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Abstract

Bus Rapid Transit (BRT) systems can provide a fast and reliable service to passengers at lower costs
compared to tram, metro and train systems. Therefore, they can be of great value to attract more
passengers to use public transport, which is vital in reaching the Paris Agreement Targets. However,
the main advantage of BRT systems, namely their flexible implementation, also leads to the risk that
the system is only implemented partially to save costs. This paper focuses therefore on the Edge
Investment Problem: Which edges (segments) of a bus line should be upgraded to full-level BRT?
Motivated by the construction of a new BRT line around Copenhagen, we consider a setting in which
multiple parties are responsible for different segments of the line. Each party has a limited budget
and can adjust its investments according to the benefits provided to its passengers. We suggest two
ways to determine the number of newly attracted passengers, prove that the corresponding problems
are NP-hard and identify special cases that can be solved in polynomial time. In addition, problem
relaxations are presented that yield dual bounds. Moreover, we perform an extensive numerical
comparison in which we evaluate the extent to which these two ways of modeling demand impact
the computational performance and the choice of edges to be upgraded.
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9:2 Upgrading Transit Line Segments with Multiple Investing Parties

1 Introduction

Public transport plays an important role in the transition towards a more sustainable
transportation network in cities. In order to convince people to choose public transport over
other modes, many cities opt to build Bus Rapid Transit (BRT) networks. Such networks
are characterized by a high average speed and frequent service, to a large extent achieved
through separation from other traffic. As the construction of BRT networks is expensive,
careful planning is needed to choose the final design of the system before investments are
made.

In this paper, we study a problem that is motivated by the development of a new BRT
line in the Capital Region of Denmark (Region Hovedstaden). This new BRT line will form a
radial around Copenhagen and will connect multiple municipalities surrounding the city [12].
A first assessment has defined five feasible route alternatives, each describing a possible route
of the new BRT line. The next steps in the process consist of determining the final route
and the investments made on this route. We focus on the second step: How to determine the
best investments in a line with respect to budget and return on investment constraints?

In our case, investments along a line cover, e.g., the costs needed to construct a separate
bus lane as well as the upgrading of intersections and traffic installations to allow for priority
of the BRT line. As these investments contribute to the quality of the journey for the
passengers, they have a direct impact on the passenger potential of the line. In particular,
these investments decrease the travel time along the route and at the same time increase
the reliability of the route. Our main focus is to find a set of upgrades along the line that
attracts the largest amount of passengers.

A complicating factor in constructing the BRT line in the Capital Region of Denmark is
that each municipality that is crossed by the line is responsible for investments for those
segments that lie within its borders. For the investments, a certain budget is available per
municipality. Moreover, municipalities have to compare the investment costs to the benefits
for their passengers. We incorporate this into our problem by introducing constraints that
limit the investments that municipalities are willing to make according to the number of
their passengers that are attracted.

1.1 Related Literature
Rapid transit network design, including the determination of stations, lines and frequencies,
has widely been studied in the literature. For a survey on the problem, the models and the
solution methods used to solve them, we refer to [9, 8]. Some more recent work has focused
on better modeling the interaction with the existing public transport system, e.g., in the
design of feeder-bus networks [3] and in computing the modal split between metro and bus
transit systems [10]. Moreover, [6] propose an integrated approach for both the design of
a new rapid transit network and the adaptation of the existing bus network. A different
perspective is taken by [2], who incorporate spacial and social equity principles in the transit
network design problem.

Another related problem is the network improvement problem. This problem consists of
choosing edges (and nodes) in a network to be upgraded while minimizing costs or satisfying
budget constraints and has, e.g., been studied by [7, 22, 13, 11, 1].

Literature on transit network design usually assumes that all upgrade decisions are made
by one central authority. In contrast to that, [20] consider local authorities that can only make
upgrade decisions for their own subgraphs, i.e., parts of the network. In a game-theoretic
setting, they formulate the interaction of the local authorities among others in a cooperative,
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competitive and chronological way. Assuming a fixed demand, the travel time depends on
the capacity and the amount of flow on each edge. Each local authority aims to minimize
the travel time by increasing the capacity of an edge restricted by a budget.

Note that the Edge Investment Problem introduced here differs from these settings
because the route and stations of the BRT line are already given. Instead, we are interested
in attracting new passengers, i.e., in maximizing the demand, which is modeled by two
different objective functions, through infrastructure improvements.

1.2 Contribution
The contribution of this paper is to model the Edge Investment Problem for BRT lines
as required in the Capital Region of Denmark. We present two variants to model the decision
process of the municipalities, a collaborative version EIP and a version focusing on the return
on investment for each municipality ROI, as well as two variants to compute the number of
newly attracted passengers, Linear and MinImprov. We analyze the complexity of the four
resulting problems, identifying both NP-hard and polynomially solvable cases. Additionally,
we perform an extensive experimental evaluation both on artificial instances and on a case
study based on the BRT line in the Capital Region of Denmark. Here, we analyze the
influence of collaboration between municipalities and of the budget split on the number of
newly attracted passengers. We further assess the potential to attract new passengers for
five different route alternatives given in the case study.

2 Model and Problem Formulation

In the Edge Investment Problem, we assume that investing in the upgrade of edges
attracts new passengers. Before we model the different ways to determine the number of
attracted passengers, we formulate the general setting.

The BRT line is described as a line graph G = (V, E), where V = {1, . . . , n} for n ∈ N>0
denotes the set of stations and E =

{
ei = {i, i + 1} : i ∈ {1, . . . , n − 1}

}
the set of direct

connections between the stations. Let D ⊆ {(i, j) : i, j ∈ V, i < j} be the set of undirected
potential origin-destination (OD) pairs. For d = (i, j) ∈ D, let Wd be the set of edges of
the path from station i to station j, namely Wd = {ek : k ∈ {i, i + 1, . . . , j − 1}}, and let
ad ∈ N>0 be the maximum number of passengers that can be attracted.

Different parts of the graph are under the responsibility of different municipalities. We
denote the set of municipalities by M . For each municipality m ∈ M , let Em ⊆ E be the
subset of edges that lie within the responsibility of municipality m such that

⋃
m∈M Em = E.

As in our application, we assume that the sets Em for m ∈ M are pairwise disjoint and
contain only consecutive edges, i.e., for all m ∈ M there is some i, j ∈ V , i < j such that
Em = {ek : k ∈ {i, i + 1, . . . , j − 1}}. By Dm ⊆ D, Dm ̸= ∅, we denote the subset of OD
pairs that municipality m is interested in. Here, a municipality wants to increase the number
of passengers that start or end in their municipality but does not care whether passengers in
a different part of the network are attracted. Note that setting |M | = 1 represents the case
of one general budget, which is not separated into budgets for multiple municipalities.

The costs for upgrading an edge e ∈ E are ce ∈ R>0. We consider two types of constraints
for the municipalities. For each municipality m ∈ M , the amount of upgrades is restricted
by a budget Bm ∈ R>0 and by a return on investment factor bm ∈ R>0 per newly attracted
person. While the budget constraints model a general budget on the investments, the return
on investment constraints guarantee that the costs are smaller than the gain through upgrades
measured in the number of newly attracted passengers multiplied with the investment factor.

ATMOS 2022



9:4 Upgrading Transit Line Segments with Multiple Investing Parties

Upgrading edges of a bus line to BRT standard by implementing additional exclusive
infrastructure for BRT decreases the travel time and increases the reliability as it is less
dependent on congestion caused by regular (individual) traffic. Hence, more people are
attracted to the BRT line. We denote the infrastructure improvement achieved by upgrading
an edge e ∈ E by ue ∈ R>0. In the Edge Investment Problem, we aim at maximizing the
number of newly attracted passengers. The remaining question is how many upgraded edges
or which level of infrastructure improvements is necessary to attract new passengers. In this
paper, we propose two ways of modeling that: In the Linear model, we assume that the
number of attracted passengers increases linearly with the amount of realized infrastructure
improvements in proportion to the total amount of possible infrastructure improvements.
The maximum number of passengers is only attracted when all edges of the path of an
OD pair are upgraded, otherwise only a share is attracted. In the MinImprov model, we
assume that all potential passengers of an OD pair d ∈ D are attracted when a certain
threshold of infrastructure improvements Ld ∈ R>0 is reached on their path. Otherwise, no
new passengers are attracted for this OD pair. This is formally introduced next.
▶ Definition 1. Let F ⊆ E be the set of upgraded edges, and let an OD pair d ∈ D be given.
In Linear, the number of newly attracted passengers of OD pair d is determined by

pd(F ) :=
∑

e∈F ∩Wd
ue∑

e′∈Wd
ue′

· ad.

In MinImprov, the number of newly attracted passengers of OD pair d is determined by

pd(F ) :=
{

ad if Ld ≤
∑

e∈F ∩Wd
ue,

0 otherwise.

We are now in the position to formally describe the Edge Investment Problem, to
which both objective functions from Definition 1 can be applied, in the following definition:
▶ Definition 2 (EIP and ROI). Given are

a line graph (V, E) and a set of OD pairs D ⊆ {(i, j) : i, j ∈ V, i < j},
costs ce ∈ R>0 and infrastructure improvements ue ∈ R>0 for all e ∈ E,
a set of municipalities M ,
a set of edges Em ⊆ E, a set of OD pairs Dm ⊆ D, Dm ̸= ∅, a budget Bm ∈ R>0 and an
investment factor bm ∈ R>0 for all m ∈ M such that

⋃
m∈M Em = E,

a maximum number of potential passengers ad ∈ N>0 for all d ∈ D,
a lower bound Ld ∈ R>0 with Ld ≤

∑
e∈Wd

ue for all d ∈ D (needed only for ROI in the
MinImprov case).

The aim of the basic version EIP of the Edge Investment Problem is to determine a
subset F ⊆ E of edges to be upgraded such that the budget constraints∑

e∈F ∩Em

ce ≤ Bm for all m ∈ M (1)

are met and the number of newly attracted passengers
∑

d∈D pd(F ) is maximized, where
pd(F ) ∈ [0, ad] denotes the number of passengers of OD pair d ∈ D that are newly attracted
depending on F according to Definition 1.
In order to take into account that a municipality might require a certain return on investment,
we introduce return on investment constraints∑

e∈F ∩Em

ce ≤ bm ·
∑

d∈Dm

pd(F ) for all m ∈ M (2)

in addition to the budget constraints (1) and obtain the model ROI.
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In the following, we address both models EIP and ROI in combination with both objective
functions Linear and MinImprov given in Definition 1, yielding a total of four problems:

EIP-Linear (only constraints (1), Linear objective),
EIP-MinImprov (only constraints (1), MinImprov objective),
ROI-Linear (constraints (1) and (2), Linear objective) and
ROI-MinImprov (constraints (1) and (2), MinImprov objective).

We remark that the EIP-MinImprov model contains the special case in which we only
consider unit costs ce = 1 and unit infrastructure improvements ue = 1 for all edges e ∈ E.
In this case, we are allowed to upgrade at most Bm edges in municipality m ∈ M , and for
OD pair d ∈ D all potential passengers are attracted if at least a number of Ld edges is
upgraded, and no passengers otherwise.

3 Theoretical Analysis

In this section, we study EIP and ROI as well as relaxations. We analyze both problems
with both objectives regarding their complexity and show that all four problems are NP-hard
but admit polynomial special cases.

The first lemma gives an indication about the budget and the investment factor per
passenger that are sufficient such that it is optimal to upgrade all edges.

▶ Lemma 3. In ROI, we can omit constraints in the following cases:
(a) Let m ∈ M . The budget constraint (1) regarding m is redundant if one of the following

assumptions is satisfied:
1. Bm ≥

∑
e∈Em

ce,
2. Bm ≥ bm

∑
d∈Dm

pd(E).

(b) The set F := E is an optimal solution to ROI if Bm ≥
∑

e∈Em
ce and bm ≥

∑
e∈Em

ce∑
d∈Dm

pd(E)

for all m ∈ {1, . . . , M}.

Proof. In case (a1), the assumption clearly yields that the corresponding constraint is always
satisfied. Hence, it is redundant and can be omitted. In case (a2), we have for any F ⊆ E

satisfying the return on investment constraint (2) that also the budget constraint (1) is
satisfied because∑

e∈F ∩Em

ce ≤ bm

∑
d∈Dm

pd(F ) ≤ bm

∑
d∈Dm

pd(E) ≤ Bm.

Hence, it is again redundant and can be omitted.
Case (b) implies that case (a1) is satisfied for all m ∈ M . Hence, all budget constraints (1)

can be omitted. This yields that F := E is a feasible solution because the return on investment
constraints (2) are also satisfied for all m ∈ M by assumption:

bm

∑
d∈Dm

pd(E) ≥
∑

e∈Em
ce∑

d∈Dm
pd(E)

∑
d∈Dm

pd(E) =
∑

e∈E∩Em

ce.

Finally, F = E is an optimal solution as most passengers are attracted when all edges are
upgraded. ◀

ATMOS 2022



9:6 Upgrading Transit Line Segments with Multiple Investing Parties

3.1 The Linear Case
We start the theoretical analysis by giving a linear integer programming (IP) formulation
of ROI-Linear in IP (3). For all e ∈ E, we introduce a binary variable xe ∈ {0, 1} which
satisfies that xe = 1 if and only if edge e is upgraded. Simplifying the notation by setting
µd := ad∑

e′∈Wd
ue′

, we get:

max
xe

∑
d∈D

(
µd

∑
e∈Wd

uexe

)
s.t.

∑
e∈Em

cexe ≤ Bm for all m ∈ M

∑
e∈Em

cexe ≤ bm ·
∑

d∈Dm

(
µd

∑
e∈Wd

uexe

)
for all m ∈ M

xe ∈ {0, 1} for all e ∈ E.

(3)

By pre-computing

ũe :=
∑

d∈D:
e∈Wd

µdue and ũm
e :=

∑
d∈Dm:
e∈Wd

bmµdue

for all e ∈ E and m ∈ M , this problem can equivalently be reformulated as follows:

max
xe

∑
e∈E

ũexe

s.t.
∑

e∈Em

cexe ≤ Bm for all m ∈ M

∑
e∈Em

(ce − ũm
e )xe −

∑
e∈E\Em

ũm
e xe ≤ 0 for all m ∈ M

xe ∈ {0, 1} for all e ∈ E.

Hence, EIP-Linear and ROI-Linear are multidimensional 0-1 knapsack problems. Note
that negative weights occur in the reformulated return on investment constraints. Moreover,
both problems are NP-hard by a reduction from 0-1 knapsack as Theorem 4 shows.

▶ Theorem 4. EIP-Linear and ROI-Linear are both NP-hard.

Proof. As EIP-Linear is a special case of ROI-Linear, it suffices to prove that they are
both in NP and that the decision version of EIP-Linear, which we call EIP-Linear again
for the sake of simplicity, is NP-complete. Given a solution to EIP-Linear or ROI-Linear,
we can check in polynomial time whether the budget constraints and (if applicable) the
return on investment constraints are satisfied and a certain value in the objective function is
reached.

We reduce (the decision version of) 0-1 knapsack to EIP-Linear. Let k elements with
rewards ri ∈ Z>0 and weights wi ∈ Z>0 for all i ∈ {1, . . . , k}, a budget B and a bound S′

be given. We construct an instance of EIP-Linear as follows: We set S := S′, n := k + 1,
this means V := {1, . . . , k + 1}, E := {ei : i ∈ {1, . . . , k}}, D := {(i, i + 1) : i ∈ {1, . . . , k}},
cei

:= wi and uei
:= 1 for all i ∈ {1, . . . , k}, M := {1}, B1 := B and ad := ri for all

d = (i, i + 1) with i ∈ {1, . . . , k}. We show that every feasible solution F ′ ⊆ {1, . . . , k}
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of 0-1 knapsack with an objective value of at least S′ corresponds to a feasible solution
F ⊆ E of EIP-Linear with an objective value of at least S. The solutions F ′ and F

correspond to each other as follows: i ∈ F ′ if and only if ei ∈ F . Then the claim holds
because

∑
i∈F ′ wi =

∑
i∈F ′ cei

=
∑

e∈F ce and

∑
i∈F ′

ri =
∑

ei∈F

a(i,i+1) =
∑

d=(i,i+1):
i∈{1,...,k}

(∑
e∈F ∩{ei} 1

1 · ad

)
=
∑
d∈D

(∑
e∈F ∩Wd

ue∑
e∈Wd

ue
· ad

)
. ◀

Note that EIP-Linear can be decomposed into |M | independent knapsack problems and
hence can be solved in pseudo-polynomial time by dynamic programming. In the following,
we identify a case in which it is even polynomially solvable. To this end, we review the
consecutive ones property, which is well known in the literature (see, e.g., [15, 18, 5, 4]).

▶ Definition 5 (Consecutive Ones Property). A matrix A ∈ {0, 1}k×l satisfies the consecutive
ones property (C1P) on the rows if for all rows i ∈ {1, . . . , k} it holds: If Ai,j = 1 and
Ai,j′ = 1 for some j, j′ ∈ {1, . . . , l}, j < j′, then Ai,j̄ = 1 for all j ≤ j̄ ≤ j′.

▶ Lemma 6 ([21]). If a matrix A ∈ {0, 1}k×l satisfies C1P, then A is totally unimodular.

▶ Lemma 7. EIP-Linear can be solved in polynomial time if ce = 1 for all e ∈ E.

Proof. We sort the edges and municipalities from one end of the line to the other. Let
A ∈ R|M |×|E| be the coefficient matrix of the budget constraints, i.e., for all m ∈ M and
e ∈ E, we have Am,e = 1 if e ∈ Em, and Am,e = 0 otherwise. Because of the assumption
that the municipalities contain only consecutive edges, the matrix A satisfies the consecutive
ones property. By Lemma 6, it is totally unimodular and the linear programming relaxation
of IP (3) yields an integer solution. Therefore, the problem can be solved in polynomial
time [21]. ◀

3.2 The MinImprov Case
We present a linear IP formulation of ROI-MinImprov in IP (4). For all e ∈ E, we introduce
a binary variable xe ∈ {0, 1} which satisfies that xe = 1 if and only if edge e is upgraded.
Additionally, we need a binary variable yd ∈ {0, 1} for all d ∈ D which satisfies in each
optimal solution that yd = 1 if and only if Ld ≤

∑
e∈F ∩Wd

ue for the set F ⊆ E of upgraded
edges due to the maximization. This yields the following IP:

max
xe,yd

∑
d∈D

adyd

s.t.
∑

e∈Em

cexe ≤ Bm for all m ∈ M

∑
e∈Em

cexe ≤ bm ·
∑

d∈Dm

adyd for all m ∈ M

Ldyd ≤
∑

e∈Wd

uexe for all d ∈ D

xe ∈ {0, 1} for all e ∈ E

yd ∈ {0, 1} for all d ∈ D.

(4)

As before, we prove NP-hardness of EIP-MinImprov by a reduction from 0-1 knapsack.

ATMOS 2022



9:8 Upgrading Transit Line Segments with Multiple Investing Parties

▶ Theorem 8. EIP-MinImprov and ROI-MinImprov are both NP-hard, even if ue = 1
for all e ∈ E and Ld = 1 for all d ∈ D.

Proof. As in the proof of Theorem 4, EIP-MinImprov is a special case of ROI-MinImprov
and both problems are in NP.

Further, we apply the same reduction from 0-1 knapsack to EIP-MinImprov and
additionally choose Ld := 1 for all d ∈ D. It remains to show that the objective value is the
same for solutions that correspond to each other. We have that∑

d∈D:
Ld≤

∑
e∈F ∩Wd

ue

ad =
∑
i∈F ′

ri,

because

{d ∈ D : Ld ≤
∑

e∈F ∩Wd

ue} = {(i, i + 1) : i ∈ {1, . . . , k} and 1 ≤
∑

e∈F ∩{ei}

1}

= {(i, i + 1) : i ∈ {1, . . . , k} and ei ∈ F} = {(i, i + 1) : i ∈ F ′}. ◀

Exploiting C1P, we again obtain a polynomial special case in the following lemma:

▶ Lemma 9. EIP-MinImprov can be solved in polynomial time if ce = 1, ue = 1 for all
e ∈ E and Ld = 1 for all d ∈ D.

Proof. We again sort the edges and municipalities from one end of the line to the other. The
considered special case yields the following simplified formulation:

max
xe,yd

∑
d∈D

adyd

s.t.
∑

e∈Em

xe ≤ Bm for all m ∈ M

∑
e∈Wd

−xe + yd ≤ 0 for all d ∈ D

xe ∈ {0, 1} for all e ∈ E

yd ∈ {0, 1} for all d ∈ D.

The coefficient matrix of the budget and return on investment constraints is of the form

A =
[

A1 0
−A2 I

]
, where I ∈ R|D|×|D| is the unit matrix, A1 ∈ R|M |×|E| denotes whether an

edge belongs to a municipality, and A2 ∈ R|D|×|E| denotes whether an edge is on the path of
an OD pair. Formally, we have for all m ∈ M , d ∈ D and e ∈ E that

A1
m,e =

{
1 if e ∈ Em,

0 otherwise
and A2

d,e =
{

1 if e ∈ Wd,

0 otherwise.

The matrix A1 has C1P because of the assumption that municipalities contain only consecutive
edges, and A2 has C1P because the considered graph is a line graph. As multiplying a row of
a matrix by -1 only influences the sign of the determinant of the matrix and its submatrices,

the matrix
[

A1

−A2

]
is totally unimodular by Lemma 6. This yields that the coefficient matrix

A, which we obtain by appending a part of a unit matrix to the TU matrix, is also totally
unimodular. Therefore, the linear programming relaxation yields an integer solution in this
special case, and the problem can be solved in polynomial time [21]. ◀
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3.3 Relaxations and Dual Bounds

Because ROI and EIP are NP-hard with both objective functions, we study different
relaxations and bounds on the objective value of the Edge Investment Problem. The
trivial lower and upper bounds are 0 and

∑
d∈D ad, respectively.

First, it is easy to see that EIP is a relaxation of ROI because the return on investment
constraints (2) are omitted in EIP, which expands the feasible set, but the objective stays
the same. Hence, EIP yields an upper bound on the number of newly attracted passengers in
ROI. However, EIP is NP-hard itself for both objective functions. Therefore, we consider the
special cases of Lemmas 7 and 9, which are relaxations of EIP-Linear and EIP-MinImprov,
respectively, as the following results show.

▶ Lemma 10. Let m ∈ M . If F ⊆ E satisfies budget constraint (1) regarding m, then it
also satisfies |F ∩ Em| ≤ Bm

min{ce:e∈Em} .

Proof. By assumption, it holds that Bm ≥
∑

e∈F ∩Em
ce ≥

∑
e∈F ∩Em

min{ce : e ∈ Em}.
Hence, we also have that Bm

min{ce:e∈Em} ≥
∑

e∈F ∩Em
1 = |F ∩ Em|. ◀

▶ Lemma 11. Let F ⊆ E and d ∈ D. If Ld ≤
∑

e∈F ∩Wd
ue, then we also have 1 ≤ |F ∩ Wd|.

Proof. By assumption, it holds that Ld ≤
∑

e∈F ∩Wd
ue ≤

∑
e∈F ∩Wd

max{ue : e ∈ Wd}.
Hence, we also have that |F ∩ Wd| =

∑
e∈F ∩Wd

1 ≥ Ld

max{ue:e∈Wd} . Integer rounding yields

|F ∩ Wd| ≥
⌈

Ld

max{ue:e∈Wd}

⌉
≥ 1. ◀

From Lemmas 10 and 11, we obtain the following relaxations:

▶ Corollary 12. The following problem is a relaxation of EIP:

max
F ⊆ E

∑
d∈D

pd(F )

s.t. |F ∩ Em| ≤ Bm

min{ce : e ∈ Em}
for all m ∈ M.

Considering EIP-Linear, the relaxation in Corollary 12 is of the same form as the
problem considered in Lemma 7 and can, hence, be solved in polynomial time.

▶ Corollary 13. The following problem is a relaxation of EIP-MinImprov:

max
F ⊆ E

∑
d∈D:

1≤|F ∩Wd|

ad

s.t. |F ∩ Em| ≤ Bm

min{ce : e ∈ Em}
for all m ∈ {1, . . . , M}.

The relaxation in Corollary 13 is of the same form as the problem considered in Lemma 9
and can, hence, be solved in polynomial time.
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4 Computational Study

In the computational study, we evaluate the impact of the model variants, the budgets and
the investment factors on the choice of edges to be upgraded. We first present the results for
a set of artificial instances and afterwards for the proposed BRT line in Copenhagen.

4.1 Artificial Instances
We evaluate the models on a set of artificial instances, where each instance is determined by
a graph scenario α = (α1, α2, α3) and a budget scenario β = (β1, β2, β3) as given in Table 1.
The data is available at https://doi.org/10.11583/DTU.c.6130014.

Table 1 Parameters for generating artificial instances.

Parameter Value Explanation

α1 size 10
25

10 stations with 2 municipalities
25 stations with 5 municipalities

α2 segment costs
UNIT
MIDDLE
ENDS

unit costs of ce = 1 for all e ∈ E

more expensive towards the middle of the line
more expensive towards the end stations of the line

α3 demand pattern
EVEN
CENTER
END

same amount per OD pair
centered around a number of large stations
strong demand between end stations of the line

β1 budget limit
1
0.8
0.6

determines available overall budget as fraction of the costs
for upgrading all edges, i.e., B = β1

∑
e∈E

ce

β2 budget split
even
cost
pass

budget B evenly distributed to municipalities
Bm proportional to the costs of the edges in municipality m

Bm proportional to the number of passengers interesting
for municipality m

β3 scaling factor 1.2
1 investment factor per passenger given by bm = β3

∑
e∈E

ce∑
d∈D

ad

Evaluation

For each combination of a graph α and a budget scenario β, we determine an optimal
solution using both of the proposed objectives: Linear and MinImprov. For the latter,
we require that 75% of the edges on the path of an OD pair are upgraded before the
passengers corresponding to that OD pair are attracted. For Linear, the infrastructure
improvement ue of an edge e ∈ E is drawn at random. Moreover, we vary for both objectives
which constraints are enforced: only one overall budget for a global decision maker (SOC),
budget constraints (1) for all municipalities (EIP), and both constraints (1) and (2) for all
municipalities (ROI). The models are solved by means of the commercial solver CPLEX 22.1.

https://doi.org/10.11583/DTU.c.6130014
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Runtime

Table 2 shows the obtained average runtimes in milliseconds, split out over the different
objectives, cost types and budget variants. Next to the influence of the number of stations, the
results show that the model SOC with only a global budget constraint is (often) the hardest
to solve for objective MinImprov. Moreover, in most cases ROI is harder to solve than EIP,
and ROI often turns out to be the hardest model to solve for objective Linear. Considering
the different cost types for objective Linear shows that the polynomially solvable special
case of UNIT costs for SOC and EIP is indeed solved much faster than MIDDLE or ENDS.
For MinImprov, there is no clearly easiest cost type as UNIT would only be polynomially
solvable if the lower bound Ld would be chosen as 1. The overall low runtimes suggest that
specialized polynomial-time algorithms are not necessary for realistically sized instances.

Table 2 Average runtime in milliseconds.

α1 = 10 α1 = 25
Objective α2 SOC EIP ROI SOC EIP ROI

Linear UNIT 3.09 3.00 4.11 9.09 8.54 19.20
Linear MIDDLE 13.37 5.96 6.96 28.54 18.26 33.76
Linear ENDS 18.78 7.02 10.91 18.11 18.43 31.41

MinImprov UNIT 30.61 15.46 15.35 508.63 106.33 128.30
MinImprov MIDDLE 17.87 21.33 22.87 2622.13 76.48 149.94
MinImprov ENDS 23.74 21.70 24.03 591.54 79.02 159.87

What is gained by collaborating?

In Figure 1, we see the investment and the number of attracted passengers for the models
SOC, EIP and ROI for objective functions Linear and MinImprov. As expected, SOC
results in the highest investments for each budget limit β1 ∈ {1, 0.8, 0.6} as well as the highest
number of attracted passengers. Similarly, EIP results in higher (or equal) investments and
attracted passengers than ROI, as ROI is the more restrictive model. For all budget limits,
especially the lower ones, the median share of newly attracted passengers is higher for the
objective Linear than for the objective MinImprov. Moreover, for the objective Linear,
the median share of newly attracted passengers is always higher than the median share of
investments. This is also true for objective MinImprov with a budget limit β1 ∈ {1, 0.8},
while it is distinctly lower for β1 = 0.6. This shows that in the distributed setting EIP and
especially in the benefit-oriented setting ROI, it is more difficult to upgrade 75% of the edges
of the path of an OD pair. Note that in the benefit-oriented case ROI, the 25th percentile
sometimes reaches zero, i.e., in the MinImprov case, the municipalities relatively often do
not invest at all.

ATMOS 2022
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(a) Linear, evaluating investment.
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(b) Linear, evaluating attracted passengers.
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(c) MinImprov, evaluating investment.
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(d) MinImprov, evaluating attracted passengers.

Figure 1 Box plots showing the share of investment and attracted passengers compared to
upgrading all segments for varying budget limits. The orange line marks the median, the box the
25th- to 75th-percentile.

How does changing the budget split β2 influence the passengers?

Table 3 shows the influence of the budget split β2 in EIP and ROI on the number of attracted
passengers for different passenger demand patterns α3. For all three demand patterns,
splitting the demand according to the costs of the municipalities’ segments yields the highest
number of attracted passengers. While for the objective function Linear, switching between
EIP and ROI has almost no influence, there is a considerable difference between EIP and
ROI for MinImprov. This is especially the case for demand pattern END and, to a lesser
extent, for demand pattern EVEN. The reduction in passenger potential is considerably lower
for demand pattern CENTER, which is the demand pattern that has the highest passenger
potential for both models.

Table 3 Influence of the budget split β2 on the attracted passengers.

EIP ROI
Objective α3 β2 = cost β2 = even β2 = pass β2 = cost β2 = even β2 = pass

Linear CENTER 85.96% 83.61% 83.65% 85.53% 83.61% 83.65%
Linear END 79.74% 75.55% 72.23% 77.00% 74.98% 72.23%
Linear EVEN 80.31% 76.92% 76.92% 80.31% 76.92% 76.92%

MinImprov CENTER 79.83% 77.51% 77.49% 78.18% 77.04% 76.98%
MinImprov END 60.29% 54.41% 45.07% 47.64% 33.67% 26.12%
MinImprov EVEN 66.06% 61.33% 61.33% 60.62% 54.52% 54.52%
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Upgrading segments in a dynamic setting

When increasing the budget, more segments can be upgraded in order to attract more
passengers. This is especially important when a fixed budget is available now, but more
budget might be available in the future. In our experiments, we see that the segments
upgraded for a low budget are almost always also upgraded for a higher budget: When
increasing the budget limit β1 from 0.6 to 0.8 and from 0.8 to 1, respectively, only 2.4% of
the segments are upgraded for the lower budget limit and would not be upgraded for the
higher one. Thus, we conclude that implementing an optimal solution for a low budget allows
for an optimal solution when increasing the budget later on in the vast majority of cases. In
this sense, a greedy heuristic seems to be a good solution approach here. For an example,
see Figure 4 in Appendix A.

4.2 Copenhagen Case Study

The analyzed problem is motivated by the plans to build a set of new BRT lines in the
Copenhagen Region. One of these lines will run foremost along the route of the current bus
line 400S. The line runs through several municipalities, that each individually need to decide
on the route approval, investment budget and upgrading of the segments. A pre-assessment
study was conducted for the line that calculated the expected costs, travel durations and
number of passengers per station for five different route alternatives, see Figure 2.

Figure 2 Route alternatives for a new BRT line in the Copenhagen Region. Adapted from [19].

ATMOS 2022
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We use the data about the five route alternatives from the pre-assessment study to
construct instances for EIP and ROI. These instances contain between 24 and 32 stations
depending on the route alternative, with the restriction that there are two edges that are not
upgradable. To obtain OD-data, we translate station passenger demand information to OD
pair demands according to the classical gravity model [14]. Moreover, as the municipalities
still have to decide on the investments that they are willing to make, we create budget
scenarios β = (β1, β2, β3) as in the artificial instances according to Table 1.

Evaluation

For all five route alternatives, considering the model SOC or EIP with the same budget limit
β1, the investment is almost the same for the objectives Linear and MinImprov (see, e.g.,
Figures 5 and 6 in Appendix A). However, the numbers of passengers that are attracted are
considerably lower for MinImprov. Note that particularly fewer passengers can be attracted
in the benefit-oriented problem ROI-MinImprov for some of the route alternatives. A
reason might be that it is difficult to achieve an upgrade of 75% of the edges on the path of
an OD pair, especially because there are two segments on the routes that are not allowed to
be upgraded.

When comparing the various route alternatives, the goal is to determine which one has
the highest potential to attract new passengers without leading to high investment costs.
Figure 3 shows that for both passenger behavior patterns investigated here, i.e., for the
objective functions Linear and MinImprov, route alternatives 4 and 5 have the highest
potential to attract new passengers for all budget limits and all models SOC, EIP and ROI.
These two route alternatives are therefore to be given preference. A peculiarity of route
alternatives 1 and 2 is that one municipality contains a costly highway segment in the middle
(see Figure 5 in Appendix A). An investment would be very advantageous for passengers
in general, but the investing municipality would not benefit as much because there are no
stations along this costly highway segment that can attract new passengers. Therefore, this
segment is only upgraded in SOC and EIP:cost with β1 = 1.0, and in particular never in
ROI. Note that this costly segment is not contained in the preferable route alternatives 4
and 5 (see Figure 6 in Appendix A).
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(a) Linear.
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(b) MinImprov. (c) Legend.

Figure 3 Comparing investment costs and attracted passengers for the different route alternatives.
Note that the x- and the y-axes are scaled the same in both plots.
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5 Conclusion

In this paper, we introduced the Edge Investment Problem, which is motivated by the
construction of a new BRT line around Copenhagen and which aims to capture a maximum
amount of new passengers. We modeled the problem mathematically, developed linear integer
programming formulations and analyzed the complexity. Additionally, we evaluated both
the Copenhagen case study as well as related artificial instances concerning the investment
and the newly attracted passengers.

The presented models can also be applied to general graphs, which is considered in
ongoing research. Here, an upgrade of one edge can affect several lines such that the problem
structure gets more involved. Future work could also consider the connectivity of upgraded
edges in addition to the gained infrastructure improvements, as their relative arrangement
might have an impact on the attractiveness to passengers of a BRT line as well. For example,
if the bus often switches between normal traffic and the dedicated BRT infrastructure, it
might no longer be perceived as a BRT line by the passengers. Hence, a preferred solution
would contain long consecutive sections of upgraded edges.

Further, a natural extension of the problem analysis is to model the Edge Investment
Problem in a game-theoretic setting. In addition to the municipalities, it is interesting to
consider a central authority that can either subsidize the investments of the municipalities or
invest in any edges itself with respect to a budget constraint. This could give new incentives
for the municipalities to invest.

When extending the problem to general graphs with multiple lines, it might also be
beneficial to consider the Edge Investment Problem in an integrated setting, see [16].
Here, combinations with line planning, passenger routing and tariff planning based on [17]
are especially promising.
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A Appendix: Further Evaluations
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Figure 4 Example for upgraded line segments, α1 = 25, α2 = ENDS, α3 = CENTER for objective
Linear. For each model SOC, EIP with β2, ROI with β2, β3, the segments upgrades for budget
limit β1 ∈ {1, 0.8, 0.6} are given. Segments are colored according to the corresponding municipality
if they are upgraded and are gray if they are not upgraded. The shade of the color gives the share
of the passengers using the segment compared to the total number of potential passengers. The
width of a segment corresponds to its costs. The passenger distribution for the completely upgraded
BRT line is given at the top. The investment is given as a percentage of the costs of the complete
BRT line and the passengers attracted are given as a percentage of the potential of the completely
upgraded BRT line.
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