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Abstract
Regular model checking is a technique for the verification of infinite-state systems whose configurations
can be represented as finite words over a suitable alphabet. It applies to systems whose set of
initial configurations is regular, and whose transition relation is captured by a length-preserving
transducer. To verify safety properties, regular model checking iteratively computes automata
recognizing increasingly larger regular sets of reachable configurations, and checks if they contain
unsafe configurations. Since this procedure often does not terminate, acceleration, abstraction,
and widening techniques have been developed to compute a regular superset of the reachable
configurations.

In this paper we develop a complementary procedure. Instead of approaching the set of reachable
configurations from below, we start with the set of all configurations and approach it from above. We
use that the set of reachable configurations is equal to the intersection of all inductive invariants of the
system. Since this intersection is non-regular in general, we introduce b-bounded invariants, defined
as those representable by CNF-formulas with at most b clauses. We prove that, for every b ≥ 0,
the intersection of all b-bounded inductive invariants is regular, and we construct an automaton
recognizing it. We show that whether this automaton accepts some unsafe configuration is in
EXPSPACE for every b ≥ 0, and PSPACE-complete for b = 1. Finally, we study how large must b

be to prove safety properties of a number of benchmarks.
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1 Introduction

Regular model checking (RMC) is a framework for the verification of different classes of
infinite-state systems (see, e.g., the surveys [5, 1, 6, 2]). In its canonical version, RMC
is applied to systems satisfying the following conditions: configurations can be encoded
as words, the set of initial configurations is recognized by a finite automaton AI , and the
transition relation is recognized by a length-preserving transducer AT . RMC algorithms
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address the problem of, given a regular set of unsafe configurations, deciding if its intersection
with the set of reachable configurations is empty or not. In the present paper we do not
consider generalisations to non-length-preserving transitions.

The fundamental building block of current RMC algorithms is an automata-theoretic
construction that, given a non-deterministic automaton (NFA) A recognizing a regular set
of configurations, produces another NFA recognizing the set of immediate successors (or
predecessors) of L(A) with respect to the transition relation represented by AT . Therefore,
if some unsafe configuration is reachable, one can find a witness by, starting with the set
of initial configurations, repeatedly adding the set of immediate successors. However, this
approach never terminates when all reachable configurations are safe. Research on RMC
has produced many acceleration, abstraction, and widening techniques to make the iterative
computation “jump over the fixpoint” in finite time, and produce an invariant of the system
not satisfied by any unsafe configuration (see, e.g., [10, 22, 15, 4, 7, 9, 11, 8, 23, 14]).

In this paper we develop a complementary approach that, starting with the set of
all configurations, computes increasingly smaller regular inductive invariants, i.e., sets of
configurations closed under the reachability relation and containing all initial configurations.
Our main contribution is the definition of a sequence of regular inductive invariants that
converges (in the limit) to the set of reachable configurations, and for which automata can
be directly constructed from AI and AT .

Our starting point is the fact that the set of reachable configurations is equal to the
intersection of all inductive invariants. Since this intersection is non-regular in general,
we introduce b-bounded invariants. An invariant is b-bounded if, for every ℓ ≥ 0, the
configurations of length ℓ satisfying the invariant are those satisfying a Boolean formula in
conjunctive normal form with at most b clauses. For example, assume that the configurations
of some system are words over the alphabet {a, b, c, d}, and that the configurations of length
five where the second letter is an a or the fourth letter is a b, and the second letter is a b

or the third is a c, constitute an inductive invariant. Then this set of configurations is a
2-bounded invariant, represented by the formula (a2:5 ∨ b4:5)∧ (b2:5 ∨d3:5). We prove that, for
every bound b ≥ 0, the intersection of all b-bounded inductive invariants, denoted IndInvb, is
regular, and recognized by a DFA of double exponential size in AI and AT . As a corollary,
we obtain that, for every b ≥ 0, deciding if IndInvb contains some unsafe configuration is in
EXPSPACE.

In the second part of the paper, we study the special case b = 1 in more detail. We
exploit that 1-bounded inductive invariants are closed under union (a special feature of
the b = 1 case) to prove that deciding if IndInv1 contains some unsafe configuration is
PSPACE-complete. The proof also shows that IndInvb can be recognized by a NFA of single
exponential size in AI and AT .

The index b of a bounded invariant can be seen as a measure of how difficult it is for a
human to understand the invariant. So one is interested in the smallest b such that IndInvb

is strong enough to prove a given property. In the third and final part of the paper, we
experimentally show that for a large number of systems IndInv1 is strong enough to prove
useful safety properties.

Related work. The work closest to ours is [3], which directly computes an overapproxi-
mation of the set of reachable configurations of a parameterized system. Contrary to our
approach, the paper computes one single approximation, instead of a converging sequence of
overapproximations. Further, the method is designed for a model of parameterized systems
with existential or universal guarded commands, while our technique can be applied to any
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model analyzable by RMC. Our work is also related to [14], which computes an overapproxi-
mation using a learning approach, which terminates if the set of reachably configurations
is regular; our paper shows that a natural class of invariants is regular, and that automata
for them can be constructed explicitly from the syntactic description of the system. This
paper generalizes the work of [12, 19, 13, 20] on trap invariants for parameterized Petri
nets. Trap invariants are a special class of 1-bounded invariants, and the parameterized
Petri nets studied in these papers can be modeled in the RMC framework. An alternative
to regular model checking are logical based approaches. The invisible invariant method
synthesizes candidate invariants from examples, which are then checked for inductiveness
[26]. Our approach does not produce candidates, it generates invariants by construction.
Modern tools like Ivy [25, 24] have verified more complex protocols than the ones in Section
5 using a combination of automation and human interaction. The best way of achieving this
interaction is beyond the scope of this paper, which focuses on the foundations of regular
model checking.

Structure of the paper. Section 2 introduces basic definitions of the RMC framework.
Section 3 introduces b-bound invariants and proves regularity of IndInvb. Section 4 proves
the PSPACE-completeness result. Sections 5 and 6 contain some experimental results and
conclusions.

Full version. All missing proofs can be found in the full version of this paper [21].

2 Preliminaries

Automata and transducers. Given n, m ∈ N, we let [n, m] denote the set {i ∈ N : n ≤ i ≤
m}. Given a a word w of length ℓ, we let w[i] denote the i-th letter of w, i.e., w = w[1] · · · w[ℓ].

A nondeterministic finite automaton (NFA) is a tuple A = ⟨Q, Σ, ∆, Q0, F ⟩, where Q is a
non-empty finite set of states, Σ is an alphabet, ∆: Q × Σ → 2Q is a transition function, and
Q0, F ⊆ Q are sets of initial and final states, respectively. A run of A on a word w ∈ Σℓ is a
sequence q0 q1 . . . qℓ of states such that q0 ∈ Q0 and qi ∈ ∆(qi−1, w[i]) for every i ∈ [1, ℓ]. A
run on w is accepting if qℓ ∈ F , and A accepts w if there exists an accepting run of A on w.
The language recognized by A, denoted L(A) or LA, is the set of words accepted by A. We
let |A| denote the number of states of A. A NFA A is deterministic (DFA) if |Q0| = 1 and
|∆(q, a)| = 1 for every q ∈ Q and a ∈ Σ.

The function δA : 2Q × Σ∗ → 2Q is defined inductively as follows: δA(P, ε) = P and
δA(P, aw) = δA(

⋃
p∈P ∆(p, a), w). Observe that A accepts w iff δA(Q0, w) ∩ F ̸= ∅.

A (length-preserving) transducer over Σ × Γ is a NFA over an alphabet Σ × Γ. We denote

elements of Σ × Γ as ⟨a, b⟩ or
[
a

b

]
, where a ∈ Σ and b ∈ Γ. Given two words w ∈ Σℓ, u ∈ Γℓ

of the same length ℓ and a transducer A, we say that A accepts ⟨w, u⟩, or transduces w into
u, if it accepts the word ⟨w[1], u[1]⟩ · · · ⟨w[ℓ], u[ℓ]⟩ ∈ (Σ × Γ)ℓ.

Regular model checking. Regular model checking (RMC) is a framework for the verification
of systems with infinitely many configurations. Each configuration is represented as a finite
word over a fixed alphabet Σ. Systems are modeled as regular transition systems (RTS).

▶ Definition 1 (Regular transition systems). A RTS is a triple R = ⟨Σ, AI , AT ⟩, where Σ is
an alphabet, AI is a NFA over Σ, and AT is a transducer over Σ × Σ.

CONCUR 2022
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Words over Σ are called configurations. Configurations accepted by AI are called initial,
and pairs of configurations accepted by AT are called transitions. We write w ⇝ u to denote
that ⟨w, u⟩ is a transition. Observe that w ⇝ u implies |w| = |u|. Given two configurations
w, u, we say that u is reachable from w if w ⇝∗ u, where ⇝∗ denotes the reflexive and
transitive closure of ⇝. The set of reachable configurations of R, denoted Reach(R), or
just Reach when there is no confusion, is the set of configurations reachable from the initial
configurations. In the following, we use |R| to refer to |AI | + |AT |.

▶ Example 2 (Dining philosophers). We model a very simple version of the dining philosophers
as a RTS, for use as running example. Philosophers sit at a round table with forks between
them. Philosophers can be thinking (t) or eating (e). Forks can be free (f) or busy (b). A
thinking philosopher whose left and right forks are free can simultaneously grab both forks –
the forks become busy – and start eating. After eating, the philosopher puts both forks to
the table and returns to thinking. The model includes two corner cases: a table with one
philosopher and one fork, which is then both the left and the right fork (unusable as it would
need to be grabbed twice in a single transition), and the empty table with no philosophers
or forks.

We model the system as a RTS over the alphabet Σ = {t, e, f, b}. A configuration of a
table with n philosophers and n forks is represented as a word over Σ of length 2n. Letters
at odd and even positions model the current states of philosophers and forks (positions start
at 1). For example, tftf models a table with two thinking philosophers and two free forks.
The language of initial configurations is LI = (tf)∗, and the language of transitions is

LT =
[

t

e

] [
f

b

] [
x

x

]∗ [
f

b

]
|
[
e

t

] [
b

f

] [
x

x

]∗ [
b

f

]
|
[
x

x

]∗ ([
f

b

] [
t

e

] [
f

b

]
|
[

b

f

] [
e

t

] [
b

f

]) [
x

x

]∗

where
[
x

x

]
stands for the regular expression

([
t

t

]
|
[
e

e

]
|
[
f

f

]
|
[
b

b

])
. The first two terms of

LT describe the actions of the first philosopher, and the second the actions of the others.
It is not difficult to show that Reach = (t(f | beb))∗ | ebt((f | beb)t)∗. (These are the
configurations where no two philosophers are using the same fork, and fork states match
their adjacent philosopher states.)

Safety verification problem for RTSs. The safety verification problem for RTSs is defined
as follows: Given a RTS R and a NFA U recognizing a set of unsafe configurations, decide
whether Reach(R) ∩ LU = ∅ holds. The problem is known to be undecidable.

3 Bounded inductive invariants of a RTS

We present an invariant-based approach to the safety verification problem for RTSs. Fix a
RTS R = ⟨Σ, AI , AT ⟩. We introduce an infinite sequence

Σ∗ = IndInv0 ⊇ IndInv1 ⊇ IndInv2 . . . ⊇ Reach

of effectively regular inductive invariants of R that converges to Reach , i.e., IndInvk is
effectively regular for every k ≥ 1, and Reach =

⋂∞
k=0 IndInvk. Section 3.1 recalls basic

notions about invariants, Section 3.2 defines the inductive invariant IndInvb for every b ≥ 0,
and Section 3.3 shows that IndInvb is regular.
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3.1 Invariants
Let S ⊆ Σ∗ be a set of configurations. S is an invariant for length ℓ if Reach ∩ Σℓ ⊆ S ∩ Σℓ,
and an invariant if Reach ⊆ S. Observe that, since AT is a length-preserving transducer, S

is an invariant iff it is an invariant for every length. A set S (invariant or not) is inductive if
it is closed under reachability, i.e. w ∈ S and w ⇝ u implies u ∈ S. Given two invariants
I1, I2, we say that I1 is stronger than I2 if I1 ⊂ I2. Observe that inductive invariants are
closed under union and intersection, and so there exists a unique strongest inductive invariant
of R. Since Reach is an inductive set, the strongest inductive invariant is Reach .

▶ Example 3. The set I0 = ((t | e)(f | b))∗ is an inductive invariant of the dining philosophers.
Other inductive invariants are

I1 = Σ∗efΣ∗ I2 = Σ∗fe Σ∗ I3 = e Σ∗f I4 = Σ∗t b tΣ∗ I5 = t Σ∗t b

Taking into account that the table is round, these are the sets of configurations without any
occurrence of ef (I1), fe (I2 and I3), and t b t (I4 and I5).

3.2 Bounded invariants
Given a length ℓ ≥ 0, we represent certain sets of configurations as Boolean formulas over a
set APℓ of atomic propositions. More precisely, a Boolean formula over APℓ describes a set
containing some configurations of length ℓ, and all configurations of other lengths.

The set APℓ contains an atomic proposition qj:ℓ for every q ∈ Σ and for j ∈ [1, ℓ]. A
formula φ over APℓ is a positive Boolean combination of atomic propositions of APℓ and the
constants true and false. Formulas are interpreted on configurations. Intuitively, an atomic
proposition qj:ℓ states that either the configuration does not have length ℓ, or it has length ℓ

and its j-th letter is q. Formally, w ∈ Σ∗ satisfies φ, denoted w |= φ, if φ = qj:ℓ and |w| ≠ ℓ or
|w| = ℓ and w[j] = q; for the other cases, i.e., for φ = true, ¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, satisfaction
is defined as usual. The language L(φ) ⊆ Σ∗ of a formula is the set of configurations that
satisfy φ. We also say that φ denotes the set L(φ). A formula is inductive if it denotes an
inductive set.

▶ Example 4. In the dining philosophers, let φ = (e1:4 ∧ b4:4) ∨ f2:4. We have

L(φ) = ϵ | Σ | Σ2 | Σ3 | (e Σ Σ b | Σ f Σ Σ) | Σ5Σ∗ .

Observe that an expression like (q1:1 ∧ r1:2) is not a formula, because it combines atomic
propositions of two different lengths, which is not allowed. Notice also that ¬qj:ℓ is equivalent
to

∨
r∈Σ\{q} rj:ℓ. Therefore, if we allowed negative conditions, we would still have the same

class of expressible predicates on words of a given length (and we would not obtain formulas
for the same predicates with fewer clauses.) Abusing language, if φ is a formula over APℓ and
L(φ) is an (inductive) invariant, then we also say that φ an (inductive) invariant. Observe
that (inductive) invariants are closed under conjunction and disjunction.

Convention: From now on, “formula” means “positive formula in CNF”.

▶ Definition 5. Let b ≥ 0. A b-formula is a formula with at most b clauses (with the
convention that true is the only formula with 0 clauses). A set S ⊆ Σ∗ of configurations is
b-bounded if for every length ℓ there exists a b-formula φℓ over APℓ such that S ∩Σℓ = L(φℓ).

Observe that, since one can always add tautological clauses to a formula without changing
its language, a set S is b-bounded iff for every length ℓ there is a formula φℓ with exactly b

clauses.

CONCUR 2022



23:6 Regular Model Checking Upside-Down: An Invariant-Based Approach

▶ Example 6. In the dining philosophers, the 1-formulas (t2i−1:ℓ ∨ e2i−1:ℓ) and (f2i:ℓ ∨ b2i:ℓ)
are inductive 1-invariants for every even ℓ ≥ 1 and every i ∈ [1, ℓ/2]. It follows that the
set I0 of Example 3 is an intersection of (infinitely many) inductive 1-invariants. The same
happens for I1, . . . , I5. For example, I1 is the intersection of all inductive 1-invariants of the
form (ti:ℓ ∨ bi+1:ℓ), for all ℓ ≥ 1 and all i ∈ [1, ℓ − 1]; inductivity is shown by an easy case
distinction.

We are now ready to define the sequence of inductive invariants we study in the paper:

▶ Definition 7. Let R be a RTS. For every b ≥ 0, we define IndInvb as the intersection of
all inductive b-invariants of R.

▶ Proposition 8. Let R be a RTS. For every b ≥ 0, IndInvb ⊇ Reach and IndInvb ⊇
IndInvb+1. Further, Reach =

⋂∞
b=0 IndInvb.

Proof. IndInvb ⊇ Reach follows from the fact that, since inductive invariants are closed under
intersection, IndInvb is an inductive invariant, and Reach is the strongest inductive invariant.
IndInvb ⊇ IndInvb+1 follows from the fact that, by definition, every b-invariant is also a b + 1-
invariant. For the last part, observe that for every ℓ ≥ 0, the set Reach ∩ Σℓ is an inductive
invariant for length ℓ. Let φℓ be a formula over APℓ such that L(φℓ) ∩ Σℓ = Reach ∩ Σℓ,
and let bℓ be its number of clauses. (Notice that φℓ always exists, because every subset of Σℓ

can be expressed as a formula, and every formula can be put in conjunctive normal form.)
Then φℓ is a bℓ-bounded invariant, and so L(φℓ) ⊇ IndInvbℓ

for every ℓ ≥ 0. So we have
Reach =

⋂∞
ℓ=0 L(φℓ) ⊇

⋂∞
b=0 IndInvb = Reach , and we are done. ◀

Observe that, while IndInvb is always an inductive invariant, it is not necessarily b-
bounded. The reason is that b-invariants are not closed under intersection. Indeed, the
conjunction of two formulas with b clauses is not always equivalent to a formula with b

clauses, one can only guarantee equivalence to a formula with 2b clauses.

▶ Example 9. The deadlocked configurations of the dining philosophers are

Dead = Σ∗f t f Σ∗ ∩ Σ∗b e b Σ∗ .

We prove IndInv1 ∩ Dead = ∅, which implies that the dining philosophers are deadlock-free.
Let C be the set of configurations of ((t | e)(f | b))∗ containing no occurrence of ef , fe,
or t b t as a cyclic word. In Example 6 we showed that C is an intersection of 1-invariants,
which implies IndInv1 ⊆ C. We prove C ∩ Dead = ∅, which implies IndInv1 ∩ Dead = ∅. Let
w ∈ C. If |w| ≤ 3 the proof is an easy case distinction. Assume |w| ≥ 4. We show that w

contains an occurrence of f t f or b e b, and so it is not a deadlock. If all philosophers are
thinking at w, then, since w contains no occurrence of t b t, it contains an occurrence of ftf .
If at least one philosopher is eating at w, then, since w contains no occurrence of e b or b e, it
contains an occurrence of b e b.

Further, for the dining philosophers we have Reach = IndInv3. Apart from some corner
cases (e.g. an unsatisfiable invariant for every odd length), the reason is that the 3-formula

(ti:ℓ ∨ bi+1:ℓ) ∧ (bi+1:ℓ ∨ ti+2:ℓ) ∧ (ti:ℓ ∨ fi+1:ℓ ∨ ti+2:ℓ)

is an inductive 3 invariant for every ℓ ≥ 3 and every i ∈ [1, ℓ − 2]. The configurations
satisfying this invariant and the inductive 1-invariants I0, . . . , I5 of Example 6 are the
reachable configurations Reach = (t(f | beb))∗ | ebt((f | beb)t)∗b.

It is not difficult to construct an (artificial) family Rb of RTSs such that IndInvb ⊂
Reach(Rk) = IndInvb+1.
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▶ Example 10. Fix some b > 0. Consider a RTS with Σ = {0, 1} and LT given by

⟨0, 0⟩k1 ⟨1, 0⟩ ⟨0, 0⟩k2 (⟨0, 0⟩ + ⟨0, 1⟩ + ⟨1, 0⟩ + ⟨1, 1⟩)∗

for every k1, k2 ∈ N such that k1 + k2 = b − 1. Then every transition of the RTS is of the
form u · v ⇝ u′ · v′, where |u| = b = |u′|, the word u contains exactly one 1, and the word
u′ contains only 0s. If we choose 0∗ as set of initial configurations, then no transition is
applicable to any initial configuration, and so Reach = 0∗. It is easy to check (see Appendix A
of [21]) that IndInvb ⊃ IndInvb+1 = 0∗ = Reach . Also, one can easily check that if we set
LT to

⟨0, 0⟩∗ ⟨1, 0⟩ ⟨0, 0⟩∗ (⟨0, 0⟩ + ⟨0, 1⟩ + ⟨1, 0⟩ + ⟨1, 1⟩)

then IndInvb ⊃ 0∗ = Reach for every b > 0.

Finally, we show in the next section that IndInvb is regular for every b ≥ 0, which implies
that any RTS R such that Reach is not regular satisfies Reach ̸= IndInvb for every b ≥ 0.

3.3 IndInvb is regular for every b ≥ 1
We prove that IndInvb is regular for every b ≥ 1. For this, we first show how to encode
b-formulas as words over the alphabet (2Σ)b, and then we prove the following two results:
1. The language of all b-formulas φ such that L(φ) is an inductive invariant is regular.
2. Given a regular language of b-formulas, the set of configurations that satisfy every formula

in the language is regular.
Since IndInvb contains the configurations that satisfy all the inductive b-invariants of R,
these two results imply that IndInvb is regular.

Observe that a b-formula is an inductive invariant if it is satisfied by all initial configura-
tions and is inductive. So we prove the second result in two steps. We first show that the
set of b-formulas satisfied by all initial configurations is regular, and then that the set of all
b-inductive formulas is regular.

Encoding b-formulas as b-powerwords. We introduce an encoding of b-formulas. We start
with some examples. Assume R is a RTS with Σ = {a, b, c}. We consider formulas over AP3,
i.e., over the atomic propositions {a1:3, a2:3, a3:3, b1:3, b2:3, b3:3, c1:3, c2:3, c3:3}.

We encode the 1-formula (a1:3 ∨ a2:3) as the word {a} {a} ∅ of length three over the
alphabet 2Σ. Intuitively, {a} {a} ∅ stands for the words of length 3 that have an a in their
first or second position. Similarly, we encode (a1:3 ∨ b1:3 ∨ b3:3) as {a, b} ∅ {b}. Intuitively,
{a, b} ∅ {b} stands for the set of words of length 3 that have a or b as first letter, or b as third
letter. Since 2Σ is the powerset of Σ, we call words over 2Σ powerwords.

Consider now the 2-formula (a1:3 ∨b1:3 ∨a2:3)∧ (b1:3 ∨b3:3 ∨c3:3). We put the encodings of
its clauses “on top of each other”. Since the encodings of (a1:3∨b1:3∨a2:3) and (b1:3∨b3:3∨c3:3)
are {a, b} {a} ∅ and {b} ∅ {b, c}, respectively, we encode the formula as the word[

{a, b}
{b}

] [
{a}
∅

] [
∅

{b, c}

]
of length three over the alphabet 2Σ × 2Σ = (2Σ)2. We call such a word a 2-powerword.
Similarly, we encode a b-formula by a b-powerword of length three over the alphabet (2Σ)b.

In the following we overload φ to denote both a formula and its encoding as a b-powerword,
and for example write

CONCUR 2022
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φ =

X11
· · ·
Xb1

 · · ·

X1ℓ

· · ·
Xbℓ

 instead of φ =
b∧

i=1

ℓ∨
j=1

∨
a∈Xij

ai:ℓ

where Xij ⊆ Σ. Intuitively, each row Xi1 · · · Xiℓ encodes one clause of φ. We also write
φ = φ[1] · · · φ[ℓ], where φ[i] ∈ (2Σ)b denotes the i-th letter of the b-powerword encoding φ.
The satisfaction relation w |= φ translates into a purely set-theoretical property:

▶ Fact 11. Let w = w[1] · · · w[ℓ] be a configuration over Σ, and let φ = φ[1] . . . φ[ℓ] be a

b-formula, i.e., a b-powerword over (2Σ)b, where φ[j] =

X1j

· · ·
Xbj

. We have w |= φ iff for every

i ∈ [1, b] there exists j ∈ [1, ℓ] such that w[j] ∈ Xij .

A DFA for the b-formulas satisfied by all initial configurations. Given a RTS R and a
bound b ≥ 0, we let Initb denote the set of all b-formulas satisfied by all initial configurations
of R. Recall that b-formulas are encoded as b-powerwords, and so Initb is a language over
the alphabet (2Σ)b. We show that Initb is effectively regular:

▶ Proposition 12. Let R = ⟨Σ, AI , AT ⟩ be a RTS, and let nI be the number of states of AI .
For every b ≥ 1, the language Initb is recognized by a NFA with at most nIb states, and so
Initb is recognized by a DFA with at most 2bnI states.

Proof. Initb contains the set of all b-formulas φ such that w ̸|= φ for some w ∈ LI . Let
AI = (QI , Σ, δI , Q0I , FI). We consider only the case b = 1, the general case is handled in
Appendix B of [21]. Let B = (QI , 2Σ, δB , Q0, FI) be the NFA with the same states, initial
and final states as A, and transition relation δB defined as follows for every q ∈ QI and
X ∈ 2Σ:

q′ ∈ δB(q, X) iff there exists a ∈ Σ \ X such that q′ ∈ δI(q, a).

We show that B recognizes Init1, i.e., that for every length ℓ ≥ 0, B accepts a 1-formula φ iff
there exists a configuration w such that w ∈ LI and w ̸|= φ. By Fact 11, this is the case iff
there exists an accepting run q0

w[1]−−→ q1 · · · qℓ−1
w[ℓ]−−→ qℓ of AI such that w[j] /∈ φ[j] for every

j ∈ [1, ℓ]. By the definition of B, this is the case iff q0
φ[1]−−→ q1 · · · qℓ−1

φ[ℓ]−−→ qℓ is an accepting
run of B. ◀

A DFA for the inductive b-formulas. For every b ≥ 0, let Indb be the set of inductive
b-formulas. We show that Indb is effectively regular:

▶ Proposition 13. Let R = ⟨Σ, AI , AT ⟩ be an RTS, and let nT be the number of states of
AT . Indb is recognized by a NFA with at most nT b2b states, and so Indb is recognized by a
DFA with at most 2nT b2b states.

Proof. Let AT = (QT , Σ, δT , Q0T , FT ). We consider only the case b = 1, for the general case
see Appendix B of [21].

Let C = (QC , 2Σ × Σ, δC , Q0C , FC) be a transducer accepting the words ⟨φ, w⟩ such that
φ ∈ (2Σ)∗ is a 1-formula and w |= φ, i.e., w[j] ∈ φ[j] for at least one j ∈ [1, ℓ] (Fact 11). It is
trivial to construct a transducer for this language with two states.

We define the NFA B = (QC × QT , 2Σ, δB , Q0C × Q0T , FC × FT ) over 2Σ with transition
relation δB as follows:
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(q′, r′) ∈ δB((q, r), X) iff ∃a1 ∈ Σ, a2 ∈ Σ \ X : q′ ∈ δC (q, ⟨X, a1⟩) ∧ r′ ∈ δT (r, ⟨a1, a2⟩).

We show that B recognizes Ind1. A 1-formula φ is not inductive iff there exist configurations
w, u satisfying three conditions: w |= φ, i.e., w[j] ∈ φ[j] for some j ∈ [1, ℓ]; ⟨w, u⟩ ∈ L(At);
and u ̸|= φ, i.e., u[j] /∈ φ[j] for every j ∈ [1, ℓ] (Fact 11). By the definition of C, this is the
case iff there are accepting runs

q0
⟨φ[1],w[1]⟩−−−−−−−→ q1 · · · qℓ−1

⟨φ[ℓ],w[ℓ]⟩−−−−−−→ qℓ and r0
⟨w[1],u[1]⟩−−−−−−→ r1 · · · rℓ−1

⟨w[ℓ],u[ℓ]⟩−−−−−−→ rℓ

of C and AT , respectively. By the definition of B, this the case iff

(q0, r0) φ[1]−−→ (q1, r1) · · · (qℓ−1, rℓ−1) φ[ℓ]−−→ (qℓ, rℓ)

is an accepting run of B. ◀

A DFA for the set of configurations satisfying a regular set of b-formulas. Given a NFA
A over the alphabet (2Σ)b, i.e., a NFA recognizing a language of b-formulas, let Sat(A) be
the set of configurations satisfying all b-formulas of L(A).

▶ Proposition 14. Let R be a RTS over Σ, and let A be a NFA over (2Σ)b with m states.
Sat(A) is recognized by a NFA with at most mb states, and so Sat(A) is recognized by a DFA
with at most 2mb states.

Proof. Let A = (Q, 2Σ, δA, Q0, F ). We consider only the case b = 1, for the general case
see Appendix B of [21]. Let φ be a 1-formula of length ℓ. By Fact 11 we have w |= φ iff∨ℓ

j=1 w[j] ∈ φ[j]
Consider the NFA B = (Q, Σ, δB , Q0, F ) over Σ with the same states, initial and final

states as A, and transition relation defined as follows:

q′ ∈ δB(q, a) iff there exists X ∈ 2Σ such that q′ ∈ δA(q, X) and a /∈ X.

We show that B recognizes Sat(A). More precisely, we show that w /∈ Sat(A) iff w ∈ L(B)
holds for every configuration w. Let ℓ ≥ 0, and let w be an arbitrary configuration of
length ℓ. We have w /∈ Sat(A) iff there is an accepting run q0

φ[1]−−→ q1 · · · qℓ−1
φ[ℓ]−−→ qℓ of

A such that w[j] /∈ φ[j] for every j ∈ [1, ℓ]. By the definition of B, this is the case iff
q0

φ[1]−−→ q1 · · · qℓ−1
φ[ℓ]−−→ qℓ is an accepting run of B. ◀

Putting everything together. We combine the previous results to show that, given a RTS
R, the complement of IndInvb is recognized by a NFA whose number of states is exponential
in R and double exponential in b.

▶ Theorem 15. Let R = ⟨Σ, AI , AT ⟩ be a RTS. Let nI and nT be the number of states
of AI and AT , respectively, and let K = nIb + nT 2b. For every b ≥ 0, the set IndInvb is
recognized by a NFA with at most 2Kb states, and so IndInvb is recognized by a DFA with at
most 2b2K states.

Proof. Recall that IndInvb contains the configurations satisfying all b-formulas that are
inductive invariants of R. A b-formula is an inductive invariant iff it is inductive and it is
satisfied by all initial configurations of R. So Initb ∩ Indb is the language of all b-formulas
(equivalently, all b-powerwords) that are inductive invariants. By Propositions 12 and 13, this
language is recognized by a DFA A with at most 2nI b · 2nT 2b = 2K states. A configuration w

belongs to IndInvb iff it satisfies every formula of Initb ∩ Indb, i.e., IndInvb = Sat(A). By
Proposition 14, IndInvb is recognized by a NFA with 2Kb states. ◀
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4 Deciding IndInv1 ∩ U = ∅ is PSPACE-complete

Given an instance R, U of the safety verification problem and b ≥ 0, if the set IndInvb satisfies
IndInvb ∩ L(U) = ∅, then R is safe. By Theorem 15, deciding whether IndInvb ∩ L(U) = ∅
holds is in EXSPACE for every fixed b. Indeed, the theorem and its proof show that there
is a NFA recognizing IndInvb ∩ L(U) such that one can guess an accepting path of it, state
by state, using exponential space. We do not know if there is a b such that the problem is
EXSPACE-complete for every b′ ≥ b. In this section we show that for b = 1 the problem is
actually PSPACE-complete.

4.1 Deciding IndInv1 ∩ L(U) = ∅ is in PSPACE
We give a non-deterministic polynomial space algorithm that decides IndInv1 ∩ L(U) = ∅. As
a byproduct, we show that IndInv1 is recognized by a NFA with a single exponential number
of states. (Notice that we proved this for IndInv1 in Proposition 13, but not for IndInv1.)
All missing proofs and full versions of proof sketches can be found in the appendices of [21].

1-formulas have a special property: since the disjunction of two clauses is again a clause,
the disjunction of two 1-formulas is again a 1-formula. This allows us to define the separator
of a configuration w.

▶ Definition 16. The separator of a configuration w, denoted Sepw, is the union of all
inductive 1-sets not containing w.

We characterize membership of w in IndInv1 in terms of its separator:

▶ Lemma 17. For every configuration w, its separator Sepw is an inductive 1-set. Further
w ∈ IndInv1 iff Sepw is not an invariant.

Proof. Since inductive sets are closed under union, Sepw is inductive. Since the disjunction
of two clauses is again a clause, the union of two 1-sets of configurations is also a 1-set, and
so Sepw is an inductive 1-set. For the last part, we prove that w /∈ IndInv1 iff Sepw is an
invariant. Assume first w /∈ IndInv1. Then some inductive 1-invariant does not contain w.
Since, by definition, Sepw contains this invariant, Sepw is also an invariant. Assume now
that Sepw is an invariant. Then Sepw is an inductive 1-invariant, and so Sepw ⊇ IndInv1.
Since w /∈ Sepw, we get w /∈ IndInv1. ◀

Our plan for the rest of the section is as follows:
We introduce the notion of a separation table for a configuration. (Definition 18)
We show that, given a configuration w and a separation table τ for w, we can construct a
1-formula φSepτ

w
such that L(φSepτ

w
) = Sepw. (Lemma 19)

We use this result to define a transducer Tsep over Σ × 2Σ that accepts a word ⟨w, φ⟩ iff
φ = φSepτ

w
. (Proposition 21)

We use Tsep and Proposition 12 to define a NFA over Σ that accepts a configuration w iff
Sepw is not an invariant, and so, by Lemma 17, iff w ∈ IndInv1. (Theorem 22)

We present a characterization of Sepw in terms of tables. Given a transition s⇝ t, we
call s and t the source and target of the transition, respectively. A table of length ℓ is a
sequence τ = s1 ⇝ t1, . . . , sn ⇝ tn of transitions of R (not necessarily distinct), all of length
ℓ.1 We define the separation tables of a configuration w.

1 We call it table because we visualize s1, t1, . . . , sn, tn as a matrix with 2n rows and ℓ columns.
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▶ Definition 18. Let w be a configuration and let τ = s1 ⇝ t1, . . . , sn ⇝ tn be a table, both
of length ℓ. For every j ∈ [1, ℓ], let In(w, τ)[j] = {w[j], s1[j], . . . , sn[j]} be the set of letters
at position j of w and of the source configurations of the table.

τ is consistent with w if for every i ∈ [1, n], j ∈ [1, ℓ], either ti[j] = w[j] or ti[j] = si′ [j]
for some i′ < i.
(Intuitively: τ is consistent with w if for every position, the letter of the target is either
the letter of w, or the letter of some earlier source.)
τ is complete for w if every table τ (s⇝ t) consistent with w satisfies s[j] ∈ In(w, τ) for
every j ∈ [1, ℓ].
(Intuitively: τ is complete for w if it cannot be extended by a transition that maintains
consistency and introduces a new letter.)

A table is a separation table of w if it is consistent with and complete for w.

Observe that every configuration w has at least one separation table. If there are no
transitions with target w, then the empty table with no transitions is a separation table.
Otherwise, starting with any transition s⇝ w, we repeatedly add a transition, maintaining
consistency and introducing at least one new letter, until no such transition exists. This
procedure terminates – there are only finitely many transitions between configurations of a
fixed length – and yields a separation table.

The next lemma shows how to compute a 1-formula φSepτ
w

such that L(φSepτ
w

) = Sepw

from any separation table τ of w.

▶ Lemma 19. Let τ be any separation table for a configuration w of length ℓ. Then Sepw

is the set of all configurations z ∈ Σℓ such that z[j] /∈ In(w, τ)[j] for some j ∈ [1, ℓ]. In
particular, Sepw is the language of the 1-formula

φSepτ
w

:=
ℓ∨

j=1

 ∨
a/∈In(w,τ)[j]

aj:ℓ


or, in the powerword encoding, of the formula

φSepτ
w

= In(w, τ)[1] · · · In(w, τ)[ℓ] .

Proof. It follows easily from the definitions that φSepτ
w

denotes an inductive 1-set not
containing w. To prove that it is the largest such set it suffices to show that for every
j ∈ [1, ℓ] and every letter x ∈ In(w, τ)[j], the configuration w belongs to every inductive
1-set specified by a powerword containing x at position j. For this, we consider the tables
τ0, τ1, . . . , τn = τ , where τi is the prefix of τ of length i, and prove by induction on k that
the property holds for every τk. ◀

We construct a transducer over the alphabet Σ × 2Σ that transduces a configuration w

into the formula φSepτ
w

of a table τ consistent with and complete for w. For this we need the
consistency and completeness summaries of a table.

▶ Definition 20. Let τ = s1 ⇝ t1, . . . , sn ⇝ tn be a separation table for a configuration w.
The consistency summary is the result of applying the following procedure to τ :

Replace each row si ⇝ vi by the sequence of states of an accepting run of AT on it.
(This produces a table with i rows and ℓ + 1 columns, whose entries are states of AT .)
In each column, keep the first occurrence of each state, removing the rest.
(The result is a sequence of columns of possibly different lengths.)
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The completeness summary is the sequence (Q0, Q′
0), (Q1, Q′

1) . . . (Qℓ, Q′
ℓ) of pairs of sets of

states of AT , defined inductively as follows for every j ∈ [0, ℓ]:
Q0 is the set of initial states and Q′

0 is empty.
Qj+1 is the set of states reachable from Qj by means of letters [a, b] such that b ∈ In(w, τ).
Q′

j+1 is the set of states reachable from Q′
j by means of letters [a, b] such that b ∈ In(w, τ),

or reachable from Qj by means of letters [a, b] such that a /∈ In(w, τ) and b ∈ In(w, τ).

Observe that the consistency summary is a sequence α = α[1] . . . α[ℓ], where α[i] is a
sequence of distinct states of AT , i.e., an element of QnT

T , and the completeness summary is
a sequence β = β[1] . . . β[ℓ], where β[i] is a pair of sets of states of AT , i.e, an element of
2QT × 2QT . We prove in Appendix C of [21]:

▶ Proposition 21. There exists a transducer Tsep over the alphabet Σ × 2Σ satisfying the
following properties:

The states of Tsep are elements of (QT ∪ {□})nT × (2QT × 2QT ), where nT is the number
of states of AT .
There is a polynomial time algorithm that, given two states q, q′ of Tsep and a letter
⟨a, X⟩ ∈ Σ × 2Σ decides whether the triple (q, ⟨a, X⟩ , q′) is a transition of Tsep.
Tsep recognizes a word ⟨w, φ⟩ over Σ × 2Σ iff φ = φSepτ

w
.

We can now use Theorem 12 to obtain our main result:

▶ Theorem 22. Let R = ⟨Σ, AI , AT ⟩ be a RTS. There exists a NFA A1 over Σ satisfying
the following properties:

The states of A1 are elements of QnT

T × (2QT × 2QT ) × QI .
There is a polynomial time algorithm that, given two states q, q′ of A1 and a letter a ∈ Σ
decides whether the triple (q, a, q′) is a transition of Tsep.
L(A1) = IndInv1

Proof. Let Tsep be the transducer over the alphabet Σ×2Σ of Proposition 21. Let Ainit be a
NFA recognizing Init1, i.e, the language of all 1-formulas satisfied by all initial configurations,
or, in other words, all 1-formulas that are invariants. By Lemma 17, w ∈ IndInv1 iff there
exists a 1-formula φ such that ⟨w, φ⟩ ∈ L(Tsep) and φ ∈ L(Ainit). So there exists a NFA A1
for IndInv1 whose states are the pairs ⟨q, r⟩ such that q is a state of Tsep and r a state of
Ainit. Since, by Proposition 12, Ainit has the same states as AI , the result follows. ◀

Observe that a state of A1 can be stored using space linear in AI and AT .

▶ Corollary 23. Deciding IndInv1 ∩ L(U) = ∅ is in PSPACE.

Proof. Guess a configuration w and an accepting run of A1 and U on w, step by step.
By Proposition 21, this can be done in polynomial space. Apply then NPSPACE =
PSPACE. ◀

4.2 Deciding IndInv1 ∩ L(U) = ∅ is PSPACE-hard
Given a linearly bounded Turing machine, we construct a sequence Rn of RTSs such that the
instance of Rn for some length Θ(t × n) simulates the Turing machine on inputs of length n

up to t steps. Moreover, we show that, for this RTS, IndInv1 = Reach(Rn) holds. Therefore,
we can reduce acceptance of the Turing machine to our problem (see Appendix C.1 of [21]).

▶ Lemma 24. Deciding IndInv1 ∩ L(U) = ∅ is PSPACE-hard.
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System |LI | |LT | |IndInv1| Properties time (ms)

Bakery 5 9 8 deadlock ✓
mutual exclusion ✓

< 1

Burns 5 9 6 deadlock ✓
mutual exclusion ✓

< 1

Dijkstra 6 24 22 deadlock ✓
mutual exclusion ✓

1920

Dijkstra (ring) 6 17 17 deadlock ✓
mutual exclusion × 2

D. cryptographers 6 69 11 one cryptographer paid ✓
no cryptographer paid ✓

5

Herman, linear 6 7 6 deadlock ×
at least one token ✓

< 1

Herman, ring 6 7 7 deadlock ✓
at least one token ✓

< 1

Israeli-Jafon 6 21 7 deadlock ✓
at least one token ✓

< 1

Token passing 6 7 7 at most one token ✓ < 1
Lehmann-Rabin 5 15 13 deadlock ✓ 1
LR phils. 6 14 15 deadlock × 2
LR phils.(with bℓ and br) 5 14 9 deadlock ✓ 1
Atomic D. phil. 5 12 20 deadlock ✓ 5

Mux array 6 7 8 deadlock ✓
mutual exclusion × < 1

Res. allocator 5 9 8 deadlock ✓
mutual exclusion × < 1

Berkeley 5 19 9 deadlock ✓
custom properties 2/3

1

Dragon 5 26 11 deadlock ✓
custom properties 6/7

3

Firefly 5 18 7 deadlock ✓
custom properties 0/4

1

Illinois 5 25 14 deadlock ✓
custom properties 0/2

1

MESI 5 13 7 deadlock ✓
custom properties 2/2

< 1

MOESI 5 13 10 deadlock ✓
custom properties 7/7

1

Synapse 5 16 7 deadlock ✓
custom properties 2/2

1

Figure 1 Experimental results of using IndInv1 as abstraction of the set of reachable configurations.

5 How large must the bound b be?

The index b needed to prove a property (i.e., the least b such that IndInvb implies the
property) can be seen as a measure of how difficult it is for a human to understand the
proof. We use the experimental setup of [12, 19, 13, 20], where systems are encoded as
WS1S formulas and MONA [17] is used as computation engine, to show that b = 1 is enough
for a substantial number of benchmarks used in the RMC literature. Note that our goal is
to evaluate the complexity of invariants needed for systems from diverse domains, not to
present a tool ready to verify complex systems.

Our set of benchmarks consists of problems studied in [14, 3, 12, 19, 13, 20]. In a first
step, we use MONA to construct a minimal DFA for IndInv1. For this, we write a WS1S
formula Ψ1(w) expressing that, for every 1-formula φ, if φ is an inductive invariant, then
w satisfies φ. MONA yields a minimal DFA for the configurations w satisfying Ψ1, which is
precisely IndInv1. We then construct the formula Ψ1(w) ∧ Unsafe(w), and use MONA to
check if it is satisfiable2. All files containing the MONA formulas and the results are provided
in [18]. The results are shown in Figure 1. The first column gives the name of the example.

2 The second formula Ψ1(w) ∧ Unsafe(w) being unsatisfiable suffices for verification purposes, but we use
Ψ1(w) to obtain information on the size of the minimal DFA.
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In the second and third column we give the number of states of the minimal DFA for LI and
LT , which we also compute via MONA. In the next column we give the size of the minimal DFA
for IndInv1. The fifth column reports whether a property is implies by IndInv1 (indicated
by ✓) or not (indicated by ×). For the cache coherence protocols we replace ✓ with k/m to
state that k of m custom safety properties can be established. The last column gives the
total time3. As we can see, IndInv1 is strong enough to satisfy 46 out of 57 properties.

In a second step, we have studied some of the cases in which IndInv1 is not strong enough.
Direct computation of the automaton for IndInv2 from a formula Ψ2(w) using MONA fails.
(A direct computation based on the automata construction of Section 3 might yield better
results, and will be part of our future work.) Using a combination of the automatic invariant
computation method of [12, 19, 13, 20] and manual inspection of the returned invariants, we
can report some results for some examples.

Examples for IndInvb with b > 1. Table 1 contains two versions of the dining philosophers
in which philosophers take one fork at a time. All philosophers but one are right-handed,
i.e., take their right fork first, and the remaining philosopher is left handed. If the forks
“know” which philosopher has taken them (i.e., if they have states bℓ and br indicating that
the left or the right philosopher has the fork), then deadlock-freedom can be proved using
IndInv1. If the states of the forks are just “free” and “busy”, then proving deadlock-freedom
requires IndInv3, and in fact Reach = IndInv3 holds. We show how to establish this using
the technique of [20] and some additional reasoning in Appendix A of [21].

The Berkeley and Dragon cache coherence protocols are considered as parameterized
system in [16]. For both examples IndInv1 is too coarse to establish all desired consistency
assertions. In Appendix B we describe the formalization of both examples and show that
IndInv2 suffices to obtain the missing assertions.

6 Conclusion

We have introduced a regular model checking paradigm that approaches the set of reachable
configurations from above. As already observed in [3, 14], such an approach does not require
widening or acceleration techniques, as is the case when approaching from below. The main
novelty with respect to [3, 14] is the discovery of a natural sequence of regular invariants
converging to the set of reachable configurations.

Our new paradigm raises several questions. The first one is the exact computational
complexity of checking emptiness of the intersection IndInvb and the unsafe configurations.
We have shown PSPACE-completeness for b = 1, and we conjecture that the problem is
already EXPSPACE-complete for all b ≥ 2. We also think that the CEGAR techniques
used in [20, 19] can be extended to the RMC setting, allowing one to compute intermediate
regular invariants between IndInvb and IndInvb+1. Another interesting research venue is
the combination with acceleration or widening techniques, and the application of learning
algorithms, like the one of [14]. Currently these techniques try to compute some inductive
regular invariant, or perhaps one described by small automata, which may lead to invariants
difficult to interpret by humans. A better approach might be to stratify the search, looking
first for invariants for small values of b.

3 As reported by MONA.
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A Dining philosophers with one left-handed philosopher

We sketch the formalization of the case in which the states of the forks are only “free” and
“busy”. Consider a RTS with Σ = {f, b, t, h, e}. The state h represents a philosophers who
already grabbed the first fork and waits for the second one. All other states are used as
before. The philosopher at index 1 takes first the fork at index 2 and then the fork at index
n, while any other philosopher i > 1 first takes the fork at index i − 1 and then the fork at
index i + 1.

In [20] the absence of deadlocks in this example is shown via only a few inductive assertions.
These assertions can be equivalently expressed as 3-invariants. Moreover, these assertions
are actually enough to completely characterize Reach in this example. To this end, observe
that, analogously to Example 2, Reach is completely characterized by the absence of a few
invalid patterns. These patterns separate into three cases: First, a philosopher should use
some fork, but this fork is still considered free. Second, two philosophers are in states that
require the same fork. Third, no adjacent philosopher currently uses some fork, yet this fork
is busy. More formally, we get

Σ (Σ Σ)∗
f (h | e) Σ (Σ Σ)∗, (Σ Σ)+

e f (Σ Σ)∗, (e | h) f (Σ Σ)∗, e (Σ Σ)∗
f ,

(Σ Σ)+
e Σ (h | e) Σ (Σ Σ)∗, (e | h) Σ (e | h) Σ (Σ Σ)∗, e Σ (Σ Σ)∗

e Σ,
t b t Σ (Σ Σ)∗, (t | h) Σ (Σ Σ)∗ (t | h) b, (Σ Σ)+ (t | h) b t Σ (Σ Σ)∗,

The absence of these patterns can be established with the following languages of inductive
1-invariants and inductive 3-invariants:

[
{e}

] [
∅
] ([

∅
] [

∅
])∗ [

{e}
] [

{f}
] {t, h}

{t, h}
∅

 ∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

∗  ∅
{t, h}
{t, h}

 {b}
∅

{b}


[
{e, h}

] [
{f}

] [
{e, h}

] [
∅
] ([

∅
] [

∅
])∗

{t}
{t}
∅

 {b}
∅

{b}

  ∅
{t}
{t}

 ∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

∗

[
∅
] [

∅
] ([

∅
] [

∅
])∗ [

{e}
] [

{f}
] [

{e, h}
] [

∅
] ([

∅
] [

∅
])∗

∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

∗ {t, h}
{t, h}

∅

  ∅
{b}
{b}

 {t}
∅

{t}

 ∅
∅
∅

 ∅
∅
∅

 ∅
∅
∅

∗

Consequently, IndInv3 and Reach coincide for this example. This immediately implies that
IndInv3 proves deadlock-freedom since the system actually is deadlock-free.

However, IndInv2 is insufficient to prove deadlock-freedom: assume there exists some
inductive 2-invariant I that invalidates that D = h b t f e b can be reached. Then, I must
separate all elements from Reach and all configurations D′ with D′ ⇝∗ D because it is
inductive. In particular, D′ = t b e b e b and the reachable configuration t b h b e b. Hence,
one clause of I contains h3:6. Consider the following pair of configurations: D′′ = t f h f t f
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and C = t b h f t f . I must separate D′′ from C since D′′ ⇝∗ D while C ∈ Reach. Since
D′′ |= h3:6 this separation is based on the second clause of I which must contain b2:6. This
means t b h f e b |= I. Since I is inductive and t b h f e b ⇝ t b e b e b ⇝ t f t f e b ⇝
h b t f e b = D the assumption that I exists is folly. Consequently, D cannot be excluded
via inductive 2-invariants.

B IndInv2 for cache coherence protocols Berkeley and Dragon

For both protocols we follow the specification of [16].

Berkeley

In the Berkeley cache coherence protocol, each cell is in one of four different states: invalid
(i), unowned (u), exclusive (e), and shared (s). Initially, all cells are invalid. Consequently,
the language of initial configurations is i∗. For the transitions we consider a few different
events. The first one is that the memory is read and the corresponding cell does provide
some value of it; i.e., the cell is not in the state i. In this case nothing changes:([

i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

])∗ ([
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

]) ([
i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

])∗

If, on the other hand, a value is read from some cell that is in state i, then this memory
cell fetches the information without claiming ownership; i.e., moves into the state u. Every
other memory cell observes this process. Thus, cells that previously were in e move to s to
account for the fact that another memory cell holds the same information.([

i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

s

] ∣∣∣∣ [
s

s

])∗ ([
i

u

] ) ([
i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

s

] ∣∣∣∣ [
s

s

])∗

If a value is written to a cell that was invalid before, then this cell claims exclusive
ownership; that is, all other cells are invalidated.([

i

i

] ∣∣∣∣ [
u

i

] ∣∣∣∣ [
e

i

] ∣∣∣∣ [
s

i

])∗ ([
i

e

] ) ([
i

i

] ∣∣∣∣ [
u

i

] ∣∣∣∣ [
e

i

] ∣∣∣∣ [
s

i

])∗

If a cell already has exclusive ownership of this information there is nothing to be done.
If the cell has only shared ownership of the value, all other cells that claim shared ownership
are invalidated.([

i

i

] ∣∣∣∣ [
u

i

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

i

])∗ ([
u

e

] ∣∣∣∣ [
s

e

] ) ([
i

i

] ∣∣∣∣ [
u

i

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

i

])∗

Finally, the cache can decide to drop data at any moment in time. Thus, any cell might
move into the state i.([

i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

])∗ ([
u

i

] ∣∣∣∣ [
e

i

] ∣∣∣∣ [
s

i

]) ([
i

i

] ∣∣∣∣ [
u

u

] ∣∣∣∣ [
e

e

] ∣∣∣∣ [
s

s

])∗

We pose now the question whether a configuration can be reached where two different cells
claiming exclusive access to some data. The corresponding set U corresponds to Σ∗ e Σ∗ e Σ∗.
As shown in Table 1, IndInv1 does not prove this property. Let us see why. Assume there is
an inductive 1-invariant I which invalidates the bad word b = e e; that is, b ̸|= I. Observe

CONCUR 2022
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now that we can reach b in one step from b′ = u e, and b′′ = e u. Consequently, I cannot
be satisfied by b′ or b′′ either. Otherwise, since I is inductive, we already get b |= I. This
means, I must not contain e1:2, e2:2, u1:2, or u2:2. This, however, makes I unsatisfiable for
the actually reachable configuration u u.

Using an adapted version of the semi-automatic approach of [20] and some additional
reasoning led us to the following language of inductive 2-invariants which exclude all configu-
rations from U :[

∅
∅

]∗ [
{i, s, u}

{i}

] [
∅
∅

]∗ [
{i}

{i, s, u}

] [
∅
∅

]∗

.

Since IndInv2 is the strongest inductive 2-invariant, this shows that IndInv2 is strong enough
to prove the property.

Dragon

The Dragon protocol distinguishes five states. As before, we have states for invalid cells
(i), cells that maintain an exclusive copy of the data (e) and cells that have a (potentially)
shared copy of the data (s). In contrast to before, the Dragon protocol does not invalidate
other copies of some data when it is updated. Instead we introduce two new states which
mirror e and s but, additionally, indicate that the data might have changed. We refer to
these states as ê and ŝ respectively. Regardless, we initialize all cells as invalid; i.e., we have
the initial language i∗.

Assume a read from a “valid” cell; that is, some cell that is not in state i. In that case,
nothing changes:([

i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗ ([
e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

]) ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗

.

If a read occurs from an invalid cell – while all cells are invalid – the accessed cell becomes
an exclusive reference:[

i

i

]∗ [
i

e

] [
i

i

]∗

.

If not all cells are invalid but a read occurs for an invalid cell then this cell obtains a
shared copy to the data. Moreover, all exclusive references; i.e., cells in states e or ê, move
to their shared counterparts (s and ŝ respectively).([

i

i

]∣∣∣∣[e

s

]∣∣∣∣[s

s

]∣∣∣∣[ê

ŝ

]∣∣∣∣[ŝ

ŝ

])∗ [
i

s

] ([
i

i

]∣∣∣∣[e

s

]∣∣∣∣[s

s

]∣∣∣∣[ê

ŝ

]∣∣∣∣[ŝ

ŝ

])∗

.

Writing a cell in state ê does not change anything. On the other hand, writing a cell in
state e moves that cell into the state ê:([

i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗ [
ê

ê

] ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗

and([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗ [
e

ê

] ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗

.
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A write-operation on a cell that is the only one in state s or ŝ results in a change to ê. If
there are other cells in either state, one moves two ŝ while all others move to s.([

i

i

]∣∣∣∣[e

e

]∣∣∣∣[ê

ê

])∗ [
ŝ

ê

] ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[ê

ê

])∗

,

([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[ê

ê

])∗ [
s

ê

] ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[ê

ê

])∗

and([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
s
s

]∣∣∣[ŝ
s

]) ([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
s
ŝ

]∣∣∣[ŝ
ŝ

]) ([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗

|
([

i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
s
ŝ

]∣∣∣[ŝ
ŝ

]) ([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
s
s

]∣∣∣[ŝ
s

]) ([
i
i

]∣∣∣[e
e

]∣∣∣[ê
ê

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗
.

If a value is written to a previously invalid cell, then either this cell moves to ê (assuming
all other cells are i as well), while the occurrence of another cell with this value causes the
written cell to become ŝ and all other cells to move to state s.[

i

i

]∗ [
i

ê

] [
i

i

]∗

and([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ [
i
ŝ

] ([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

]∣∣∣[e
s

]) ([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗

|
([

i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ ([
ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

]∣∣∣[e
s

]) ([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗ [
i
ŝ

] ([
i
i

]∣∣∣[e
s

]∣∣∣[ê
s

]∣∣∣[s
s

]∣∣∣[ŝ
s

])∗
.

Finally, any cell might drop its content at any point.([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗ ([
e

i

]∣∣∣∣[ê

i

]∣∣∣∣[ŝ

i

]∣∣∣∣[s

i

]) ([
i

i

]∣∣∣∣[e

e

]∣∣∣∣[s

s

]∣∣∣∣[ê

ê

]∣∣∣∣[ŝ

ŝ

])∗

We are interested now to establish that the language Σ∗ ê Σ∗ ê Σ∗ cannot be reached.
The proof that IndInv1 is insufficient to exclude all configurations of Σ∗ ê Σ∗ ê Σ∗ is
straightforward: Observe that both s ê and ê s can reach ê ê in one step. In consequence,
analogously to the argument used for the Berkeley protocol, any inductive 1-invariant cannot
distinguish between the reachable s s and the unreachable ê ê.

On the other hand, the language[
∅
∅

]∗ [
{ŝ, i, s}

{i}

] [
∅
∅

]∗ [
{i}

{ŝ, i, s}

] [
∅
∅

]∗

of inductive 2-invariants induces an abstraction disjoint from Σ∗ ê Σ∗ ê Σ∗. Consequently,
IndInv2 does as well.
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