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Abstract
We present an efficient algorithm that finds a globally optimal solution to the 2D Free Flight
Trajectory Optimization Problem (aka Zermelo Navigation Problem) up to arbitrary precision in
finite time. The algorithm combines a discrete and a continuous optimization phase. In the discrete
phase, a set of candidate paths that densely covers the trajectory space is created on a directed
auxiliary graph. Then Yen’s algorithm provides a promising set of discrete candidate paths which
subsequently undergo a locally convergent refinement stage. Provided that the auxiliary graph is
sufficiently dense, the method finds a path that lies within the convex domain around the global
minimizer. From this starting point, the second stage will converge rapidly to the optimum. The
density of the auxiliary graph depends solely on the wind field, and not on the accuracy of the
solution, such that the method inherits the superior asymptotic convergence properties of the optimal
control stage.

2012 ACM Subject Classification Mathematics of computing → Continuous functions; Mathematics
of computing → Discretization; Mathematics of computing → Discrete optimization; Mathematics
of computing → Continuous optimization; Mathematics of computing → Nonconvex optimization;
Mathematics of computing → Graph algorithms

Keywords and phrases shortest path, flight planning, free flight, discretization error bounds, optimal
control, discrete optimization, global optimization

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.2

Funding This research was funded by the DFG Research Center of Excellence MATH+ – Berlin
Mathematics Research Center, Project TrU 4.

Acknowledgements We thank three anonymous referees for helpful comments that improved the
presentation of this paper.

1 Introduction

Flight planning deals with finding the shortest flight path between two airports for an aircraft
subject to a number of constraints, in particular, to wind conditions. The problem can be
addressed from a discrete and from a continuous point of view and both approaches have
received significant attention in the literature. Today’s flight planning system follow the
discrete approach, which treats the problem as a time-dependent shortest path problem in
a world-wide 3D Airway Network, see [19] for a comprehensive survey, and a number of
algorithms have been developed that address different aspects of the problem. For the most
basic version, [11] and [28] suggested dynamic programming methods, [29] discusses graph
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preprocessing, and [5] and [21] present A*-type algorithms. [4] integrates overflight costs and
[22] traffic restrictions. [16] investigates the free route case, in which the Airway Network
can be enriched by additional, artificial waypoints and segments. This setting blends into
the Free Flight Trajectory Optimization Problem, aka Zermelo Navigation problem, to find
the (globally) time-optimal route from A to B with respect to wind conditions. This classic
of continuous optimization is usually solved using direct or indirect methods from Optimal
Control [7]. These are highly efficient, but suffer from one key drawback, namely, they only
converge locally. Such methods therefore depend on a sufficiently good starting point, which
makes them, used as a standalone tool, incapable of meeting airlines’ high expectations
regarding the global optimality of routes. In other words, what is called an “optimal solution”
in Control theory is only locally optimal, and not globally optimal in the sense of Discrete
optimization.

As far as we know, Global Optimization has received little attention in this context so far,
but inspiration can be drawn from related fields such as interstellar space mission design [10],
robot motion planning [18, 26, 30], or even molecular structure optimization [15]. In all these
cases, the central challenge is always to find the right balance between sufficient exploration
of the search space on the one hand and accurate exploitation of promising regions on the
other hand [20]. Two main types of approaches have been used to provide this balance,
namely, stochastic and deterministic algorithms. In both cases, finding solutions takes at
least exponential time, the runtime increasing with the required accuracy.

Stochastic methods scan the search space with some sort of Multistart approach, i.e., a
set of starting points is chosen from the search space more or less at random, and these are
explored. The exploration may be enhanced by allowing the candidates (then called agents)
to wander around with a certain (decreasing) probability (e.g. Simulated Annealing [25, 10]).
The deeper investigation of promising areas can be implemented as a local optimization
step (e.g. Monotonic Basin Hopping [1]) or via interaction of the candidates attracting each
other to the best known solution (e.g., Particle Swarm Optimization [6]). Even though these
methods have received a lot of attention over the last decades and show promising results
in a variety of applications, they are generally not able to guarantee global optimality in
finite time. At best, they will asymptotically converge to a global optimizer (e.g., PRM∗ or
RRT∗ [18]).

Deterministic approaches are usually based on the principle of Branch and Bound and
converge to the global optimizer up to arbitrary precision in finite time [3, 14, 12, 17]. The
complexity is generally exponential in the number of problem dimensions and the actual
performance depends strongly on the quality of the lower bound.

We propose in this paper a efficient deterministic algorithm that finds the global optimizer
of the Free Flight Trajectory Optimization Problem in finite time. It is not based on
the Branch-and-Bound paradigm. Instead, a two-stage approach combines discrete and
continuous optimization methods in a refinement of the concept of the hybrid algorithm
DisCOptER [7]. In the first stage, the search space is sampled by calculating discrete paths
on a sufficiently dense artificial digraph. In the second stage, the candidate solutions are
refined using efficient techniques from optimal control. Under mild assumptions, namely, the
existence of an isolated global minimizer and bounded wind speeds and wind derivatives, the
problem is convex in a certain neighborhood of the minimizer. A sufficiently dense graph
then contains a path within this neighborhood. This path can be determined by means of
Yen’s algorithm, and standard nonlinear programming methods will then efficiently produce
the global optimizer up to any requested accuracy. In this way, our approach focuses on the
exploration of the relevant parts of the search space. Moreover, the density of the auxiliary
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graph depends solely on the convexity properties of the problem, i.e., on the wind field, and
not on the required accuracy. Hence, the method inherits, on the one hand, the superior
asymptotic convergence properties of the second stage, which, in turn, is the key to its
efficiency. Typically, only a handful of paths have to be enumerated and investigated. On
the other hand, the method also benefits from all advancements in the area of Discrete Flight
Planning, e.g. [5, 29].

2 The Free Flight Trajectory Optimization Problem

As the Free Flight Trajectory Optimization Problem is ultimately looking for a smooth
trajectory, we start our discussion from the Optimal Control point of View.

2.1 Continuous Point of View: Optimal Control
The Free Flight Trajectory Optimization Problem can be formally described as follows. Let
a spatially heterogeneous, twice continuously differentiable wind field w : R2 → R2 with a
bounded magnitude ∥w∥L∞(R2) < v be given. A valid trajectory is any Lipschitz-continuous
path x : [0, T ]→ R2 with ∥xt −w∥ = v almost everywhere, connecting the origin xO and the
destination xD. Among those, we want to find one of minimal flight duration T ∈ R (flight
duration is essentially proportional to fuel consumption [31]). This classic of optimal control
is also known as Zermelo’s navigation problem [33].

It can easily be shown that in case of bounded wind speed, the optimal trajectory cannot
be arbitrarily longer than the straight connection of origin and destination. Hence every
global minimizer is contained in an ellipse Ω ⊂ R2 with focal points xO and xD.

Assume the flight trajectory x ∈ H1([0, 1]) : [0, T ]→ R2 is given by a strictly monotonu-
ously increasing parametrization t(τ) on [0, 1] as x(t(τ)) = ξ(τ), such that ξ : [0, 1]→ R2 is
a Lipschitz continuous path. Due to Rademacher’s theorem, its derivative with respect to
the time ξτ exists almost everywhere, and we assume it not to vanish. Then, t(τ) is defined
by the state equation xt = v + w ̸= 0 and the airspeed constraint ∥v∥ = v, with v ∈ L2([0, 1])
being the airspeed vector. Indeed,

v = ∥xt − w∥ and xttτ = ξτ ̸= 0

imply

(t−1
τ ξτ − w)T (t−1

τ ξτ − w) = v2

⇔ t−2
τ ξT

τ ξτ − 2t−1
τ ξT

τ w + wT w − v2 = 0
⇔ (v2 − wT w)t2

τ + 2ξT
τ wtτ − ξT

τ ξτ = 0

⇔ tτ = −ξT
τ w +

√
(ξT

τ w)2 + (v2 − wT w)(ξT
τ ξτ )

v2 − wT w
=: f(t, ξ, ξτ ) (1)

due to tτ > 0. The flight duration T is then given by integrating the ODE (1) from 0 to
1 as T = t(1). Let us assume for ease of presentation that the wind w is stationary, i.e.,
independent of t, and thus f(t, ξ, ξτ ) = f(ξ, ξτ ). Doing so, we obtain the simple integral

T (ξ) =
∫ 1

0
f

(
ξ(τ), ξτ (τ)

)
dτ. (2)

Since the flight duration T as defined in (2) is based on a reparametrization x(t) = ξ(τ(t))
of the path such that ∥xt(t) − w(x(t))∥ = v, the actual parametrization of ξ is irrelevant
for the value of T . Calling two paths ξ, ξ̃ equivalent if there exists a Lipschitz-continuous
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bijection r : [0, 1] → [0, 1] such that ξ(r(τ)) = ξ̃(τ), we can restrict the optimization to
equivalence classes. Every equivalence class contains a representative with constant ground
speed ∥ξτ (τ)∥ = L, that can be obtained from any ξ̃ with ∥ξ̃τ (τ)∥ ≠ 0∀τ via

ξ(τ) := L

∫ τ

0

ξ̃τ (t)
∥ξ̃τ (t)∥

dt, (3)

where L :=
∫ 1

0 ∥ξ̃τ (τ)∥dτ . Hence we will subsequently consider the following equivalent
constrained minimization problem:

min
ξ∈X, L∈R

T (ξ), s.t. ∥ξτ (τ)∥2 = L2 ∀τ ∈ [0, 1]; (4)

here, the admissible set is the affine space

X = {ξ ∈ H1([0, 1],R2) | ξ(0) = xO, ξ(1) = xD}. (5)

Note that L also represents the path length of a solution, since∫ 1

0
∥ξτ∥dτ = L. (6)

We finally express the constant ground speed requirement by means of a constraint
h(z) = 0, where z := (L, ξ) ∈ Z := R×X and

h : Z → Λ := L2(]0, 1[), z 7→ ξT
τ ξτ − L2 (7)

for L ≤ Lmax, with an arbitrary continuation for L > Lmax that is linear in ∥ξτ∥. In order
to take the boundary constraints ξ(0) = xO, ξ(1) = xD into account, we restrict deviations
δξ from the trajectory ξ to the space

δX := {H1([0, 1],R2) | δξ(0) = δξ(1) = 0}. (8)

The goal of the present paper is to find a isolated globally optimal solution ξ⋆⋆ to (4) that
satisfies T (ξ⋆⋆) < T (ξ) ∀ξ ∈ X, contrary to a local optimizer ξ⋆ that is only superior to
trajectories in a certain neighborhood, T (ξ⋆) ≤ T (ξ) ∀ξ ∈ N (ξ⋆) ⊆ X. A isolated global
minimizer satisfies the necessary Karush-Kuhn-Tucker (KKT) optimality conditions [23]
given that it is a regular point, which is always the case since

h′(z) : δZ 7→ Λ ∀z ∈ Z, δz 7→ ξT
τ δξτ − LδL. (9)

The KKT-conditions result from the variation of the Lagrangian

L(z, λ) := T (ξ) + ⟨λ, h(z)⟩ (10)

with respect to z and λ:

0 = T ′(ξ⋆⋆)[δξ, δξτ ] +
∫ 1

0
λ⋆⋆(ξτ

⋆⋆T δξτ )dτ − L⋆⋆δL

∫ 1

0
λ⋆⋆dτ ∀ δz ∈ δZ, (11a)

0 =
∫ 1

0
δλ(ξτ

⋆⋆T ξτ
⋆⋆ − L⋆⋆2) dτ ∀ δλ ∈ Λ, (11b)

where δz := (δL, δξ) and δZ := R× δX. Consider the unconstrained problem minξ∈X T (ξ)
and a global minimizer ξ̃⋆⋆. As discussed before, there is an equivalent route ξ⋆⋆ that satisfies
the constraint and hence – together with L from (6) – is a global minimizer of the constrained
problem.
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▶ Lemma 1. Let (z⋆⋆, L⋆⋆) be a global minimizer of (4). Then, this solution together with

λ⋆⋆ = 0 (12)

satisfies the necessary conditions (11).

Proof. Since ξ⋆⋆ is also a global minimizer of the unconstrained problem, the necessary
condition states that T ′(ξ⋆⋆)[δξ, δξτ ] = 0. The terms

∫ 1
0 λ⋆⋆(ξτ

⋆⋆T δξτ ) dτ and
∫ 1

0 λ⋆⋆ dτ

of (11a) both vanish for λ⋆⋆ = 0. (11b) is satisfied because ∥ξτ
⋆⋆∥ = L⋆⋆ ∀τ ∈ [0, 1]. ◀

Now we turn to the second order sufficient conditions for optimality. In general, a
stationary point (z⋆, λ⋆) is a minimizer, iff the well known Ladyzhenskaya–Babuška–Brezzi
(LBB) conditions (e.g. [9]) are satisfied, which comprise a) the so called inf-sup-condition

inf
δλ∈Λ
δλ ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z)[δz]⟩
∥δz∥H1∥δλ∥Λ

≥ C > 0 (13)

and b) the requirement that the Lagrangian’s Hessian regarding z, Lzz, need be positive
definite on the kernel of h′. Formally speaking, there must be a B > 0 such that

Lzz(z⋆)[δz]2 ≥ B ∥δz∥2
L2

for any δz ∈ δZ that satisfies

⟨δλ, h′(z⋆)[δz]⟩ = 0 ∀ δλ ∈ Λ.

In our case, the second order sufficient condition is

T ′′(ξ⋆)[δξ, δξτ ]2 + 2
∫ 1

0
λ⋆(δξT

τ δξτ − δL2)dτ ≥ B(δL2 + ∥δξ∥2
L2 + ∥δξτ∥2

L2)

for any (δL, δξ) ∈ R× δX such that∫ 1

0
δλ(ξτ

⋆T δξτ − L⋆δL)dτ = 0 ∀ δλ ∈ L2([0, 1]).

In case of a global minimizer z⋆⋆, this can be simplified using ⟨λ⋆⋆, h′′⟩ = 0 from Lemma 1.
Moreover, the constraint is equivalent to requiring that ξτ

⋆⋆T δξτ = L⋆⋆δL ∀ τ ∈ [0, 1].
With this, we conclude that for any isolated global minimizer (z⋆⋆, L⋆) of (4) there exists a
B > 0 such that

T ′′(ξ⋆⋆)[δξ, δξτ ]2 ≥ B
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
(14)

for any δz ∈ δZ such that ξτ
⋆⋆T δξτ = L⋆⋆δL ∀ τ ∈ [0, 1].

2.2 Discrete Point of View: Shortest Paths
If flight trajectories are restricted to airway segments connecting given waypoints, flight
planning is a special kind of shortest path problem on a graph. It can be described as
follows. Let V ⊂ R2 be a finite set of waypoints including xO and xD, and A ⊂ V × V a
set of segments such that G = (V, A) is a connected directed graph. A discrete flight path
is a finite sequence (xi)0≤i≤n of waypoints with (xi−1, xi) ∈ E for i = 1, . . . , n, connecting
x0 = xO with xn = xD. Shortest path problems on static graphs with non-negative weights
are usually solved with the A∗ variant of Dijkstra’s algorithm [27].

ATMOS 2022
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Define a mapping Ξ : (xi)0≤i≤n 7→ ξ ∈ X of discrete flight paths to continuous paths by
piecewise linear interpolation

ξ(τ) = x⌊nτ⌋ + (nτ − ⌊nτ⌋)(x⌈nτ⌉ − x⌊nτ⌋), (15)

resulting in polygonal chains, which are Lipschitz-continuous with piecewise constant deriv-
ative. Denote the image by XG := im Ξ ⊂ X, i.e., XG is the set of flight trajectories with
constant ground speed in the Euclidean plane that can be realized by adhering to the airway
network. The discrete flight planning problem then reads

min
ξ∈XG

T (ξ). (16)

With any ξ ∈ XG satisfying the constraint for constant ground speed, this differs from
its continuous counterpart (4) essentially by the admissible set, which effectively acts as a
particular discretization. The class of (h, l)-dense graphs used in this work was introduced
in [7] and is defined as follows.

▶ Definition 2. A digraph G = (V, A) is said to be (h, l)-dense in a convex set Ω ⊂ R2 for
h, l ≥ 0, if it satisfies the following conditions:
1. containment: V ⊂ Ω,
2. vertex density: ∀p ∈ Ω : ∃v ∈ V : ∥p− v∥ ≤ h,
3. local connectivity: ∀u, v ∈ V, ∥u− v∥ ≤ l + 2h : (u, v) ∈ E.

▶ Definition 3. We call an (h, l)-dense digraph rectangular, if the vertex positions can be
described by,

xij = x0 +
√

2h[i, j]T for i ∈M ⊆ Z, j ∈ N ⊆ Z (17)

with xij ∈ Ω and M, N being connected subsets of the integers.

An example for such a rectangular (h, l)-dense airway digraph is shown in Figure 1 a).
Note that, even for l → 0, the minimum local connectivity length of 2h guarantees that a
vertex is connected to all its direct neighbors. It is easy to show that any (h, l)-dense digraph
is connected, such that a path from origin to destination exists.

2.3 Discrete-Continuous Point of View: Hybrid Algorithm DisCOptER
In [7] a hybrid algorithm was proposed that combines the strengths of the discrete and
the continuous approach to flight planning. In a nutshell, it works as follows: First, an
artificial locally connected digraph of defined density is created, as in Definition 2 (blue dots
in Figure 1 b), arcs omitted). The shortest path on this graph (red) serves as an initial guess
for a subsequent refinement stage in which a suitable nonlinear programming formulation
of the same problem is solved, leading to a continuous locally optimal solution (green). As
follows from this paper, this solution is also globally optimal, provided that the graph is
sufficiently dense.

In numerical experiments, we observed that even for scenarios that are far more challenging
than any real world situation, a very sparse graph is already sufficient to find the globally
optimal solution, rendering the hybrid approach highly efficient. In case of the example
illustrated in Figure 1 b), the global optimum was found using any graph with node spacing
h ≤ 1

15
√

2 , which corresponds to 16 or more nodes between origin and destination. Note that
in similar scenarios with n vortices one can expect O(2n) local minima.
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h

2h
l

a)

0.0 0.2 0.5 0.8 1.0
-0.6
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0.4

0.6

b)

Figure 1 a) A rectangular (h, l)-dense digraph. The center vertex (dark blue) is connected to
all vertices in a circular neighborhood of radius 2h + l (light blue) with edges in both directions.
b) Illustration of the classical hybrid algorithm DisCOptER. The planar wind field consists of 15
regularly aligned vortices indicated by the green and red discs. Blue dots: locally connected vertices
of the (h, l)-dense graph, see a). Red: Shortest path on the graph, Green: Continuous solution
obtained via refinement.

We quickly recap the complexity analysis from [7]. The novel algorithm DisCOptER
was compared against the traditional, purely graph-based approach in terms of accuracy
of the provided solution compared to the continuous optimum. Trajectories of the desired
accuracy can in principle be obtained by solving the shortest path problem on a sufficiently
dense, locally complete digraph, that can be characterized by its vertex density h and local
connectivity radius l, see Definition 2. An optimized combination of these properties is
h = σl2/L2, where σ is an upper bound for the curvature of the optimal trajectory and L

denotes its path length [8, Theorem 4]. Hence, l−1 may serve as a suitable measure for the
solution accuracy. The number of vertices |V | in such a digraph is in O(l−4) and the number
of arcs |A| is in O(l−6). The complexity of solving the shortest path problem with Dijkstra’s
algorithm is O(|A|+ |V | log |V |) and so the overall time complexity is in

O(l−6). (18)

Since the required graph density is dictated exclusively by the wind conditions, the
complexity of the hybrid algorithm approach is asymptotically inherited from the Optimal
Control stage. Using a direct collocation method, the problem is discretized over the time
domain with quasi equidistant steps δτ . A comparable accuracy measure is then defined
as l := Lδτ . Solving the first order necessary conditions – well known as Karush-Kuhn-
Tucker (KKT) conditions – for the discretized problem via Newton’s method rapidly yields a
solution, provided that the starting point was already sufficiently close. Due to the problem
structure each iteration step essentially involves a linear system of equations with an arrow-
shaped matrix, which can be solved efficiently by specialized band-solvers. The overall time
complexity of the hybrid algorithm is determined by the number of iterations and the cost of
each step, which is in

O(l−1). (19)
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Figure 2 Illustration of the hybrid algorithm DisCOptER. The planar wind field consists of
15 regularly aligned vortices indicated by the green and red discs. Blue dots: locally connected
vertices of the (h, l)-dense graph, see Figure 1 a). Red: kth shortest path on the graph, Green:
Continuous solution obtained via refinement. a) Starting from the very shortest path the refinement
stage does not converge. b) The 5th shortest path on the graph leads to a local optimum. c) The
14th shortest path on the graph finally leads to the global optimum.

3 Towards Global Optimality

In terms of runtime the hybrid algorithm DisCOptER appears to be clearly superior to
the traditional graph-based approach. One key question, however, remains: What is the
right graph density? This sections answers this question and presents a variant of the
algorithm which is guaranteed to find a global minimizer in finite time by calculating not
only one but multiple shortest paths. We exploit the fact that, by continuity, there is a
sufficiently large neighborhood around the minimizer over which the objective function is
convex, see Theorem 4. If started within this neighborhood, optimal control methods will
quickly converge up to arbitrary precision. Using a sufficiently dense graph, as described
in Lemma 5, we guarantee that there is a path that lies in this neighborhood of the global
minimizer.
This path can be found by computing paths by Yen’s algorithm [32], which computes shortest
simple paths in the order of increasing travel time. A suitable stopping criterion is technically
not necessary, but anyway provided in Theorem 6. The required graph density is dictated by
the wind conditions. Adverse scenarios will require dense graphs leading to a large number
of feasible paths that is, e.g., exponential in the number of vortices, cf. again the example in
Fig. 2. The number will, however, always be finite and – most importantly – independent of
the desired solution accuracy.

▶ Theorem 4. Let ∥w(p)∥ ≤ c0 < v/
√

5, ∥wx(p)∥ ≤ c1, ∥wxx(p)∥ ≤ c2, and ∥wxxx(p)∥ ≤ c3
for every p ∈ Ω. Moreover, let z⋆⋆ := (ξ⋆⋆, L⋆⋆) ∈ Z be a global minimizer of problem (4),
that satisfies the necessary and sufficient conditions (11), (13), and (14) with C > 0 and
B > 0. Then the problem (4) is convex in a neighborhood of z⋆⋆, i.e., there is a RC > 0
exclusively depending on the wind conditions such that the LBB-conditions are satisfied for
any z ∈ Z with

∥∆z∥H1([0,1]) := ∥z − z⋆⋆∥H1([0,1]) ≤ RC . (20)

Proof. According to (13), there is a C > 0 such that

inf
δλ∈Λ
δλ ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z⋆⋆)[δz]⟩
∥δz∥H1∥δλ∥Λ

≥ C
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with h as defined in (7). Moreover, it holds that

T ′′(ξ⋆⋆)[δξ, δξτ ]2 ≥ B
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
for any δz ∈ δZ such that ξτ

⋆⋆T δξτ = L⋆⋆δL ∀τ ∈ [0, 1], see (14). Due to the continuity of
the bilinear form, the inf-sup-condition is satisfied for any z with ∥∆z∥ ≤ RC1, such that

inf
δλ∈Λ
δλ ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z)[δz]⟩
∥δz∥H1∥δλ∥Λ

≥ C

2 > 0.

Similarly, the continuity of T as given in (2), guarantees that there is a RC2 > 0 such that

T ′′(ξ)[δξ, δξτ ]2 ≥ B2
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
for any z ∈ Z such that ∥z − z⋆⋆∥H1([0,1]) ≤ RC2 and any δz ∈ δZ such that ξT

τ δξτ =
LδL ∀τ ∈ [0, 1]. Consequently, the sufficient conditions are satisfied for any z with
∥∆z∥ ≤ RC := min(RC1, RC2). ◀

Providing a sufficiently (h, l)-dense graph, we can guarantee that there is a discrete path
within the convex neighborhood of the global minimizer BRC

(ξ⋆⋆). The following Lemma
involves a result from [8, Theorem 3] stating that the curvature of a global minimizer of (4)
is bounded by

∥ξ⋆⋆
ττ∥ ≤ σ := c1L⋆⋆2

v − c0

(√
2v + v + c0

v − c0

(
(1 +

√
2)v + c0

))
. (21)

▶ Lemma 5. Let (L⋆⋆, ξ⋆⋆) be a minimizer of (4). For any RC > 0 there is a h small
enough such that the corresponding (h, l)-dense digraph contains a valid path ξR with ∥ξ⋆⋆ −
ξR∥H1([0,1]) ≤ RC . The connectivity length l shall here be given as l = L⋆⋆

√
h/σ, which is

an optimized choice as derived in [8, Theorem 4].

Proof. In [8, Theorem 3], it was proved that for every ξ ∈ X with ∥ξτ∥ = L, there is a
trajectory ξR(ξ) on an (h, l)-dense digraph with

∥ξR(ξ)− ξ∥H1([0,1]) ≤ 2σ
l

L
+ 2h

L

l
+ 3h.

Since ∥ξτ
⋆⋆∥ = L⋆⋆, this bound holds for a global optimizer (L⋆⋆, ξ⋆⋆) of (4). Together with

l = L⋆⋆
√

h/σ this reads

∥ξR(ξ)− ξ⋆⋆∥H1([0,1]) ≤ 4
√

σh + 3h,

which directly proves that ∥ξR(ξ)− ξ⋆⋆∥H1([0,1]) ≤ RC for sufficiently small h. ◀

Having defined a spatially bounded (h, l)-dense digraph, we use Yen’s algorithm [32]
to enumerate paths in order of increasing travel time. Each generated discrete path ξG,i

undergoes a locally convergent refinement stage. If ξG,i is the path on the graph that is
closest to the minimizer ξ⋆⋆, then Theorem 4 and Lemma 5 guarantee that it lies in the
convex domain. For this reason we do not require the solver to incorporate any globalization
strategies. Instead, the KKT system (11) can be solved via Newton’s method, which either
converges quadratically or is terminated in case of non-convexity.
Since any other local minimizer may be found as well, the preliminary solution shall be denoted
as ξ⋆(ξG,i) in Algorithm 1 and may replace the current best solution ξC if T (ξ⋆(ξG,i)) < T (ξC).
A suitable stopping criterion builds on the following local error bound.

ATMOS 2022
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▶ Theorem 6. Let (L⋆⋆, ξ⋆⋆) be a global minimizer of (4) and define ∆ξ := ξ − ξ⋆⋆. Then
there are constants B > 0 and RE > 0 exclusively depending on the wind conditions, such
that for any ξ ∈ X with ∥∆ξ∥H1 ≤ RE, the error in the objective function T as defined in (2)
is bounded by

T (ξ)− T (ξ⋆⋆) ≤ 1
2B∥∆ξ∥2

H1([0,1]). (22)

Proof. As shown in the proof of [8, Theorem 2] the second directional derivative of T is
bounded from above at a global minimizer. Let this bound be compactly given as

|T ′′(ξ)[δξ, δξτ ]2| ≤ 2B∥δξτ∥2
H1([0,1])

with some B > 0 that only depends on the wind conditions. Due to the continuity of T there
is a RE > 0 such that for any ξ ∈ X with ∥∆ξ∥H1 ≤ RE , the second directional derivative
of T is bounded by

|T ′′(ξ)[δξ, δξτ ]2| ≤ B∥δξτ∥2
H1([0,1]).

We use this bound, the optimality of ξ⋆⋆, and Taylor’s Theorem to validate that

T (ξ) = T (ξ⋆⋆) + T ′(ξ⋆⋆)[∆ξ, ∆ξτ ]︸ ︷︷ ︸
=0

+
∫ 1

0
(1− ν)T ′′(ξ⋆⋆ + ν∆ξ)[∆ξ, ∆ξτ ]2dν

≤ T (ξ⋆⋆) + 1
2B∥∆ξ∥2

H1([0,1]). ◀

Since we are only interested in discrete paths within the convex domain of the global
minimizer BR(ξ⋆⋆), the generation of new paths is terminated if the extra cost of the next
discrete path cannot be compensated by convergence to a nearby local minimizer anymore,
i.e., if

T (ξG,i)− T (ξC) ≥ 1
2BR2 =: ϵ, (23)

where ξG,i denotes the ith shortest path, ξC the current best guess and R := min(RC , RE).
▶ Remark. We finally want to point out that the required graph density is exclusively dictated
by the wind conditions and independent of the requested solution accuracy. Therefore, even
though the enumeration of multiple discrete paths is certainly more expensive than finding
the single shortest path as in the original DisCOpter concept, this difference vanishes
asymptotically such that the proposed algorithm for global optimality inherits the superior
convergence properties of the optimal control method given in Equation (19).

4 Conclusion

We presented a novel discrete-continuous algorithm that computes globally optimal solutions
of the Free Flight Trajectory Optimization Problem in finite time to any desired accuracy.
The main advantage of the method, and the key to its efficiency, is that the density of the
discretization in the first graph-search stage of the algorithm depends only the problem data,
and not on the desired accuracy. In this way, the algorithm inherits the superior asymptotic
convergence properties of the second optimal control stage. A next step is a demonstration of
computational efficiency. This requires improvements in the discrete part, in particular, an
adaptive graph construction and the use of k-shortest path or k-dissimilar path algorithms
that are, at least in practice, faster than Yen’s algorithm, such as [13, 24] or [2], respectively.
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Algorithm 1 This algorithm provides a globally optimal solution to the Free Flight
trajectory optimization problem (4) in finite time.

Data: xO, xD, Ω, v, w, c0, c1, c2, c3, C,B,B, RE , RC , TOL

Result: (LC , ξC) with T (ξC)− T (ξ⋆⋆) ≤ TOL and ∥ξτ
⋆⋆∥ − LC ≤ TOL

1 (LC , ξC) ← None; TC ←∞; i← 0; R← min(RC , RE) ;
2 ϵ← Calculate the error bound for ∥δξ∥H1 ≤ R from Theorem 6;
3 (h, l)← Calculate h(R) and l(h) as in Lemma 5;
4 Define a rectangular, spatially bounded (h, l)-dense digraph covering Ω;
5 do
6 Calculate the ith shortest path ξG,i;
7 if T (ξG,i)− TC ≥ ϵ then
8 return (LC , ξC);
9 end

/* Optimal Control stage */
10 (converged, L⋆, ξ⋆)← (Try to) Calculate a local minimizer starting from
11 (L(ξG,i), ξG,i) up to tolerance TOL;

/* Update */
12 if converged and T (ξ⋆) < TC then
13 (LC , ξC)← (L⋆, ξ⋆);
14 TC ← T (ξ⋆);
15 end
16 i← i + 1;
17 while true;
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