) = {#w}w∈L(A,0), hence B is not 0-Det (since a
DOCN for L(B, 0) would easily imply a DOCN for L(A, 0)). Thus, B is not ∀-Det. ◀

q0 qAllA
#,−1#, 0

Σ ∪ {#}, 0

Figure 2 The OCN B in Theorem 7.

q1 q2

$,-1

%,0
#,1

Σ, 0

$,0

%,-1
#,1

Σ, 0

Figure 3 Gadget OCN G for Theorem 9.

Next, we show the undecidability of ∃-Det with a reduction from the halting problem
for two-counter (Minsky) machines (2CM). Technically, we rely on a construction from [2],
which reduces the latter problem to the “parameterized universality” problem for OCN. For
our purpose, the reader need not be familiar with Minsky Machines, as it suffices to know
that their halting problem is undecidable [24]. We start the reduction with the following
property.

▶ Theorem 8 ([2]). Given a 2CM M, we can construct an OCN B over alphabet Σ ∪ {#}
with # /∈ Σ such that the following holds:

If M halts, there exists c ∈ N such that L(B, c) = Σ∗,
If M does not halt, then for every c ∈ N there exists a word wc ∈ (Σ ∪ {#})∗ such that
every run of B on wc enters a state from which reading any word of the form #∗ does
not lead to an accepting state.

We can now proceed with the reduction to ∃-Det.

▶ Theorem 9. ∃-Det is undecidable.

Proof. We reduce the halting problem for 2CM to ∃-Det. Given a 2CM M, we start by
constructing the OCN B as per Theorem 8. We augment B to work over the alphabet
Σ′ = Σ ∪ {#, $,%}, where $,% /∈ Σ, by fixing the behaviour of $ and % to be identical to #.

Next, consider the gadget OCN G depicted in Figure 3. A similar argument to the proof
of Lemma 2 (specifically, Figure 1a), shows that G does not have an equivalent DOCN for
any initial counter c.

We now obtain a new OCN A by taking the union of B and G (i.e. placing them “side by
side”). We claim that M halts iff A is ∃-Det.

If M halts, by Theorem 8 there exists an initial counter c such that L(B, c) = {Σ ∪ {#}}∗.
Since in B the letters $ and % behave like #, we have that L(A, c) = Σ′∗, so A is ∃-Det.

CONCUR 2022



18:8 Determinization of One-Counter Nets

If M does not halt, then again by Theorem 8, for every c ∈ N there exists a word wc such
that wc /∈ L(B, c), and such every run of B on wc enters a state from which reading #∗ (and
hence any word from {#,% $}∗) does not lead to an accepting state. Now assume by way of
contradiction that A has a deterministic equivalent D with k states for initial counter c. A
accepts wc with the runs of G, since wc does not contain $ or %. Thus, D accepts wc with
initial counter 0. In addition, A, and therefore D, both accept w′

c = wc#k+1−j%k+1$k+1

where j is the number of occurrences of #’s in wc. Using the fact that G does not have an
equivalent DOCN, we can now reach a contradiction with similar arguments as the proof of
Lemma 2 (Figure 1a). ◀

4.3 A Lower Bound for Uniform-Det

Unfortunately, as of yet we are unable to resolve the decidability of Uniform-Det. In this
section, we show that Uniform-Det is Ackermann-hard, and in particular non primitive
recursive.

▶ Theorem 10. Uniform-Det is Ackermann-hard.

Proof. We show a reduction from the OCN universality problem with initial counter 0,
shown to be Ackermann-hard in [16].

Consider an OCN A = ⟨Σ, Q, s0, δ, F ⟩. We construct an OCN B = ⟨Σ′, Q′, q0, δ
′, F ′⟩ as

depicted in Figure 4 (for #, $ /∈ Σ).

q0 q1A

qAll

#, 0

#,−1

$, 0

#, 0

$, 0

Σ ∪ {#}, 0

Σ ∪ {$,#}, 0

Figure 4 The OCN B in the proof of Theorem 10.

We claim that L(A, 0) = Σ∗ iff B is Uniform-Det.
Assume L(A, 0) = Σ∗, then L(B, c) = {#w : w ∈ Σ′∗} for every counter value c. Indeed,

every word starting with # can be accepted by B with initial counter value 0 either through
A, if it does not contain $, or in qAll if it does. However, every word not starting with #
cannot be accepted by B for any initial counter value. Thus, B is Uniform-Det.

Conversely, if L(A, 0) ̸= Σ∗, let w /∈ L(A, 0). Assume by way of contradiction that there
exists a deterministic OCN D that is uniform-equivalent to B.

#w /∈ L(B, 0), so #w /∈ L(D, 0). Moreover, the run of D on #w cannot end in a non-
accepting state, since #w ∈ L(B, 1) = L(D, 1). Thus, the run of D on #w terminates due
to the counter becoming negative. However, this is a contradiction, since #w$ ∈ L(B, 0) =
L(D, 0). We conclude that B is not Uniform-Det. ◀

5 Singleton Alphabet

We now turn to study OCNs over a singleton alphabet denoted Σ = {σ} throughout.
We start by briefly introducing Presburger Arithmetic (PA) [13, 26]. We refer the reader

to [13] for a detailed survey. PA is the first-order theory of integers with addition and order
FO(Z, 0, 1,+, <), and it is a decidable logic.
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There is an important connection between PA and semilinear sets: for a basis vector
b ∈ Zd and a set of periods P = {p1 . . .pk} ⊆ Zd, we define the linear set Lin(b, P ) =
{b + λ1p1 + . . .+ λkpk : λi ∈ N for all 1 ≤ i ≤ k}. Then, a semilinear set is a finite union of
linear sets.

A fundamental theorem about PA [12] shows that that for every PA formula φ(x) with
free variables x, the set [[φ]] = {a : a |= φ(x)} is semilinear, and the converse also holds –
every semilinear set is PA-definable.

Consider an OCN A over Σ = {σ}. For every word σn, either σn is not accepted by A
for any counter value, or there exists a minimal counter value c such that σn ∈ L(A, c′) iff
c′ ≥ c. We can therefore fully characterize the language of A on any counter value using the
Minimal Counter Relation1 (MCR), defined as

MCR(A) =
{

(n, c) ⊆ N2, c is the minimal integer such that σn ∈ L(A, c)
}
.

We start by showing that MCR(A) is semilinear.

▶ Lemma 11. Consider an OCN A over Σ = {σ}, then MCR(A) is effectively semilinear.

Proof. We prove the claim using well-known and deep results about low-dimensional VASS.
A 2D-VASS is (for our purposes2) identical to an OCN over Σ = {σ}, but has two counters
(both need to be kept non-negative). Formally, a 2D VASS is V = ⟨Q, s0, δ, F ⟩, where
δ ⊆ Q× Z2 ×Q. The semantics are similar to OCNs, acting separately on the two counters,
as follows. A configuration of V is (q, (c1, c2)) where q ∈ Q and (c1, c2) ∈ N2 are the counter
values, and a run is a sequence of configurations (q1, (c1

1, c
1
2)), . . . , (qk, (ck

1 , c
k
2)) that follow

according to δ, i.e., for every 1 ≤ i < k we have that (qi, (ci+1
1 − ci

1, c
i+1
2 − ci

2), qi+1) ∈ δ. We
denote (q1, (c1

1, c
1
2)) V−→ (qk, (ck

1 , c
k
2)) if such a run exists.

In [22], it is proved that given a 2D-VASS, we can effectively compute a PA for-
mula ψReach(q, x1, x2, q

′, y1, y2) such that [[ψReach(q, x1, x2, q
′, y1, y2)]] = {(q, c1, c2, q

′, d1, d2) :
(q, c1, c2) V−→ (q′, d1, d2)} (the states q, q′ are encoded as variables taking values in
{1, . . . , |Q|}).

Observe that ψReach does not encode information about the length of the run, whereas
MCR does require it. On the other hand, ψReach works for 2D-VASS, whereas we only need
an OCN (i.e., 1D-VASS). We therefore proceed by first introducing the notion of Linear
Path Schemes [22, 4]. Consider the transitions of A as an alphabet (i.e., each transition
(q, σ, v, p) ∈ δ is a letter). A Linear Path Scheme is a regular expression of the form
ρ = α0β

∗
1α1 · · ·β∗

kαk where the αi and βi are words in δ∗, such that each αi represents a path
in A, and each βi represents a cycle. The length of ρ is defined as |α1|+ |β1|+ . . .+ |αk|+ |βk|,
i.e., the length of the underlying path, excluding repetitions of the βi.

The following result can be obtained from [4] by using 2D-VASS as a proxy, as we do
in Lemma 11, or directly from [2].

▶ Lemma 12. Let A be an OCN over singleton alphabet, then there exists a finite set S of
linear path schemes such that the following holds:
1. Every ρ ∈ S has length at most 2|Q|2.
2. For every two configurations (p, c1), (q, c2) ∈ Q× N and every n ∈ N, if there is a run of

A on σn from (p, c1) to (q, c2), then there is such a run of the form ρ ∈ S.

1 We remark that MCR(A) is in fact the graph of a partial function. For convenience of working with PA,
we stick with the relation notation.

2 Usually, OCNs are defined as 1D-VASS, not the other way around.
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As a consequence of Lemma 12, in order to decide if σn is accepted in A, it is enough to
consider runs that are linear path schemes of length at most 2|Q|2.

Consider a linear path scheme ρ = α0β
∗
1α1β

∗
2α2 · · ·α∗

k. We now construct a formula
φρ(n, c) which intuitively states that the word σn has a run of the form ρ starting with initial
counter value c. This is defined as follows.

φρ(n, c) :=∃e1 · · · ek, correct-lengthρ(n, e1 · · · ek) ∧ sufficient-counterρ(c, e1 · · · ek)

Intuitively, φρ(n, c) states that there exist numbers e1 · · · ek such that the concrete run
α0β

e1
1 α1β

e2
2 α2 · · ·αk takes exactly n transitions, and that starting the run with initial counter

c is sufficient to complete the run.
Formally, we define the sub-formulas as follows:
correct-lengthρ(n, e1 · · · ek) := |α0| + e1 · |β1| + |α1| + · · · + |αk| = n.

sufficient-counterρ(c, e1 · · · ek) :=
k∧

i=0

c + eff(α0) + e1 · eff(β1) + · · · + ei · eff(βi) ≥ nadir(αi)

∧
k∧

i=1

(c + eff(α0βe1
1 · · · αi−1) ≥ nadir(βi) ∧ c + eff(α0βe1

1 · · · αi−1) + (ei − 1)eff(βi) ≥ nadir(βei

i ))

The correctness of correct-lengthρ is obvious. The correctness of the formula
sufficient-counterρ(c, e1 · · · ek) is based on the observation that in order to traverse
the cycle β for e times, the counter c must be enough to traverse β once, and must be enough
so that c+ (e− 1)eff(β) ≥ nadir(β), so that the “last” time can be traversed 3. Indeed, if the
counter becomes negative during some iteration of the cycle, it will be even “more” negative
at the last iteration. See [4] for an analogous proof.

We can now readily obtain the formula θ(n, c) which captures MCR(A) as follows: define
P ⊆ S to be the set of linear path schemes that start in q0 and end in an accepting state,
then

θ(n, c) :=
∨

ρ∈P

φρ(n, c) ∧ ∀c′ < c,
∧

ρ∈P

¬φρ(n, c′).

Indeed, θ(n, c) is satisfied iff there exists some linear path scheme ρ ∈ P that can be traversed
with length n and counter value c, and there is no smaller counter for which this holds.

Note that we can obtain θ(n, c) from A in polynomial space, by generating all possible
linear path schemes of length 2|Q|2 and constructing the respective subformulas. In particular,
the length of θ(n, c) is single exponential in the description of A. Moreover, θ(n, c) has
two quantifier alternations – the disjunction is an existential formula, and the conjunction
of negations can be viewed as a universal formula. Since quantifier alternation counting
assumes starting with an existential quantifier, the universal formula is counted as two
alternations. ◀

3 This argument assumes strictly positive exponents. This assumption is safe, since we can define a set
S′ that contains all linear path schemes obtained by possibly omitting any number of cycles in any of
the linear path schemes in S. Every legal path in S can then be represented by a path in S′ whose
exponents are all strictly positive. By working with S′ we then circumvent this issue. Note that |S′| is
still single-exponential in |A|.
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5.1 Decidability of Uniform-Det over Singleton Alphabet
In this subsection we prove that Uniform-Det is decidable for OCN over a singleton alphabet,
and we can construct an equivalent DOCN, if one exists. Our characterization of Uniform-Det
is based on its MCR, and specifically on two notions for subsets of N2 (applied to MCR).
Consider a set S ⊆ N2. We say that S is increasing if it is the graph of an increasing partial
function. That is, for every (n1, c1), (n2, c2) ∈ S, if n1 ≤ n2 then c1 ≤ c2, and if n1 = n2
then c1 = c2. Next, we say that S is (N, k, d)-Ultimately Periodic for N, k, d ∈ N if for every
n ≥ N, (n, x) ∈ S iff (n+ k, x+ d) ∈ S. We say that S is (effectively) ultimately periodic if
it is (N, k, d)-ultimately periodic for some (effectively computable) parameters N, k, d ∈ N.

The main technical result of this section is the following.

▶ Theorem 13. Consider an OCN A over Σ = {σ}, then the following are equivalent:
1. MCR(A) is increasing.
2. MCR(A) is increasing and effectively ultimately periodic.
3. A is Uniform-Det, and we can effectively compute an equivalent DOCN.
We prove Theorem 13 in the remainder of this section. We start with a technical lemma
concerning the implication 1 =⇒ 2.

▶ Lemma 14. Consider an effectively semilinear set S ⊆ N2. If S is increasing, then S is
effectively periodic.

Proof. Since S is effectively semilinear, then by [12] we can write S =
⋃M

i=1 Lin(bi, Pi) where
bi ∈ N2 and Pi ⊆ N2 for every 1 ≤ i ≤ M . Moreover, by [12, 13], we can assume that each
Pi is a linearly-independent set of vectors.

All periods are singletons. We show that since S is increasing, then |Pi| ≤ 1 for every
1 ≤ i ≤ M . Assume (n1, c1), (n2, c2) ∈ Pi, and denote bi = (a, b), then by the definition of a
linear set, for every λ1, λ2 ∈ N we have that (a, b)+λ1(n1, c1)+λ2(n2, c2) ∈ S. Setting λ1 = 0
and λ2 = n1, we have that (a+n1n2, b+n1c2) ∈ S, and setting λ1 = n2 and λ2 = 0, we have
that (a+ n2n1, b+ n2c1) ∈ S. Observe that a+ n1n2 = a+ n2n1, and since S is increasing,
this implies b+ n1c2 = b+ n2c1, that is n1c2 = n2c1. It follows that n2(n1, c1) = n1(n2, c2),
but Pi is linearly independent, so it must hold that (n1, c1) = (n2, c2), so |Pi| ≤ 1.

Thus, we can in fact write S =
⋃M

i=1 Lin(bi, {pi}) where bi,pi ∈ N2 (note that if Pi = ∅
we now take pi = (0, 0)). For every 1 ≤ i ≤ M , denote bi = (ai, bi) and pi = (pi, ri).

All Periods have the same first component. We now claim that we can restrict all
periods to have the same first component. That is, we can compute γ ∈ N and write
S =

⋃K
j=1 Lin((αj , βj), {(γ, ηj)}).

Indeed, take γ = lcm({pi}M
i=1), we now “spread” each linear component

Lin((ai, bi), {(pi, ri)}) by changing the period to (γ, γ
pi
ri), and compensating by adding

additional linear sets with the same period and offset basis, to capture the “skipped” ele-
ments. In Appendix A.5 we describe the construction in general, and illustrate with an
example.

All Periods are the same. Finally, we claim that we now have ηi = ηj for every 1 ≤ i, j ≤ K,
so that in fact all the periods are the same vector (γ, η). Indeed, Assume by way of
contradiction that ηj < ηi for some 1 ≤ i, j ≤ K. Now, let y ∈ N be large enough so that
αi ≤ αj +y ·γ, and let x ∈ N be large enough so that (given y): βi +x ·ηi > βj +y ·ηj +x ·ηj .
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18:12 Determinization of One-Counter Nets

We now have that (αi, βi) + x · (γ, ηi) ∈ S and (αj , βj) + (x + y) · (γ, ηj) ∈ S, which
contradicts S being increasing, since αi ≤ αj + y · γ and therefore αi +x · γ ≤ αj + (y+x) · γ,
but also βi + x · ηi > βj + (y + x) · βj .

Thus, we can now write S =
⋃K

j=1 Lin((αj , βj), {(γ, η)})

S is effectively ultimately periodic. Let αmax = max{αj}K
j=1, we claim that S is

(αmax, γ, η)-ultimately periodic. Let n ≥ αmax, then (n, c) ∈ S for some c ∈ N iff
(n, c) = (αi + γ · m,βi + η · m) for some 1 ≤ i ≤ K and m ∈ N. This happens iff
(n+ γ, c+ η) ∈ S, since (n+ γ, c+ η) = (αi + γ · (m+ 1), βi + η · (m+ 1)).

Finally, observe that all the constants in the proof are effectively computable. ◀

We now turn to the implication 2 =⇒ 3 of Theorem 13.

▶ Lemma 15. Consider an OCN A over Σ = {a}. If MCR(A) is increasing and ultimately
periodic, then A is Uniform-Det, and we can effectively compute it.

Proof. Assume MCR(A) is (N, k, d)-ultimately periodic. We start by completing MCR(A)
to a (full) function f : N → N as follows: set f(0) = 0, and for n > 0 inductively define
f(n) = c if (n, c) ∈ MCR(A), or f(n) = f(n− 1) otherwise. That is, f matches MCR(A) on
its domain, and remains fixed between defined values. Observe that there is no violation
in defining f(0) = 0, since if (0, c) ∈ MCR(A), then c = 0, as the empty word requires a
minimal counter of 0 to be accepted.

We now use f to obtain a DOCN D as depicted in Figure 5. Formally, we construct
D = ⟨{σ}, Q, q0, δ, F ⟩ as follows.

Q = {qi}N+k−1
i=1 .

δ = {(qi, a, f(i) − f(i+ 1), qi+1)}N+k−2
i=1 ∪ {(qN+k−1, a, f(N) + d− f(N + k − 1), qN )}.

F = {qi : (i, f(i)) ∈ MCR(A), 1 ≤ i ≤ N + k − 1}.

Observe that since f is increasing (as MCR(A) is increasing), the weight of all transitions
in D is non-positive.

We claim that for every c, L(A, c) = L(D, c). To show this, observe that for every n ∈ N
we have that the sum of weights along n consecutive transitions of D (ignoring the OCN
semantics) is exactly −f(n). In particular, if σn ∈ L(A, c), then (n, c′) ∈ MCR(A) for some
c′ ≤ c and f(n) = c′. Indeed, this is trivial for n ≤ N + k − 1, and for n > N + k − 1 this
follows immediately from (N, k, d)-ultimate periodicity.

q0 q1 · · · qN−1 qN

qN+1· · ·qN+k−2qN+k−1

f(0)−f(1) f(1)−f(2) f(N−2)−f(N−1) f(N−1)−f(N)

f(N)−f(N+1)

f(N+1)−f(N+2)f(N+k−3)−f(N+k−2)f(N+k−2)−f(N+k−1)

f(N+k−1)−f(N+k)

Figure 5 An illustration of the construction method for a uniform-deterministic-equivalent of an
OCN A, given f . Accepting states are not mentioned in the illustration.

Thus, if σn ∈ L(A, c) then there exists c′ ≤ c such that (n, c′) ∈ MCR(A) it follows that
with initial counter c, D can traverse n transitions. Moreover, the state reached is accepting,
since (n, c′) ∈ MCR(A), so σn ∈ L(D, c).

Conversely, if σn ∈ L(D, c) then c ≥ f(n) and (n, f(n)) ∈ MCR(A), thus, σn ∈ L(A, c).
Finally, observe that the construction is computable given the parameters of ultimate

periodicity. ◀
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We now address the implication 3 =⇒ 1.

▶ Lemma 16. Consider an OCN A over Σ = {σ}. If A is Uniform-Det, then MCR(A) is
increasing.

Proof. Let D be a DOCN such that L(A, c) = L(D, c) for every c, and let (n1, c1), (n2, c2) ∈
MCR(A) with n1 ≤ n2. Assume by way of contradiction that c1 > c2, then σn2 ∈ L(D, c2),
but σn1 /∈ L(D, c2). It follows that the run of D on σn1 must end in a non-accepting state
starting from counter value c2 (i.e., the counter does not become negative). But then the
same run is taken from counter value c1, so σn1 /∈ L(D, c1), which is a contradiction. ◀

By Lemma 11, MCR(A) is semilinear. Thus, if MCR(A) is increasing, then by Lemma 14
it is also effectively ultimately periodic. This completes the implication 1 =⇒ 2, and the
implications 2 =⇒ 3 and 3 =⇒ 1 are immediate from Lemmas 15 and 16, respectively.
This completes the proof of Theorem 13.

Finally, we can show the decidability of Uniform-Det by combining the characterization
of Theorem 13 with the procedure of Lemma 11 and the decidability of PA [3].

▶ Theorem 17. For OCNs over singleton alphabet, Uniform-Det is decidable. Moreover, it
is in 3 − EXPSPACE.

Proof. We start by showing the decidability of Uniform-Det. Consider an OCN A. By The-
orem 13, it suffices to show that it is decidable whether MCR(A) is increasing. By Lemma 11,
we can compute a PA formula θ(n, c) such that [[θ]] = MCR(A). We now state the asser-
tion that MCR(A) is not increasing in PA as follows: χ = ∃n1, n2, c1, c2, n1 < n2 ∧ c1 >

c2 ∧ θ(n1, c1) ∧ θ(n2, c2). Since PA is decidable, we can decide whether this sentence holds.
It remains to analyze the complexity of Uniform-Det. To this end, observe that in the

proof of Lemma 11 we show that the length of θ(n, c) is single-exponential in |A| (and that
we can obtain θ(n, c) from A in polynomial space). Since PA is decidable in 2 − EXPSPACE [3],
we conclude that Uniform-Det is decidable in 3 − EXPSPACE. ◀

▶ Remark 18 (On the 3−EXPSPACE upper bound). It is easy to show that in fact θ(n, c) has at
most 3 quantifier alternations. Therefore, the upper bound can be somewhat lowered using
bounds for PA with fixed quantifier alternations [14]. However, applied to the exponential-
length formula, these bounds do not get us as low as the next “major” complexity classes
(e.g., 3 − NEXPTIME, or 2 − EXPSPACE), so Theorem 17 is stated with 3 − EXPSPACE.

While we suspect this upper bound can be lowered, deciding whether MCR(A) is increasing
seems to be a hard problem. Indeed, MCR(A) intuitively corresponds to the reachability
relation of the OCN with two additional constraints: the length of the path is fixed, and
the counter value is required to be minimal. The former constraint can be circumvented
using 2D-VASS, as we do in Lemma 11, but the latter introduces a flavour of universal
quantification. In particular, this poses a barrier to techniques attempting to reduce the
behaviour of MCR(A) to a reachability relation.

We proceed to give a lower bound on Uniform-Det (albeit far from the upper bound).

▶ Theorem 19. For OCNs over singleton alphabet, Uniform-Det is coNP-hard.

Proof. We show a reduction from the universality problem for NFAs over a singleton alphabet,
which is coNP-hard [29].

We start by describing a gadget OCN B as depicted in Figure 6. Note that B is not
Uniform-Det, since MCR(B) is not increasing. Indeed, σ is only accepted with counter 1,
whereas σσ is accepted with counter 0. Thus, (1, 1), (2, 0) ∈ MCR(B).
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q1 q2 q3 q4 q5
σ,−1σ, 0 σ, 0

Figure 6 Gadget OCN B for the reduction in Theorem 19.

We now describe the reduction. Consider an NFA A = ⟨{σ}, Q, S0, δ, F ⟩. We assume that
A is complete, i.e. that A has a (not necessarily accepting) run on every word (if A is not
complete, we add a rejecting sink state as an initial state to A).

We start by obtaining a new NFA A′ = ⟨{σ}, Q′, S0, δ
′, F ⟩ by “stretching” A threefold: we

define Q′ =
⋃

q∈Q {q, q′, q′′} and the transition relation δ′ = {(q1, σ, q
′
1), (q′

1, σ, q
′′
1 ), (q′′

1 , σ, q2) :
(q1, σ, q2) ∈ δ}. We then connect every non-accepting state q originally in A to the initial
states of the gadget OCN B, and we connect every accepting state of A′ to a gadget NFA C
that accepts exactly {σ, σσ}.

We now obtain from A′ an OCN A′′ by assigning counter updates of 0 on all transitions
except those of B.

It remains to prove that L(A) = {σ}∗ iff A′′ is Uniform-Det.
Indeed, assume L(A) = {σ}∗, then for every n ∈ N, there is an accepting run of A′′ on

σ3n from counter 0. Since we have connected every accepting state in A to the gadget C that
accepts both σ and σσ, we have that σ3n+1 and σ3n+2 are accepted from counter 0 as well.
Therefore, A′′ is universal for initial counter 0, hence it is universal for all initial counter
values, and in particular A′′ is Uniform-Det.

Conversely, if A is not universal, then there exists a word w = σn such that all runs
of A on w end in non-accepting states (and at least one such run exists, by completeness).
We then have that all successful runs of A′′ on σ3n end in non-accepting states. The words
σ3n+1, σ3n+2 can therefore only be accepted through B. By the structure of B we then
have that (3n+ 1, 1), (3n+ 2, 0) ∈ MCR(A′′), so MCR(A′′) is not increasing, and A′′ is not
Uniform-Det. ◀

5.2 Uniform-Det– Properties and Fragments
The wide complexity gap between the bounds of Theorems 17 and 19 suggest that
Uniform-Det is an intricate problem. We now turn to present several results shed some light
on the behaviour of Uniform-Det.

We start by showing that the first witness to the fact that MCR(A) is non-increasing
may be exponential in |A|. This holds when A has weights encoded in unary, and if the
weights are encoded in binary this holds already for OCNs with 3 states.

▶ Example 20. Consider the OCN A depicted in Figure 7, where k is encoded in binary.
It is not hard to verify that for 0 ≤ n ≤ k it holds that (n,min(n, k − n+ 1)) ∈ MCR(A),
but (k + 1, 0) ∈ MCR(A), since σk+1 is accepted with counter value 0 in the left component.
Thus, already for 3-state OCNs, the minimal witness for decreasing MCR can be exponential.

q1 q2 q3
σ,−k

σ, 1 σ,−1

Figure 7 Binary encoded OCN A in Example 20.
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▶ Example 21. We now describe a unary-encoded OCN whose minimal witness for decreasing
MCR is exponential. Let p1, . . . , pm be the first m prime numbers. We construct an OCN
A as a disjoint union of m cycles of lengths p1, . . . , pm, where on each cycles all transitions
have counter update −1, and all states are accepting except the initial state on each cycle.
In addition, A has another initial and accepting self loop with counter update −2.

Let M =
∏m

i=1 pi, then for every 0 ≤ n < M we have that (n, n) ∈ MCR(A), since upon
reading σn at least one cycle of length pj does not divide n and is therefore not back at its
initial state. Similarly, (M + 1,M + 1) ∈ MCR(A). However, (M, 2M) ∈ MCR(A) since σM

is only accepted in the −2 self loop. Thus, the first witness for the non-increasing MCR is
M + 1, which is exponential in |A| = O(

∑n
i=1 pi).

The next property shows that when all states are accepting, Uniform-Det becomes trivial.

▶ Theorem 22. Consider an OCN A over a singleton alphabet such that all states in A are
accepting. Then A is Uniform-Det.

Proof. We show that MCR(A) is increasing, and therefore A is Uniform-Det. Let n1, c1 ∈ N
such that (n1, c1) ∈ MCR(A), then initial counter c1 is sufficient for A to read (and hence
accept) σn1 via some run ρ. Let n2 < n1, then A reads σn2 along a prefix of ρ with initial
counter value c1, and since all states are accepting, c1 is sufficient to accept σn2 . Thus, if
(n2, c2) ∈ MCR(A), we have c2 ≤ c1, so MCR(A) is increasing. ◀

Our final property concerns unambiguous OCNs. An OCN A over alphabet {σ} is
unambiguous if for every n ∈ N there exists at most one accepting run of A on σn, for any
counter value c. Technically, this means that the OCN is structurally unambiguous, in that
its underlying NFA is unambiguous.

▶ Theorem 23. For unambiguous OCNs over a singleton alphabet, deciding Uniform-Det is
in PSPACE.

Proof. Let A be an unambiguous OCNs over a singleton alphabet. In Appendix A.6 we
show that by careful analysis of the PA formula obtained as per Lemma 11, we can represent
the notion of MCR(A) being non-increasing using a PA formula ν that is a disjunction of
exponentially many existential formulas – each polynomial in the size of A. By traversing
these fragments in polynomial space, and since existential PA is decidable in NP [8], we
conclude the PSPACE bound. ◀

5.3 Triviality of 0-Det, ∀-Det, ∃-Det

We now turn to study the remaining notions of determinization for singleton alphabet.

▶ Theorem 24. Consider an OCN A over Σ = {σ}, then A is ∀-Det, 0-Det, and ∃-Det.

Proof. By Observation 1, it is enough to prove that A is ∀-Det. To this end, recall that
by Lemma 11, MCR(A) is PA definable by a formula φ(n, c).

For every initial counter value c, define φ≤c(n) =
∨c

i=0 φ(n, i), then [[φ≤c(n)]] = {n :
A accepts σn with initial counter c}. Then, we can write L(A, c) = {σm : m ∈ [[φ≤c(n)]]}.

It is folklore that a singleton-alphabet language whose set of lengths is semilinear, is
regular. We bring a short proof of this for completeness: Let S =

⋃k
i=1 Lin(ci, pi) ⊆ N be a

semilinear set (by assuming that the periods are linearly independent, it follows each has a
single number), and let LS = {σk : k ∈ S}. For every i, the language {ak|k ∈ Lin(ci, pi)}
can be defined by the regular expression ri = σci(σpi)∗. So LS is defined by the regular
expression r = r1 + · · · + rk.

Thus, for every c ∈ N, we have that L(A, c) is regular, and in particular is recognized by
a DOCN, so A is ∀-Det, and we are done. ◀
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6 Discussion and Future Work

In this work, we introduce and study notions of determinization for OCNs. We demonstrate
that the notions, while comparable in strictness, are distinct both from a conceptual perspect-
ive, having different motivations, as well as from a technical perspective: the mathematical
tools needed to analyze them vary.

The most pressing direction for future work is resolving the decidability status of
Uniform-Det. Note that Uniform-Det bears some similarities to the determinization problem
for tropical automata, in that both models essentially follow the (min,+) semantics. The
differences between the models are that (1) in OCNs we only care about Boolean acceptance,
whereas in weighted automata we need to match the function exactly, and (2) in OCNs we
have the restriction that the counter is nonnegative, unlike in weighted automata.

The determinization problem of weighted automata is famously open, and thus it could
well be that Uniform-Det is similarly difficult. It is worth noting that techniques for handling
the determinization of weighted automata in some fragments (namely unambiguous [25],
or polynomially ambiguous [20]) can be easily shown not carry over to determinization of
OCNs, meaning that besides the semantic differences, there are also technical differences in
reasoning about these models.

Another important direction of future work is tightening the complexity gap of
Uniform-Det over singleton alphabet. Our preliminary analysis in Lemma 11 suggests
that this may require a more ad-hoc technique than using Presburger Arithmetic.
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1 Parosh Aziz Abdulla and Karlis Čerāns. Simulation is decidable for one-counter nets. In
International Conference on Concurrency Theory, pages 253–268. Springer, 1998.

2 Shaull Almagor, Udi Boker, Piotr Hofman, and Patrick Totzke. Parametrized universality
problems for one-counter nets. In 31st International Conference on Concurrency Theory
(CONCUR 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

3 Leonard Berman. The complexity of logical theories. Theoretical Computer Science, 11(1):71–
77, 1980.

4 Michael Blondin, Matthias Englert, Alain Finkel, Stefan GÖller, Christoph Haase, Ranko
Lazić, Pierre Mckenzie, and Patrick Totzke. The reachability problem for two-dimensional
vector addition systems with states. Journal of the ACM (JACM), 68(5):1–43, 2021.

5 Stanislav Böhm, Stefan Göller, and Petr Jančar. Bisimilarity of one-counter processes is
pspace-complete. In International Conference on Concurrency Theory, pages 177–191. Springer,
2010.

6 Stanislav Böhm, Stefan Göller, and Petr Jančar. Bisimulation equivalence and regularity for
real-time one-counter automata. Journal of Computer and System Sciences, 80(4):720–743,
2014.

7 Udi Boker and Thomas A. Henzinger. Exact and approximate determinization of discounted-
sum automata. Log. Methods Comput. Sci., 10(1), 2014. doi:10.2168/LMCS-10(1:10)2014.

8 Itshak Borosh and Leon Bruce Treybig. Bounds on positive integral solutions of linear
diophantine equations. Proceedings of the American Mathematical Society, 55(2):299–304,
1976.

9 Adam L Buchsbaum, Raffaele Giancarlo, and Jeffery R Westbrook. On the determinization of
weighted finite automata. SIAM Journal on Computing, 30(5):1502–1531, 2000.

10 Wojciech Czerwiński and Slawomir Lasota. Regular separability of one counter automata. In
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12.
IEEE, 2017.

11 Alain Finkel, Gilles Geeraerts, J-F Raskin, and Laurent Van Begin. On the ω-language
expressive power of extended petri nets. Theoretical computer science, 356(3):374–386, 2006.

https://doi.org/10.2168/LMCS-10(1:10)2014


S. Almagor and A. Yeshurun 18:17

12 Seymour Ginsburg and Edwin H Spanier. Bounded algol-like languages. Transactions of the
American Mathematical Society, 113(2):333–368, 1964.

13 C. Haase. A survival guide to presburger arithmetic. ACM SIGLOG News, 5(3):67–82, 2018.
URL: https://dl.acm.org/citation.cfm?id=3242964, doi:10.1145/3242953.3242964.

14 Christoph Haase. Subclasses of presburger arithmetic and the weak exp hierarchy. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–10, 2014.

15 Piotr Hofman, Richard Mayr, and Patrick Totzke. Decidability of weak simulation on one-
counter nets. In 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 203–212. IEEE, 2013.

16 Piotr Hofman and Patrick Totzke. Trace inclusion for one-counter nets revisited. Theoretical
Computer Science, 735:50–63, 2018.

17 Petr Jančar, Antonín Kučera, and Faron Moller. Simulation and bisimulation over one-counter
processes. In Annual Symposium on Theoretical Aspects of Computer Science, pages 334–345.
Springer, 2000.

18 Petr Jancar and Faron Moller. Simulation of one-counter nets via colouring. In Proceedings of
Workshop Journées Systemes Infinis, pages 1–6, 1999.

19 Petr Jančar, Faron Moller, et al. Simulation problems for one-counter machine. In International
Conference on Current Trends in Theory and Practice of Computer Science, pages 404–413.
Springer, 1999.

20 Daniel Kirsten and Sylvain Lombardy. Deciding unambiguity and sequentiality of polynomially
ambiguous min-plus automata. In 26th International Symposium on Theoretical Aspects of
Computer Science. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

21 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349–373, 2004.

22 Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition systems with
states. In International Conference on Concurrency Theory, pages 402–416. Springer, 2004.

23 Richard Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297(1-3):337–354, 2003.

24 Marvin Lee Minsky. Computation: Finite and Infinite Machines. Prentice-Hall Englewood
Cliffs, 1967.

25 M. Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997.

26 Mojzesz Presburger. Uber die vollstandigkeiteines gewissen systems der arithmetik ganzer
zahlen, in welchen die addition als einzige operation hervortritt. In Comptes-Rendus du ler
Congres des Mathematiciens des Pays Slavs, 1929.

27 Philippe Schnoebelen. Lossy counter machines decidability cheat sheet. In International
Workshop on Reachability Problems, pages 51–75. Springer, 2010.

28 Jiří Srba. Beyond language equivalence on visibly pushdown automata. Logical Methods in
Computer Science, 5, 2009.

29 Larry J Stockmeyer and Albert R Meyer. Word problems requiring exponential time (prelim-
inary report). In Proceedings of the fifth annual ACM symposium on Theory of computing,
pages 1–9, 1973.

30 Patrick Totzke, Richard Mayr, Slawomir Lasota, and Piotr Hofman. Simulation problems over
one-counter nets. Logical Methods in Computer Science, 12, 2016.

31 Leslie Valiant. Decision procedures for families of deterministic pushdown automata. PhD
thesis, University of Warwick, 1973.

32 Rüdiger Valk and Guy Vidal-Naquet. Petri nets and regular languages. Journal of Computer
and system Sciences, 23(3):299–325, 1981.

CONCUR 2022

https://dl.acm.org/citation.cfm?id=3242964
https://doi.org/10.1145/3242953.3242964


18:18 Determinization of One-Counter Nets

A Proofs

A.1 Proof of Lemma 2

A.1.1 A is ∃-Det, but not 0-Det

We define formally A = ⟨{a, b, c,#}, {q0, q
′, q′′, q5}, q0, δA, {q′, q′′, q5}⟩, for:

δA = ⟨(q0,#.− 5, q5), (q0,#.0, q′), (q0,#.0, q′′), (q′, a, 1, q′), (q′, b, 0, q′)⟩ ∪
{(q′, c,−1, q′), (q′′, a, 0, q′′), (q′′, b, 1, q′′), (q′′, c,−1, q′′), (q5, a, 0, q5), (q5, b, 0, q5), (q5, c, 0, q5)}.

A is ∃-Det, since L(A, k) = Σ∗ for k ≥ 5. Now, assume by way of contradiction that A is
0-Det, and let D be a deterministic OCN with n ∈ N states that satisifies L(A, 0) = L(D, 0).
We now define w = #cn+1an+1bn+1. throughout the run of D on w, D travels through a
cycle β1 when reading an+1, and a cycle β2 when reading bn+1. If the cumulative costs
of both β1 and β2 are non-negative, then D accepts w′ = #cn+1aNbN for arbitrarily large
N ∈ N, which contradicts L(A, 0) = L(D, 0). Otherwise, the cumulative cost of either β1 or
β2 is negative, w.l.o.g β1. In this case, w′′ = #cn+1aN is not accepted by D for sufficiently
large N ∈ N, which again contradicts L(A, 0) = L(D, 0). ◀

A.1.2 B is 0-Det, but not ∀-Det

We define formally B = ⟨{a, b, c,#}, {q0, q
′, q′′}, q0, δB, {q′, q′′}⟩, for:

δB = {(q0,#.− 1, q′), (q0,#.− 1, q′′), (q′, a, 1, q′), (q′, b, 0, q′), (q′, c,−1, q′)} ∪
{(q′′, a, 0, q′′), (q′′, b, 1, q′′), (q′′, c,−1, q′′)}.

Since L(B, 0) = ∅, B is 0-Det trivially. However, since with initial counter 0, both
(q0,#. − 1, q′) and (q0,#. − 1, q′′) cannot be traversed, we have that L(B, 1) = L(A, 0).
therefore, as can be shown by an identical analysis to the one presented in Appendix A.1.1,
there is no deterministic OCN D that satisfies L(B, 1) = L(D, 0), and B is not ∀-Det. ◀

A.1.3 C is ∀-Det, but not Uniform-Det

We define formally C = ⟨{a, b,#}, {q0, q1, q2}, q0, δC , {q1, q2}⟩, for:
δC = {(q0,#.0, q1), (q0,#.− 1, q2), (q1, a.1, q1), (q1, b,−1, q1)} ∪

{(q2, a, 0, q2), (q2, b, 0, q2)}.
For initial counter 0, the transition (q0,#. − 1, q2) cannot be traversed, therefore C is

0-Det, since D = ⟨{a, b,#}, {q0, q1}, q0, {(q0,#.0, q1), (q1, a.1, q1), (q1, b,−1, q1)} , {q1}⟩ satis-
fies L(D, 0) = L(C, 0). In addition, L(C, k) = #{a, b}∗ for all k ≥ 1. Hence C is ∀-Det.

Now assume by way of contradiction that C is Uniform-Det, and let D be a deterministic
OCN with n ∈ N states that satisfies L(D, k) = L(C, k) for all k ∈ N, and let w =
#an+1bn+1 ∈ L(D, k) for all k ∈ N. D travels through a cycle β when reading bn+1. If the
cumulative weight of β is non-negative, then w′ = #an+1bN ∈ L(D, 0) for arbitrarily large
N ∈ N, which contradicts L(D, 0) = L(C, 0). If, however, the cumulative weight of β is
negative, then w′ = #an+1bN /∈ L(D, 1) for large enough N ∈ N, which in turn contradicts
L(D, 1) = L(C, 1). ◀

A.2 Proof of Lemma 3
We prove undecidability of 0-Finite-Reach using a straightforward reduction from
Finite-Reach. Given an LCM M = (Loc, C,∆) and a configuration σ0 = ⟨q, (a1, a2 . . . an)⟩,
we define an LCM M′ with a new initial state q0 that leads to q with a single path that
increments z1 a1 times, z2 a2 times, etc.
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Formally, If ai = 0 for all 0 ≤ i ≤ n, we define M′ = M and the reduction is trivial.
Otherwise, we define M′ = (Loc′, C,∆′) such that:

Loc′ = Loc ∪ {q0} ∪
{

{qi}
Σn

j=1aj−1
i=1

}
. Note that if Σn

j=1aj = 1, the only new state added
is q0.
∆′ = ∆ ∪

{
(qΣn

j=1aj−1, (zy,++), q)
}

∪ {(qi, (zx,++), qi+1)} such that y is the largest
integer 0 ≤ y ≤ n for which ay ̸= 0, and the parameter x varies such that throughout the
Σn

j=1aj transitions, each counter zi is incremented exactly ai times.

The reachability set of σ0 = ⟨q, (a1, a2 . . . an)⟩ under M is finite iff the reachability sets
of all configurations σ′

0 = ⟨q, (a′
1, a

′
2 . . . a

′
n)⟩ such that a′

i ≤ ai for all i are finite, due to
monotonicity of LCMs. This, in turn, is satisfied iff the reachability set of ⟨q0, (0, 0 . . . 0)⟩
under M′ is finite. ◀

A.3 Proof of Lemma 4
We start by describing several gadgets used in the construction.

A.3.1 Gadgets
Let M = ⟨Loc,Z,∆⟩ be an LCM, let zi ∈ Z, and let (ℓ1, op, ℓ2) ∈ ∆. Our goal is to construct
an OCN A that reads two consecutive configuration encodings - an encoding that corresponds
to a visit in ℓ2 and then an encoding that corresponds to a visit in ℓ1, such that w ∈ L(A, 0)
iff w admits a violation for counter zi.

The structure of A depends on the value of op, which can any of the following:
1. zi++, i.e., increment zi,
2. zi−−, i.e., decrement zi,
3. zj++ or zj−− for j ̸= i, which does not affect zi,
4. zi= 0?, i.e., test zi for 0.
In addition, we have a special gadget to capture violations in the initial configuration, namely
if the counter values is not 0 (recall that the initial configuration is read last, since the
encoding is reversed).

Thus, A can be any of the gadgets presented in figure 8 (depending on op).
Formally, we define A = ⟨Σ, {q0, q1, q2}, q0, δ, {q2}⟩ such that:
Σ = Loc ∪

{
{ai}zi∈Z

}
.

δ = {(q0, aj , 0, q0)}j ̸=i ∪ {(q0, ai, 1, q0)} ∪ {(q0, ℓ2, ν, q1)} ∪ {(q1, aj , 0, q1)}j ̸=i ∪
{(q1, ai,−1, q1)} ∪ {(q1, ℓ1, 0, q2)} ∪ {(q2, σ, 0, q2)}σ∈Σ.

For the initial configuration checker, we define A = ⟨Σ, {q0, q1}, q0, δ, {q1}⟩ such that:
Σ = Loc ∪ {ai}zi∈Z.
δ = {(q0, aj , 1, q0)}zj∈Z ∪ {(q0, ℓ0,−1, q1)}.

Our last gadget captures ill-formed words, regardless of counter values.
Let M = ⟨Loc,Z,∆⟩ be an LCM. we say that a word w is well formed if the following

conditions are satisfied:
1. w is of the form w = a∗

n · · · a∗
1ℓiN · · · a∗

n · · · a∗
1ℓi0 for {ℓij ∈ Loc}0≤j≤N .

2. ℓi0 = ℓ0.
3. for every 0 ≤ j ≤ N − 1, there is at least one transition in M that leads from ℓij to ℓi,j+1.

It is easy to see that well formed words are a regular language, and in particular its
complement is the desired OCN.

CONCUR 2022
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q0 q1 q2

z1, 1

z 6=1, 0

z1,−1

z 6=1, 0 Σ, 0

ℓ2, X ℓ1, 0

(a) Gadgets for scenarios 1,2, and 3, by setting X
to be −2, 0, and −1, respectively.

q0 q1 q2

z1, 1

z 6=1, 0 zj , 0 Σ, 0

ℓ2,−1 ℓ1, 0

(b) Gadget for scenario 4.

q1 q2

zj , 1

ℓ0,−1

(c) Gadget for initial configuration
(last one in the reverse encoding).

Figure 8 The violation-check gadgets for z1. By z ̸=1 we mean zj for all j ≠ 1, and by zj we
mean every counter.

A.3.2 The Main Construction
Let M = ⟨Loc,Z,∆⟩. We wish to construct an OCN A such that L(A, 0) is the set of all
words that do not represent legal runs of M.

Intuitively, we construct A through the following process:
1. Construct a flow violation checker (with regards to M), which will be part of A as a

separate component.
2. for every location ℓ ∈ Loc, add a corresponding state ℓ′ in A. all such ℓ′’s are initial states

in A, and they all have self loops with weight 0 when reading all counter accumulators
{ai}zi∈Z. Intuitively, when A visits a state ℓ′, it means that A is currently in the process
of reading a configuration in which M is in location ℓ.

3. for every transition (ℓ1, op, ℓ2) ∈ ∆, add the transition (ℓ′
2, ℓ2, 0, ℓ′

1) to A. Intuitively,
traveling this transition means that A has finished reading a configuration of location ℓ2,
and is now starting to read a configuration of location ℓ1.

4. connect an initial configuration violation checker to ℓ′
0.

5. for every transition (ℓ1, op, ℓ2) ∈ ∆, add from ℓ′
2 transitions to all relevant violation

checkers for all counters {zi}1≤i≤n.

Now let us define the construction formally. Let V (ℓi → ℓj , zm) be the violation checker
that matches the transition (ℓi, op, ℓj) for counter zm, as detailed in Appendix A.3.1. Let
Q(ℓi → ℓj , zm) be its states, let F (ℓi → ℓj , zm) be its accepting states, let δ(ℓi → ℓj , zm)
be its transitions, and λ(ℓi → ℓj , zm) ⊆ δ(ℓi → ℓj , zm) be the transitions from its initial
state. In that spirit we also define, with regards to the flow control violation checker, and
the initial configuration violation checker: Q(initial), δ(initial), λ(initial), Q(flow), δ(flow),
λ(flow). Lastly, for convenience’ sake alone we define A as having multiple initial states. this
has been done for readability, and can easily be formally circumvented by defining a single
initial state α0, along with an outgoing transition (α0, σ, z, q) for each (s0, σ, z, q) ∈ δ.

We now define A = ⟨Σ, Q, S0, δ, F ⟩ such that:
Σ = Loc ∪ {ai}zi∈Z
Q = {ℓ′

i}ℓi∈Loc ∪Q(initial)∪Q(flow)∪{Q(ℓi → ℓj , zm)} for all ℓi, ℓj ∈ Loc such that there
is a transition from ℓi to ℓj in ∆, and for all 1 ≤ i ≤ m.
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S0 = {ℓ′
i}ℓi∈Loc ∪ {s0,flow} such that s0,flow is the initial state of the flow violation checker.

δ1 = {(ℓ′
i, aj , 0, ℓ′

i)} for all ℓi ∈ Loc and for all 1 ≤ j ≤ n.
δ2 =

{
(ℓ′

i, ℓi, 0, ℓ′
j)

}
for all ℓi, ℓj ∈ Loc such that there is a transition from ℓj to ℓi in ∆.

δ3 = {(ℓ′
i, σ, ν, q

′)} for all ℓi, ℓj ∈ Loc such there is a transition from ℓj to ℓi in ∆, and
(q, σ, ν, q′) ∈ λ(ℓj → ℓi, zm) for some 1 ≤ i ≤ m, or otherwise (q, σ, ν, q′) ∈ λ(initial).
δV =

⋃
all violations δ(violation).

δ = δ1 ∪ δ2 ∪ δ3 ∪ δV

F =
⋃

all violations F (violation).

We turn to prove the correctness of the construction. Consider a word w that represents
a legal run of M. Then, first of all, w is well formed, and therefore not accepted by the
flow violation checker. second, there is no transition from one configuration to the next
that involves a violation, and therefore w cannot be accepted through any of the violation
checkers in A. Since all accepting states of A are inside violation checkers, w /∈ L(A, 0).

Conversely, assume a word w does not represent a legal run of M. If w is not well formed,
then it is accepted through the flow violation checker. Otherwise - a transition from a state
ℓi ∈ Loc to a state ℓj ∈ Loc represents a violation for counter zm such that 1 ≤ m ≤ n.
A then accepts w by branching from ℓ′

j to V (ℓi → ℓj , zm) at the right moment. It is also
possible that the violation occurs in the first configuration (last one to be read), and in this
case w will be accepted through the initial configuration violation checker.

A.4 Details for the proof of Lemma 5
The following is a formal construction of DFA D = ⟨Σ, Q′, s′

0, δ
′, F ′⟩:

Q′ = {⟨ℓ, a1 . . . ak, b1 . . . bk⟩|ℓ ∈ Loc, 0 ≤ ai, bi ≤ m for all 1 ≤ i ≤ k} ∪
{⟨⊥,⊥ . . .⊥, b1 . . . bk⟩|0 ≤ bi ≤ m for all 1 ≤ i ≤ k}.
s′

0 = ⟨⊥,⊥ . . .⊥, 0 . . . 0⟩.
δ′(⟨ℓ, a1 . . . ak, b1 . . . bk⟩, ℓ′) = ⟨ℓ′, b1 . . . bk, 0 . . . 0⟩ if the configuration ⟨ℓ, a1 . . . ak⟩ can be
obtained from the configuration ⟨ℓ′, b1 . . . bk⟩ through a single transition in M.
δ′(⟨⊥,⊥ . . .⊥, b1 . . . bk⟩, ℓ) = ⟨ℓ, b1 . . . bk, 0 . . . 0⟩ for all ℓ ∈ Loc, 0 ≤ b1 . . . bk ≤ m.
δ′(⟨ℓ, a1 . . . ak, 0 . . . 0, bj . . . bk⟩, zj) = ⟨ℓ, a1 . . . ak, 0 . . . 0, bj + 1 . . . bk⟩ for all 0 ≤ j ≤ k,
bj < m.
δ′(⟨ℓ, a1 . . . ak, 0 . . . 0, bj . . . bk⟩, zj−x) = ⟨ℓ, a1 . . . ak, 0 . . . 1, 0 . . . bj . . . bk⟩ for all 1 ≤ j ≤ k,
1 ≤ x ≤ j.
F = {⟨ℓ0, 0 . . . 0, 0 . . . 0⟩}.

Correctness stems directly from the construction.
As for the other direction, assume the reachability set of ⟨ℓ0, (0 . . . 0)⟩ under M is infinite,

and assume by way of contradiction that A has a deterministic equivalent D with d states.
Observe that for every word u ∈ Σ∗, the run of D does not end due to the counter becoming
negative. Indeed, we can always concatenate some λ ∈ Σ∗ such that uλ does not correspond
to a run, and is hence accepted by D, so the run on u must be able to continue reading λ.
We call this property of D positivity.

Since the reachability set of ⟨ℓ0, (0 . . . 0)⟩ is infinite, there exists a counter of M, w.l.o.g
z1, that can take unbounded values (in different runs). Let w be a word corresponding to
a run of M that ends with the value of z1 being N for some N > d. We can then write
w = a∗

k · · · aN
1 ℓa

∗
k · · · aN ′

1 ℓ′ρ such that ρ represents the reverse of a legal prefix of a run of M,
and N ′ satisfies N ′ ≥ N − 1, since no single transition of M can increase a counter by more
than one (but N ′ can be arbitrarily large).
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Since w corresponds to a legal run of M, A (and therefore D) does not accept w. By the
positiviy of D, its run on w ends in a non-accepting state.

Since N > d, D goes through a cycle β when reading aN
1 . We pump the cycle β to

obtain a run of D on a word w′′ = a∗
k · · · aN+t

1 qa∗
k · · · aN ′

1 q′ρ for some t ∈ N that satisfies
N + t > N ′ + 1. Again, by the positivity of D, the run cannot end due to the counter
becoming negative, so it ends in the same non accepting state as the run on w. However, w′′

does not represent a legal run of M , since N + t > N ′ + 1, therefore w′′ ∈ L(A, 0), which
contradicts L(A, 0) = L(D, 0).

A.5 Details for the Proof of Lemma 14
We start by demonstrating our method, followed by the general construction. Consider,
for example, S = Lin((1, 0), (4, 8)) ∪ Lin((2, 1), (6, 12)). In this case γ = 12. We split
Lin((1, 0), (4, 8)) to Lin((1, 0), (12, 24)) ∪ Lin((5, 8), (12, 24)) ∪ Lin((9, 16), (12, 24)), the intu-
ition being that instead of a (4, 8) period, we have a (12, 24) period, and we add different basis
vectors to fill the gaps, so the new basis vectors are (5, 8) and (9, 16), where the next basis
vector (13, 24) is already captured by (1, 0) + (12, 24). Similarly, we split Lin((2, 1), (6, 12))
to Lin((2, 1), (12, 24)) ∪ Lin((8, 13), (12, 24)). Overall we get S =

⋃
v∈V Lin(v, (12, 24)) for

V = {(1, 0), (5, 8), (9, 16), (2, 1), (8, 13)}.
Generally, let γ = lcm({pi}M

i=1). We split each linear component Lin((ai, bi), {(pi, ri)})
to γ

pi
parts, by defining the γ-split of Lin((ai, bi), (pi, ri)) (defined only for pi|γ) to be⋃ γ

pi
−1

i=0 Lin((ai, bi) + i · (pi, ri), (γ, ri) · γ
ri

). each such split is semilinear by definition, and it
is straightforward to show that S =

⋃k
i=1 l-split(Lin((ai, bi), (pi, ri)).

A.6 Unambiguous OCNs
We now consider the case where A is unambiguous. Observe that in order to construct θ(n, c)
above, we explicitly placed the requirement that the counter is minimal. As we now show,
if A is unambiguous, we can modify the formula such that no universal quantification is
required.

Recall that in the construction of the formula φρ(n, c), we define the subformula
sufficient-counterρ(c, e1, . . . , ek), stating that the counter c is sufficient for travers-
ing the run α0β

e1
1 α1β

e2
2 α2 · · ·αk. The structure of sufficient-counterρ(c, e1, . . . , ek) can

be viewed as a conjunction of inequalities
∧

j τj ≥ 0 where each τj is a linear expression
containing c. We observe that c is a minimal counter that satisfies these equations iff one of
them is satisfied as an equality.

In addition, for unambiguous OCNs, if sufficient-counterρ(c, e1, . . . , ek) is satisfied,
then all alternative values e′

1, . . . , e
′
k for which this formula is satisfied represent the same run.

Therefore, if an initial counter value c is minimal for words of length n and certain e1, · · · ek,
then it is minimal for all alternative e′

1, . . . , e
′
k. We can then construct the following formula

ψρ(n, c) :=∃e1 · · · ek, correct-lengthρ(n, e1 · · · ek)
∧sufficient-counterρ(c, e1 · · · ek)
∧minimal-counterρ(c, e1 · · · ek)

where minimal-counterρ(c, e1 · · · ek) :=
∨

j τj = 0 where τj are the inequalities that appear
in sufficient-counterρ(c, e1 · · · ek).

By the above, we have that ψρ(n, c) is satisfied iff c is the minimal counter value such
that there exists a run of length n that is of the shape ρ starting from counter value c.
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Defining P ⊆ S to be the set of linear path schemes from the initial state to an accepting
state, as above, we can rewrite θ more compactly, as follows: θ(n, c) =

∨
ρ∈P φρ(n, c).

As for the bigger picture, we remind the reader that Uniform-Det can be decided using
ν = ∃n1, n2, c1, c2, n1 < n2 ∧ c1 > c2 ∧ θ(n1, c1) ∧ θ(n2, c2). In the unambiguous case, we
can rewrite ν as follows:

ν =
∨

ρ1,ρ2∈P

∃n1, c1, n2, c2, e11, · · · e1k1 , e21, · · · e2k2 , n1 < n2 ∧ c1 > c2∧

correct-lengthρ1(n1, e11 · · · e1k1) ∧ sufficient-counterρ1(c1, e11 · · · e1k1)
∧minimal-counterρ1(c1, e11 · · · e1k1) ∧ correct-lengthρ2(n2, e21 · · · e2k2)

∧sufficient-counterρ2(c2, e21 · · · e2k2) ∧ minimal-counterρ2(c2, e21 · · · e2k2).

This representation of ν is a disjunction of existential fragments, all of which are polynomial
in the size of A.

CONCUR 2022
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